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Abstract

Facilitating the integration of refugees has become a major policy challenge in
many host countries in the context of the global displacement crisis. One of the first
policy decisions host countries make in the resettlement process is the assignment
of refugees to locations within the country. We develop a mechanism to match
refugees to locations in a way that takes into account their expected integration
outcomes and their preferences over where to be settled. Our proposal is based
on a priority mechanism that allows the government first to specify a threshold
g for the minimum level of expected integration success that should be achieved.
Refugees are then matched to locations based on their preferences subject to meet-
ing the government’s specified threshold. The mechanism is both strategy-proof
and constrained efficient in that it always generates a matching that is not Pareto
dominated by any other matching that respects the government’s threshold. We
demonstrate our approach using simulations and a real-world application to refugee
data from the United States.

1 Introduction

The global refugee crisis is one of the most pressing social problems of our time. The
United Nations reports that there are currently 68.5 million displaced persons globally,
including 25.4 million refugees (United Nations, 2018). This crisis has led to tremendous
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suffering among the displaced population (Lindert et al., 2016). It has also resulted
in major policymaking challenges in host countries that are struggling to facilitate the
successful integration of refugees into the local economy and society (Commission, 2016).

There have been several policy proposals to improve the integration of refugees
(Mousa, 2018). One prominent idea is to assign refugees to resettlement locations
through a matching process (Moraga and Rapoport, 2014, Fernández-Huertas Moraga
and Rapoport, 2015, Delacrétaz et al., 2016, Andersson and Ehlers, 2016, Bansak et al.,
2018, Roth, 2018). When refugees are admitted to a host country, government officials
typically decide the location to which a refugee is assigned within the country. Although
the processes vary across countries, this assignment usually is determined by capacity
constraints or proportional distribution keys. The idea of refugee matching is to select
locations that are likely to be a good fit for a given refugee to thrive. Extant research
has shown that the place of initial settlement has a profound impact on the long-term
integration success of refugees (Åslund and Rooth, 2007, Damm, 2014, Bansak et al.,
2018).

Two main approaches to refugee matching have emerged: preference-based and
outcome-based matching. Preference-based matching uses market design algorithms,
like those used in school choice problems (Abdulkadiroğlu and Sönmez, 2003, Abdulka-
diroğlu et al., 2009), to assign refugees to locations based on the preferences of the
refugees or the preferences of the locations (Moraga and Rapoport, 2014, Fernández-
Huertas Moraga and Rapoport, 2015, Delacrétaz et al., 2016, Andersson and Ehlers,
2016). This approach is appealing because it allows refugees to select locations they
think would be a good match. In addition, preference-based matching may facilitate
successful integration if refugees have accurate private information about which location
is best for them. However, to our knowledge such schemes have not been implemented
in the refugee context, and there are several practical limitations. Governments want
to ensure that refugees become self-sufficient and are typically reluctant to let them
freely choose where to settle due to concerns that this could result in a highly uneven
regional distribution and the creation of ethnic enclaves. In addition, there currently
exists no systematic data on refugee preferences, and some refugees might have limited
information with which to choose their best location.

The second approach is outcome-based matching (Bansak et al., 2018, Gölz and
Procaccia, 2018). Here the assignment seeks to maximize refugees’ predicted integration
success as measured by, for example, employment or earnings. Data-driven algorithms
train supervised learners on historical data to discover synergies between places and types
of refugees. The learned models are then used for newly arriving refugees to predict their
expected integration success and optimally match them to locations where they have
the highest probability of success subject to capacity and other constraints. Outcome-
based matching is appealing because it harnesses historical data to maximize expected
integration success and does not require collecting data on refugee preferences. The Swiss
government has recently implemented a randomized test to examine the performance of
data-driven algorithms for outcome-based assignment. However, a pure outcome-based
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approach does not take preferences into account and does not utilize private information
that refugees may possess regarding which location would work best for them.

While preference-based and outcome-based matching are often discussed as contrast-
ing approaches, they are not mutually exclusive. We propose a method that draws on
the strengths of both approaches and incorporates them into a unified framework. Our
assignment mechanism allows governments to harness the power of data-driven assign-
ment to ensure some minimum level of expected integration success while taking into
account the location preferences of refugees. Our mechanism integrates the data-driven
matching algorithm of Bansak et al. (2018) into a priority mechanism (Satterthwaite
and Sonnenschein, 1981) for preference-based matching. The government first proposes
a metric of integration success (e.g. refugee employment, earnings, health outcomes,
etc.), and a minimum level of expected integration success that should be achieved.
Refugees express preferences over locations. The algorithm then maps preferences to a
feasible matching by serially assigning refugees to locations in a way that accommodates
their preferences subject to being able to maintain the minimum average level of ex-
pected integration success. We illustrate our mechanism using simulations and refugee
data from the United States.

Our mechanism has several desirable properties. First, it strikes a compromise be-
tween the need of governments to ensure a minimum level of integration success and the
appeal of incorporating refugee preferences. In this sense our approach improves policy
through a marriage of machine-learning-based predictive analytics and preference-based
matching from theories of market design (Milgrom and Tadelis, 2018). Second, despite
the added complexity of accounting for the government’s constraint, our mechanism in-
herits the desirable properties of priority mechanisms: it is constrained Pareto-efficient
(subject to the government’s constraint), immune to strategic manipulation through
false reporting of preferences, and computationally feasible. It also allows refugees to
rely purely on the algorithmic assignment or to express preferences without the require-
ment that they strictly rank all locations. This flexibility is important since there may
be a large degree of heterogeneity as to whether refugees have distinct preferences over
locations. Third, our algorithm can be implemented by governments with only minor
additions to their existing assignment processes. It only requires the additional step
of eliciting refugees’ top choices. Some governments, such as the Netherlands, already
collect such information as part of their interviews with refugees.

2 g-Constrained Priority Mechanism

2.1 Preliminaries

There are n refugee families labeled 1, ..., n, each of which has to be assigned to a
location in the host country. Let L denote the finite set of locations. Each location
l ∈ L has a capacity ql ≥ 1 as to how many families it can accommodate. We assume
that n ≤

∑
l ql so that it is feasible to assign all families. For each family i, let gi(l) be
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a measure of being successfully integrated in location l when assigned to that location.
Integration success may be related to the family’s preferences, but is a key consideration
for the host government. For example, it could represent the probability that the head
of family i’s household will be employed in the assigned location. We refer to gi(l) as
the government’s outcome score.

