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Abstract

Traditional approaches for neurological rehabilitation of patients affected with movement

disorders, such as Parkinson's disease (PD), dystonia, and essential tremor (ET) consist mainly of

oral medication, physical therapy, and botulinum toxin injections. Recently, the more invasive

method of deep brain stimulation (DBS) showed significant improvement of the physical

symptoms associated with these disorders. In the past several years, the adoption of feedback

control theory helped DBS protocols to take into account the progressive and dynamic nature of

these neurological movement disorders that had largely been ignored so far. As a result, a more

efficient and effective management of PD cardinal symptoms has emerged.

In this paper, we review closed-loop systems for rehabilitation of movement disorders, focusing

on PD, for which several invasive and noninvasive methods have been developed during the last

decade, reducing the complications and side effects associated with traditional rehabilitation

approaches and paving the way for tailored individual therapeutics. We then present a novel,

transformative, noninvasive closed-loop framework based on force neurofeedback and discuss

several future developments of closed-loop systems that might bring us closer to individualized

solutions for neurological rehabilitation of movement disorders.
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3. Introduction

Movement disorders such as Parkinson's disease (PD) and dystonia are broadly considered

as basal ganglia (BG) disorders. However, this reductionist localization fails to capture the

span of the pathophysiology of these disorders as well as the physical, mental, and societal

impact of disease at the individual level. The complex interactions and the multitude of

neuroanatomical pathways involved require a system-level characterization and

understanding of the neuronal networks underlying the expression, spread, and dynamics of

the mechanisms taking place in these neurological disorders. This is emphasized by the

widespread plastic changes that occur in distributed neuronal networks at different

spatiotemporal scales as the nervous system adapts to disease. Furthermore, there is inherent

individual variability in the symptoms and responses to treatments exhibited by patients.

This variability may depend on individual genetic and epigenetic differences, on differences

in disease progression, and in the capacity of the adaptive processes to cope with it.

Therefore, therapeutic approaches tailored to a given patient, addressing the patient's

specific condition and the disease's degree of severity may prove superior to generic

diagnosis and treatment.

Current treatments for movement disorders, including medications, botulinum toxin

injections, physical rehabilitation, and deep brain stimulation (DBS), are targeted to specific

symptoms, or a combination thereof1,2,3. Despite such advances, these treatments present

significant limitations, including undesirable effects, limited efficiency, and lack of

specificity, and fail to address the dynamic nature of movement disorders such as PD and

dystonia. Dopamine replacement medications are used worldwide to alleviate the motor

symptoms of PD. However, other motor (e.g. freezing of gait) and non-motor (e.g.

depression, dementia, hallucinations) symptoms are dopamine-resistant, as is well

documented4. Long-exposure to dopamine replacement therapy5 may induce several serious

debilitating side effects that often outweigh the therapeutic benefits, such as worsening of

limb proprioception6, the development of a dopamine dysregulation syndrome and motor

fluctuations, just to name a few. In some patients, motor fluctuations can be treated with

DBS. However, its invasive nature, the additional risks and complications associated with

the surgery, and in device implantation, as well as the overall cost of this therapeutic

alternative and its restrictive eligibility criteria renders its adoption by a majority of patients

highly unlikely.

In dystonia, the current treatments for abnormal and involuntary muscle movements consist

of combinations of physical rehabilitation therapy, medications, botulinum toxin, and DBS.

All of these methods have limited efficacy7. In essential tremor (ET), typical treatments

consist of oral medications, including beta-blockers, benzodiazepines, and mysoline, or

primidone. Such therapy can improve tremor in approximately 50% of the patients, although

this fraction diminishes as the disease progresses to more severe stages8. Due to their

undesired and potentially severly debilitating side effects, invasive surgical options for

movement disorders, such as lesion therapy and DBS, are generally considered a last resort

when traditional therapies fall short in improving the patient's quality of life.
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Thus, new noninvasive therapeutic approaches are clearly needed for the neurological

rehabilitation of patients suffering from movement disorders. An ideal therapeutic approach

would be one tailored to the individual by being based on the pathophysiology of the

specific patient's conditions underlying disease and associated patterns of brain and body

activity. Such a therapy should be adaptive and selective so as to track the changing states of

the patient and disease. Indeed, in many brain disorders, symptoms fluctuate dynamically,

depending on factors such as cognitive and motor load, and concurrent drug therapy. It is

thus crucial to have feedback loops provide real-time adjustment of the therapeutic

parameters. A timely, precise regulation might potentially improve the therapeutic effects

while limiting unwanted and adverse side effects.

In this paper, we review closed-loop systems for rehabilitative purposes with a focus on

noninvasive brain-machine-body interfaces towards neurofeedback remediation of

movement disorders, in particular for PD (Figure 1). We start with an overview of activity-

dependent neuroplasticity in brain-machine interface (BMI) paradigms in Section 4. In

Section 5, we review invasive and noninvasive closed-loop systems for rehabilitation of

movement disorders. In Section 6, we present a new noninvasive framework for

rehabilitation in PD, combining simultaneous imaging of the brain and body dynamics with

model-free and model-based approaches for closed-loop paradigms. We then discuss the

future developments of closed-loop systems for rehabilitation purposes in Section 7 and

conclude in Section 8.

4. Brain-machine interfaces and neuroplasticity

BMI technology can be used for neurological rehabilitation in two fundamentally different

ways9. The earliest use of BMIs was to bypass neuromuscular signaling pathways, providing

a means for paralyzed patients to interact with their environment in a way that does not

depend on muscle control10. This strategy has been, and still is, the focus of a great body of

research, allowing patients suffering from various neuromuscular conditions to interact and

communicate with their environment via artificial actuators, including a computer cursor11,

a neuroprosthetic limb12, and virtual13 or real devices, such as a robotic arm14, or electric

wheelchairs15. The use of BMIs for communication is often referred to as assistive. In the

past several years, several researchers have proposed another strategy that consists of using

BMIs for rehabilitation purposes by inducing activity-dependent plasticity of the central

nervous system (CNS) to restore motor function, as has been reviewed elsewhere9,16,17.

Activity-dependent CNS plasticity can occur at different spatiotemporal scales and

represents the foundation for motor re-learning in rehabilitation. This is not limited to the

healthy nervous systems18, but is also relevant in disorders such as PD19.

