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Widespread episodes of recent forest die-off have been tied to the occurrence of anomalously warm droughts, though 
the underlying mechanisms remain inadequately understood. California’s 2012-2015 drought, with exceptionally low 
precipitation and warmth and widespread conifer death, provides an opportunity to explore the chain of events 
leading to forest die-off. Here we present the spatial and temporal patterns of die-off and moisture deficit during 
California’s drought based on field and remote-sensing observations.  We found that die-off was closely tied to multi-
year deep-rooting-zone drying, and that this relationship provides a framework to diagnose and predict mortality. 
Marked tree death in an intensively studied Sierra Nevada forest followed a four-year moisture overdraft, with 
cumulative 2012-2015 evapotranspiration exceeding precipitation by ~1500 mm and subsurface moisture exhaustion 
to 5-15 m depth. Observations across the entire Sierra Nevada further linked tree death to deep drying, with die-off 
and moisture overdraft covarying across latitude and elevation. Unusually dense vegetation and warm temperatures 
accelerated southern Sierran evapotranspiration in 2012-2015, intensifying overdraft and compounding die-off by an 
estimated 55%. Climate change is expected to further amplify evapotranspiration and moisture overdraft during 
drought, potentially increasing Sierran tree death during drought by ~15 to 20% per oC.   
Growing evidence indicates recent episodes of forest die-off 
have been intensified by the interacting effect of drought plus 
anomalous warmth1-6, though the mechanisms remain 
uncertain and a more quantitative understanding is needed 
for diagnosis and projection7-9. We combined in-situ and 
remote sensing observations to explore the links between 
drought, warmth, vegetation density and forest dieback in 
California’s mountains (Figure S1). 

The 2012-2015 drought spanned California, and was 
especially severe in the southern Sierra Nevada10-13. Each 
year had below average precipitation (P; Fig. 1a) and the 
four-year period was the Sierra’s driest in the last century. 
Each year was warmer than average, and 2014 and 2015 were 
among the warmest in the Sierran instrumental record. This 
warmth intensified the lack of precipitation12, and the 
drought is considered the most extreme in the last 100 to 
1000 years10. 

Marked tree mortality occurred in California’s 
mountains, with many stands experiencing a nearly complete 
loss of mature conifers. Mortality was greatest among pines, 
often in association with bark-beetle outbreaks. The US 
Forest Service (USFS) Aerial Detection Survey (ADS)14, 
which uses spotters to inventory tree death from aircraft, 
found rapidly accelerating mortality in 2015 and 2016, 
especially in the southern Sierra (Fig. 1b). The late dry-
season Landsat Normalized Difference Moisture Index 
(NDMI15,16,17) provides a second approach to mapping 
dieback. The spatial patterns of NDMI decline were 
correlated with the ADS mortality across the full Sierra 
Nevada (Fig. S2a, S3). NDMI detects the density of hydrated 
leaves, and the NDMI decline from 2014 to 2016 indicates 
marked evergreen canopy loss (Fig. 1b).  

Both the ADS and late dry-season NDMI indicated 
mortality was greatest in the lower reaches of conifer forest. 
Mortality began at lower elevations in 2014 and accelerated 

and rose with time, becoming widespread throughout the 
lower conifer forest by 2015 (Fig. 1c). Previous aircraft and 
satellite surveys reported similar patterns of dieback across 
space and time11,18,19.  

Sequence of events leading to forest die-off  
Drought and mortality were severe at the Southern Sierra 
Critical Zone Observatory (SSCZO)13. Field observations at 
the SSCZO began before and continued through the drought, 
providing a direct record of the sequence of events leading 
to dieback.  

The SSCZO includes four focal sites along an elevation 
and climate gradient20 (37.11o to 37.03oN, -119.73o to -
118.99oW; Fig. S1). Temperature decreases and P increases 
with elevation, while vegetation shifts from oak savanna at 
405 m, to conifer forest at 1160 and 2015 m, to subalpine 
forest at 2700 m. Vegetation density and Leaf Area Index 
(LAI) are greatest in mid-elevation conifer forest, and decline 
with precipitation at lower elevation and colder temperatures 
higher up21. A post-drought resurvey showed mortality was 
greatest at 1160 m (79% basal area loss in 2016 relative to 
2010), and less-severe at 2015 m (21% loss), 405 m (2% loss) 
and 2700 m (6% loss). Late dry-season NDMI declined 
markedly from 2014 to 2016 at 1160 m, and to a lesser extent 
at 2015 m (Fig. 2a). This agrees with anecdotal observations 
at 1160 m of peak mortality among pines in July and August 
2015 coincident with a drought-driven bark-beetle outbreak, 
and later among other conifers at 1160 m and all conifers at 
2015 m.  

Eddy-covariance measurements of gross CO2 uptake at 
1160 m20, which provides a measure of whole-forest 
photosynthesis, showed progressively intense and longer-
lasting dry-season shutdowns (Fig. 2b, S4). CO2 uptake 
continued nearly year-round during the first drought year, 
with a modest shutdown in summer.  The dry-season 
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shutdowns became longer and deeper over the drought and 
CO2 uptake was restricted to the ~six-month winter and 
spring wet season during later years.  

A location’s water balance may be defined as P - ET = 
S + Q, where ET is evapotranspiration, S is the change in 
root-accessible moisture storage and Q is the net subsurface 
and overland flow13.  S is less important during moisture 
excess, and P-ET approximates Q.  Conversely, Q is reduced 
during drought, and a sustained P-ET overdraft implies 
subsurface drying. The cumulative P-ET deficit at 1160 m 
peaked at -1500 mm in summer 2015, implying a large net 
withdrawal of moisture from soil and weathered rock (Fig. 
2c). The four-year water deficit at the 2015 m site was less 
severe, with a 120 mm P-ET overdraft and a cumulative Q of 
330 mm13 implying a S of -450 mm.  

