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Abstract

Objective—Seizure frequency variability is associated with placebo responses in randomized 

controlled trials (RCT). Increased variability can result in drug misclassification and, hence, 

decreased statistical power. We investigated a new method that directly incorporated variability 

into RCT analysis, ZV.

Methods—Two models were assessed: the traditional 50%-responder rate (RR50), and the 

variability-corrected score, ZV. Each predicted seizure frequency upper and lower limits using 

prior seizures. Accuracy was defined as percentage of time-intervals when the observed seizure 

frequencies were within the predicted limits. First, we tested the ZV method on three datasets 

(SeizureTracker: n=3016, Human Epilepsy Project: n=107, and NeuroVista: n=15). An additional 
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independent SeizureTracker validation dataset was used to generate a set of 200 simulated trials 

each for 5 different sample sizes (total N=100 to 500 by 100), assuming 20% dropout and 30% 

drug efficacy. “Power” was determined as the percentage of trials successfully distinguishing 

placebo from drug (p<0.05).

Results—Prediction accuracy across datasets was, ZV: 91–100%, RR50: 42–80%. Simulated 

RCT ZV analysis achieved >90% power at N=100 per arm while RR50 required N=200 per arm.

Significance—ZV may increase the statistical power of an RCT relative to the traditional RR50.
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1. Introduction

There is a need for new epilepsy drugs, given the 35% prevalence of drug-resistant 

epilepsy1,2. However, drug development remains challenging due to high expense and 

frequent trial failure. Trials suffered from rising placebo response rates over the past several 

decades3, typically 4–27%4 but recently up to 40%5. This can translate into unsuccessful 

trials6, increased sample size, and increased development costs7. Seizure frequency 

variability at the patient level, typically unreported, may explain a significant portion of 

placebo responses, because natural frequency fluctuations are sufficiently large to produce a 

“response” even without treatment8. Uncertainty about variability may hamper randomized 

clinical trial (RCT) interpretation. With current methods, variability represents “noise” 

obscuring the drug efficacy “signal”. With lower noise, trials are expected to cost less and 

have fewer failures.

The RR50 (the percentage of patients with 50% seizure reduction in each trial arm), is the 

preferred outcome measure of the European Medicines Agency (EMA)9. The U.S. Food and 

Drug Administration prefers median-%-change (MPC). Trials typically require co-primary 

RR50 and MPC endpoints. RR50 is less statistically efficient than MPC10, and typically 

used in power calculations for patient enrollment. However, based on recent evidence, the 

RR50 likely overestimates clinically relevant measures8. Simulations based on 1767 patient 

seizure diaries show that many RCT 50%-responders may subsequently become non-

responders due to large natural variability. Consequently, models incorporating expected 

variability may improve epilepsy RCT interpretability, generalizability, and efficiency. 

Obviously, such models would only be of use if adopted by regulatory agencies.

Standard clinical practice includes implicit judgments about natural variability as well. 

Physicians are expected to make medication changes based on whether seizure rates have 

exceeded some arbitrary upper bound. If a drug adjustment results in rate decreases below an 

arbitrary lower boundary, the adjustment is considered beneficial. For patients with years of 

seizure-freedom, variability computations are irrelevant. But if seizure-freedom is short-

lived, measured over a short duration, or if the patient is not seizure-free, no formal clinical 

tools exist to calculate expected bounds on seizure rates.
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Clinicians and trialists would benefit from a robust method for predicting natural seizure 

frequency variability. This study represents the first attempt to account for the impact of 

variability on seizure frequency measurements, using a multi-modal data-driven approach.

2. Materials and Methods

2.1. Overview

This work presents a novel method for assessing RCTs called ZV (Methods 2.2). ZV and 

RR50 were compared in their ability to predict seizure frequencies several months into the 

future (Figure 1, Methods 2.3). In three datasets, each patient diary was divided into 6-

month intervals to mimic typical RCT duration11. In each interval, early seizure rates were 

used to predict later rates using RR50 and ZV.

To assess ZV utility in an RCT (Figure 2), we generated a set of simulated clinical trials 

based on realistic seizure data (Methods 2.4). Five sets of 200 trials each included 100, 200, 

300, 400 or 500 patients. Statistical power was computed for each series, and each 

calculation method (RR50, MPC and ZV), to determine the minimum number of patients 

needed for the trial to achieve 90% power for each method.