The use of BMIs to investigate learning and adaptation is beyond the scope of this review

and has been reviewed recently20. We present here only a brief overview of studies

demonstrating how learning to control a BMI induces plastic changes in various part of the

CNS. Many studies have shown that single cortical neurons change their tuning properties

following learning of neuroprosthetic control21,22,23. The magnitude of these changes

mimicked the subjects’ performance to control the BMI and became more stable as the

performance plateaued23. By analyzing the activity of neurons in the motor cortex that were
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not used for BMI control, other authors found large-scale changes in neuron firing properties

and contribution to the task24. In particular, a difference was observed in these neurons’

modulation depth. The neurons that were not used for BMI control showed a reduction of

the modulation depth in comparison to the neurons used for BMI control. This effect was

only apparent in the late learning stages. Several other studies using BMI paradigms in

monkeys later demonstrated that neuroplasticity actually extends to larger cortical networks

associated with motor control21,24,25,26 and is not restricted to the motor cortex. For

example, monkeys trained to reach and grasp virtual objects by controlling a robot arm

through a closed-loop BMI showed functional reorganization in the dorsal premotor cortex,

supplementary motor area, and primary somatosensory cortex, as well as in the primary

motor cortex21. However, it is interesting to note that plasticity during BMI learning and

control is not restricted to the cortex, and also occurs in subcortical structures involved in

natural motor control that are directly relevant for PD, such as the basal ganglia. Indeed, it

has been recently shown that corticostriatal circuits in rodents undergo plasticity during

abstract task learning that do not directly involve physical movements27. In this study, rats

were trained to control the pitch of an auditory cursor by modulating the activity of the

primary cortex in the absence of body movements. By simultaneously recording the activity

of neurons in the primary motor cortex and dorsal striatum – two regions involved in motor

learning – with microelectrode arrays, the authors were able to show that striatal neurons

modulated their activity during learning and that more striatal neurons were recruited as

learning progressed. A comparison of the activity of motor and striatal neurons revealed that

learning was accompanied by dynamical changes of the functional interaction between these

two neural populations, consistent with the formation of a BMI-specific network28.

Moreover, deletion of striatal N-methyl-D-aspartate (NMDA) receptors impaired both

learning and corticostriatal plasticity, providing direct evidence that cortico-basal networks

are required not only for learning physical skills, but also for learning abstract skills, like

motor planning or neuroprosthetic control. Overall, these studies suggest that BMI

paradigms can provide new therapeutic methods by encouraging and guiding CNS plasticity

to restore motor function.

5. Closed-loop systems in rehabilitation

In closed-loop systems, feedback controls and regulates the output of a dynamical system,

allowing it to adapt to perturbations of its inputs29. This adaptive power opens new research

avenues for personalized therapies in neurological rehabilitation by tracking fluctuations in a

patient's neurological and disease states.

5.1 Invasive rehabilitation systems

For PD, closed-loop systems have dramatically improved the efficiency of DBS

protocols30,31,32. Classical open-loop DBS employs a surgically implanted electrode and

battery-powered pulse generator that deliver a constant high-frequency (~130-185 Hz) pulse

train to specific subcortical structures, including the subthalamic nucleus (STN), the internal

segment of the globus pallidus (GPi) or the ventral intermediate (Vim) nucleus of the

thalamus. DBS can successfully alleviate many symptoms of motor disorders and has been

approved by the Food and Drug Administration (FDA) to treat ET, PD and dystonia.
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Nonetheless, the mechanism of action of DBS is not fully understood, resulting in possibly

suboptimal selection of DBS waveforms (frequency, pulse width, and intensity) based on

clinical expertise and heuristics. Furthermore, it can take up to six months to find optimal

stimulation settings giving best results.

Early closed-loop modeling studies30,33,34 of DBS suggested the superiority of closed-loop

systems relative to open-loop systems and indicated that stochastic DBS waveforms could

be effective alternatives to the traditional constant high-frequency protocols30,33. Stochastic

waveforms offer the advantages of limiting the side effects induced by constant, periodic,

high-frequency DBS inputs35, such as gait and speech disturbances, dyskinesia and

hemiballism, as well as improving the battery life of DBS stimulators and perhaps yielding

improved therapeutic outcomes. Recently, closed-loop systems for DBS to treat PD have

been successfully implemented in monkeys31 and humans32. Using the MPTP (1-methyl-4-

phenyl-1,2,3,6-tetrahydropyridine) primate model of PD, Rosin et al.,31, delivered a single

pulse or short pulse train (7 pulses at 130 Hz) through a pair of electrodes implanted in GPi

at a predetermined and fixed delay of 80 ms, following the occurrence of a single action

potential recorded either in GPi or in the primary motor cortex (M1). By sensing the

ongoing activity in M1, their closed-loop DBS protocol delivering short pulse trains was

superior in alleviating parkinsonian symptoms than a single-pulse closed-loop protocol, as

well as a standard open-loop protocol (continuous 130 Hz). Moreover, their closed-loop

DBS reduced oscillatory activity in GPi and M1 to a greater extent than the standard open-

loop DBS.

To minimize the neurosurgical intervention in humans, Little et al.,32 developed an adaptive

DBS in which a quadripolar macroelectrode in the STN was used for recording and

stimulation. Specifically, the beta activity in the local field potential (LFP) served as a

feedback signal to control when the stimulation was delivered. LFPs were filtered, rectified

and smoothed using a moving average filter to produce an online scalar value of the beta

amplitude that triggered the stimulation via thresholding defined by the user. The

stimulation delay was 30 to 40 milliseconds. Adaptive DBS was 30% more effective than

the standard continuous DBS despite delivering less than half of the current, and improved

all three cardinal symptoms of PD, i.e. tremor, bradykinesia and rigidity. Interestingly,

preliminary results from the same authors suggest that it might be possible to differentially

control tremor and bradykinesia by using the same control signal36. LFPs are used as a

control signals for closed-loop DBS for several practical reasons (see review37): LFPs are

easily and stably recorded from the implanted electrode, they correlate with the patient's

clinical motor and non-motor states, and they are modulated by DBS.

However, control signals for DBS do not necessarily need to originate from the brain; other

bodily signals can also be used. In particular, electromyographic (EMG) activity has been

used for feedforward and feedback control of DBS for patients with ET38. In this study,

EMG activity of the deltoid muscle was recorded with surface electrodes and the tremor-

frequency power was used to switch on or off DBS following crosses of on-trigger and off-

trigger thresholds, respectively. Using the essential tremor rating scale (ETRS), the authors

reported a complete suppression of bilateral intentional tremor and an almost complete
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recovering of hand function after bilateral stimulation of the bilateral thalamic Vim/Vop

nuclei in closed-loop mode.

Taken together, the encouraging results of these studies demonstrate the power of adaptive

closed-loop systems to control the time-varying fluctuations of pathological oscillatory

network activity in movement disorders such as PD and ET.

It is worth mentioning an innovative approach for closed-loop DBS systems, despite the fact

that it has not yet been used to treat movement disorders. Indeed, some authors have taken a

step further and included the physician/clinician in their automated neuromodulation system

by using an agent-environment model39 borrowed from artificial intelligence. Afshar et

al.,40 developed an investigational platform for closed-loop DBS comprising an implanted

sensing and stimulating device for recording and stimulation brain activity, a learning

(classifier) and a control-policy algorithm, and telemetry to communicate with the

physician/clinician. According to their methodology, the nervous system represents the

environment while everything else is part of the agent. The agent consists of inertial (three-

axis accelerometer) and bioelectrical sensors, the classification and control-policy

algorithms, the stimulating part of their implanted device as well as the physician/clinician

who plays the role of a critic. By including another human in the loop, they made their

system twofold adaptive. On one hand, the classifier estimates the neural state of the patient

from the sensed neural activity while the control-policy algorithm maps this state estimate to

an optimal stimulation protocol and thus can adapt to dynamic fluctuations. On the other

hand, the physician/clinician can evaluate the performance of the classification and control-

policy algorithms from the data collected via telemetry and can independently adjust

parameters of each algorithm. This allows the clinician to monitor and adjust the

performance of the DBS more frequently than in standard medial care models. Although this

promising extended closed-loop system has been implanted and tested on an animal (ovine)

model of epilepsy40,41 for more than 15 months as proof of concept, further work is

necessary to evaluate the potential benefits for patients suffering from movement disorders.

