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RESEARCH ARTICLE

Xanthine oxidase inhibitor urate‑lowering 
therapy titration to target decreases serum 
free fatty acids in gout and suppresses lipolysis 
by adipocytes
Monica Guma1,2, Benyamin Dadpey3, Roxana Coras1,2, Ted R. Mikuls4, Bartlett Hamilton4, 
Oswald Quehenberger3, Hilda Thorisdottir1, David Bittleman1, Kimberly Lauro1, Shannon M. Reilly3,5, 
Ru Liu‑Bryan1 and Robert Terkeltaub1*    

Abstract 

Objective:  Linked metabolic and cardiovascular comorbidities are prevalent in hyperuricemia and gout. For mecha‑
nistic insight into impact on inflammatory processes and cardiometabolic risk factors of xanthine oxidase inhibitor 
urate-lowering therapy (ULT) titration to target, we performed a prospective study of gout serum metabolomes from 
a ULT trial.

Methods:  Sera of gout patients meeting the 2015 ACR/EULAR gout classification criteria (n = 20) and with hyper‑
uricemia were studied at time zero and weeks 12 and 24 of febuxostat or allopurinol dose titration ULT. Ultrahigh per‑
formance liquid chromatography-tandem mass spectroscopy acquired the serum spectra. Data were assessed using 
the Metabolon and Metaboloanalyst software. Lipolysis validation assays were done in febuxostat and/or colchicine-
treated 3T3-L1 differentiated adipocytes.

Results:  Serum urate decreased from time zero (8.21 ±1.139 SD) at weeks 12 (5.965 ± 1.734 SD) and 24 (5.655 
±1.763 SD). Top metabolites generated by changes in nucleotide and certain amino acid metabolism and polyam‑
ine pathways were enriched at 12 and 24 weeks ULT, respectively. Decreases in multiple fatty acid metabolites were 
observed at 24 weeks, linked with obesity. In cultured adipocytes, febuxostat significantly decreased while colchicine 
increased the lipolytic response to β-adrenergic-agonism or TNF.

Conclusion:  Metabolomic profiles linked xanthine oxidase inhibitor-based ULT titration to target with reduced serum 
free fatty acids. In vitro validation studies revealed that febuxostat, but not colchicine, reduced lipolysis in cultured 
adipocytes. Since soluble urate, xanthine oxidase inhibitor treatment, and free fatty acids modulate inflammation, our 
findings suggest that by suppressing lipolysis, ULT could regulate inflammation in gout and comorbid metabolic and 
cardiovascular disease.

Keywords:  Xanthine oxidase, Lipolysis, Metabolomics, Gout, Adipocytes, Microbiome
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Introduction
Hyperuricemia, defined by a level of soluble urate that 
surpasses the solubility threshold of uric acid of 6.8 
or 7.0 mg/dL in physiologic solution, has greater than 
20% prevalence in the USA [1]. Hyperuricemia is a 
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prerequisite for gout, and it is strongly associated with 
diseases including hypertension, chronic kidney disease, 
atherosclerosis, metabolic syndrome, and type 2 diabe-
tes that are very common comorbid conditions in gout 
patients [2–4]. Soluble urate does not simply appear to 
behave as an inert end product of purine metabolism [5, 
6]. Independent of promoting tissue monosodium urate 
crystal deposition in gout, and uric acid and calcium 
oxalate nephrolithiasis [7], excess soluble urate has been 
observed to promote oxidative stress, inflammation, and 
vasoregulatory actions that may contribute to cardiovas-
cular and metabolic diseases [5, 8–10]. At the cellular 
level, the effects of excess soluble urate include pertur-
bation of nitric oxide metabolism [11] and of the renin-
angiotensin axis [12], promotion of insulin resistance 
mediated partly via inhibition of hepatic AMP-activated 
protein kinase (AMPK) [13], and a role in nonalcoholic 
steatohepatitis (NASH) through the stimulation of lipo-
genesis and the inhibition of fatty acid (FA) oxidation 
[14–17].

Xanthine oxidase inhibitor (XOI) therapy, particu-
larly by use of allopurinol and febuxostat, is the primary 
approach used to treat hyperuricemia and thereby lower 
body urate stores [18]. XOI has had favorable treatment 
effects on experimental small animal models of hyper-
tension, renal disease progression, atherosclerosis, and 
NASH [16, 19, 20], though net effects of XOI-based 
urate-lowering therapy remain unclear in adult humans 
with these conditions [21].