Both coring and geophysical observations have shown 
that Sierra Nevada regolith is porous and potentially root-
accessible to a depth of 2 to 35 m22,23. The volumetric water-
storage capacity at 1160 m averages 0.2 cm3 cm-3 in the upper 
5 m and decreases to 0.05 cm3 cm-3 at greater depth22, 
implying an integrated water storage capacity to 10 m depth 
of 1250 mm. In-situ measurements throughout the upper 4.5 
m of regolith at the 1160-m site confirmed uniform drying to 
0.05 cm3 cm-3 or -1.5 MPa during the drought, with rewetting 
to 0.25 cm3 cm-3 in 201713,23.  In-situ measurements to 10-m 
depth at 2015 m showed less-severe drying to 0.10 cm3 cm-3 
in 2015 and subsequent rewetting. The direct observations of 
subsurface moisture confirm the P-ET analyses and point to 
an exhaustion of subsurface moisture to a depth of at least 5 
m, and probably 10 to 15 m, at 1160 m, with similarly deep 
but less-complete drying at 2015 m.  

The more-extreme moisture overdraft at 1160 m was 
mirrored by greater die-off at lower elevation (Fig. 2a). The 
ET at both 1160 m and 2015 m increased strongly with 
temperature, with similar rates at both sites for a given 
temperature (Fig. S5). The mean temperature at 1160 m was 
7oC warmer than at 2015 m, implying that temperature was 
an important cause of the greater P-ET overdraft and more-
severe drying at lower elevation.  

Semi-arid trees are deeply rooted, and belowground 
moisture buffers multi-year dry periods13,22,24,25: the 2012-
2015 drought exceeded this safety margin. The main 
proximate cause of conifer mortality at 1160 m was a bark-
beetle outbreak in August 2015, and the ultimate cause 
appears to be exhaustion of root-accessible moisture (see 
also8,26,27). The cumulative P-ET overdraft at 1160 m 
followed a decay trajectory, with a rapid initial decline to a 
new equilibrium of -1500 mm (Fig. 2c). We divided the 
sequence of events leading to die-off into two phases: a 
drying phase from June 2011 to August 2013 at 1160 m, and 
a stress phase from August 2013 to August 2015. The drying 
phase was marked by the net withdrawal of deep moisture to 
support continued high rates of CO2 uptake and ET. The 
stress phase was marked by subsurface moisture exhaustion, 
reduced CO2 uptake and ET with stomatal closure, and 
progressive leaf and canopy dieback. The drying phase 
depleted the plant accessible moisture reservoir, and the 

stress phase marked the deterioration of vegetation health, 
increasing pathogen attack and ultimate die-off. 

Spatial tie between die-off and moisture overdraft 
We combined NDMI, interpolated estimates of 
precipitation28, and satellite estimates of ET based on the 
Normalized Difference Vegetation Index (NDVI; Fig. S6) to 
investigate the relationship between dieback and P-ET across 
the entire Sierra Nevada (Fig. S1). The resulting spatial 
patterns of P-ET were qualitatively and quantitatively similar 
to independent measures of large-scale water balance. The 
inter-annual and spatial patterns of P-ET were well 
correlated with the river flows (Q) observed for large Sierran 
river basins13,20,21,24. Analyses of 2012-2015 GPS records 
showed an anomalous ~20 mm uplift in the Sierra Nevada 
with net drying and mass loss29. This uplift was greatest in 
the southern Sierra and corresponded to a regional net loss of 
~1000 mm of water (S), which is similar to the regional P-
ET overdraft we calculated.  

Cumulative moisture depletion and dieback were well 
correlated across the Sierra Nevada (Fig. 3, S2bc), with an 
inflection at a cumulative P-ET near zero. Late-drought 
dieback was minor at locations where P exceeded ET, and 
increased with a deepening overdraft. Gridded estimates of 
evergreen dieback (NDMI) and P-ET overdraft showed 
higher values in the southern Sierra (35.7-37.7o N) and below 
2300-m elevation.  The latitudinal pattern of P-ET was tied 
to the latitudinal pattern of precipitation shortfall, which was 
greatest in the southern Sierra (Fig. S7a). The altitudinal 
pattern of P-ET was linked to ET (Fig. S8), which was 
greatest below 2300 m with denser canopies13,20,21 and 
warmer conditions (Fig. S5). 

Denser canopies were found on northern aspects relative 
to southern aspects in association with contrasting thermal 
loads and evaporative demand21 (Fig. S9).  The differing 
canopy densities acted to offset the hydrologic advantages of 
more mesic positions in the physical landscape, and led to a 
comparatively uniform distribution of canopy dieback with 
aspect. 

The Palmer Drought Severity Index (PDSI), 
Standardized Precipitation-Evapotranspiration Index (SPEI) 
and Standardized Precipitation Index (SPI) failed to fully 
capture the observed dieback (Fig. S2, S7, S8). All three 
indices focus on atmospheric conditions and do not consider 
vegetation or soil properties that control ET such as canopy 
density and rooting depth, leading to weaker correlations 
with dieback, especially with elevation. 

Comparison of 2012-2015 and 1987-1992 droughts 
California has a long history of episodic drought and forest 
die-off4. The 1987 to 1992 period was also quite dry (Fig. 
1a), though tree death in the southern Sierra appears to have 
been much less extreme30. The southern Sierra NDMI during 
1987-1992 did not indicate a large evergreen canopy 
dieback, and the P-ET overdraft in 1987-1992 was much less 
extreme than in 2012-2015 (Fig. 4a).  