Each family i has a complete and transitive preference ordering %i over the set of lo-
cations.1 Indifference and strict preference relations are denoted ∼i and �i, respectively,
and %= (%1, ...,%n) denotes the vector of preferences.

We make the assumption on families’ preferences that the only indifferences are over
the worst-ranked locations. That is, apart from possibly having ties among a set of
locations that a family deems to be the worst, each family has a strict preference over
all of the other locations. Formally, for all families i, if l ∼i l′ for some l′ 6= l, there is
no l′′ such that l �i l′′. This still allows for a family to be indifferent over all locations.
This assumption is suited to our application: refugees often do not have full information
on all possible locations, but they may have (strict) preferences over a limited set of top
choices. In addition, in a practical application governments would likely limit preference
elicitation to a set of top choices that refugees can express in an application form.

Define the set Si = L\{l ∈ L : ∃l′ ∼i l} which are all of the locations except any
that family i is indifferent over. Family i has a strict preference across all locations in
Si and if any location is left out of Si then it must have been ranked worst.

A matching µ maps the set of individuals to locations. A matching µ is

1. feasible if it satisfies the capacity constraints:

|µ−1(l)| ≤ ql,∀l

2. g-acceptable if the average outcome score is not lower than g:

1

n

∑
i

gi(µ(i)) ≥ g.

g-acceptability reflects the idea that the government wants the average outcome score
not to fall below a specified threshold g. It wants to ensure that the allocation is such
that refugee families have some minimum level of expected outcomes (e.g. a minimum
expected employment rate).

Note that not all values of g can produce a feasible matching. Let g denote the
highest possible average outcome score that can be generated by a feasible matching:

g := max
µ

1

n

∑
i

gi(µ(i)) subject to |µ−1(l)| ≤ ql, ∀l (1)

Feasible g-acceptable matchings exist only for g ≤ g.

1We assume that all families prefer to be assigned to a location rather than not assigned, so we can
omit non-assignment from the set of possible outcomes for each family.
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2.2 The Mechanism

Given a value of g ≤ g, the algorithm starts with family 1 and works down to family n in
a sequence of n steps before completing in either the nth or an additional (n+1)th step.
At Step i ≤ n, family i is either assigned to a location or put on hold by being added
to a set of temporarily unassigned families that will all get assigned simultaneously at
Step n+ 1. At each Step i, let Ni denote the set of families j < i that have been put on
hold. N1 = ∅ since at the start of the algorithm no family is on hold.

If family j < i was assigned a location prior to Step i, then let αi(j) denote the
location and (j, αi(j)) the assignment, viewing αi as a function. Refer to this function
as the completed assignment at Step i. Note that α1 = ∅, so the completed assignment
at Step 1 is trivial. A remaining assignment βi at Step i is a mapping of the unassigned
families {i, ..., n} ∪Ni to locations such that

µ(αi,βi)(j) :=

{
αi(j) if j < i
βi(j) if j ∈ {i, ..., n} ∪Ni

is a matching. We refer to µ(αi,βi) as the matching associated with the pair of completed
and remaining assignments (αi, βi). The existence of these matchings will be guaranteed
recursively by the algorithm.

At each Step i ≤ n, given αi define the set

Lgi (αi) = {l ∈ L : ∃ βi s.t. l = βi(i) and µ(αi,βi) is

a feasible g-acceptable matching}

This is the set of locations that are not at full capacity and for which there is a way to
finish assigning all unassigned families so as to create a feasible g-acceptable matching.

Let qil be the remaining capacity of location l after any individuals ahead of i (i.e.,
j < i) have been assigned in the previous i−1 steps. At the start we have q1l = ql for all
l. It will also be convenient to define the following problems: for all Steps i = 1, ..., n+1,
and given a vector qi := (qil)l∈L,

Gi(q
i) := max

βi

∑
j∈{i,...,n}∪Ni

gj(βi(j))

subject to |β−1i (l)| ≤ qil ,∀l (2)

with the convention that {i, ..., n} := ∅ if i = n + 1. At each Step i, the problem in
(2) finds the remaining assignment that maximizes the total outcome score subject to
the updated capacity constraints at Step i. The solution to this problem at each step
determines whether the associated matching is g-acceptable. In fact, to verify whether
or not a location l belongs in Lgi (αi) we must first check whether the highest possible
value of the average outcome score that can be achieved under the remaining assignment
is at least g; i.e., whether

gi(l) :=
1

n

Gi+1(q
i+1) + gi(l) +

∑
j<i s.t. j /∈Ni

gj(αi(j))

 ≥ g
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where qi+1
l′ = qil′ for all l′ 6= l and qi+1

l = qil − 1. If indeed gi(l) ≥ g and qil > 0, then l
belongs to Lgi (αi); otherwise it does not. Constructing Lgi (αi) at each Step i = 1, ..., n+1
therefore requires solving the problems given in (2). In addition, to verify whether g < g
also requires solving one of these problems since the problem in (1) equals G1(q

1)/n.
The steps of the algorithm are as follows.

Step 0. Verify that g ≤ g and proceed only if it holds.

Step i ≤ n. If Si ∩ Lgi (αi) is empty (meaning that there is no location that family
i ranked strictly to which it could be assigned, and we can find a remaining assignment
that generates a feasible g-acceptable matching), then place family i on hold. In this
case, set

Ni+1 = Ni ∪ {i}, αi+1 = αi, q
i+1
l = qil ∀l

and move on to Step i + 1. Otherwise, if Si ∩ Lgi (αi) is nonempty, then it contains a
unique best location from the perspective of family i – i.e., a location l∗i such that l∗i �i l
for all l ∈ Si ∩Lgi (αi). This follows from the fact that i ranks the elements of Si strictly.
Assign family i to l∗i , and set

Ni+1 = Ni, αi+1 = αi ∪ {(i, l∗i )},
qi+1
l∗i

= qil∗i − 1, and qi+1
l = qil ∀l 6= l∗i

If i < n, then move to Step i+ 1. If i = n, then move to Step n+ 1 only if a family was
ever put on hold (i.e., Nn+1 6= ∅); otherwise, stop.

Step n+1. At this stage the only unassigned families are those that were put on hold
in Nn+1. Here, choose any remaining assignment that maximizes the average outcome
score given the completed assignment and the capacity constraints; that is, solve (2) for
i = n+ 1 and stop.