Metabolomics can provide valuable assessment of 
metabolic effects of specific disease treatments on path-
ogenic factors [22]. Hence, we seminally examined gout 
patient metabolic profiles in response to XOI-based ULT 
titration to target, examining sera in a prospective, ran-
domized clinical trial cohort from a comparative effec-
tiveness of allopurinol and febuxostat [23]. The results 
provide new mechanistic insight into association of met-
abolic and cardiovascular comorbidities with gout and 
hyperuricemia.

Methods
Subjects
At the San Diego Veterans Affairs Healthcare Service 
(SDVAHCS) research site, we conducted a prospec-
tive study ancillary to the national, multi-site compara-
tive effectiveness ULT trial VA CSP594 STOP GOUT, in 
which gout patients were randomized to a treat to tar-
get regimen using allopurinol or the more selective XOI 
febuxostat [23, 24]. Twenty consecutive patients meeting 
the 2015 ACR/EULAR gout classification criteria [25] 
with hyperuricemia were recruited from the Rheuma-
tology Outpatient Clinic at SDVAHCS. We character-
ized gout patient metabolic profiles at time zero and 12 

and 24 weeks of treat to target ULT to attempt to achieve 
serum urate target < 6 mg/dL, done in a blinded way for 
XOI used and following the trial protocol [23, 24]. The 
clinical trial and ancillary study were approved by the 
VA Institutional Board Review, and all subjects signed 
an informed consent for both studies. A second set of 
patients recruited at University of Nebraska Medical 
Center, in Omaha, NE, were the source of serum samples 
for lipidomic profiling of serum free fatty acids.

All those studied had a clinical assessment by the study 
physician for palpable tophaceous disease and presence 
of active flare or quiescent arthritis, and co-morbidities 
and current medications were recorded. Research per-
sonnel collected non-fasting blood samples into 10 ml 
BD Vacutainer Blood Collection Tubes containing 
spray-coated silica and a polymer gel for serum separa-
tion. After 30 min incubation at room temperature, tubes 
were centrifuged for 10 min at 2000×g, and sera were 
transferred into 1.7 ml tubes and immediately frozen and 
stored at − 80 °C until analysis.

Cell culture—3T3‑L1 adipocytes
3T3-L1 fibroblasts (American Type Culture Collection) 
were cultured in culture media (DMEM containing 4.5 g/l 
glucose, 10% FBS, 10 U/ml penicillin, 10 U/ml streptomy-
cin, and 292 mg/l glutamine). Once grown to confluence, 
adipocyte differentiation was initiated using a three-com-
ponent cocktail containing 500 μM 3-isobutyl-1-methylx-
anthine, 250 nM dexamethasone, and 1 μg/ml insulin for 
the first 3 days, followed by an additional 4 days of media 
containing 1 μg/ml insulin, and finally, differentiation was 
completed in the culture media. Only cultures, in which 
> 90% of cells displayed adipocyte morphology, were 
used. Fully differentiated adipocytes which were cultured 
in culture media for 7–9 days were used for experiments. 
TNF was added to the culture media at 17 mg/ml, 36 h 
prior to assaying lipolysis. Cells were pretreated with 
50 μM febuxostat and/or 10 nM colchicine in complete 
media for 72 h prior to assaying lipolysis, the media, and 
was replenished every 24 h during this pretreatment.

Lipolysis assay
Pretreated fully differentiated 3T3-L1 cells were washed 
with PBS prior to incubating with DMEM with 2% FFA 
free BSA in the presence or absence of 10 μM CL-316,243 
(a highly selective β-3 adrenergic receptor agonist). 
Media was collected after 30 or 60 min, and the FFA 
content in the media was measured using the Wako HR 
series NEFA-HR assay (Catalog No. 999-34691, 995-
34791, 991-34891, 993-35191, 276-76491) following 
manufacturer protocol.
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Selective plasma free fatty acid panel analysis
Aliquots of 20uL human serum were extracted by a bi-
phasic solution of acidified methanol and isooctane, 
derivatized using PFBB, and analyzed by gas chroma-
tography–mass spectrometry (GC-MS) on an Agilent 
6890N gas chromatograph equipped with an Agilent 
7683 autosampler. Fatty acids were separated using a 
15 m ZB-1 column (Phenomenex) and monitored using 
SIM identification. Analysis was performed using the 
Mass Hunter software [26]. Concentrations are reported 
in pmol/mL.

Metabolon platform
The details for the Metabolon platform are in the supple-
mentary data.

