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Risingbut fluctuatingoxygen levels in theEarlyPalaeozoicprovide
an environmental context for the radiation of early metazoans,
but little is known about how mechanistically early animals
satisfied their oxygen requirements. Here we propose that the
countercurrent gaseous exchange, a highly efficient respiratory
mechanism, was effective in the gills of the Late Ordovician
trilobite Triarthrus eatoni. In order to test this, we use
computational fluid dynamics to simulate water flow around its
gills and show that water velocity decreased distinctly in front of
and between the swollen ends, which first encountered the
oxygen-charged water, and slowed continuously at the mid-
central region, forming a buffer zone with a slight increase of
the water volume. In T. eatoni respiratory surface area was
maximized by extending filament height and gill shaft length. In
comparison with the oxygen capacity of modern fish and
crustaceans, a relatively low weight specific area in T. eatoni may
indicate its low oxygen uptake, possibly related to a less active
life mode. Exceptionally preserved respiratory structures in the
Cambrian deuterostome Haikouella are also consistent with a
model of countercurrent gaseous exchange, exemplifying the
wide adoption of this strategy among early animals.
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Figure 1. Interaction of haemolymph flow and water current. (a) Cross-section of the filament of T. eatoni, YPM 204. (b)
Reconstructed cross-section showing haemolymph flow. (c) Upstroke of gill branch creates downward-flowing water current,
opposite to upward-directed haemolymph flow. (d ) Reverse stroke of gill branch creates upward-flowing water current, same
direction as upward-directed haemolymph flow. (e) Anticlockwise rotation of gill branch creates posteriorly downward-flowing
water current, reverse of upward-directed haemolymph flow. ( f ) Reverse stroke of gill branch creates upward-flowing water
current, same direction with upward-directed haemolymph flow. (g) Any water current flowing downward is always paired
with the countercurrent haemolymph flow. (h) A countercurrent exchange model shows how the opposite flow exchanges
oxygen with gradient difference. Pink dash line with arrow represents the possible routes for haemocyanin from bottom to top
side. Black dashed line with arrow represents the water current and its direction. The light blue background represents the
water medium. Arabic numbers in (e) represent paired countercurrent flow. ac, afferent channel; av, afferent vessel; ec, efferent
channel; ev, efferent vessel; db, down backward rotation; ds, downstroke; hem flow, haemolymph flow; ncr, narrow central
region; uf, up forward rotation; us, upstroke; wat cur, water current; rs, reverse stroke. Scale bar, 0.05 mm (a).
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1. Introduction
Increasing oxygen availability in Early Palaeozoic ambient seawater has received much attention for its
temporal coincidence with the radiation and biodiversification of early metazoans [1–6]. The details of
how mechanistically early animals extracted oxygen from seawater are scant, despite this need being
critical for the development of highly regionalized bodies and active lifestyles. Respiratory organs, as
the primary site of respiratory gas exchange, have been rarely reported in early animals, but the best-
preserved specimens can yield insights into their structure and function. Exceptionally preserved Early
Palaeozoic arthropods preserve filaments associated with the upper branch whose morphology is
consistent with gill function [7–12], but understanding details of how the filaments functioned in
oxygen uptake is critical for assessing how organisms responded adaptively to changing physical
environments. Recent micro computed tomography (micro-CT) scanning of pyritized specimen of the
Ordovician trilobite Triarthrus eatoni revealed that filaments on the upper limb branch have a dumbbell-
shape consistent with their having a primary respiratory function [7]. This structure is consistent with
the gill filaments having had a lower afferent channel and an upper efferent channel (figures 1a,b, 2a,b
and electronic supplementary material, figure S1a,f–h,) [11], as recently also confirmed in a well-
preserved Silurian trilobite [12]. The distal loop that connected both channels would have enabled
continuous flow of haemolymph from the lower vessel to the upper one [13–15] (figure 1b,g and
electronic supplementary material, figure S1a–h), but the system presumably was such that restricted
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Figure 2. Detailed description of gills. (a) Well-preserved gill branches of trilobite T. eatoni, GLAHM 163103. (b) Reconstructed
partial gill branch of T. eatoni. The area marked with a black box is the target of computational fluid dynamics (CFD) analysis.
Cross-section of the gill filaments shows dumbbell-shaped outline and interspace among filaments. Water currents (marked
with black arrows) flow through the interspace between filaments. (c) Three types of gill models (10 times actual size) of T.
eatoni examined in this study: reduced cylinder, dumbbell shape and inflated cylinder. (d ) Simplified gill models: trilobite, fish
and crab showing critical features. (e) Simplified cross-section of respiratory filament of crab gills showing the diffusion
distance, a possible analogue applicable to trilobite gills. an, anterior; cu, cuticle; d, interfilament or interlamellar distance; dor,
dorsal; dd, diffusion distance (or barrier); ep, epithelium; fl, filament; gr, gill raphe; h, height; l, length; hv, haemolymph
vessel; in, innerward; la, lamella; ou, outward; pc, pillar cell; sh, shaft; ven, ventral; w, width.
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flow within the loop forced haemolymph to flow across the intervening laminae, whose narrow central area
was suited to oxygen exchange (figure 1b,g and electronic supplementary material, figure S1h) via its thin
cuticle. Haemocoel in the narrow central region of filaments apparently allowed haemocyanin moving
upward to be charged with oxygen and to finally drain into the efferent channel [13–15] (figure 1b,g
and electronic supplementary material, figure S1g,h), the morphology of the filaments being compatible
with the inference that the gradient of oxygen concentration gradually changed between the afferent
channel and the efferent channel (figure 1b,g and electronic supplementary material, figure S1g,h).

