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The brain endogenously generates electrical activity that arises from the complex, 

nonlinear interactions of its components. During sleep, large amplitude, slow oscillations as well 

as 10-16 Hz rhythms known as sleep spindles are generated in the cortex and thalamus 

respectively, and their coupling has been shown to bolster our memory capacities by facilitating 
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cortical plasticity. Identifying where particular sleep rhythms are generated, how they co-occur 

with other regions, and whether rhythms differ in frequency or other characteristics can inform 

mechanisms for how they coordinate information exchange during sleep. In this dissertation, I 

characterized the cortical and thalamic activity of sleep spindles, theta bursts (~6 Hz), a novel 

sleep rhythm identified here, and the coupling of spindles and theta bursts with slow waves using 

intracranial recordings from epileptic patients. I also report regional differences in spindle 

properties, largely inaccessible to non-invasive recordings, that propose a modified view of 

spindle dynamics across the cortex.  

The most common characterizations of brain dynamics, including the sleep rhythms 

reported here, are largely based on linear time-frequency analyses. However, because the brain is 

a high-dimensional, nonlinear system, applying linear techniques alone may not sufficiently 

capture the relevant dynamical features. To address this, I helped develop nonlinear tools, based 

on Delay Differential Analysis (DDA), for analyzing neural time series. I evaluated these tools in 

simulated, chaotic systems, which are suitable models for recurrent, continuous, and nonlinear 

dynamics. Specifically, I investigated whether given a set of recorded time series, can we (1) 

assess whether two signals are causally interacting and (2) rank signals by their amount of 

dynamical information about the original system. These applications of DDA, in tandem with 

traditional linear techniques, can improve our understanding of underlying brain activity during 

seizures and sleep.  

In Chapter 1, I characterize a novel sleep rhythm, the theta burst, that is distinct from 

sleep spindles, recorded in both the cortex and thalamus, and which in both structures, precedes 

downstates. In Chapter 2, I report distinct sources of spindle variability, including variability 

across channels within a region, across spindles within a single recording site, and across cycles 
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within a spindle, and how these sources are of a size comparable to the frontal-parietal difference 

typically used to summarize spindle dynamics. Chapter 3 introduces a novel nonlinear signal 

processing technique, Cross-Dynamical Delay Differential Analysis (CD-DDA), for inferring 

causal interactions between time series and applies this approach to track seizure spread in a 

patient with epilepsy. Chapter 4 applies DDA in simulated chaotic dynamical systems to assess 

the observability of a time series, i.e. how much dynamical information a variable has about the 

original system it is a part of. 
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CHAPTER 1: Theta bursts are distinct sleep rhythms in NREM sleep 

 

Systems/Circuits

Theta Bursts Precede, and Spindles Follow, Cortical and
Thalamic Downstates in Human NREM Sleep

Christopher E. Gonzalez,1* Rachel A. Mak-McCully,2* X Burke Q. Rosen,1 X Sydney S. Cash,3 Patrick Y. Chauvel,4

Hélène Bastuji,5 Marc Rey,4 and Eric Halgren6

1Department of Neurosciences, University of California San Diego, La Jolla, California 92093, 2University California Berkeley, Berkeley, California 94720,
3Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Harvard University, Boston, Massachusetts 02114, 4Aix-Marseille
Université, Marseille 13385, France, 5Central Integration of Pain, Lyon Neuroscience Research Center, INSERM, U1028, CNRS, UMR5292, Université
Claude Bernard, Lyon, Bron, France, and 6Departments of Radiology and Neurosciences, University of California, San Diego, California 92093

Since their discovery, slow oscillations have been observed to group spindles during non-REM sleep. Previous studies assert that the
slow-oscillation downstate (DS) is preceded by slow spindles (10 –12 Hz) and followed by fast spindles (12–16 Hz). Here, using both direct
transcortical recordings in patients with intractable epilepsy (n ! 10, 8 female), as well as scalp EEG recordings from a healthy cohort
(n ! 3, 1 female), we find in multiple cortical areas that both slow and fast spindles follow the DS. Although discrete oscillations do
precede DSs, they are theta bursts (TBs) centered at 5– 8 Hz. TBs were more pronounced for DSs in NREM stage 2 (N2) sleep compared
with N3. TB with similar properties occur in the thalamus, but unlike spindles they have no clear temporal relationship with cortical TB.
These differences in corticothalamic dynamics, as well as differences between spindles and theta in coupling high-frequency content, are
consistent with NREM theta having separate generative mechanisms from spindles. The final inhibitory cycle of the TB coincides with the
DS peak, suggesting that in N2, TB may help trigger the DS. Since the transition to N1 is marked by the appearance of theta, and the
transition to N2 by the appearance of DS and thus spindles, a role of TB in triggering DS could help explain the sequence of electrophys-
iological events characterizing sleep. Finally, the coordinated appearance of spindles and DSs are implicated in memory consolidation
processes, and the current findings redefine their temporal coupling with theta during NREM sleep.

Key words: corticothalamic; downstates; iEEG; sleep; spindles; theta

Introduction
During NREM sleep, the brain endogenously produces electrical
activity dominated by larger amplitude, lower frequency (0.1- 16

Hz) rhythms compared with wake or REM states. Downstates
(DSs) (periods of neuronal quiescence lasting a few hundred mil-
liseconds) and sleep spindles ("0.5–2 s, 10 –16 Hz oscillations)
are two canonical NREM events with initiating mechanisms
largely attributed to cortical and thalamic activities, respectively.
However, the extensive bidirectional connections between cortex
and thalamus precludes a simple entraining mechanism for ei-

Received Feb. 20, 2018; revised Aug. 10, 2018; accepted Aug. 28, 2018.
Author contributions: C.E.G. and R.A.M.-M. wrote the first draft of the paper; C.E.G., R.A.M.-M., S.S.C., P.Y.C., H.B.,

M.R., and E.H. edited the paper; C.E.G., R.A.M.-M., and E.H. designed research; C.E.G., R.A.M.-M., B.Q.R., P.Y.C., H.B.,
and M.R. performed research; S.S.C., P.Y.C., H.B., and M.R. contributed unpublished reagents/analytic tools; C.E.G.,
R.A.M.-M., and B.Q.R. analyzed data; C.E.G. and R.A.M.-M. wrote the paper.

This work was supported by the National Institutes of Health (Grants R01-MH-099645 and R01-EB-009282), the
U.S. Office of Naval Research (Grant N00014-13-1-0672), the National Science Foundation Graduate Research Fel-
lowships Program, and the National Institute of Mental Health–NIH (T32 Cognitive Neuroscience Training Grant).
We thank Nima Dehghani for EEG data, Donald Hagler for spindle detection scripts, Fabrice Bartolomei for access to
data and analysis input, Catherine Liegeois-Chauvel for research access, and Jean Regis for electrode localization for
the Marseille patient.

The authors declare no competing financial interests.
*C.E.G. and R.A.M.-M. contributed equally to this work.
Correspondence should be addressed to Christopher E. Gonzalez, Department of Neurosciences Graduate Pro-

gram, University of California, 9500 Gilman Drive 0634, La Jolla, CA 92093. E-mail: cegonzalez@ucsd.edu.
https://doi.org/10.1523/JNEUROSCI.0476-18.2018

Copyright © 2018 the authors 0270-6474/18/389989-13$15.00/0

Significance Statement

Sleep is characterized by large slow waves which modulate brain activity. Prominent among these are downstates (DSs), periods of
a few tenths of a second when most cells stop firing, and spindles, oscillations at "12 times a second lasting for "a second. In this
study, we provide the first detailed description of another kind of sleep wave: theta bursts (TBs), a brief oscillation at "six cycles
per second. We show, recording during natural sleep directly from the human cortex and thalamus, as well as on the scalp, that TBs
precede, and spindles follow DSs. TBs may help trigger DSs in some circumstances, and could organize cortical and thalamic
activity so that memories can be consolidated during sleep.
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ther event and properties such as duration (Bazhenov et al., 2002;
Bonjean et al., 2011; Barthó et al., 2014), frequency of occurrence
(Timofeev et al., 2000), and synchrony (Contreras et al., 1996) are
all shaped by their cooperative dynamics (Steriade, 1997; Crunelli
and Hughes, 2010). These rhythms are believed to serve func-
tional roles in sleep-dependent memory consolidation (Se-
jnowski and Destexhe, 2000; Diekelmann and Born, 2010; Hanert
et al., 2017). In particular, the specific grouping of spindles by
slow waves has been associated with improved declarative mem-
ory in humans (Mölle et al., 2011; Niknazar et al., 2015) and fear
conditioning in mice (Latchoumane et al., 2017).

Although several studies report faster spindle frequency activ-
ity (!12 Hz) occurs on the transition from the down to upstate
(US) (Andrillon et al., 2011; Mölle et al., 2011; Cox et al., 2014a;
Klinzing et al., 2016), the temporal relation of lower frequency
(4 –12 Hz) content to DSs has not been definitively established.
This relationship is more clear during NREM stage 2 (N2) sleep,
when DSs usually occur without preceding USs as the main com-
ponent of the K-complex (KC) (Cash et al., 2009; Mak-McCully
et al., 2015). Some investigators have observed “polyphasic waves
[. . . ]just before the onset of the negative K-complex sharp wave”
(Rodenbeck et al., 2006) or an "7 Hz short-lasting “intra-KC”
oscillation (Kokkinos and Kostopoulos, 2011; Kokkinos et al.,
2013). More recently, however, the US to DS transition has been
associated with slow spindle activity (9 –12 Hz) (Mölle et al.,
2011; Klinzing et al., 2016; Yordanova et al., 2017). Findings from
the latter studies bolster the hypothesis that there are distinct
types of spindles, slow and fast, which could have their own
rhythmogenesis mechanisms (Timofeev and Chauvette, 2013;
Fogerson and Huguenard, 2016). Here, we present findings that
challenge this hypothesis using bipolar transcortical and thalamic
recordings from epileptic patients to obtain focal measures of
DSs and spindles. We confirm these findings at the scalp using
EEG recordings from a nonclinical population. We propose that,
regardless of frequency, spindles recorded either intracranially or
at the scalp are more likely to start on the down to up transition
and we describe a theta burst (TB) distinct from spindles that can
accompany the up to down transition, especially in N2 sleep.

Materials and Methods
Intracranial recordings. Stereoencephalography (SEEG) was obtained in
10 patients (8 female; mean # SD age: 38.7 # 12.7; Table 1) undergoing
evaluation for pharmacoresistant epilepsy at Massachusetts General
Hospital; La Timone Hospital, Marseille, France; or Neurological Hos-
pital, Lyon, France. At Massachusetts General Hospital, electrode con-
tacts were localized using CT of the implanted electrodes superimposed
on preoperative MRI (Dykstra et al., 2012). Each SEEG electrode had
either 8 (5 mm center-to-center spacing) or 6 (8 mm spacing) contacts.
Each contact was 1.28 mm in diameter and 2.4 mm long. Signals were
sampled at 500 Hz and band-pass filtered from 0.33 to 128 Hz. At La
Timone Hospital, localization of electrode contacts was performed using
MRI and CT of implanted electrodes. For one patient, localization was
determined using preoperative MRI and surgical planning. Each elec-
trode had either 10 or 15 contacts (3.5 mm center-to-center spacing).
Each contact was 0.8 mm in diameter and 2 mm long. The recordings
were sampled at 256, 512, or 1024 Hz. At the Neurological Hospital,
electrode localization was determined directly from stereotactic telera-
diographs without parallax performed within the stereotactic frame (Ta-
lairach and Tournoux, 1998). These locations were superimposed onto
the preimplantation 3T structural MRI (3D MPRAGE T1 sequence) after
alignment with the skull. The locations of cortical and thalamic contacts
were determined by reference to the atlases of Duvernoy (1999) and
Morel et al. (1997). Each electrode had either 10 or 15 contacts (3.5 mm
center-to-center spacing). Each contact was 0.8 mm in diameter and 2
mm long. The recordings were sampled at 256 Hz and bandpass filtered
from 0.33 to 128 Hz. Informed consent was obtained from all patients.

SEEG recordings were bipolar between adjacent contacts spanning the
cortical ribbon. These “transcortical bipolar contacts” provide relatively
focal measurements of the local field potentials generated in the tran-
sected cortex (Mak-McCully et al., 2015). The polarity of bipolar deriva-
tions was inverted if necessary to ensure that DS [as confirmed with
decreased high gamma (HG); see below] were negative. This produced
recordings with a relatively consistent relationship to the underlying cor-
tical generators, as evidenced by the consistent phase relation between
HG and TB (see below) and chosen as described previously (Mak-
McCully et al., 2015). Only channels with both slow oscillations and
spindles apparent to visual inspection were included for analysis. Chan-
nels were excluded if a clinical electroencephalographer judged signifi-
cant interictal activity, pathological background changes, or early
involvement in the ictal discharge. At each site, sleep scoring was per-
formed by clinical experts (S.S.C., H.B., or M.R.) using examination of

Table 1. Demographic and clinical information

Patient Sex Age Handedness Clinical diagnosis Pathological diagnosis Imaging Focus

1 M 35 — Right temporal lobe epilepsy No pathology obtained Normal Temporo-parieto-occipi-
tal junction

2 F 37 R Temporal lobe epilepsy No pathology obtained Normal Hippocampus
3 M 45 L CPS; bitemporal No pathology obtained — Left and right mesial

temporal lobes
4 F 45 R CPS; multifocal Multifocal: temporal, parietal,

occipital
— Temporal

5 F 65 R CPS; temporal lobe epilepsy with two foci:
left mesial temporal structures and
right subfrontal region

No pathology obtained — Right subfrontal and
anterior temporal

6 F 32 R Left temporal lobe epilepsy Nonspecific gliosis Normal Hippocampus, entorhinal
cortex, amygdala

7 F 23 R Right temporal lobe epilepsy Type I focal dysplasia Normal Hippocampus, entorhinal
cortex, anterior insula

8 F 28 R Right temporal occipital epilepsy Type II focal dysplasia Focal cortical dysplasia in
right fusiform

Fusiform gyrus, entorhi-
nal cortex

9 F 50 R Right temporal occipital epilepsy No pathology obtained Normal Right fusiform gyrus
10 F 27 R Right temporal lobe epilepsy No pathology obtained Right hippocampal sclerosis Hippocampus, entorhinal

cortex, amygdala

CPS, Complex partial seizures.

9990 • J. Neurosci., November 14, 2018 • 38(46):9989 –10001 Gonzalez, Mak-McCully et al. • Theta Precedes Downstates, Spindles Follow
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bipolar electrodes (n ! 7) or scalp EEG with EOG/EMG when available
(n ! 3). Analyses were performed on the N2 and N3 sleep periods only
(Silber et al., 2007).

In total, 60 cortical bipolar SEEG channels obtained from 10 patients
and eight thalamic (mainly pulvinar) bipolar channels from three of the
10 patients during NREM sleep were included for analysis. The locations
of all cortical bipolar channels are shown in Figure 1A, as well as examples
of bipolar derivations for cortical (Fig. 1B) and thalamic (Fig. 1C) sites.
On average, each patient had six cortical channels (ranging from two to
13) and 120.6 min of NREM sleep from one night (ranging from 26.5 to
240 min). DSs and spindles were detected on each channel separately
using previously described methods (and see below) (Mak-McCully et
al., 2017).

Scalp EEG recordings. Scalp EEG data were recorded during sleep from
three healthy subjects (one female). Written informed consent approved
by the Partners Healthcare Network was obtained for all subjects before
their participation. Subjects wore a 70-channel EEG cap with a modified
10 –20 montage (Elekta Neuromag). Data were referenced to left mas-
toid. Magnetoencephalographic data were collected simultaneously but
are not reported here. Periods of N2 sleep were identified according to
standard criteria (Iber et al., 2007). Gross artifacts were removed by
visual inspection.

DS detection. DSs were detected on each channel as follows: (1)
apply a zero-phase eighth-order Butterworth filter from 0.1 to 4 Hz;
(2) select consecutive zero crossings within 0.25- 3 s; and (3) calculate
amplitude peak between zero crossings and retain only the bottom
20% of peaks for intracranial recordings or the bottom 10% of peaks
for scalp EEG recordings.

For DS detection in intracranial recordings, only periods of N2 and N3
sleep free of visually identified epileptiform discharges were used. Bipolar
SEEG channels exhibiting DSs were also required to show decreases in
power within HG, defined as 60 –100 Hz, exceeding 1 dB within "250 ms
of the negative DS peak. Sixty such channels were identified, showing
mean decreases in HG power during DS troughs of #3.18 dB (range, #1
to #8).

Spindle detection. The current clinical standard for sleep scoring ad-
opted by the American Academy of Sleep Medicine is 11–16 Hz (Silber et
al., 2007), but the major previous studies describing sleep spindles using
intracranial recordings in humans adopted 9 –16 Hz (Andrillon et al.,
2011; Piantoni et al., 2017) or 10 –16 Hz (Mak-McCully et al., 2017;
Hagler et al., 2018). Recent analyses with scalp recordings of fast versus
slow spindles have also used either 9 –15 Hz (Mölle et al., 2011; Klinzing
et al., 2016) or 10 –16 Hz (Cox et al., 2014a) or even 9 –16 Hz(Yordanova
et al., 2017), but in the majority of cases, with the division between fast
and slow spindles at 12 Hz. Here, we consider spindles as 10 –16 Hz
events and define spindles !12 Hz as slow. Recordings were notch fil-
tered (either 49 –51 Hz or 59 – 61 Hz, depending on country of origin)
and then band-pass filtered at 10 –16 Hz using a zero-phase frequency
domain filter (transition bands 30% of cutoff frequency). Taking the
absolute value of this filtered signal produced a spindle-band amplitude
envelope. This envelope was convolved with a 400 ms Tukey window and
the median amplitude was subtracted and normalized by the median
absolute deviation. This signal was used to detect the onset and offset of
putative spindle epochs. To detect the middle of spindle epochs, we
convolved the amplitude signal with a 600 ms Tukey window, normal-
ized as before, and identified peaks with magnitude larger than 2 for
intracranial recordings and larger than 1 for scalp EEG recordings. Then,
we defined the onset and offset as 40% of the peak amplitude of the
original spindle amplitude envelope. Any overlapping or duplicate ep-
ochs were resolved and epochs $300 ms were excluded. We then applied
a series of strict exclusion criteria for putative spindle epochs. These
included removing any epochs that also exceeded 5 for a low (4 – 8 Hz)-
or high (18 –25 Hz)-amplitude envelope. We also required 5 peaks in a
broad-band filtered signal (4 –25 Hz) with an amplitude greater than the
median absolute deviation per channel and at least 25% amplitude of the
largest peak. Spindles in the thalamus were detected using a modified
version of this detector as described previously (Mak-McCully et al.,
2017).

TB detection. TBs were detected by modifying a previously reported
spindle detector (Andrillon et al., 2011). Our procedure was as follows:

A

B C

Figure 1. Bipolar SEEG recordings obtained from epileptic patients. A, Locations of 60 cortical bipolar recordings from 10 patients with intracranial electrodes. B, Illustration of bipolar transcortical
derivation used throughout the study, with arrows indicating two cortical bipolar channels from Patient 3. C, Illustration of bipolar recordings from Patient 1 from the pulvinar of the thalamus.
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(1) apply a zero-phase eighth-order Butterworth filter from 5 to 8 Hz
(range selected to minimize overlap with delta and spindle content); (2)
calculate the mean of the Hilbert envelope of this signal smoothed with a
Gaussian kernel (300 ms window; 40 ms !); (3) detect events with a !3
SD threshold for the peak and identify the start and stop times with a !1
SD threshold; (4) only include events with a duration between 400 ms
and 1 s; and (5) for each band-pass-filtered peak in putative burst, calcu-
late the preceding trough-to-peak deflection and only take events that
have at least 3 peaks exceeding 25% of the maximum deflection. We also
required bipolar SEEG recordings to have at least 50 TBs before calculat-
ing average theta frequency or the proportion of theta events associated
with DSs, which excluded four of 60 cortical channels.

Phase–amplitude coupling (PAC). For the intracranial recordings, we
correlated the phase of either spindle (10 –16 Hz) or theta (5– 8 Hz) with
the analytic amplitude in 60 –100 Hz for all cortical channels across pa-
tients. We chose 60 –100 Hz to keep the range consistent across patients
and because our lowest sampling frequency was 256 Hz. Only channels
that had at least 30 theta events and 30 spindles were included (58 of 60
cortical channels). We band-pass filtered our data in the theta-, spindle-,
and gamma-frequency ranges using finite impulse response filters with
an order equal to the duration of three cycles of the lowest frequency. We
used the Hilbert transform to extract the analytic signal from our band-
passed data, took the phase angle from our theta and spindle band-passed
data, and the amplitude from our HG band-pass signal. Correlations
between the phase of the lower frequency signal and HG amplitude were
evaluated across a duration equal to the first two cycles of the lower
frequency range per signal across all detected events for each channel.
The observed PAC measure was calculated by taking the length of the
average complex vector of the low-frequency phase, weighted by the
corresponding high-frequency power time series (Canolty et al., 2006).
Significance was assessed for each channel and event type using nonpara-
metric permutation statistics. Specifically, for each channel and event
type, the phase time series was randomly offset relative to the power time
series and PAC was recalculated 1000 times, generating a null distribu-
tion against which to compare our observed PAC measure. The preferred
phase was determined only for channels with a PAC-Z value "3 ( p #
0.002).

Time domain and spectral analyses. We created event-related histo-
grams to quantify the timing of intracranially recorded spindle or theta
events relative to all intracranially recorded DS troughs. For each bipolar
SEEG recording, we required at least 30 events associated with a DS
within !1 s of the DS trough to be included in the grand average histo-
grams. Furthermore, we required at least 20 events within ! 500 ms to
assess whether spindle (theta) events were more likely to start 500 ms
after (before) the DS trough using a two-way binomial test. Binomial
tests were corrected for multiple comparisons using Bonferroni correc-
tion (" $ 0.05) for each grapho-element type. Data processing and anal-
ysis were performed in MATLAB and time–frequency plots were created
using EEGLAB (Delorme and Makeig, 2004).