5.2 Noninvasive rehabilitation systems

Closed-loop systems have also been used successfully in noninvasive rehabilitation methods

using either augmented-reality devices or transcranical current stimulation of the motor

cortex.

5.2.1 Augmented-reality approach—Some authors have extended the notion of BMI

(brain-machine interface) to that of body-machine interface42,43, in which signals from the

peripheral, rather than from the central nervous system, are used to control and communicate

with external devices. By relying on movements and adding new channels for

communication and control, body-machine interfaces provide several advantages relative to

BMIs. First, noninvasive interfaces may not present risks of surgical complications. Second,

the rate of information transmission of body motion systems are currently an order of

magnitude higher (5 bits/s)44 than that of EEG signal-based BMI systems (0.05-0.5 bits/

s)45,46. Third, body-machine interfaces acknowledge the importance of the body in

movement disorders and that the body can benefit from remaining active in many important

Broccard et al. Page 6

Ann Biomed Eng. Author manuscript; available in PMC 2015 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



ways. A larger range of clinical applications are now emerging that extend the brain- and

body-machine interfaces and neural prostheses paradigms to brain-machine-body

interfaces47, interfacing across the central and peripheral nervous systems for remediation of

neurological disorders.

However, it remains to be determined how people with movement disorders, such as PD,

dystonia, and ET will benefit from these interfaces, as this is a relatively new field of

research and they have mainly been tested so far for the rehabilitation of patients with spinal

cord injury42,48. For PD, apart from the study by Yamamoto and colleagues38 which used

EMG signal to control DBS in ET (see Section 5.1), the only noninvasive approach

successfully tested was for gait rehabilitation. Baram et al., analyzed49 and developed50 an

augmented-reality device for gait improvement for moderately affected PD patients (mean

clinical severity according to Hoehn and Yahr staging was stage 3.04±0.84). Their device is

composed of a head-mounted three-axis rotational accelerometer, a body-mounted three-axis

translational accelerometer, and a see-through head-mounted visual display, all connected to

a wearable computer. This device can operate in two modes. In the open-loop mode, the

visual display superimposes virtual tiles on the real floor. These move perpetually towards

the observer at constant speed, irrespective of the patient's body movements. In the closed-

loop mode, the patient's movements, monitored with rotational and translational

accelerometers, are used to adapt the visual display so that the virtual tiles appear fixed in

space, as a real floor. An adaptive noise canceler filter was used to learn and eliminate the

patient's tremor dynamics from the accelerometers' signals. Fourteen PD patients were tested

on the device in both open- and closed-loop modes. In closed-loop mode, performance

improved for all but one patient with an average increase of about 30% in speed and stride

length — about twice that for open-loop mode.

Using an advanced version of their device mounted on top of normal glasses, the same

group reported similar improvements in walking abilities for patients with multiple

sclerosis51. In another study52, the same group complemented the visual feedback (optical

flow) with auditory feedback by providing a click after each step. This helped to produce

and sustain a balanced rhythmic gait. PD patients were tested during an initial visit and after

a two-week at-home use of the device. The test took place at least 12 hours after the last

dose of anti-parkinsonian medication (since patients were recruited on the basis of their off-

medication-related gait impairment) and consisted of five conditions: without wearing the

device, wearing the deactivated device, receiving visual feedback only, with visual-auditory

feedback turned on, and again without wearing the device. The benefits of the at-home

therapy were more clearly observed after the two week period: nearly 70% of the patients

showed at least 20% improvement in gait velocity, stride length, or both. Two major

limitations of this work were that it only addressed the freezing of gait of patients during

“off-time” and that the long-term benefits of this therapeutical approach were uncertain. In a

follow-up study addressing these limitations53, Espay et al., evaluated the longer-term

benefits of their closed-loop apparatus for PD patients showing freezing of gait mainly

during “on-time” after four weeks of at-home training. However, due to the severity of the

disease and advanced disability of this population of the patients, only two of the 16

originally recruited patients completed the study and the authors only reported brief results
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from a single responder, a 62 year old woman with 15 years disease duration, who showed a

significant gait improvement up to 16 weeks post-training. After that period, the training

benefits started to decrease. Interestingly, the initial benefits were renewed for this patient

with further training. Although this augmentedreality apparatus shows encouraging results

for patients at an early stage of PD, this latter study highlights the difficulty of at-home

rehabilitation for patients at an advanced stage of PD in which severe motor and cognitive

disabilities may limit their opportunities to complete the training sessions required for

rehabilitation. The main limitation of these augmented-reality studies is the lack of device

use monitoring. The patients were verbally instructed to use the device for at least 30

minutes, twice a day, but no attempt was made to monitor the frequency and duration of

individual device use. This stresses the need for recording systems for at-home use of

rehabilitation devices so as to account for outcome variability and improve individualized

therapeutic solutions. Telemetric solutions for collecting information about device usage

and/or to include the physician/clinician in the loop, as proposed for some DBS systems40,

appear to be solutions worth trying to integrate in future noninvasive rehabilitation methods.

Several other different physical therapies have been tested for improving balance and gait

control in PD patients, such as bicycling54, dance55 and tai chi56. To date, none of these

therapies have used feedback control. Thus, research on body-machine interface might also

shed light on new body-related biomarkers that could be used as feedback signals for closed-

loop rehabilitation strategies based on physical therapy oriented towards improving balance

and gait in PD patients.

5.2.2 Noninvasive stimulation techniques—Repetitive transcranial magnetic

stimulation (rTMS), transcranial direct current stimulation (tDCS) and transcranial

alternating current stimulation (tACS) are three noninvasive stimulation techniques that

have the potential to either induce neuroplasticity or to suppress maladaptive changes in

targeted cortical networks. These stimulation methods have been successfully applied to

treat various neurological disorders, including movement disorders57,58, such as PD,

dystonia, and ET. For example, meta-analyses of the use of rTMS in PD indicate a

significant improvement of motor symptoms with high-frequency rTMS in M159,60.

However, to the best of our knowledge, only tACS has been used in a closed-loop system

for rehabilitation of movement disorders. Recently, Brittain et al., reported encouraging

results for resting tremor suppression61. The authors first stimulated the motor cortex of PD

patients at tremor frequency, but did not couple that rhythm with the ongoing tremor.

Instead, the rhythms drifted in and out of phase alignment with each other. The periods of

phase cancellation allowed them to identify the stimulation phase that caused the greatest

reduction in tremor amplitude. In a second series of experiments, Brittain and colleagues

tracked the phase of the peripheral tremor using accelerometers and fed that signal into a

high-performance digital interface that operated as a real-time computer that delivered the

stimulation current (constant stimulation for 30 seconds; peak-to-peak stimulation current,

2mA) over the motor cortex. This closed-loop setting reduced the tremor amplitude by 50%

on average for all five PD patients tested. Notably, stimulation at tremor frequency was

more efficient than at its first harmonic rhythm.
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As for DBS, the neurophysiological mechanisms of action of rTMS, tDCS and tACS are not

fully understood and could greatly benefit from modeling studies investigating feedback

control in order to test alternative waveform protocols and guide further experimental

research.

