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A Rational Constructivist Account of the Characteristic-to-Defining Shift
Francis Mollica, Shirlene Wade, Steven T. Piantadosi
{fmollica | swade | spiantadosi}@mail.bcs.rochester.edu

Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627 USA

Abstract

A widely observed phenomenon in children’s word-extensions
and generalizations is the characteristic-to-defining shift,
whereby young children initially generalize words based on
typical properties and gradually transition into generalizing
words using abstract, logical information. In this paper, we
propose a statistically principled model of conceptual devel-
opment grounded in the trade-off between simplicity and fit to
the data. We run our model based on informant-provided fam-
ily trees and the real-life characteristic features of people on
those trees. We demonstrate that the characteristic-to-defining
shift does not necessarily depend on discrete change in rep-
resentation or processes. Instead, the shift could fall out nat-
urally from statistical inference over conceptual hypotheses.
Our model finds that the shift occurs even when abstract logical
relations are present from the outset of learning as long as char-
acteristic features are informative but imperfect in their ability
to capture the underlying concept to be learned—a property of
our elicited features.

Keywords: characteristic-to-defining shift; concept learning;
development; computational modeling

Introduction
Children can often comprehend a word and use a word with-
out having a full grasp of its meaning. Consider the fol-
lowing scenario from Keil and Batterman (1984, pp. 226):
“This smelly, mean old man with a gun in his pocket came to
your house one day and took your colored television set be-
cause your parents didn’t want it anymore and told him that
he could have it.” While adults have a strong sense that the
man in the scenario is not a robber, young children are willing
to label the man a robber. Across multiple domains, young
children have been shown to initially privilege perceptually-
observable, characteristic information in concept learning.
Eventually, children transition to more abstract, conceptually-
aligned-upon meanings. This phenomena has been termed
the characteristic-to-defining shift (Keil & Batterman, 1984).

Previous research has suggested that perceptual similar-
ity (e.g., shape) plays a strong role in young children’s early
word-concept mappings (e.g. Landau, Smith, & Jones, 1988).
As children age, they begin to use deeper, relational prop-
erties for concept learning (Imai, Gentner, & Uchida, 1994;
Keil & Batterman, 1984). For example, Keil and Batterman
(1984) probed kindergartners’, second graders’, and fourth
graders’ definitions for several words using a scenario task.
In some scenarios, characteristic features of a term were pre-
sented without the defining features of the term; whereas,
other scenarios provided the defining features of the term
without the typical characteristic features associated with the
term. Younger children extended a word’s meaning to more
scenarios lacking defining features—but possessing many
characteristic features—than older children.

While the characteristic-to-defining shift is commonly ob-
served in concept acquisition, the process by which this oc-
curs is unclear. One possibility is that the characteristic-to-
defining shift is a stage-like transition that occurs in the rep-
resentational system (Werner, 1948; Bruner, Olver, Green-
field, et al., 1966). For example, the shift could be explained
by a transition from representing concepts wholistically—
i.e., using all the features of objects, to representing con-
cepts analytically—i.e., narrowing in specific relevant fea-
tures of objects (Kemler, 1983). Neural network models
of conceptual classification inherently capitalize on this idea
when demonstrating a shift (e.g., Shultz, Thivierge, & Lau-
rin, 2008). Another possibility is that there is a change in the
mechanism by which one learns concepts. For example, con-
cept learning might change from storing exemplars to con-
structing prototype or rule-based representations. These hy-
pothetical changes in representation or processing might be
maturational in nature, such as the development of abstraction
(Piaget & Inhelder, 1969). Alternately, they may be driven
by inductive inference mechanisms operating over observed
data, a la rational constructivism (Xu, 2007).

From the outset we can narrow down this space of hy-
potheses. The conceptual to defining shift is most likely a
function of data, not maturation (Keil, 1983). One predic-
tion of a maturational-shift is that at a single time-point, chil-
dren should represent all words using characteristic features
or defining features, whereas a data-driven shift predicts that
both adults and children should have more exemplar-based
representations in unfamiliar domains, and more rule-based
representations in familiar domains. The former does not ex-
plain children’s behavior—children seem to possess charac-
teristic representations and defining representations of differ-
ent words at a single time point. The prediction of the latter—
that individuals have more exemplar-based representations in
unfamiliar domains and more rule-based representations in
familiar domains, is observed in adults (Chi, Feltovich, &
Glaser, 1981) and in children (Chi, 1985).