The severity of P-ET overdraft in 2012-2015 compared 
to 1987-1992 reflected a greater P shortfall plus the effects 

https://doi.org/10.1038/s41561-019-0388-5


 
 
Nature Geoscience, 2019        https://doi.org/10.1038/s41561-019-0388-5     Author-formatted copy 

3 
 

of warmth and antecedent canopy expansion on ET (Fig. 1a, 
4b, S10). The P shortfall in 2012-2015 was greater than in 
1987-1992, and air temperatures were 1.2oC warmer12. 
Moreover, the ET estimated solely from vegetation density 
(ETjust NDVI) was higher in 2012-2015 than 1987-1992 as a 
result of antecedent canopy expansion around 1994-1996 
and 2009-2012 (Fig. S10, e.g., structural overshoot9). These 
three factors increased the drought’s severity (Fig. 4b), with 
warmth amplifying the 2012-2015 P-ET overdraft by ~45% 
(ETjust T) relative to the long-term mean (ETmean), and 
antecedent canopy expansion amplifying it by another ~45% 
(ETjust NDVI). The combination of warming and structural 
overshoot increased P-ET by ~90% (ETT&NDVI), which 
corresponds to a ~55% increase in tree death (Fig. S2b). 

Implications 
Canopy loss during the warm drought was greatest in lower-
elevation forest, a pattern that mirrors previous observations 
of enhanced trees death in the lower reaches of species’ 
distribution4,31. The enhanced tree vulnerability at lower 
elevation contrasts with predictions of enhanced hydrologic 
vulnerability at higher elevation21.  A tradeoff between 
ecological and hydrologic vulnerability appears likely, with 
warming leading to greater episodic forest die-off at lower 
elevations and reduced runoff generation at higher elevation.  

Our analysis provides a quantitative framework that links 
tree die-off to cumulative deep-soil drying, and that may be 
used to diagnose and predict die-off based on the underlying 
physical and biological properties and processes (Fig. S11). 
Key controls on die-off include the rate of cumulative P-ET 
decline (e.g., the slope of P-ET decline during the drying 
phase (6/2011 to 8/2013 at 1160 m); Fig. 2c), the plant-
accessible water-storage capacity as determined by rooting 
depth, porosity and water flow22 (e.g., the P-ET overdraft at 
moisture exhaustion), and the rate that biotic stresses develop 
after subsurface drying (e.g., the timing of vegetation decline 
and pathogen buildup during the stress phase (8/2013 to 

8/2015)).  Each of these factors is potentially sensitive to 
climate change.  

Climate change that intensifies moisture overdraft during 
drought, including warming32 that accelerates ET, or 
increased precipitation volatility33,34 that promotes structural 
overshoot9, is expected to amplify episodic die-off (Fig. 
S11). We estimate additional warming on top of a 2012-2015 
precipitation shortfall would increase the P-ET overdraft by 
~20 to 30%  oC-1 (Fig. S5) and increase tree death by ~15 to 
20% oC-1 (Fig. S2b).   

The effect of previous canopy expansion on P-ET 
underscores the role of structural overshoot in amplifying the 
impact of climate change. Increases in canopy density often 
occurred when warm years followed wet ones (1996, 2000 
and 2012 in Fig. S10). The canopy expansion in 2012 
coincided with the first year of drought; 2012 was warmer 
than average and growth may have been supported by water 
or carbohydrate carryover from wet years in 2010 and 2011. 
The resulting dense canopy accelerated ET and intensified 
the subsequent P-ET overdraft. Much of the forest at ~1000-
2500 m elevation is co-limited by water availability and 
winter cold21,35, and the expansion of canopy during wetter 
and warmer periods is consistent with plants capturing space 
and resources during favorable periods. This vegetation 
maintains cover during average years, but the aggregate LAI 
exceeds the site carrying capacity during the least favorable 
periods9,36. A similar phenomenon occurs spatially, with 
northern aspects experiencing higher die-off despite more 
mesic conditions, presumably as a result of previous canopy 
expansion (Fig. S9).  