Statistical analysis
Principal component analysis (PCA) along with hierar-
chical clustering analysis (HCA) as well as random forest 
(RF) analysis and two-way repeated measures ANOVA 
was performed using the Metabolon software. We 
employed MetaboAnalyst version 5.0, an open resource, 
for the rest of metabolomics analysis [27, 28]. Partial least 
squared discriminant analyses (PLS-DA) to identify dis-
criminant metabolites controlling for multicollinearity, 
and cross-validation accuracy and permutation model 
statistics were retrieved. Pathway analysis was evaluated 
with the tool of enrichment analysis available on Meta-
boAnalyst, using the set KEGG 2019, which contains 84 
metabolite sets [29]. Other statistical analysis was per-
formed with the SPSS software version 26.0. Continuous 
variables were expressed as mean ± standard deviation 
(SD) or standard error of mean (SEM) and categorical 
variables as percentage. In  vitro experiments with adi-
pocytes were analyzed by Holm-Sidak post hoc test after 
significant 2-way ANOVA. Results were considered sig-
nificant if the 2-sided p value was less than 0.05.

Results
Patient demographics and disease characteristics
We recruited 20 male subjects meeting the 2015 ACR/
EULAR gout classification criteria, with mean age 
60.4 years (11.1) and mean body mass index (BMI) of 
31.5 (4.4). All gout subjects had hyperuricemia (serum 
UA 7.0-11.3 mg/dL (8.34 ± 1.2SD) at time zero, and 45% 
patients (9 out of 20) had flare rate ≥ 5/year. Demograph-
ics of the patients along with the disease characteristics, 
comorbidities, and treatment they were receiving are 
summarized in Table  1. Six subjects entered the study 
on allopurinol, but at doses where they still were hyper-
uricemic and therefore not at serum urate target; these 
subjects were randomized to febuxostat 40 mg/day or 

allopurinol and were studied on further XOI dose titra-
tion, per protocol [23], to serum urate target of < 5.0 mg/
dL for disease with palpable tophi and < 6.0 mg/dL where 
no palpable tophi were detected by the study physician. 
The remaining 14 patients started ULT titration to target, 
with allopurinol or febuxostat at recruitment and under-
went XOI-based ULT titration to target. Serum urate 
levels at week 12 (mean 5.97±1.7 SD, range 4–8.5) and 
week 24 (mean 5.66±1.7 SD, range 3.5–9) were signifi-
cantly lower compared to time zero (mean 8.21±1.14 SD, 
range 6.8–10.2; p < 0.05 both time points), and 80% and 
90% patients achieved reduced serum UA to < 7 mg/dL 
at week 12 and week 24, respectively, via ULT titration. 
Patients did not change any other concomitant treat-
ments (including statins and antidiabetic medications) 
or undergo dietary change for weight loss during the 
24 weeks of the study.

Metabolomic profiling at time zero
Mass spectrometry identified 1105 compounds of known 
identity (named metabolites and listed in supplementary 
excel file). We first conducted principal component anal-
ysis (PCA). At time zero, samples showed spread among 
components 1 and 2, suggesting that subjects enrolled in 
this study varied in their serum metabolome (Fig.  1A). 
Heat map and K-cluster analysis identified 2 clusters at 
time zero (Fig. 1B). These two groups were clustered by 
the concentration of triglycerides in plasma (120.3 ± 68.1 
vs 287.6 ± 107.4, p < 0.01) and age (70.3 ± 5.8 vs 54.2 ± 8.5, 
p < 0.01), but not for clinical outcomes (Fig.  1C, D). 
Partial least squares discriminant analysis (PLS-DA) 
and random forest analysis confirmed the expected 

Table 1  Demographics of n = 20 patients with gout at baseline

M male, W white, AA African American, A Asian, PI pacific-islanders, NA native-
American, DM diabetes mellitus, DL dyslipidemia, HBP high blood pressure, BMI 
body mass index, TG triglycerides, LDL low-density lipoproteins

Baseline

Age 60.4 ± 11.1

Gender 100% M

Race 7 W, 5 AA, 3 A, 4 PI, 1 NA

DM (n) 7 (4 on metformin, 3 on insulin)

DL (n) 15 (10 on statins)

HBP (n) 18

Flares per year 4.48 ± 3.35

Uric acid 8.34 ± 1.2

BMI 31.7 ± 4.4

ALT 31.6 ± 13

AST 38.1 ± 30.1

TG 225.94 ± 124.4

LDL 94.1 ± 34.8
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discrimination and prediction when subjects were ana-
lyzed by BMI for obesity compared to non-obesity. By 
contrast, number of flares (> 5/year vs < 5/year), uric acid 
levels at time zero (HU > 8 versus HU < 8), or the presence 
of 1 or more palpable tophi failed to separate the meta-
bolic profiles of the gout patients (Supplementary Fig. 1).