All of the aforementioned hypotheses require a discrete
shift in representation or process. However, it is un-
clear whether a representational or mechanistic shift is en-
tirely warranted. To date, no model has tested whether a
characteristic-to-defining shift could be a natural by-product
of the continuous data-driven construction of concepts. We
evaluate this proposal in the task of learning kinship concepts.
While “mommy” and “daddy” are some of a child’s earliest
produced words, children actually spend many years master-
ing kin relations (e.g. Haviland & Clark, 1974; Benson &
Anglin, 1987; Keil & Batterman, 1984). For example, 7- and
8-year-olds are still unable to provide adequate definitions for
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a number of kinship terms (Haviland & Clark, 1974).

The Acquisition of Kin Terms
Kinship is an ideal domain for studying the characteristic-to-
defining shift because it easily lends to logical representations
(e.g. Kemp & Regier, 2012); the domain of kinship is fa-
miliar to young children; and the characteristic and defining
features behind kinship terms are fairly intuitive and straight-
forward. Furthermore, several semi-structured interviews at-
tempting to uncover children’s knowledge of kinship demon-
strate considerable variation in children’s definitions. For ex-
ample, the following is an interview with a six-year-old from
Benson and Anglin (1987, p. 48):

I: What is an uncle?
S: A man that’s related to ya.
I: Tell me everything you know about an uncle.
S: He knew you when you were a baby...Sometimes they work
to build houses... Sometimes they join in for the army.
I: Can you tell me anything else about an uncle?
S: They help you. That’s all I know.
I: What kind of a thing is an uncle?
S: A man that’s related to you.

Based on children’s definitions, researchers have proposed
theories weighing the importance of conceptual simplicity
(Haviland & Clark, 1974) and the role of sufficient data
(Benson & Anglin, 1987) in the acquisition of kinship terms.
To explain the order of acquisition of kinship terms, Haviland
and Clark (1974) proposed a semantic complexity hypothe-
sis. In this account, the simplicity of a concept is defined
as the fewest number of base relations (e.g., up one node on
the family tree) required to explain a relationship on a kin-
ship tree with a penalty on the variety of base relations used.
Children use these base relations to build concepts in a piece-
wise fashion. By this logic, adult-like kinship concepts are
acquired for semantically simpler terms before semantically
complex terms. Haviland and Clark (1974)’s original hypoth-
esis is a learning model whereby children first develop per-
ceptual features to construct a concept and only over time de-
velop abstract, relational features. This formalism is entirely
consistent with the formalisms used in Mollica and Pianta-
dosi (2015), which we also adopt and describe below. Fur-
thermore, simplicity, in general, is an empirically grounded
principle underlying concept construction (Feldman, 2000).
More specifically, the role of simplicity and communicative
efficiency in kinship terms has been demonstrated across a
variety of the world’s languages (Kemp & Regier, 2012).

In addition to simplicity, researchers have proposed that
the amount and quality of the observed data drive word learn-
ing and conceptual development both in kinship (Benson &
Anglin, 1987; Danziger, 1957) and in other domains (e.g.,
Weisleder & Fernald, 2013). For example, Benson and An-
glin (1987) found that the order of acquisition of kinship
terms was best predicted by children’s experience with their
relatives. In his rejection of stage theories, Danziger (1957)
proposed that conceptual development is primarily driven by
opportunities provided by the environment. To account for
the influence of data, we incorporate assumptions about plau-
sible data distributions in our model. Further, we trade off

the influence of data with semantic complexity by placing a
simplicity weighted prior against a data-driven likelihood.

