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Abstract
Parallel	evolution	of	phenotypic	traits	is	regarded	as	strong	evidence	for	natural	se-
lection	and	has	been	studied	extensively	in	a	variety	of	taxa.	However,	we	have	lim-
ited	knowledge	of	whether	parallel	evolution	of	host	organisms	 is	accompanied	by	
parallel	 changes	of	 their	associated	microbial	 communities	 (i.e.,	microbiotas),	which	
are	crucial	for	their	hosts'	ecology	and	evolution.	Determining	the	extent	of	micro-
biota	parallelism	in	nature	can	improve	our	ability	to	identify	the	factors	that	are	as-
sociated	with	(putatively	adaptive)	shifts	in	microbial	communities.	While	it	has	been	
emphasized	 that	 (non)parallel	 evolution	 is	 better	 considered	 as	 a	 quantitative	 con-
tinuum	rather	than	a	binary	phenomenon,	quantitative	approaches	have	rarely	been	
used	to	study	microbiota	parallelism.	We	advocate	using	multivariate	vector	analysis	
(i.e.,	phenotypic	change	vector	analysis)	to	quantify	direction	and	magnitude	of	mi-
crobiota	 changes	 and	discuss	 the	 applicability	 of	 this	 approach	 for	 studying	 paral-
lelism,	 and	we	 compiled	 an	R	package	 for	multivariate	 vector	 analysis	 of	microbial	
communities	 (‘multivarvector’).	We	exemplify	 its	use	by	 reanalyzing	gut	microbiota	
data	from	multiple	fish	species	that	exhibit	parallel	shifts	in	trophic	ecology.	We	found	
that	multivariate	vector	analysis	results	were	largely	consistent	with	other	statistical	
methods,	parallelism	estimates	were	not	affected	by	the	taxonomic	level	at	which	the	
microbiota	is	studied,	and	parallelism	might	be	stronger	for	gut	microbiota	function	
compared	to	taxonomic	composition.	This	approach	provides	an	analytical	framework	
for	quantitative	comparisons	across	host	lineages,	thereby	providing	the	potential	to	
advance	our	capacity	to	predict	microbiota	changes.	Hence,	we	emphasize	that	the	
development	and	application	of	quantitative	measures,	 such	as	multivariate	vector	
analysis,	should	be	further	explored	in	microbiota	research	in	order	to	better	under-
stand	the	role	of	microbiota	dynamics	during	their	hosts'	adaptive	evolution,	particu-
larly	in	settings	of	parallel	evolution.
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1  |  INTRODUC TION

Parallel	 evolution,	 the	 repeated	 evolution	of	 similar	 traits	 in	 inde-
pendent	 lineages	 in	 response	 to	 similar	 selective	 pressures,	 is	 a	
widespread	phenomenon	and	provides	strong	evidence	for	natural	
selection	(Colosimo	et	al.,	2005;	Elmer	et	al.,	2010; Losos et al., 1998; 
Rosenblum	et	al.,	2017;	Steiner	et	al.,	2009).	Yet,	the	extent	of	par-
allelism	varies	considerably	across	 levels	of	biological	organization	
(e.g.,	genotype	vs	phenotype)	and	across	taxa	(Bolnick	et	al.,	2018).	
Substantial	variation	in	parallelism	can	even	be	found	among	closely	
related	 populations	 adapting	 to	 seemingly	 similar	 habitats	 (Stuart	
et al., 2017).	Traditionally,	(non)parallel	evolution	has	been	regarded,	
and	classified,	as	a	binary	phenomenon	(evolution	is	parallel	or	not).	
However,	 it	 has	 recently	 been	 argued	 that	 by	 considering	 parallel	
evolution	as	a	quantitative	continuum,	we	will	be	better	able	to	iden-
tify	 and	understand	 the	genetic	 and	ecological	 factors	 that	 affect	
the	extent	of	parallelism	(Bolnick	et	al.,	2018).

The	 study	 of	 parallelism	 has	 recently	 been	 extended	 to	 host-	
associated	microbial	communities	and	in	particular	the	gut	microbi-
ota,	the	microbial	community	inhabiting	a	host's	gut	(Ley,	Lozupone,	
et al., 2008).	To	investigate	microbiota	parallelism,	it	can	be	useful	to	
adopt	both	 theoretical	 and	methodological	 approaches	developed	
for	studying	parallel	evolution	(e.g.,	Rennison	et	al.,	2019).	Gut	mi-
crobial	communities	are	highly	diverse	(Brooks	et	al.,	2016;	Human	
Microbiome	Project	Consortium,	2012;	Youngblut	et	al.,	2019)	and	
affect	 host	 physiology	 in	 many	 ways	 (e.g.,	 nutrient	 metabolism;	
Turnbaugh	et	al.,	2006).	The	gut	microbiota	of	an	increasing	number	
of	host	species	is	being	characterized,	and	we	are	obtaining	a	more	
comprehensive	picture	of	the	extensive	diversity	of	host-	associated	
microbes	 (Song	et	al.,	2020; Tarnecki et al., 2017).	The	gut	micro-
biota	 is	 shaped	 by	 host	 genetics	 and	 ecological	 factors	 (Benson	
et al., 2010; Goodrich et al., 2014; Li et al., 2017;	Spor	et	al.,	2011; 
Sullam	et	 al.,	2012),	 and	 can	 impact	 the	 ecology	 and	 evolution	of	
their	 hosts	 (Rudman	 et	 al.,	 2019;	 Zepeda	 Mendoza	 et	 al.,	 2018).	
Study	systems	in	which	closely	related	populations	or	species	have	
independently	adapted	to	similar	ecological	niches	are	particularly	
useful	 for	 studying	 the	 evolutionary	 ecology	 of	 host-	associated	
microbial	 communities	 (e.g.,	Härer	 et	 al.,	2020).	 In	 these	 systems,	
one can ask whether phenotypic or ecological changes that have 
occurred	repeatedly	 in	multiple	host	populations	 (i.e.,	parallel	evo-
lution),	are	associated	with	parallel	changes	 in	microbial	communi-
ties	 (i.e.,	microbiota	 parallelism).	We	would	 like	 to	 emphasize	 that	
microbiota	parallelism	solely	describes	repeatability	in	the	direction 
and magnitude	of	change	of	microbial	communities,	but	not	neces-
sarily their parallel evolution. There is now growing interest in de-
termining	 whether	 parallel	 adaptation	 of	 hosts	 is	 associated	 with	
parallel	microbiota	changes,	as	parallelism	among	independent	gut	
microbial	 communities	 suggests	 changes	could	be	predictable	and	
adaptive	(Delsuc	et	al.,	2014;	Härer	et	al.,	2020;	Song	et	al.,	2020).	
Integration	of	microbiota	data	from	a	range	of	host	populations	that	
have	 repeatedly	 and	 independently	 adapted	 to	 similar	 ecological	
niches	(e.g.,	Song	et	al.,	2020)	provides	a	powerful	opportunity	to	in-
vestigate	the	ecological	and	evolutionary	dynamics	of	host–	microbe	
interactions.

Gut	microbiota	parallelism	is	predicted	 if	hosts	are	adapting	to	
similar	trophic	niches,	since	diet	is	known	to	be	a	major	factor	shap-
ing	gut	microbial	 communities	 (Bolnick,	Snowberg,	Hirsch,	Lauber,	
Knight, et al., 2014;	 Smits	 et	 al.,	 2017;	 Turnbaugh	 et	 al.,	 2009).	
However,	several	ecological	and	genetic	factors	could	further	pro-
mote	or	hinder	parallelism;	these	include	similarity	of	host	ecology,	
physiology	and	genetics,	as	well	as,	differential	environmental	expo-
sure,	and	mode	of	microbial	transmission	(see	Discussion	for	more	
details).	This	begs	the	question:	Does	the	gut	microbiota	change	in	a	
predictable	manner	during	their	hosts'	parallel	adaptation	to	similar	
trophic	niches,	 and	 if	 so,	what	 factors	affect	 the	 likelihood	of	ob-
serving	parallelism?	To	address	questions	of	gut	microbiota	predict-
ability	and	parallelism,	we	need	hypothesis-	driven	tests	leveraged	in	
systems	with	well-	characterized	host	ecology	and	repeated	patterns	
of	niche	shifts.	It	is	also	imperative	to	employ	quantitative	statistical	
metrics.	Here	we	suggest	that	multivariate	vector	analysis,	a	quan-
titative	method,	can	be	used	to	estimate	the	degree	of	microbiota	
parallelism,	 which	 might	 allow	 identifying	 the	 key	 ecological	 and	
evolutionary	processes	shaping	variation	in	microbial	communities.	
This	method,	originally	termed	‘phenotypic	change	vector	analysis’	
was	developed	by	Collyer	and	Adams	 for	 studying	magnitude	and	
direction	of	multivariate	phenotypic	change	(Adams	&	Collyer,	2009; 
Collyer	&	Adams,	2007),	and	it	has	previously	been	applied	to	study	
variation	 in	 phenotypic	 (Stuart	 et	 al.,	 2017)	 and	 gut	 microbiota	
(Rennison	et	al.,	2019)	parallelism	in	threespine	stickleback	fish.	 In	
this	method,	vectors	connecting	the	multivariate	means	(centroids)	
of	microbial	communities	are	estimated	for	pairs	of	host	populations.	
The	 resulting	vectors	are	 then	compared	 in	a	pairwise	 fashion	 for	
all	host	populations	(Figure 1;	see	Section	2	for	more	details).	This	
approach	provides	information	not	only	on	the	direction	(angle	be-
tween	vectors),	but	also	the	magnitude	(vector	length)	of	microbiota	
divergence.	However,	it	is	the	angle	that	quantifies	parallelism,	the	
smaller	 the	angle	between	two	population	pairs,	 the	more	parallel	
the	 pattern	 of	 divergence	 (Figure 1)	 (Bolnick	 et	 al.,	 2018;	 Stuart	
et al., 2017).	Crucially,	when	integrated	with	additional	ecological	or	
genetic	data,	this	quantitative	approach	allows	direct	tests	of	factors	
that	affect	direction	and	magnitude	of	microbiota	changes.