2.2. The variability-corrected ZV method

The ZV model assumed seizure frequency variability during both experimental and baseline 

periods remained unchanged. Typically, “seizure frequency” refers to a 28-day seizure 

count; here, we focus on 14-day seizure counts. For mathematical simplicity, an individual’s 

seizure frequencies were assumed to follow a Gaussian distribution. Each patient’s seizure 

count for each 2-week interval of time was represented by Ci,j, the count of the ith interval in 

the jth patient. Because we chose a 2-month baseline (Figure 1), 4 intervals of 2-weeks were 

considered. The model calculated an estimated mean ( ), and standard deviation ( ) 

of the set of Ci,j‘s during the baseline (Equations 1,2), with the 4 values of Ci,j (M=4):

(Eq. 1)

(Eq. 2)

The ZV model assumes under the null hypothesis (i.e. no treatment effect) that the patient-

specific experimental period standard deviation and mean (  and ) are equal to 

those of the baseline period. Equations 3 and 4 predicts the seizure frequency distribution 

during the 6 experimental phase intervals for null treatments:

(Eq. 3)
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(Eq. 4)

During the 3-month experimental period, the parameter ZV (i, j) was computed for the ith 2-

week interval seizure count (Ci,j) of the jth patient, in the form of a negative Z score (see 

Figure 2A):

(Eq. 5)

Note that ZV (i,j) has a negative sign in front by convention, to ensure positive values when 

seizure frequency decreases (a central goal in epilepsy clinical trials). For instance, if a 

patient had a rate of 10±3 seizures/interval (i.e. ) during baseline and C1,j 

was 1 during the first 2-week interval of the experimental phase then ZV (1,j) would be 3. In 

this context, 3 indicates that the seizure rate in 1st 2-week interval showed a decrease 3 

standard deviations below the baseline rate. As a second example, if that patient’s next 2-

week interval with 13 seizures, the ZV (2,j) would be −1, representing an increase in 

expected rate by 1 standard deviation above baseline.

To obtain an overall estimate of trial success (Figure 2B), ZV was compared between the two 

arms of a trial using mixed effects model with an order-1 autocorrelation (AR1) structure. 

Each patient can contribute up to 6 ZV observations during the experimental phase, 

depending on whether and when dropout occurs. The mixed effects model controls for 

random effects of individual patients, and for (potential) correlation structure between 

repeated measures. It adjusts weights from patient data based on the amount of information 

present allowing for dropout. The AR1 structure was selected because there may be some 

degree of “memory” in longitudinal seizure counts12.

In the unusual case where , ZV is undefined. This case occurs when all baseline Ci,j 

values are identical. To prevent ZV being undefined, the following equation is applied:

(Eq. 6)

In the case of four baseline values (M=4), we force .

2.3. Prediction testing

2.3.1. Data—Data came from three patient diary databases (Table 1). Each dataset was 

managed in de-identified format, consistent with NIH Office of Human Subject Research 

Protections, Protocol #12301. For each dataset, data were redacted into diary format. 

Patients were not required to have fixed, unchanging medication regimens; some changed 

their medications often. Due to incomplete information on medication changing as well as 

medication compliance, these factors were not formally addressed.
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The first study (NeuroVista) utilized subdural electrodes which were chronically implanted 

in 15 patients as part of a seizure warning system13. Despite low enrollment, the NeuroVista 

study represents the longest completely characterized seizure dataset available. All patients 

were adults with confirmed focal epilepsy. The data consisted of several types of seizures: 

type 1, which were clinical seizures (reported or confirmed to be clinical by audio review) 

that had electrographic correlation; type 2, unconfirmed clinical (unreported) seizures with 

electrographic pattern identical to type 1; and type 3, subclinical, non-reported seizures with 

electrographic patterns that differed from types 1 and 2. Patients maintained implants for 7– 

24 months (median 12). All electrographic seizure patterns were confirmed by visual 

inspection from a qualified epileptologist.

A second dataset was obtained from the Human Epilepsy Project (HEP)14, an ongoing 

multi-center study based on a highly screened set of adult patients with focal epilepsy. 

Patients were enrolled early in their diagnosis, and had comprehensive data recording, 

including self-reported data quality measures. Data included all 263 patients enrolled 

between July 2012 to March 2016. This second dataset represents one of the most reliable 

patient-reported seizure databases available, because of the extensive physician oversight 

and independent review of data. Diary data for each patient tracked between 1–46 months 

(median 16).