Our Approach
We approach this problem at the computational level of anal-
ysis (Marr, 1982) to demonstrate how an ideal learner would
manifest a characteristic-to-defining shift. We start with the
model of Mollica and Piantadosi (2015), which demonstrates
how a learner could use cross-situational word-referent occur-
rences to infer the concept that licenses how a word should be
extended. We extend the Probabilistic Context-Free Gram-
mar (PCFG) in their model to construct both characteristic
and defining hypotheses for kinship terms. We then col-
lected data about the characteristic and logical relationships
from two naive informants’ own family trees. This is im-
portant because the characteristic and logical relationships of
real people allows us to test if natural data will contain per-
ceptual and experiential features informative enough to ob-
serve a characteristic to defining shift. We ran the model on
the informant-provided trees and a simulated tree to generate
possible characteristic and defining hypotheses for four kin-
ship concepts: BROTHER, GRANDMA, MOTHER and UNCLE.
These hypotheses were then scored using Mollica and Pianta-
dosi (2015)’s Bayesian model according to their simplicity
and ability to explain simulated word-referent data. We ana-
lyzed (1) whether an ideal learner is most likely to entertain
characteristic or defining hypothesis given an amount of data
and (2) the accuracy of the hypotheses in explaining the data
as a function of the amount of data observed.

We expect that an ideal learner (without any maturational
factors) should demonstrate a characteristic-to-defining shift
only if the elicited features (both perceptual and experiential)
are informative but imperfect in their ability to capture the
underlying concept. If the elicited features accurately capture
a concept, an ideal learner should never shift from generat-
ing characteristic hypotheses to defining hypotheses. On the
contrary, if the elicited features are uninformative, and thus
poor at capturing a concept, an ideal learner might predomi-
nately generate defining hypotheses, predicting either no shift
or an implausibly rapid shift from characteristic to defining
hypotheses. Therefore, it is crucial that we collect data about
the characteristic and logical relationships of real people to
test if natural data will contain features within the range of
informativity that will show a characteristic-to-defining shift.

Data Collection
To simulate data for the learning model, two informants, who
were blind to the experiment, drew their family tree, ranked
each member in terms of how frequently they interacted with
them as a child (e.g., see Figure 1), and provided ten one-
word adjectives for each family member. For each informant,
the unique adjectives were used to construct a binary feature
matrix (adjective by family member; e.g., see Figure 2). Each
informant was presented with the feature matrix and asked to
indicate if each feature applied to each family member. In-
formants made a response to every cell of the matrix: zero if
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Figure 1: Distance-ranked family tree from Informant One.

START→ CHAR START→ DEF
CHAR→ union(CHAR, CHAR) DEF→ union(DEF, DEF)
CHAR→ intersection(CHAR, CHAR) DEF→ intersection(DEF, DEF)
CHAR→ set difference(CHAR, CHAR) DEF→ set difference(DEF, DEF)
CHAR→ complement(CHAR) DEF→ complement(DEF)
CHAR→ feature(VAL) DEF→ up node(DEF)
VAL→ {Yes, No} DEF→ down node(DEF)

DEF→ lateral node(DEF)
DEF→ male(DEF)
DEF→ female(DEF)
DEF→ X (i.e., the speaker)

Table 1: The Probabilistic Context Free Grammar used to
generate kinship concepts

the feature did not apply; one if the feature did apply. The
informants provided 109 and 88 unique features respectively
including both experiential features (e.g., strict) and percep-
tually observable features (e.g., blonde). Additionally, we
simulated data from the extended family tree used in Mollica
and Piantadosi (2015). To sample from the extended tree, we
ranked distance using Euclidean distance and constructed a
feature matrix for the tree based on 29 perceptually observ-
able features following the principles of Mendelian genetics1.