For any preference vector % satisfying our assumptions, our algorithm produces a
matching, namely µ(αs,βs), where s ∈ {n, n + 1} was the step at which the algorithm
stopped. The algorithm then defines a “mechanism” ϕ, which, given the other parame-
ters of the model, is a mapping from preference vectors to feasible matchings. We refer
to the mechanism as g-constrained priority, since it is a modification of the usual priority
mechanism (Satterthwaite and Sonnenschein, 1981) for our application.

2.3 Properties of the Mechanism

Let ϕ(%) denote the matching produced by the g-constrained priority mechanism for
any preference vector % that satisfies our assumptions, and ϕ(%)(i) the location assign-
ment of family i under this matching. By construction, the matching produced by this
mechanism is feasible and g-acceptable. In addition, the mechanism satisfies two key
properties. It is:

1. constrained efficient in the sense that for all preference vectors % that satisfy
our assumptions, ϕ(%) is not Pareto dominated by another feasible g-acceptable
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matching µ. That is, it is not the case that µ(i) %i ϕ(%)(i) for all families i, and
µ(i) �i ϕ(%)(i) for some family i.

2. strategy-proof in the sense that truthful reporting is a dominant strategy of
the induced preference reporting game. That is, for every preference vector %
satisfying our assumptions, every family i, and every alternative preference %′i
that i could report that also satisfies our assumptions, ϕ(%)(i) %i ϕ(%′i,%−i)(i).

The proof that the mechanism is constrained efficient and strategy proof is straight-
forward, but for completeness we include it in the Supplementary Information (SI).

3 Applications

To illustrate the mechanism, we apply it both to simulated data and real-world data
from refugees in the United States.

Our mechanism requires governments to select a value for g, and this choice implies
a tradeoff between an outcome-based and preference-based matching. It is desirable to
achieve the highest possible value of g to ensure that refugees’ integration outcomes are
optimized. However, setting a higher value of g comes at the cost of assigning refugees
to locations that are, in expectation, lower in their preference rankings. That is, while
the mechanism simultaneously attempts to optimize for both outcomes and preferences,
there is a tradeoff between the two, where the balance of that tradeoff changes as g
increases.

The precise nature of the tradeoff also depends upon the joint distribution of refugees’
preference rankings and their outcome scores. Two measures, in particular, play an im-
portant role: the correlation between outcome scores and preference rankings within
families (i.e. the degree to which a family’s preferred locations align with the locations
where that family would achieve their best outcomes) and the correlation between pref-
erence rankings across families (i.e. the degree to which families have similar preference
rankings). We apply the mechanism to simulated data to show these properties.

In addition, to illustrate how the mechanism could perform in a real-world scenario,
we apply the mechanism to data from refugees in the United States. Early employment is
a core goal of the U.S. resettlement program, which strives to quickly transition refugees
into self-sufficiency after arrival. This application illustrates how our mechanism could
hypothetically be employed in the United States to achieve a desired level of early
employment while geographically assigning refugees based on their location preferences.

3.1 Simulation Data

For simplicity, our simulations involve assigning 100 families to 100 locations with one
slot each. For each family, we randomly generate a preference rank vector (with 1
indicating the most desired location and 100 the worst) and an outcome score vector
(with values in [0, 1]). The simulations vary both the correlation between preference and
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outcome vectors (−0.5, 0, and 0.5) and the correlation between preference vectors across
families (0, 0.5, and 0.8).2 This yields nine different scenarios, and in each we apply
our mechanism to make the assignment for various values of g. See the Supplemental
Information (SI) for details.

3.2 Refugee Data

Our real-world refugee data includes de-identified information on working-age refugees
(ages 18 to 64; N = 33,782) who have been resettled to the United States during the
2011-2016 period by one of the largest U.S. refugee resettlement agencies. Over this
time period, the agencies’ placement officers centrally assigned refugees to one of ap-
proximately 40 resettlement locations in the agency’s network. The data contain details
on the refugee characteristics such as age, gender, origin, and education. It also includes
the assigned resettlement location, whether the refugee was employed at 90 days after
arrival, and whether the refugee migrated from the initial location within 90 days.

We applied our mechanism to data on the refugee families who arrived in the third
quarter (Q3) of 2016, specifically focusing on refugees who were free to be assigned to
different resettlement locations (561 families), in contrast to refugees who were predes-
tined to specific locations on the basis of existing family or other ties. To generate
each family’s outcome score vector across each of the locations, we employed the same
methodology in Bansak et al. (2018), using the data for the refugees who arrived from
2011 up to (but not including) 2016 Q3 to generate models that predict the expected
employment success of a family (i.e. the mean probability of finding employment among
working-age members of the family) at any of the locations, as a function of their back-
ground characteristics. These models were then applied to the families who arrived in
2016 Q3 to generate their predicted employment success at each location, which comprise
their outcome score vectors. See the SI and Bansak et al. (2018) for details.

Our mechanism also requires data on location preferences of refugees. To the best of
our knowledge, such data do not currently exist in the United States, where refugees are
assigned to locations by the resettlement agencies. We therefore infer revealed location
preferences from secondary migration behavior. Specifically, we use the same modeling
procedures used in the outcome score estimation, simply swapping in out-migration in
place of employment as the response variable. This allows us to predict for each refugee
family that arrived in 2016 Q3 the probability of out-migration at each location as a
function of their background characteristics. For each family, we then rank locations
such that the location with the lowest (highest) probability of out-migration is ranked
first (last).

2The correlation between preference and outcome vectors treats higher preferences (i.e. closer to 1)
as more positive values, such that a positive correlation between preferences and outcomes indicates
more highly preferred locations are those that also result in higher outcome scores.
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4 Results

4.1 Simulations

Figure 1 depicts the results for nine different simulation scenarios that vary the correla-
tion between preferences and outcome scores within families and the correlation between
preferences across families. In addition, to model a real-world scenario, in which families
can indicate only a limited number of top locations in an application form, the prefer-
ence vectors are truncated such that only the top 10 ranks are retained and indifference
is established among the remaining locations. The top panel shows the proportion of
families who were assigned to one of their top three locations given various levels of
g, the government’s threshold for the minimum average outcome score. The bottom
panel shows the mean outcome score for families in their assigned locations for the same
levels of g. The curves end once g has been reached and hence no feasible assignment is
possible.