A third dataset was obtained from SeizureTracker.com15, a free online, mobile service, 

representing one of the world’s largest patient-managed seizure diary databases. The 

database includes adults and children with focal or generalized epilepsy. The SeizureTracker 

database consisted of a data export of all consecutive data entered from the project start in 

December 2007 through October 2015, comprising 12,946 patients and 1,060,680 seizures. 

A second export of SeizureTracker (October 2015 through May 2016) was obtained for a 

validation stage (see section 2.5 below) adding 149,356 new seizures from 1835 patients 

(846 of whom were new patients).

2.3.2. Preprocessing—Some preprocessing was required to ensure data interpretability. 

In all three datasets, we required each patient to have at least six months of diary data and at 

least six seizures recorded to be included for further analysis (see Table 1). A minimum 

duration was required because simulations were standardized to 6-month blocks.

The SeizureTracker data required additional preprocessing to reduce noise, as there was no 

physician curating the original database. Repeated patient profiles were removed. Seizures 

reported to occur after the export date were excluded. Seizures reported with identical start 

times were removed except for the first one, under the assumption that these represented 

erroneous repeat entries. Seizures erroneously reported to occur prior to patients’ date of 

birth were excluded. Patients with unreported or impossible ages were excluded due to 

difficulty in verifying seizure dates.

2.3.3. Prediction Testing—To test the accuracy of prediction of seizure frequency, we 

simulated a series of 6-month clinical trials of using the three datasets. Diary data was 

segmented into as many 6-month trial periods as available, comprising 2 months of baseline, 

a skipped titration month, and a 3-month experimental phase. The number of seizures in 
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each two-week block within each trial period was represented by Ci,j (the ith 2-week seizure 

count, for the jth patient). Because seizures are very rapid events typically lasting less than 

two minutes16, truncation of events at the edges of 2-week segments was considered 

unnecessary.

Two approaches for seizure frequency predictions were tested on the individual patient level 

(Figure 1), the RR50 and the ZV methods. For the ZV method, the 95%-confidence limits of 

expected experimental Ci,j rates were computed:

(Eq. 7)

The RR50 model has been required by the EMA for traditional epilepsy RCTs, and therefore 

has been employed for many years. It makes no assumptions about the distribution (unlike 

the Gaussian assumption of the ZV model). Rather, it only specifies the lower limit of the 2-

week counts during the experimental phase from the jth patient (Ci,j) as follows:

(Eq. 8)

Predictions from Models ZV and RR50 were tested for each available trial period, of each 

available patient, within each dataset. The duration of an individual’s diary was defined as 

the time including the first through the last reported seizure entry. This was done to avoid the 

association with “diary fatigue”, wherein a patient stops recording entries despite ongoing 

events.

Each 2-week seizure count of the experimental period (Ci,j) was compared to the predicted 

range (i.e. Eq.7 and 8). The number of Ci,j values that were within the predicted range was 

tallied.

An example: suppose the jth patient had a baseline rate of , and . During 

the experimental phase, the third 2-week count C3,j = 4. Under the RR50 model (Eq. 8), the 

predicted limits would be [5, ∞), so C3,j would be noted as a ‘failure’ of the prediction. 

Under the ZV model (Eq. 7), the same C3,j would be within predicted limits of [4,16], thus 

ZV would annotate this C3,j response as a ‘success’. Similar to this example, these binary 

outcomes (0=failure, 1=success) were collected for all such 2-week counts from the 

experimental phase of all available diary data, across all 3 datasets.

2.4. Validation testing of ZV

To demonstrate the utility of ZV, we simulated a set of trials from the second data export of 

SeizureTracker (Methods 2.3.1). SeizureTracker was selected due to the large size of the 

dataset, and because of the relative consistency of the predictions (Methods 2.3.3) across 

datasets. The trial parameters were similar to a typical RCT17: baseline-8 weeks, titration-4 

weeks, and experimental phase-12 weeks. Analogous to a recent trial18, we required a 

minimum of three seizures per month and no 21-day seizure-free period during baseline, and 

at least one seizure after the entire trial duration. Qualified patients (Table 1) were selected 
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randomly (with replacement) from the new export for these simulated trials. The start time 

of the data was selected from a uniform distribution of possible start times, allowing for 

numerous possible virtual patients from each patient diary. A typical19 drug “strength” of 