Projections of future precipitation are uncertain, with 
marked variation between models and ensemble members37, 
but a general agreement that P variability in many semiarid 
regions, including the western US, will intensify33,34. This 
raises the possibility that more extreme wet and warm years 
will accelerate episodic canopy expansion, with implications 
for subsequent tree death during warm droughts, and a range 
of positive and negative ecosystem services27,38
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Figure 1.  (a) Annual Water Year (Oct-Sept) cumulative precipitation (P) and mean maximum temperature (Tmax) 
in southern Sierra Nevada from PRISM; horizontal red bars indicate extended droughts. (b) USFS Aerial 
Detection Survey dead trees ha-1 (ADS dead trees) and late dry-season Normalized Difference Moisture Index 
(Dry season NDMI; August-October). (c) Southern Sierra elevation patterns of July and August 2016 dead trees 
per ha (ADS dead trees), fractional conifer ground coverage (Conifer fraction), and late dry-season NDMI for 
2013 to 2016 relative to 2009-2011. Error bars for 2015 ΔNDMI are 95% confidence intervals.   
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Figure 2. (a) Late dry-season Normalized Difference Moisture Index (NDMI) at focal sites. 95% confidence 
intervals based on spatial variation shown for 1160 m; confidence intervals at other sites are similar. (b) 
Photosynthetic whole-ecosystem light-use-efficiency at 1160 m (LUE; CO2 uptake divided by incident light; solid 
lines connect monthly means) and monthly seasonally detrended NDMI (filled circles).  (c) Cumulative water 
balance at 1160 and 2015 m (solid lines connect daily observations).  Light gray (6/2011 to 8/2013) is the main 
period of moisture overdraft (the drying phase); dark gray (8/2013 to 8/2015) is the period of obvious vegetation 
decline (the stress phase).  
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Figure 3.  (a) Change in late dry-season Normalized Difference Moisture Index (NDMI) over the drought (NDMI; 
2016 NDMI minus 2009-2011) binned by latitude and elevation. (b) Cumulative P-ET over 2012-2015. Units are 
(a) NDMI with negative indicating a greater NDMI drop and (b) mm, with negative indicating greater overdraft. 
Canopy dieback and cumulative P-ET overdraft were greatest at 35.7o to 37.65o latitude and below 2300 m 
elevation. 
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Figure 4. (a) Cumulative P-ET and July-Sept NDMI for 1987-1992 and 2012-2015 droughts.  
(b) Comparison of cumulative P-ET calculated using four alternative approaches for 1987-1992 
and 2012-2015 droughts (see also Fig. S10).  P-ET in (b) was calculated using the observed P 
time series (PRISM), with ET calculated: i) as the mean ET averaged across all pixels and all 
years (ETmean); ii) considering only NDVI (ET just NDVI); iii) considering only the normalized 
saturated vapor pressure calculated from Tmax (ET just T); and iv) considering both vapor 
pressure and NDVI (ETT&NDVI).  
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Methods 
Ground-based measurements. Tree death. Ground-based 
measurements at the four core Southern Sierra Critical Zone 
Observatory sites20 were focused in 200 × 50 m (1 ha) plots 
that extended 150 m in the mean daytime upwind direction 
and 50 m downwind of the eddy covariance towers39. Trees 
were tagged and stem diameter at breast height (dbh) was 
measured by species in summer 2009 or 2010 for all 
individuals with dbh > 0.10 m. The plots were revisited in 
summer 2016, the tagged trees relocated and recorded as dead 
or alive, and the fraction of basal area that had died was 
calculated. Not all of the original tags were found during the 
resurveys and the 2016 live basal area was corrected assuming 
the mortality rate of “missing” trees matched that of the 
resurveyed individuals.  
Eddy covariance fluxes. We measured the net CO2 exchange 
and evapotranspiration (ET) at four eddy-covariance towers in 
and around the upper Kings River basin along a west to east 
transect at ∼800 m elevation intervals beginning at 405 m. 
These towers were located in an area where the 2012-2015 CA 
drought was especially severe.  Methodological details and 
site descriptions are provided in reference20.  

Cumulative, monthly and annual CO2 exchange and ET 
(Fig. 2bc, S4, S6) were calculated by integration after filling 
intervals with missing, calm, or otherwise unsuitable 
observations as a function of incoming solar radiation. The 
cumulative and monthly exchanges were corrected for the lack 
of energy budget closure at each site40. Gross Ecosystem CO2 
exchange was calculated as the half-hour daytime net CO2 
exchange minus the estimated daytime respiration rate.  
Daytime respiration was estimated at ten-day intervals from 
the zero-light intercept of the Net CO2 exchange light curve. 
The monthly photosynthetic light use efficiency (LUE) was 
calculated as the monthly cumulative gross CO2 divided by the 
cumulative incident photosynthetically active photon flux. 

The cumulative water balance (Fig. 2c) was calculated by 
integrating the observed precipitation and ET observations.  P 
at 1160 m was measured with a tipping bucket gauge; nearly 
all P at 1160 m falls as rain, and the time series of P at 1160 m 
agreed well with observations from other weather stations in 
the area. P at 2015 m was obtained from the National 
Atmospheric Deposition Program (NADP) station CA29—
Kings River Experimental Watershed, which is 1.2 km 
southeast of the eddy-covariance tower and at the same 
elevation.  Periods with missing NADP P data were filled 
using observations from the Dinkey Creek Remote Automated 
Weather Station (RAWS), which is 3.4 km east of the eddy 
covariance tower.  

The relationship between air temperature and half-hour ET 
(Fig. S5) was determined before the onset of the 2012-2015 
drought (spring and early summer during 2011 and 2012).  
Half hour observations with an incoming solar radiation above 
200 Wm-2 were sorted into 1oC wide bin and the means and 
95% confidence intervals calculated based on the variation 
within bins.  The normalized change in saturated vapor 
pressure with T was calculated with the Antoine equation.  

Data from six additional flux towers in Southern 
California were combined with the SSCZO towers to create a 
regression between annual ET and the Normalized Difference 
Vegetation Index (NDVI) to spatially and temporally 
extrapolate ET (Fig. S6, ref 20). The NDVIs used for this 

regression were calculated using the same algorithm used to 
calculate NDVI across the entire Sierra Nevada.   

We have discussed our ET regression approach in 
previous papers13,20,24.  A strong correlation exists between 
annual NDVI and ET as a consequence of bi-directional 
linkages between Leaf Area Index (LAI) and canopy gas 
exchange. A site's water balance, LAI, primary production, and 
annual ET are tightly correlated through a series of feedbacks 
in semi‐arid regions41,42. A high annual LAI both drives a high 
annual ET and is symptomatic of a high annual ET. In turn, 
LAI is well correlated with the Normalized Vegetation 
Difference Index (NDVI)43, creating a tight relationship 
between annual NDVI and ET (Fig. S6). The relationship 
between annual NDVI and ET is much stronger than the 
relationship between hourly NDVI and ET. The hourly 
relationship is uni-directional (it mainly reflects the effect of 
LAI on ET), and is confounded by fluctuations in 
meteorological conditions, stress, plant physiology and 
phenology44. Regression approaches provide an excellent 
strategy for estimating annual ET, but are unsuitable for 
quantifying day‐to‐day or seasonal patterns of ET, when more 
biophysical strategies are required. 