6. Extended neurofeedback paradigm for rehabilitation in Parkinson's

disease

The previous sections have emphasized the widespread interest of closed-loop BMIs for

rehabilitation purposes. However, several critical issues related to their acceptance and

usability need to be addressed before the adoption of BMI technology in clinical and

personal settings. In particular, the translation of automated closed-loop systems for

neurological rehabilitation of movement disorders necessitates further development in the

following areas of research40,62: a) improved understanding of the distributed brain

dynamics underlying healthy and pathophysiological conditions; b) the development of

more sophisticated noninvasive neural sensors in terms of spatiotemporal resolution and

usability/comfort for patients16; c) development of adaptive algorithms that can cope with

the dynamic nature of progressive neurological disorders30,40; d) implementation of model-

based control40,63 for assimilating observable data, reconstructing unobservable variables

and performing short-term prediction of the system state; and e) design and construction of

low power systems for preserving battery life and minimizing clinical interventions for

battery replacement.

In this section, we present a transformative framework of a noninvasive closed-loop brain-

machine-body interface (Figure 1) addressing these issues. It is based on the dual adaptation

of neural circuits and learning algorithms64,65,66, and integrates advances in neuroscience

and engineering approaches to assess, predict and respond to distributed brain dynamics in

PD.

A main motivation of modern neuroscience, as exemplified by the BRAIN initiative (http://

www.nih.gov/science/brain/), is to link the activity of neurons to specific behaviors. In order

to bridge the large dynamic range of spatial and temporal scales spanned by the underlying

sensory-motor and cognitive processes active during motor control and adaptation, these

issues are approached from three complementary perspectives. First, a top-down perspective

driven by cognitive neuroscience and psychophysiology. Second, a bottom-up perspective

driven by computational neuroscience and models of network dynamics. Finally, both top-

down and bottom-up perspective approaches are merged at an intermediate spatiotemporal

level and are implemented in neuromorphic hardware. These different perspectives are then

combined to develop a noninvasive brain-machine-body interface framework for

rehabilitation of PD patients and, eventually, other movement disorders. We anticipate that

the characterization of the distributed cortical brain dynamics with EEG during motor tasks

(top-down) and the associated pattern of spiking activity in the basal ganglia-thalamocortical

circuits (bottom-up) will bring us closer to an understanding of movement disorders such as

PD.
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Future neurorehabilitative systems for motor disorders

Recent technological advances including dry wireless noncontact sensors and neuromorphic

hardware will likely provide the necessary tools for improved at-home rehabilitative

devices. The next generations of dry wireless non-contact sensors for recording and

stimulation of the brain activity will provide wearable systems that will allow transposing

existing noninvasive clinical systems for personal at-home use. Furthermore, neuromorphic

hardware offers the promise of small, embedded, low power devices in which on-board

algorithms can be easily implemented.

The general brain-machine-body interface framework is intended to be versatile and to

accommodate diverse biosignals and control strategies for robotic therapy devices. It is

composed of two adaptive interfaces, in which both the user (patient) and the interface/

algorithms can adapt to each other. This represents a dual learning system, in which both the

patient and the interface learn, although at different time scales. The brain-machine-body

interface can be model-free (Figure 1; upper loop) or model-based (Figure 1; lower loop)

and allows assessment of the relative merits of these two approaches for a wide range of

motor tasks and various types of augmented feedback.

In brief, the brain-machine-body interface framework takes inspiration from BMI-induced

neuroplasticity (Section 4), adaptive control theory67, robotic therapy (Section 6.1), and

closed-loop adaptive systems. It includes brain and body signals monitored continuously and

in real-time by the mobile brain/body imaging (MoBI) modality, such as EEG, EMG,

motion capture and eye tracking (Section 6.2). These signals serve as inputs to an adaptive

model implemented in hardware and embedded into diverse actuators used for sensory and

proprioceptive feedback, such as haptic robots, cyber gloves or exoskeletons. The adaptive

model (Section 6.3) controls the actuator's force and the sensory feedback closes the

sensory-motor loop (Section 6.4). It is expected, after sufficient training, that the sensory

feedback will trigger synaptic changes in the corticostriato-thalamic circuits that will then

modify positively the outcomes of the pathophysiological condition of PD patients, as

proposed by other authors9,14,15. Ultimately, the neuroplastic changes induced by practice

with the brain-machine-body interface are expected to provide long-term benefits post-

training. We submit that occasional repetitions of the training cycle will help sustaining

plastic changes as it has been observed for other noninvasive rehabilitation methods53 (see

Section 5.2).

In this framework, the multiple spatiotemporal-scale neuromorphic model can be used as an

external module to further investigate and test these synaptic changes at different levels. It is

also possible to use a model-based approach by training a multiple-input and multiple-output

(MIMO) module in which co-adaption of the MIMO controller and the patient's brain is

produced by reinforcement learning39 based on a model of the interaction between the

patient's brain and body signals and the external world as represented by the assisted motor

task (e.g. reaching, grasping). This model-based approach (Section 7.1) takes inspiration

from the coupling of the BMI user —the PD patient— with an intelligent controller via

reinforcement learning64,65,66,68 and goal selection69 so as to take into account the richness

of the dynamic interactions between the user and their external world.
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In the following sections, we begin with an overview of control strategies for robotic therapy

devices and then discuss the main components of the two adaptive closed-loop systems

shown in Figure 1. We also present preliminary results using EMG for tremor suppression in

PD patients using force feedback.

6.1 Control strategies for robotic therapy

The use of robotics for rehabilitation therapy70 in real and virtual71 environments has been

increasing drastically over the last two decades72,73. In parallel, control strategies specifying

how these robotic devices interact with patients have also evolved. These strategies are

broadly divided into two categories making motor tasks either easier or more difficult (or

challenging) for patients and are referred to as assistive or challenge-based, respectively.

The assistive strategies are the most developed and are intended to automatize the traditional

physical and occupational therapies used in clinical rehabilitation for both lower and upper

extremity training. The rationale of these strategies is multiple: i) moving the limb that

volitional control can not achieve provides novel somatosensory perception that helps

promoting neural plasticity74; ii) effort is thought to be crucial for inducing motor

plasticity75; iii) assistance during motor task allows patients to progress faster76; iv)

repetition of a pattern of sensory inputs will strengthen it and improve motor performance

when unassisted77; and v) active assistance may improve patients’ motivation during

rehabilitation78.

The underlying principle of assistive strategies is to create a restoring force via mechanical

impedance when patients deviate from a defined trajectory for a given motor tasks such as

reaching, grasping and walking. A deadband – an area near the desired trajectory in which

no assistance is provided – is often introduced to take into account human movement

variability79. EMG has also been used to drive assistance for motor rehabilitation of stroke

patients. In this case, assistance is provided when the processed EMG signals crosses a

threshold80, or as a force proportional to the EMG signal81.

Challenge-based strategies on the other hand, such as resistive training and error-

amplification, offer complementary insights to assistive ones72. Resistive training provides

resistance to the patient's limb and is used extensively by physiotherapists in traditional

clinical rehabilitation. With robotic devices, resistance typically takes the form of a constant

or proportional force applied to the patient's limb during motor execution. Error-

amplification is often employed based on the observation that kinematic errors during

movement execution are an essential signal-driving motor adaptation76.