We also examined the spectral profile of periods before DSs. Power-
spectral densities (PSDs) were computed for the epoch 500 to 0 ms before
the DS trough. For each channel, these were ranked and quartiled by the
power in the 4 –12 Hz band. PSDs in the first and fourth quartile were
normalized as z-scores and averaged over DSs. The difference between
the quartiles is plotted in Figures 2G (SEEG) and 5E (scalp EEG).

Experimental design and statistical analysis. Linear mixed-effects mod-
els with patient specified as random effect were implemented in R to
estimate descriptive statistics such as overall frequency, duration, and
rate of occurrence, as well as for testing differences between frontal and
parietooccipital electrodes.

Results
Identifying short TBs before DSs in the cortex
Visual inspection of average spectrograms ! 2 s relative to all DS
troughs in intracranial recordings showed increases within the
5–10 Hz range %250 ms before the negative peak (Fig. 2A,D,
cyan arrows). However, inferring oscillatory activity from such
representations can be misleading (Jones, 2016) because the

sharp decline in the pretrough part of the DS could contain nono-
scillatory power in the theta band (Cox et al., 2014b). To confirm
that this increase was associated with an oscillatory component
and was not just an artifact of the ensuing DS LFP waveform, we
looked for the presence of oscillations in the average of the orig-
inal LFP time locked to a filtered theta peak (5– 8 Hz). We imple-
mented this by sorting DSs according to previous theta power
and averaging across events within a quartile time locked to
the first band-passed theta peak preceding the DS trough. This
unfiltered average revealed clear oscillatory activity within the
theta range, showing two to three peaks across the majority of
channels for the top quartile and often absent in the lowest
(Fig. 2 B, E). Theta oscillations were also apparent at the level
of single DSs selected from the top quartile (Fig. 2 B, E, insets,
cyan arrows).

To further characterize this observed intracranially recorded
theta oscillation during NREM sleep, we applied a theta detector
to each channel (see Materials and Methods). Descriptive statis-
tics for detected theta events are shown per patient in Table 2 and
the overall estimates for frequency, duration, and rate of occur-
rence are as follows (mean ! SD): 6.33 ! 0.45 Hz, 672 ! 28 ms,
1.25 ! 0.39 /min. Interestingly, frontal channels exhibited lower
overall frequency compared with parietooccipital channels, with
estimated frequencies of 6.26 and 6.5, respectively (t $ &5.6, p $
2.14e-08, mixed-effects model with patient as random effect). As
expected, frontal channels also showed lower overall spindle fre-
quency compared with parietooccipital (t $ &3.14, p $ 0.002),
with estimated overall frequencies of 12.26 and 12.65 Hz. To
further verify that the pre-DS oscillations were the result of theta
and not slower spindles, for each channel, we sorted DSs by
power in 4 –12 Hz 500 ms before the DS trough. This range in-
cludes both theta and slow spindle frequencies and thus would
detect either. We then calculated the average PSD across all DSs,
per quartile. The difference of the top and bottom quartiles re-
veals a center of frequency at 6 Hz across channels (2G), indicat-
ing that the pre-DS oscillations are theta rather than slow
spindles.

In Figure 2, C and F, we superimpose all detected theta traces,
unfiltered and locked to the deepest trough in the theta event for
two example bipolar SEEG channels. Some channels exhibited a
downward trend in the average (Fig. 2F), suggesting that DS
tends to follow the deepest trough, whereas others do not (Fig.
2C). This difference illustrates that, whereas some detected theta
events were associated with DSs, others were not, and this varied
within and between channels. We also observed from post hoc
analyses that some channels exhibited larger amplitude and more
prolonged theta oscillations in the raw LFP for N2 versus N3 DSs
(Fig. 3A). This was corroborated with a greater number of peaks
in detected TBs on average per channel for N2 compared with N3
(t $ &4.33, p $ 1.49e-05, mixed-effects model with patient as
random effect and channel as nested random effect). Addition-
ally, we found that there was significantly greater theta power
prior (&500 ms to 0) to the DS trough for N2 compared with N3
DSs (Fig. 3B; t $ &3.13, p $ 0.002, mixed-effects model). How-
ever, the rate of detected theta event occurrence was not different
between N2 and N3 (t $ &1.2, p $ 0.23). That is, although the
number of events did not differ between N2 and N3, TBs were
longer and larger in N2.

Theta and spindles show different temporal relationships
with DSs
Because slow oscillations during sleep are known to group
higher-frequency rhythms, we investigated how often our de-
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tected TBs occurred in relation to DSs recorded intracranially. To
quantify this, we created event-related histograms for each bipo-
lar channel by relating the start of TBs to DS troughs. For exam-
ple, a recording from Patient 1 in the right middle frontal gyrus

shows that, when TBs are detected around DSs, they are more
likely to start !300 ms before the DS trough (Fig. 4A). At the
same cortical location, the likelihood of slow spindles (Fig. 4B),
fast spindles (Fig. 4C), or all spindles (Fig. 4D) starting between

Figure 2. Cortical theta during NREM sleep. A–C, Patient 1, right posterior cingulate. D–F, Patient 2, left inferior frontal gyrus. For both A (n " 2084) and D (n " 1265), time–frequency plots
locked to DS troughs reveal increases in the theta range (cyan arrows) immediately before the trough and centered within spindle range (pink arrows) from 0.5 to 1 s after the trough (and more
weakly from #1 to #0.5 s before the trough due to a preceding DS (see H )). The entire epoch was used as baseline. The average of all DSs is overlaid in light gray, gray scale bars indicate 100 !V.
B, E, Average, unfiltered LFP time-locked to the first filtered positive theta peak before the DS trough. Black indicates the top quartile (n " 521 for B, n " 316 for E), blue the bottom quartile of DSs
with prior theta power. Insets reveal a single trace from the top quartile. Scale bars, 200 !V for inset, time ranges from #2 to $0.5 s of the DS trough. Cyan and pink arrows indicate theta events
and spindles, respectively. Positive potentials indicate cortical surface positivity. C, F, Raw LFP of detected theta events locked to the deepest trough, z-normalized. Average shown in green for C (n"
509) and F (n " 148). G, Pre-DS spectra. Plotted are the differences of the first and fourth quartile average power spectral densities of 500 ms pre-DS, when ranked by the amount of 4 –12 Hz power
they contain. Each trace represents the difference of average PSDs for one channel in one patient; all 60 cortical channels are shown. In nearly all channels, power peaks at 6 Hz. H, Average
time–frequency plot across patients time locked to spindle starts from #1.25 to #0.75 s before DS troughs. DSs can be seen at #0.25 s before these spindle starts, marked by the pink arrow. Note
that these spindle-preceding DSs also precede the TBs and the DSs shown in A and D by !1 s, as shown by the two negative deflections in the superimposed gray waveform (color scale indicates %
1 dB). Scale bar, 100 !V.
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!500 ms and 0 is greatly reduced compared with after the DS
trough.

Of 60 cortical recordings, 35 channels from seven patients
had at least 20 TBs within " 500 ms of the DS trough, none of
which was significantly more likely to start after the DS
trough. However, 14 of the 35 channels from five patients were
more likely to have TBs start before the DS trough (binomial
test, Bonferroni adjusted p # 0.05). The proportion of TBs
occurring before the DS trough for these channels was not
significantly different between the frontal and parietooccipital
regions (t $ 1.1, p $ 0.27).

Previous work (Mölle et al., 2011; Klinzing et al., 2016) asserts
that spindles have different temporal relationships with DSs de-
pending on spindle frequency; with slower spindles (! 12 Hz)
occurring on the up to down transition and faster spindles (%12
Hz) occurring on the down to up transition. To test this hypoth-
esis, we selected from the 60 cortical recordings, the 35 channels
from seven patients who had at least 20 slow spindles within "
500 ms of the DS trough. None of these channels showed slower
spindles that were significantly more likely to start before the DS
trough. However, slower spindles recorded by 20 of the 35 chan-
nels from 6 patients were more likely to start after the DS trough
(Bonferroni-adjusted p # 0.05). If all spindles were grouped to-
gether, then those recorded by 39/49 channels from 10 patients
were significantly more likely to start after the DS trough
(Bonferroni-adjusted p # 0.05). Neither slower spindles (t $

!0.44, p $ 0.66) nor all spindles (t $ !1.25, p $ 0.21) showed
significant differences between frontal and parietooccipital re-
gions in the proportion of spindle events occurring after DS
troughs.

Normalizing each event-related histogram per channel by the
total number of counts in the "1 s time window and pooling
histograms across all cortical bipolar channels from 10 patients
revealed similar results (Fig. 4E–H): TBs initiate before DS
troughs and spindles, both slow and fast, initiate after. Signifi-
cance was assessed by Bonferroni correction (p # 0.05) across
time bins within each event type. Time bins with significant like-
lihood of TBs starting were centered around !450 and !350 ms
before the DS trough (Fig. 4E). In contrast, slower spindles were
significantly more likely to start 350 – 450 ms after the DS trough
(Fig. 4F) and faster spindles were significantly likely to start be-
tween bins centered 150 –550 ms after the DS trough (Fig. 4G).
This confirms that spindles are more likely to start during the
transition from down to USs, whereas TBs start just before the
transition to a DS.

Some time bins (Fig. 4B–D,G,H) showed an increased likeli-
hood of spindles starting from &!1.25 s to !0.75 s before DS
troughs. To determine whether this increase was due to a previ-
ous DS, we identified the “early” spindles in question as those that
began at &!1 s before down state troughs (between !1.25 s and
!0.75 s relative to the DS trough). Then, we generated a time–
frequency plot for the activity surrounding these spindles for each

Table 2. Theta burst characteristics

Patient
No. of cortical
channels

No. of thalamic
channels

NREM
time (min)

Cortical theta
rate (1/min)

Cortical theta
frequency (Hz)

Cortical theta
duration (ms)

1 7 3 240 1.83 (0.43) 6.44 (0.2) 669 (22)
2 13 3 146 0.78 (0.3) 6.13 (0.1) 679 (29)
3 4 0 40 1.24 (0.36) 6.05 (0.1) 688 (21)
4 5 0 26 1.09 (0.14) 6.39 (0.14) 646 (40)
5 7 0 58 1.07 (0.27) 6.37 (0.12) 622 (19)
6 7 0 144 0.61 (0.34) 6.32 (0.14) 701 (29)
7 8 0 161 1.28 (0.35) 6.21 (0.19) 696 (22)
8 3 0 90 1.44 (0.2) 6.62 (0.14) 640 (25)
9 2 2 202 1.64 (0.79) 6.65 (0.13) 672 (1)
10 5 0 98 0.95 (0.22) 6.25 (0.1) 667 (27)
Avg: 6.1 (3.1) — 120.5 (70.27) 1.2 (0.38) 6.34 (0.2) 668 (25.3)

Parentheses indicate SD.

Figure 3. Comparing N2 and N3 TBs. A, Theta oscillations before DS troughs were more pronounced for N2 than for N3 DSs. Average waveforms of the DS with the top quartile of prior theta power
are shown from two patients within N2 in black (n $ 677 in Patient 9 and 174 in Patient 8) and N3 in red (n $ 913 in Patient 9 and 635 in Patient 8). Unfiltered averages are locked to the filtered
theta peak just preceding the DS trough. B, Power within theta (5– 8 Hz) range !500 ms to 0 relative to DS trough for each channel (channels from a given patient have the same color). Most dots
are below the diagonal, indicating that theta power was greater for N2 than for N3 (t $!3.13, p $ 0.002, mixed-effects model with patient as random effect and channel as nested random effect).
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channel and averaged them across the 33 channels in six patients
who had at least 50 such spindles (Fig. 2H). A DS is clearly present
in the average time–frequency plot, peaking !.25 s before the
onset of these early spindles. The same plot shows another DS at
!1 s following early spindle onset; this is the DS that was used to
identify the early spindles in the first place, corresponding to the
DS at 0.0 s in plots 2AD. The early spindle power increase pre-

cedes the theta band increase in this plot, as well as those triggered
on the main DS (Fig. 2A,D). In summary, we demonstrate that
there is a sequence of sleep grapho-elements, typically theta–DS–
spindle, but sometimes DS1–spindle1–theta–DS2–spindle2. The
second, longer sequence is expected given that, especially in stage
N3, DSs are well known to occur rhythmically at !1 Hz, com-
prising the slow oscillation.

JI

HGFE

DCBA

Figure 4. Cortical theta precedes DSs and both slow and fast spindles follow. A–D, Event-related histograms showing the timing of the start of TBs (A), spindles ! 12 Hz (B), spindles "12 Hz
(C), and all spindles (D) relative to the DS trough at a single bipolar channel in the right middle frontal gyrus of Patient 1 during both N2 and N3 sleep. E–H, Histograms from all channels normalized
by the total number of counts #1 s and pooled in 100 ms bins. The black line indicates chance level and probability estimates per bin across channels were calculated using linear mixed-effects
models. Stars indicate bins where events occur significantly more than chance (Bonferroni adjusted, p $ 0.05). Error bars indicate 95% confidence intervals (CIs). I, Scatterplot for each channel of
the proportion of TBs with the DSs within 500 ms after ( y-axis) versus the proportion with the DS within 500 ms before (x-axis). J, Same as I but for spindles. All cortical channels with at least 50
events were included. Most channels (dots) in I are above the diagonal, indicating that the DS trough usually occurs after TB onset; in contrast, most channels in J are below the diagonal, indicating
that the DS trough usually occurs before spindle onsets.
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Next we investigated how often TBs or
spindles occur around DSs. Only channels
that had at least 50 occurrences of each
event type (theta or spindle) were in-
cluded (n ! 9 patients, 49 cortical chan-
nels). DS masks were marked by DS
troughs and spindle and theta event masks
marked by estimated start times. We
found that, on average across patients,
24% of detected TBs began within " 500
ms of a DS trough, with 7.7% of TBs oc-
curring after a DS and 17.8% occurring
before (Fig. 4I). In contrast, 10% of de-
tected spindles began within " 500 ms of
a DS trough, with 8.7% of spindles occur-
ring after a DS and 1.7% occurring before
(Fig. 4J). There was a significantly greater
proportion of TBs that fell within " 500
ms of a DS trough than spindles (paired t
test, p ! 2.4e-05). There was substantial
interpatient variability for both events, es-
pecially for TBs. Despite this variability,
most patients exhibited similar temporal
relationships with DSs.

Relation of TBs and spindles recorded
in scalp EEG to DSs
To ensure that that our findings general-
ize to nonpatient populations and to
contextualize our results within the
framework of more commonly recorded
noninvasive measures, we detected events recorded using scalp
EEG in three healthy human participants and recalculated event-
related histograms, as shown in Figure 4, E–H. Replicating the
SEEG results reported above, normalized peri-DS histograms re-
vealed divergent patterns for TBs and spindles recorded at the
scalp (Fig. 5): TBs initiate before DS troughs, whereas spindles
begin afterward. Significance was assessed by Bonferroni correc-
tion (p # 0.05) across time bins within each event type. TBs had
a significant likelihood of starting 500 –300 ms before the DS
trough (Fig. 5A). In contrast, slower and faster spindles were
significantly more likely to start during time bins centered on 450
and 350 ms, respectively, after the DS trough (Fig. 5B,C). These
results are consistent with our conclusions from SEEG: spindles are
more likely to start during the transition from down to USs, whereas
TBs start just before the transition to a DS. Furthermore, as with
Figure 2G, we calculated PSDs over 500 ms before DS troughs, sorted
DSs by power in 4–12 Hz, took the difference of the top and bottom
quartile average PSDs, and found that power is centered within theta
range (Fig. 5E). Each trace is a scalp channel averaged across subjects.

Relating thalamic theta with cortical theta
Three patients also had SEEG electrodes that recorded from the
thalamus and we recently characterized the coordination of
NREM DS and spindles between cortex and thalamus in these
patients (Mak-McCully et al., 2017). Here, we investigated
whether the thalamus also exhibits similar TBs to the cortex and,
if so, how they relate to cortical TBs.

Both time–frequency representations locked to DSs (Fig. 6A,
example channel) and averaging the raw LFP for the top and
bottom quartiles of prior DS theta power (Fig. 6B, example chan-
nel) suggested that there are similar TBs before DSs in the thala-
mus. These oscillations could also be seen at the level of single DSs

(Fig. 6B, inset) and often revealed a downward slope in the aver-
age LFP of detected TBs (Fig. 6C), similar to some cortical chan-
nels. Compared with cortical channels from the same patients
(shown in Table 2), thalamic channels showed no difference in
the rate of theta occurrence (mean " SD for thalamus ! 1.07 "
0.66; for cortex ! 1.39 " 0.62; t ! 1.4,p ! 0.16), average fre-
quency (mean " SD for thalamus ! 6.25 " 0.13; for cortex !
6.33 " 0.22; t ! 1.12,p ! 0.26), or duration (mean " SD for
thalamus ! 661 " 17 ms; for cortex ! 675 " 25 ms; t ! 1.43,p !
0.15) in detected events. This is in contrast with DSs, which
showed greater rates of occurrence in the cortex, and spindles,
which occurred more frequently in the thalamus, as shown in our
previous study (Mak-McCully et al., 2017).

We found that cortical TBs only slightly overlapped with tha-
lamic TBs after correcting for the overlap expected by chance
(average overlap per patient ! 1.9%, 3.7%, and 5.1% above
chance), but this overlap was nonetheless significant (t ! 4.04,
p ! 5.3e-05; patient as random effect, corticothalamic pair as
nested random effect). In contrast, cortical spindles in most sites
overlapped strongly with thalamic spindles over the proportion
expected by chance (average overlap per patient ! 24.2%, 15.6%,
and 26.6% above chance) and, again, this was highly significant
(t ! 6.22, p ! 5e-10; Fig. 6D). This greater corticothalamic over-
lap for spindles compared with TBs is significant (t ! 14.2, p !
1.2e-45).

We also examined the cooccurrence of thalamic and cortical
TBs using their joint occurrence histograms. Only 5/64 cortico-
thalamic pairs had at least 20 thalamic TBs starting within " 500
ms of the start of cortical TBs, and none of these 5 pairs had
histograms with a significant difference between leading versus
lagging peaks as assessed with a binomial test (p # 0.05, Bonfer-
onni corrected). This is in contrast to spindles, which showed

DC

EBA

Figure 5. Scalp EEG theta precedes DSs and spindles follow. As in Figure 4, E–H, DS-locked event-related histograms from all
scalp EEG channels normalized by the total number of counts "1 s and pooled in 100 ms bins are plotted for the start times of: TBs
(A), spindles ! 12 Hz (B), spindles $12 Hz (C), and all spindles (D). The black line indicates chance level and probability estimates
per bin across channels were calculated using linear mixed-effects models. Stars indicate bins where events occur significantly
more than chance (Bonferroni-adjusted p # 0.05). Error bars indicate 95% confidence intervals (CIs). E, Pre-DS spectra. Plotted are
the differences of the first and fourth quartile average power spectral densities of 500 ms pre-DS, when ranked by the amount of
4 –12 Hz power they contain. Each trace represents the difference of PSDs for one channel averaged across all subjects. Only
channels common to all subjects are included.

9996 • J. Neurosci., November 14, 2018 • 38(46):9989 –10001 Gonzalez, Mak-McCully et al. • Theta Precedes Downstates, Spindles Follow



 

9 

 

 



 

10 

 

7D). This difference was highly significant (parametric Watson–
Williams test, F ! 26.5, p ! 1.6e-6).

Discussion
Loomis’ original study recording sleep EEGs in 1939 commented
on sleep spindles following KCs (i.e., DSs; Cash et al., 2009). This
coupling was later quantified (Mölle et al., 2002) and then ex-
tended to assert that, whereas “fast spindles” occur after DSs,
“slow spindles” occur before (Mölle et al., 2011; Klinzing et al.,
2016; Yordanova et al., 2017). Like these studies, we found con-
trasting patterns of oscillatory activity before versus after DS.
However, unlike these studies, we found that both slow and fast
spindles occurred post-DS in direct cortical recordings from both
frontal and occipitoparietal sites (Fig. 4), as well as scalp EEG
(Fig. 5). Rather than slow spindles, we found that short TBs pre-
cede DSs whether in cortical or scalp recordings. Increased spec-
tral power preceding DS is mainly within the theta band centered
at "6 Hz (Figs. 2G, 5E), but extends into the spindle range.
Therefore, if this activity is band-pass filtered in the spindle
range, then low-frequency “spindles” could be detected despite
the center frequency of unfiltered recordings being in the theta
band.

Previous scalp studies have reported increased theta power
before DS troughs (Cox et al., 2014b; Klinzing et al., 2016). We
confirmed that these were true oscillations by averaging the raw
LFP locked to a theta peak before the DS (Fig. 2B,E) and by
requiring each potential TB contain at least three peaks. TBs thus
consist of multiple 4 – 8 Hz waves with a mean duration of "670
ms, shorter than most spindles. They have fewer cycles and lower
amplitude in N3 compared with N2. The density of TB is "7-fold
less than spindles and, unlike spindles (Mak-McCully et al.,
2017), TB density does not differ between cortex and thalamus.
In addition, whereas spindles are tightly coupled between thala-
mus and cortex, no significant relationship can be observed for
TB. Finally, cortical TBs have a significantly different phase rela-
tion to HG than spindles, indicating distinct generators (Fig. 7D).
Therefore, TBs are distinguished from spindles in their internal
frequency, duration, density, position relative to the DS, lack of
overlap or consistent sequencing between thalamus and cortex,
and distinct HG phase preferences.