Validation of XOI‑based ULT effects on xanthine and purine 
metabolism by serum metabolomic profiling
PCA analysis with all the samples demonstrated over-
lap between samples collected at time zero and at 12 
and 24 weeks ULT titration to target (Supplementary 
Fig. 2A). Since sera at 12 and 24 weeks did not have sig-
nificant separation between the groups, length of ULT 

titration to target did not appear to contribute to sepa-
ration and differences between groups (Fig. 2A). Hier-
archical clustering analysis showed clustering based on 
the subject (as suggested in Fig. 1A) but not treatment 
itself (Supplementary Fig. 2B). Yet, random forest anal-
ysis, using metabolite data derived from serum samples 
collected at time zero or 12 and 24 weeks ULT titration 
to target, identified several metabolites contributing 
most to the separation between time zero and 24 weeks 
of ULT titration to target. Top metabolites identified 
by this analysis highlighted changes in selected meta-
bolic pathways (Supplementary Fig.  2C), resulting in 
predictive accuracy of 52% (compared to 33% expected 
by random chance alone) (Supplementary Fig. 2D). As 

Fig. 1  Metabolomic profiling at time zero. A PCA examining samples at time zero. B Heat map based on Pearson and Ward for determining 
distance and clustering identified 2 clusters at time zero. C Characteristics of patients in both clusters. Continuous variables were expressed as 
mean ± standard deviation (SD) and categorical variables as number (N) and percentage. D Top 50 metabolites different between clusters
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expected, top serum metabolites generated by ran-
dom forest analysis also included members of amino 
acid (AA) and FA metabolism pathways (Supplemen-
tary Fig. 2C). We validated that samples collected from 
subjects undergoing XOI-based ULT titration to target 
showed significant alterations in allopurinol and febux-
ostat and in xanthine and purine metabolism at 12- 
and 24-week treatment (Supplementary Fig.  3). Sera 
at 12- and 24-week XOI-based ULT titration to target 
had both significantly lower levels of urate compared to 
time zero and increases in the uric acid precursor, xan-
thine and xanthosine, and other methyluric acid and 
methylxanthine changes that validated perturbation of 
purine metabolism (Supplementary Fig. 3).

Alterations in AA metabolism pathways at 12‑week 
XOI‑based ULT titration to target
Using two-way repeated measures ANOVA, we identi-
fied 115 metabolites (89 decreased and 26 increased) 
significantly differing between time zero and 24 weeks 
of ULT titration to target. Figure  2A summarizes the 
numbers of metabolites that achieved statistical sig-
nificance (p  ≤ 0.05) and those approaching signifi-
cance (0.05 < p < 0.10). Pathway analysis was conducted 
with the 105 metabolites (p < 0.1) significant at time 
12 weeks (Fig. 2B) and with the 165 metabolites (p < 0.1) 
at time 24 weeks ULT titration to target (Fig. 2C). Nota-
bly, at 12 weeks of ULT titration to target, significant 
metabolic pathways were enriched in AA metabolism. 

Fig. 2  XOI-based ULT effects on serum metabolomic pathway analysis. A Two-way repeated measures ANOVA identified 115 metabolites (89 
decreased and 26 increased) significantly differing between baseline and 24 weeks ULT titration to target. A summary of the numbers of metabolites 
that achieved statistical significance (p ≤ 0.05), as well as those approaching significance (0.05 < p < 0.10), is shown. B, C Pathway analysis was 
conducted with the 105 metabolites (p < 0.1) significant at 12 weeks ULT (B) and with the 165 metabolites (p < 0.1) at 24 weeks (C). At 12 weeks ULT, 
pathways were significantly enriched with changes in the AA metabolism (arrows, B). However, at 24 weeks ULT, significant altered pathways were 
mostly related to FA and polyamine metabolism (arrows, C)
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However, at 24 weeks of XOI-based ULT titration to 
target, significant metabolic pathways were mostly 
related to FA and polyamine metabolism.

At 12-week ULT, most metabolites that contributed 
robustly to group discrimination were relevant to AA 
metabolism. These included derivatives of the aromatic 
AAs, phenylalanine and tyrosine, and derivatives of 
branched-chain AA, leucine, isoleucine, and valine. In 
addition, we observed widespread increases in subsets 
of gamma-glutamylated AAs—gamma-glutamyl (GG)-
leucine, GG-isoleucine, GG-threonine, GG-valine, and 
GG-phenylalanine—in sera at 12 weeks ULT compared to 
samples from time zero (Fig. 3A).