There is a clear tradeoff between realized preference ranks and outcome scores in all
simulations. As g is increased, the realized mean outcome score eventually increases.
This is a mechanical result of increasing g and hence enforcing the requirement for a
higher mean outcome value. Simultaneously, as soon as the mean outcome score is
impacted, the proportion of families assigned to one of their preferred locations also
begins to decrease. This occurs because enforcing the requirement for a higher value of
g requires the mechanism to deviate from the preference-based optimization.

Figure 1 also shows how the immediacy and severity of the tradeoff can vary substan-
tially depending upon the joint distribution of preferences and outcome scores.3 First,
focusing on the top panel, we see that the higher the correlation between families’ pref-
erences, the worse is the achievable baseline proportion of families that can be assigned
to one of their top locations at the lowest values of g. This result, which holds regardless
of the correlation between preferences and outcome scores, is intuitive: the more similar
are different families’ preferences, the more rivalrous is the matching procedure, and
hence the more difficult it is to match families to one of their top-ranked locations given
limited capacity in each location.

Second, the more positive the correlation between preferences and outcome scores,
the less severe is the tradeoff in the sense that the tradeoff does not kick in until higher
levels of g are enforced. The intuition for this result is that if preferences and outcomes
are positively correlated, then matching based on preferences should indirectly also lead
to outcome-based matching, and hence deviation from the preference-based solution will
not occur until a higher level of g is reached. This is a useful finding from the standpoint
of a real-world implementation of the mechanism. If, in advance of their preference
reporting, refugees were given information on their predicted outcomes in each location,
they could incorporate such information into their preference determination. If this

3It can also depend on the number of slots available in each location and the extent to which each
location contributes to the correlations.
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Figure 1: Results from applying our assignment mechanism to simulated data that varies
the correlations between location preference and integration outcome vectors and the
correlations between preference vectors across families. Upper panel shows the average
probability that a family was assigned to one of its top three locations. Lower panel
shows the realized average integration outcomes, i.e. the average projected probability
of employment. N=100.

results in a closer alignment of preferences and outcomes, that would help alleviate the
tradeoff in the mechanism.

Third, turning to the bottom panel in Figure 1, we see that once the tradeoff kicks
in, the realized mean outcome curves trace closely along the identity line; that is, upon
enforcing a level of g that deviates from the preference-based assignment, the mechanism
will find an alternative assignment that optimizes for preferences subject to just barely
satisfying the g constraint. The realized mean outcome results also mirror the trends on
realized preference ranks: The more positive is the correlation between preference and
outcome vectors, the later the tradeoff kicks in.
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Fourth, we see that given a negative correlation between preferences and outcome
scores, the correlation across preference vectors has a significant impact on how the trade-
off affects the realized mean outcome score, with the tradeoff being more severe with a
low correlation across preference vectors. This result can be explained as follows. A neg-
ative correlation between preference and outcome vectors implies that preference-based
assignment is counter to the goal of optimizing for realized outcome scores. However, if
there is also a positive correlation across families’ preferences, that means that different
kinds of families generally prefer the same locations, and hence also that the locations
that result in low outcome scores are also similar across people, thus limiting the degree
to which matching based on preferences will actually hurt realized outcome scores on
average. If, in contrast, there is no correlation across preferences, then there is greater
latitude for the mechanism to assign families to their higher-ranked locations, which
also happen to be the locations that are the worst for their outcome scores. As the cor-
relation between preference and outcome vectors becomes more positive, this dynamic
begins to disappear. However, the reason it does not reverse in the bottom-right panel
of Figure 1 is due to the existence of trailing indifferences in the preference rank vec-
tors, which means the families who could not be matched to one of their strictly ranked
locations are assigned using outcome-based optimization, thereby limiting the effect of
the phenomenon described above.4

4.2 Application Using U.S. Data

Figure 2 shows features of the joint distribution of the refugee families’ outcome score
and preference rank vectors. The top panel pertains to the correlation between the
families’ outcome and preference vectors. For each family, a correlation is computed
between its two vectors, and the panel displays the distribution of those correlations. The
distribution is roughly centered around zero (the mean correlation is 0.03). This suggests,
perhaps surprisingly, a relatively limited relationship between the locations refugees
prefer and those where they would actually achieve better employment outcomes. This
is an interesting finding and also has a key policy implication. Providing refugees with
information on which locations are beneficial for their employment outcomes would
allow them to formulate more informed preferences. If this results in a closer correlation
between preference and outcome vectors, this would help strengthen our mechanism since
a more positive correlation alleviates the tradeoff between outcome- and preference-based
matching.

The middle panel in Figure 2 shows the distribution of pairwise correlations between
families’ preference vectors. The correlations are mostly highly positive, with a mean
correlation of 0.67. This shows that preference vectors are relatively similar across the
families; many refugees would more or less prefer to be placed in similar locations. Given

4The SI includes the results of the same simulations without truncating the preference rank vectors. In
that case, we do see the expected reversal across the lower three panels.
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Figure 2: Shows the distribution of pairwise correlations between refugee family location
preferences, integration outcomes (i.e. employment), and preferences and outcomes.
N=561 refugee families who arrived in the United States in Q3 of 2016.

the existence of location capacity constraints, this is an inconvenient finding from the
standpoint of preference-based assignment.

The bottom panel in Figure 3 shows the distribution of all pairwise correlations
between families’ outcome vectors. As can be seen, the correlations are overwhelmingly
positive (with a mean correlation of 0.75), highlighting the fact already shown elsewhere
(Bansak et al., 2018) that certain locations are generally better than other locations for
helping refugees to achieve positive employment outcomes. However, the fact that there
still is meaningful variation across different families’ outcome score vectors indicates that
certain locations do indeed make a better match for different refugee families, depending
on their personal characteristics, which is the foundation for the outcome-optimization
matching procedure introduced by Bansak et al. (2018).

In applying our mechanism to the 2016 Q3 refugee data, we impose real-world assign-
ment constraints, giving each location capacity for the same number of families as were
sent to those locations in actuality. We also truncate each family’s preference vectors
such that only the first 10 ranks are retained and indifference is established among the
remaining locations.
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Figure 3: Results of applying the assignment mechanism to refugee families in the
United States for various specified thresholds for the expected minimum level of average
integration outcomes (g). Upper panel shows the average probability that a refugee got
assigned to one of their top three locations. Lower panel shows the realized average
integration outcomes, i.e. the average projected probability of employment. N=561
families who arrived in Q3 of 2016.