Parallel	 divergence	 in	 trophic	 ecology	 is	 well-	documented	
in	 several	 teleost	 fishes;	 e.g.,	 threespine	 stickleback	 (Bell	 &	
Foster,	 1994;	 Taylor	 &	 Mcphail,	 1999),	 African	 and	 Neotropical	
cichlids	 (Elmer	 et	 al.,	 2014; Muschick et al., 2012),	 lake	 white-
fish	 (Bernatchez	 et	 al.,	 1999)	 and	 Trinidadian	 guppies	 (Reznick	
et al., 1996)	 (Table	 A1).	 To	 exemplify	 the	 utility	 of	 multivariate	
vector	 analysis	 for	 quantifying	 parallelism	 in	 compositional	 and	
functional	 changes	of	 gut	microbial	 communities,	we	 reanalyzed	
published	16 S	rRNA	gene	sequencing	data	sets	from	these	model	
systems.	We	discuss	 how	estimates	 of	magnitude	 of	 divergence	
and	parallelism	can	be	used	to	identify	factors	that	affect	micro-
bial	 communities	 associated	 with	 many	 host	 lineages	 and	 give	
recommendations	 on	 the	 use	 of	 this	 approach.	 We	 further	 ac-
knowledge	 current	 limitations	 of	 using	multivariate	 vector	 anal-
ysis	 for	 studying	microbiota	parallelism	and	emphasize	 the	need	
for	further	development	of	this	approach	in	microbiota	research.	
When	applied	 to	a	wide	 range	of	host	organisms,	we	argue	 that	
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multivariate	vector	analysis	has	the	potential	to	give	a	unique	in-
sight	into	the	microbiota	dynamics	associated	with	their	hosts'	ad-
aptation	to	different	ecological	niches.

2  |  MATERIAL S AND METHODS

2.1  |  Data acquisition

We	obtained	16 S	rRNA	gene	sequencing	data	from	six	published	
studies	 of	 parallel	 evolution	 in	 teleost	 fishes:	 herbivorous	 and	
carnivorous	African	cichlids	(Baldo	et	al.,	2017),	benthic	and	lim-
netic	Neotropical	Midas	cichlids	(Härer	et	al.,	2020),	benthic	and	
limnetic	 threespine	 stickleback	 from	British	Columbia	 (Rennison	
et al., 2019),	 freshwater	 and	 estuarine	 threespine	 stickleback	
from	 Oregon	 (Steury	 et	 al.,	 2019),	 benthic	 and	 limnetic	 lake	
whitefish	 (Sevellec	 et	 al.,	 2018),	 and	 low-	predation	 and	 high-	
predation	Trinidadian	guppies	 (Sullam	et	 al.,	 2015).	 Sample	 sizes	
for	 each	 population	 are	 indicated	 in	 Table	 A1	 and	 information	

on	sequencing	platform,	amplicon	region	and	NCBI	archiving	are	
listed	in	Table	A2.	For	each	data	set,	all	samples	were	included	in	a	
single	sequencing	run.	To	improve	readability,	we	will	refer	to	dif-
ferent	host	lineages	as	populations,	whether	they	are	populations	
of	the	same	species	or	distinct	species.	We	tested	for	gut	micro-
biota	 parallelism	 (i)	 among	 population	 pairs,	 and	 (ii)	 between	 an	
outgroup	and	several	focal	populations	(Figure 1).	Outgroups	were	
selected	based	on	phylogenetic	information	(see	Table	A1).	Marine	
threespine	stickleback	colonized	freshwater	environments	around	
10,000–	12,000 years	 ago	 (Bell	&	 Foster,	1994).	Hence,	 a	marine	
population was selected as the outgroup since it represents the 
ancestral	state.	For	Midas	cichlids,	 the	species	A. citrinellus	 from	
Lake	Nicaragua	represents	the	outgroup	to	all	crater	lake	species	
investigated,	since	crater	lakes	were	colonized	from	the	two	great	
lakes	 of	Nicaragua	 (L. Managua and L. Nicaragua)	within	 the	 last	
5000 years	 (Kautt	 et	 al.,	 2020).	 In	 African	 cichlids,	 we	 selected	
a	 species	 from	Barombi	Mbo	as	 the	outgroup	 to	 several	 species	
from	 Lake	 Tanganyika	 based	 on	 a	 recent	 phylogeny	 by	 Irisarri	
et	al.	(2018).	In	this	study	system,	the	focal	carnivorous	populations	

F I G U R E  1 Illustration	of	vector	analysis	for	determination	of	gut	microbiota	parallelism.	Vectors	connect	the	population	means	
(centroids)	between	population	pairs	(a)	or	between	an	outgroup	and	several	focal	populations	(b).	The	phylogenetic	trees	in	(a,	b)	represent	
schematics	to	provide	general	information	on	the	phylogenetic	relationships	of	the	studied	populations.	For	the	population	pair	comparisons,	
the	two	populations	used	to	calculate	a	vector	(γ)	were	most	closely	related	to	each	other	providing	repeated	and	independent	cases	of	
ecological	divergence.	The	populations	or	species	included	for	each	analysis	are	listed	in	Table	A1.	Angles	between	vectors	provide	a	
quantitative	measure	of	parallelism	(c)	and	range	from	anti-	parallel,	to	orthogonal	to	parallel	(adopted	from	Bolnick	et	al.,	2018).	Angles	
between	multivariate	vectors	were	measured	based	on	PCoA	scores	and	represent	a	quantitative	measure	of	gut	microbiota	parallelism.	
Vector	lengths	(L)	provide	information	on	the	magnitude	of	gut	microbiota	changes.	Centroids	are	shown	as	bold	symbols	(squares	and	
circles)	whereas	individual	data	points	are	shown	as	faint	symbols	to	illustrate	differences	in	data	distribution.	Note	that	the	direction	of	
vectors	is	important	and	should	be	consistent	across	comparisons	to	obtain	biologically	meaningful	results	(e.g.,	always	from	ecotype	A	to	
ecotype	B	within	a	study	system).
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were chosen to avoid phylogenetic clustering; the closest relatives 
of	all	focal	populations	differ	in	trophic	ecology	(e.g.,	herbivores	or	
omnivores)	(Baldo	et	al.,	2017).	Further	information	on	the	popula-
tions	used	can	be	found	in	Table	A1.	Sequence	data	were	down-
loaded	from	the	NCBI	Sequence	Read	Archive	(SRA);	information	
on	sequencing	platforms,	sample	sizes	and	accession	numbers	are	
provided	 in	Tables	A1 and A2.	Data	was	converted	 from	SRA	to	
FASTQ	format	using	the	fastq-	dump	function	of	the	SRA	Toolkit	
v2.9.6–	1	(https://ncbi.github.io/sra-	tools/).

2.2  |  Gut microbiota analysis

Forward	reads	had	higher	sequence	quality	than	reverse	reads,	and	
read	 lengths	 varied	 across	 studies	 due	 to	 differences	 in	 sequenc-
ing	technology,	which	led	to	non-	overlap	of	reads	for	some	studies.	
Hence,	we	only	used	 forward	 reads	 to	achieve	higher	consistency	
in	analysis	 across	 the	different	data	 sets.	Forward	 reads	were	 im-
ported	into	the	open-	source	bioinformatics	pipeline	QIIME2	(Bolyen	
et al., 2019).	 Sequence	 quality	 control	 was	 done	 with	 the	 plugin	
DADA2	 (Callahan	 et	 al.,	 2016)	 and	 a	 phylogenetic	 tree	 was	 pro-
duced	with	FastTree	2.1.3	(Price	et	al.,	2010);	read	numbers	before	
and	after	DADA2	filtering	are	provided	in	the	Dryad	database	(see	
Data Accessibility Statement).	 Taxonomy	 was	 assigned	 against	 the	
16 S	rRNA	gene	Silva	database	version	132	(Quast	et	al.,	2013)	using	
the	feature-	classifier	classify-	sklearn	plug-	in	in	QIIME2	(Pedregosa	
et al., 2011).	 Taxonomic	 assignment	was	 not	 done	 for	 Trinidadian	
guppies	 (Sullam	 et	 al.,	 2015)	 as	 this	 study	 used	 a	 different	 region	
of	 the	16 S	 rRNA	gene	 (V1–	V3).	Rarefaction	depths	 and	 sequence	
lengths	varied	across	data	 sets	 (Table	A1),	ASV	sequences	 can	be	
obtained	from	the	Dryad	database	(see	Data Accessibility Statement).	
We	 calculated	 different	 phylogenetic	 (weighted	 and	 unweighted	
UniFrac)	 and	 non-	phylogenetic	 (Bray–	Curtis	 dissimilarity)	 metrics	
for	 bacterial	 community	 composition	 (Lozupone	 et	 al.,	 2011).	 To	
infer	metagenome	 function,	MetaCyc	pathway	abundances,	Kyoto	
Encyclopedia	of	Genes	and	Genomes	(KEGG)	orthologs	and	Enzyme	
Commission	numbers	were	predicted	with	 the	PICRUSt2	plugin	 in	
QIIME2	 (Douglas	 et	 al.,	2020; Kanehisa et al., 2012)	with	 a	maxi-
mum	nearest-	sequenced	taxon	index	(NSTI)	cutoff	of	2.	Across	the	
study	 systems,	more	 than	 90%	of	ASVs	 (92.7–	99.5%)	were	 below	
this	cutoff,	except	for	the	study	on	whitefish	where	the	proportion	
was	slightly	lower	(85.3%;	Table	A3).	Mean	and	median	NSTI	scores	
ranged	 from	0.45–	2.689	 and	0.072–	0.366,	 respectively.	 Based	on	
distance	matrices	for	all	these	different	metrics,	principal	coordinate	
analyses	 (PCoA)	 were	 performed	 and	 PCoA	 scores	 were	 used	 as	
input	for	multivariate	vector	analyses.