If slow versus fast spindles do not differ in their relation to the
DS, then is it still tenable to claim that they represent distinct
neurophysiological phenomena rather than variations within a

DC

BA

Figure 7. Theta and spindles couple to HG power differently. A, B, Patient 1, right middle frontal gyrus. A, Average of the top quartile of DSs (ranked by pre-DS theta power) locked to the first prior
theta peak (black), as well as the average of HG power (60 –100 Hz) for the same events (red). B, Average of the top quartile of DSs (ranked by post-DS spindle power) locked to the first filtered spindle
peak following the DS trough (black), as well as the average of the HG power. C, Magnitude of PAC between theta phase and HG (x-axis) versus spindle phase and HG ( y-axis) for all bipolar channels
with unity line overlaid for reference. Overall, a similar level of coupling is observed for TBs versus spindles. D, Preferred phase of either theta or spindle events for each channel that had significant
PAC. Radial scale is number of channels. The preferred phase is consistent for each type of wave and differs significantly between TBs and spindles (parametric Watson–Williams test, F ! 26.5, p !
1.6e-6).
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continuum? Our study confirms the slightly but significantly
higher average frequency of spindles in parietal versus frontal
cortex, consistent with previous EEG and MEG recordings (De-
hghani et al., 2011) and intracranial recordings (Andrillon et al.,
2011; Peter-Derex et al., 2012; Piantoni et al., 2017). The individ-
ual waves in EEG and MEG spindle bursts also vary in frequency,
with later waves also !1 Hz slower on average (Dehghani et al.,
2011). In SEEG, within a given cortical location and often within
the same spindle, spindle waves with frequencies both above and
below the fast/slow division are typically observed. Two kinds of
spindles can be identified in laminar recordings, involving
mainly upper or middle layers (Hagler et al., 2018). The average
frequency of upper versus middle channel spindles does not dif-
fer significantly and both include both slow and fast spindle
waves. In all of these circumstances, fast and slow spindles occur
in a continuum rather than a dichotomy.

Within this framework, it is not clear how to explain how, in
some subjects, two peaks in the spindle spectrogram can be dis-
cerned at the scalp (Cox et al., 2017). The cortical origin of scalp
EEG spindles is not yet well understood due to the lack of detailed
information regarding the amplitude, density, synchrony, phase,
and orientation of the generating cortical patches. It is thus the-
oretically possible that the slower spindles reported at the scalp
are from a location where we did not record. However, the pari-
etal and frontal cortices where we recorded have been proposed
to be the generators of fast and slow scalp spindles (Mölle et al.,
2011; Klinzing et al., 2016) and generate spindle band activity
most related to scalp EEG spindles (Frauscher et al., 2015). Be-
cause the inverse problem is ill posed, it is possible to model the
scalp EEG spindle distribution as being due to either anatomi-
cally distinct generators, each with a single frequency, or distrib-
uted generators, each with a range of overlapping frequencies,
changing slightly across areas. Our results clearly support the
second model.

This supposed dichotomy between slow pre-DS spindles and
fast post-DS spindles in humans has been homologized to the
clear dichotomy in rodents between high-voltage slow spindles
(!8 Hz) versus low-voltage fast spindles (!14 Hz) (Timofeev
and Chauvette, 2013). Only the fast spindles are associated with
memory replay and consolidation (Eschenko et al., 2006; John-
son et al., 2010) or DS (Johnson et al., 2010). The sharp wave-
forms and other epileptiform characteristics of slow rodent
spindles (Polack and Charpier, 2006) suggest that they do not
have an homology in healthy human recordings. Therefore, it
appears that fast rodent spindles correspond to both faster and
slower spindles in humans.

The TBs preceding DS in N2 comprise an augmenting oscil-
lation between cortical excitation and inhibition as indexed by
phase-locked HG, which is correlated with neuronal firing
(Lachaux et al., 2012). The greatest HG decrease occurs at the
final surface-negative TB trough, which coincides with the DS
trough. Therefore, in TB–DS sequences, the DS does not arise as
a sudden decline from baseline, but as the culmination of an
escalating TB oscillation, suggesting that the TB may play a role in
helping to trigger the DS as its final cycle. This possibility receives
some indirect support from the fact that they are generated by the
same cortical layers in laminar recordings (Csercsa et al., 2010;
Halgren et al., 2018) and thus may be engaging the same circuits.
The hypothesis that theta waves may trigger DS in N2 provides a
solution to a difficult question: how do KCs arise? Current theo-
ries model DS onset as a response to the preceding US (Neske,
2015). This view describes the usual in vitro or anesthetized re-
cordings where USs arise from a flat depressed baseline, which is

considered the DS (Lemieux et al., 2014). In contrast, in unanes-
thetized humans (Mak-McCully et al., 2015) and animals (Chau-
vette et al., 2011), DS appear as stereotyped events in a chronically
active cortex during NREM sleep. Laminar recordings in humans
demonstrate that KCs are DS without a preceding US (Cash et al.,
2009). We suggest here that the last positive peak of the TB may
replace the US as the DS trigger. For example, the calcium influx
associated with this cortical excitation during the final positive
peak would trigger hyperpolarizing K" currents (Cunningham et
al., 2006), which may tip the circuit into the DS. However, al-
though TBs could serve as a trigger for DSs in N2, the majority of
DSs are not preceded by TBs, so this triggering phenomenon may
only occur in some circumstances.

The consistent relation of TB to DS and DS to spindles may be
related to the appearance of these waves in successive stages of
sleep. The transition from quiet waking to N1 is marked by the
replacement of alpha by theta waves. N2 then appears when KCs
and sleep spindles appear. Simultaneous corticothalamic record-
ings in natural human sleep show that converging cortical DS
precede thalamic DS, that thalamic spindles are tightly coupled to
begin at the thalamic DS trough, and that thalamic spindles drive
cortical (Mak-McCully et al., 2017). In this view, the N1 to N2
transition would occur when theta begins to trigger cortical DSs
(i.e., KCs), which in turn trigger successively thalamic DS, tha-
lamic spindles, and cortical spindles. N2 transitions to N3 when
DS and US recur rhythmically as the slow oscillation. Both TBs
(shown here) and spindles (Andrillon et al., 2011; Mak-McCully
et al., 2017; Piantoni et al., 2017) continue during N3, but become
abbreviated. We hypothesize that, as the neuromodulatory state
deepens, the US triggered by the DS becomes capable of trigger-
ing the following DS, resulting in less time for elaboration of the
TB or spindles.

During NREM sleep, hippocampal cells replay events from
the preceding waking period during sharp-wave ripples, which
arrive at the cortex during the down to US transition, as the
spindle is beginning (Maingret et al., 2016; Jiang et al., 2017). This
conjunction of hippocampal input with cortical modulation is
thought to underlie consolidation of cortical memory circuits
(Diekelmann and Born, 2010; Mölle et al., 2011; Niknazar et al.,
2015; Hanert et al., 2017; Latchoumane et al., 2017). Our results
suggest that TBs may precede and could help to initiate the DS–
ripple–spindle–US sequence. During waking, theta occurs during
tasks requiring sustained processing (Kahana et al., 1999; Ragha-
vachari et al., 2006) and may underlie prominent cognitive event-
related potentials (Cavanagh et al., 2012; Halgren et al., 2015). If
theta serves a similar function during NREM, then TB may orga-
nize the gathering of cortical information before the DS and con-
sequently help to select related hippocampal traces to be activated
and sent back to the cortex for integration with currently active
neurons during the US and spindle.
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CHAPTER 2: Human spindle variability 

Abstract  

In humans, sleep spindles are 10-16 Hz oscillations lasting approximately 0.5-2s. 

Spindles, along with cortical slow oscillations, facilitate memory consolidation by enabling 

synaptic plasticity. Early recordings of spindles at the scalp found anterior channels had overall 

slower frequency than central-posterior channels. This robust, topographical finding led to 

dichotomizing spindles as ‘slow’ versus ‘fast’, modelled as two distinct spindle generators in 

frontal versus posterior cortex. Using a large dataset of intracranial sEEG recordings (n=20, 365 

bipolar recordings), we show that the difference in spindle frequency between frontal and 

parietal channels is comparable to the variability in spindle frequency within the course of 

individual spindles, across different spindles recorded by a given site, and across sites within a 

given region. Thus, fast and slow spindles only capture average differences that obscure a much 

larger underlying overlap in frequency. Furthermore, differences in mean frequency are only one 

of several ways that spindles differ. For example, compared to parietal, frontal spindles are 

smaller, tend to occur after parietal when both are engaged, and show a larger decrease in 

frequency within-spindles. Conversely, frontal and parietal spindles are similar in being longer, 

less variable, and more widespread than occipital, temporal, and Rolandic spindles. Lastly, 

spindles which are highly phase-locked to posterior hippocampal spindles are faster, longer, and 

less variable. We propose that rather than a strict parietal-fast/frontal-slow dichotomy, spindles 

differ continuously and quasi-independently in multiple dimensions, with variability due about 

equally to within-spindle, within-region and between-region factors.  
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Introduction  

Spontaneous, electrical brain rhythms generated during sleep have been shown to play an 

active role in organizing and strengthening our memory capacities (Marshall et al., 2020; Rasch 

and Born, 2013). Two such rhythms are cortico-thalamic slow waves and sleep spindles (SS). 

Slow waves are large, ~0.5-4Hz rhythms composed of alternating downstates (DSs), or periods 

of neuronal quiescence, followed by upstates, where neuronal activity is similar to waking 

activity(Steriade et al., 1993). SSs are 10-16 Hz oscillations lasting 0.5-2s, and are generated by 

the inhibitory thalamic reticular nucleus interacting with excitatory thalamocortical cells 

(Steriade, 2003; Steriade et al., 1993). Some properties of SSs such as duration(Bonjean et al., 

2011) and synchronization across the thalamus (Contreras et al., 1996), are shaped by 

corticothalamic feedback. SSs are grouped by slow waves, such that SSs begin on the down-to-

upstate transition(Andrillon et al., 2011; Contreras and Steriade, 1995; Mölle et al., 2002). This 

grouping has been shown to facilitate memory consolidation(Mölle et al., 2009; Niknazar et al., 

2015), likely mediated through massive calcium influx into apical dendrites and enabling 

synaptic plasticity (Seibt et al., 2017; Sejnowski and Destexhe, 2000).   

In early scalp recordings, Gibbs and Gibbs (1950s) distinguished slower SSs occurring at 

more anterior sensors from faster SSs at central and posterior sensors.  This observation has 

promoted a model of SS dynamics as two distinct SS generators, a slow/frontal and fast/central-

parietal generator(Anderer et al., 2001; Ayoub et al., 2012; Mölle et al., 2011; Timofeev and 

Chauvette, 2013). However, an alternative explanation is a more unified mechanism for SS 

generation(Steriade, 2003), comprised of many local generators with overlapping frequency 

distributions spread across the cortex(Dehghani et al., 2011a, 2010; Frauscher et al., 2015; 

Gennaro and Ferrara, 2003; Peter-Derex et al., 2012; Piantoni et al., 2017). In this case, average 
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frequency differences between frontal and parietal sites would not be attributable to two 

generators with uniform frequency, but merely obscure a much larger underlying overlap in 

frequency and location. In this study, we explicitly estimate the degree of frequency variation 

between regions, within a region, at individual cortical sites, and within individual SSs, to better 

adjudicate between these two generating mechanisms.  

Frequency variability within SS includes a tendency to slow over the course of the SS. In 

both MEG and EEG, previous work found power is maximal at higher frequencies (13-15 Hz) 

earlier on in the SS, especially at central sensors, and maximal at lower frequencies (10-12 Hz) 

later in the SS, especially at frontal sites(Dehghani et al., 2011a; Zygierewicz et al., 1999). Here 

we report differences in intra-SS frequency variability across the cortical surface, and show it is 

quite large compared to differences in frequency due to region. Some studies at the scalp(O’ 

Reilly and Nielsen, 2014; Schönwald et al., 2011; Souza et al., 2016) as well as intracranial 

(Andrillon et al., 2011)have also reported a systematic decrease or slowing in frequency during a 

SS. However, likely due to smaller sampling, these results appear inconsistent with one 

indicating slower SSs slow more(Souza et al., 2016), and another showing no difference in 

slowing between slower and faster SSs(Andrillon et al., 2011). We provide a more 

comprehensive study in SS slowing across the cortex, as well as report how more widespread 

SSs slow more than local SSs.   

The active process of sleep contributing to memory consolidation and structuring 

depends on communication transfer between the hippocampus and cortex(Diekelmann and Born, 

2010; Rasch and Born, 2013).  Previous work in our lab identified a subset of parietal channels 

that have large phase-locking value (PLV > 0.4) in SSs, especially during N2, with posterior 

hippocampal SSs(Jiang et al., 2019a). We observed a cluster of parietal channels with faster 
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frequency and lower SD that appeared to overlap with this group. We characterize the unique SS 

properties of cortical sites that have strong communication with the hippocampus during SSs.  

These findings support updating a model of cortical SS from two SS generators to a 

model with many generators with varied and overlapping frequency characteristics. We identify 

different sources of SS variability and their magnitude, as well as how types of SSs defined in 

various ways have distinct SS properties. These findings could improve our understanding of the 

mechanisms by which SSs organize memory consolidation during sleep.    

Methods 

Patient selection 

Patients with intractable, pharmaco-resistant epilepsy were implanted with 

stereoelectroencephalographic (sEEG) electrodes to determine seizure onset for subsequent 

resection for treatment.  Patients were selected from an original group of 54, excluding patients 

that had pronounced diffuse slowing, widespread interictal discharges, or highly frequent 

seizures. The selected 20 patients each had at least one hippocampal contact in a hippocampus 

not involved in seizure initiation. The 20 patients includes 7 males, aged 29.8+/-11.9 years old 

(range 16-38 years).  For demographic and clinical information, see Table 1 (originally published 

in Jiang 2019a). All electrode implants and duration of recordings were selected for clinical 

purposes (Gonzalez-Martinez 2013). All patients gave fully informed consent for data usage as 

monitored by the local Institutional Review Board, in accordance with clinical guidelines and 

regulations at Cleveland Clinic.  

Electrode localization 

Electrodes were localized by registering a post-operative CT scan with a pre-operative 

3D T1-weighted MRI with ~1mm3 voxel size (Dykstra et al 2012) using Slicer 
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(RRID:SCR_005619). This allowed visualization of individual contacts with respect to the HC 

cross-sectional anatomy, which was interpreted in reference to the atlas of Duvernoy (1988). The 

posterior limit of the uncal head served as the border for labeling depth contacts as anterior or 

posterior. Recordings were obtained for 32 HC contacts, 20 anterior (11 left) and 12 posterior (7 

left). The CT-visible cortical contacts were identified as previously described (Jiang et al 2019a), 

to ensure activity recorded by bipolar transcortical pairs is locally generated (Mak-McCully 

2015). Electrode contacts were excluded if they were involved in early stages of seizure 

discharge or had frequent interictal activity. Of the 2844 contacts implanted in the selected 20 

patients, 366 transcortical pairs (18.3 +/- 4.7 per patient) were accepted for further analysis. 

Polarity was adjusted, if necessary, to “pial surface minus white matter” according to MRI 

localization, confirmed with decreased high gamma power during for surface-negative DSs.  

Freesurfer was used to reconstruct pial and white matter surfaces from individual MRI 

scans and to parcellate the cortical surface into anatomical areas (Desikan 2006). An average 

surface from all 20 patients was generated to serve as the basis for all 3D maps. While each 

cortical SEEG electrode contact’s location was obtained through direct correlation of CT and 

MRI as described earlier, we obtained the cortical parcellation labels corresponding to each 

contact by morphing the right-anterior-superior-oriented anatomical coordinates from individual 

surfaces to the average surface space (Fischl et al 1999b). For displaying transcortical recordings 

on a 3D surface, the vertex closest to the midpoint to each contact pair on the native surface was 

registered to the average surface. As some contact pair markers are located within sulci, all 

markers were moved to the same plane, for the medial and lateral surfaces separately. This 

allows visualizing all contact markers while maintaining anatomical fidelity. For a priori 

statistical analysis of SS characteristics by cortical region, insular transcortical pairs were 
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assigned to temporal cortex, and paracentral, postcentral and precentral labels constituted the 

Rolandic cortex.   

Data processing 

Continuous recordings from SEEG depth electrodes were made with a cable telemetry 

system (JE-120 amplifier with 128 or 256 channels, 0.016-3000 Hz bandpass, Neurofax EEG-

1200,Nihon Kohden) across multiple nights (Table 1). Patients were recorded over the course of 

clinical monitoring for spontaneous seizures, with 1000Hz sampling rate. The total NREM sleep 

durations vary across patients due to intrinsic variability and sleep deprivation due to clinical 

environment. We confirmed the percentages of NREM in total sleep from 28 sleeps across 16 of 

our patients were comparable to (i.e. within 2 SD of) normative data (Moraes et al 2014) in terms 

of N2 and N3 durations. Furthermore, we did not observe any significant differences in sleep 

graphoelements (GE) compared with normative data (Jiang 2019a). Recordings were 

anonymized and converted into the European Data Format. Subsequent data processing was 

performed in MATLAB (RRID:SCR_001622); the Fieldtrip toolbox (Oostenveld et al 2011) was 

used for line noise removal and visual inspection. Separation of patient NREM sleep/wake states 

from intracranial LFP alone was achieved by previously described methods using clustering of 

first principal components of delta-to-spindle and delta-to-gamma power ratios across multiple 

LFP-derived signal vectors (Gervasoni et al 2004; Jiang et al 2017), with the addition that 

separation of N2 and N3 was empirically determined by the proportion of DSs that are also part 

of slow oscillations (at least 50% for N3) (Silber et al 2007), since isolated DSs in the form of K-

complexes are predominantly in N2 (Cash et al 2009).  

Cortical graphoelement detection 
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Spindles were detected as reported in Gonzalez 2018 and Jiang 2019a. For each sleep 

period, each channel’s signal was filtered in 4-8 Hz, 10-16 Hz, and 18-30 Hz bands using a zero-

phase shift frequency domain filter. The width of the filter transition bands relative to the cut-off 

frequencies was 0.3 and a Hanning window was used for the transition.  To calculate the power 

envelope for each narrow band signal, the absolute value of the filtered data was calculated and 

smoothed by convolution with a 400ms Tukey window. To detect peaks in the power time series, 

this signal was subsequently smoothed using a 600ms Tukey window and a robust estimate of 

deviation for each channel was calculated by subtracting the median and dividing by the median 

absolute deviation. Putative SS peaks were identified as exceeding 3 in the normalized median 

power time series and a relative edge threshold of 40% of the peak amplitude defined SS onsets 

and offsets. SS epochs that co-occurred with greater than 3 in theta (4-8 Hz) and beta (18-30 Hz) 

ranges were excluded. SS detections were performed on each sleep period separately. Only SSs 

longer than 0.5s were analyzed.  

Downstates and theta bursts were detected as previously described(Gonzalez et al., 2018; 

Jiang et al., 2019b). DSs were detected on each channel as follows: (1)apply a zero-phase shift, 

eighth order (after forward and reverse filtering) Butterworth IIR bandpass filter from 0.1 to 4 

Hz; (2) select consecutive zero crossings within 0.25-3s; and (3) calculate amplitude trough 

between zero-crossings and retain only the bottom 20% of troughs. Theta bursts were detected as 

follows: (1) apply a zero-phase shift, eighth order (after forward and reverse filtering) 

Butterworth IIR bandpass filter from 5 to 8 Hz (range selected to minimize overlap with delta 

and SS content); (2) calculate the mean of the Hilbert envelope of this signal smoothed with a 

Gaussian kernel (300ms window; 40ms sigma); (3) detect events with a +/- 3 SD threshold for 

the peak and identify the start and stop times with a +/-1 SD threshold; (4) only include events 
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with a duration between 400ms and 1s; and (5) for each bandpass filtered peak in a putative 

burst, calculate the preceding trough-to-peak deflection and only take events that have at least 3 

peaks exceeding 25% of the maximum deflection.  

Spindle characteristics 

Several SS characteristics were estimated for each SS, including: duration, overall 

frequency, frequency change, SS frequency variability, waveform shape measures (described in 

Waveform shape), power, and amplitude. The duration of the SS is defined as the onset and 

offset of the SS as reported in SS detection. We applied a zero-phase shift, eighth order (after 

forward and reverse filtering) Butterworth IIR bandpass filter at 10-16Hz and segmented out the 

detected SSs. As also described in Waveform shape, the amplitude and frequency of each cycle 

was assessed by uniformly cropping SSs such that they start and end with troughs. The narrow-

band trough to peak amplitude was then defined as sum of the narrow-band peak amplitude and 

the preceding trough amplitude. For a cycle to be included, it needed to exceed 30% of the 

maximum trough-to-peak amplitude. The frequency of a cycle was calculated by dividing the 

sampling rate by the trough-to-trough period and limiting the frequency precision to two decimal 

places. The frequency of each SS was calculated as the number of cycles surviving the amplitude 

threshold divided by the trough-to-trough duration of the SS. Additional frequency metrics per 

SS calculated included the maximum trough-to-peak narrow band amplitude, to assess frequency 

variability, the difference of the fastest and slowest cycle in Hz and the standard deviation of 

cycle frequencies. These measures were only calculated for SSs with at least 4 cycles that 

exceeded 30% of the maximum amplitude. Frequency change per SS was estimated using least 

squares. For each SS a design matrix, A, was constructed as an intercept column and a column 

indicating the time of each peak since the first peak (in seconds) in the narrow-band signal. The 
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frequency at each cycle was coded as the dependent variable, b, and the coefficients for 

frequency intercept and change was estimated using the MATLAB ‘A\b’ operation. For each 

channel this yielded a distribution of frequency slopes and a one-sample t-test was used to assess 

significant slowing or speeding (in Hz/s).  The average of all SS characteristics was calculated 

for each channel. The NREM, N2, and N3 SS density (SSs per minute) was also calculated.  