Extending the model
The model incorporates a PCFG prior with uniform rule prob-
abilities to measure the simplicity of any composition of log-
ical or perceptual features. In the PCFG (see Table 1), we
include set theoretical primitives—i.e., union, intersection,
set difference and complement—for both characteristic and
defining hypotheses. For defining hypotheses, we include
gender primitives—i.e., male and female—and graph theo-
retical primitives that mimic the abstract primitives proposed
by Haviland and Clark (1974): up node, down node and lat-
eral node. The terminal for a defining hypothesis is an argu-
ment for the speaker X , as we assume that the kinship term
should be processed relative to the speaker. For characteris-
tic hypotheses, we include a primitive for each feature, which
takes a binary indicator variable and returns the set of fam-
ily members with or without that feature. Using a PCFG as
a prior penalizes complex hypothetical meanings and, thus,
builds in a simplicity bias as discussed above. It is important
to note that our PCFG generates characteristic hypotheses—
i.e., only containing characteristic information, and defining
hypotheses—i.e., only containing logical information (and
gender). We leave the exploration of a hybrid characteristic-
defining hypothesis space for future research.

Data for the learning model was noisily sampled from a

1All family trees, feature matrices (and code) can be found at
https://github.com/MollicaF/LogicalWordLearning

family tree such that 90% of the time the data reflected ac-
curate use of the true concept and 10% of the time the data
was entirely random. To construct a data point, which took
the form of a speaker-referent pair {s,r}, we first sampled
a speaker s from a Zipfian distribution over all members of
the family tree ordered by reported distance from the learner.
Consequently, data from speakers ranked closer in distance
to the learner were more likely to be sampled than data from
speakers ranked distant to the learner, which is in line with
the intuition that most input a child receives comes from her
immediate family. We then sampled a referent r from the Zip-
fian distribution conditioned on the speaker and word. Given
all possible referents the speaker could be correctly referring
to when using the word, referents that are closer to the learner
are more likely to be talked about than the learner’s more dis-
tant relations. This reflects the intuition that a child is more
likely to hear about her immediate family than distant rela-
tives. Both intuitions are supported by Benson and Anglin
(1987)’s survey of children’s experience with kinship terms
and relations. During learning, we compute the likelihood of
the data under the same model used to simulate the data.

Together the prior and the likelihood specify a model for
all possible hypotheses constructed from the PCFG:

P(h|{s,r}N
i ) ∝

N

∏
i

P(ri|si,h) ·P(h) (1)

With this model we can score the probability of a hypoth-
esis conditioned on simulated data. We then investigate the
conditions under which a characteristic-to-defining “shift”
will naturally emerge as children learn kinship concepts with-
out positing discrete change.

Methods
Discovering the most likely hypotheses considered by an
ideal learner according to Equation 1 is a complex inference
problem because the PCFG specifies an infinite set of possi-
ble hypotheses. We solved this problem with Markov-Chain
Monte-Carlo (MCMC) methods, which provided us with
samples from the posterior distribution by walking around the
space of hypotheses. In the limit these walks provably draw
samples from the true posterior distribution P(h|{s,r}N

i ). We
implement our model using LOTlib (Piantadosi, 2014).

At different amounts of data, we expected an ideal learner
to favor different hypotheses. Therefore, we explored the
space varying the amount of data between 10 data points and
250 data points by 10 point increments. At each increment of
data, we ran eight chains per hypothesis type for one million
steps. We stored the top 1000 hypotheses from each chain and
combined the hypotheses discovered across chains to form a
finite hypothesis space representing the posterior distribution
over hypotheses. We normalized all hypotheses by calculat-
ing the likelihood over the same set of 1000 data points gen-
erated using the same procedure used to generate data for in-
dividual chains. We then divided this value by the amount of
data (i.e., 1000) to get a measure of each hypothesis’ average
log likelihood per data point.
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Results
The upper panels of Figure 4 show the posterior probability
of entertaining either a characteristic or defining hypothesis
(y-axis) as a function of the amount of data observed (x-axis).
For all of the words, we observe the characteristic-to-defining
shift–i.e., the probability of entertaining a characteristic hy-
pothesis is initially greater than the probability of entertaining
a defining hypothesis. This means that a simple conceptual
learning model shows a characteristic-to-defining shift when
given real data about logical relations and characteristic fea-
tures.