Figure 3 displays the results of applying the mechanism to these refugee families (in a
randomly drawn order). As before, the mechanism is applied at various levels of g, which
is denoted by the x-axis. The y-axis of the top panel denotes the proportion of cases
assigned to one of their top three locations, while the y-axis in the bottom panel denotes
the mean realized outcome score, i.e. the average predicted probability of employment,
based on the assignment. The two dashed vertical lines highlight the tradeoff interval,
where altering the value of g impacts both preferences and outcomes, and the interval
ends when g is raised above g.

Given a predominantly preference-based assignment (i.e. setting g to any value below
the value at which the tradeoff interval begins), a mean outcome score of 0.41 is achieved,
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meaning the predicted average employment rate is 41%.5 On the opposite end of the
spectrum, a purely outcome-driven optimization would yield the highest feasible g (g),
which is just below 0.52. The fact that it is not possible to raise g even further is, of
course, the result of the full distribution of the refugee families’ outcome vectors, namely
the fact that they feature a large positive correlation with one another.

As before, within the tradeoff interval, the mean outcome score curve in the bottom
panel traces closely along the identity line. However, the preference curve in the top
panel features a gradient that more gradually steepens, with the tradeoff becoming
increasingly more severe as g is increased.

5 Conclusion

Refugee matching has become a prominent policy innovation proposed to help facili-
tate the successful integration of refugees into the host country’s economy and society.
However, there is disagreement over whether integration is best served by matching on
refugee preferences or expected integration outcomes.

We have developed a mechanism that incorporates the strengths of both approaches
into a unified framework to assign refugees based on optimizing both refugee preferences
and expected outcomes. Our mechanism strikes a compromise in that it allows govern-
ments to ensure a minimum level of expected integration success (g) while at the same
time respecting refugee preferences to the extent possible. It is also strategy proof, does
not require refugees to rank all locations, and could be incorporated into existing assign-
ment mechanisms by eliciting refugee preferences for their top locations. In a real-world
implementation, governments could either fix a feasible value of g in advance or review
the projected results along a sequence of g values, as in Figure 3, and choose the final
preferred assignment according to their own criteria.

Our mechanism contributes to the literature on refugee matching and also more gen-
erally to the study of market design. For refugee matching in particular, our mechanism
provides governments with an actionable and cost-efficient tool to improve the welfare
of refugees and the communities in which they reside. More generally, our mechanism
provides an example of how predictive analytics from machine learning can be fruitfully
combined with the preference-based allocation schemes common in market design. The
marriage of these two approaches can provide a powerful tool to improve allocations
in a way that incorporates information from preferences about what people want while
harnessing the statistical learnings from what the historical data suggest would be the
best options. Given the heterogeneity in information levels and the richness of histori-
cal data on outcomes, we envision that such a combined approach could lead to better

5Setting g to a value below the tradeoff interval does not result in a purely preference-based assignment
given the trailing indifferences in the preference rank vectors. We also applied the mechanism to
the same data without truncating the preference vectors. The result is a purely preference-based
assignment at the lowest values of g, which yields a mean outcome score of 0.37. See SI.
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allocations in a variety of settings compared to schemes that rely only on preferences or
only on expected outcomes.

Supplemental Information (SI)

A Proof of the Mechanism’s Properties

The following presents the proof that the g-constrained priority mechanism is constrained
efficient and strategy-proof.

Constrained efficient Suppose that ϕ is not g-constrained efficient, so that for some
preference profile %, ϕ(%) is Pareto-dominated by a feasible g-acceptable matching µ.

For all families i, let Mi = {j < i : j /∈ Ni} be the families ahead of i that were
already assigned a location under ϕ(%), and let i = min{i : µ(i) �i ϕ(%)(i)} be the
first family to which µ assigns it a location that it strictly prefers to the one it gets
under ϕ(%). (Such a family must exist if µ Pareto-dominates ϕ(%).) By construction
µ(i) = ϕ(%)(i) for all i ∈ Mi. So for µ to be feasible and g-acceptable, it must be that
µ(i) ∈ Si ∩ Lgi (αi), where αi is the completed assignment under ϕ(%) at Step i. This
means that Si ∩ Lgi (αi) 6= ∅ so ϕ(%) must have assigned the best location l∗i in this set
to family i. But since µ(i) �i ϕ(%)(i) = l∗i , this contradicts the assumption that l∗i is
the best location for i in Si ∩ Lgi (αi).

Strategy-proof Suppose that there is some i for whom reporting a different preference
%′i produces a strictly better location assignment: ϕ(%′i,%−i) �i ϕ(%)(i).

Let l′i = ϕ(%′i,%−i) and note that Sj∩Lgj (αj) is independent of i’s reported preference
for all j < i. Therefore, Ni = N ′i where Ni is the set of families on hold at Step i
under the truthfully reported profile % and N ′i are those on hold at Step i under the
profile (%′i,%−i). In addition, ϕ(%′i,%−i)(j) = ϕ(%)(j) for all j ∈ Ni. This implies
that α′i = αi, where α′i is the completed assignment at Step i under preference profile
(%′i,%−i) and αi is the completed assignment at Step i under preference profile %.
Therefore, Lgi (αi) = Lgi (α

′
i) =: Lgi .

Let S ′i be the locations that i ranks strictly under %′i and Si the locations that i
ranks strictly under %i. If Si ∩ Lgi = ∅, then all of the locations in Lgi are ones that i
ranks worst, and i is guaranteed to be assigned one of these locations regardless of which
location i reports. Therefore it cannot be that ϕ(%′i,%−i) �i ϕ(%)(i).

On the other hand, if Si ∩ Lgi 6= ∅ then ϕ(%′i,%−i) �i ϕ(%)(i) and Lgi (αi) = Lgi (α
′
i)

implies that l′i ∈ Si ∩ Li(αi). But then l′i �i ϕ(%)(i) = l∗i contradicts the fact that l∗i is
the unique best location in Si ∩ Li(αi) under preference %i.
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B Verifying g-Acceptability

As described in the main text, implementing the g-constrained priority mechanism in-
volves iteratively verifying that the next assignment of a family to a particular location
can be performed without compromising the possibility of a g-acceptable final matching.
This process requires solving the maximization problem in Equation 2 of the main text:

Gi(q
i) := max

βi

∑
j∈{i,...,n}∪Ni

gj(βi(j))

subject to |β−1i (l)| ≤ qil , ∀l (2)

This involves computing the maximum possible total outcome score for any remaining
set of units and the remaining location capacities.