Waveform shape  

Each channel was band-passed filtered in a broadband signal of 1-30Hz via finite-impulse 

response filters (duration minimum of 3 cycles of 10 Hz). This signal was band-pass filtered in 

10-16Hz in order to identify times of zero-crossings. These times were mapped back to the 

wideband signal, and peaks (troughs) were identified as the maxima (minima) within these zero-

crossings. SS epochs started and ended with troughs to set the number of cycles equal to the 

number of peaks. Because peaks are marked as maxima on the broad-band signal, they could be 

marked during steep broadband rises or falls and not reflect true SS cycles. To mitigate these 

effects, two rejection criteria were applied to each cycle within a SS before estimating SS 

metrics: 1) the cycle deflection (µV), defined as the average of the  trough-to-peak and peak-to-

trough amplitude, must exceed 30% of the largest cycle deflection within a SS, and 2) the 

amplitude of the rising (falling) phase must exceed 15% of the amplitude of the falling (rising) 

phase. Applying an average amplitude threshold (1) removes smaller cycles, and (2) removes 

cycles that may have large amplitude but fall on steep rises or falls in the broadband signal.  This 

step avoids analyzing cycles that would otherwise have rise-decay-symmetry measures close to 0 

or 1. These steps mitigate the influence from overlapping large, slower rhythms on the SS 

waveform shape features. For a SS to be included in waveform shape analysis, we required a 
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density of 8 good cycles /s, and to estimate mean and standard deviation within a SS, at least 5 

good cycles.  

Statistical analysis 

These SS characteristics were estimated for each SS and subsequently averaged across 

SSs for each channel and for major cortical lobes. We applied linear-mixed effects models to 

account for measuring multiple cortical channels within patients.  This was calculated in RStudio 

Version 1.4.1103 using the lme4 package at the channel level as  ‘ lmer(Dependent Var ~ 1 + 

Independent Fixed Effect + (1|Patient),data)’.For example, when comparing differences across 

cortical regions, cortical region was the fixed effect of interest, patients coded as random 

intercepts, and each observation was the average measure for a channel. When evaluating 

associations between SS characteristics, each observation was a SS and a nested random effect 

structure was applied as follows:‘ lmer(Dependent Var ~ 1 + Independent Fixed Effect + 

(1|Patient/Channel),data)’. When comparing the start versus end of SS features (waveform shape 

measures, frequency), for each channel, paired-t-test (or Wilcoxon signed rank when data not 

normally distributed) assessed significant differences across SSs. Descriptive tables and 

summary results of mixed effects models were created using qwraps2 and sJPlot, respectively.  

Widespread spindles 

The number of cortical channels spindling was calculated for each sample, and sleep SS 

epochs were defined as the non-zero onset and offset periods. For each SS, we determined the 

maximum number of channels spindling within the same epoch as well as the number of 

channels with minimum 100 ms overlap.  We recorded whether a SS was the leading SS within 

the epoch, as well as its latency to start from the beginning of the epoch. Lastly, we coded 

whether a SS was in a frontal (parietal) channel and had a SS preceding or following a SS from a 
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frontal or parietal channel within the same SS epoch. We then found the maximum number of 

channels spindling within this epoch, as well as the greatest number of channels spindling with 

an overlap of at least 100ms. Both measures were expressed as the number of cortical channels 

co-spindling and the proportion of cortical channels.  

Assessment of hippocampal-cortical phase-locking value 

Significant phase-locking between HC and NC SSs was determined as reported in Jiang 

et al 2019b. This analysis focuses on coupling of NC channels to posterior HC during N2. 

Briefly, for each NC-HC pair, SSs detected in both structures that overlapped for at least 1 SS 

cycle (here 160 ms) had phase-locking values (PLVs) (Lachaux et al., 1999) calculated over 3s 

trials centered on all hippocampal SS event starts in NREM. We also computed PLV for the 

same NC-HC channel pairs over the same number of trials centered on random times in NREM 

to create a baseline estimate; and for each non-overlapping 50 ms time bin, a two-sample t test 

was performed between the actual PLV and the baseline estimate, with the resulting p values 

undergoing FDR correction. A given channel pair would be considered significantly phase-

locking if: (1) > 40 trials were used in the PLV computation; or (2) at least 3 consecutive time 

bins yield post-FDR p values <0.05.   

 

Results 

Data characterization 

We analyzed intracranial SEEG recordings from twenty patients with pharmaco-resistant 

epilepsy, and their full demographic information can be found in our previous work (Jiang 

2019a,b). Only cortical channels and sleep periods free of epileptic activity were selected for SS 

analysis. Information pertinent to this study, including number of bipolar cortical recordings, 
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number of sleep periods, and hours in stage 2 and 3 are shown in Table 2.1. In total we recorded 

from 366 cortical sites, and as shown in Figure 2.1, we have broad coverage across the cortical 

surface, including both hemispheres and medial and lateral surfaces. Of these 366 sites, 5 were 

excluded due to anatomical labels that were assigned “Medial wall” or “unknown” and 4 

excluded because they did not have at least 50 SSs with durations greater than 500 ms, resulting 

in 357 cortical sites analyzed. 

Primary SS characteristics 

SSs were detected across the cortical surface in both N2 and N3 sleep. The average 

number of SSs and standard deviation across channels is reported in Table 2.2. The median 

number of SSs per channel and interquartile ranges for NREM, N2, and N3 are, respectively: 907 

(357,2100), 649 (218,1315), and 209 (54,569). SS density, or number of SSs per minute, is 

shown for NREM sleep stages separately (Table 2.2). Regional differences in SS density were 

observed, with frontal and parietal sites showing greater densities than temporal, Rolandic, or 

occipital areas (Figure 2.1 C, Table 2.2). Overall, SS density was greater in N2 than N3 (paired t-

test, 0.4 SSs/min, N=357, t=9.2, p<0.0001 ).  

The average amplitude and duration of SSs are shown in Table 2.2 as well as Figure 2.1. 

The average SS amplitude (defined as maximum trough-to-peak deflection) increases anterior-to-

posterior and is largest at occipital sites. SSs have the longest duration at frontal, Rolandic, and 

parietal sites, and shortest at temporal sites. SSs were slightly longer (linear mixed effects model 

; 𝛽 = 0.02 s, Std. Error= 0.002, No. obs=711, No. ch=357,N=20) in N2 than N3, however there 

were no significant differences in amplitude (linear mixed effects model; 𝛽 = 0.29 µV, Std. 

Error= 0.21, No. obs=711, No. ch=357,N=20).  
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The overall frequency of SSs showed a clear increase along the anterior-to-posterior axis, 

from frontal (12.1 Hz) to Rolandic (12.47 Hz) to parietal (12.74 Hz) regions, though showing 

intermediate frequencies at occipital sites (12.28 Hz). Temporal cortex showed the lowest overall 

frequency (11.89 Hz).  Additionally, there appears to be a cluster of parietal channels with much 

greater frequency than surrounding cortex. These sites overlap with a subset of channels our 

group previously identified (Jiang et al 2019b) as showing strong phase-locking to hippocampal 

SSs and will be further discussed in section Cortical-hippocampal SS phase locking. These 

regional differences in frequency were present in both N2 and N3. After controlling for regional 

differences, N2 estimates of overall frequency were higher than N3 (linear mixed effects model; 

𝛽 = 0.08 Hz, Std. Error= 0.01, No. obs=711, No. ch=357,N=20).   

Variability in spindle frequency  

In addition to SS frequency varying between regions, we found there was substantial 

variability across sites within a region, and across SSs measured at a single cortical site, as well 

as within individual SSs. Here we compare the magnitude of these sources of variability with our 

reported difference between frontal and parietal of 0.64 Hz, which is indicated across the color 

bars in Figure 2.2.  

Frequency variability across sites within a single cortical region 

The variation within a region across channels was lower in frontal and temporal cortices, 

ranging from 0.28 to 0.34 Hz standard deviations respectively, compared to parietal and occipital 

sites ranging from 0.68 to 0.8 Hz respectively. Notably, the standard deviation across channels 

within a site is larger at parietal and occipital channels than the average difference between 

frontal and parietal (0.64 Hz).  

Frequency variability at a single cortical site  
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To assess how much individual sites vary in SS frequency, we calculated the standard 

deviation in overall frequency across SSs at each cortical channel (Fig 2.2A, Table 2.3). Notably, 

the average inter-SS frequency standard deviation is 0.87 Hz in NREM across the cortex. 

Rolandic sites had the largest inter-SS standard deviation (0.98 Hz), whereas frontal sites had the 

lowest with 0.79 Hz. Notably the amount that SSs vary in frequency at a single site typically 

exceeds the reported difference between frontal and parietal recordings. After controlling for 

differences due to brain region, cortical sites showed a greater inter-SS standard deviation in 

frequency for N2 than N3 (linear mixed effects model; 𝛽 = -0.05Hz, Std. Error= 0.01, No. 

obs=711, No. ch=357,N=20).  

Frequency variability within a spindle  

Next, we evaluated measures of intra-SS variability. This includes the intra-SS standard 

deviation, the range of SS cycle frequency, and the linear change in frequency. The cortical 

average intra-SS standard deviation, that is, across SS cycles within a SS, was 0.94Hz during 

NREM (Figure 2.2 B; Table 2.3). The average frequency range within a SS, calculated as the 

difference of the fastest and slowest cycle, was 2.7 Hz(Figure 2.2 C; Table 2.3). For both of these 

measures, the temporal and occipital cortical sites had the largest intra-SS variation, whereas the 

frontal and parietal had the lowest (Figure 2.2B,C; Table 2.3). While there were no differences 

between N2 and N3 for intra-SS SD (linear mixed effects model; 𝛽 =-0.01,Std Error=0.01,  No. 

obs=711, No. ch=357,N=20), the frequency range was smaller in N3 (linear mixed effects 

model;	𝛽 =-0.05, Std Error=0.02, No. obs=711, No. ch=357,N=20 ).  

Intra-SS variability is not completely random, but partially reflects a linear change in 

frequency. Previous work has reported that SSs decrease in frequency during their evolution. 

However, estimates across the cortex intracranially have not been systematically reported. 45.3% 
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(163/360) of cortical channels showed SS frequencies that were significantly different at the start 

versus at the end of the SS (paired-t test, p<0.05, FDR adjusted). Of these, 98.2% (160/163) 

showed slower frequencies at the end versus the start. The three channels that showed faster 

frequencies at the end of the SS were located in the lateral inferior temporal sulcus and 

pericalcarine cortex. For more precise estimates of linear change in frequency, we regressed 

cycle frequency against time since the first cycle for each SS. The average change estimates 

across SSs for a given cortical site are shown in Figure 2.2 D, and summarized in Table 2.3. 

Using this approach, we found that 46.4% of cortical sites had a significant linear change in SS 

frequency (one-sample t-test, p<0.05 FDR adjusted), with 95.2% (159/167) showing SS slowing 

and 4.8% (8) channels showing SS speeding. These 8 speeding channels were in the ventral and 

lateral temporal (2), pericalcarine (2), superior and inferior parietal (2), insula (1), and superior 

frontal cortex (1) across 7 different patients. As evident in Figure 2.2 D, the majority of 

recordings across cortical regions tended to decrease in frequency, and significant slowing in SS 

frequency occurred across frontal cortex (-0.74 Hz/s). There were no significant differences in 

rates of change in frequency between N2 and N3 (linear mixed effects model;	𝛽 =-0.01, Std 

Error=0.03, No. obs=711, No. ch=357, N=20 ). 

Waveform shape 

Brain rhythms are not pure sinusoidal oscillations, and as such there may be non-linear 

features of the signal which Fourier analysis fails to capture. To test for significant waveform 

shape features, we assessed the rise-decay and peak-trough symmetries of sleep SSs (Cole). 

Rise-decay asymmetry indicates a sawtooth shape. Peak-trough asymmetry indicates a rounded 

peak with sharp trough, or vice versa. Progressive changes in these parameters could conceivably 

result in the frequency change we observed, thus we compared these measures at the start and 
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end of SSs. We found that 16.1% (58/360) of cortical channels showed a significant (paired t-

test, p<0.05, FDR adjusted) difference in peak-trough symmetry at the start versus the end of a 

SS. Of these 58 significant channels, in 41 peak-trough asymmetry increased (p=.0022, binomial 

test). However, the changes were small, with the average change of peak-trough symmetry in the 

17 with decreases being from 0.49 to 0.48, and in the 41 with increases, from 0.52 to 0.53.. For 

rise-decay symmetry, 24.4% (88/360) of channels showed significant differences at the start 

versus the end. Of these, 38.6% (54/88) on averaged changed from 0.52 to 0.5 and the other 34 

cortical sites on average from 0.49 to 0.5. This indicates as the SS progresses, it becomes slightly 

more symmetrical in its rise and decay. Overall any significant changes during a SS in waveform 

shape measures are small, and the differences within and between regions in these measures also 

appear minor. Thus it is unlikely these measures significantly affect our previous estimates of 

intra-SS variability.  

Spindle co-occurrence  

While originally described as a global phenomenon, MEG and intracranial work have 

identified SSs as primarily local events. We found that indeed the majority of SSs occur at small 

proportion of cortical sites recorded (Figure 2.3 A,B). Typically, individual SSs occurred in only 

a single or a few channels, with 50% of SSs occurring in under 16% of channels and 75% in 

under 25% of channels (on average 18 cortical channels per patient analyzed for SSs). Frontal 

and parietal sites showed the greatest proportion of multiple channels participating in SS events 

(Figure 2.3 A). This effect is also clearly shown in Figure 2.3 C where frontal and parietal sites 

have the smallest proportion of SSs occurring in only a single channel, and the largest proportion 

of SSs occurring in four or more channels.  
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We also found that the proportion of SSs that lead or initiated co-spindling events (e.g. 

SSs detected in multiple channels) was greatest in parietal and especially medial parietal regions 

(Figure 2.3 D). In contrast, frontal sites showed the lowest proportion of leading SSs in co-SS 

events. When SSs co-occur in multiple channels, parietal sites tend to lead and frontal sites to 

follow.  

SSs that co-occurred in multiple channels also had unique SS characteristics (Table 2.3). 

SSs that occurred in successively more channels were faster in frequency (linear mixed effects 

model with nested random effects for channels within patients; No. observations=554,794, No. 

Ch= 365, N= 20; for single channel vs 6+ channels 𝛽=0.36 Hz,Std. Error=4e-03,t=86.86), longer 

in duration (for 6+ channels 𝛽=0.13 s, Std. Error=1e-03,t=126.86), had lower intra-SS frequency 

SD (for 6+ channels 𝛽=-0.14 Hz, Std. Error=2e-03,t=-72.98), and showed significantly greater 

SS slowing (for 6+ channels 𝛽=-0.45 Hz/s, Std. Error=0.01, t=-31.68).  

Relationships between spindle characteristics 

We also investigated the relationships between SS frequency and other SS characteristics. 

We modeled SS frequency as a function of SS duration, intra-SS variation, frequency change, 

amplitude, and high gamma power using nested linear mixed effects models, with observations 

at the SS level (Table 2.3). All variables were entered as fixed effects into a full model with 

nested random effects for channels within patients. Overall, faster SSs were shorter duration (𝛽=-

0.17,Std. Error= 5.4e-03,t=-30.99), showed lower intra-SS standard deviation (𝛽=-0.43,Std. 

Error=2.9e-03,t=-147.9),  lower amplitude(𝛽=-6.7e-03,Std. Error=9.3e-05,t=-71.97), greater high 

gamma power (𝛽=.23,Std. Error=3.7e-03,t=63.3), and showed a small effect for slowing more 

(𝛽=-3.9e-03,Std. Error=3.9e-04,t=-10.2). We found these results did not change after controlling 
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for differences due to brain region or sleep stage. These findings demonstrate SS frequency 

covaries with a number of SS metrics across the brain.  

Cortical-hippocampal spindle phase locking 

In previous work, we found 37% of NC channels showed significant PLV with NC-HC 

SSs; 67% of these were with posterior hippocampus in N2. The latter channels are shown in 

Figure 2.4 A, with color indicating the peak PLV during N2 with posterior hippocampal SSs. 

This PLV of channels with significant HC-NC SS PLV significantly, positively covaried with 

overall SS frequency (linear mixed effects, No. channels=76, N=12; 𝛽 =1.44, t=3.1), however 

after controlling for differences in frequency due to cortical region, this effect size was reduced 

(𝛽 = 0.78, t=1.92; Figure 2.4 B). Intra-SS frequency SD negatively covaried with PLV (𝛽 =-

0.29, t=-2.69; Figure 2.4 C), and similarly, this effect was reduced after controlling for 

differences due to cortical region (𝛽 =-0.2, -1.96). Neither SS duration, frequency change, or N2 

density significantly covaried with PLV with or without controlling for cortical region (|t|<1.95). 

This indicates there is some relationship among cortical channels with significant PLV for 

frequency and intra-SS frequency variation. By visualizing PLV magnitude along these two 

dimensions (Figure 2.4 D), channels with PLV under around 0.25 are predominantly fronto-

temporal and clustered in one quadrant, while those around 0.5 and greater are predominantly 

parietal-occipital and are clustered in another. Furthermore, we previously found 5% of all NC 

channels showed high NC-HC PLV (peak >0.4), 70% of which were in parietal channels. Post-

hoc analyses found after controlling for regional differences, this high PLV subset compared to 

all other cortical channels were significantly faster (linear mixed effects, No. channels= 341, 

N=20, 𝛽 =0.57,t=5.01; Figure 2.4 E), had lower intra-SS frequency variation (𝛽 =-0.15,t=-4.7; 

Figure 2.4 F), had slightly longer duration (𝛽 =0.02, t=2.82; Figure 2.4 G), and greater SS 
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density in N2 (𝛽 =0.76,t=2.48; Figure 2.4 H) as well as in N3 (𝛽 =0.72,t=2.25). They did not 

differ in linear change in frequency (𝛽 =-0.1,t=-1.06) , inter-SS frequency standard deviation (𝛽 

=0.03,t=0.77), or amplitude (𝛽 =-2.9,t=-0.75). These results did not change when restricting to 

just parietal channels (linear mixed effects, No. channels=113, N=18). These sites with large 

HC-NC SS PLV, predominately parietal sites, have unique SS characteristics compared to other 

cortical sites after controlling for regional differences.  

Slower and faster spindles show similar coupling to DSs  

Putative evidence for dichotomizing SSs as slow or fast includes that they have different 

coupling to SOs, wherein frontal slower SSs precede and faster centro-parietal SSs follow 

downstates (Mölle et al 2011, however see Gonzalez et al 2018). Here we evaluate whether SS 

frequency determines whether SSs differentially couple DSs, and if this coupling varies by 

frontal or parietal sites.  

We found that of the 365 channels, 320 had at least 40 SSs starting within +/- 0.5s of 

cortical DSs. There were significantly more SSs starting 0.5s after DSs compared with starting 

before (linear mixed effects model; 𝛽 =180.5 SSs, Std. Error= 28.2, t=6.4, N=20, 320 channels). 

Of these 320, 208 showed a significant tendency for SSs to start after (77%, 160 channels) or 

before (23%, 48 channels) DSs (two-sided binomial test; p<0.05, FDR-adjusted). The majority 

of significant sites were from frontal (29%,60 channels) and parietal (31%, 64 channels) cortex. 

All significant channels from frontal and parietal sites, regardless of preferred latency, are shown 

in Figure 2.5. To compare differences in coupling of SSs to SOs by frequency, only channels 

with at least 100 SSs <12 Hz and 100 SSs > 12 Hz within +/- 1s DSs are shown. Gray lines 

separate patients. Because the sample sizes were unbalanced for some channels, we bootstrapped 

the SS latency times for both frequency groups over 10,000 iterations, using the size of the 



 

33 

smaller group. With each iteration, a histogram of SS start latencies was generated, and the 

average of these histograms was normalized across bins for each channel. To assess whether 

there were significant differences between either frequency group and chance, or between the 

two groups, we fit a linear mixed effects model on the probability of SS starting at each time bin 

and display error bars of standard error. Both SSs greater than 12 Hz (pink, right subpanels) and 

less than 12 Hz (black, left subpanels) significantly start following DS troughs, in both frontal 

and parietal sites.  Whether SSs are overall slower or faster, they show similar temporal 

relationships to DSs. 

Discussion  

This study uses sEEG recordings to investigate SS characteristics including multiple 

sources of variability in SS frequency, as well as widespread cortical and cortical-hippocampal 

features that moderate SS frequency. SSs were detected across the entire cortex sampled, 

however temporo-occipital sites showed lower density, more variable frequency, and shorter 

duration SSs. We found fronto-parietal regions had the greatest SS duration, density, and 

proportion of SSs co-occurring in multiple channels; all indicating these regions would make the 

largest contribution to EEG sensors. SS frequency variability was assessed as overall frequency 

across SSs within a channel, the average intra-SS variability across cycles, and linear change in 

frequency. While we observed faster overall frequency in Rolandic (0.37Hz) and parietal  (0.64 

Hz) cortex compared to frontal channels, the SD across SSs within a site and across cycles 

within a SS was larger (0.87 and 0.94 Hz, respectively). We also found SSs that occurred in 

multiple channels were faster, showed greater SS frequency slowing, and had lower intra-SS 

variability, thus indicating local SSs differ from more global events. Previous work identified a 

subset of parietal channels with high phase locking to posterior hippocampal SSs (Jiang et al., 
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2019a), and here we describe how these cortical sites have SSs with faster frequency, longer 

duration, lower intra-SS frequency variability, and greater density. These unique characteristics 

could enable differential coordination of NC-HC or NC-NC SSs. Although our findings are from 

epileptic patients and not a healthy population, we analyzed a large number of patients (n=20) 

with unique epileptiform etiologies, had broad cortical coverage, excluded sleep periods or 

channels with pervasive epileptic activity, and the appearance as well as other SS characteristics 

such as density were within healthy ranges. 

The dichotomy of fast and slow SS types was introduced by Gibbs and Gibbs in 1950 to 

summarize the clear observation of faster SS centro-parietally and slower SS anteriorly. 