Gut dysbiosis is involved in several metabolic diseases 
including diabetes, obesity, and NASH [30–32] and 

has been suggested to potentially link gout to comor-
bid metabolic disease [33, 34]. Gut microbiota are 
actively involved in both aromatic and branched-chain 
AA metabolism [35], and the human gut microbiome is 
involved in deconjugation of human primary bile acids 
and their subsequent biotransformation to secondary bile 
acids [36]. In this context, secondary bile acids were also 
altered at 12 weeks ULT titration to target (Supplementary 
Fig. 4A). To determine whether such changes observed at 
12 weeks could be related to changes in the microbiome 
metabolism induced by XOI-based ULT titration to tar-
get, we studied a group of metabolites that were shown to 
predict gut microbiome alpha diversity in humans [37]. 
Figure  3B shows different spread among components 
1 and 2 at the three time points when using only these 

Fig. 3  XOI-based ULT effects on AA metabolism. A Samples collected specially at 12 and 24 weeks of treatment showed significant alterations in 
aromatic AA, branched-chain AA, G-glutamyl AA. Green: indicates significant difference (p ≤ 0.05) between the groups shown, metabolite ratio of 
< 1.00. Light green: narrowly missed statistical cutoff for significance 0.05 < p < 0.10, metabolite ratio of < 1.00. Red: indicates significant difference 
(p ≤ 0.05) between the groups shown, metabolite ratio of ≥ 1.00. Light red: narrowly missed statistical cutoff for significance 0.05 < p < 0.10, 
metabolite ratio of ≥ 1.00. Blue: indicates significant (p ≤ 0.05) ANOVA. Light blue: indicates 0.05 < p < 0.10 ANOVA effect. B PCA at different time 
points using only microbiome-related metabolites. C Correlation between metabolites derived from AA that were significant at 12 weeks of ULT 
titration to target (Y-axis) and metabolites shown to predict microbiome diversity (X-axis). D Correlation between metabolites derived from AA 
that were not significant at 12 weeks of ULT titration to target (Y-axis) and metabolites shown to predict microbiome diversity (X-axis). Pearson 
correlation (r) in C and D with a cutoff value of 0.5. The orange color indicates a positive correlation > 0.5, and the dark blue indicates negative 
correlation ≤0.5
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metabolites, and Supplementary Fig. 4B shows that these 
metabolites correlate differently at the three time points 
studied, suggesting that ULT titration to target affects the 
levels of these metabolites and can potentially act indi-
rectly by modulating microbial diversity. In addition, as 
shown in Fig. 3C, correlation between metabolites derived 
from AA that were significant at 12 weeks of ULT titra-
tion to target (Y-axis) and metabolites shown to predict 
microbiome diversity (X-axis) was significant but not with 
metabolites derived from AA that were not significant at 
12 weeks of ULT titration to target (Y-axis) (Fig. 3D).

Alterations in FA metabolism pathways at 24 weeks ULT 
titration to target
At 24 weeks of the XOI-based ULT titration to target, 
most of the metabolites that contributed robustly to 
group discrimination were FA species. Medium-, long 
saturated-, long monounsaturated-, and long polyun-
saturated FA were significantly decreased in samples col-
lected at 24 weeks ULT compared to time zero (Fig.  4A 
and Supplementary Excel file). This occurred despite lack 
of prescribed diet change or of decreased body weight 
during the length of this study.

Fig. 4  XOI-based ULT effects in lipolysis. A Samples collected at 24 weeks of treatment showed significant alterations in medium chain FAs and 
long chain FAs. Green: indicates significant difference (p ≤ 0.05) between the groups shown, metabolite ratio of < 1.00. Light green: narrowly 
missed statistical cutoff for significance 0.05 < p < 0.10, metabolite ratio of < 1.00. Red: indicates significant difference (p ≤ 0.05) between the groups 
shown, metabolite ratio of ≥1.00. Light red: narrowly missed statistical cutoff for significance 0.05 < p < 0.10, metabolite ratio of ≥ 1.00. Blue: 
indicates significant (p ≤ 0.05) ANOVA. Light blue: indicates 0.05 < p < 0.10 ANOVA effect. B Free FA release into the media over 30 min following 
administration of 10 μM CL-316,243 [32] or vehicle control to 3T3-L1 adipocytes pretreated with febuxostat (F, 50 μM) and/or colchicine (C, 10 nM) 
for 72 h. C TNF treatment at 17 ng/mL was administered for 36 h before the addition of febuxostat (50 μM) and/or colchicine 10 nM. Lipolysis was 
assessed 72 h later by measuring free FA secreted into the cell culture media over 60 min. Data in B and C presented as mean ± SEM. #p < 0.05, by 
Holm-Sidak post hoc test after significant 2-way ANOVA for the control versus CL (B) or TNF (C) treated groups, within vehicle, F, C, or F and C treated 
group. *p < 0.05, by Holm-Sidak post hoc test after significant 2-way ANOVA for the vehicle versus F, C, or F and C treated groups, within CL (B) or 
TNF (C) treated group
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Adipocyte lipolysis is an import source of serum FA 
[38]. During lipolysis, triglycerides are broken down into 
FAs and glycerol. Consistent with reduced adipocyte 
lipolysis, glycerol was also decreased by ULT (Fig.  4A). 
To validate this mechanism, we next assessed if XOI 
could directly regulate lipolysis in adipocytes. Treat-
ment of cultured adipocytes with febuxostat, but not 
colchicine, resulted in significantly decreased intracel-
lular uric acid by~ 50%, as compared to no significant 
change with colchicine (data not shown) Furthermore, 
febuxostat reduced the rate of adipocyte lipolysis stimu-
lated by activation of β-adrenergic signaling by the β-3 
adrenergic receptor agonist CL-316,243 (Fig. 4B). Inflam-
matory signals such as TNF are also known to increase 
adipocyte lipolysis [39, 40]. Febuxostat but not colchicine 
pre-treatment also blocked the stimulation of lipolysis by 
TNF (Fig.  4C). Thus, suppression of adipocyte lipolysis 
appeared to be at least one mechanism by which febux-
ostat treatment resulted in lower serum FA and glycerol 
levels in the patient samples. Other pathways altered 
at 24 weeks ULT that could impact inflammation were 
serum vitamins (Supplementary Fig. 5A) and polyamines 
(Supplementary Fig. 5B).