The effectiveness of these different control strategies for robotic therapy is typically

assessed against the patient's baseline motor performance for a given motor task. In general,

robotic assistance significantly decreases motor impairments following neurological injuries,

such as stroke and spinal cord injury (see reviews72,82,83). For PD, Bai et al., verified the

feasibility of a compensation method for hand movement of visual target tracking by adding

assistance force in a simulation study84. Two preliminary studies reported encouraging

results for improving gait for robot-assisted treadmill training using the commercially

available Lokomat orthosis85,86. To date, it is unknown which control strategy is the most

effective for which rehabilitation tasks, mainly because of the cost and time-consuming
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clinical trials needed to test each rigorously. However, challenge-based strategies for PD

seem to be a promising avenue for future research on gait rehabilitation in PD as suggested

by the positive outcomes of traditional progressive resistance exercises on walking87 and the

reduction of body weight-support across training sessions in one pilot study of robotic

locomotor training85.

6.2 Signaling for brain-machine-body interfaces

Use of human-machine interactions for motor rehabilitation or enhancement is impeded by

the limited knowledge of sensory-motor learning and control dynamics that occur when

humans are physically and mentally coupled to machines. A quantitative theory of human

movement control is thus essential –its development would both advance our understanding

of cognitive motor neuroscience and help in designing and developing new machines that

interact with humans. Despite recent findings suggesting that many motor skills can be

decomposed into sequenced combinations of goal-directed and habitual control88,89, and

that the balance between these two modes of action control is disrupted in PD90, the precise

role and switching mechanisms of these two modes remains largely unknown. System-level

frameworks of dual modes of action control account for various psychophysical

observations in healthy subjects and several PD symptoms (see review88). However, these

approaches also emphasize the importance and necessity of establishing the intrinsic

sensory-motor and cognitive mechanisms underlying motor control during real-world tasks

in healthy and pathophysiological conditions88,91,92,93. This is indeed a prerequisite for the

design of novel, non-intrusive, and efficient neuroprosthetic tools for rehabilitation

purposes. Yet, classical paradigms to investigate human motor behavior rely on simple tasks

and often neglect to appreciate the system-level interplay between perceptual and cognitive

factors.

Whereas traditional imaging modalities typically allow for and record only minimal

participant behavior performing single, stereotyped tasks, the high-time resolution and

noninvasive nature of EEG make it the ideal candidate for recording brain activity on the

time scale of natural motor behavior94. Moreover, EEG sensors are light enough to allow

near complete freedom of movement in contrast to most other imaging modalities. The

recently developed MoBI modalities95,96 deals with the main limitations of current brain

imaging techniques. The MoBI concept allows correlation of neural and musculoskeletal

activities during motor tasks by simultaneously recording EEG while monitoring 3D

movements kinematics of the limbs, body, head, and eyes, either in real environments97 or

in 3-D multimodal immersive virtual environments98,99 (Figure 2). The modular structure of

the MoBI software environment facilitates the development of new applications (Figure 3)

and includes several tools allowing real-time inference on brain signals such as those

measured by EEG100,101,102,103. Among other things, this enables identification and

localization of the neural sources from brain EEG, muscles EMG and eye movements during

real world tasks.

High-density scalp EEG recording of PD patients, while modulating STN activity with DBS,

demonstrated that potentially relevant biomarkers for therapeutic effectiveness can be

recorded non-invasively104. In this study, altering the output of the STN using DBS helped
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normalize both the ability to inhibit an action and beta power around the time of the

response inhibition recorded with EEG over right frontal cortex. Thus, cortical EEG in PD

patients may serve as one effective marker of the degree of abnormal basal ganglia-cortical

circuit function in PD.

Motion capture of body movements is equally important to better characterize sensory-

motor control in healthy and pathophysiological conditions and provides complementary

information to EEG signals. For example, the contribution of basal gangliathalamocortical

circuits to sensory-motor control in PD can be investigated indirectly by comparing the

motor control abilities of patients with or without dopamine medication, and healthy

individuals. Using a reach-to-grasp task, Lukos et al.,105 quantified eye-hand coordination

and online visuomotor control in PD patients by monitoring hand kinematics and eye

movements during the reaching and grasping of a virtual rectangular object with haptic

feedback (Figure 4). PD patients off medication poorly coordinated arm and hand

movements, and showed marked trajectory anomalies in their online responses to

perturbations of the object to be grasped, with increased hesitations and movement

segmentation. Moreover, PD patients tracked their hands with their gaze during the reach,

and overly depended on visual guidance, indicating an impaired feedforward control.

Dopamine medication increased the speed of movement but did not improve the ability to

correct their movements online or improve arm-hand coordination. This suggested that basal

ganglia-cortical loops play a critical role in eye-hand coordination and adaptive online

responses for reach-to-grasp movements, and that restoration of tonic levels of dopamine in

the basal ganglia may not be suited to correct this impairment in PD patients.

The development of new wireless, dry, and noncontact EEG biosensors106,107,108,109 (see

review110) allows one to use the MoBI methodology outside the laboratory and the analysis

of complex motor tasks involved in real world environments. This would provide valuable

data on the elements of sensory-motor processing possibly most impaired in

parkinsonism111, and those elements that may most crucially depend upon BG function and

cannot be compensated for by other brain systems. Wireless biosensors are also invaluable

for future wearable devices and at-home rehabilitation. Progress has been made for

analyzing and visualizing EEG data in real-time for BMI systems112. The feasibility of real-

time estimation and 3D visualization of source dynamics and connectivity of human brain

dynamics113 has recently been demonstrated using wearable high-density (32-64 channels)

dry, wireless EEG systems. Specifically, custom wearable hardware and signal processing

allowed the real-time data extraction, preprocessing, artifact rejection, source reconstruction,

multivariate dynamical system analysis (including spectral Granger causality) and 3D

visualization of distributed brain dynamics in healthy subjects (Figure 5). The wireless EEG

system is reliable and robust during the whole recording session. The cap placement is

assisted by a live impedance check mechanism that works in parallel with data acquisition.

Initial placements usually take 5 to 6 minutes with 90 to 100% of the array making

successful contact (depending on head shape and hair type). During an experiment, few, if

any, electrodes become disconnected since the headset is individually adjustable and

secured.
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Thus, combining ongoing development of the mobile brain/body imaging (MoBI) modality

with the development of a new generation of wireless sensors and improved real-time data

processing algorithms is expected to expand the range of possible realistic sensorimotor

tasks and lead to a better characterization of the brain and body dynamics underlying

sensory-motor control.

6.3 Adaptive control

Closed-loop BMI systems for noninvasive neurological rehabilitation should ideally provide

better-tailored therapeutics for patients. Gaining further information about the ongoing

patient's states via cognitive and motor monitoring would be beneficial in several ways.

From a design perspective, an adaptive model learning to fit a given patient's states would be

more efficient than heuristic adjustments and could account for individual variability.

Moreover, an adaptive model will constantly adjust to a given patient and the fluctuations of

his/her pathophysiological condition. The proposed brain-machine-body interface includes

model-free67 (Figure 1; upper loop) and model-based (Figure 1; lower loop) adaptive

interfaces.