During strokes of the gill branch, the currents created would have flowed through the space between
filaments. The upstroke of the gill branch (efferent channel upper and afferent channel lower) would have
created a downward-directed water current (figure 1c,e). The first part of the gill to come in contact with
incoming water would be the efferent channel, which would be charged with oxygen as a result,
followed by the deoxygenated haemolymph in the central laminae and lastly by the afferent channel
(figure 1c,e). Such a mechanism is well known in modern animals as countercurrent flow (figure 1h)
and is a highly efficient mode of gill aeration [16,17]. By contrast, the downstroke of the gill branch
would have created an upward-directed water current, paralleling the direction of upward flowing
haemolymph, yielding less efficient concurrent flow oxygen exchange (figure 1d,f ). In both cases,
regardless of the direction of movement, water was forced into the narrow space between adjacent gill
filaments (electronic supplementary material, text).

In order to test the countercurrent flow model in T. eatoni, we use computational fluid dynamics
(CFD) [18–21] to simulate water flow around modelled gills (figures 3 and 4). We then estimate the
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Figure 4. Details of flow velocity among filaments. (a) Reduced cylinder model showing uniformly high-speed flows among
filaments. (b) Dumbbell model showing a buffer zone (marked with a yellow star) centrally that expands water laterally. (c)
Inflated cylinder model showing uniformly low-speed flow among filaments. Water flows from left to right in this diagram and
the velocity of the incoming flow is 0.05 m s−1 (inlet flow). The colour range of the velocity map in this figure is, however,
visually restricted between 0 and 0.001 m s−1, which is designed for displaying the micropatterns of flow paths.
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oxygen exchange capacity of T. eatoni and compare with that of living fish and decapod crustaceans
(figures 2 and 5). Finally, we describe how the gill structure of the distantly related Cambrian
deuterostome, Haikouella jianshanensis, was also conducive to countercurrent flow, indicating that this
respiratory mechanism may have already been widespread early in the evolutionary history of
animals (figure 6 and electronic supplementary material, figure S2).
2. Material and methods
2.1. Materials
Materials described in this paper are housed in the Early Life Institute (ELI), Northwest University,
China; The Hunterian Museum, University of Glasgow (GLAHM), UK; Yale Peabody Museum of
Natural History (YPM), Yale University, USA. They are available for further research.
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Figure 6. Gaseous exchange in chordate Haikouella jianshanensis. (a) Well-preserved gills of H. jianshanesis bearing a backward
curved central supporting structure which is attached with many filaments that have a wide base and pointed end, specimen
146 [24]. (b) Gills of H. jianshanensis, specimen 088 [24]. (c) Reconstruction of gill cross-section of H. jianshanesis showing
afferent and efferent vessels (based on [24], fig. 2g). Black dashed lines with arrows represent possible posterior water current
flow. Purple dotted arrow is the oxygen charging path of individual haemocyanin, replacing lower concentration of oxygen with
high concentration of oxygen. Suggested water current over the gill filaments from outer surface to inner surface, which
permits countercurrent oxygen exchange with haemolymph flowing inside gill filaments. ac, afferent channel; ec, efferent
channel; gs, gill supporting structure; gf, gill filament. Scale bars, 5 mm (a) and 2 mm (b).
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The pyritized specimens of T. eatoni (figure 2a) are from the Beecher’s Trilobite Bed of the Upper
Ordovician Katian (or Caradocian) Frankfort Shale of upper New York State, USA and the Upper
Ordovician Whetstone Gulf Formation (Martin Quarry) [22,23]. The yunnanozoan Haikouella
jianshanensis (figure 6a,b) is from the Chengjiang Biota of the Early Cambrian Heilinpu Formation in
Haikou, near Kunming, China [24].
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2.2. Computational fluid dynamics