Geographic information system and raster datasets. 
General. All geospatial analyses used co-registerered raster 
layers at 0.0002695o resolution for a 23000 by 19000 pixel 
region, with the upper left corner at -122o, 41o, WGS84.  
Analyses were done in ArcGIS, ENVI and Matlab, with 
ArcGIS toolbox and ENVI used to reproject and rasterize 
vector datasets and Matlab used to process the Landsat 
imagery and analyze the datasets. 
Digital elevation map. We used the 2013 version USGS NED 
1 arc sec Digital Elevation Map (DEM) from 
https://viewer.nationalmap.gov/basic/. 
USFS mortality: We used the main (midsummer) Aerial 
Detection Survey of forest health for the USFS Region 5 from 
https://www.fs.usda.gov/detail/r5/forest-
grasslandhealth/?cid=fsbdev3_046696. We reprojected the 
vector-based surveys, and rasterized the dead trees per acre 
and area flown fields.  We then calculated an annual raster 
layer of dead trees that combined the observed mortality and 
flown layers, inserting zero for pixels that were flown and did 
not report dead trees. We then estimated the mortality for each 
pixel during the drought as the maximum number of dead 
trees observed at a location across the main summer surveys 
during 2013 to 2016.  
USFS Existing Vegetation: We used the 
ExistingVegSouthSierra2000_2008_v1.gdb and 
ExistingVegR5_NorthSierra2000_2014_v1.gdb databases 
from 
https://www.fs.usda.gov/detail/r5/landmanagement/resourcem
anagement/?cid=stelprdb5347192.  We mosaiced the datasets 
and reprojected and rasterized the WHR class and CON_CFA 
fields.  
Tmax and P: We used the monthly time series of daily 
maximum temperature and precipitation at 4-km resolution for 
1981-2016 from the Parameter-elevation Relationships on 
Independent Slopes Model (PRISM; 
http://prism.oregonstate.edu/recent/).  We downsampled these 
layers to 0.0002695o by bilinear interpolation and summed or 
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averaged by WY.  We used a similar approach for the PRISM 
1981-2010 Tmax and P Normals at 800-m resolution. 
PDSI, SPI and SPEI: We used the monthly time series of 
Palmer Drought Severity Index (PDSI), 48-month 
Standardized Precipitation Index (SPI) and 48-month 
Standardized Precipitation Evapotranspiration Index (SPEI) at 
4-km resolution for 1981-2016 from the West Wide Drought 
Tracker (https://wrcc.dri.edu/wwdt/).  We downsampled these 
observations to 0.0002695o by bilinear interpolation and 
averaged for June-August of each year.   
Fire history: We used the fire history GIS data set from the 
California’s Fire and Resource Assesment Program (FRAP; 
http://frap.fire.ca.gov/data/statewide/fire17_1.zip. We 
reprojected and then rasterized the most recent year of burn. 
Landsat:  All Collection 1, Level 1 Landsat 5, 7, and 8 Surface 
Reflectance and Brightness Temperature images with less than 
30% cloud cover for WRS2 Path/Row 41035, 42034, 42035, 
43033, 43034, 44032 were downloaded from USGS 
(https://espa.cr.usgs.gov) after reprojection at 0.0002695o 
resolution.  The Landsat Collection 1 datasets represent a 
milestone in remote sensing science, with comparatively 
stable radiometric calibration45, and atmospheric correction46.  
Some additional biases in vegetation indices remain47-49, 
which we corrected by linear regression based on temporally 
adjacent NDVI and NDMI observations in California (see 
regressions below).  The resulting linear regressions, which 
tied L5 and L8 to L7, yielded similar results to those reported 
previously47-49.  Likewise, the Landsat Collection 1 pixel 
quality data layers represent a milestone, though visual 
examination of imagery for our study area indicated the masks 
occasionally missed areas with snow, low level clouds and 
cloud shadows.  We consequently further masked the imagery 
after ingesting the full Landsat time series for a location to 
remove pixels that were anomalously cold and also either 
anomalously dark or bright50. 

We examined our time Landsat series for possible step 
changes during periods that have been identified as 
problematic.  In particular, we focused on shifts in L5 during 
1995 relative to 1994 and 1996 with orbital anomalies51; a step 
change in 2000 with the initiation of L7; a step change in 2003 
with L7 SLC failure; a step change in L5 around 2005 with an 
orbital shift; a step change in 2011 with L5 termination; and a 
step change in 2013 or 2014 with L8 initiation. Our time series 
analysis did not show anomalies that coincided with these 
suspect periods, and the main vegetation shifts we identified 
(1994 to 1996, 2009 to 2012 and 2014 to 2016 in Figs 1b, 2a 
and S10a) did not coincide with known anomalies in the 
satellite record.   

We further examined the separate time series for each 
Landsat instrument after homogenization and confirmed that 
the interannual and mean summer NDVIs and NDMIs during 
overlapping periods were in good agreement (Fig. S12). The 
mean L5 summer NDVI for the pixels that met the criteria 
used in Fig. 4 was 0.654 during 2000 to 2011, while the 
corresponding L7 NDVI was 0.648. The mean L5 summer 
NDMI was 0.294, while the corresponding L7 NDMI was 
0.293.  The agreement between L7 and L8 was not quite as 
good, with a mean L7 NDVI of 0.596 during 2013 to 2016 
compared to a L8 mean of 0.614, and a L7 mean NDMI of 
0.239 compared to a L8 mean of 0.232.  These residuals are 

small in absolute terms (a few percent), and similar to those 
that have been reported in previous studies.   