In BMI systems, patterns of ongoing brain activity are typically translated into control

commands after several stages of signal processing. After amplification, artifact removal,

and signal preprocessing, the EEG signal is transformed into features best matching the

underlying neurological mechanisms employed by the user. In motor rehabilitation, this

corresponds to the various cognitive and sensory-motor mechanisms used during relearning

a given motor task (e.g. pointing, reaching, grasping, walking). Relevant features for BMIs

using sensorimotor activity include event-related potentials (ERPs), power spectral density

features (e.g. fluctuations in EEG power in a given frequency band), parametric modeling of

the EEG data with autoregressive or adaptive autoregressive models, and time-frequency

representations114. Others have used the raw EEG time series115 or a combination of

different feature extraction methods116,117. For example, Li et al.,117, used ERPs and the

EEG power in the theta and alpha bands in the posterior parietal cortex for decoding

movement intention during a saccade-or-reach task. The authors used independent

component analysis (ICA) as an unsupervised spatial filtering technique to remove artifacts

arising from eye and muscle movements. This allowed them to estimate the location of

source activities related to the intended movement direction by source localization of the

two lateralized posterior parietal cortex components extracted by ICA.

Following the feature extraction stage, patterns of brain activity were then translated into

control signals using decoding algorithms. Various popular linear methods such as linear

discriminant analysis (LDA), support vector machine (SVM), Kalman filters and nonlinear

models, such as neural networks, have been used successfully in numerous BMI applications

(see review118).

Recent work has shown that the performance of BMI control can significantly be improved

by adapting the decoding algorithm or decoder65,66,119,120,121,122. In these systems,

adaptation takes place in the neural systems and at the algorithmic level, and is referred to as

co-adaptive BMI or closed-loop decoder adaptation (CLDA). The goal is to produce a more

accurate mapping between the ongoing pattern of brain activity and the user intended
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movements. In invasive BMI in monkeys, different error signals have been used to adapt the

decoding algorithms to include error signals from the nucleus accumbens65, by adopting of

Bayesian classification methods119 or use of behavioral metrics related to task goal121.

Critical issues in the design of a CLDA algorithm concern the rate at which the algorithm is

updated and the way the decoder is initialized, as both can influence its performance. This is

particularly relevant for patients with movement disorders, as natural movements are often

used to initialize such decoders. For movement disorder patients, less efficient decoder

initialization methods must be used, resulting in lower initial performance. Orsborn et al.120,

proposed a CLDA algorithm that updates parameters independently of decoder initialization,

thereby improving performance at optimal123 and intermediate time-scales (1-2 min.)

relative to online124 and batch125 (10-15 min.) updates. Their algorithm allows a rapid and

robust improvement of BMI performance and suggests that intermediate time-scale updates

may be ideal for patients with movement disorders.

Another possible level of adaptation uses kinematic or kinetic information at the effector

level72 by using kinematic or kinetic information. By tuning control parameters based on

online measurement of the patient's performance, this allows for adaptation to tune

assistance from trial to trial as well as over the course of rehabilitation80, during which

performance is expected to improve. These adaptive strategies are usually implemented

according to:

(1)

where Pi is the control parameter that is adapted (e.g. the gain of the robot assistance force,

the robot stiffness, the movement timing or the desired velocity), i is the ith movement, and

ei is the performance error or metric, such as a measure of the patient's ability to reach a

target. The constants f and g are defined as the forgetting and gain factors respectively. The

forgetting factor f is meant to continuously engage and challenge patients. Without a

forgetting factor (e.g. when f = 1), the control parameter is held constant when performance

error is zero. However, with a forgetting factor in the range 0 < f < 1, the adaptive algorithm

reduces the control parameter for small performance errors and thus continuously challenges

the patient. Other similar adaptive laws126 have been proposed of the form:

(2)

where G is the value of the robot impedance. Still others have used an optimization

framework to adapt control parameters72.

Neuronal and behavioral markers can drive adaptation in the brain-machine-body interface

framework and serve as error signals. Changes in oscillatory activity in the sensorimotor

cortex, especially in the beta frequency band, can be used as biomarkers for PD

patients127,128. Changes of oscillatory activity during movement execution can easily be

identified by independent components analysis (ICA) (Figure 3). At the behavioral level,

task-related markers will be used. For example, during a reach-to-grasp task, the peak

tangential velocity is reduced in PD patients69 (Figure 4) and could be used as error signal at

the effector level. An alternative to unitary biomarkers would be to use a learning algorithm

to extract nonlinear multidimensional personalized features from the patient's EEG as
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available for BMI in the BCILAB software101,103 (an extension of the EEGLAB software

environment101). Finally, incorporating cognitive monitoring based on current BMI

technology —an approach known as passive BMIs129 — could potentially add a

complementary and informative channel useful for constructing biomarkers. Passive BMI

carries implicit information about the user state such as level of motivation or attention,

which might be useful, for example, for tracking selective attention deficits in PD

patients130.

6.4 Sensory feedback

In rehabilitation, one typically provides extrinsic (or augmented) feedback in addition to

intrinsic feedback – e.g. in the form of sensory-perceptual information available from

various sensory modalities such as vision, audition and proprioception. The effectiveness of

augmented sensory feedback strategies for motor learning in healthy subjects and motor

relearning in rehabilitation, such as augmenting proprioceptive signals from the hemiparetic

arm after stroke, have recently been systematically and exhaustively reviewed131,132,

including categorization of different aspects and types of feedback. Aspects of feedback

include its nature, timing and frequency. Feedback nature refers to information about the

movement itself, which can either provide knowledge about movement performance or

about movement outcome. Movement timing refers to the time when the feedback is

delivered, either (concurrent) during or (terminal) after the execution of movements. The

frequency can be summary (every nth trial) or fading (reduced feedback frequency over

time). The type of feedback concerns the modality to which it is delivered (visual, auditory,

haptic and multimodal). Because most studies of motor learning and relearning use various

aspects and types (or combinations) of augmented feedback and do not systematically

compare their individual contributions, it is difficult to have a clear picture of their singular

effectiveness. However, several trends are emerging. First, there is a general consensus

appearing on the added value of augmented feedback for rehabilitation38,131,132 Second,

concurrent visual, auditory and haptic (touch and force) feedback seems more effective for

complex tasks than for single tasks, but should be switched to fading feedback as learning

(or relearning) progresses. The switch is explained by the guidance hypothesis133,134, which

states that invariably providing feedback during learning leads to a dependency on the

feedback and encourages the learner to ignore their own intrinsic feedback signals. Third,

adaptive feedback based on the subject's skill level appears promising to potentially involve

and motivate the learner by adequately challenging the user, which is important for

successful motor learning135 and relearning38. Finally, multimodal feedback can enhance

motor learning and relearning. This conclusion is supported by several observations

including the resultant reduction of memory and cognitive load136, the optimization of

neural activation and representations131, the fact that multimodal rather than unimodal

stimuli are present in daily life, and the differential capabilities of the human senses – e.g.