30% was used, representing the probability that drug treatment would prevent any given 

seizure8. For example, if a patient had 10 seizures recorded during the experimental phase, 

each seizure would have a 30% chance of being removed, with an expected total of 7 

seizures after treatment simulation. Some patients would have more and some would have 

fewer (because of the probabilistic method of modeling the drug effect). The number of 

possible drug-exposed virtual patients became extremely large, because even if two identical 

patient diaries were used, random number generators were applied to the experimental phase 

representing the effect of the drug, thereby making unique diaries each time. Placebo was 

modeled as unchanged seizure diaries, because natural variability has been shown to produce 

realistic responder rates8. The number of patients for a single trial was fixed initially at 100, 

with random allocation to placebo or drug using a 1:1 ratio. A probability of dropout for any 

given patient was set to 20%. The timing of the patient dropout was simulated independently 

for each patient by randomly choosing an integer between 1 and 5 for the number of 2-week 

periods dropped at the end of the experimental phase. For example, if the 12th patient were 

randomly selected to have experienced dropout, a random number such as 4 might have been 

chosen, meaning that he would have only completed 2 of the 6 experimental periods (each 

period is 2 weeks). Trial success was indicated by the ability of the test statistic to 

distinguish drug from placebo (p<0.05).

Traditional trial success10 based on RR50 was compared to the ZV method (Equation 5, 

Figure 2). Comparisons between placebo and drug arms were calculated for ZV with a mixed 

effects model and for RR50 with Fisher Exact test. For RR50, the percent-change values 

were computed using intention-to-treat analysis, using last observation carried forward in the 

case of early dropout (as is commonly practiced in epilepsy trials). Thus, with each 

simulated trial, the performance of the two methods was compared.

The fraction of 200 simulated trials that were successful estimated the method power. For 

instance, if 120 out of 200 trials achieved statistical significance with the RR50 method, then 

power would be 60%. If that same set of 200 trials was analyzed by the ZV method resulted 

in 180 significant trials, then ZV power would be calculated as 90%. Iterating 200 times 

obtained stable power estimates. The entire procedure for simulation was repeated again for 

number of patients set to 200, 300, 400 and 500 as well. In this way, the power of each of the 

three methods was compared at each of five different trial sizes, using a total of 5 × 200 = 

1000 virtual trials, and 200 × (100+200+300+400+500) = 300,000 virtual patients.

Using the same virtual trials, except without simulated “drugs”, RR50 and ZV were 

recalculated as an assessment of Type 1 error rates. For example, in a trial with 100 patients, 

all patients were given placebo. The ZV and RR50 methods compared the first 50 placebo 

patients to the second 50 placebo patients. Such a trial would be expected to achieve 

statistical significance at the p<0.05 level about 5% of the time. Thus, these recalculated 

RCTs verify that the methods do not artificially elevate power at the expense of 

unacceptably high Type 1 error.
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The same calculations done with for RR50 and ZV were repeated one the same data in order 

to compare MPC and ZV. The difference between treatment arms using MPC was tested 

using the Wilcoxon Signed Rank test10. Analysis was conducted in R (v3.2.3) and Matlab 

(2016b).

3. Results

3.1. Prediction testing

In the first SeizureTracker export of the available 12,946 patient profiles with at least 1 

seizure recorded, 12,651 were retained after preprocessing requirements were met (see 

Methods 2.3.2). Of those, 3016 patients were retained after inclusion criteria (at least 6 

seizures recorded in at least 6 months) were applied. Of the 263 patients from HEP, 107 met 

inclusion criteria. All 15 NeuroVista patients were included.

For each dataset, the two models were run sequentially for as many trial periods as were 

available in each patient’s diary. For example, if a patient had 18 months of diary data, then 

three trial periods were tested (with baseline and experimental phases included in each trial 

period). Individual predictions were “correct” if the expected seizure rates were obtained. In 

ZV, seizure rates ≤2 predicted standard deviations from the predicted mean were “correct”, 

corresponding to the 95% confidence interval expected. The predictions were 41–80% 

correct with RR50, and 91–100% for ZV (Figure 3).

3.2. Validation of ZV

The second data export of SeizureTracker included 1835 patients, of which 403 patients met 

inclusion criteria. The computation of statistical power in the example simulation is shown 

in Figure 4. ZV outperformed the RR50 method. In particular, ZV achieved power >90% 

with N=200, while the RR50 method required N=400. The Type I error rate remained at 

approximately 5% for all values of N.

Figure 5 shows a comparison of the MPC method with ZV. Again, the Type I error rate 

remained approximately 5%. The MPC method required N=200 to achieve 90% power, 

similar to ZV.

A more detailed analysis of the simulated trials is included in the Appendix (A1).