The lower panels of Figure 4 show the posterior weighted
F1 score conditioned on hypothesis type (characteristic or
defining). The F1 score is the harmonic mean of precision
(i.e., the pressure to extend without over-extending) and recall
(i.e., the pressure to extend to all the correct referents). An F1
score of 1 reflects perfect performance. Notably in Figure
4, the model successfully learns BROTHER, GRANDMOTHER,
and MOTHER—i.e., posterior weighted F1 scores all reach 1.
With 250 data points, the model does not successfully learn
UNCLE yet there still is a shift from characteristic to defin-
ing hypotheses on a larger timescale2 (Note the x-axis in the
upper panels).

To help build intuitions about how the model works, Fig-
ure 3 presents the three most likely hypotheses an ideal
learner trained on Informant One’s data would consider for
GRANDMA at three time points. Before observing data, an
ideal learner should prefer the simplest hypotheses, which of-
ten generalize to many referents. In this example the three
most likely hypotheses are defining hypotheses that select the
speaker X , a male speaker and everybody but the speaker.
After observing three data points, the hypotheses considered
become much more plausible and shift to characteristic fea-
tures. At this time, the three best hypotheses for grandma are
that grandmas are either outgoing, nosy or small. In general
the model is shifting from simple hypotheses that general-
ize broadly to hypotheses that narrow in a bit more, yet still
over-extend. Immediately post-shift (i.e., 13 data points), we
observe a mixture of characteristic and defining hypotheses.
The best hypothesis is the speaker’s parents’ parents, which
misses the female component of GRANDMA. The next best
hypothesis is that grandmas are outgoing. The third best hy-
pothesis is actually the definition of a GRANDMA—i.e., the
female parents of the speaker’s parents. This glimpse at the
hypotheses just after the shift illustrates that without a suffi-
cient amount of data, even the correct hypothesis is unlikely
because it is more complex in the prior. As we observe more
data, the imprecision of the two leading hypotheses decreases

2This may be due to data sparsity for UNCLE in the trees. As
UNCLE is the most complex concept learned here, it may be that
UNCLE requires more unique data points to be learned. Under our
Zipfian data sampling, the model receives data for less than half of
the unique uncles in the trees. When you relax the sampling assump-
tion to uniform, the model does learn UNCLE and having the correct
hypothesis in the space alters the time scale of the shift (to around
30 data points).

their posterior probability relative to the correct hypothesis,
which will make the correct hypothesis the maximum a pos-
teriori (MAP).

The range of hypotheses are similar between the different
trees. Across all trees, characteristic hypotheses have very
low posterior weighted F1 scores compared to the defining
hypotheses. In other words, characteristic hypotheses mis-
label referents more than defining hypotheses. Yet, the pos-
terior probability of characteristic hypotheses suggests that
characteristic hypotheses are clearly favored at low amounts
of data. Given the perspective that the emergence of defin-
ing hypotheses is delayed due to the development of abstrac-
tion, it is particularly important to note that even in a model
with abstraction available from the beginning, we observe a
characteristic-to-defining shift. Further, compared to a neu-
ral network model where all features are initially considered
(Shultz et al., 2008), a characteristic-to-defining shift is still
observed in our model where it is initially more likely to only
consider only a few features.

Taken together, this pattern of results demonstrates that
the characteristic-to-defining shift could naturally fall out of
a single statistical inference process with a single represen-
tational language3. It is not necessary to propose a dis-
crete change in representation or processing. Characteris-
tic hypotheses are favored early because with little data the
prior dominates inference–they generalize well to small data
amounts and are comparatively less complex in the prior than
the best defining hypotheses. Only when there is enough
data to warrant additional complexity will defining hypothe-
ses come to dominate inference.

Discussion
In this paper, we tested whether a characteristic-to-defining
shift would emerge naturally in a statistically principled
learning model without positing a discrete mechanistic or rep-
resentational shift. In general, the model successfully learns
kinship terms and demonstrates a characteristic-to-defining
shift using a single representational language of thought and
a single statistical inference mechanism. Therefore, while a
discrete shift in mechanism or process is possible, it is not
necessary to observe a characteristic-to-defining shift during
concept learning.