In implementing the mechanism, Equation 2 can be solved by employing a standard
linear sum assignment problem (LSAP) (Burkard et al., revised reprint, 2012). Specifi-
cally, the LSAP formulation is applied to an augmented cost matrix, whereby the rows
correspond to the remaining units and the columns correspond to location capacity slots
(i.e. each column is replicated according to the number of capacity slots belonging to
the associated location). Each element [i, v] of the cost matrix corresponds to the com-
plement of the outcome score for the ith unit when assigned to the location to which
the vth column pertains.

Various algorithms have been developed for solving the LSAP, beginning with the
introduction of the Hungarian algorithm in the 1950s (Kuhn, 1955, Munkres, 1957). We
employ the RELAX-IV cost flow solver developed by Bertsekas and Tseng (Bertsekas
and Tseng, 1994) and implemented in R by the optmatch package (Hansen and Klopfer,
2006).

C Simulation Application: Additional Details

The follow describes the data-generating process employed in the simulations.
First a number N is chosen, denoting the number of families. For simplicity, the same

number of locations is also used, each with capacity for one family. In addition, ρp and
ρop are both chosen, denoting the pre-specified correlation between preferences across
families and the correlation between preferences and outcome scores within families.

Next, N different N -dimensional latent variable vectors are generated, and these
vectors are column-bound into an N x N matrix, which we denote by P, representing a
simulated preference matrix. Specifically, each vector is a multivariate normal random
vector, using a mean vector of 0, and a covariance matrix with 1 for all the diagonal
elements and ρp for all the off-diagonal elements. Let ~zl denote the lth N -dimensional
latent variable vector, which pertains to the lth location and comprises the lth column
of P. For any given vector, the ith element pertains to the ith family.

By generating the N x N matrix P in this way, each row represents a family and each
column represents a location. Thus, the ith row, P[i,], denotes a latent preference vector
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for family i, with higher (more positive) values corresponding to a higher preference and
vice versa. By construction, for any two families (rows), the pairwise correlation between
the two vectors will be ρp in expectation, imposing a correlation of ρp across families’
location preferences.

Let ~si denote the ith family’s outcome score vector. The outcome score vectors are
constructed such that ~si = sign(ρop) · (P[i, ] + ~ε), where the elements of ~ε are indepen-
dently distributed normal with mean 0 and variance σ2

ε . The value of σ2
ε is determined

such that it, in combination with the sign(ρop) operator, produces an expected pairwise
correlation of ρop between ~si and P [i, ], thereby inducing the correlation of ρop between a
family’s preferences and outcome scores. The outcome score vectors are then row-bound
to create an N x N outcome score matrix S, where each row represents a family and
each column represents a location.

In applying our mechanism to the simulated data, the S matrix is first normalized
such that its elements are in the interval [0, 1], and the P matrix is mapped to preference
ranks (i.e. each row P[i, ] is transformed into ranks such that the most positive value
becomes 1 and the most negative value becomes N).

For simplicity, the simulations presented in the study employ N = 100 (i.e. 100 fam-
ilies assigned to 100 locations each with one slot). In addition, to mimic reality, in which
families are likely to be able to report only a limited number of location preferences,
the preference vectors for each family are truncated such that only the top 10 ranks are
retained and indifference is established among the remaining locations. The simulations
vary both the correlation between preference and outcome vectors (three values of ρop:
-0.5, 0, and 0.5) and the correlation between preference vectors across families (three
values of ρp: 0, 0.5, and 0.8). This yields nine different scenarios, and in each we apply
our mechanism to make the assignment for various values of g. Figure 1 in the main
text displays the results.

In addition, Figure S1 in this SI shows the results of the same simulations when the
preference rank vectors are not truncated.

D U.S. Refugee Application

D.1 Background Information on U.S. Resettlement

Resettled refugees in the United States are assigned to locations based on collaboration
between the Department of State and nine voluntary resettlement agencies. During
a regular draft, refugees are first allocated to one of the nine agencies according to
specific quotas. Agencies are then responsible for assigning refugees to locations within
their networks. Typically refugees are assigned as cases, where a case is a family. The
assignment varies based on whether the refugee has family ties in the United States.
Refugees with ties are placed at the location most proximate to the tie. Refugees without
such ties, so-called “free cases,” are assigned on a case-by-case basis and can be assigned
to any location in the network. Placement officers consider special characteristics of
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the case (nationality, case structure, medical needs) and consult with the local offices
on whether they can accommodate a case (e.g. some offices may lack interpreters for
particular languages). Among the offices that can accommodate a case, the case is
then typically assigned to offices with the smallest proportion of their yearly capacity
currently filled. Note that a different process applies to refugees with Special Immigrant
Visas (SIVs).

Once a refugee case has been assigned, the local office then provides placement and
reception services for 90 days beginning after arrival as mandated by the U.S. Resettle-
ment Program. The duration is 180 days for refugees assigned to the matching grant
program. Agencies are mandated to report employment outcomes to the Department
of State after the conclusion of the placement and reception period. If a refugee leaves
the area before the placement and reception period ends, they may no longer receive the
benefits associated with the placement and reception service.

D.2 Registry Data

Our data includes all refugees that were resettled by one of the largest resettlement
agencies and arrived between quarter 1, 2011 and quarter 3, 2016. The same data is
used in Bansak et al. (2018). We restrict the sample to those aged between 18 and
64 years at the time of arrival (i.e. working age). We also remove a small number of
duplicates and locations that have had less than 200 refugees assigned to them over the
entire period. In the final data there are 33,782 refugees from 22,144 cases. Of those,
9,506 refugees are from free cases.

Table S1 shows the descriptive statistics for our sample. Below is a list of variables
and measures used:

• Male: Binary variable coded as 1 for males and 0 for females.

• Speaks English: Binary variable coded as 1 for refugees who speak English at the
time of arrival and 0 otherwise.

• Age at arrival : Age at arrival measured in years.

• Education: Highest level of educational attainment at arrival. Categories include:
None/Unknown, Less than Secondary, Secondary, Advanced, and University.

• Country of origin: Country of origin or nationality.

• Employed : Binary variable coded as 1 for refugees who are employed at 90 days
after arrival, and 0 otherwise.

• Year of arrival : Year of arrival (continuous).

• Month of arrival : Month of arrival (continuous).