2.3  |  Multivariate vector analysis

We	quantified	compositional	and	functional	gut	microbiota	parallel-
ism	using	multivariate	 vector	 analysis	 and	 compiled	 our	 code	 into	
an	R	package	that	can	be	obtained	from	github	(https://github.com/

andre	as-	haere	r/multi	varve	ctor).	 We	 largely	 followed	 the	 method-
ology	reported	 in	Rennison	et	al.	 (2019),	which	to	date	 is	 the	only	
study	that	has	used	this	approach	for	studying	gut	microbiota	par-
allelism.	We	 found	 different	 degrees	 of	 parallelism	 for	 gut	micro-
biota	function	than	reported	in	the	original	study.	This	is	likely	due	
to	differences	 in	data	processing	and	analysis	pipelines,	emphasiz-
ing	 the	need	 to	standardize	data	analysis	when	making	 inferences	
across	studies.	Multivariate	vectors	were	calculated	by	connecting	
the	 population	means	 (centroids)	 of	 PCoA	 scores,	 either	 between	
population	pairs	or	between	an	outgroup	and	focal	populations	(as	
depicted in Figure 1).	The	dimensionality	of	 the	data	 sets	used	 to	
estimate	angles	for	gut	microbiota	composition	and	function	is	listed	
in	Tables	A4 and A5,	respectively.	Angles	were	measured	between	
these	vectors	and	were	calculated	for	all	possible	pairwise	compari-
sons	in	each	data	set	(e.g.,	between	all	three	benthic-	limnetic	popu-
lation	pairs	in	threespine	stickleback	from	British	Columbia,	Canada).	
The	direction	of	vectors	was	held	consistent,	e.g.,	 from	benthic	to	
limnetic	across	all	comparisons	within	a	study	system,	representing	a	
repeated	measure	of	evolutionary	divergence	between	populations.	
Yet,	we	would	like	to	mention	that	this	does	not	necessarily	reflect	
the	 direction	 of	 evolutionary	 change	 in	 all	 of	 our	 study	 systems	
(i.e.,	 ancestral	 to	 derived).	 Angles	 for	 gut	 microbiota	 composition	
(Spearman's	 ρ:	 0.47–	0.757)	 and	 function	 (Spearman's	 ρ:	 0.965–	
0.992)	were	 highly	 reproducible	 across	 different	 diversity	metrics	
(Figures	 A1 and A2),	 and	 statistical	 tests	 for	 parallelism	 yielded	
largely	 similar	 results	 (Tables	A4 and A5).	Hence,	 in	 the	main	 text	
we	only	 present	Bray–	Curtis	 dissimilarity	 for	 gut	microbiota	 com-
position	 and	MetaCyc	pathway	 abundances	based	on	Bray–	Curtis	
dissimilarity	for	the	inferred	functional	metagenome.

The	angles	provide	us	with	 a	quantitative	measure	of	parallel-
ism	 within	 and	 across	 study	 systems.	 Smaller	 angles	 (below	 90°)	
indicate	parallelism,	angles	around	90°	indicate	orthogonal	change	
and	larger	angles	(above	90°)	indicate	anti-	parallelism	(Figure 1c).	A	
more	detailed	discussion	on	different	 interpretations	of	 the	distri-
bution	of	angles,	but	also	on	the	limitations	of	this	method	can	be	
found	in	Bolnick	et	al.	(2018)	and	in	Watanabe	(2022).	To	statistically	
test	for	gut	microbiota	parallelism,	previous	studies	proposed	to	ei-
ther	regard	changes	as	parallel	when	angles	do	not	deviate	from	0°	
(Bolnick	et	al.,	2018)	or	when	angles	are	significantly	 smaller	 than	
90°	(Rennison	et	al.,	2019).	To	give	us	an	initial	simplistic	indication	
of	parallelism	patterns,	we	used	one-	sample	t-	tests	with	an	angle	of	
90°	as	the	null	expectation	for	non-	parallelism	since	(almost)	all	data	
were	normally	distributed	based	on	Shapiro–	Wilk	 tests	 (Shapiro	&	
Wilk,	1965).	The	only	exception	was	gut	microbiota	composition	of	
threespine	stickleback	population	pairs	from	Rennison	et	al.	(2019),	
for	which	we	 performed	 a	 one-	sample	Wilcoxon	 signed-	rank	 test	
(Wilcoxon,	1945).	However,	due	 to	 the	non-	independence	of	pair-
wise	 angles	 (Watanabe,	 2022),	 we	 also	 quantified	 parallelism	 by	
calculating	distributions	of	random	angles	in	multidimensional	space	
(which	is	centered	at	90°)	and	using	Monte	Carlo	simulations	(with	
105	 iterations)	 to	 test	 for	 significant	 parallelism,	 or	 by	 performing	
a	Rayleigh	 test	which	 is	used	to	examine	the	unimodal	concentra-
tion	of	directional	vectors	(Mardia	et	al.,	1979;	Watanabe,	2022).	We	

https://ncbi.github.io/sra-tools/
https://github.com/andreas-haerer/multivarvector
https://github.com/andreas-haerer/multivarvector
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compare	the	results	obtained	using	these	different	methods	and	dis-
cuss their interpretation.

To	 quantify	 the	 magnitude	 of	 gut	 microbiota	 changes,	 we	 cal-
culated	 means	 of	 vector	 lengths	 (meanL)	 for	 each	 population	 pair.	
Correlation	analyses	were	based	on	non-	parametric	Spearman	 rank	
correlation	coefficients,	as	not	all	data	were	normally	distributed.	For	
the	 population	 pair	 comparisons,	 we	 also	 tested	 whether	 the	 tax-
onomic	 level	at	which	microbial	 communities	are	 studied	affect	 the	
magnitude	and	direction	of	gut	microbiota	change	based	on	the	mul-
tivariate	vector	analysis.	Taxonomic	assignment	was	done	in	QIIME2	
(more	information	provided	above),	biom	tables	were	created	for	each	
study	system	at	different	 taxonomic	 levels	of	 the	bacterial	 commu-
nities	 (phylum,	 class,	 order,	 family,	 genus,	 species).	 From	each	biom	
table,	we	produced	a	Bray-	Curtis	distance	matrix	and	calculated	PCoA	
scores.	Estimates	of	angles	and	vector	lengths	were	calculated	based	
on	these	PCoA	scores,	similar	to	the	other	analyses	mentioned	above.	
All	statistical	analyses	were	done	in	R	v3.5.1	(R	CoreTeam,	2021).

3  |  RESULTS

3.1  |  Gut microbiota parallelism across population 
pairs

First,	we	tested	for	parallelism	across	population	pairs	where	vec-
tors connect two closely related populations, representing cases 
of	repeated	divergence.	Levels	of	gut	microbiota	parallelism	varied	

considerably	within	and	across	teleost	fish	model	systems	for	paral-
lel	evolution	(Figure 2).	Within	study	systems,	we	detected	a	wide	
range	 of	 angles	 (e.g.,	 38.5–	88.8°	 for	 gut	 microbiota	 composition	
in	African	 cichlids;	 Figure 2a),	 and	parallelism	estimates	were	 also	
highly	 variable	 across	 study	 systems.	When	 comparing	 mean	 an-
gles	against	a	null	expectation	of	90°,	statistically	significant	paral-
lelism	was	only	found	for	gut	microbial	composition	(mean:	68.	9°;	
one-	sample	t-	test:	p < .001,	t = −6.566)	and	function	(mean:	38.9°,	
p < .001,	 t = −12.513)	 among	herbivorous	and	carnivorous	African	
cichlids	(Figure 2a,	b).	We	detected	suggestive	evidence	for	parallel-
ism	of	gut	microbial	composition	in	benthic	and	limnetic	threespine	
stickleback	from	British	Columbia	(mean:	81°,	one	sample	Wilcoxon	
signed rank test: p = .087),	but	the	sample	size	of	this	study	was	very	
small	(n =	3).	Similar	results	were	obtained	when	using	Monte	Carlo	
simulations	to	compare	mean	angles	against	a	multidimensional	null	
distribution,	we	detected	significant	parallelism	for	African	cichlids'	
gut	microbiota	composition	and	function	(p < 1	× 10−5	for	both	tests),	
and	suggestive	evidence	 in	gut	microbiota	composition	of	benthic	
and	limnetic	threespine	stickleback	from	British	Columbia	(p = .087)	
as	well	 as	 in	 gut	microbiota	 function	 of	 freshwater	 and	 estuarine	
threespine	 stickleback	 from	 Oregon	 (p = .052;	 Figure	 A3).	 These	
findings	 were	 further	 supported	 by	 Rayleigh	 tests,	 in	 which	 sig-
nificant	concentrations	of	angles	were	detected	for	gut	microbiota	
composition	(S = 113.01, p < 1.26 × 10−9)	and	function	(S = 160.47, 
p =	 6.29 × 10−21)	 only	 in	African	 cichlids.	When	 performing	multi-
variate	vector	analysis	based	on	different	taxonomic	levels	of	gut	mi-
crobial	communities	(species	to	phylum),	we	found	that	estimates	of	