However, most intracranial work has shown there is a gradient of SS frequencies (Peter-Derex 

2012; Frauscher 2015; Piantoni 2017) with an exception being Andrillon et al 2011 who reported 

a sharp frequency boundary in the medial supplementary motor area. Our findings suggest a 

modification to the model of SSs as dichotomous slow and fast systems. We found individual 

locations exhibit both faster and slower SS, and that there is a large overlap in the distribution of 

frequencies between frontal and parietal sites (Figure 2.1A). We did observe differences in the 

width of frequency distributions at individual sites, with Rolandic-parietal-occipital being 

broader than frontal-temporal sites (Figure 2.2 A), which has been previously reported along 

medial structures (Andrillon et al., 2011). In addition to the variability in SS frequency at 

individual sites, there is also substantial variability within a SS. We found the fastest and slowest 

cycles within a SS on average differed by 2.7 Hz (Table 2.3, Figure 2.2 C), with the greatest 

intra-SS variability in temporal and occipital sites, and the lowest at frontal and parietal (Figure 

2.2 B,C). These differences could reflect higher quality (i.e. signal-to-noise) SSs in these 

structures. Previous work in EEG and MEG reported differences of ~ 1Hz slower SS cycles at 
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the end versus the start of the SS(Dehghani et al., 2011a). Work at the scalp has reported SS 

decrease in frequency during the SS(O’ Reilly and Nielsen, 2014; Souza et al., 2016), one study 

estimating slower SSs slow more than faster (-0.61 Hz/s vs -0.17 Hz/s), whereas an intracranial 

study found no difference in SS slowing rates between slower and faster SSs (-

0.8Hz/s)(Andrillon et al., 2011). Our intracranial study provided a greater number of channels 

over both medial and lateral surfaces, unlike Andrillon et al 2011 which only records from 

medial, allowing us to investigate the spatial extent and degree of change in frequency within a 

SS. We observed 46% of cortical channels had a significant change in linear frequency, with 

95% of those showing SS slowing on average of -0.34 Hz/s, and greatest in frontal cortex at -

0.74 Hz/s. We also found a statistically significant but small effect for faster SSs to slow more 

(Table 2.4).  We’ve shown how different sources of variability, inter-SS, intra-SS expressed as 

frequency range, and intra-SS slowing vary by cortical region, and in the majority of channels, 

exceed our 0.64 Hz frontal-parietal difference (Figure 2.2, see black triangles on color bars).   

Research with MEG and intracranial recordings has shown SSs are largely local 

phenomena. In the current study, we found the majority of SSs occurred in only a single or a few 

channels (Figure 2.3 B). Dehghani et al 2011b and Frauscher et al 2015 described how multiple 

asynchronous SS generators could underly the large synchronous waves observed with EEG. 

Specifically, intracranial work found that scalp SSs were associated with asynchronous sigma 

activity, predominantly at frontoparietal sites(Frauscher et al., 2015), and simultaneous 

MEG/EEG found SSs detected in both modalities had a 66% increase in the number of MEG 

sensors involved in the SS, especially over frontal sensors(Dehghani et al., 2011b). Similarly, we 

found that frontal and parietal sites showed the greatest proportion of SSs occurring in multiple 

channels (Figure 2.3 A,C). We also replicated the phenomenon, previously observed at the scalp 
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(Dehghani et al., 2011a; Mölle et al., 2011) and intracranially(Andrillon et al., 2011), that SSs at 

central-posterior sites precede anterior SSs, by showing that frontal sites are least likely to lead 

co-spindling events(Figure 2.3 D). Furthermore, we found that SSs occurring across multiple 

channels exhibit unique SS characteristics, including faster overall frequency, lower within-SS 

frequency variability, and much greater SS slowing. These differences could reflect stereotyped, 

global propagation patterns, such as rotating front-temporo-parietal waves(Muller et al., 2016), 

however these patterns were identified with electrocorticography and our sEEG recordings have 

more irregular spacing across the cortex.  

Communication between hippocampal and cortical brain rhythms such as sharp-wave 

ripple and SSs could serve as a substrate for restructuring recent experiences into long-term 

memory. Previous work has shown that ripples in the hippocampus are phase locked to 

hippocampal SSs(Jiang et al., 2019a; Staresina et al., 2015), and that these hippocampal SSs are 

in turn coordinated with cortical SSs, especially at parietal sites such as precuneus, angular 

gyrus, and retrosplenial cortex(Jiang et al., 2019a). We found that these cortical sites also had 

unique SS characteristics, including faster frequency, lower intra-SS frequency variation, and 

greater density (Figure 2.4). We speculate sites with these SS characteristics may lend 

themselves to more optimal NC-pHC coordination, or that establishing strong, synchronized NC-

HC coordination alters the local cortical SS characteristics. Regardless of how these correlations 

arise, given the strong NC-HC communication and the involvement of these structures in 

recollective experiences(Gilmore et al., 2015; Hoppstädter et al., 2015), it could be that SSs at 

these cortical sites play a unique role in processing such detailed, episodic information, perhaps 

by coordinating or driving SS dynamics at other cortical structures.  



 

37 

The assertion that slow SSs precede DSs and fast SSs follow is often cited as evidence for 

their distinct generating mechanisms(Klinzing et al., 2016; Mölle et al., 2011; Timofeev and 

Chauvette, 2013). Studies vary in the cutoff frequency that separates slow from fast SSs, as SS 

peak frequencies varies across subjects(Ujma et al., 2015) and some subjects do not show 

distinct slow and fast SS peaks in averaged power spectra(Cox et al., 2017; Gennaro and Ferrara, 

2003; Mölle et al., 2011; Werth et al., 1997). We chose 12 Hz to demarcate slower and faster 

SSs, as 12 or 13 Hz is typical(Ayoub et al., 2012; Barakat et al., 2011; Mölle et al., 2011; 

Schabus et al., 2007).  Replicating our previous work(Gonzalez et al., 2018; Mak-McCully et al., 

2017), we found that SSs were significantly more likely to start after DSs across all cortical sites. 

We showed that within the same channels, and in both frontal and parietal sites, that SSs above 

and below 12 Hz both follow cortical DSs (Figure 2.5). There is also a significant effect for 

faster SSs to show a greater likelihood of initiating after DSs compared to slower SSs, most 

apparent in the parietal cortex. Overall, these findings affirm SSs, regardless of frequency, show 

similar temporal relationships to DSs and are consistent with slower and faster SSs existing 

along a continuum instead of arising from distinct neurophysiological generators.  

A related question as to whether slower or faster SSs have distinct generating 

mechanisms is whether SS frequency moderates cortical plasticity and memory, and if so, 

whether it acts as a dichotomous or continuous variable. Some work has asserted that fast but not 

slow SSs are involved in memory consolidation(Barakat et al., 2011; Mölle et al., 2011). 

However, these studies conflated SS frequency with sensors (i.e. did not look at faster frontal 

SSs or slower central-parietal SSs)(Mölle et al., 2011). Additionally, analyses often treated 

frequency as either slow or fast, whether applying fixed ranges for all subjects(Barakat et al., 

2011), or identifying two subject specific frequency bands based on power spectra(Mölle et al., 
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2011)  instead of applying a more broad (10-16 Hz) SS bandpass and treating frequency as a 

continuous variable. Such analyses cannot exclude frequency continuously moderates learning 

and memory, and identifying any differences reinforces the mechanism for two SS types with 

distinct generators. In our work, we found faster SSs are associated with greater high gamma 

power modulation (Table 2.3) and are more tightly associated with initiating on the down-to-

upstate transition (Figure 2.5). Since SSs occurring on down-to-upstate transitions were shown to 

permit greater calcium influx to layer 2/3 pyramidal neurons in transgenic mice compared to SSs 

alone(Niethard et al., 2018), faster SSs could be better suited to facilitate cortical plasticity. 

Updating the model for SS dynamics as not dichotomous slow and fast but a continuum with 

regional differences along several SS characteristics can inform mechanisms for how SS 

contribute to memory restructuring.  
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Table 2.1. List of patients, age, sex, handedness, language dominance, HC channel counts, and 
the lengths of sleep period recordings used.  
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Table 2.2 Spindle characteristics for regions and non-REM sleep stage. Counts and means (SD) 
across channels shown.  

 

Cortex  Frontal  Temporal  Rolandic  Parietal  Occipital  
Data       
No. Patients 20 12 19 15 17 14 
No. Channels 357 80 101 33 102 41 
No. SSs                   
   NREM 1,531.90 

(1,725.98) 
1,983.60 
(1,342.65) 

717.16 
(738.15) 

1,535.39 
(1,018.27) 

2,015.47 
(2,151.13) 

1,451.71 
(2,527.84) 

   N2 1,035.79 
(1,340.84) 

1,239.12 
(949.93) 

582.27 
(664.69) 

1,091.61 
(823.01) 

1,280.22 
(1,520.19) 

1,103.22 
(2,444.47) 

   N3 496.11 
(707.19) 

744.48 
(658.88) 

134.89 
(184.73) 

443.79 
(494.25) 

735.25 
(962.72) 

348.49 
(591.08) 

Density (min-1)                   
   NREM 1.64 (1.58) 2.12 (1.45) 0.71 (0.40) 1.73 (1.10) 2.30 (2.03) 1.28 (1.60) 
   N2 1.82 (1.67) 2.29 (1.50) 0.85 (0.49) 2.03 (1.20) 2.55 (2.14) 1.31 (1.56) 
   N3 1.43 (1.62) 2.03 (1.53) 0.49 (0.44) 1.30 (1.11) 2.08 (2.16) 1.01 (1.13) 
Frequency (Hz)                   
   NREM 12.28 (0.63) 12.10 (0.34) 11.89 (0.28) 12.47 (0.59) 12.74 (0.68) 12.28 (0.80) 
   N2 12.30 (0.63) 12.15 (0.36) 11.90 (0.27) 12.54 (0.59) 12.75 (0.69) 12.29 (0.79) 
   N3 12.22 (0.66) 12.01 (0.34) 11.84 (0.35) 12.28 (0.63) 12.73 (0.74) 12.23 (0.77) 
Duration (s)                   
   NREM 0.70 (0.05) 0.72 (0.05) 0.68 (0.02) 0.72 (0.04) 0.71 (0.06) 0.69 (0.03) 
   N2 0.71 (0.05) 0.73 (0.05) 0.68 (0.03) 0.72 (0.04) 0.73 (0.07) 0.70 (0.03) 
   N3 0.69 (0.06) 0.72 (0.04) 0.66 (0.03) 0.72 (0.09) 0.68 (0.06) 0.69 (0.06) 
Amplitude (µV)                   
   NREM 35.31 

(18.19) 
30.14 
(16.23) 

30.12 
(14.69) 

36.90 
(17.92) 

39.22 
(20.24) 

47.19 
(16.94) 

   N2 35.35 
(18.16) 

30.31 
(16.05) 

30.08 
(14.58) 

36.73 
(17.95) 

39.27 
(20.27) 

47.16 
(17.18) 

   N3 35.61 
(18.41) 

30.47 
(16.49) 

30.32 
(14.71) 

38.69 
(18.87) 

39.14 
(20.52) 

47.18 
(16.90) 
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Table 2.3. Spindle frequency variability. Means (SD) across channels shown.  
 

Cortex  Frontal  Temporal  Rolandic  Parietal  Occipital  
Inter-SS SD (Hz)                   
   NREM 0.87 (0.16) 0.79 (0.13) 0.85 (0.10) 0.98 (0.19) 0.89 (0.19) 0.94 (0.15) 
   N2 0.88 (0.17) 0.79 (0.14) 0.86 (0.11) 0.99 (0.19) 0.91 (0.19) 0.96 (0.16) 
   N3 0.83 (0.19) 0.77 (0.13) 0.81 (0.18) 0.90 (0.18) 0.83 (0.22) 0.93 (0.22) 
Intra-SS SD (Hz)                   
   NREM 0.94 (0.17) 0.88 (0.11) 1.05 (0.09) 0.94 (0.13) 0.85 (0.19) 0.99 (0.19) 
   N2 0.94 (0.17) 0.88 (0.11) 1.05 (0.09) 0.94 (0.13) 0.86 (0.20) 0.99 (0.18) 
   N3 0.93 (0.18) 0.89 (0.12) 1.03 (0.13) 0.95 (0.14) 0.83 (0.20) 1.00 (0.18) 
Intra-SS range 
(Hz) 

                  

   NREM 2.70 (0.44) 2.55 (0.30) 2.96 (0.24) 2.77 (0.37) 2.48 (0.51) 2.85 (0.52) 
   N2 2.71 (0.43) 2.54 (0.30) 2.98 (0.24) 2.75 (0.37) 2.51 (0.50) 2.84 (0.50) 
   N3 2.66 (0.49) 2.56 (0.34) 2.89 (0.36) 2.75 (0.42) 2.39 (0.55) 2.87 (0.51) 
Frequency change 
(Hz/s) 

                  

   NREM -0.34 (0.49) -0.74 (0.66) -0.14 (0.29) -0.40 (0.44) -0.28 (0.40) -0.17 (0.27) 
   N2 -0.35 (0.51) -0.76 (0.68) -0.13 (0.30) -0.43 (0.46) -0.30 (0.39) -0.18 (0.30) 
   N3 -0.36 (0.66) -0.73 (0.72) -0.19 (0.63) -0.26 (0.60) -0.29 (0.59) -0.29 (0.54) 
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Table 2.4. Spindle characteristics that covary with overall SS frequency. Results were unchanged 
after controlling for sleep stage and regional differences. We applied a linear mixed effects 
model with nested random effects, channels within patients on 550,475 SS observations 360 
channels, and 20 patients. Estimates, 𝛽 ,represent linear slopes of the predictors (rows) on overall 
SS frequency with 95% confidence intervals (CI). Results were unchanged after controlling for 
sleep stage and regional differences. 

  Frequency (Hz) 

 𝛽 CI 

Intercept 12.35 *** 12.22 – 12.47 

Duration (s) -0.17 *** -0.18 – -0.16 

Intra-SS SD (Hz) -0.43 *** -0.43 – -0.42 

Amplitude (µV) -0.01 *** -0.01 – -0.01 

High Gamma Power (µV2) 0.23 *** 0.23 – 0.24 

Frequency Change (Hz/s) -3.9e-03 *** -4.7e-03 – -3.1e-03 

* p<0.05   ** p<0.01   *** p<0.001 
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Table 2.5.  Characteristics of widespread spindles. We applied a linear mixed effects model with 
nested random effects, channels within patients on 554,794 SS observations, 365 cortical 
channels, and 20 patients. Estimates, 𝛽 ,represent contrasts in the dependent variable (columns) 
between 2 or more channels against a single channel. Results were unchanged after controlling 
for sleep stage and regional differences. 
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Figure 2.1. Primary spindle characteristics. Cortical bipolar SEEG recordings denoted as circles 
overlaid on an average surface, with warmer colors indicating greater values. Also indicated to 
the right of the brain surfaces for each measure are boxplots grouped by brain region. Different 
colors and columns denote different regions, box margins indicate inter-quartile ranges, and dots 
indicate individual cortical channels. A. Average overall frequency at individual sites is shown. 
Frequency gradually increases from fronto-temporal to Rolandic to parietal. B. Average SS 
duration across SSs at individual sites is shown. Compared to temporal and occipital, frontal-
temporal-Rolandic structures have longer duration. C. Average maximal trough-to-peak voltage 
in a broadband (1-30Hz) increases along the anterior to posterior axis. D. Number of SSs per 
minute during stage 2 (N2), greatest for frontal and parietal sites.  
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Figure 2.2. Sources of spindle frequency variability. Cortical bipolar SEEG recordings denoted 
as circles overlaid on an average surface, with warmer colors indicating greater values. Black 
triangles mark 0.64 Hz (or Hz/s) to indicate the average difference between frontal and parietal 
sites. Also indicated to the right of the brain surfaces for each measure are boxplots grouped by 
brain region.  A. At individual cortical sites, the standard deviation of overall frequency across 
SSs. Rolandic sites show the greatest variability in frequency across SSs. B. The average 
standard deviation across cycle frequency within a SS. Intra-SS variability is largest for temporal 
and occipital sites. C. Another measure of intra-SS frequency variation, the average difference 
between the fastest and slowest cycle within a SS. D. Average estimated linear change in 
frequency within a SS. The majority of cortical sites show a decrease in frequency or slowing 
during a SS (cyan), with greatest slowing occurring at frontal sites. The amount of inter and 
intra-SS variability often exceeds the observed frontal-parietal overall difference in frequency.  
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Figure 2.3. Spindle co-occurrences across the cortex. A,D. Brain surfaces overlaid with cortical 
SEEG recording sites. Warmer colors indicate greater values. A. The average proportion of 
channels participating in a SS at each cortical site; frontal and parietal show the greatest 
proportion. B. Distribution of the proportion of channels participating in a SS (left) and absolute 
number of channels participating in a SS (right) for all SSs from all channels. C. For each region, 
the proportion of SSs that occurred in one to eight channels. D. For each channel, the proportion 
of times a SS initiated a co-spindling event, i.e. when a SS co-occurred in at least two channels.  
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Figure 2.4. Cortical-hippocampal spindle phase locking. A. Channels with significant PLV 
during SSs with a posterior hippocampal channel during N2, as identified in Jiang et al 2019b, 
are indicated as circles, with the peak PLV shown in color. Non-significant channels are 
displayed as crosses. Areas with the highest PLV are apparent in parietal cortex as well as 
posterior ventral temporal cortex. B. Peak NC-HC PLV versus overall NC SS frequency for all 
significant channels, with colors indicating region. Overlaid in gray is the mixed effects model 
fit, with patient as random effect, without adjusting for the effect of brain region. After adjusting 
for brain region, there is only a slight positive association (𝛽 = 0.78, t=1.92). C. Peak NC-HC 
PLV versus average NC intra-SS frequency standard deviation. Overlaid in gray is the mixed 
effects model fit, with patient as random effect, without adjusting for the effect of brain region. 
After adjusting for brain region, there is only a slight negative association (𝛽 =-0.2, -1.96). D. 
For all channels with significant NC-HC PLV, the average SS frequency is plotted against the 
intra-SS frequency standard deviation, with colors indicating brain region and marker size 
indicating peak PLV magnitude. There is a clear cluster of parietal channels with high PLV that 
show faster frequency and lower intra-SS frequency variability. We performed post-hoc analyses 
on these high PLV channels and SS characteristics. E-H compare all cortical channels, including 
those with non-significant PLV, to the channels with peak PLV exceeding 0.4, with color 
denoting brain region. High PLV channels were (E) significantly faster (linear mixed effects, No. 
channels= 341, N=20, 𝛽 =0.57,t=5.01;), (F) had lower intra-SS frequency variation (𝛽 =-0.15,t=-
4.7), (G) had slightly longer duration (𝛽 =0.02, t=2.82), and (H) had greater SS density in N2 (𝛽 
=0.76,t=2.48). These results did not change when restricting to just parietal channels.  
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Figure 2.5. Slower and faster spindles show similar coupling to DSs. A,B Cortical channels with 
at least 100 SSs < 12 Hz and 100 SSs > 12 Hz starting within +/- 1s of DS trough are shown. 
Ai,Bi Rows indicate cortical channels, gray lines separate patients, and the dashed magenta line 
indicates time of the DS trough. Color indicates the probability of SSs starting within that 
channel. For both regions and frequency groups, there is a greater probability of SSs starting 
after the DS trough compared to before. This is statistically assessed in Aii,Bii, where linear 
mixed effects models, with patient as random effect, modeled the probability of SSs starting at 
each time bin for each frequency group separately, with pink triangles showing SSs >12 Hz and 
gray squares for SSs < 12 Hz. Error bars reflect standard error, and the blue dashed line indicates 
the probability of SSs starting by chance. Time bins where error bars for a group do not include 
the chance line indicate significance at p<0.05. Both frontal and parietal and frequency groups 
show a decreased probability of starting before, and an increase after DS trough. Notably, for 
both Aii and Bii, there are time bins where SSs > 12 Hz show a greater probability of starting 
after DS troughs compared to SSs < 12 Hz.  
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Chapter 2, in full, is currently being prepared for submission for publication. Co-authors 

include: Gonzalez, Christopher; Jiang, Xi; Rosen, Burke; Gonzalez-Martinez, Jorge;  Halgren, 

Eric. The dissertation author was the primary investigator and author of this paper.  
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ABSTRACT

Most natural systems, including the brain, are highly nonlinear and complex, and determining information flow among the components that
make up these dynamic systems is challenging. One such example is identifying abnormal causal interactions among different brain areas that
give rise to epileptic activities. Here, we introduce cross-dynamical delay differential analysis, an extension of delay differential analysis, as a
tool to establish causal relationships from time series signals. Our method can infer causality from short time series signals as well as in the
presence of noise. Furthermore, we can determine the onset of generalized synchronization directly from time series data, without having to
consult the underlying equations. We first validate our method on simulated datasets from coupled dynamical systems and apply the method
to intracranial electroencephalography data obtained from epilepsy patients to better characterize large-scale information flow during epilepsy.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5126125

Establishing and detecting information flow in a complex system
with many interacting components is challenging yet crucial for
many scientific fields. Currently available methods for inferring
directionality and causality from observed time series signals are
often limited by the number of data required and computational
processing time. In this study, we present an efficient and accu-
rate method for measuring causal interaction. We demonstrate
that ourmethod, cross-dynamical delay differential analysis (CD-
DDA), can estimate the magnitude and direction of information
flow in simulateddatasets accurately. Furthermore,we appliedour
method to brain signals obtained from epilepsy patients to char-
acterize previously unidentified seizure-related information flow.

I. INTRODUCTION

Determination of causality and direction of information flow
is fundamental to various fields of science, from neuroscience
to climate research. In neuroscience, for example, information
flow and the nonlinear dynamical causal architecture in brain

electroencephalography (EEG) data are important for understanding
and predicting events (e.g., seizures). Various regions in the brain
might be causally connected even if the data from those regions do
not show strong correlations. Thismight be due to the spatiotemporal
nonstationarity of the system.