Free fatty acid (FFA) panel assessment by lipidomics 
at 24 weeks ULT titration to target in a validation cohort
Plasma FFA were analyzed in a validation cohort 
from the University of Nebraska Medical Center. 
Thirty-four subjects (4 women and 30 men) meeting the 
2015 ACR/EULAR gout classification criteria, with 
mean age 57.2 years (14.1), mean body mass index 
(BMI) of 34.1 (7.1), and mostly White. All gout sub-
jects had hyperuricemia (8.67 ± 1.3) at time zero. We 
only detected three FA (12:0, 22:0, and 22:1) that were 
decreased after 24 weeks of ULT. Of interest, K-cluster 
and PLS-DA analysis identified 2 clusters (Fig.  5A). 
These two groups were clustered by the changes in 
FA levels after 24 weeks of ULT (17 patients with a 
decrease in FA levels vs 17 patients that did not have 
a decrease in FA levels after 24 weeks of ULT, Sup-
plementary Excel file and Fig.  5B), but not by clini-
cal outcomes (Fig.  5C). We then reanalyzed the first 
cohort from San Diego, and we detected a small 
group of 5 patients (out of 20) that did not have a 
decrease of FA after 24 weeks of ULT (Supplementary 
Excel file). Of note, these 5 patients were mostly Cau-
casian (80% vs 20%, in patients without decrease of 
FA versus patients with significantly decrease of FA 
respectively, p = 0.05) and leaner (BMI of 28.7 ± 0.7 
vs 32.3 ± 4.3, p < 0.01, in patients without decrease 
of FA versus patients with significantly decrease 
of FA respectively) than the group with significant 
decreased FA levels.

Discussion
In this study, we gained new insight into downstream 
effects of XOI-based ULT titration to target on metabo-
lism, using a prospective, untargeted approach to deter-
mine gout patient metabolic profiles. XOI-based ULT 
titration to target was associated with significant changes 
in AA metabolism between time zero and 12  weeks of 
ULT treatment, specifically in phenylalanine, tyrosine, 
and branch-chain AA metabolism. Proteolysis in the gas-
trointestinal tract generates AA that are actively sensed 
and processed by both the host and microbiota [41]. 
Most proteins and peptides from dietary origins nor-
mally undergo digestion in the small intestine and get 
absorbed [41]. Proteins that escape digestion in the small 
intestine are present in the colonic lumen, where they 
serve as fermentable substrates for the gut microbiota 
and undergo intense proteolysis into AA [41]. Notably, 
gut microbiota is actively involved in both aromatic and 
branched-chain AA metabolism [35]. A previous report 
identified differential fecal AA between gout patients and 
healthy controls [33]. Here, XOI-based ULT titration to 
target appeared to alter not only selective metabolism 
of AA but also gamma-glutamylation itself. In this light, 
gamma-glutamyl AA are produced when gamma-gluta-
myl transpeptidase (GGT) catalyzes the transfer of the 
gamma-glutamyl moiety of glutathione to AAs. GGT is 
present in some mammalian tissues, most notably the 
liver, and also in several bacterial species [42].