F I G U R E  2 Significant	gut	microbiota	
parallelism	among	population	pairs	was	
detected	in	African	cichlids	for	(a)	gut	
microbiota	composition	and	(b)	function.	
In	the	outgroup	comparisons,	all	three	
study	systems	showed	significant	gut	
microbiota	parallelism	for	composition	
(c)	and	function	(except	for	African	
cichlids;	d).	For	all	three	study	systems,	
outgroups	inhabit	distinct	water	bodies	
from	the	focal	populations	(Table	A1).	
Numbers	of	comparisons	are	indicated	
next	to	the	name	of	each	study	system;	
the	populations	used	for	each	analysis	as	
well	as	samples	sizes	for	each	population	
are	stated	in	Table	A1.	Here,	we	show	the	
results	of	testing	mean	angles	against	90°,	
and no statistical tests were conducted 
for	threespine	stickleback	population	pairs	
from	lakes	and	estuaries	in	Oregon	and	
benthic	and	limnetic	Midas	cichlids	from	
Nicaraguan	crater	lakes	as	we	only	had	
one	comparison	for	each	data	set	(a,	b).	
†p < .1,	*p < .05,	***p < .001.
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direction	and	magnitude	were	generally	consistent,	and	 independ-
ent	of	taxonomic	resolution	(Figure 3).

Angles	 for	 gut	 microbiota	 composition	 and	 function	 were	
strongly	 correlated	 for	 population	 pairs	 across	 study	 systems	
(Spearman's	ρ = 0.766, p < .001;	Figure 4a).	On	average,	angles	for	
gut	microbiota	 function	 (mean:	 70.3°)	were	 smaller	 than	 for	 com-
position	(mean:	80.9°),	although	this	was	not	statistically	significant	
(p = .096,	t = 1.699, Figure 4b).	When	considering	only	comparisons	
that	showed	evidence	of	gut	microbiota	parallelism	(i.e.,	angles	were	
smaller	than	90°),	gut	microbiota	function	angles	were	significantly	
smaller	 (i.e.,	more	 parallel)	 (p < .001,	 t =	 5.588,	 Figure	A4).	 There	
was	 also	 a	 significant	 negative	 correlation	 between	 gut	 microbi-
ota	 parallelism	 (angles)	 and	 the	 mean	magnitude	 of	 gut	 microbial	
change	(meanL)	for	composition	(ρ = −0.706,	p < .001)	and	function	
(ρ = −0.581,	p < .001;	Figure	A5a,	b).

3.2  |  Gut microbiota parallelism across focal 
populations compared to outgroup

When	comparing	an	outgroup	to	focal	populations	adapted	to	simi-
lar	ecological	niches	(Figure 1b),	we	found	strong	evidence	for	com-
positional	and	functional	gut	microbiota	parallelism	across	all	three	
study	systems;	almost	all	angles	were	smaller	than	90°	(Figure 2c, d).

By	 comparing	 mean	 angles	 against	 a	 null	 expectation	 of	 90°,	
gut	microbiota	 changes	 associated	with	 carnivory	 in	African	 cich-
lids	 from	 Lake	 Tanganyika	 (compared	 to	 an	 herbivorous	 outgroup	
from	Lake	Barombi	Mbo)	were	significantly	parallel	for	composition	
(mean:	42.7°,	p < .001,	t = −6.621),	but	not	for	function	(mean:	85.4°,	
p = .425,	t = −0.201).	Gut	microbiota	changes	in	freshwater	benthic	
and	limnetic	threespine	stickleback	ecotypes	from	British	Columbia	
were	significantly	parallel	when	compared	to	 the	ancestral	marine	
population	 (composition,	mean:	 56.4°,	p < .001,	 t = −13.378;	 func-
tion,	mean:	60.5°,	p < .001,	t = −4.635).	In	benthic	and	limnetic	Midas	
cichlids	from	two	crater	lakes,	we	also	detected	significant	gut	mi-
crobiota	parallelism	compared	to	the	ancestral	population	from	great	
lake	 Nicaragua	 (composition,	 mean:	 42.2°,	 p < .001,	 t = −12.208;	
function,	mean:	 31.8°,	p < .001,	 t = −14.772).	We	obtained	 similar	
results	when	using	Monte	Carlo	simulations	 to	compare	mean	an-
gles	 against	 a	multidimensional	 null	 distribution.	 Angles	were	 sig-
nificantly	parallel	for	gut	microbiota	composition	(p < 1	× 10−5)	but	
not	 for	 function	 (p =	 .25)	 in	 African	 cichlids.	 In	 threespine	 stick-
leback	 from	 British	 Columbia,	 we	 detected	 significant	 parallel-
ism	for	composition	and	 function	 (p < 1	× 10−5	 for	both	 tests),	 the	
same	was	true	for	benthic	and	limnetic	Midas	cichlids	(p < 1	× 10−5 
for	 both	 tests;	 Figure	 A6).	 Using	 Rayleigh	 tests,	 we	 detected	 sig-
nificant	 concentrations	 of	 angles	 for	 gut	 microbiota	 composition	
(S =	59.53,	p < 6.29 × 10−7)	but	not	for	function	(S = 14.92, p = .25)	
in	African	cichlids.	In	threespine	stickleback	from	British	Columbia,	
angles	were	significantly	concentrated	for	composition	(S = 133.77, 
p < 4.64 × 10−15)	and	function	(S = 92.39, p < 2.81 × 10−10).	The	same	
held	true	for	composition	(S = 294.37, p < 2.32 × 10−28)	and	function	
(S =	248.02,	p < 1.17 × 10−26)	in	benthic	and	limnetic	Midas	cichlids.

Angles	 for	 gut	 microbiota	 composition	 and	 function	 were	
strongly	 correlated	 across	 study	 systems	 (Spearman's	 ρ = 0.726, 
p < .001;	Figure 4c).	Angles	did	not	differ	between	gut	microbiota	
composition	and	function	(p = .21,	t = −1.279;	Figure 4d);	even	when	
only	considering	comparisons	with	angles	below	90°	for	both	mea-
sures	 (p = .723,	 t =	0.358).	There	was	no	correlation	between	gut	
microbiota	parallelism	(angles)	and	mean	magnitude	of	gut	microbial	
change	 (meanL),	 for	 composition	 (ρ = −0.08,	 p = .691)	 or	 function	
(ρ = 0.073, p = .716;	Figure	A5c,	d).

4  |  DISCUSSION

Multivariate	vector	 analysis	offers	 the	opportunity	 to	quantify	di-
rection	 and	 magnitude	 of	 microbiota	 changes,	 thereby	 allowing	
identification	 of	 factors	 that	 shape	 microbial	 communities	 across	
host	populations.	The	purpose	of	our	study	is	to	exemplify	and	ad-
vocate	the	use	of	this	approach	in	microbiota	research,	compare	dif-
ferent	statistical	approaches	to	test	for	parallelism,	discuss	current	
limitations,	and	give	recommendations	on	methodological	aspects.	
To	 this	 end,	we	 applied	multivariate	 vector	 analysis	 to	 investigate	
the	gut	microbiota	of	several	classic	teleost	fish	model	systems	that	
exemplify	parallel	ecological	shifts.	While	this	manuscript	is	focused	
on	the	study	of	parallelism,	multivariate	vector	analysis	can	also	be	
used	 to	 study	 the	 extent	 of	 convergence	 or	 divergence	 of	micro-
biota	changes,	when	 incorporating	 information	on	the	direction	of	
evolutionary	change	in	host	lineages	(Bolnick	et	al.,	2018).	It	should	
be	noted	that	multivariate	vector	analysis	has	only	been	used	in	one	
microbiota	study	(Rennison	et	al.,	2019),	and	more	conceptual	and	
methodological	research	is	needed	to	determine	how	characteristics	
of	microbiota	data	sets	affect	parallelism	estimates	in	order	to	com-
prehensively	 interpret	 the	 biological	 implications	 of	 such	 results.	
We	would	also	like	to	emphasize	that	the	small	set	of	study	systems	
included	here	 are	meant	 to	 exemplify	 the	use	of	 this	 quantitative	
approach.	 The	 goal	was	not	 to	 identify	 or	 disentangle	 the	 effects	
of	specific	factors	that	shape	gut	microbiota	parallelism,	but	we	en-
courage	future	studies	to	apply	quantitative	analyses	to	larger	data	
sets in order to investigate general patterns and processes using the 
methods	presented	here.

4.1  |  Multivariate vector analysis to quantify 
microbiota parallelism

When	 studying	 microbiota	 parallelism,	 one	 admittedly	 simplified	
prediction	is	that	parallel	adaptation	of	hosts	to	a	novel	diet	trans-
lates	to	parallel	changes	of	their	gut	microbiota.	However,	previous	
studies	 using	 a	 diversity	 of	 statistical	 approaches	 suggested	 that	
parallel	 shifts	 of	 the	 gut	 microbiota	 are	 not	 necessarily	 expected	
or	commonly	observed.	For	example,	across	several	model	systems	
of	parallel	trophic	divergence,	gut	microbiota	parallelism	has	previ-
ously	been	reported	only	for	African	cichlids	(Baldo	et	al.,	2017)	and	
benthic	and	limnetic	threespine	stickleback	(Rennison	et	al.,	2019).	
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There	has	been	no	conclusive	evidence	presented	to	suggest	gut	mi-
crobiota	parallelism	in	Nicaraguan	Midas	cichlids	(Härer	et	al.,	2020),	
lake	whitefish	(Sevellec	et	al.,	2018)	or	Trinidadian	guppies	(Sullam	
et al., 2015).