As pointed out by Yule in 1926,36 correlation does not imply
causation. Yule also made a connection between the introduction of
delays and causal relations between time series. In 1969, Granger10

introduced a statistical measure of causality that is widely used in
signal processing. This work is closely related to the work of Wiener,
which was published in 1956.35 Since Granger causality (GC) relies
on linear autoregressive models, it may not yield good results for
some nonlinear systems. To circumvent the limitations of the linear
Granger causality test, Brock et al.8,9 proposed a test based on cor-
relation integrals11 and Baek and Brock,3 Hiemstra and Jones,12 and
Bai et al.4,5 and then introduced nonlinear Granger causality. In 2000,
Schreiber32 introduced transfer entropy for information transfer
between nonlinear dynamical systems. If the systems are linear Gaus-
sian processes, GC and transfer entropy are equivalent.6 Determining
causality from dynamical attractors of nonlinear dynamical systems

Chaos 29, 101103 (2019); doi: 10.1063/1.5126125 29, 101103-1
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and the concept of generalized synchronization (GS)were introduced
by Schiff et al.,31 Arnhold et al.,2 Hirata et al.,13,14 and Sugihara et
al.,33 among others. One implementation is Sugihara’s convergent
cross-mapping (CCM).33 CCM is based on standard uniform delay
embeddings and is, therefore, limited to a subset of the dynamical
systems found in nature. In 2018, a focus issue in Chaos was pub-
lished that summarizes recent developments for causality detection.7

Recent articles used complex network theory to characterize causality
of multivariate data.28,37

Here, we determine causality through nonlinear, nonuniform,
functional embeddings as an extension of delay differential analy-
sis (DDA) and call this method cross-dynamical DDA (CD-DDA).
We first test CD-DDA on simulated data from coupled dynamical
systems and then apply this analysis to investigate spatiotemporal
information flow in the brain before and during seizures.

This paper is organized as follows: Sec. II introduces classical
DDA and the extension to CD-DDA to study causality. In Sec. III,
causal interactions of coupled Lorenz and Rössler systems are inves-
tigated. In Sec. IV, CD-DDA is applied to epileptic seizures. SectionV
is the conclusion.

II. DETECTING CAUSALITY USING DELAY
DIFFERENTIAL ANALYSIS (DDA)

DDA combines differential embeddings with linear and non-
linear nonuniform functional delay embeddings22,30,34 to relate the
current derivatives of a system to the current and past values of
the system variables.15,18 Inspired by Max Planck’s “natural units,”25

the DDAmodel maps experimental data onto a set of natural embed-
ding coordinates.

The general nonlinear DDA model is

u̇ =

I
∑

i=1

ai

N
∏

n=1

umn,i
τn

+ ρu = Fu + ρu (1)

for τn,mn,i ∈ N0, where N is the number of delays (usually 2), I is
the number of terms (typically around 3), and uτn = u(t − τn), relat-
ing the signal derivative u̇ to the signal nonuniformly shifted in time.
We then use the coefficients ai and the least square error ρu as fea-
tures. Note thatwe explicitly addedρu to highlight its use in the causal
DDA measure introduced below. To restrict complexity of the DDA
model, most of the terms in Eq. (1) are set to zero.We, therefore, con-
sider here DDAmodels with two delays τn, three terms, and a degree
∑

i mn,i ≤ 4 of nonlinearity.
To put DDA in context, a general nonlinear, real-valued func-

tion can be expressed in a Taylor series expansion of functionals
of increasing complexity around some fixed point. When the func-
tion F(⋆) represents the behavior of a dynamical system, that is, a
time series model where the input is formed from past inputs [u(t),
u(t − τ1), . . .], the expansion becomes a Volterra series. We have

u̇ = u0 +

∞
∑

i=0

giuτi +

∞
∑

i1=0

∞
∑

i2=0

gi1,i2uτi1
uτi2

+ · · ·

+

∞
∑

i1=0

∞
∑

i2=0

. . .

∞
∑

iq=0

gi1,i2,...,iquτi1
uτi2

. . .uτq , (2)

with the linear and nonlinear data components modeled as separate
model terms. To find a model that is a projection onto a stable man-
ifold, we consider low-order models composed of a finite number of
leading terms in Eq. (2), such as Eq. (1). This makes CD-DDA differ-
ent to GC since we use (1) a derivative on the left side of the equation
instead of the time series itself in GC, (2) nonuniform functional
embeddings on the right side of the equation that were selected from
the data instead of uniform linear embeddings of lags 1,2,. . . in GC,
(3) two delays instead of a chain of around 10–15 delays in GC, and
(4) three term models that are selected to fit each time series instead
of around 15 general terms.

To bemore explicit, let us give an example. A typicalDDAmodel
for the analysis of EEG and intracranial EEG (iEEG) data is the three
term model [all ai in Eq. (1) except three are set to zero]:

u̇ = a1u1 + a2u2 + a3u
4
1 + ρu , (3)

where u(t) is the time series from one EEG channel and ui = u(t −

τi). The derivative on the left side is computed using a 5-point center
derivative algorithm.21 The coefficients ai are estimated with numeri-
cal singular value decomposition (SVD) to minimize the least square
error.26 The DDA model that best fits the overall dynamical proper-
ties of the system [e.g., (3) for EEG data] can be found by supervised
(maximizing the classification performance) or unsupervised (min-
imizing the least square error ρ) structure selection from a list of
candidate models (see, e.g., Refs. 18 and 17).

DDA is a nonlinear data analysis framework that (1) uses unpro-
cessed data so as not to disturb the nonlinear properties of the data,
(2) uses sparse models that match the macroscopic architecture of
the underlying dynamical system, (3) disregards amplitude informa-
tion to concentrate on the dynamical aspects of the data, and (4)
can be extended for detection of dynamical causality in the data to
understand information flow in the system. Previously, it has been
demonstrated thatDDA captures essential features of data to produce
exceptional classification performance.

Let us consider two dynamical systems from which the time
series u(t) and v(t) are measured, respectively. In order to consider
whether there is a causal interaction between these two time series,
we start by looking for a model

u̇ = Fu + ρu, (4)

minimizing the error for the time seriesu.We alsominimize the error
for v(t) and get

v̇ = Fv + ρv. (5)

If we assume, for example, a unidirectional causal influence of u(t)
on v(t),

u̇ = Fu + Fv + ρuv, (6)

the errors ρu and ρuv should be similar since the coefficients ofFv are
irrelevant. In contrast, for

v̇ = Fv + Fu + ρvu, (7)

the errors ρv and ρvu are different.
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We then define Cuv as our CD-DDA measure of the causal
influence of v(t) on u(t) and Cvu for a causal influence of u(t) on v(t),

Cuv = |ρu − ρuv |; Cvu = |ρv − ρvu | . (8)

We additionally use the significance µ
σ , where µ is the mean

and σ is the standard deviation, of the estimated coefficients of the
termsFv in Eq. (6) andFu in Eq. (7) to estimate the synchronization
level, S .

III. APPLICATIONS TO SIMULATED DATA

To test CD-DDA, we generate simulated data from coupled
Rössler27 and Lorenz20 systems. The first example was previously
studied in Ref. 24 and is an autonomous, chaotic Rössler system driv-
ing a periodic Rössler system. Our second simulated example is a
Rössler system driving a Lorenz system.19,23,24 For the coupled Rössler
system, the functionsFu andFv are the same. For the coupledRössler
and Lorenz system, we need to select individual functionsFu andFv

since these two systems are dynamically different.
We compared our measure with linear Granger causality,10

transfer entropy or conditional mutual information,32 and conver-
gent cross-mapping33 for a chaotic Rössler system driving a periodic
Rössler system and for a Rössler system driving a Lorenz system. Our
measure performed aswell or better than the other threemeasures for
both of these systems, and we report these findings in Figs. 2 and 4
in the supplementary material.

A. Chaotic Rössler system driving a periodic Rössler
system

In this example, we unidirectionally couple two Rössler systems,
where the driving system R1 is chaotic and the driven system R2 is
periodic24

R1

⎧

⎪

⎨

⎪

⎩

ẋ1 = −ω1 y1 − z1,

ẏ1 = x1 + a y1,

ż1 = b + z1(x1 − c),

R2

⎧

⎪

⎨

⎪

⎩

ẋ2 = −ω2 y2 − z2 + ϵ(x1 − x2),

ẏ2 = x2 + a y2,

ż2 = b + z2(x2 − c),

(9)

with a = 0.15, ω2
1 = 1.015, ω2

2 = 0.985, b = 0.2, and c = 10. We
modified the system in Ref. 24 to the system above as explained in
theAppendix. The coupling strength ϵ was varied between 0 and 0.25
using 30 000 linearly spaced steps. The integration step size was set
to 0.05 with a transient of 105 time points discarded. The remaining
data were downsampled by a factor of 2 resulting in 105 data points
for each coupling strength.

We selected the DDAmodels by minimizing the model error ρu

from u = x1 or u = x2 and get

Fu = a1 u1 + a2 u2 + a3 u
3
1, (10)

with uj = u(t − τj), τ1 = 32 δt, τ2 = 9 δt, and δt = 0.025.
We calculated Cuv and Cvu for u = x1 and v = x2 in sliding win-

dows (window duration 3000 δt or 50 pseudoperiods, window shift
1000 δt) and show these results in Fig. 1 (middle panel).

FIG. 1. Pearson correlation r between response system components x2 (system
R2) and x3 (system R3) for determining the onset of synchronization (dashed
line) between R1 and R2 (upper panel). Cross-dynamical measures for a driven
periodic Rössler system by a chaotic Rössler system across coupling strength, ϵ.
For each coupling strength, 97 timewindows are plotted as dots. Blue dots indicate
chaotic driving periodic (Cvu), and red dots periodic driving chaotic (Cuv ) (middle
panel). The average across time windows for each coupling strength is overlaid
in cyan and orange. Pearson correlation between Cuv across time windows for ϵk
and ϵk+1 in red and for Cvu in blue. Both values converge to one after the onset of
generalized synchronization.

Each coupling strength displays Cvu for all time windows in the
direction of u = x1 to v = x2 (blue dots) and Cuv in the direction of
v to u to (red dots). Cvu increases with increasing coupling strength
while Cuv remains close to zero and begins to increase around the
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FIG. 2. Effect of short time windows: the left plot shows the CD-DDA causality
measures Cuv and Cvu (u = x1, v = x2) for system (9) for a window length of 300
δt, or 5 pseudoperiods. This plot can be compared to the middle panel in Fig. 1.
The right plots show our synchronization measure or significances Suv and Svu

for the maximum of the additional three DDA parameters.

onset of generalized synchronization (GS), estimated as ϵ=0.12 in
previous work based on conditional Lyapunov exponents24 and based
on the auxiliary systems approach1 as shown in Fig. 1, upper panel.
GS occurs in nonidentical, unidirectionally coupled oscillators when
there is a map between trajectories on the driving attractor and tra-
jectories on the response attractor.29 The auxiliary systems approach
requires introducing a second response system R3 [with the vari-
ables (x3, y3, z3)] that is identical to R2, except for initial conditions.
To determine the onset of synchronization between R1 and R2, we
see when the two driven response systems undergo complete syn-
chronization or when the Pearson correlation between x2 and x3 is
1 (Fig. 1, upper panel). We can also estimate the onset of general-
ized synchronization by correlating Cuv for ϵk with ϵk+1 across all
time windows, and doing the same for Cvu (Fig. 1, lower panel). After
the onset of synchronization, neighboring ϵ values share the same
synchronized manifold, whereas before, neighboring ϵ values follow
distinct driven attractors.

In Fig. 2 (left panel), we investigate the effect of short time
windows (see also Fig. S1 in the supplementary material). While
the main effect of Cvu remains for even just five pseudoperiods, we
also see Cuv unexpectedly increase before the onset of generalized
synchronization.

In Fig. 2 (right panel), we show the onset of generalized syn-
chronization in a purely data driven manner: first, we estimate the
significances for the three additional, cross DDA parameters of Fv

andFu in Eqs. (6) and (7). Then, we recalculate the significancemea-
sures for two slightly different window lengths (300 ± 20 δt). When
the two time series u and v are not synchronized, trajectories on the
driving and driven attractors are unrelated, and different window
lengths will yield similar significance measures. If the time series are
synchronized, then there is a map between trajectories on the driving
and driven attractors, and measures of significance will be sensitive
to window length. To assess synchronization, we take the maximum
of the threeDDAparameters that shows the greatest difference across
window lengths. We call this our measure of synchronization, S .

We are able to recover the correct direction of causal inference
for coupling between 0.05 and 0.15 for the longer (Fig. 1, middle
panel) and shorter (Fig. 2, left panel) data windows, as well as after
adding 20 dB noise (see Fig. S1 in the supplementary material).

B. Rössler system driving Lorenz system

In this example, we unidirectionally drove a Lorenz system L

with a Rössler system R23

R

⎧

⎪

⎨

⎪

⎩

ẋ1 = −α(y1 + z1),

ẏ1 = α(x1 + ay1),

ż1 = α(b + z1(x1 + c)),

L

⎧

⎪

⎨

⎪

⎩

ẋ2 = σ (−x2 + y2),

ẏ2 = Rx2 − y2 − x2z2 + ϵy21,

ż2 = x2y2 + βz2,

(11)

where a = b = 0.2, c = −5.7, σ = 10, R = 28, and β = −8
3 .

FIG. 3. Pearson correlation r between response system components y2 (system
L) and y3 (system L2) for determining onset of synchronization between R and
L. Cross-dynamical measures for a driven chaotic Lorenz system by a chaotic
Rössler system across coupling strength, ϵ. For each coupling strength, C for 97
time windows are plotted as dots. Blue dots indicate u = y1 driving v = y2 (Cvu),
and red dots denote v driving u (Cuv ).The average across time windows for each
coupling strength is overlaid in cyan and orange.
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FIG. 4. Effect of short time windows: the left plot shows the CD-DDA causality
measures Cuv and Cvu (u = y1, v = y2) for system (11). This plot can be com-
pared to the middle panel in Fig. 3. The right plots show the significances Suv and
Svu for the maximum of the additional three DDA parameters.

α adjusts the timescale of the Rössler system tomatch that of the
Lorenz and is set to 6. We varied the coupling strength, ϵ, between
0 and 6 over 1000 linearly spaced values. We implemented an inte-
gration step size of 0.01, removed a transient of length 105, and
evaluated 105 data points for each coupling strength. As with the cou-
pled Rössler system, we introduce an identical copy of the response
system L, L2 (with components x3,y3, and z3), which is also driven
by R and only differs from L in initial conditions. We determinedFu

and Fv for u = y1 and v = y2 from Eq. (12) by fitting all three-term,
two-delay DDA models up to order 3 nonlinearity, scanning delays
between 6 and 60 δt, and selecting the model and delays with the
lowest error. This exhaustive model search was performed separately
for u and v with no coupling, and is then applied to u and v for all
subsequent coupling strengths

Fu = a1 u1 + a2 u2 + a3 u
2
1,

Fv = b1 v1 + b2 v1v2 + b3 v1v
2
2,

(12)

where τu,1 = 7 δt, τu,2 = 6 δt, τv,1 = 6 δt, and τv,1 = 22 δt.

FIG. 5. Classical DDA: coefficient a1 for 113 channels for Patient 1 in Ref. 17. In
the upper panel, a1 for each channel is shown in a different color. The lower panel
shows the values of a1 as color across all 113 channels (rows) to identify the onset
channels. The onset channels marked by the neurologist are indicated by stars
on the y-axis. The dotted line marks the seizure onset from the neurologist.

FIG. 6. CD-DDA: in the upper panels of (a) and (b), Cvu for all channels u to
one channel v [onset channel in (a) and nononset channel in (b)] is shown and
in the lower panels, Cuv for one channel v [onset channel in (a) and nononset
channel in (b)] to all other channels u is shown. The onset channels marked by
the neurologist are indicated by stars on the y-axis.

Once the models are selected, we evaluate Eq. (8) in a slid-
ing window (window duration 3000 δt or 30 pseudoperiods, window
shift 1000 δt) for each coupling strength, ϵ. In Fig. 3, each coupling
strength displays C for all time windows in the direction of u = y1
to v = y2 (Cvu, blue dots) and v to u (Cuv, red dots). Our approach
shows Cvu increases as the coupling strength increases, whereas Cuv

slightly increases before the onset of GS for this system, which pre-
vious work estimates around ϵ = 2,23 and we have estimated to be
ϵ = 2.2 using the auxiliary systems approach. We also show in Fig. 3
lower panel the onset of synchronization by correlating C across time
windows between ϵk and ϵk+1. We can also recover the correct direc-
tion of causal inference using significantly less data, that is, using
300 δt instead of 3000 δt, shown in the left panel of Fig. 4. Further-
more, we can also estimate the onset of synchronization with Suv

and Svu, as shown in the right panel of Fig. 4. Notably, Suv in red
goes up near the estimated onset of synchronization determined in
Fig. 3. Overall, C determines the correct direction of causal infer-
ence for no noise and 20dB noise (see Fig. S3 in the supplementary
material).

IV. DETECTING CAUSALITY IN EPILEPTIC SEIZURES

In Ref. 17, a genetic algorithm (GA)was used to select themodel
with minimum error from one second data segments for one hour
periods centered on the seizure onset times. Around onemillion such
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FIG. 7. CD-DDA: enlarged region around the seizure in Fig. 6.

data segments (155 seizures, 730 iEEG channels from 13 patients)
were analyzed in this way. The patient demographics and character-
istics are described in Ref. 17 The DDAmodel selected in Ref. 17 for
the characterization of epileptic seizures is

u̇ = a1u1 + a2u2 + a3u
4
1 + ρu = Fu + ρu, (13)

with ui = u(t − τi).
Model (13) bifurcates at the seizure onset, as shown in Ref. 17:

it has a low error after seizure onset, but not before. This DDAmodel
will be used in the remainder of this section.

In Ref. 17, eight delays were chosen to characterize and segment
the data using truncated higher order SVD. In this paper, we only
use the delay pair τ = (7, 10) δt, where δt = 1

fs
with the sampling

rate fs = 500Hz since this delay pair proved to be sufficient for the
characterization of epileptic seizures.

FIG. 8. The left panel shows the channel locations (for more information, see
Patient 1 in Ref. 17) and the right panel shows a grid of these locations. The
boxes in grayscale are the Cuv values or information sent by the onset channel to
all other channels at the time of the highest peak in the upper panels in Fig. 6(a), at
around 10 s after the seizure onset marked by the neurologist. The circles indicate
the onset channels determined by the neurologist. The darker magenta boxes are
background and the lighter magenta boxes indicate bad channels.

In Fig. 5, the coefficient a1 from Eq. (13) is shown for 113 chan-
nels. The onset channels are marked with stars on the y-axis. As
discussed in Ref. 17, these plots can be used to localize the seizure
onset region in the brain.

We can extend this analysis to CD-DDA to determine the infor-
mation flow patterns during seizures.Fu andFv are the same model
as Eq. (13) since all data are iEEG data. u(t) and v(t) are recordings
from two different channels. Each channel is paired with all other
channels and the information received and sent is computed for each
pair.

The same seizure in Fig. 5 is shown in Fig. 6, where we show
information received from all other channels (upper panels) and
information sent to all other channels (lower panels) for an example
onset channel (a) and for an example nononset channel (b). Figure 7
zooms into the time around seizure onset. While both channels send
information to another onset channel marked with a magenta arrow
just before the seizure starts, only the onset channel subsequently
receives information from the majority of channels at the time of
the seizure. This patient has one evoked seizure, five fully developed
spontaneous seizures (first of these seizures is shown in Figs. 5–7),

FIG. 9. Time line of the CD-DDA feature Cuv from Fig. 6(a) lower panels and the classical DDA feature a1 from Fig. 5. The window length for each box is a quarter of a
second with a window shift of half that length. The features Cuv and a1 are mapped onto the same grid and color axis as in Fig. 8 with a white background.
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and one nonfully developed seizure. In the supplementary material,
we show C for all seizures as well as for stimulations. All spontaneous
seizures except the nonfully developed one show the same signature,
where the onset channel receives a large response from a majority of
channels once the seizure starts. The last seizure, seizure 6, is differ-
ent because the response from the nononset channels is too weak to
keep the seizure developing.

In Fig. 8, the CD-DDA feature Cuv from Fig. 6 at the peak in
the upper panels (around 10 s after marked onset) is mapped onto
a grid (right panel) that was derived from the channel locations in
the clinical report (left panel). Details and exact channel locations
can be found in Ref. 17 (Patient 1). The circles denote the clinically
marked onset channels. It is obvious that the region around the onset
channels is sending most of the information (see also Fig. 7, magenta
arrows). To investigate that further, we plotted such a grid for each
sliding data window, where the window length is a quarter of a sec-
ond and the window shift is half that length. Figure 9 shows such a
time line for the CD-DDA feature Cuv from Fig. 6 and the classical
DDA feature a1 from Fig. 5. CD-DDA not only shows the start of the
seizure earlier but also shows a constant information flow from the
onset regions. Classical DDA, on the other hand, shows the gener-
alization of the seizure and the involvement of the whole brain after
seizure generalization.

V. CONCLUSION

We have developed a new tool for studying causality called CD-
DDA and tested it on simulated data from dynamical systems and
then further applied this technique to epileptic seizure data. Using
CD-DDA, we can recover the direction of causal interaction between
unidirectionally coupled systems with small parameter mismatch as
well as nonequivalent systems, even with short time series and in the
presence of noise (see supplementary material). Furthermore, CD-
DDA can detect the onset of generalized synchronization (GS).

We have also shown that CD-DDA provides a useful measure
of information flow in the brains of human patients experiencing
seizures. By computing C for both directions for each channel, we
can identify the channels that seem to be sending out information
around the time of seizure onset. These channels match up well to
the clinically determined onset channels. Future work will explore
further applications of CD-DDA to brain data.