Normalized Difference Indices, such as NDVI and NDMI, 
are largely insensitive to illumination differences with slope 
and aspect, and we consequently did not correct for 
topography.    
Canopy dieback and ET derivation from Landsat: We used the 
late growing season (August to October) Landsat Normalized 
Difference Moisture Index (NDMI; (NIR-
SWIR1)/(NIR+SWIR1)) to quantify evergreen canopy 
dieback.  NDMI is well correlated with the live leaf area in a 
pixel.  Hydrated leaves are dark in the ShortWave InfraRed 
(SWIR) with moisture absorption and bright in the Near 
InfraRed (NIR) with light scattering. Leaf and canopy 
mortality reduce NIR reflection, SWIR absorption and NDMI.  
NDMI is not unique in its ability to detect leaf and canopy 
mortality and alternative indices and approaches that 
emphasize NIR reflection and SWIR absorption have also 
proven effective15-19. Our annual late-growing-season NDMI 
data layers were highly correlated with previously reported 
summer canopy water contents based on a machine-learning 
fusion of airborne observations and Landsat11,52.   

Forest die-off in the Sierra Nevada was greatest among 
conifers, and our focus on August to October imagery allowed 
us to better isolate the year-to-year changes in evergreen 
canopies. Deciduous vegetation in California’s Mediterranean 
climate is typically tied to winter and spring precipitation, 
with senescence occurring shortly after the onset of the 
summer dry season. Wet years in California cause a large 
expansion of spring deciduous vegetation. Spring NDMI 
(March to June) therefore reflects interannual variation in 
deciduous vegetation including herbs, as well as longer-term 
patterns of evergreen and deciduous perennial density. Most of 
the LAI in the late summer is evergreen, and year-to-year 
shifts in August to October NDMI provide a focused signal of 
evergreen canopy loss or expansion.  

NDVI and NDMI both incorporate NIR reflectance, 
respond positively to canopy density and consequently are 
correlated, raising the risk that our comparison of P-ET with 
NDMI is not mathematically independent.  However, ET 
calculated from annual NDVI was weakly correlated with 
NDMI across latitude and elevation (i.e., a comparison 
similar to those in Fig. S2 found an R2 of 0.11 between ET and 
NDMI), and much of this relationship may reflect the 
biophysical tendency for greater mortality in locations with 
denser canopy, as opposed to a mathematical artifact. We 
conclude the relationship we found between P-ET and 
NDMI (Fig. S2c) is not driven by an underlying 
mathematical correlation between NDVI and NDMI for four 
main reasons. First, we found a much tighter, non-linear 
relationship between P-ET and NDMI than between ET 
alone and NDMI. Second, our analysis focused on NDMI 
rather than NDMI alone. Third, we found a similarly tight 
relationship between P-ET and ADS mortality (Fig. S2b), 
which are fully independent measures. Fourth, NDVI and 
NDMI are not perfectly correlated, and were averaged over 
different periods of the year. 
Processing steps: The Landsat imagery was processed through 
the following steps: 
1) The Tasseled Cap brightness, Normalized Difference 

Vegetation Index (NDVI; (NIR-Red)/(NIR+Red)) and 
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Normalized Difference Moisture Index (NDMI; (NIR-
SWIR1)/(NIR+SWIR1)) were calculated for all images. 

2) Images were masked for cloud, cloud shadow or snow 
using the USGS pixel_qa layer. 

3) Images were cut and sorted to 0.2695o by 0.2695 o tiles. 
4) The full time series for each 0.2695 o by 0.2695 o tile was 

stacked and further masked for pixels that were both 
anomalously cold and anomalously dark or bright (see also 
ref50). 

5) Observations of NDVI and NDMI from Landsat 5 and 8 
were homogenized to Landsat 7 using regressions 
determined by comparing consecutive observations (see 
also refs 47-49):  
L7 NDVI = L5 NDVI * 1.0630 - 0.0096 
L7 NDVI = L8 NDVI * 0.9553 - 0.0232 
L7 NDMI = L5 NDMI * 1.0015 - 0.0076 
L7 NDMI = L8 NDMI * 0.9852 - 0.0260 

6) A larger stack that included the dates (layers) for all 
possible L5, 7 and 8 overpasses was created, populated 
with the observed values, and filled by linear interpolation 
along the time axis. 

7) The annual and seasonal means for each water year (Oct-
Sept) were calculated. 

8) The individual 1000 by 1000 pixel tiles were mosaiced to 
the full 23000 by 19000 pixel study area. 

9) ET was calculated for each pixel and water year from the 
annual mean NDVI using the regression in Fig. S6.  P-ET 
was calculated for each pixel and water year by subtracting 
ET from the down-sampled PRISM P. 

Additional details on plots. Figure 1. All panels were 
calculated for 35.69o-37.65o latitude and at or below 2300 m 
elevation; this band is centered on the SSCZO, and was 
selected to include the area with the greatest P shortfall and 
dieback.  All data were screened to exclude locations with a 
wildfire since 1980, or that were not conifer dominated (only 
used WHR types SMC, PPN, MHC, LPN, RFR, WFR, SCN, 
JPN, DFR, EPN, PJN), or that had a 30 year Normal P of less 
than 600 mm. Dead trees in (b) and (c) were calculated from 
the main (mid-summer) ADS vector layers. Altitudinal 
patterns in (c) were calculated as means for 100-m elevation 
bins for July and August 2016 dead tree inventories by the 
USFS Aerial Detection Survey. The mean conifer cover was 
calculated from the USFS Existing Vegetation (EVeg). The 
change in late dry-season NDMI for each year is relative to the 
NDMI before the drought (2009-2011 mean). Bins were 
screened to exclude n < 1000. Error bars for 2015 NDMI are 
95% confidence intervals based on variation within a bin (n > 
104 at mid elevation).   
Figure 2, (a) Points are averages for 9 Landsat pixels (a 90 by 
90 m area) in the mean upwind direction from the tower for 
August to October of each year. The 95% confidence intervals 
based on the variation among Landsat pixels is shown for the 
1160 m site; the confidence intervals at the other sites were 
similar. NDMI provides a measure of the density of living 
leaves, and the focus on the late drought period from August 
to October targets the contribution of evergreen foliage. (b) 
The monthly Light Use Efficiency was calculated as the 
monthly gross CO2 uptake from eddy covariance per incident 
photosynthetically active photon flux. The monthly 
seasonally-detrended NDMI was calculated as the observed 
NDMI calculated by interpolation and averaging minus the 