Our results raised important questions on whether 
changes observed in AAs and gamma-glutamylation, 
associated with the ULT approach employed, were medi-
ated by changes secondary to effect of the ULT on the 
microbiome and/or due to decreased serum urate con-
centration. Prior studies have suggested that intestinal 
microbiota distinguished gout patients from healthy 
humans [33, 34]. Hence, ULT could help to restore more 
homeostatic microbiome. In this regard, a prior study in 
rats showed the relationship between hyperuricemia and 
microbiome [43]. A high purine diet affected the rat gut 
microbiome, and circulating urate levels decreased in 
hyperuricemic rats fed with antibiotics [43]. Moreover, 
transfer of gut microbiome from hyperuricemic rats to 
wild-type rats increased serum urate levels in recipient 
rats, suggesting a feedback loop between circulating lev-
els of urate and microbiome diversity [43]. Another study 
demonstrated that allopurinol caused unique changes in 
microbiome genera in male rats with hyperuricemia [44].

Since branched chain AA, phenylalanine, and tyrosine 
play critical roles in the regulation of energy homeosta-
sis, nutrient metabolism, gut health, and immunity [45], 
metabolic changes induced by XOI-based ULT titra-
tion to target could be regulating metabolism of glucose, 
lipid, and proteins, and inflammation via these AA, while 
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decreasing uric acid. At a cellular level, several mecha-
nisms have been proposed to explain the effect of uric 
acid on metabolism and inflammation. Modulation of 
AMPK-mTOR [45] and phosphatidylinositol 3-kinase 
(PI3K)-AKT signaling pathways [45] in adipose, skeletal 
muscle, and immune cells are some of the mechanisms 
proposed. Metagenomic studies will be needed to dissect 
the potential direct role of ULT in microbial changes and 
function and effects of such alterations in the observed 

metabolomic changes. In our cohort, changes in AA 
metabolism were not observed at 24 weeks treatment, 
suggesting that microbiome changes could be transient, 
a finding potentially buttressed by prior work revealing 
that most shifts observed in the microbiome after envi-
ronmental insults are temporary [46].

XOI-based ULT titration to target for 24 weeks was 
associated with significant changes in metabolic path-
ways mostly related to FAs and polyamine metabolism. 

Fig. 5  XOI-based ULT effects on FA metabolism. A PLS-DA separation between patients with different pattern of FA levels after ULT therapy: 17 
patients did not decrease FA [1], and 17 patients significantly decreased FA [2]. B The variables important in projection (VIP) in discriminate both 
groups, where a VIP score ≥ 1 was considered as important. C Characteristics of patients in both clusters. Continuous variables were expressed as 
mean ± standard deviation (SD) and categorical variables as number (N) and percentage
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Not all FA subtypes were equally altered, since medium 
and long chain FAs were significantly decreased, but not 
FA derivatives (e.g., acyl-glutamine, acyl-glycine or acyl-
carnitine). And not all patients in both cohorts had this 
significant decrease of circulating FA levels. This obser-
vation is consistent with a change in lipolysis, which 
releases FAs, but not FA derivatives, into the blood 
stream. The lack of uniform alteration in serum FAs also 
aligns with inconclusive data on the effects of ULT on 
blood lipids in previous reports. The association between 
gout and dyslipidemia is partly genetically mediated [47] 
but is otherwise not well understood. Differences in race 
and ethnicity and baseline BMI could explain the hetero-
geneity of the results. Moreover, effects of ULT on blood 
triglycerides and cholesterol have been inconclusive both 
in animal experiments and clinical studies [21, 48–50]. 
Given the complexity of lipid metabolism, measuring 
triglycerides and cholesterol may not be able to capture 
subtle differences or the effect of ULT on specific classes 
of lipids.

Liver and adipose tissue are the main tissues involved 
in the metabolism of lipids [38]. Furthermore, both uric 
acid metabolism and XOI-based ULT clearly impact 
liver metabolism and NASH. Specifically, hepatocellular 
increase in urate has been linked with the pathogenesis 
of fatty liver disease via both stimulation of lipogenesis 
and inhibition of FA oxidation [14, 15]. Soluble urate 
also has been reported to directly induce hepatocyte fat 
accumulation by activating the NLRP3 inflammasome; 
conversely, lowering uric acid production by allopurinol 
inhibited NLRP3 inflammasome activation in a high fat 
diet mouse model of NAFLD [51]. Additional reports 
have supported a direct effect of soluble urate on hepato-
cyte lipid accumulation [15, 52]. It remains unclear why 
febuxostat, but not allopurinol, exerted beneficial effects 
in high-fat, high-cholesterol, and high-cholate dietary 
model of murine steatohepatitis [15].