spatial information is better perceived using vision whereas temporal information is better

perceived using hearing. Within the context of BMI control, multimodal feedback has been

shown to significantly improve performance137,138. For example, monkeys trained to move

an exoskeletal robot during a random target pursuit task reached targets faster and with

better trajectories when visual and kinesthetic feedback were congruent compared with

incongruent feedback conditions138.
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The haptic sense is the only one that allows one to interact with the environment while

simultaneously perceiving these interactions139. This unique ability is called the

bidirectional property of the haptic sense and provides the basis for further enhancing motor

learning and relearning through haptic interactions140. Thus, rehabilitation in movement

disorders might greatly benefit from augmented haptic feedback. Preliminary experiments

have been carried out using a noninvasive closed-loop system (model-free; upper closed-

loop in Figure 1) with EEG, EMG, movement kinetics and force feedback modalities to test

the feasibility of compensating tremor in PD patients using velocitydependent force

feedback141. Force feedback was implemented using two haptic robots with three degrees of

freedom attached to the thumb and index fingers of one patient's hand. Four different force

feedback conditions were tested: i) a no-force control mode (haptic robots compensated for

their own weight), ii) a “low viscosity” mode (counterforce to movement proportional to the

velocity), iii) a “high viscosity” mode (greater counterforce's scaling coefficient) and iv) a

random noise mode (force with a constant magnitude but random direction). In these

experiments, 60-channel EEG, EMG of the fingers and arm, and kinematics of the arm,

shoulder and chest were also recorded simultaneously. Analysis of the EMG-EEG coherence

revealed that a reduction of tremor amplitude was observed only in the “high viscosity”

mode. These results suggest that, similarly to brain signals, kinematic signals can also be

used as feedback channels in closed-loop paradigms for PD patients.

It is likely that different combinations of feedback modalities may work better for different

motor relearning tasks. Rehabilitation of the upper limbs might benefit from visual and

haptic feedback, whereas gait rehabilitation mighjt better benefit from auditory and haptic

feedback. Augmented haptic feedback can easily be integrated into the brain-machine-body

interface framework using haptic or exoskeletal robots. In future work, we plan to test which

optimal multimodal feedback combination leads to optimal motor relearning during

rehabilitation of upper and lower extremity movements in PD patients.

7. Future developments

7.1 From spikes to behavior

Using a bottom-up perspective, detailed large-scale spiking neuron network models of the

BG based closely on known anatomy and physiology could also be implemented on

neuromorphic hardware. Similarly to the cortical organization of mammalian brains, these

models should be hierarchical, modular, and map sensory and motor plan states to motor

output. The design of several modules will take inspiration of computational models of

action gating142 and action selection143. Data from healthy and PD patients, on and off

dopaminergic medication, will also provide constraints to the design of these BG models

that will be used to test and verify hypotheses of action selection and sensory-motor learning

and control. This approach is motivated by the recent efforts in PD research to integrate

model-based control in closed-loop systems36,40,144 (for a review, see Schiff63).

Biologically based computational models of brain activity can improve our understanding of

distributed brain networks in healthy and disease conditions, and should be considered as a

complementary tool of experimental approaches for monitoring and regulating the time-

varying fluctuations of network activity.
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Networks of spiking neurons lead to efficient implementation in neuromorphic

hardware145,146,147. Moreover, biological realism in the modeling and a choice of

neuromorphic architecture ensures that these models lead to architectures that utilize current

and future massively parallel neuromorphic chip technologies148,149,150 that can be

deployed in real-world applications151,152,153 with a very low power consumption154,155.

Moreover, neuromorphic architectures provide a natural medium to bridge spiking activity

in BG models with the synchronous LFP-like activity recorded by surface EEG. The

estimation of the LFP dynamics from spiking activity can be achieved by combining

constraints from simultaneous recording of cortical oscillation and basal ganglia activity156

with methods from signal estimation theory157, such as the Wiener-Kolmogorov filter. In the

Macaque monkey primary visual cortex, this linear filter was successfully used to estimate

the LFP time course from the spiking activity of a few neurons158. Neural mass models are

another promising approach to bridge the different spatiotemporal scales of neural

activity159, i.e. from spiking activity to cortical fields. Thus, these larger-scale network

implementations in neuromorphic hardware make it feasible soon to reach spatial and

temporal scales of interest to the top-down perspective, where both top-down and bottom-up

perspectives meet.

7.2 Closed-loop systems for other movement disorders

Among the myriad neurologic disorders, dystonia may be one of the best suited for

investigating closed-loop therapeutic interventions for at least two compelling reasons: 1) it

exhibits exquisite task-specificity; and 2) the most common brain structure targeted in DBS

intervention for dystonia, the globus pallidus interna (GPi), is one of the primary output

nuclei of the basal ganglia and therefore in a direct position to modulate somatotopically-

specific action selection. After PD and ET, dystonia is the third most common movement

disorder. The clinical definition of dystonia has evolved over the past few decades and a

recent consensus definition has only recently emerged160. Dystonia is characterized by

sustained or intermittent muscle contractions causing abnormal, often repetitive, movements

and postures. The movements are typically patterned and often initiated or worsened by

voluntary action. For many dystonia patients, the abnormal motor function is present only

during specific tasks. In fact, in one expert's view161, this feature is specific to dystonia. This

“task-specificity” is clearly evident in the so-called “focal task-specific” dystonias, including

for example writer's cramp and musician's dystonia. For many musician dystonia patients,

the symptoms are present only while playing their instrument and sometimes only when

playing specific passages of specific musical pieces162. This makes the measurement of

abnormal motor control particularly challenging163. Although this task-specificity is most

vivid in these kinds of dystonia, a wider class of dystonias exhibit a more broadly defined

“state dependence”, in which “state” is defined to encompass not only the motor program

used in a specific task but also the current sensory and motor goal state. For example, a

simple light touch of the chin may be sufficient for mitigating the abnormal neck muscle

activity implicated in cervical dystonia. While not a “task”, this change in “state” suggests

that a state-dependent intervention can be useful.

For most of the focal dystonias, the main line treatments of anticholinergics and botulinum

toxin injections are not, of course, state- or task-specific. One might envision, then, a real-
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time, on-line, closed-loop therapy (such as DBS or the noninvasive rTMS, tDCS and tACS)

that would modulate the appropriate brain networks only during specific states. The question

then becomes how best to monitor states. While it may be opportunistic to think that it could

be acquired by recording leads in a single-shaft DBS system, the brain structures best suited

for modulation by the stimulating DBS leads may not also incorporate the best information

about “state”. One might posit, however, that premotor and/or posterior parietal cortical

areas contain more easily measurable “state” information that could then be used to

modulate circuits including the GPi that mediate state-dependent action selection. Here

again, dystonia may provide an ideal clinical scenario in which to develop closed-loop

therapeutic approaches. The STN, the most common choice of DBS target for PD, has

widespread projections primarily within the basal ganglia. In contrast, the GPi, the most

common DBS target for dystonia, is a prominent output stage of the BG and therefore has

more direct influence on subsequent action selection and the resultant motor outputs.

Ultimately, in light of theories about the “use-dependent” factors in its pathogenesis164, the

investigation of closed-loop therapies for dystonia may also provide novel clues about the

pathophysiology of this perplexing disorder.