mean NDMI observed for that month during 1984-2012. (c) 
Cumulative water balance was calculated as the sum of 
precipitation (P) measured by local gauges minus 
Evapotranspiration (ET) measured by eddy covariance in mm 
starting 6/6/2011 (the last day with meaningful P in the 2010-
11 WY).  
Figure 3. (a) Patterns of tree dieback based on NDMI (Aug-
Oct 2016 minus Aug-Oct 2009-2011) and (b) cumulative P-
ET during 2012-2015 WYs as a function of latitude (y axis, 
degrees N) and elevation (x axis, meters above sea level). A 
three year pre-drought reference period (2009-2011) was used 
to reduce the influence of interannual variability. All pixels 
were screened to exclude locations that burned since 1980, or 
were not conifer dominated (only used WHR types SMC, 
PPN, MHC, LPN, RFR, WFR, SCN, JPN, DFR, EPN, PJN), 
or had a mean 30 year precipitation less than 600 mm.  Colors 
indicate the average NDMI (negative indicates a greater 
NDMI drop over time) and 2012-2015 WY cumulative P-ET 
(mm; negative indicates a greater overdraft) for 100 m 
elevation and 0.02695o latitude bins. Scatterplot and best fit 
regression between NDMI binned by latitude and elevation 
(Fig. 3a) and corresponding cumulative P-ET (Fig. 3b) is 
shown in Fig. S2c (R2  = 0.5953). 
Figure 4. (a) NDMI for the 1987-1992 and 2012-2015 
droughts was calculated as the Aug-Oct mean relative to the 
periods before drought (1984-1986 or 2009-2011).  Three year 
pre-drought reference periods were used to reduce the 
influence of interannual variability. Cumulative WY P-ET was 
calculated from PRISM P minus the NDVI-based ET * 
normalized Saturated VP (Fig. S5). (b) Comparison of 
cumulative P-ET calculated for 1987-1992 and 2012-2015 
droughts, with observed PRISM P and ET calculated using 
four alternative approaches.  ET in (b) was calculated: i) as the 
mean ET averaged across all pixels and all years (ETmean); ii) 
considering only interannual variability in canopy density as 
measured by NDVI (Fig. S6; ET just NDVI); iii) considering only 
the effect of temperature on normalized saturated vapor 
pressure calculated from Tmax (ET just T; i.e., ETmean * 
normalized saturated vapor pressure (Fig. S5)); and iv) 
considering the effects of both temperature on saturated vapor 
pressure and canopy density (ETT&NDVI; i.e., ET just NDVI * 
normalized saturated vapor pressure (Fig. S5)). All time series 
were calculated for 35.69o-37.65o latitude and at or below 
2300 m elevation. All data were screened to exclude locations 
with a wildfire since 1980, or that were not conifer dominated 
(only used WHR types SMC, PPN, MHC, LPN, RFR, WFR, 
SCN, JPN, DFR, EPN, PJN), or that had a 30 year Normal P 
of less than 600 mm.  

The fractional effect of warming on cumulative P-ET was 
calculated as ((P-ETjust T – P-ETmean)/ P-ETmean). The fractional 
effect of structural overshoot on cumulative P-ET was 
calculated as ((P-ET just NDVI – P-ETmean)/ P-ETmean). The 
fractional effect of additional warming on P-ET during 
drought was calculated for 1 to 4oC incremental warming 
using the approach used to calculate the fractional effect of 
warming on cumulative P-ET. The fractional effect of 
additional warming on tree death was calculated by converting 
the P-ET calculated for 1 to 4oC to number of dead trees per 
hectare based on Fig. S2b. 

Data availability 
Data are available from UC Irvine Dash, https://doi.org/10.7280/D1DH3B. 
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Supplementary information: Supplementary Figures 1–12  
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Figure S1a:  California elevation (red to blue color ramp; meters above sea level) and Sierra 
Nevada ecoregion (open polygon).  Elevation from USGS at 100 m resolution 
(https://www.sciencebase.gov/catalog/item/581d0539e4b08da350d52552). Sierra Nevada 
polygon from EcoregionsCalifornia07_3 
(https://www.fs.fed.us/r5/rsl/projects/gis/data/calcovs/EcoregionsCalifornia07_3.html). 
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Nature Geoscience, 2019        https://doi.org/10.1038/s41561-019-0388-5 
 