• Free case: Binary variable coded as 1 for refugees who are free cases with no U.S.
ties, and 0 otherwise.
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D.3 Applying the Mechanism

We applied our mechanism to the data on the refugee families who arrived in the third
quarter (Q3) of 2016, specifically focusing on refugees who were free to be assigned to
different resettlement locations (561 families, 919 working-age individuals). To generate
each family’s outcome score vector across each of the locations, we employed the same
methodology in Bansak et al. (2018), using the data for the refugees who arrived from
2011 up to (but not including) 2016 Q3 to train gradient boosted tree models that
predict the expected employment success of a family (i.e. the mean probability of finding
employment among working-age members of the family) at any of the locations, as a
function of their background characteristics. These models were then applied to the
families who arrived in 2016 Q3 to generate their predicted employment success at each
location, which comprise their outcome score vectors.

To generate preference rank vectors, we infer revealed location preferences from sec-
ondary migration behavior. Specifically, we use the same modeling procedures used in
the outcome score estimation, simply swapping in out-migration in place of employment
as the response variable. This allows us to predict for each refugee family that arrived
in 2016 Q3 the probability of out-migration at each location as a function of their back-
ground characteristics. For each family, we then rank locations such that the location
with the lowest (highest) probability of out-migration is ranked first (last).

In applying our mechanism to the 2016 Q3 refugee data, we impose real-world assign-
ment constraints, giving each location capacity for the same number of families as were
sent to those locations in actuality. We also truncate each family’s preference rank vec-
tor such that only the first 10 ranks are retained and indifference is established among
the remaining locations. Figure 3 in the main text displays the results. In addition,
Figure S2 in this SI shows the results of the same simulations when the preference rank
vectors are not truncated.

More details on the procedures used to generate the outcome score and preference
rank vectors can be found below.

D.4 Generating Outcome Scores and Preference Ranks

The methods used for estimating the predicted probabilities of employment and out-
migration in this study are the same as those employed in ?. The following material
describes the procedures and is modified directly from the Supplementary Materials
document of ?.

D.5 Training vs. Prediction Data Designation

Let T (training data) be the matrix of refugee data, in which the unit of observation is
a single refugee, that will be used for model training. The T matrix contains the data
for all working age refugees in our data who arrived starting in 2011 and up to (but not
including) the third quarter of 2016. For each refugee we observe her assigned location,
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response variables of interest (employment for the outcome score and out-migration for
the preference rank), and her full set of covariates.

Let R (prediction data) be the matrix of data for the working age, free case refugees
who arrived during the third quarter of 2016. This comprises the set of refugees to
whom we applied our mechanism in this application. In a real-world application, these
R matrix data would correspond to new refugee arrivals and must include the same
set of covariates as in the model training data. In contrast to the model training data,
however, these prediction data need not include refugees’ response variables. In fact, in
a real-world prospective implementation of the mechanism, refugees belonging to these
prediction data will not have yet been assigned to a resettlement location.

Note that when applying our mechanism both the model training and prediction
data should be subsetted to the group of refugees for whom the outcomes of interest are
relevant. In our application the integration outcome is employment and therefore the
population of interest is working-age refugees. In addition, the prediction data should
be subsetted only to those refugees who are free to be assigned to different resettlement
locations—in contrast to refugees with predetermined geographic destinations due to
family ties and other special circumstances—as this is the subset for whom the mech-
anism is designed to help with the assignment process. That said, the model training
data need not be restricted to only free cases. Free-case and non-free-case refugees might
be sufficiently dissimilar that forecasting free-case refugees’ outcomes with models built
using non-free-case data may seem problematic. This issue is addressed, however, by
including case type as a predictor variable in the model building process (see below).

D.6 Modeling

The training data is used to build a bundle of learners that predict refugees’ probabilities
of the response variables (employment and out-migration), and those learned models are
then applied to the prediction data to generate their predicted probabilities.

The modeling is implemented on a location-by-location basis. For each resettlement
location, the training data are first subsetted to those refugees who were assigned to that
location, and a statistical model is then fit that uses those refugees’ characteristics to
predict the response. That fitted model is then applied to the prediction data (2016 Q3
refugees) to predict the probability of the response for these refugee arrivals if they were
hypothetically sent to the location in question. This process is performed separately for
each individual location, which yields for each refugee in the prediction data a vector of
predicted probabilities, one for each location. Collectively for all refugees in the predic-
tion data, the final result is then a matrix of predicted probabilities (M matrix) with
rows representing individual refugees and columns representing resettlement locations.
Note that there are two M matrices: one for probabilities of employment and one for
probabilities of out-migration.

More formally, for each refugee r = 1, ..., nT , let the response of interest (e.g. employ-
ment) be denoted by yr ∈ {0, 1} and the location assignment denoted by wr ∈ {1, ..., k},
for a total of k possible resettlement locations. Let ~xr denote a p-dimensional feature
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vector comprised of the characteristics of refugee r, and xrm denote the mth feature
in ~xr, where m = 1, ..., p. The goal of the modeling process is to learn the function
θl(~xr) = P (yr = 1|~xr, wr = l). The following describes the steps in the modeling stage.

1. Designate the historical model training data and denote it by the matrix T:

T =


y1 w1 x11 · · · x1m · · · x1p
...

...
...

...
...

yr wr xr1 · · · xrm · · · xrp
...

...
...

...
...

ynT
wnT

xnT 1 · · · xnTm · · · xnT p


2. Train a set of k models, ΘΘΘ = {θ̂1(~xr), ..., θ̂l(~xr), ..., θ̂k(~xr)} as follows.

For l = 1, ..., k:

(a) Subset T to refugees for whom wr = l (i.e. refugees assigned to l-th location),
and call this Tl:

Tl =


y1 x11 · · · x1m · · · x1p
...

...
...

...
yr xr1 · · · xrm · · · xrp
...

...
...

...
ynl

xnl1 · · · xnlm · · · xnlp


w=l

=


y1 ~x1
...

...
yr ~xr
...

...
ynl

~xnl


w=l

where nl denotes the number of refugees for whom wr = l.

(b) Using the data in Tl (the outcome yr and feature vector ~xr for all nl refugees
in Tl), model and estimate the function θ̂l(~xr).

3. Designate the data on new refugee arrivals and denote them by the matrix R:

R =


ẋ11 · · · ẋ1m · · · ẋ1p
...

...
...

ẋr1 · · · ẋrm · · · ẋrp
...