8. Conclusion

Closed-loop paradigms for BMIs represent a promising avenue of research for the invasive

and noninvasive neurological rehabilitation of movement disorders. They allow monitoring

and tightly regulating the brain dynamics and/or body movements of patients suffering from

these disorders, in particular Parkinson's disease. Their adaptive power has improved

traditional DBS protocols in monkeys and humans and showed encouraging progress

towards an augmented-reality device helping to restore gait. Adaptive closed-loop

paradigms have the flexibility required to cope with the progressive and/or dynamic nature

of movement disorders such as PD, dystonia and ET, and provide a transformative way

toward individually tailored rehabilitative therapeutics. Recent results of testing BMIs for

people with tetraplegia165 indicate that closed-loop systems are not limited to the

rehabilitation of PD patients.

So far, most of the closed-loop BMIs act mainly on brain signals and largely ignore the

body, which is however central to movement disorders. Moreover, as current invasive

solutions for neurological rehabilitation are limited to a minority of patients suffering from

movement disorders, there is an urgent need for further research for alternative solutions,

particularly regarding noninvasive BMI approaches. With these limitations in mind, an

integrated framework was presented. In this conception, a brain-machine-body interface

(BMBI) senses signals from the brain and body and acts on the body to exploit the adaptive

plastic sensory-motor loops, thereby assisting restoration of motor functions in patients with

PD. This framework is versatile and flexible and could be applied to other imaging or

stimulation modalities. For example, one could envision replacing the force feedback with a

noninvasive technique for stimulating motor cortex using rTMS, tDCS or tACS. Finally, it is

likely that incorporating the physician/clinician in the loop in rehabilitative solutions will

add more flexibility to many therapeutic systems, especially those targeting at-home use, by

allowing a continuous adaptation and optimal adjustments of the parameters and therapeutic

strategies in place to cope with the progression and fluctuations of movement disorders, and
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to further approach individualized therapies. The continuous monitoring of progress (or lack

thereof) for a given therapy, and consequent adaptation, appears to be a prerequisite for

dealing with the inherent variability of patients and the different degrees of severity of

neurological disorders affecting body movements.

With the increase of the aging population, and consequently of the incidence of movement

disorders, there is a societal demand for improving the quality of life of patients with

movement disorders, as well as an economical need to reduce the overall costs related to

health care. With the development of cheap, mobile, wireless BMI solutions in the near

future, we can expect innovative and adaptive solutions for personalized neurological

rehabilitation that take into account the individual variability of patients as well as the

variability of movement disorders' symptoms and disease's degree of severity.
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Figure 1.
A system framework towards neurofeedback noninvasive rehabilitation of movement

disorders by means of closed-loop brain-machine-body interfaces. Signals from the central

(CNS) and peripheral (PNS) nervous system are recorded and monitored by the mobile

brain/body imaging (MoBI, [95]) and motion capture (MoCap) systems, respectively.

Electroencephalography (EEG), electromyography (EMG), kinetics and eye-tracking signals

provide inputs to the MIMO (multiple-input and multiple-output) module. The MIMO

module outputs force feedback to external devices (haptic robots, cyber glove or

exoskeleton) that is sensed by the brain via the PNS. The force is generated by adaptive

control of the MIMO module's parameters (θ). The fitness function Q from the METRIC

module is computed from the EEG, EMG and force signals, and outputs PD markers to the

MIMO module. Oblique gray arrows indicate adaptive processes. Dashed lines indicate

optional elements. Once tested and validated in the neurofeedback framework by comparing

the forward modeling (see text for details) of its outputs with those monitored by MoBI and

MoCap, the thalamocortical/BG model can be used as a model-based module providing

additional inputs to the METRIC module helping constructing a better fitness function Q.

Red and blue lines indicate information from the PNS and the CNS, respectively.
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Figure 2.
(a) Mobile brain/body imaging (MoBI) setup for a participant on a treadmill and performing

a visual oddball response task during standing, slow walking and fast walking. (b) Grand-

average event-related potentials (ERPs) during standing, slow and fast walking. The ERP

time course is represented in red for the target and blue for the non-target. Scalp maps show

the grand-average ERP scalp distributions at 100, 150 and 400 ms after onsets of target

(upper row) and non-target (lower row) stimuli. White dots indicate the location of electrode

Pz. Note the scalp map similarities across conditions. Adapted from [97].

Broccard et al. Page 30

Ann Biomed Eng. Author manuscript; available in PMC 2015 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3.
(a) Participants are wearing a motion capture suit with infrared (IR) emitters and a high-

density EEG cap (128 channels), allowing to monitor simultaneously the body kinematics

and brain dynamics, respectively, during a hand mirroring task (one participant was

instructed to follow the hand's movement of another participant). The position of the IR

emitters is captured at 480 Hz by 12 cameras in the room. (b) Identification and localization

of functionally distinct sources by independent component analysis (ICA) during a 3D

object orienting task. The participant was cued to look forward, point to, or walk to and

point to one of several objects present in the room. ICA allowed to separate the EEG data

into a number of temporally and functionally independent sources from the brain and body

that may then be localized (middle). Top left, an independent component (IC) source

localized to in or near left precentral gyrus (BA 6) shows a decrease of high-beta band

activity following cues to point to objects on the left or right. Bottom left, another right

middle frontal (BA 6) IC source exhibits mean theta- and beta-band increases followed by

mu- and beta-band decreases during and after visual orienting to the left or right. Top right,

an IC source accounting for activity in a left neck muscle produces a burst of broadband

EMG activity during left pointing movements and while maintaining a right pointing stance.

Bottom right, a right neck muscle IC source exhibits an EMG increase during right head

turns and during maintenance of left-looking head position. Data collected with a 256-

channel EEG system. BA, Brodmann Area. Panel (b) modified from [95].
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Figure 4.
Eye-hand coordination and corrective response control in PD during a reach-to-grasp task.

(a) Experimental setup using eye-tracking hardware, haptic robots, EEG and a virtual reality

environment. Participants reached to and grasped a rectangular object displayed on the

screen with the thumb and index finger of their right hand fixed into thimble gimbals affixed

to the left and right robot, respectively. Participants had haptic as well as visual feedback of

the dock so that they felt their hands resting on a solid surface. The object's orientation was

perturbed on 33% of the trials by rotating it 90 degrees in the frontal plane, thereby making

the object appear horizontal. The perturbation occurred at a randomly jittered distance of

20-40% between the starting dock and the front of the object. The goal of the task remained

the same regardless of the object orientation: to grasp along the left and right sides of the

object. Therefore, participants had to adjust their grasp dynamically to a larger precision grip

during perturbation trials. (b) Top view of reach to grasping movements in one

representative PD patient on and off medications (PD ON vs. PD OFF) and his/her age-

matched control. For the blocked vision conditions, visual feedback of finger position was

removed during the first ~2/3rds of the reach, as depicted by a dark gray line. The average

peak aperture (PA) and peak tangential velocity (PV) are marked along the thumb and index

finger for each of the representative subjects during the unperturbed full vision condition.

EEG data not shown. Adapted from [105].
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Figure 5.
3D visualization of brain activity in real-time with a wireless EEG headset. (a) Real-time

data processing pipeline using a Cognionics 64-channel system with flexible active dry

electrodes, and the open source EEGLAB [64] extensions SIFT [65] and BCILAB [67]. (b)

Temporal snapshot of online reconstructed source networks with Partial Direct Coherence

(PDC estimator) displayed with the BrainMovie3D visualizer for simulated data. Node size

indicates outflow (net influence of a source on all other sources). Cortical surface are

colored according to their AAL atlas label (90 regions). Adapted from [113].
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