4. Discussion

Our study found that the expected range of seizure frequencies can be predicted accurately 

using variability-corrected ZV. Using three data sources, the prediction from ZV 

outperformed the traditional RR50. With a separate data set from SeizureTracker, we also 

showed that ZV improved statistical power over the EMA-preferred RR50 (although not the 

FDA-preferred MPC), even in the presence of low sample size, patient dropout and/or weak 

drug effects. With regulatory acceptance, this method could lead to less costly clinical trials, 

and improved clinical care models.
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4.1. Advantages of variability prediction

ZV can be interpreted as “deviation from expected rate”. Given that current methods fail to 

address natural variation, this may be a valuable clinical quantity.

RR50 assumes that any reduction in seizure rate 50% below baseline represents binary 

improvement (Figure 1). In contrast, ZV computes a patient-specific continuous metric of 

deviation from prediction. ZV had higher power than RR50 (Figure 4). The ZV method can 

also be calculated retrospectively on existing RCTs.

If regulators would allow ZV to replace RR50, trial cost could be reduced. MPC and ZV may 

be complementary, as they quantify different RCT attributes.

It is currently unknown if the rising placebo responder rates3 are due to changes in trial 

design, populations, geography, natural variability, or other factors4. Nevertheless, 

accounting for fluctuations in event rates in a disease that clearly shows considerable 

fluctuations8 is likely to be beneficial.

In epilepsy RCTs, dropout rates can reach as high as 27–31%20,21. Traditionally, the method 

of last-observation carried forward (LOCF) is used to account for dropout. However, using 

LOCF may result in overestimated effect sizes3. In contrast, ZV manages dropout using the 

weights from the mixed effects modeling. Thus, use of ZV may permit more accurate effect 

size estimates, and higher statistical power, even in the presence of patient dropout.

Quantitative decision support could remove the ambiguity of “worsening” 

and ”improvement” in seizure frequency for clinic patients. A calculation analogous to ZV 

could be computed via app, website, or an electronic medical record “plugin”. Integrating 

such metrics into clinical practice would assist providers in decisions about maintaining or 

adjusting treatments.

4.2. Limitations of ZV

The ZV method has some assumptions. First, it assumes that seizure frequency variability is 

predictable using a Gaussian distribution. Despite reproducibility (Results 3.1), these 

findings may not generalize across all forms of epilepsy. Second, it assumes that the baseline 

measurement is sufficient to estimate true seizure frequency variability. The accuracy of that 

estimate will be a topic for future studies. Third, the methodology assumes that seizure rates 

have nonzero variance. Based on clinical experience and quantitative evaluation of 

catamenial epilepsy22, we anticipate zero-variance to be practically nonexistent. Next, the 

ZV framework assumes that placebo response can be accounted for largely by variability 

alone8. If, conversely, placebo responses are dominated by other factors (such as regression-

to-the-mean, or psychological influences)23, the framework may require modification. 

Finally, it is assumed that a therapy (e.g. drug) decreases the average seizure rate by a certain 

percentage relative to the baseline. Although this is also built into traditional RCT analyses, 

it is worthwhile to recognize that alternatives exist, and they may require further exploration.
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4.3. Data considerations

The three datasets come from diverse sources. The NeuroVista data was derived from few 

patients with medication-resistant focal epilepsy; the other two datasets included focal and 

generalized epilepsy. NeuroVista data is the “gold standard” in terms of reliability of seizure 

detection, since intracranial electrodes were used to identify each seizure. HEP required that 

patients enroll early in their disease course, whereas the other two did not. HEP data was 

patient-reported, however, it was reviewed by multiple physicians, improving reliability. The 

SeizureTracker dataset included longitudinal data spanning years and more patients than 

most datasets worldwide. It was the only dataset that didn’t include physician oversight. 

Self-reported data has additional biases15. Perhaps the most challenging is “diary fatigue”—

if the patient/caregiver loses interest in the diary, no straightforward correction exists. Of 

note, all epilepsy phase III RCTs use patient self-report as well. SeizureTracker also 

uniquely included children and generalized forms of epilepsy. Despite these differences, 

common results emerged, strengthening the possibility that the findings are generalizable. 

Specifically, regardless of the degree of reporter reliability (which varied across datasets), 

the variability prediction appeared to provide accurate boundaries for future seizure 

frequencies. Of note, all government approved anti-seizure medications and devices are 

currently approved based on the imperfect method of outpatient self-report. Therefore, 

accurate predictions from self-reported outpatient diary data is of central importance for 

analysis of clinical trials.