The	 variation	 in	 gut	microbiota	 parallelism	 described	 in	 previ-
ous	studies	might	be	biologically	real	or	could	be	due	to	differences	
in	 the	methodological	approaches	used,	which	 limits	our	ability	 to	
make	inferences	across	systems.	Different	statistical	methods	were	
used	 to	 analyze	 the	 gut	microbiota	 data	 of	 these	 species;	 four	 of	
the	studies	used	permutational	analysis	of	variance	(PERMANOVA)	
to	determine	the	effects	of	ecotype,	the	environment,	and	their	in-
teraction	to	infer	parallelism.	One	study	on	African	cichlids	further	
inferred	parallelism	based	on	PCoA	scores	of	 the	 first	axes	 (Baldo	
et al., 2017).	A	drawback	of	such	approaches	is	that	gut	microbiota	
changes	 are	 scored	 as	 parallel	 or	 non-	parallel	 in	 a	 binary	manner,	
based	on	a	given	significance	threshold.	Such	methods	also	do	not	
provide	estimates	of	the	magnitude	of	change.	Thus,	we	lack	quan-
titative	 information	on	the	extent	and	variation	of	 (non)parallelism	
(Figure 1c).	Multivariate	vector	analysis	allows	quantification	of	vari-
ation	 across	 independent	 population	 pairs.	When	 applied	 to	 large	
data	 sets,	 the	 method	 can	 facilitate	 identification	 of	 factors	 that	

underlie	variation	in	parallelism.	This	is	important	as	we	know	that	
a	multitude	of	genetic,	 ecological,	 and	physiological	 factors	 affect	
the	composition	of	microbial	communities	in	different	host	lineages,	
including	teleost	fishes	(Amato	et	al.,	2019;	Baldo	et	al.,	2017;	Bletz	
et al., 2016;	 Bolnick,	 Snowberg,	Hirsch,	 Lauber,	Org,	 et	 al.,	2014; 
Burns	et	al.,	2017;	Zhang	et	al.,	2016).	When	applied	to	our	six	case	
studies,	we	found	similar	results	as	other	statistical	methods;	there	
was	only	strong	evidence	of	parallelism	among	population	pairs	of	
African	cichlids,	and	weaker	evidence	for	benthic-	limnetic	threespine	
stickleback	(Figure 2a,	b).	The	consistency	of	these	results	highlights	
the	suitability	of	multivariate	vector	analysis	for	studying	microbiota	
parallelism,	with	 the	 added	value	of	 quantitative	data	 that	 can	be	
used in direct hypothesis testing.

4.2  |  Methodological considerations

We	tested	whether	methodological	aspects,	 such	as	 the	choice	of	
metric	 for	 determining	 differences	 in	 bacterial	 community	 com-
position	 (e.g.,	 Bray–	Curtis	 dissimilarity,	 weighted	 and	 unweighted	
UniFrac)	or	the	taxonomic	level	at	which	microbial	communities	are	

F I G U R E  3 Estimates	of	direction	(left	
column)	and	magnitude	(right	column)	
of	gut	microbiota	change	did	not	differ	
substantially	with	the	taxonomic	level	
used	for	multivariate	vector	analysis.
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studied,	affect	estimates	of	direction	and	magnitude	of	gut	microbi-
ota	change.	We	detected	strong	correlations	among	angle	estimates	
generated	 using	 the	 different	 metrics	 (Figure	 A1),	 and	 statistical	
significance	 of	 parallelism	 was	 generally	 consistent	 across	 differ-
ent	metrics	for	both	taxonomic	composition	(Table	A4)	and	inferred	
metagenome	function	(Table	A5).	This	suggests	that	the	parallelism	
estimates	from	multivariate	vector	analysis	are	not	strongly	affected	
by	the	choice	of	diversity	metric.	It	should	be	noted	that	multivari-
ate	vector	analysis	is	not	restricted	to	analyzing	data	from	principal	
coordinates	 analysis	 (PCoA);	 data	 from	 other	 ordination	methods,	
such	 as	 non-	metric	multidimensional	 scaling	 (NMDS),	 can	 also	 be	
used	as	input	for	the	analysis.	NMDS	data	have	been	used	in	a	paral-
lelism	analysis	of	the	threespine	stickleback	gut	microbiota,	and	the	
results	are	qualitatively	similar	to	the	PCoA	analysis	reported	here	
(Rennison	 et	 al.,	 2019).	 Further,	 results	 were	 robust	 across	 taxo-
nomic	levels	(Figure 3),	which	was	a	bit	surprising	as	the	composition	
of	microbial	communities	might	be	more	stochastic	at	 lower	 taxo-
nomic	levels.	Thus,	predictability	of	microbiota	change	(i.e.,	parallel-
ism)	could	have	been	expected	to	be	stronger	at	higher	taxonomic	
levels.	However,	our	results	suggest	that	researchers	should	be	able	
to	tailor	the	taxonomic	level	to	the	needs	of	their	particular	study.

Previous	 studies	 utilized	 different	 approaches	 for	 signifi-
cance	 testing	 of	 angles	 from	multivariate	 vector	 analysis	 (Bolnick	
et al., 2018; Rennison et al., 2019).	One	study	suggested	that	to	infer	
parallelism,	methods	should	be	based	on	the	distribution	of	random	
angles,	 which	 depends	 on	 data	 dimensionality	 (Watanabe,	 2022),	
rather	 than	 testing	 against	 a	 certain	 angle	 (e.g.,	 90°).	 Fortunately,	
in	 highly	multidimensional	 space,	 such	 as	 that	 of	microbiota	 data,	
random	angles	approximately	follow	a	normal	distribution	centered	
around	 90°	 (Watanabe,	 2022).	 Hence,	 we	 argue	 that	 one-	sample	

t-	tests	comparing	the	mean	angles	of	our	empirical	data	against	the	
null	expectation	of	90°	is	a	useful	first	test	of	parallelism.	However,	
given	that	 the	90°	value	 is	only	a	 rough	approximation,	we	 imple-
mented	two	additional	statistical	analyses	to	test	for	significant	par-
allelism.	We	used	Monte	Carlo	simulations	to	compare	the	estimated	
mean	empirical	angles	against	a	multidimensional	null	distribution.	
We	further	implemented	Rayleigh	tests	which	test	for	the	unimodal	
concentration	 of	 directional	 vectors	 (Mardia	 et	 al.,	 1979).	 Across	
these	three	statistical	methods,	we	obtained	 largely	consistent	re-
sults.	Since	each	statistical	approach	tests	for	a	different	property	
(see	Watanabe,	 2022	 for	 a	 more	 detailed	 discussion),	 the	 use	 of	
multiple	approaches	helps	obtain	a	more	comprehensive	and	robust	
picture	of	whether	changes	of	the	gut	microbiota	are	consistent	with	
a	parallel,	orthogonal,	or	anti-	parallel	pattern	of	change	(Figure 1c).

Multivariate	vector	analysis	was	developed	for	studying	a	range	
of	phenotypic	traits	(Adams	&	Collyer,	2009),	and	has	been	used	to	
study	morphological	and	behavioral	parallelism	(Stuart	et	al.,	2017).	
Only	one	study	has	applied	this	approach	for	studying	gut	microbiota	
parallelism	 in	 threespine	 stickleback	 (Rennison	et	 al.,	2019),	 hence,	
many	open	questions	remain	considering	the	application	of	multivar-
iate	 vector	 analysis	 in	microbiota	 research.	 The	 highly	 diverse	 and	
dynamic	 nature	 of	 microbial	 communities	 (e.g.,	 Smits	 et	 al.,	 2017; 
Youngblut	et	al.,	2019)	could	affect	the	interpretation	of	parallelism	
estimates.	For	example,	more	work	is	needed	to	determine	how	mi-
crobiota	dispersion	within	populations	and	overlap	among	host	pop-
ulations	 can	 affect	 parallelism	estimates,	 as	well	 as	 their	 biological	
implications.	 Simulations	 of	microbiota	 data	 could	 be	 leveraged	 to	
quantify	how	variation	in	these	factors	affects	the	range	of	possible	
angles	observed,	which	would	improve	the	interpretation	of	parallel-
ism	estimates.	At	the	same	time,	more	empirical	studies	are	needed	

F I G U R E  4 Levels	of	gut	microbiota	
(non)parallelism	were	strongly	correlated	
for	gut	microbiota	composition	and	
function	for	population	pairs	(a)	and	the	
outgroup	comparisons	(c);	the	dashed	
line	has	a	slope	of	1.	There	was	only	
suggestive	evidence	for	a	difference	
in	angles	between	gut	microbiota	
composition	and	function	for	population	
pairs	(b)	but	not	for	the	outgroup	
comparison	(d).	Information	on	the	
populations	used	for	each	analysis	are	
stated	in	Table	A1. †p < .1.
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to	obtain	a	comprehensive	picture	of	microbiota	parallelism	in	a	phy-
logenetically	and	geographically	broad	range	of	host	lineages.