2.2.1. Constructing three-dimensional models

The three-dimensional gill models of T. eatoni were reconstructed using Blender 2.93.3 (www.blender.
org). As the focus of this paper is mainly the interlamellar gaps, we reconstructed a partial gill
branch with 11 filaments. Three types of models were reconstructed (figure 2c): (i) the dumbbell
model, where filaments have swollen ends (corresponding to the channel-hosting end of the inflated
marginal bulb of the filament described in Hou et al. [11]) to mimic the structure seen in T. eatoni;
(ii) the reduced cylinder model, where filaments have a rectangular cross-section with the same width
as the narrow central region of the dumbbell model; and (iii) the inflated cylinder model, where
filaments have a rectangular cross-section with the same width as the swollen end of the dumbbell
model. The number of filaments per unit length of the shaft is same in all models, such that
the interfilament space is greatest in the reduced model and the smallest in the inflated model
(figures 2c and 4).

2.2.2. Simulations

The CFD simulations were run with the OpenFOAM v. 2012 (www.openfoam.com). The computational
domain (electronic supplementary material, figure S3) is a rectangular box, 1.4 × 0.45 × 0.5 mm (length ×
width × height), which reaches to an ideal state that does not change the simulated solution even
when further enlarging the domain size. The three-dimensional gill models (electronic supplementary
material, figure S3) in the domain are 0.15 mm long, 0.8 mm wide and 0.5 mm high. Reynolds
number is expressed as

Re ¼ ruL
m

,

where ρ is the density of fluid (kg m3), u is the velocity (m s−1), L is the characteristic length (m), and μ
is the dynamic viscosity of fluid (kg m−1 s−1). The width, 0.8 mm, of the model of 11 filaments
including interlamellar space is the characteristic length, serving as the basis for the calculation of
Reynolds numbers.

The flow velocity at the inlet is a fixed value and other walls (including outlet) are of zeroGradient
condition, conditions that have the least effect on the maximum velocity. The models are set with no-
slip boundary conditions. The pressure at inlet and gill models are set with zeroGradient conditions
and other walls are set with a fixed value of 100. Three types of flow speed, 0.01 m s−1, 0.05 m s−1

and 0.2 m s−1, are designed based on some studies of simulations [18,21,25–27]. The models and
domain were meshed using the snappyHexMesh utility and details of meshing process can be found
in Esteve et al. [21].

The suggested environmental parameters were selected to reflect T. eatoni’s life in a quiet,
intermittently dysoxic marine environment in a peripheral foreland basin (electronic supplementary
material, table S2). Density and dynamic viscosity of seawater were obtained through the online tool:
Pipeng Toolbox (www.pipeng.org). As flow through the gill lamellae in fish is dominantly laminar
[28,29] and the small Reynolds numbers in our study (electronic supplementary material, table S2)
cannot produce turbulent flow, we selected the pisoFoam solver with the laminar flow model for
this study.

2.3. Oxygen exchange capacity
Diffusion of gases in crustaceans occurs across thin and uncalcified permeable areas such as the gills in
branchial chambers [30] and is directly proportional to gill surface area and inversely proportional to
diffusion distance (Fick’s Law). Thus, we can use measurements taken directly from the filaments
preserved in T. eatoni specimens as well as from comparison with living decapod crustaceans to
estimate the necessary parameters for calculating and comparing oxygen exchange capacity in
T. eatoni with modern water-breathing organisms.