SUPPLEMENTARY MATERIAL

In the supplementary material, we present CD-DDA results for
the simulated data from the Rössler and Lorenz systems in Sec. III
for different window lengths and added white noise with a signal-to-
noise ratio of SNR= 20 dB.We further show for the epilepsy patient of
Sec. IV the CD-DDA outputs for 160 hours of data and plots around
each of the seven seizures (from 30 s before to 2min after seizure
onset) as well as a plot for a stimulation.
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APPENDIX: EQUIVALENT RÖSSLER SYSTEMS

To remove the confusion of interpreting ω as a time scaling
factor, we changed the Rössler system in Ref. 24 from

ẋ = −" y − z,
ẏ = " x + a y,
ż = b + z(x − c)

(A1)

to
ẋ = −ω y − z,
ẏ = x + a y,
ż = b + z(x − c),

(A2)

with ω = "2. Both systems are exactly the same up to a scaling y →

"y of the y-component in the second system. As shown in Ref. 16,
ω is one of the four possible bifurcation parameters of the Rössler
system27 since it can be written as16

ẋ = − 1
B y − 1

K
1
C z,

ẏ = B x + a y,
ż = C b − c z + K x z.

(A3)
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ABSTRACT

Observability can determine which recorded variables of a given system are optimal for discriminating its different states. Quantifying
observability requires knowledge of the equations governing the dynamics. These equations are often unknown when experimental data are
considered. Consequently, we propose an approach for numerically assessing observability using Delay Differential Analysis (DDA). Given a
time series, DDA uses a delay differential equation for approximating the measured data. The lower the least squares error between the pre-
dicted and recorded data, the higher the observability. We thus rank the variables of several chaotic systems according to their corresponding
least square error to assess observability. The performance of our approach is evaluated by comparison with the ranking provided by the sym-
bolic observability coefficients as well as with two other data-based approaches using reservoir computing and singular value decomposition
of the reconstructed space. We investigate the robustness of our approach against noise contamination.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0015533

A popular approach for studying nonlinear dynamical systems
from a recorded time series is to reconstruct the original system
using delay or derivative coordinates. It is known that the choice
of the measured variable can affect the quality of attractor recon-
struction. Unlike in linear systems for which the state space is
observable or not from the measurements, nonlinear systems are
more or less observable from measurements depending on the
state space location. Moreover, the observability strongly depends
on the measured variables. It is, therefore, useful to assess the
observability provided by a variable using a real number within
the unit interval between two extreme values: 0 for nonobservable
and 1 for full observability. Analytical techniques for determin-
ing observability require knowledge of the underlying equations,
which are typically unknown when an experimental system is
investigated. This is often the case for social and biological net-
works. It is thus of primary importance to assess observability
directly from recorded time series. In this paper, we show how
Delay Differential Analysis (DDA) can assess observability from

time series. The performance of this approach is evaluated by
comparing our results obtained for simulated chaotic systems
with the symbolic observability coefficients obtained from the
governing equations.

I. INTRODUCTION

Studying dynamical systems from real world data can be dif-
ficult as they are often high-dimensional and nonlinear; moreover,
it is typically not possible to measure all the variables spanning the
associated state space.1–7 In theory, it is possible to reconstruct the
non-measured variables by using delay or differential embeddings
from a single measurement.8 However, when performing state-space
reconstruction, the dimension required to obtain a diffeomorphi-
cal equivalence—required for correctly distinguishing the different
states of the system—with the original state space may depend on
the measured variable(s).9 Indeed, a d-dimensional system can be
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optimally reconstructed from a given variable with a d-dimensional
embedding, but a higher-dimensional space may be required when
another variable is measured. For instance, the Rössler attractor
is easily reproduced with a three-dimensional global model from
variable y, but a four-dimensional model9 or a quite sophisticated
procedure10 is needed when variable z is measured. It was shown
that data analysis often (if not always) depends on the observability
provided by the measured variable.11–13

In the 1960s, the concept of observability and its mathematical
dual, controllability, was introduced by Rudolf Kálmán in control
theory for linear systems.14 These concepts were later extended for
nonlinear systems in the 1970s from the perspective of differen-
tial geometry.15 Observability assesses whether different states of the
original system can be distinguished from the measured variable.
A system is said to be fully observable from some measurement if
the rank of the observability matrix is equal to the dimension of the
system.16,17 With such an approach, the answer is either fully observ-
able or nonobservable. This approach is sufficient for linear systems
because the observability matrix does not depend on the location in
the state space.

This is not true for nonlinear systems, and observability coef-
ficients were introduced to overcome this discrepancy answer.9,18

Observability coefficients are real numbers within the unit interval
between two extreme values: 0 for nonobservable and 1 for fully
observable. These coefficients are estimated at every point of the
trajectory produced by the governing equations in the state space
and then averaged along that trajectory.9,18 It is also possible to con-
struct symbolic observability coefficients from the Jacobian matrix
of the system studied.19,20 In this way, observability takes a graded
value according to the probability with which the attractor inter-
sects the singular observability manifold,21 that is, the subset of the
original space for which the determinant of the observability matrix
is zero. The great advantage of these coefficients is that they allow
comparing the observability provided by variables from different
systems and they can be computed for high-dimensional systems.7

It is then possible to rank the variables according to the observabil-
ity of the original state space they provide. The dependency of the
observability on the measured variable is due to the way variables
are coupled in the original system.22 Symmetries are often sources
of difficulty for assessing observability, particularly because recon-
structing the original symmetry is not possible from a single variable
if the symmetry differs from an inversion.23,24

The weakness of these analytical approaches is that the govern-
ing equations must be known and it is not possible to assess observ-
ability from experimental data. A first attempt to overcome this was
based on a singular value decomposition of some matrices built from
local data.25 Results were encouraging, but some slight discrepan-
cies with analytical results were noticed. Another approach, based
on a model built directly from the data using reservoir computing,
was also proposed.26 In both cases, some discrepancies with the sym-
bolic observability coefficients were observed. It therefore, remains
challenging to develop a reliable technique that always matches with
theoretical results. In this work, we propose a measure for assessing
observability from recorded data by using DDA and compare our
results and those obtained—when available in the literature—with
the two techniques discussed above with the symbolic observabil-
ity coefficients computed for several well-studied chaotic systems.

Here, DDA is based on a delay differential equation that approxi-
mates the dynamics underlying the measured time series. Contrary
to what is done with global modeling27 or reservoir computing,28

there is no need for an accurate model. Previous work showed a
rough model with a very limited number of terms (typically three) is
sufficient to detect dynamical changes or classify various dynamical
regimes.29–31

The subsequent part of this paper is organized as follows.
Section II A is a brief introduction to the computation of symbolic
observability coefficients. Section II B provides an introduction to
DDA and explains how it can be used for ranking variables accord-
ing to the observability of the state space they provide. Section III
introduces the investigated chaotic systems and provides the corre-
sponding symbolic observability coefficients. Section IV is the main
section of this paper: it discusses the performance of DDA for assess-
ing observability of the chaotic systems and compares it with those
of the two other data-based techniques. Section V provides some
conclusions.

II. THEORETICAL BACKGROUND

A. Symbolic observability coefficients

Let us consider a d-dimensional dynamical system represented
by the state vector x ∈ Rd whose components are given by

ẋi = fi(x1, x2, x3, . . . , xd), i = 1, 2, 3, . . . , d, (1)

where fi is the ith component of the vector field f. Let us intro-
duce the measurement function h(x) : Rd "→ Rm of m variables
chosen among the d ones spanning the original state space. It is
then required to reconstruct a space Rdr (dr ≥ d) from the m mea-
sured variables. One has to choose dr − m derivatives of these m
measured variables to get a dr-dimensional vector X spanning the
reconstructed space. Commonly, observability is assessed by using
dr = d.16,17 In the present work, we are only working with scalar time
series (m = 1). The change of the coordinate between the original
state space and the reconstructed one is thus the map,

! : R
d(x) "→ R

d(X). (2)

When the derivative coordinates are used for spanning the recon-
structed space, the map can be analytically computed.32 The observ-
ability of a system from a variable is defined as follows.16,33 For
the sake of simplicity, let us limit ourselves to the case m = 1 (a
generalization to the other cases is straightforward).

Definition 1. The dynamical system (1) is said to be state
observable at time tf if every initial state x(0) can be uniquely
determined from the knowledge of the vector s(τ ), 0 ≤ τ ≤ tf.

To test whether a system is observable or not is to construct the
observability matrix,15 which is defined as the Jacobian matrix of the
Lie derivatives of h(x). Differentiating h(x) yields

d
dt

h(x) =
∂h(x)

∂x
ẋ =

∂h(x)

∂x
f(x) = Lfh(x),

whereLfh(x) is the Lie derivative of h(x) along the vector field f. The
kth order Lie derivative is given by

Lk
f h(x) =

∂Lk−1
f h(x)

∂x
f(x),

Chaos 30, 103113 (2020); doi: 10.1063/5.0015533 30, 103113-2

Published under license by AIP Publishing.



 

67 

 

 

Chaos ARTICLE scitation.org/journal/cha

being the zero order Lie derivative the measured variable itself,
L0

f h(x) = h(x). Therefore, the observability matrix O ∈ Rd×d is
written as

O(x) =

⎡

⎢

⎢

⎢

⎣

dh(x)
dLfh(x)

...
dLd−1

f h(x)

⎤

⎥

⎥

⎥

⎦

, (3)

where d ≡ ∂
∂x

.
Theorem 1. The dynamical system (1) is said to be state

observable if and only if the observability matrix has full rank, that
is, rank (O) = d.

The observability matrix O is equal to the Jacobian matrix
of the change of coordinates " : x → X when derivative coordi-
nates are used.32 In this approach, the observability is either full or
zero. The term structural was introduced when the results do not
depend on parameter values.34 Computing the rank of the observ-
ability matrix is independent of parameter values and, consequently,
is an example of structural observability.35 Computing observability
with graphs1,34,36 is also a structural approach. We term observability
assessed from recorded data—necessarily dependent on the param-
eter values used for simulating the trajectory of the system—as
dynamical observability.35 This type of approach returns a real num-
ber within the unit interval: variables can be ranked between the two
extreme cases, 1.0 (0.0) for a full (null) observability. There is a third
type of observability, symbolic observability, which does not depend
on parameter values but allows ranking the variables.20 All types of
observability are not sensitive to symmetry-related problems. This
is due to the fact that observability is a local property, while sym-
metry is a global one. Consequently, symmetry may degrade the
assessment of observability.24

The procedure to compute symbolic observability coefficients
is implemented in three steps as follows.7,20 First, the Jacobian matrix
J of the system (1), composed of elements Jij, is transformed into
the symbolic Jacobian matrix J̃ by replacing each constant element
Jij by 1, each polynomial element Jij by 1̄, and each rational element

Jij by ¯̄1 when the jth variable is present in the denominator or by
1̄ otherwise. Rational terms in the governing equations (1) are dis-
tinguished from polynomial terms since the formers reduce more
strongly the observability than the latter.20

Then, the symbolic observability matrix Õ is constructed. The
first row of Õ is defined by the derivative of the measurement func-
tion dh(x); that is, Õ1j = 1 if j = i and 0 otherwise when the ith
variable is measured. The second row is the ith row of J̃ . The kth
row is obtained as follows. First, each element of the ith row of
J̃ is multiplied by the corresponding ith component of the vec-

tor v = (Õℓ1, . . . , Õℓd)
T
, where ℓ = k − 1 refers to the (k − 1)th row

of the symbolic observability matrix Õ. The rules to perform the
symbolic product J̃ij ⊗ vi are such that20

∣

∣

∣

∣

∣

∣

∣

∣

0 ⊗ a = 0,
1 ⊗ a = a,
1̄ ⊗ a = a for a = 1̄, ¯̄1,
¯̄1 ⊗ a = ¯̄1 for a ̸= 0.

(4)

Second, the matrix J̃ ′ is reduced into a row where each element
Õkj =

∑

i J̃′ij according to the addition law,20

∣

∣

∣

∣

∣

∣

∣

∣

0 ⊕ a = a,
1 ⊕ a = a for a ̸= 0,
1̄ ⊕ a = a for a ̸= 0, 1,
¯̄1 ⊕ a = ¯̄1.

(5)

The last step is associated with the computation of the sym-
bolic observability coefficients. The determinant of Õ is computed
according to the symbolic product rule defined in (4) and expressed

as products and addends of the symbolic terms 1, 1̄, and ¯̄1, whose
number of occurrences are N1, N1̄, and N ¯̄1, respectively. It is con-
venient to impose that if N1̄ = 0 and N ¯̄1 ̸= 0, then N1̄ = N ¯̄1. The
symbolic observability coefficient is thus defined as

η =
1
D

N1 +
1

D2
N1̄ +

1
D3

N ¯̄1, (6)

with D = N1 + N1̄ + N ¯̄1. This coefficient is in the unit interval,
η = 1 for a variable providing full observability of the original state
space. An observability is said to be good when η ≥ 0.75.37

B. Delay Differential Analysis

Let us assume that a time series {X1} is recorded in a
d-dimensional system. From this time series, it is possible to obtain
a global model reproducing the underlying dynamics. There are typ-
ically two main approaches working with either derivative or delay
coordinates.27,38 When derivatives are used, it is possible to construct
a d-dimensional differential model,

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Ẋ1 = X2,
Ẋ2 = X3,
...
Ẋd = F (X1, X2, . . . , Xd) ,

(7)

where Xi is the (i − 1)th derivative of the measured variable X1.39

The function F can be numerically estimated by using a least-squares
technique with a structure selection.40,41 F can be polynomial39,41 or
rational.42,43 This model requires d-ordinary differential equations
whose variables are the d successive derivatives of X1: this model
works in a differentiable embedding.

Second, it is possible to construct a model whose equations
have the form of a difference equation,

X(k + 1) = F
(

Xτj(k)
)

=

N
∑

i=0

ai ϕi, (8)

where ϕi is a monomial of delay coordinates Xτj(k) = X(k − τj) with
τj = nδt (n ∈ N+) being a time delay expressed in terms of the sam-
pling time δt with which the scalar time series {X1(k)} is recorded: k
is the discrete time. Such a model has an auto-regressive form, and
typically, the number N of terms is between 10 and 20. The space in
which this model is working is thus spanned by delay coordinates:
its dimension is very often significantly larger than the dimension
d, the embedding dimension,44 or even than the Takens criterion.8

An optimal form of the difference equation (8) is developed under
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the form of a nonlinear autoregressive-moving average (NARMA)
model.45

Recently, a third type of model was investigated under the
name of reservoir computing.46 This approach considers an oversized
model with a functional structure based on a network whose nodes
are characterized by some simple function. For instance, the Lorenz
attractor was accurately reproduced with an Erdös–Rényi network
of 300 nodes with a mean degree δ = 6, each node being made of
a difference equation.28 The model so-obtained corresponds to an
accurate global model of the dynamics. Notably, this model was con-
structed from the measurements of all the variables of the Lorenz
system. The main advantage of such a large model is its flexibil-
ity, that is, its ability to capture various dynamical regimes, but it
has the disadvantage that the space in which it is working is not
clearly defined and has a very large dimension (dr > 300 in the work
discussed above).

The DDA approach uses a kind of a mixed model between the
differential model (7) and the difference equation (8), the left mem-
ber of the latter being replaced with the left member of the former.
It is, therefore, based on the delay differential equation,

Ẋ = FX =

N
∑

i=1

ai ϕi(Xτj), (9)

where X = X1 designates the measured variable and Xτj some delay
coordinates. The purpose is not to construct a global model repro-
ducing accurately the dynamics but only an approximated model
for detecting dynamical changes (nonstationarity) or classifying dif-
ferent dynamical regimes.29,30,47 We, therefore, use a rough model
with very few terms (N ≤ 3). Such sparsity in the model prevents
overparametrization, that is, spurious dynamics induced by overly
complex models.48 Indeed, delay differential equations are known to
already produce complex dynamics with only two terms.49,50 Many
characteristics of the measured dynamics can be captured with two
or three terms and appropriate time delays.31 Based on previous
works,29–31,47 it is assumed that these characteristics are sufficient
to distinguish different dynamical regimes. This DDA model (9)
is a differential equation whose state space is spanned by delay
coordinates Xτj .

Model (9) has two sets of parameters, the fixed parameters
τj (set during the structure selection) and the free parameters ai

(estimated independently from each data window). The structure of
model (9) as well as the delays are determined for each time series.
Then, the free coefficients ai are determined for each window of the
recorded time series. The data in each window {X1} are normalized
to have a zero mean and unit variance to remove amplitude infor-
mation before estimating the free parameters ai by using a singular
value decomposition (SVD). The least-squares error

ρX =

√

√

√

√

1
K

K
∑

k=1

(

Ẋ(k) − FX(k)
)2

(10)

between the derivatives returned by the DDA model and the
derivatives computed from the measured time series quantifies
the ability of the model to capture the underlying dynamics. It
is known that there is a relationship between the model quality
and observability.9,11,24 The signal derivative Ẋ1 is computed using

a five-point center derivative.51 In this work, structure selection
[i.e., choosing the model form of Eq. (9] and the fixed parameters
τj) was performed via an exhaustive search over all possible three-
term models (three monomials: N = 3) with two delays such that
τj ∈ [m + 1; 60]δt, where m = 5 is equal to the number of points for
estimating the derivative and δt is the sampling time. Function F is
made of three monomials selected from the possible candidates,

ϕi ∈
{

Xτ1 , Xτ2 , X2
τ1

, Xτ1 Xτ2 , X2
τ2

, X3
τ1

, X2
τ1

Xτ2 , Xτ1 X2
τ2

, X3
τ2

}

. (11)

Monomials and delays are selected in an exhaustive search over all
possible model forms, i.e., 44, and delay combinations under the
restrictions specified above. Each model is thus characterized by the
set of “fixed” parameters (τ1, τ2), the corresponding monomials ϕi,
and the free parameters ai, which are estimated for each time win-
dow of the measured data. In this work, the time window is the entire
time series. The structure providing the model with the lowest ρX is
retained to assess observability according to the model error ρX.

As used with reservoir computing,26 the error ρX between the
model and the measured data provides a measure of how the system
dynamics may be reconstructed from these data. Indeed, to obtain
a reliable deterministic model, it is necessary to distinguish every
different state of the system for retrieving the underlying causality.
Since the error is used as a relative measure, it is only needed to
have a sufficiently flexible functional form for the model as observed
with reservoir computing or with a delay differential equation. Con-
sequently, the smaller the error ρX, the higher the observability
provided by the variable X. This results from previous works where
it was shown that the complexity of the model to approximate was
correlated to the observability: the better the observability provided
by the measured variable, the simpler the model to approximate.11,24

The error ρX from the best DDA model is computed with an increas-
ing noise amplitude. For each three-dimensional system and each
signal-to-noise ratio (no noise, 20, 10, and 0 dB: where 0 dB indicates
that the variance of the noise matches the variance of the signal), the
error ρX was computed over several hundred pseudoperiods for each
time series.

III. DYNAMICAL SYSTEMS AND OBSERVABILITY
COEFFICIENTS

A. Low-dimensional systems

The governing equations of the systems here investigated are
reported in Table I. The symbolic observability coefficients (SOCs)
and the model error ρX are reported for each variable of every system
in Table I. Parameter values are reported in Table II.

The Rössler 76,52 Lorenz 84,55 Cord,56 Hindmarsh–Rose57 (HR),
and Fisher58 systems have no symmetry. The Hindmarsh–Rose
system is known to be problematic when variable x or z is mea-
sured, for two different reasons.64 When variable z is measured, the
observability matrix

Oz =

⎡

⎣

0 0 1
rs 0 −r

rs (xχ − r) rs r(r − s)

⎤

⎦ , (12)

where χ = 2b − 3ax becomes singular when r is too small (Det
Oz = r2s2): the observability can be null for r = 0 and full for r ̸= 0
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TABLE I. Governing equations of each system for which the symbolic observability
coefficients (SOCs) ηs3 and ρX between the DDA model and the measured data with
no noise contamination are reported. The SOC for variable x of the Hindmarsh–Rose
(HR) system is corrected as discussed in the main text. For the Chua system,
f(x) = bx + 1

2
(a − b)(|x + 1| − |x − 1|).

System Equations SOC Error

Rössler 7652 ẋ = −y − z 0.84 0.037
ẏ = x + ay 1.0 0.022

ż = b + z(x − c) 0.56 0.106
Rössler 7753 ẋ = −ax − y(1 − x2) 0.56 0.0009

ẏ = µ(bx + y − cz) 0.84 0.0005
ż = µ(x + cy − dz) 0.68 0.0007

Lorenz 6354 ẋ = σ (y − x) 0.78 0.02
ẏ = Rx − y − xz 0.36 0.039
ż = −bz + xy 0.36 0.071

Lorenz 8455 ẋ = −y2 − z2 − ax + aF 0.36 0.061
ẏ = xy − bxz − y + G 0.36 0.205

ż = bxy + xz − z 0.36 0.204
Cord56 ẋ = −y − z − ax + aF 0.68 0.108

ẏ = xy − bxz − y + G 0.36 0.198
ż = bxy + xz − z 0.36 0.232

HR57 ẋ = y − ax3 + bx2 + I − z 0.68 0.025
ẏ = c − dx2 − y 0.56 0.023

ż = r[s(x − xR) − z] 1.00 0.002
Fisher58 ẋ = y 1.00 0.003

ẏ = −ax − by − z 0.84 0.004
ż = b + x − |x| 0.56 0.027

Chua59 ẋ = α(−x + y − f(x)) 1.00 0.05
ẏ = x − y + z 0.84 0.068

ż = −βy 1.00 0.066
Duffing60,61 ẋ = y 1.00 0.022

ẏ = −µy + x − x3 + u 0.86 0.08
u̇ = v 0.00 0.00

v̇ = −ω2u 0.00 0.00
Rössler 7962 ẋ = −y − z 0.75 0.005

ẏ = x + ay + w 0.83 0.001
ż = b + xz 0.44 0.079

ẇ = −cz + dw 0.63 0.006
Hénon–Heiles63 ẋ = u 0.64 0.0005

ẏ = v 0.64 0.0004
u̇ = −x − 2xy 0.44 0.0009

v̇ = −y − y2 − x2 0.44 0.0008

(this is also true for s, but s is commonly significantly different from
0). When variable x is measured, although the observability matrix
Ox is never singular (Det Ox = r − 1; r ̸= 1), the plane projection
of the differential embedding induced by variable x does not reveal
the chaotic nature of the underlying dynamics, contrary to what
is clearly provided by variable z (Fig. 1). As discussed by Aguirre
et al.,64 the observability matrix

Ox =

⎡

⎣

1 0 0
χx 1 1
Ox

31 χx − 1 −χx + r

⎤

⎦ , (13)

TABLE II. Parameter values of the investigated systems.