4.3  |  Progress and prospects in implementing 
multivariate vector analysis

Multivariate	vector	analysis	quantifies	changes	in	microbial	commu-
nities	and	enables	testing	the	effects	of	ecological	or	genetic	factors	
on	 parallelism.	Across	 six	model	 systems	of	 parallel	 evolution,	we	
observed	extensive	variation	in	gut	microbiota	parallelism	(Figure 2),	
and	we	sought	to	conduct	preliminary	analyses	to	explore	some	of	
the	factors	that	might	affect	parallelism.	For	example,	we	found	that	
changes	 in	gut	microbiota	 function	might	be	more	parallel	 than	 in	
taxonomic	composition,	which	 is	 in	 line	with	 findings	of	 individual	
studies	 (Figure 4)	 (Härer	 et	 al.,	2020; Rennison et al., 2019).	 This	
pattern	 could	 be	 explained	 by	 the	 functional	 redundancy	 within	
microbial	 communities	 (Ley	 et	 al.,	 2006).	 Variation	 in	 taxonomic	
composition	might	be	produced	by	historical	 contingency,	 priority	
effects	or	microbial	dispersal	ability	(Costello	et	al.,	2012;	Martinez	
et al., 2018).	Yet,	 taxonomically	distinct	bacterial	 taxa	can	provide	
similar	metabolic	functions,	potentially	causing	stronger	signatures	
of	parallelism	in	gut	microbiota	function	when	hosts	adapt	to	simi-
lar	 ecological	 niches.	 At	 the	 same	 time,	 parallelism	 estimates	 for	
gut	microbiota	composition	and	 function	were	strongly	correlated	
(Figure 4),	 indicating	that	similar	factors	shape	the	extent	of	paral-
lelism.	We	 suggest	 that	work	 integrating	 parallelism	 estimates	 for	
both	composition	and	function	from	a	variety	of	disparate	host	taxa	
is	needed	to	explore	this	pattern	further.	But,	it	 is	important	to	be	
cautious	when	 interpreting	 results	 on	 inferred	metagenome	 func-
tion	using	tools	such	as	PICRUSt2,	particularly	in	non-	model	organ-
isms	(Douglas	et	al.,	2020);	the	reliability	of	metagenome	prediction	
highly	 depends	 on	 the	 database	 of	 available	 bacterial	 genomes,	
which	can	vary	across	host	organisms	(Sun	et	al.,	2020).

Shifts	in	gut	microbial	communities	were	found	to	be	most	par-
allel	among	population	pairs	when	 the	overall	magnitude	of	diver-
gence	(meanL)	was	greatest	(Figure	A5);	this	raises	the	question	of	
whether	substantial	divergence	in	the	gut	microbiota	might	indicate	
shared	 adaptive	 changes.	 Strong	 selection	 pressures	 may	 lead	 to	
more	 determinism	 in	 microbial	 community	 assembly	 and,	 conse-
quently	stronger	microbiota	parallelism.	 In	contrast,	when	there	 is	
little	microbiota	divergence,	differences	might	be	produced	mainly	
by	 stochastic	 processes,	 e.g.,	 priority	 effects	 and	 drift	 (Martinez	
et al., 2018).	These	processes	are	unlikely	to	generate	similar	micro-
biota	shifts,	and	theoretical	work	suggests	that	parallelism	may	only	
be	seen	when	the	selection	landscape	is	highly	parallel	(Thompson	
et al., 2019).	For	morphological	traits	and	genetic	divergence,	it	has	
been	shown	that	the	degree	of	environmental	variation	among	evo-
lutionary	 replicates	 directly	 predicts	 the	magnitude	 of	 parallelism	
based	on	multivariate	 vector	 analysis	 (Stuart	 et	 al.,	2017).	 If	more	
similar	 selection	 pressures	 translate	 to	more	 parallel	 host	 pheno-
typic	and	ecological	change,	 this	could	 lead	 to	similar	shifts	 in	mi-
crobial	 communities.	Accordingly,	 host	 adaptation	 to	 similar	 diets,	

when	 accompanied	by	 changes	 in	 gut	morphology,	 is	 expected	 to	
promote	gut	microbiota	parallelism	(Baldo	et	al.,	2017;	Ley,	Hamady,	
et al., 2008; Muegge et al., 2011),	whereas	adaptation	to	different	
diets	could	lead	to	gut	microbiota	anti-	parallelism.	Yet,	strong	paral-
lelism	could	also	be	explained	by	variation	in	environmental	factors,	
as	seen	in	our	outgroup	comparisons	(Figure 2c, d).	In	these	settings,	
focal	populations	and	the	outgroups	 live	 in	strongly	differentiated	
environments	 (Barluenga	 &	 Meyer,	 2010;	 Ormond	 et	 al.,	 2011; 
Torres-	Dowdall	et	al.,	2017),	suggesting	that	similar	patterns	of	di-
vergence	(parallelism)	might	be	primarily	driven	by	abiotic	(physico-
chemical	properties)	and	biotic	(microbial	communities)	differences	
between	 environments,	 in	 addition	 to	 or	 instead	 of	 host	 trophic	
ecology.	This	was	further	supported	by	findings	in	Midas	cichlids	and	
threespine	stickleback,	where	angles	did	not	appear	to	be	smaller	for	
comparisons	that	only	included	the	outgroup	and	a	certain	ecotype	
(i.e.,	 benthics	or	 limnetics)	 than	 for	 comparisons	 that	 included	 the	
outgroup	and	both	ecotypes	 (Figure	A7).	Yet,	one	should	be	care-
ful	when	drawing	conclusions	from	these	results	since	sample	sizes	
were	small.	Future	work	that	estimates	the	similarity	of	abiotic	and	
biotic	 factors	 among	 host	 populations	 will	 be	 key	 to	 determining	
whether	parallel	selective	regimes	generally	translate	to	parallelism	
in	changes	of	microbial	communities.

Variation	 in	microbial	 communities	 can	 be	 strongly	 associated	
with	host	phylogeny	and	the	extent	of	genetic	divergence	(Benson	
et al., 2010;	Brooks	et	al.,	2016; Goodrich et al., 2014; Li et al., 2017; 
Youngblut	et	al.,	2019);	 thus,	 increasing	genetic	 (and	phylogenetic)	
distance	 among	 hosts	 (Smith	 et	 al.,	 2015)	 could	 affect	 the	 like-
lihood	 of	 observing	 microbiota	 parallelism.	 Stronger	 parallelism	
might	be	predicted	for	host	lineages	that	split	earlier,	with	sufficient	
time	 to	diverge	ecologically.	Results	 from	Neotropical	 and	African	
cichlids hint at such an association; the very recently diverged cra-
ter	 lake	 Midas	 cichlids	 from	 Nicaragua	 (<5000 years	 ago)	 (Kautt	
et al., 2020)	showed	no	evidence	for	gut	microbiota	parallelism.	In	
contrast,	 there	was	 strong	 evidence	 in	much	 older	African	 cichlid	
lineages,	where	divergence	times	are	in	the	range	of	millions	of	years	
(Figure 2)	(Baldo	et	al.,	2017).	Threespine	stickleback	and	whitefish	
colonized	freshwater	lakes	after	the	last	ice	age	(<12,000 years	ago)	
and	formed	ecologically	distinct	species	pairs	adapted	to	different	
niches	 (Bernatchez	et	al.,	1999; Matthews et al., 2010;	Schluter	&	
Mcphail, 1992).	Yet,	we	only	detected	some	evidence	 for	parallel-
ism	 in	 benthic-	limnetic	 stickleback	 (Figure 2),	 suggesting	 that	 an	
association	with	 host	 divergence	 time	 is	 not	 necessarily	 expected	
in	 general.	 Parallelism	was	 also	 stronger	 in	 the	 outgroup	 compar-
isons	 (Figure 2),	which	 could	 be	 driven	 by	 stronger	 genetic	 diver-
gence	of	 the	outgroup	compared	to	 focal	populations	 (but	also	by	
environmental	 differences,	 see	 previous	 paragraph).	 However,	
for	 two	of	 the	study	systems	 (Midas	cichlids	and	threespine	stick-
leback)	 the	outgroup	and	 the	 focal	populations	 split	 very	 recently	
(<12,000 years),	 whereas	 population	 pairs	 of	 African	 cichlids	 split	
much	earlier.	Hence,	the	stronger	parallelism	in	the	outgroup	com-
parisons	cannot	be	explained	solely	by	host	divergence	time.	Again,	
a	diverse	sampling	of	host	taxa,	potentially	including	intra-		as	well	as	
interspecific	host	comparisons,	will	be	key	to	robustly	test	whether	
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divergence	time	is	a	key	factor	determining	patterns	of	gut	microbi-
ota	parallelism.