An important consideration, especially to the HEP dataset, is the possibility of medication 

changes influencing seizure frequencies and variability. HEP was unique; all patients were 

recently diagnosed with epilepsy, their medications were likely changed more than some 

other populations. Although this may have influenced the predictions (Figure 3), adjusting 

for this would have further improved the estimates. Thus, unadjusted values are presented 

here as a lower bound for the possibility of prediction.

4.4. Further validation

The impact of different trial parameters must be explored to delineate the boundaries of 

utility of this technique (e.g. sensitivity to baseline and test durations, drug efficacy, etc.). 

Additionally, ZV will need to be studied using existing drug trial data under two conditions: 

known effective and ineffective drug/dosage combinations. In this way, ZV can be tested for 

“true positives” and “true negatives”.

4.5. Extending prediction

A number of design decisions in the ZV method (Figure 2) should be considered flexible. 

For instance, the number of baseline and experimental intervals are adjustable. Additionally, 

the predictions (Eq. 3 and 4) are only one possibility. A few others are: predicting variance 

based on measured mean, utilizing additional covariates, and non-normal distribution of 

seizure frequencies12. Also, future extensions could explicitly account for regression-to-the-

mean and psychological effects. Indeed, ZV can be readily extended to multiple arm trials, or 

more advanced designs, including sequential parallel comparison design24, two-way-

enriched design25, adaptive methods26,27, and platform trials28 because the key innovation is 

the normalization of the experimental phase based on a variability prediction.
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ZV may be generalized to many other areas of medicine, whenever event data is used for 

outcomes. Any disease with a seemingly random, episodic symptom may benefit. For 

instance, neurological conditions (e.g. headache, stroke/TIA, multiple sclerosis, narcolepsy, 

REM sleep behavior disorder), psychiatric conditions (e.g. psychosis, depression, manic 

episodes, panic attacks) or general medical conditions (e.g. syncope, diabetic hypoglycemia, 

asthma, congestive heart failure, inflammatory bowel disease) could be analyzed in an 

analogous fashion. A variability-correction method may reduce costs and exposures to 

ineffective medications.

4.6. Conclusions

This study represents the first formal attempt to quantify and use natural variability in 

seizure frequency for RCT analysis. The findings suggest that variability-correction could 

dramatically improve the power and efficiency of RCTs. In turn, this could improve the 

safety of patients via decreased exposure to non-therapeutic doses of medications29. Indeed, 

smaller, more efficient trials could lead to much lower drug trial costs, thereby accelerating 

drug discovery.
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Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Primary data was obtained by the Human Epilepsy Project team, the NeuroVista team, and the SeizureTracker.com 
team. Use of the data was facilitated by the International Seizure Diary Consortium (https://sites.google.com/site/
isdchome/).

FUNDING:

This research was funded in part by the National Institutes of Neurological Disorders and Stroke, Intramural 
Research Division.

References

1. Brodie MJ, Barry SJE, Bamagous Ga, Norrie JD, Kwan P. Patterns of treatment response in newly 
diagnosed epilepsy. Neurology. 2012; 78:1548–54. [PubMed: 22573629] 

2. Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med. 2000; 342:314–319. 
[PubMed: 10660394] 

3. Rheims S, Perucca E, Cucherat M, Ryvlin P. Factors determining response to antiepileptic drugs in 
randomized controlled trials. A systematic review and meta-analysis. Epilepsia. 2011; 52:219–33. 
[PubMed: 21269281] 

4. Goldenholz DM, Goldenholz SR. Response to placebo in clinical epilepsy trials-Old ideas and new 
insights. Epilepsy Res. 2016; 122:15–25. [PubMed: 26921852] 

5. French JA, Krauss GL, Wechsler RT, et al. Perampanel for tonic-clonic seizures in idiopathic 
generalized epilepsy A randomized trial. Neurology. 2015; 85:950–7. [PubMed: 26296511] 

6. Halford JJ, Ben-Menachem E, Kwan P, et al. A randomized, double-blind, placebo-controlled study 
of the efficacy, safety, and tolerability of adjunctive carisbamate treatment in patients with partial-
onset seizures. Epilepsia. 2011; 52:816–25. [PubMed: 21320109] 

7. PhRMA. Profile Biopharmaceutical Research Industry. 2015. http://www.phrma.org/sites/default/
files/pdf/2015_phrma_profile.pdf

Goldenholz et al. Page 11

Epilepsy Res. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://sites.google.com/site/isdchome/
https://sites.google.com/site/isdchome/
http://www.phrma.org/sites/default/files/pdf/2015_phrma_profile.pdf
http://www.phrma.org/sites/default/files/pdf/2015_phrma_profile.pdf