2.3.1. Estimates for gill surface area, body mass and cuticle/epithelium thickness of Triarthrus eatoni

The cross-section of the filaments is a dumbbell-like shape, with a length of 150 µm and a width of 50 µm
at the marginal bulbs (figure 2d ). Cisne [31] estimated that some gill branches can have up to 100

http://www.blender.org
http://www.blender.org
http://www.openfoam.com
http://www.pipeng.org
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filaments, but Whittington & Almond [32] estimated the gill branch to bear only approximately 50

filaments. As the filaments close to the proximal and distal ends of the gill branch were relatively
poorly preserved, the number of observed filaments is assumed to be far less than its original
number. We here consider each gill branch to bear 60 filaments. For a larger-sized T. eatoni specimen
such as GLAHM 163103 (figure 2a), the average height of the filament on the ninth segment is
approximately 3.17 mm. Each body segment has paired gill branches, so 120 filaments are counted per
segment. The total surface area for the gills of the ninth trunk segment is thus estimated to be
approximately 114.12 mm2.

As trilobites had clear growth gradients along the body [33], the linear ratios of segment lengths to
body length can be obtained. The gill surface area for a given segment was then divided by the ratio of its
length to the overall gill-bearing body length, which was estimated as the length from second glabellar
furrow to the margin of the pygidium because gill branches are only extended anteriorly to the second
glabellar furrow. GLAHM 163103 has a total body length of 3.63 cm, with a gill-bearing body length of
approximately 3.0 cm, yielding a total gill surface area of 20.67 cm2.

Body volume was reconstructed based on ellipsoidal fit for body shape [34], and T. eatoni had a body
length twice its exoskeletal width. Here, the ellipsoid was fitted to T. eatoniwith a length of 3.63 cm and a
width of 1.815 cm (figure 2a; electronic supplementary material, table S3). Because we do not have direct
measurements of the body depth (dorsoventral thickness), we applied three conditions: 1.815 cm (same
with the width), 1.21 cm (two-thirds of the width) and 2.42 cm (four-thirds of the width), yielding
biovolumes of 6.261, 4.174 and 8.384 cm3, respectively. Assuming a reference mass density of
1.1 g cm−3, biomass was estimated to be 6.887, 4.592 and 9.183 g, respectively, and used to calculate
weight-specific area (see below).

Because the thickness of cuticle and epithelium varies both intraspecifically and among arthropod
species, the average thickness of cuticle and epithelium in decapod crustaceans (1.30 and 4.98 µm,
respectively, see electronic supplementary material, table S4) was used as estimates of those values in
T. eatoni. To assess how sensitive the oxygen exchange capacity estimates were to selected thickness
values, for a body mass of 6.887 g, we also varied the estimates of thicknesses in the following three
ways: (i) cuticle thickness = 0.5 µm, epithelium thickness = 5 µm; (ii) cuticle thickness = 0.3 µm,
epithelium thickness = 5 µm; and (iii) cuticle thickness =1 µm, epithelium thickness = 4 µm. The six
cases described herein are summarized in electronic supplementary material, table S3.

2.3.2. Estimates of gill surface area, body size and cuticle/epithelium thickness of modern decapod crustaceans
and fish

Data on gill surface area, body size and cuticle/epithelium thickness for decapod crustaceans and fish
were collected from the literature (electronic supplementary material, table S4). The data on fish
consist of two categories: sharks and other fish. For sharks where body mass but not gill surface is
reported in the literature, gill surface area was calculated based on the linear regressions from
previous studies. Freshwater and marine fish were treated equally, so the difference of oxygen
concentrations for both seawater and freshwater was not explicitly considered. However, excluding
freshwater organisms did not significantly change the results (see also Discussion).