...
...

ẋnR1 · · · ẋnRm · · · ẋnRp

 =



~̇x1
...
~̇xr
...

~̇xnR


where nR denotes the number of new refugee arrivals.

The matrix R corresponds to the 2016 Q3 refugees in this application.

4. For all refugees in R and all resettlement locations, estimate P (ẏr = 1|~̇xr, ẇr = l)
as follows.
For r = 1, ..., nR:
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For l = 1, ..., k:

Estimate P (ẏr = 1|~̇xr, ẇr = l) by applying lth model in ΘΘΘ to ~̇xr:

P̂ (ẏr = 1|~̇xr, ẇr = l) = θ̂l(~̇xr) ≡ πrl

Arrange the πrl into a vector, ~πr = [πr1, ..., πrk].

5. Produce a matrix of predicted probabilities, with rows corresponding to new
refugees and columns corresponding to resettlement locations, as follows.
Arrange vectors ~πr into rows of the matrix M:

M =


~π1
...
~πr
...

~πnR

 =


π11 · · · π1l · · · π1k
...

...
...

πr1 · · · πrl · · · πrk
...

...
...

πnR1 · · · πnRl · · · πnRk


This is the final modeling stage output.

We follow Bansak et al. (2018) and use boosted trees (Friedman et al., 2009, Fried-
man, 2001) to estimate θ̂l(~xr) in step 2(b). See Bansak et al. (2018) for more details on
the selection criteria and model performance metrics leading to the choice of boosted
trees. Specifically, we use stochastic gradient boosted trees (bag fraction of 0.5) with
a binomial deviance loss function (Friedman, 2002, Friedman et al., 2009), which we
implemented in R using the gbm package (Ridgeway, 2017). Tuning parameter values,
including the interaction depth, learning rate, and number of boosting iterations (the
early stopping point) are selected via cross-validation within the training data for each
location-specific model.

We use the following predictors: Free case, Speaks English, Age at arrival, Male,
Education (ordered variable differentiating between no/unknown education, less than
secondary, secondary, technical/professional, and university), Country of origin (one
binary variable for each of the largest origin groups including Burma, Iraq, Bhutan,
Somalia, Afghanistan, Democratic Republic of Congo, Iran, Eritrea, Ukraine, Syria,
Sudan, Ethiopia, and Moldova), Year of arrival, and Month of arrival.

D.7 Mapping to Case-Level

Since the assignment of refugees typically takes place at the level of the case (typically
a family), we need to map the refugee-level predicted probabilities from the modeling
process to a case-level metric. For each case-location pair, we apply the mapping function
to the refugee-location predicted probabilities for all refugees belonging to that case,
yielding a single value for that case-location pair. This results in a new matrix (M∗

matrix) with the same number of columns (locations) as previously but now as many
rows as cases rather than refugees.
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Formally, let i = 1, ..., n denote the refugee case, with a total of n cases, where
n ≤ nR. The mapping process then proceeds as follows:

1. Perform mapping of individual predicted probabilities to case-level metric as fol-
lows.
For i = 1, ..., n:

For l = 1, ..., k:

Let π̃il = {πrl ∀ r ∈ i}. (That is, π̃il is the set of all πrl for the lth
location and refugees belonging to the ith case.)

Compute γil = ψ(π̃il) where ψ is a predetermined mapping function.

Arrange the γil into a vector, ~γi = [γi1, ..., γik].

2. Produce a matrix containing the case-level metric for all case-location pairs, with
rows corresponding to cases and columns corresponding to resettlement locations,
as follows.
Arrange vectors ~γi produced in step 1 into rows of the matrix M∗:

M∗ =


~γ1
...
~γi
...
~γn

 =


γ11 · · · γ1l · · · γ1k
...

...
...

γi1 · · · γil · · · γik
...

...
...

γn1 · · · γnl · · · γnk


This is the final mapping stage output.

In step 1, the function ψ must be specified. In our application, we employ the mean
for both the predicted probabilities of employment and the predicted probabilities of
out-migration (see Bansak et al. (2018) for alternative choices).

D.8 Final Construction of Outcome Scores and Preference Ranks

The M∗ matrix pertaining to the predicted probabilities of employment directly provides
the outcome scores for use in the mechanism. However, the M∗ matrix pertaining to
the predicted probabilities of out-migration must be further transformed to provide the
(inferred) preference ranks. Specifically, for each row (case), we rank locations such that
the location with the lowest (highest) average probability of out-migration is ranked first
(last), producing a preference rank vector for each case.
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E Tables

Table S1: Descriptive Statistics for United States Refugee Sample

Mean SD

Male 0.53 0.50
Speaks English 0.42 0.49
Age:

18-29 0.44 0.50
30-39 0.28 0.45
40-49 0.16 0.37
50+ 0.11 0.31

Education:
None/Unknown 0.18 0.39
Less than Secondary 0.39 0.49
Secondary 0.21 0.41
Advanced 0.10 0.30
University 0.12 0.33

Origin:
Burma 0.23 0.42
Iraq 0.20 0.40
Bhutan 0.13 0.34
Somalia 0.11 0.31
Afghanistan 0.07 0.25
Other 0.26 0.44

Employed 0.23 0.42

Sample consists of refugees of working age that were
resettled by one of the largest resettlement agencies and
arrived in the period from quarter 1, 2011 to quarter
3, 2016. N = 33,782.
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Figure S1: Results from applying our assignment mechanism to simulated data (with-
out truncated preferences) that varies the correlations between location preference and
integration outcome vectors and the correlations between preference vectors across fam-
ilies. This figure shows the results of the same simulations as in the main text Figure
1, except that the simulated families’ preference rank vectors were not truncated in the
simulations illustrated here. Upper panel shows the average probability that a family
was assigned to one of its top three locations. Lower panel shows the realized average
integration outcomes, i.e. the average projected probability of employment. N = 100.
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Figure S2: Results of applying the assignment mechanism to refugee families in the
United States (without truncated preferences) for various specified thresholds for the
expected minimum level of average integration outcomes (g). This figure shows the
results of applying the mechanism to the same data as in the main text Figure 3, except
that the families’ preference rank vectors were not truncated in the application illustrated
here. Upper panel shows the average probability that a refugee got assigned to one of
their top three locations. Lower panel shows the realized average integration outcomes,
i.e. the average projected probability of employment. N = 561 families who arrived in
Q3 of 2016.
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