In our model, kinship concepts are developed through sta-
tistical inference over word-referent data and observed kin-
ship structures, which could plausibly be developed from
statistical learning of structure (Katz, Goodman, Kersting,
Kemp, & Tenenbaum, 2008; Kemp & Tenenbaum, 2008).
When an ideal learner only observes data about a few ref-
erents, there are simple characteristic hypotheses based on
perceptual observations that will explain the data; however,
as more data is observed, these hypotheses fail to adequately
fit the data and warrant a prior-likelihood trade-off, such that
more complicated defining hypotheses (which are unlikely

3This pattern holds if the data distribution is uniform or becomes
more peaked—i.e., a Zipfian exponent of 0, 1 or 2.
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Informant One
(109 features; 31 family members)
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Informant Two
(88 features; 21 family members)
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Simulated Tree
(29 features; 37 family members)
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Figure 2: Feature matrix (adjective by family
member) supplied by Informant One.

Before seeing data
X (i.e., the speaker) −0.0861777
male(X) −4.7775256
complement(X) −4.7775256

After seeing 3 data points
outgoing −19.69045
nosy −20.49538
small −21.56817

One data point after shift
parents(parents(X)) −67.18689
outgoing −67.31635
female(parents(parents(X))) −68.14575

Figure 3: Best hypotheses at three different
time points and their log posterior probability
for Informant One learning GRANDMA.

Figure 4: For each tree, the top panel displays the posterior probability of using a characteristic (solid line) or a defining
(dashed line) hypothesis as a function of the amount of data observed. The bottom panel displays the posterior weighted F1
score conditioned on hypothesis type (characteristic as solid line, defining as dashed line) as a function of data.

803



in the prior) are substantially more likely in explaining the
data and thus come to dominate the posterior. Put simply, the
characteristic-to-defining shift can be a by-product of data-
driven learning.

There are two interesting implications/predictions of our
model. First, our model predicts that the ideal learner will
shift from characteristic to defining hypotheses even when
she is capable of using abstraction from the outset of learn-
ing. This suggests that characteristic hypotheses may be use-
ful, and that the observation that children accept and generate
characteristic hypotheses at a young age does not preclude
their ability to use abstraction or generate logical/defining
hypotheses. Second, our model predicts that if there is a
characteristic-to-defining shift, the relevant characteristic fea-
tures should not capture a concept as well as defining features
capture the concept; however, in order for a characteristic-
to-defining shift to occur, the characteristic features must be
informative to a certain degree. If characteristic features are
completely uninformative, defining hypotheses should domi-
nate across all amounts of data.

In our initial stab at the problem, we have made several
simplifications. For one, the grammar generated hypotheses
to be purely characteristic or purely defining. This simpli-
fication is reasonable given how adults would extend a kin-
ship term. For example, if you meet a friend’s family for
the first time at a neighborhood BBQ, you would presum-
ably extend the term uncle to their parent’s male siblings and
not the neighbors, who might share several characteristic fea-
tures with your friend’s uncles. This is not to say that compe-
tent adult speakers do not maintain characteristic information
about kinship terms (e.g., grandmothers are typically nice,
old ladies). In the same vein, our characteristic and defin-
ing features did not share the same formalism (i.e., feature
matrices vs. graph-theoretical functions). A future version
of the model should permit characteristic and defining primi-
tives within the same hypothesis and possibly within the same
formalism (e.g., a feature matrix containing both characteris-
tic and defining features). This model should also be extended
beyond the kinship domain. Lastly, the model is sensitive to
the structure of the PCFG in determining the prior. Further
research should characterise the robustness of the model to
variation in the prior.

Conclusion
In summary, the widely observed characteristic-to-defining
shift falls out naturally from a rational data-driven process.
Our simulations show that a data-driven inference mecha-
nism (1) demonstrates a characteristic-to-defining shift in the
task of concept learning without positing a change in cogni-
tive representations or processes and (2) succeeds at learning
most kinship words from a data distribution based on natural
language statistics. We find that an ideal learner will demon-
strate a shift even when more accurate abstract/logical rep-
resentations are possible from the onset of learning provided
that characteristic features are informative but imperfect in

their ability to capture the underlying concept. While we ad-
dress the problem of concept learning within the kinship do-
main, the model framework can be extended to explain con-
cept learning across multiple domains using different repre-
sentational formalisms.
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