2.3.3. Krogh’s diffusion coefficient

The diffusion coefficient of oxygen varies among different media but shows a constant rate for
each [35]. An important parameter is the diffusion barrier (or distance) between ambient water and
internal blood or haemolymph. In vertebrates, the diffusion barrier is epithelium only, but in
invertebrates the gill filaments have an integrated diffusion barrier consisting of an external
cuticle layer and an internal epithelium layer. For the epithelium layer, we selected the Krogh’s
diffusion coefficient of muscle, as used in comparable studies [36], 0.14 ml O2 µ cm−2 atm−1 min−1, as
the basis for calculation, where the µ is the diffusion distance. As invertebrates have an integrated
diffusion distance across both cuticle and epithelium, we needed to combine both different types of
diffusion coefficient in the calculation. Chitin has a relatively low diffusion coefficient, 0.013 ml
O2 µ cm−2 atm−1 min−1, for the cuticle diffusion. We used the following formula to calculate the
diffusion coefficient:

DO2 ¼ 1
0:14�1�ðE=ðCþ EÞÞ þ 0:013�1�ðC=ðCþ EÞÞ ,
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where DO2 is the diffusion coefficient, E the thickness of the epithelium layer, C the thickness of the

cuticle layer. This formula is modified from Aldridge & Cameron [37] to limit the diffusion path to
only epithelium and cuticle layers.

The diffusion distance of oxygen to blood or haemolymph across the barrier may be complicated in
some water breathing organisms by internal supporting structures such as pillar cells [36] which obstruct
the passage of oxygen, extending the distance of its journey into the body. However, because there is no
evidence of pillar cells in T. eatoni, we simply used the thickness of epithelium or the integrated thickness
of cuticle and epithelium as the diffusion distance, and did not consider the effects of such cells.

2.3.4. Oxygen capacity

The original formula for the oxygen capacity is VO2 =DO2× cm2/µ [35,36]. Here we replaced the
surface area, cm2, with wet weight-specific area, mm2 g−1, where the g is the mass of the body to
accommodate the varied data published for different animals. The new formula is VO2 =DO2 ×
0.01 mm2 g−1/µ, and the final result is the oxygen volume in ml O2 g

−1 atm−1min−1. The final data for
T. eatoni as well as modern fish and decapod crustaceans is summarized in electronic supplementary
material, table S4.

2.3.5. Resistance of interfilament channel

Water flow speed is an important factor for the oxygen uptake in aquatic animals. Structure design and
its effect must be coordinated well and then can efficiently serve for the animals. Resistance is thus a key
to reveal the mechanisms behind the structures. The Hagen–Poiseuille equation below describes the
resistance of the interlamellar (for fish) or interfilament (for arthropod) channel [38].

R ¼ 12ul
d3h

,

where u is the dynamic viscosity of the water, l is the length of interlamellar (or interfilament) channel, d
is the diameter of the channel, h is the height of the lamella or filament (figure 2d ). The short length or the
long diameter of the interfilament channel will produce less resistance to the water flow, whereas the long
length and the short diameter of the interfilament channel will increase water flow resistance.
3. Results
3.1. Computational fluid dynamics simulation of gill function
The reduced cylinder model, the dumbbell model and the inflated cylinder model (figure 2c) all show
that the velocity of water moving between filaments slows as it approaches the filaments and forms a
residual drag pattern after passing through the filaments (figures 3 and 4). The water speed is faster
near the margins of the model. The size of the interlamellar gap is positively related to the speed of
flow between the filaments, being high in the reduced cylinder model and low in the dumbbell and
inflated cylinder models (figures 3 and 4 and electronic supplementary material, figure S4). However,
in all models, in the interlamellar gap, the water speed decreases from one end of the model, where
oxygen-charged water is encountered, to the opposite end of the model. The three gill models display
contrasting flow patterns (figures 3 and 4), but flow velocity always increases toward the centre of the
interfilament space, away from frictional slowing associated with the walls of the gills. The reduced
cylinder model has a uniformly high flow velocity among filaments (figure 4a) and the inflated
cylinder model has uniformly low velocity among filaments (figure 4c). By contrast, the dumbbell
model results in a flow velocity similar to that of inflated cylinder model (figure 4b). The swollen
ends of the gill filaments reduced the adjacent flow speed, especially in the narrow central region of
the dumbbell. In this portion, where the distance between adjacent filament membranes is greatest,
the speed of the flow decreased. The constrictions at each end of the dumbbell thus impede the
passage of water within the central elliptical cavity, pressing it against the membranes and facilitating
oxygen exchange within this region. Compared with the reduced cylinder model, the swollen ends of
the dumbbell slow the flow, but in contrast to the inflated cylinder model, the elliptical shape of the
central zone in the dumbbell model increases the volume between adjacent gill filaments in this area.
The velocity of the water continues to decrease as it is expelled through the narrow gap between the
opposite swollen end of the dumbbell.
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3.2. Oxygen exchange capacity and flow resistance in Triarthrus eatoni
The six modelled scenarios of T. eatoni gill structure (electronic supplementary material, table S3) show
little variation in total oxygen capacity, and all position T. eatoni among the values shown among modern
decapod crustaceans (figure 5 and electronic supplementary material, figure S5, table S4 and text). The
volume of oxygen is negatively correlated to the thickness of cuticle, descending from case 3 (0.3 µm
cuticle), case 2 (0.5 µm cuticle), case 4 (1 µm cuticle) and the rest (1.3 µm cuticle) (electronic
supplementary material, table S4). However, the weight specific area (gill surface area per gram:
mm2 g−1) (300–450 mm2 g−1) of T. eatoni (figure 5) is far less than those of aquatic decapods with the
weight specific area ranging from 500 to 1400 mm2 g−1 but similar to those above tide with the weight
specific area ranging from 280 to 640 mm2 g−1 [39].