8. Goldenholz DM, Moss R, Scott J, Auh S, Theodore WH. Confusing placebo effect with natural 
history in epilepsy: A big data approach. Ann Neurol. 2015; 78:329–36. [PubMed: 26150090] 

9. European Medical Agencies. Guideline on clinical investigation of medicinal products in the 
treatment of epileptic disorders. London: 2010. http://www.ema.europa.eu/docs/en_GB/
document_library/Scientific_guideline/201-0/01/WC500070043.pdf

10. OS, NH. Primary efficacy endpoint in clinical trials of antiepileptic drugs: Change or percentage 
change. Drug Inf J. 2010; 44:343–50.

11. Perucca E. What clinical trial designs have been used to test antiepileptic drugs and do we need to 
change them? Epileptic Disord. 2012; 14:124–31. [PubMed: 22977898] 

12. Ahn JE, Plan EL, Karlsson MO, Miller R. Modeling longitudinal daily seizure frequency data from 
pregabalin add-on treatment. J Clin Pharmacol. 2012; 52:880–92. [PubMed: 21646441] 

13. Cook MJ, O’Brien TJ, Berkovic SF, et al. Prediction of seizure likelihood with a long-term, 
implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study. 
Lancet Neurol. 2013; 12:563–71. [PubMed: 23642342] 

14. French, J., Kuzniecky, R., Lowenstein, D. The Human Epilepsy Project. http://
www.humanepilepsyproject.org/

15. Fisher RS, Blum DE, DiVentura B, et al. Seizure diaries for clinical research and practice: 
limitations and future prospects. Epilepsy Behav. 2012; 24:304–10. [PubMed: 22652423] 

16. Theodore WH, Porter RJ, Albert P, et al. The secondarily generalized tonic-clonic seizure: a 
videotape analysis. Neurology. 1994; 44:1403–7. [PubMed: 8058138] 

17. Guekht, aB, Korczyn, aD, Bondareva, IB., Gusev, EI. Placebo responses in randomized trials of 
antiepileptic drugs. Epilepsy Behav. 2010; 17:64–9. [PubMed: 19919904] 

18. French, Ja, Krauss, GL., Biton, V., et al. Adjunctive perampanel for refractory partial-onset 
seizures: Randomized phase III study 304. Neurology. 2012; 79:589–96. [PubMed: 22843280] 

19. Hemery C, Ryvlin P, Rheims S. Prevention of generalized tonic-clonic seizures in refractory focal 
epilepsy: A meta-analysis. Epilepsia. 2014; 55:1789–99. [PubMed: 25182978] 

20. French JA, Abou-Khalil BW, Leroy RF, et al. Randomized, double-blind, placebo-controlled trial 
of ezogabine (retigabine) in partial epilepsy. Neurology. 2011; 76:1555–63. [PubMed: 21451152] 

21. Elger CE, Brodie MJ, Anhut H, Lee CM, Barrett JA. Pregabalin add-on treatment in patients with 
partial seizures: a novel evaluation of flexible-dose and fixed-dose treatment in a double-blind, 
placebo-controlled study. Epilepsia. 2005; 46:1926–36. [PubMed: 16393158] 

22. Herzog AG, Fowler KM, Sperling MR, Massaro JM. Progesterone Trial Study Group. Distribution 
of seizures across the menstrual cycle in women with epilepsy. Epilepsia. 2015; 56:e58–62. 
[PubMed: 25823700] 

23. Goldenholz DM, Goldenholz SR. Response to placebo in clinical epilepsy trials-Old ideas and new 
insights. Epilepsy Res. 2016; 122:15–25. [PubMed: 26921852] 

24. Fava M, Evins aE, Dorer DJ, Schoenfeld Da. The problem of the placebo response in clinical trials 
for psychiatric disorders: Culprits, possible remedies, and a novel study design approach. 
Psychother Psychosom. 2003; 72:115–27. [PubMed: 12707478] 

25. Ivanova A, Tamura RN. A two-way enriched clinical trial design: combining advantages of placebo 
lead-in and randomized withdrawal. Stat Methods Med Res. 2011 Epub ahead of print. 