There	 are	numerous	possible	 uses	of	multivariate	 vector	 analy-
sis	 to	 investigate	changes	 in	host-	associated	microbial	 communities	
as	many	 genetic	 and	 ecological	 factors	may	 determine	 parallelism.	
For	example,	it	would	be	particularly	interesting	to	compare	patterns	
among	 trophic	 specialists	 and	 generalists.	 Specialists	might	 have	 a	
more	stable	gut	microbiota	compared	to	the	gut	microbiota	of	general-
ists,	which	is	expected	to	fluctuate	more	over	time	(Baniel	et	al.,	2021; 
Smits	 et	 al.,	2017).	 Thus,	 this	 variation	 in	 gut	microbiota	 plasticity	
(Kolodny	 &	 Schulenburg,	 2020)	 could	 affect	 observed	 parallelism.	
The	mode	of	gut	microbiota	transmission	could	be	another	interesting	
factor	to	consider	using	multivariate	vector	analysis.	The	acquisition	
of	 gut	microbiota	 from	 environmental	 sources	 (i.e.,	 horizontally)	 vs	
transfer	 from	mother	 to	child	 (i.e.,	vertically)	could	affect	 the	 likeli-
hood	of	observing	parallelism,	depending	on	whether	these	sources	
are	 shared	 among	 hosts	 (Mulder	 et	 al.,	 2009;	 Smith	 et	 al.,	 2015).	
Further,	multivariate	vector	analysis	could	also	be	leveraged	in	exper-
imental	studies	to	investigate	parallelism	associated	with	short-	term	
microbiota	shifts	in	response	to	environmental	changes,	for	example,	
after	a	host	organism	is	exposed	to	a	novel	diet	or	a	certain	pathogen.	
It	would	be	interesting	to	compare	the	extent	of	microbiota	parallel-
ism	 over	 short	 (ecological)	 and	 longer	 (evolutionary)	 timescales.	 To	
obtain	a	comprehensive	understanding	of	 the	evolutionary	ecology	
of	 the	gut	microbiota,	 future	studies	should	make	an	effort	 toward	
combining	quantitative	measures	with	a	diverse	range	of	genetic	and	
phenotypic	host	data,	as	well	as	environmental	data.

5  |  CONCLUSIONS

Our	 study	 exemplifies	 the	 use	 of	 multivariate	 vector	 analysis	 for	
studying	microbiota	dynamics,	 and	discusses	potential	 advantages	
compared	to	more	commonly	used	statistical	approaches.	By	using	
a	 common	 analytical	 framework,	 multivariate	 vector	 analysis	 al-
lows	 quantification	 of	 the	 direction	 and	magnitude	 of	 microbiota	
change.	 When	 applied	 across	 a	 broad	 range	 of	 host	 taxa,	 these	
estimates	can	be	leveraged	to	examine	general	patterns	of	repeat-
ability.	Combining	quantitative	estimates	with	host-	associated	and	
environmental	data	offers	the	possibility	to	improve	our	knowledge	
of	the	eco-	evolutionary	processes	that	shape	microbial	community	
dynamics.	Identification	of	these	factors	will	improve	our	ability	to	
predict	(putatively	adaptive)	shifts	in	microbial	communities.	Hence,	
we	encourage	further	adoption	of	quantitative	measures	for	study-
ing	microbiota	 dynamics	 during	 adaptive	 evolution	 of	 their	 hosts,	
particularly	in	settings	of	parallel	evolution.
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APPENDIX A

F I G U R E  A 1 Parallelism	estimates	among	different	gut	microbiota	composition	metrics	were	strongly	correlated	across	comparisons	of	(a)	
population	pairs	and	(b)	outgroups	vs	focal	populations.	Angles	calculated	from	the	multivariate	vector	analysis	are	indicated	on	the	x-  and y-	axes.
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F I G U R E  A 2 Parallelism	estimates	among	different	gut	microbiota	function	metrics	were	strongly	correlated	across	comparisons	of	(a)	
population	pairs	and	(b)	outgroups	vs	focal	populations.	Angles	calculated	from	the	multivariate	vector	analysis	are	indicated	on	the	x-  and 
y-	axes.
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F I G U R E  A 3 Histograms	showing	the	distribution	of	angles	among	population	pairs	for	gut	microbiota	composition	(left	column)	and	
function	(right	column).	The	vertical	dashed	line	represents	the	mean	angle	for	each	study	system,	and	the	multidimensional	distribution	of	
random	angles	is	illustrated	by	the	red	curves,	the	shape	of	a	curve	is	determined	by	the	number	of	PCoA	axes	included	in	each	analysis.
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F I G U R E  A 4 Across	population	pair	comparisons,	angles	for	gut	microbiota	function	were	significantly	smaller	than	for	composition	
(p < .001,	t =	5.5881)	when	only	considering	comparisons	that	showed	evidence	of	gut	microbiota	parallelism	(angles	<90°	for	composition	
and	function).

F I G U R E  A 5 The	strength	of	parallelism	(angles)	and	the	mean	magnitude	of	gut	microbiota	change	(meanL)	were	correlated	for	
composition	and	function	across	population	pair	comparisons	(a,	b);	the	more	parallel	gut	microbiota	changes	were	(i.e.,	smaller	angles),	the	
higher	the	magnitude	of	change.	No	correlation	was	observed	for	outgroup	vs	focal	population	comparisons	(c,	d).
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F I G U R E  A 6 Histograms	showing	the	distribution	of	angles	between	an	outgroup	and	focal	populations	for	gut	microbiota	
composition	(left	column)	and	function	(right	column).	The	vertical	dashed	line	represents	the	mean	angle	for	each	study	system,	and	the	
multidimensional	distribution	of	random	angles	is	illustrated	by	the	red	curves,	the	shape	of	a	curve	is	determined	by	the	number	of	PCoA	
axes	included	in	each	analysis.
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F I G U R E  A 7 For	the	outgroup	
comparisons,	we	tested	whether	
parallelism	is	stronger	among	focal	
populations	of	the	same	ecotype	
compared	to	focal	populations	of	
different	ecotypes	for	gut	microbiota	
composition	and	function	in	threespine	
stickleback	from	British	Columbia	(a,	
c)	and	Midas	cichlids	(b,	d).	The	three	
different	categories	include	angles	of	
“outgroup-	benthic	vs	outgroup-	benthic”,	
“outgroup-	benthic	vs	outgroup-	limnetic”	
or	“outgroup-	limnetic	vs	outgroup-	
limnetic”	comparisons.	We	did	not	
detect	evidence	that	angles	were	smaller	
when	only	comparing	among	the	same	
ecotype,	suggesting	that	parallelism	is	
mainly	driven	by	the	shared	adaptation	
to	a	common	environment	among	the	
focal	populations,	more	so	than	by	the	
adaptation	to	benthic	and	limnetic	niches	
specifically.
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TA B L E  A 1 Identity	of	populations/species	selected	from	each	dataset	that	were	included	in	our	study,	and	information	on	their	trophic	
ecology	or	habitat	types	as	well	as	sample	sizes.

Study system Population Sample size Category Population pairs
Outgroup vs focal 
populations

African	cichlids 250 bp/10,000 reads 250 bp/10,000 
reads

Tanganyika E. melanogenys 3 Carnivorous Tan 1 Carni 1

O. ventralis 2 Herbivorous Tan 1

A. fasciatus 5 Carnivorous Tan 2 Carni 2

V. moorii 2 Herbivorous Tan 2

P. straeleni 5 Carnivorous Tan 3 Carni 3

C. coloratus 3 Planktivorous Tan 3

G. pfefferi 3 Carnivorous Tan 4 Carni 4

I. loockii 2 Herbivorous Tan 4

S. pindu 3 Carnivorous Bar	1

Barombi	Mbo S. steinbachi 5 Herbivorous Bar	1 Outgroup

S. mariae 4 Carnivorous Bar	2

S. lohbergeri 5 Herbivorous Bar	2

Midas cichlids 250 bp/29,455 reads 250 bp/29,895 
reads

Nicaragua A. citrinellus 10 Outgroup Outgroup

Apoyo A. astorquii 20 Benthic Apoyo Crater 1

A. zaliosus 20 Limnetic Apoyo Crater 2

Xiloá A. amarillo 18 Benthic Xiloá Crater 3

A. sagittae 20 Limnetic Xiloá Crater 4

Threespine	stickleback	
-		British	Columbia

250 bp/125,000 reads 250 bp/98,000 
reads

Oyster	Lagoon G. aculeatus 5 Marine Outgroup

Little	Quarry G. aculeatus 5 Benthic Benthic	1 Lake 1

G. aculeatus 5 Limnetic Limnetic	1 Lake 2

Paxton G. aculeatus 5 Benthic Benthic	2 Lake 3

G. aculeatus 5 Limnetic Limnetic	2 Lake 4

Priest G. aculeatus 5 Benthic Benthic	3 Lake	5

G. aculeatus 5 Limnetic Limnetic	3 Lake 6

Threespine	stickleback	
-		Oregon

150 bp/24,966 reads

Siuslaw G. aculeatus 22 Freshwater Fresh	1

G. aculeatus 13 Estuary Est	1

Umpqua G. aculeatus 19 Freshwater Fresh	2

G. aculeatus 19 Estuary Est	2

Lake	whitefish 250 bp/3000 reads

Cliff C. clupeaformis 11 Dwarf Dwarf	1

C. clupeaformis 12 Normal Normal	1

East C. clupeaformis 7 Dwarf Dwarf	2

C. clupeaformis 12 Normal Normal	2

Indian C. clupeaformis 11 Dwarf Dwarf	3

C. clupeaformis 13 Normal Normal	3

Temiscouata C. clupeaformis 10 Dwarf Dwarf	4

C. clupeaformis 14 Normal Normal	4

(Continues)
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Study system Population Sample size Category Population pairs
Outgroup vs focal 
populations

Webster C. clupeaformis 3 Dwarf Dwarf	5

C. clupeaformis 11 Normal Normal	5

Trinidadian guppies 250 bp/1000 reads

Aripo P. reticulata 5 Low predation Low pred 1

P. reticulata 5 High	predation High	pred	1

Guanapo P. reticulata 4 Low predation Low pred 2

P. reticulata 3 High	predation High	pred	2

Marianne P. reticulata 5 Low predation Low pred 3

P. reticulata 5 High	predation High	pred	3

Quare P. reticulata 5 Low predation Low pred 4

P. reticulata 5 High	predation High	pred	4

Note:	Please	note	that	one	species	of	African	cichlids	(C. coloratus)	is	planktivorous;	it	was	included	in	our	analyses	to	provide	another	comparison	
since	it	showed	gut	microbiota	variation	from	the	carnivorous	P. straeleni	in	the	same	direction	as	other	herbivorous	species	along	the	major	axis	of	
differentiation	(Baldo	et	al.,	2017).	Different	subsets	were	used	in	the	population	pair	and	outgroup	vs	focal	species	analyses.	For	African	cichlids,	
the	herbivorous	species	from	Barombi	Mbo	(S. steinbachi)	represents	an	outgroup	to	the	carnivorous	species	from	Tanganyika	based	on	a	recent	
phylogeny	(Irisarri	et	al.,	2018).	For	threespine	stickleback	and	Midas	cichlids,	outgroups	are	inferred	ancestral	populations	that	repeatedly	colonized	
novel	environments	(Bell	&	Foster,	1994; Kautt et al., 2020).	Sequencing	read	lengths	and	rarefaction	depths	used	for	all	analyses	are	stated	in	bold	
for	each	study	system	and	type	of	comparison.