In T. eatoni, the average height of the filaments (h) is approximately 10 times the filament length (l ),
resulting in a large ratio of height to length. For a fixed value of channel diameter (d ), the distinctly high
height of filaments produces less resistance to the water flows when compared with the low height, or
long length, of filaments, which would result in a small ratio of height to length.
c.Open
Sci.10:230341
4. Discussion
4.1. Implications of the computational fluid dynamics simulation
All CFD models together suggest that flow velocity decreased markedly between adjacent filaments
(figures 3 and 4). The dumbbell-shaped filaments created a ‘buffer zone’ (figure 4b) in which the
water volume is increased compared with the inflated cylinder model under almost the same category
of velocity even as the water flow velocity continued to decrease through the gap between the swollen
ends of the adjacent dumbbell-shaped filaments. The swollen ends have been suggested to prevent
trilobite gill filaments from collapsing, as well as housing the swollen afferent and efferent vessels
[11,13,14,40], but our analysis suggests that they also functioned to reduce water flow speed in the
vicinity of the respiratory surfaces. As impeding the velocity of water flow still needs a high strength,
the support function with high strength is probably the dominant role for the swollen ends. Contrary
to the cylinder-shaped outline, the dumbbell shape with a curved surface is clear evidence of
increasing gill surface area. Accordingly, the dumbbell-shaped filaments mechanically improved
respiration efficiency with only modest deviation from a simple, cylindrical filament shape, just
as in fish gills where interlamellar distance has evolved to an optimal state for maximizing oxygen
transfer [26].

4.2. Optimal solution between gill surface area and flow resistance
Fish that are active swimmers show increased filament length and a large number of secondary folds (or
lamellae) compared with those that are sluggish [41]. Increased lamellar length or lamellar packing (i.e.
decreasing interlamellar space) amplifies resistance to the flowing water, while increasing the lamellar
height or the filament length decreases resistance [38,41]. Contrary to the condition in fish, the
elongate filaments of trilobites represent the main site for oxygen uptake (figure 2d ). The gills of T.
eatoni have a distinctly long shaft that in this trilobite species extends far beyond the exoskeletal
margin (figure 2a and electronic supplementary material, figure S1a). In crab gills, the filaments are
mostly semicircular shape, with their height less than their length [11,13] (figure 2d ), and in most fish
and crabs the gills are sealed in the branchial chambers, of which the latter limits the length of the
filaments [38]. In trilobites, the gills are open to the ambient water, but when imbricated (gill branches
inclined but stacked nearly vertical with respect to each other) they had limited space for lateral water
flow between adjacent gill branches [11], and filaments with greater length would have provided
more resistance. Maintaining gill area without increasing the area of overlap may have been achieved
by increasing the height of the gills, which decreased the resistance of water flowing through the
filaments because of the decreasing ratio of filament length to height (figure 2d ). The replacement of
the open-type gill filament in trilobites by the closed-type gill in crustaceans suggests increased
functional specialization in the more derived group. The trade-off between gill surface area and
resistance in T. eatoni seems to have been optimized. Expansion of the respiratory area beyond the
protection of the exoskeleton in T. eatoni may suggest that the need to maximize respiratory surface
area [42] was paramount to those of protection against predators. This is consistent with this species
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occupying a low predator pressure environment at the margins of trilobite respiratory habitability