26. Connor JT, Elm JJ, Broglio KR. ESETT and ADAPT-IT Investigators. Bayesian adaptive trials 
offer advantages in comparative effectiveness trials: an example in status epilepticus. J Clin 
Epidemiol. 2013; 66:S130–7. [PubMed: 23849147] 

27. Bhatt DL, Mehta C. Adaptive Designs for Clinical Trials. N Engl J Med. 2016; 375:65–74. 
[PubMed: 27406349] 

28. Rugo HS, Olopade OI, DeMichele A, et al. Adaptive Randomization of Veliparib Carboplatin 
Treatment in Breast Cancer. N Engl J Med. 2016; 375:23–34. [PubMed: 27406347] 

29. Ryvlin P, Cucherat M, Rheims S. Risk of sudden unexpected death in epilepsy in patients given 
adjunctive antiepileptic treatment for refractory seizures: A meta-analysis of placebo-controlled 
randomised trials. Lancet Neurol. 2011; 10:961–8. [PubMed: 21937278] 

Goldenholz et al. Page 12

Epilepsy Res. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/201-0/01/WC500070043.pdf
http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/201-0/01/WC500070043.pdf
http://www.humanepilepsyproject.org/
http://www.humanepilepsyproject.org/


• The expected range of seizure frequencies can be predicted several months in 

advance.

• Using these predictions, a new trial analysis method ZV was introduced.

• Compared to 50%-responder rates (RR50), ZV has higher statistical power to 

distinguish the placebo arm from the therapeutic arm.

• Use of ZV in trial analysis may allow for design of epilepsy trials with 

decreased sample size and cost.
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FIGURE 1. 
Prediction models. The three phases of a clinical trial are shown: baseline (B), titration (T) 

and experimental (E). Placebo is given during T and E for those patients assigned to placebo. 

Drug is titrated up during T, and given at a steady dose during E. The 2 prediction models 

use the measured  and  (the mean and standard deviation of 2-week seizure counts) 

from the baseline period, to predict the limits of Ci,j, the 2-week seizure counts during the 

experimental phase.
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FIGURE 2. 
The ZV analysis method. A. ZV is calculated for a single patient. A typical trial constructed 

with baseline (B), titration (T) and experimental (E) phases is shown. The baseline is divided 

4 segments in this image, however this number is flexible. Those segments are used to 

calculate measured μBaseline and σBaseline, the mean and standard deviation of the seizure 

counts from each segment. These are then used to compute normalized ZV from the 

similarly divided segments of E. Note that in this image 6 segments are represented, though 

this number is flexible. B. At the study level, all patients contribute a set of ZV values, 

however if a patient drops out early then they may contribute less than a full set. Dropout is 

represented when not all 6 red squares are present for each patient. All completed ZV values 
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from each arm are treated with equal weight and are compared with a mixed effects model to 

obtain a final p value.
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FIGURE 3. 
Prediction of variability. For each combination of dataset and model, trial-sized periods of 

data within each patient were predicted to have certain variability. These predictions had an 

overall accuracy, which is plotted in each of the graphs. ZV outperforms RR50 across 

datasets. NV-1 = NeuroVista clinically reported seizures. NV-2 = Neurovistal clinically 

equivalent seizures. NV-3 = NeuroVista electrographic seizures. NV-all = NeuroVista 

subtypes 1 through 3 combined. HEP = Human Epilepsy Project. ST = SeizureTracker data 

through October 2015.
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FIGURE 4. 
Statistical power and type I error of analysis methods. Using the Seizuretracker dataset a 

simulation of 200 clinical trials at each trial size (100,200,300,400 and 500) shows that 

natural variability correction ZV results in higher statistical power over a traditional RCT 

method: 50%-responder rate (RR50) to measure the difference between drug and placebo. 

At each trial size, a set of 200 clinical trials were simulated, thus the entire figure 

summarizes 1000 simulated trials. Shown here are both the statistical power (upper traces) 

and the type I error rates (lower traces) of the two methods. Type I errors were calculated by 

not introducing drug lowering to the same sets of trials as used for the power calculations, 

thus comparing placebo to placebo.
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FIGURE 5. 
Statistical power and type I error of analysis methods. The same Seizuretracker simulations 

as Figure 4 are analyzed using natural variability correction ZV and median percentage 

change (MPC) to measure the difference between drug and placebo. At each trial size, a set 

of 200 clinical trials were simulated, thus the entire figure summarizes 1000 simulated trials. 

Shown here are both the statistical power (upper traces) and the type I error rates (lower 

traces) of the two methods. Type I errors were calculated by not introducing drug lowering 

to the same sets of trials as used for the power calculations, thus comparing placebo to 

placebo.
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