Rössler 76 a = 0.52 b = 2 c = 4
Rössler 77 a = 0.03 b = 0.3 c = 2 d = 0.5

µ = 0.1
Lorenz 63 σ = 10 b = 8/3 R = 28
Lorenz 84 a = 0.28 b = 4 F = 8 G = 1
Cord a = 0.28 b = 4 F = 8 G = 1
HR a = 1 b = 3 c = 1 d = 5

I = 3.29 xR =
8
5

r = 0.003 s = 4

Fisher a = 0.3 b = 0.097

Chua α = 9 β =
100
7

a = −
8
7

b = − 5
7

Duffing µ = 0.3 ω = 1.2
x0 = 1 y0 = 0

u0 = 0.5 v0 = 0
Rössler 79 a = 0.25 b = 3 c = 0.5 d = 0.05

where

Ox
31 = χ 2x2 − rs − 2bx + 2(b − 3a) ×

[(

I + x2(b − ax) + y − z
)]

,
(14)

has a determinant DetOx whose polynomial nature is canceled by
the contributions of O32 and O33, but this is not structurally stable.
Any perturbation in one of these two elements would lead to a deter-
minant vanishing for a subset of the state space. This is not detected
by the symbolic observability coefficients. If we keep the polynomial
nature of elements O32 and O33, the symbolic observability matrix
would be

Ox =

⎡

⎣

1 0 0
1̄ 1 1
1̄ 1̄ 1̄

⎤

⎦ . (15)

The corresponding corrected symbolic observability coefficient is
thus η′

x3 = 0.68. The corrected ranking of variables is, therefore,
z ◃ x ◃ y. This ranking will be used in the subsequent analysis.

The other systems have symmetry properties as follows. The
Lorenz 63 system54 is equivariant under a Rz rotation symmetry
around the z-axis.65,66 Variables x and y are mapped into their oppo-
site (−x and −y, respectively), while variable z is invariant under
the rotation symmetry. At least two variables must be measured to
correctly reconstruct the rotation symmetry.23 The Rössler 77,53 the
Chua circuit,59 and the driven Duffing systems60,61 are equivariant
under an inversion symmetry. Such a symmetry can be recov-
ered from a single variable and, consequently, should not blur the
observability analysis. The driven Duffing system is in fact a four-
dimensional system, a conservative harmonic oscillator driving the
dissipative Duffing oscillator: it is thus a semi-dissipative (or semi-
conservative) system.61 When variable u (or v) is recorded, a periodic
orbit is obtained, while variable x (or y) provides a chaotic state
portrait. Since a chaotic driving signal necessarily implies a chaotic
response, it is obvious that u drives x and not the opposite. It can,
therefore, be concluded, without further analysis, that the system
is not observable from u (or v). Thus, we only have to determine

Chaos 30, 103113 (2020); doi: 10.1063/5.0015533 30, 103113-5

Published under license by AIP Publishing.



 

70 

 

Chaos ARTICLE scitation.org/journal/cha

FIG. 1. Differential embedding induced by each of the three variables of the Hindmarsh–Rose system.

the observability from variables x and y, respectively. The Fisher
system and the Chua circuit have a piecewise nonlinearity. They
will be useful to test whether DDA is robust against discontinuous
nonlinearity.

All these systems but three—the Lorenz 84, the Cord, and
the Hénon–Heiles63 systems—have at least one variable providing
a good observability (η > 0.75) of the original state space. The
Hénon–Heiles system is conservative, and one may guess that the
observability problem will be more sensitive since the invariant
domain of the state space has a dimension close to 3 and not 2 as
for all the other systems that are strongly dissipative.

B. A higher-dimensional system

The Lorenz 63 system results from a Galerkin expansion of the
Navier–Stokes equations for Rayleigh–Bénard convection.67 It is also
possible to have a higher-dimensional expansion in retaining more
Fourier components. One of them lead to the 9D Lorenz system,68

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ẋ1 = −σ (b1x1 + b2x7) + x4(b4x4 − x2) + b3x3x5,

ẋ2 = −σx2 + x1x4 − x2x5 + x4x5 −
σx9

2
,

ẋ3 = σ (b2x8 − b1x3) + x2x4 − b4x2
2 − b3x1x5,

ẋ4 = −σx4 − x2x3 − x2x5 + x4x5 +
σx9

2
,

ẋ5 = −σb5x5 +
x2

2

2
−

x2
4

2
,

ẋ6 = −b6x6 + x2x9 − x4x9,
ẋ7 = −b1x7 − Rx1 + 2x5x8 − x4x9,
ẋ8 = −b1x8 + Rx3 − 2x5x7 + x2x9,
ẋ9 = −x9 + (R + 2x6)(x4 − x2) + x4x7 − x2x8,

(16)

where
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

b1 = 4
1 + a2

1 + 2a2
, b2 =

1 + 2a2

2(1 + a2)
,

b3 = 2
1 − a2

1 + a2
, b4 =

a2

1 + a2
,

b5 =
8a2

1 + 2a2
, b6 =

4
1 + 2a2

.

(17)

This 9D Lorenz system is equivariant.69 Depending on the R-values,
the attractor produced may be asymmetric [Fig. 2(a)] or symmetric

[Fig. 2(b)]. The symbolic observability coefficients are
⎧

⎪

⎨

⎪

⎩

ηx9
1

= ηx9
3

= ηx9
7

= ηx9
8

= 0.04,
ηx9

2
= ηx9

4
= 0.03,

ηx9
5

= ηx9
6

= ηx9
9

= 0,
(18)

leading to

x1 = x3 = x7 = x8 ◃ x2 = x4 ◃ x5 = x6 = x9.

Notice that every variable offers an extremely poor observability
of the original state space. It was shown that at least five variables
need to be measured for having a good observability (η > 0.75) of
the original state space.7 Moreover, for a sufficiently large R-value
(R = 45), the behavior is hyperchaotic. One of the characteristics
of this highly developed behavior is that there are two different
time scales. We will, therefore, investigate whether the observabil-
ity assessed with DDA is dependent on parameter values, that is, on
bifurcation affecting the symmetry properties (order-4 or order-2
asymmetric chaos, symmetric chaos, and hyperchaos).

IV. DDA RANKING

The structure of the best DDA models FX under no noise is
reported in Table V of the Appendix along with the corresponding
time delays retained for identifying the free parameters. As exam-
ples, ρX for some systems with increasing noise is shown in Fig. 3.
For no noise, ρX is reported in Table I.

The rankings for variables according to increasing symbolic
observability coefficients (SOCs), decreasing ρX for DDA, and, when
available in the literature, for decreasing reservoir computing (RC)
and singular value decomposition observability (SVDO) are sum-
marized in Table III for all low-dimensional systems (d ≤ 4). The
results for the Rössler 76, Rössler 77, Fisher, driven Duffing, and
Rössler 7962 systems are in a perfect agreement with the SOC. The
discontinuity of the Fisher system does not perturb the analysis. The
hyperchaotic nature of the Rössler 79 system was not problematic
for correctly assessing observability.

The Lorenz 63, Lorenz 84, Cord, and Hindmarsh–Rose sys-
tems show close agreement between DDA and SOC. For the Lorenz
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FIG. 2. Chaotic attractor produced by the 9D Lorenz system (18). (a) R = 14.22,
(b) R = 14.30, (c) R = 15.10, and (d) R = 45.00. Other parameter values:
a = 0.5 and σ = 0.5. When there are co-existing attractors, they are plotted in
different colors in the plane projections of the state space.

63 system, variable x was correctly detected as providing the best
observability, but variable z was found to offer worse observabil-
ity than variable y, a feature that is not predicted by the SOC due
to a problem inherent to the symmetry involved. For the Lorenz
84 system, all variables have equally low SOCs, however, for DDA
variable x shows greater observability. For the Cord system, while
no single variable provides good observability for the original state
space, DDA correctly ranks x as providing the best observability.
However, DDA ranks z as providing worse observability than vari-
able y, while SOC ranks them with equivalent observability. For the
Hindmarsh–Rose system, variable z provides full observability and
is associated with the lowest ρX. However, there is some discrepancy
between DDA and SOC since, as assessed with DDA, y provides a
slightly higher observability than x. Results for the Hénon–Heiles
system are quite equivalent to the SOC. Variables x and y are more
observable than u and v; however, y(v) is more observable than x(u)
instead of showing equivalent observability.

For the Chua circuit, the variable x contains a piecewise non-
linearity and has full observability, and DDA correctly ranks x as
the most observable. DDA also ranks variable y with the worst
observability, which is in agreement with SOC. However, variable
z has only slightly better observability than y, whereas it should be
equivalent to x.

When compared to the two other data-based techniques, DDA
performs better than RC for the Rössler 76, Rössler 79, and the
Lorenz 63 systems but not for the Chua circuit. Compared to the
SVDO, the DDA approach provides similar results for all systems
investigated by these two techniques. DDA outperforms SVDO for
the hyperchaotic Rossler 79 system in correctly identifying the vari-
able y as providing the best observability, a feature missed by the
SVDO, whereas the SVDO approach outperforms DDA for the
Lorenz 84 and Hindmarsh-Rose systems.

For most of the systems, these results are robust against noise
contamination, at least up to a signal-to-noise ratio greater than
10 dB: below this ratio, results can be blurred and observability can
no longer be reliably assessed using DDA. A similar robustness was
observed with SVDO. It was not investigated with RC.

Note that another interesting data-based technique for assess-
ing observability was proposed by Parlitz et al.70 It was only tested
with the Rössler 76 system (and the Hénon map, not investigated
here). It would be interesting to further investigate its performance,
but this is out of the scope of this paper.

The results for the 9D Lorenz system are not so clear. The
first reason is that this system is nearly unobservable from a single
variable. The SOC is nearly saturated (close to 0) with nonlinear ele-
ments as revealed by the symbolic Jacobian matrix of the 9D Lorenz
system (16), namely,

J sym =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1̄ 1̄ 1̄ 1̄ 0 1 0 0
1̄ 1̄ 0 1̄ 1̄ 0 0 0 1
1̄ 1̄ 1 1̄ 1̄ 0 0 1 0
0 1̄ 1̄ 1̄ 1̄ 0 0 0 1
0 1̄ 0 1̄ 1̄ 0 0 0 0
0 1̄ 0 1̄ 0 1 0 0 1̄
1 0 0 1̄ 1̄ 0 1 1̄ 1̄
0 1̄ 1 0 1̄ 0 1̄ 1 0
0 1̄ 1̄ 0 1̄ 1̄ 1̄ 1̄ 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (19)
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FIG. 3. Error ρX vs a decreasing signal-to-noise ratio for some of the different systems investigated in this paper. (a) The Rössler 76 system, (b) the Lorenz 63 system,
(c) the Cord system, (d) the Hindmarsh–Rose system, (e) the Hénon–Heiles system, and (f) the Chua system.

which illustrates that most of the couplings between variables are
nonlinear. Considering only the observability provided by a single
variable is here investigated and that the SOCs are all close to 0, one
may conclude that the 9D Lorenz system is not observable from a
single variable.

Results provided by DDA are shown in Fig. 2 where it is
seen that variables cannot be easily ranked, particularly when R is
increased. Results are summarized in Table IV as follows. For each
R-value, the rankings of the variables are reported—from 1 for the
variable offering the best observability to 9 for the one providing

TABLE III. Ranking variables according to the observability as assessed by the symbolic observability coefficients (SOCs), DDA analysis, reservoir computing (RC), and singular
value decomposition observability (SVDO). A perfect agreement with the SOC is indicated by a •. When the variable providing the best observability is correctly detected or
when = is replaced with ≈ or ◃, a ◦ is reported.

System SOC DDA RC SVDO

Rössler 76 y ◃ x ◃ z • x ◃ y ◃ z •
Rössler 77 y ◃ z ◃ x • . . . . . .
Lorenz 63 x ◃ y = z ◦ y ◃ x ◃ z ◦
Lorenz 84 x = y = z ◦ . . . •
Cord x ◃ y = z ◦ . . . ◦
Hindmarsh–Rose z ◃ x ◃ y ◦ . . . •
Fisher x ◃ y ◃ z • . . . . . .
Chua x = z ◃ y ◦ • ◦
Duffing x ◃ y ◃ u = v • . . . . . .
Rössler 79 y ◃ x ◃ w ◃ z • x ◃ y ◃ z ◃ w x ◃ y ◃ w ◃ z
Hénon–Heiles x = y ◃ u = v ◦ ◦ . . .
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TABLE IV. Observability of the 9D Lorenz system as assessed with the symbolic
observability coefficients (SOCs) and DDA.

R x1 x2 x3 x4 x5 x6 x7 x8 x9

SOC . . . 1 2 1 2 3 3 1 1 3
DDA 14.22 7 4 1 5 2 8 3 6 9

14.30 3 7 2 6 1 8 5 4 9
15.10 5 2 6 3 1 9 8 7 4
45.00 8 5 7 6 1 4 3 2 9

the poorest observability—and compared to the ranking provided
by the SOC. The results vary with the R-value but do not follow a
clear trend. Variable x5 with a null observability as assessed by the
SOC (and analytically) is found to provide the best observability as
assessed by DDA. Nevertheless, this is in agreement with the suc-
cessful three-dimensional global model obtained from this variable
for R = 14.22;68 that is, at least for this R-value, the dynamics can be
correctly reconstructed for recovering the underlying determinism.

It should be pointed out that looking for full observability (i.e.,
being able to “reconstruct” each of the non-measured variables) is
not the same thing as looking for an embedding, especially for large
d-dimensional systems producing an attractor that can be embed-
ded within a space whose dimension dR is lower than the dimension
d of the original state space. Full observability ensures the existence
of an embedding, and the opposite is not necessarily true. Here,
DDA selects the variable that provides the best reconstructed space.
If compared with the results provided by the SOC with multivari-
ate measurements,7 variables x2, x4, x5, and x6 are always among
the six variables selected for providing a full observability. DDA
returns three of them as providing the best observability, x2, x4, and
x5 (Table IV). Variable x6, the single one that is invariant under
the symmetry of this system, is identified as a variable providing
a poor observability. Once again, symmetry induces difficulties for
assessing observability.

V. CONCLUSION

The ability to infer the state of a system from a scalar output
depends on the system variable that is measured. We have intro-
duced a numerical approach using the error between a DDA model
and measured data to assess the observability provided by the mea-
sured variables in several chaotic systems. The smaller the model
error, the better the observability provided. We compared these
measures with symbolic observability coefficients, which are deter-
mined directly from the system’s equations. Our measure overall
reliably ranks variables according to the observability they pro-
vide about the original state space. The largest discrepancy was
obtained for a large-dimensional (9D Lorenz) system. The assess-
ment of observability is quite robust against noise contamination in
the majority of the systems here considered.

There are two situations in which our approaches may face
some complications. The first one is a common one. Inconsisten-
cies in assessing observability are known for systems with symmetry
properties, particularly with variables left invariant. The second one
is also a typical one: when the dimension of the system increases, the

observability of the state space provided by a single variable becomes
very poor and assessing observability is delicate. Our approach
is thus very reliable for low-dimensional systems without sym-
metry properties, even with a signal-to-noise ratio as commonly
encountered in experiments.

As in most of the other techniques, variables of different sys-
tems cannot be compared to each other. This is a common limitation
in assessing observability that is only overcome by using an ana-
lytical approach, such as by computing explicitly the observability
matrix or by using the symbolic observability coefficients. A kind of
normalization should be considered to have, for instance, the error
ρy of variable y of the Rössler 76 system (which has full observability)
smaller than for variable y of the Rössler 77 system. This problem
is more challenging than it may appear. It was, for instance, never
solved for the observability coefficients computed along a trajectory
using a relationship extracted from the system’s equations or using
SVD applied to a reconstructed space.
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APPENDIX: FUNCTIONAL FORMS OF DDA MODELS

The functional forms of the DDA models for each variable of
the systems investigated are shown in Table V.

TABLE V. Functional forms of the DDAmodels for each variable of the systems inves-
tigated. The time delays are expressed in terms of δt, the sampling time at which
variable X is recorded.

a1 a2 a3 τ 1 τ 2

Rössler 76 Fx Xτ1 Xτ2 X3
τ1

6 δt 7 δt

Fy Xτ1 Xτ2 X3
τ1

6 δt 7 δt

Fz Xτ1 Xτ2 X3
τ1

6 δt 7 δt

Rössler 77 Fx Xτ1 Xτ2 X3
τ1

6 δt 7 δt

Fy Xτ1 Xτ2 X3
τ1

7 δt 6 δt

Fz Xτ1 Xτ2 X3
τ1

6 δt 7 δt

Lorenz 63 Fx Xτ1 Xτ2 X3
τ1

6 δt 7 δt

Fy Xτ1 X3
τ1

Xτ1X2
τ2

6 δt 19 δt

Fz Xτ1 X2
τ1

X2
τ2

18 δt 6 δt

Lorenz 84 Fx Xτ1 Xτ2 X2
τ1

7 δt 6 δt

Fy Xτ1 X3
τ1

Xτ1X2
τ2

6 δt 28 δt

Fz Xτ1 Xτ1Xτ2 Xτ1X2
τ2

6 δt 60 δt
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TABLE V. (Continued.)

a1 a2 a3 τ 1 τ 2

Cord Fx Xτ1 X3
τ1

X2
τ1

Xτ2 7 δt 51 δt

Fy Xτ1 Xτ1Xτ2 Xτ1X2
τ2

6 δt 18 δt

Fz Xτ1 Xτ2 X2
τ1

6 δt 7 δt

HR Fx Xτ1 Xτ1Xτ2 X3
τ2

6 δt 9 δt

Fy X2
τ1

X2
τ1

Xτ2 X3
τ2

25 δt 6 δt

Fz Xτ1 Xτ2 X2
τ1

6 δt 7 δt

Fisher Fx Xτ1 Xτ2 X2
τ1

7 δt 6 δt

Fy Xτ1 Xτ2 X2
τ1

6 δt 7 δt

Fz Xτ1 Xτ2 X2
τ1

7 δt 6 δt

Chua Fx Xτ1 Xτ2 X3
τ1

6 δt 7 δt

Fy Xτ1 Xτ2 X3
τ1

7 δt 6 δt

Fz Xτ1 Xτ2 X3
τ1

13 δt 32 δt

Duffing Fx Xτ1 Xτ2 X3
τ1

6 δt 7 δt

Fy Xτ1 Xτ2 X3
τ1

6 δt 7 δt

Fu Xτ1 Xτ2 X2
τ1

38 δt 37 δt

Fv Xτ1 Xτ2 X2
τ1

38 δt 37 δt

9D Lorenz F1,3,5 Xτ1 Xτ2 X2
τ1

7 δt 6 δt

R = 14.22 F4,7,8 Xτ1 Xτ2 X3
τ1

7 δt 6 δt

F6,9 Xτ1 Xτ2 X3
τ1

6 δt 7 δt

F2 Xτ1 Xτ1Xτ2 X2
τ2

47 δt 14 δt

9D Lorenz F1−5,7,8 Xτ1 Xτ2 X3
τ1

6 δt 7 δt

R = 14.30 F6,9 Xτ1 Xτ2 X3
τ1

7 δt 6 δt

9D Lorenz F1,3,7,8 Xτ1 Xτ2 X2
τ1

7 δt 6 δt

R = 15.10 F2,4,5,9 Xτ1 Xτ2 X3
τ1

6 δt 7 δt

F6 Xτ1 X2
τ1

X2
τ2

25 δt 6 δt

9D Lorenz F1 Xτ1 Xτ1Xτ2 X3
τ1

6 δt 11 δt

R = 45 F2 Xτ1 X3
τ1

Xτ1X2
τ2

6 δt 57 δt

F3 Xτ1 X3
τ1

X3
τ2

6 δt 7 δt

F4 Xτ1 X3
τ1

Xτ1X2
τ2

6 δt 44 δt

F5 X3
τ1

X2
τ1

Xτ2 X3
τ2

10 δt 6 δt

F6 X2
τ1

Xτ1Xτ2 X3
τ1

10 δt 23 δt

F7 Xτ1 Xτ1Xτ2 X3
τ2

6 δt 9 δt

F8 Xτ1 Xτ1Xτ2 X3
τ2

6 δt 10 δt

F9 Xτ1 X2
τ1

Xτ2 X3
τ2

6 δt 9 δt

Rössler 79 Fx Xτ1 Xτ2 X2
τ1

6 δt 7 δt

Fy Xτ1 Xτ2 X3
τ1

7 δt 6 δt

Fz Xτ1 Xτ2 X2
τ1

6 δt 7 δt

Fw Xτ1 Xτ2 X3
τ1

7 δt 6 δt

Hénon–Heiles Fx Xτ1 Xτ2 X3
τ1

6 δt 7 δt

Fy Xτ1 Xτ2 X2
τ1

6 δt 7 δt

Fu Xτ1 Xτ2 X3
τ1

6 δt 7 δt

Fv Xτ1 Xτ2 X3
τ1

7 δt 6 δt
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