(electronic supplementary material, text).
The countercurrent gaseous exchange mechanism is capable of absorbing up to 90% of dissolved

oxygen [43] in fish and crustaceans. Nonetheless, the efficiency of the countercurrent exchange
mechanism varies among organisms depending on differences in water pressure gradient,
conductivity and flow speed; tissue perfusion; delivery of haemocyl-bound oxygen to the tissues; and
the oxygen loading capacity of the haemolymph or blood [44–46]. The activity of these animals is
positively correlated with their oxygen diffusion capacity [47]. In crustaceans, the limited oxygen
absorption capacity suggests a less active life mode, when compared with fish (figure 5). Lower
efficiency of countercurrent gaseous exchange in modern crabs compared with that of modern fish is
mainly due to the properties of the diffusion barrier (e.g. its cuticular thickness and density) and not
to a less effective countercurrent flow system per se [48]. The oxygen capacity modelled in T. eatoni is
consistent with the negative correlation between the total volume of oxygen extracted and the
thickness of the diffusion barrier (discussed in §3.2). If a less permissive barrier characterized all
arthropods (including trilobite data discussed in §3.2), this may have been offset in trilobites by
increasing the number and size of the gill branch and/or respiratory filaments [49]. With respect to
the modern aquatic decapods, T. eatoni also has a relatively low weight specific area (figure 5) and is
particularly near the lower values of oxygen capacities among marine decapods (electronic
supplementary material, figure S5). This may indicate that oxygen uptake in T. eatoni was relatively
low, possibly related to a less active life mode (electronic supplementary material, text) and a slow
growth history [50].

4.3. The presence of countercurrent gaseous exchange in other Palaeozoic animals
In the trilobite T. eatoni, ‘countercurrent flow’ was operative during upward movement of the limb
(figure 1c,e), while during downward movement concurrent flow exchange applied (figure 1d,f ). The
countercurrent gaseous exchange mechanism was also evidently applied in the gill system of the
deuterostome yunnanozoan Haikouella jianshanensis of the Chengjiang Biota (figure 6). Haikouella’s gills
bear a central arch-like supporting structure, curved posteriorly and connected to the ventral blood
vessels [24]. Closely arranged paired filaments are attached on the lateral and possibly posterior
surfaces of the supporting structure. The triangular filaments are flat and taper distally from its wide
base. Paired filaments appear perpendicular to the supporting structure (figure 6b). The reconstructed
cross-section of the Haikouella gill shows the possible haemolymph circulation. The flat filaments leave
the vessels near the lateral edges of the gill-supporting structure. Afferent channels are interpreted to
be those on the inner side of the paired gill filaments and the efferent channels are inferred to be
located at the outer side (figure 6c), just as in modern fish gills [48]. In the stem deuterostome
vetulicolians, unidirectional water currents have been suggested to flow in through the mouth and out
via the gill slits [51]. We suggest that Haikouella may have employed a similar unidirectional flow and
also employed the countercurrent exchange mechanism. The closely comparable morphology of the
gill system in modern fish and in yunnanozoans indicates operation of the countercurrent exchange
mechanism in Early Cambrian deuterostomes (electronic supplementary material, figure S2, table S1
and text).

The biovolume (or body size) of animals is limited by the circulatory system and respiratory medium
[52] and these factors apparently assumed particular importance in early metazoan history, during which
ambient levels of oxygen were lower than later in the Palaeozoic and thereafter [53,54]. The ability to
achieve oxygen concentration in the efferent vessel almost as high as the ambient oxygen level may
have allowed yunnanozoans and trilobites to occupy a broad range of habitats and possibly to evolve
multiple feeding modes, which are considered to play a key role in the development of early
metazoans [52].

Ethics. We used no live animals in this study. The fossil specimens are housed in the Northwest University, China;
University of Glasgow; and Yale University. Data of running the CFD are also available online.
Data accessibility. All the specimens described in this paper are in the collections of the Early Life Institute (ELI),
Northwest University, China; Hunterian Museum, University of Glasgow (GLAHM); and the Yale Peabody
Museum of Natural History (YPM) of Yale University, and are available for further research. The three-dimensional
models (.stl files) and the essential files for running CFD through OpenFOAM are available at the AMNH Digital
Repository: https://doi.org/10.5531/sd.paleo.11 [55].

The data are provided in electronic supplementary material [56].
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