Adipocytes play a vital role in regulating FA homeo-
stasis [38]. However, the impact of purine and uric acid 
metabolism is incompletely defined in adipocytes. This 
cell type expresses xanthine oxidase, releases urate as 
well as free FA, and known effects of uric acid metabo-
lism and related oxidative stress modulate adipocyte 
differentiation [53]. In prior work, adipocytes from the 
white adipose tissue of patients with hyperuricemia were 
hypertrophied, and in vivo and in vitro studies reported 
the links between uric acid and FA metabolism [54]. 
Here, observing not only decreases in multiple serum 
free FA levels, but that serum glycerol was also decreased 
by XOI-based ULT titration to target, we focused on 
studying the rate of adipocyte lipolysis in response to 
XOI treatment in culture. The highly selective XOI 
enzyme channel inhibitor febuxostat [55], rather than the 

much less selective XOI substrate inhibitor drug allopuri-
nol, was chosen for these experiments. Since patients in 
the clinical trial used for the ancillary study were on daily 
colchicine for much of the first 24 weeks, and prior stud-
ies suggested a role of colchicine in FA metabolism and 
modulation of the gut microbiome [56, 57], we investi-
gated the effect of colchicine on lipolysis in vitro. Febux-
ostat, but not colchicine, significantly decreased lipolysis 
by adipocytes.

The discoveries herein that XOI-based ULT titration 
to target decreases multiple free FA in gout subjects, 
and that febuxostat decreases lipolysis by adipocytes 
have several potentially important implications for 
patients with gout. First, increased lipolysis is a major 
pathogenic factor in insulin resistance, type IV hyper-
lipidemia, and the broader phenotype of metabolic 
syndrome and obesity [58, 59]. Specifically, lipolysis 
modulates visceral fat and affects hepatic metabolism, 
glucose production and synthesis of very low-density 
lipoprotein, and also promotes decrease in HDL [60]. 
High levels of circulating free FA and impaired insulin 
activity promote hyperglycemia, not only by increased 
glucose production by the liver but also by reduced 
glucose uptake by muscle and adipose tissue, and also 
may contribute directly to NASH [61]. In addition, 
lipolysis can modulate inflammation, inducing chronic 
low grade metabolic inflammation [62] and engaging 
receptors on the cell surface or stress kinases within 
the cytoplasm. Free FA such as palmitate can directly 
activate inflammatory pathways in several cell types by 
increasing TLR4 signaling [36] and by stimulating sign-
aling molecules such as PKR and JNK, triggering the 
secretion of inflammatory mediators [63]. Taken alto-
gether, the suppression of lipolysis by XOI-based ULT 
could ameliorate inflammation in gout patients, reduc-
ing their risk of comorbid metabolic and cardiovascular 
diseases.

Limitations of this metabolomic study include the 
relatively small number of subjects; further replication 
will be valuable in clinical trials going forward. Because 
this study was seminal, and small in population size, 
we did address study limitations by using subjects as 
their own controls and studying each subject at 3 time 
points (0, 12, and 24 weeks) over the course XOI-based 
ULT titration to target. Importantly, we also validated 
that patients clustered at time zero per BMI and hyper-
triglyceridemia and that the XOI-based ULT impacted 
purine and xanthine metabolism. Other inherent limita-
tions, not addressed directly in our study design, include 
the non-fasting samples, the use of only XOI drugs, and 
not uricosurics or uricase therapy, to treat hyperurice-
mia in the parent comparative effectiveness clinical trial. 
In addition, we cannot rule out potential confounding 
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effects of comorbidities or of changes in gouty arthritis 
activity over the course of the first 24 weeks ULT titration 
to target. Our results also do not rule out an additional 
contribution of the liver to the results obtained. Gut-liver 
axes involving metabolism and the microbiome are well 
described [30–32]. In addition, increased intestinal per-
meability has been detected in hyperuricemic mice [64]. 
Increased LPS and TNF levels in hyperuricemic mice 
have suggested the possibility that hyperuricemia, at least 
in mice, induces a state of low-grade systemic inflamma-
tion that could modify lipid metabolism in the liver [64].

Conclusions
In conclusion, serum profiles linked with patient 
response to XOI-based ULT titration to target in this 
seminal, prospective analysis indicated multiple changes 
in metabolism related to treatment, including altera-
tions of serum levels of AA, polyamines, serum vitamins, 
and FAs, that modulate inflammation, and could impact 
gouty arthritis and multiple gout-associated comorbid 
conditions including obesity, metabolic syndrome, type 
II diabetes mellitus, NAFLD, and atherosclerosis. Further 
studies are warranted to investigate how urate and XOI 
treatment modulates AA and FA metabolism in adipose 
tissue, the gut, and the liver. Our findings suggest that 
decreased lipolysis by adipocytes, and consequent associ-
ated decrease in multiple sera free FA levels in response 
to XOI-based ULT titration to target in gout, could mod-
ulate gouty arthritis and several comorbid metabolic and 
cardiovascular diseases in gout patients.
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