TA B L E  A 1 (Continued)

TA B L E  A 2 Information	on	sequencing	platforms,	amplified	region	and	data	archiving	for	all	datasets	included	in	this	study.

Study system References Sequencing platform Amplicon Archive

African	cichlids Baldo	et	al.	(2017) Illumina	MiSeq 16 S	V3-	V4 PRJNA341982	(NCBI)

Midas cichlids Härer	et	al.	(2020) Illumina	HiSeq	2500 16 S	V4 PRJNA615202	(NCBI)

Threespine	stickleback Rennison	et	al.	(2019) Illumina	MiSeq 16 S	V4 PRJNA475955	(NCBI)

Threespine	stickleback Steury	et	al.	(2019) Illumina	HiSeq	4000 16 S	V4 PRJNA657232	(NCBI)

Lake	whitefish Sevellec	et	al.	(2018) Illumina	MiSeq 16 S	V3-	V4 PRJNA394764	(NCBI)

Trinidadian guppies Sullam	et	al.	(2015) 454	GS	FLX	Titanium 16 S	V1-	V3 PRJNA259592	(NCBI)

Study Mean (NSTI) Median (NSTI)
Proportion 
ASVs > 2

African	cichlids	(population	pairs) 0.465 0.366 0.005

African	cichlids	(outgroup	vs	focal	
populations)

0.45 0.346 0.008

Threespine	stickleback	-		British	Columbia	
(population	pairs)

0.853 0.061 0.031

Threespine	stickleback	-		British	Columbia	
(outgroup	vs	focal	populations)

0.532 0.102 0.028

Trinidadian	guppies	(population	pairs) 0.606 0.072 0.06

Lake	whitefish	(population	pairs) 2.689 0.078 0.147

Threespine	stickleback	-		Oregon	
(population	pairs)

1.231 0.332 0.073

Midas	cichlids	(population	pairs) 0.939 0.156 0.039

Midas	cichlids	(outgroup	vs	focal	
populations)

0.898 0.158 0.037

Note:	Across	the	study	systems,	a	larger	proportion	of	ASVs	was	below	this	cutoff	(85.3–	99.5%).	
Mean	and	median	NSTI	scores	ranged	from	0.45–	2.689	and	0.072–	0.366,	respectively.

TA B L E  A 3 Inferred	metagenome	
function	was	predicted	with	the	PICRUSt2	
plugin	in	QIIME2	with	a	maximum	
nearest-	sequenced	taxon	index	(NSTI)	
cutoff	of	2,	and	reads	above	this	value	
were	discarded	for	these	analyses.
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Taxonomic composition -  study system Mean (γ) p- value

African	cichlids

Population	pairs:	Bray-	Curtis	(37) 68.889 6.29E−06

Population	pairs:	Unweighted	UniFrac	(41) 66.245 5.94E−08

Population	pairs:	Weighted	UniFrac	(28) 57.158 7.09E−06

Outgroup	vs	focal	populations:	Bray-	Curtis	(16) 42.695 5.92E−04

Outgroup	vs	focal	populations:	Unweighted	UniFrac	(16) 50.373 3.34E−04

Outgroup	vs	focal	populations:	Weighted	UniFrac	(13) 60.667 .023

Threespine	stickleback	-		British	Columbia

Population	pairs:	Bray-	Curtis*	(26) 81.016 .087

Population	pairs:	Unweighted	UniFrac	(28) 87.471 .119

Population	pairs:	Weighted	UniFrac*	(21) 80.844 .625

Outgroup	vs	focal	populations:	Bray-	Curtis	(30) 56.421 1.15E−09

Outgroup	vs	focal	populations:	Unweighted	UniFrac	(33) 49.217 7.41E−15

Outgroup	vs	focal	populations:	Weighted	UniFrac	(23) 59.771 2.80E−07

Lake	whitefish

Population	pairs:	Bray-	Curtis	(80) 90.132 .511

Population	pairs:	Unweighted	UniFrac	(98) 85.056 .072

Population	pairs:	Weighted	UniFrac	(60) 90.407 .531

Trinidadian guppies

Population	pairs:	Bray-	Curtis	(39) 105.606 .899

Population	pairs:	Unweighted	UniFrac	(29) 91.043 .599

Population	pairs:	Weighted	UniFrac	(21) 87.682 .366

Midas cichlids

Outgroup	vs	focal	populations:	Bray-	Curtis	(73) 42.179 3.26E−05

Outgroup	vs	focal	populations:	Unweighted	UniFrac	(87) 47.776 1.04E−05

Outgroup	vs	focal	populations:	Weighted	UniFrac	(54) 55.921 5.42E−04

Note:	Statistical	significance	was	determined	at	the	.05	level	and	results	were	highly	consistent	
across	metrics,	only	for	threespine	stickleback	from	British	Columbia	and	lake	whitefish	did	we	
detect	some	suggestive	evidence	(p < .1)	for	parallelism	for	one	of	the	three	metrics,	but	not	in	the	
other	two.	We	performed	one-	sample	t-	tests	when	data	was	normally	distributed;	for	data	with	
non-	normal	distribution	one-	sample	Wilcoxon	signed-	rank	tests	were	used	(indicated	by	asterisks).	
The	dimensionality	of	each	data	set	is	indicated	in	brackets.
p	values	between	.05	and	0.1	are	indicated	in	bold	and	italics,	p	values	below	.05	are	indicated	in	
bold.

TA B L E  A 4 Comparison	of	mean	angles	
and	statistical	tests	for	parallelism	(angles	
<90°)	for	taxonomic	composition	of	the	
gut	microbiota	across	three	different	
metrics:	Bray–	Curtis	dissimilarity,	
weighted	and	unweighted	UniFrac.
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Metagenome function -  study system Mean (γ) p- value

African	cichlids

Population	pairs:	PWAB	(27) 38.923 2.73E−09

Population	pairs:	EC*	(30) 35.546 3.05E−05

Population	pairs:	KO*	(29) 41.443 3.05E−05

Outgroup	vs	focal	populations:	PWAB	(12) 85.38 .425

Outgroup	vs	focal	populations:	EC	(12) 80.94 .341

Outgroup	vs	focal	populations:	KO	(11) 82.325 .351

Threespine	stickleback	-		British	Columbia

Population	pairs:	PWAB	(21) 88.045 .471

Population	pairs:	EC	(20) 89.19 .488

Population	pairs:	KO	(20) 84.645 .413

Outgroup	vs	focal	populations:	PWAB	(23) 60.485 1.93E−04

Outgroup	vs	focal	populations:	EC	(29) 54.664 4.77E−06

Outgroup	vs	focal	populations:	KO	(22) 53.186 2.36E−06

Lake	whitefish

Population	pairs:	PWAB	(65) 91.112 .566

Population	pairs:	EC	(68) 90.883 .552

Population	pairs:	KO	(64) 91.456 .584

Trinidadian guppies

Population	pairs:	PWAB	(28) 95.56 .69

Population	pairs:	EC	(28) 94.729 .716

Population	pairs:	KO	(28) 97.021 .766

Midas cichlids

Outgroup	vs	focal	populations:	PWAB	(54) 31.761 1.29E−05

Outgroup	vs	focal	populations:	EC	(57) 32.745 2.20E−05

Outgroup	vs	focal	populations:	KO	(55) 28.123 7.62E−06

Note:	Statistical	significance	was	determined	at	the	.05	level	and	results	were	consistent	across	
metrics	for	all	study	systems.	We	performed	one-	sample	t-	tests	when	data	was	normally	
distributed;	for	data	with	non-	normal	distribution	one-	sample	Wilcoxon	signed-	rank	tests	were	
used	(indicated	by	asterisks).	The	dimensionality	of	each	data	set	is	indicated	in	brackets.
p	values	between	.05	and	0.1	are	indicated	in	bold	and	italics,	p	values	below	.05	are	indicated	in	
bold.

TA B L E  A 5 Comparison	of	mean	angles	
and	statistical	tests	for	parallelism	(angles	
<90°)	for	inferred	metagenome	function	
across	three	different	metrics	based	
on	bray–	Curtis	dissimilarity:	MetaCyc	
pathway	abundances	(PWAB),	enzyme	
commission	numbers	(EC)	and	Kyoto	
encyclopedia	of	genes	and	genomes	
orthologs	(KO).
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