S-3 
 

Figure S1b:  Fraction conifer cover in a pixel (purple to green color ramp; percent) and Sierra 
Nevada ecoregion (open polygon; from EcoregionsCalifornia07_3).  From CON_CFA in 
existingVegSouthSierra2000_2008_v1.gdb and ExistingVegR5_NorthSierra2000_2014_v1.gdb 
(https://www.fs.usda.gov/detail/r5/landmanagement/resourcemanagement/?cid=stelprdb534719). 
Background is shaded relief at 1 km from 
https://www.sciencebase.gov/catalog/item/4f4e4a60e4b07f02db63510b.  
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Figure S1c:  Cumulative Precipitation minus Evapotranspiration over the drought (P-ET in mm 
summed over 2012-2015 water years; red to blue color ramp with negative numbers and warm 
colors indicating P < ET (a moisture overdraft and subsurface drying) and positive numbers and 
cool colors indicating P > ET (a moisture surplus and runoff generation)). P-ET was calculated 
from Landsat and PRISM.  Sierra Nevada ecoregion shown as an open polygon.  Background is 
shaded relief at 1 km resolution from 
https://www.sciencebase.gov/catalog/item/4f4e4a60e4b07f02db63510b. Small sections in the 
south and northeast of the ecoregion were not included in the Landsat analyses. Lakes and water 
bodies were not included in the analysis.  
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Figure S1d:  Unmasked late dry-season Normalized Difference Moisture Index (NDMI; from 
Landsat) over the drought (∆NDMI; 2009-11 NDMI minus 2016; green to brown color ramp 
where higher values indicating a greater NDMI decline and canopy dieback). Sierra Nevada 
ecoregion shown as an open polygon.  Large areas of NDMI decline (red patches) were either 
recent fires (for example, the 2013 Rim Fire at 38o, -120o) or forest dieback. Large areas of 
NDMI increase (green patches) were typically earlier fires (for example, the 2007 Moonlight 
Fire at 40.3o, -120.7o).  

 
 

 



 
 
Nature Geoscience, 2019        https://doi.org/10.1038/s41561-019-0388-5 
 

S-6 
 

Figure S1e:  Masked late dry-season Normalized Difference Moisture Index (NDMI; from 
Landsat) over the drought (∆NDMI; 2009-11 NDMI minus 2016; green to brown color ramp 
where higher values indicating a greater NDMI decline and canopy dieback). Pixels were masked 
(shown as black) and excluded form analyses if they burned since 1980, or were not conifer 
dominated (only used WHR types SMC, PPN, MHC, LPN, RFR, WFR, SCN, JPN, DFR, EPN, 
PJN), or had a mean 30 year Precipitation less than 600 mm, or fell outside of the Sierra Nevada 
ecoregion.  Background is shaded relief at 1 km resolution from 
https://www.sciencebase.gov/catalog/item/4f4e4a60e4b07f02db63510b.  

 
 

https://www.sciencebase.gov/catalog/item/4f4e4a60e4b07f02db63510b
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Figure S2: Relationship between USFS Aerial Detection Survey (ADS) dead trees per ha binned 
by latitude and elevation (from Fig. S3a) and (a) ∆NDMI (Fig. 3a), and (b) cumulative P-ET 
(mm, Fig. 3b). Relationship between ∆NDMI binned by latitude and elevation (Fig. 3a) and (c) 
corresponding cumulative P-ET (mm, Fig. 3b), (d) Palmer Drought Stress Index (PDSI, Fig. 
S7c), (e) Standardized Precipitation Index (SPI, Fig. S7a), and (f) Standardized Precipitation 
Evapotranspiration Index (SPEI, Fig. S7b). Best fit regressions are: (a) Dead trees per hectare = -
0.4214-551.0 * (∆NDMI); Rsqr = 0.5646. (b) for P-ET (mm) <= 131.7, Dead trees per hectare = -
0.0499 * P-ET (mm) + 14.59; for P-ET (mm) > 131.7, Dead trees per hectare = -0.0047* P-ET 
(mm) + 8.636; Rsqr  = 0.5128. (c) for P-ET (mm) <= 131.7, ∆NDMI = 0.0000737 * P-ET (mm) - 
0.02987; for P-ET (mm) > 131.7, ∆NDMI = 0.00000646 * P-ET - 0.02101; Rsqr  = 0.5953. (d) 
∆NDMI = 0.0167 + 0.0164 *PDSI;  Rsqr = 0.1928. (e) ∆NDMI = 0.1313 + 0.0766 *SPI;  Rsqr = 
0.3175. (f) ∆NDMI = 0.1546 + 0.0808*SPEI;  Rsqr = 0.2000.  
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Figure S3: (a) Number of dead trees per hectare in main summer 2016 USFS Aerial Detection 
Survey (ADS) and (b) ∆NDMI in July-Sept 2016, as a function of latitude (degrees) and 
elevation (meters above sea level). Pixels were screened to exclude locations that burned since 
1980, or were not conifer dominated, or had a mean 30 year P less than 600 mm.  Pixels were 
binned at 100-m elevation and 0.02695o-latitude intervals and means calculated. Color ramps are 
above corresponding plots.  Units are (a) mean number of dead trees per hectare reported by the 
ADS and (b) ∆NDMI with negative indicating a greater decline. 
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Figure S4:  Gross CO2 exchange at the (a) SSCZO 2015-m and (b) 1160-m elevation sites.  
Points show individual 30-minute Net CO2 exchange and solid lines show mean monthly Gross 
CO2 exchange (photosynthesis), with negative values indicating greater uptake.  Solid vertical 
lines shows the start of the drought (6/2011) and the period of peak mortality at 1160 m (8/2015).  
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Figure S5: Relationship between half hour air T and half hour ET during sunny well-watered 
conditions before the onset of the 2012-15 drought (spring and early summer 2011 and 2012).  
Points are the mean ET with incoming solar radiation > 200 Wm-2 for 1oC bins. Error bars show 
the 95% confidence intervals based on variation within the bin (the confidence intervals were 
similar at the two sites). Large outlined symbols show the mean daytime temperature at each site. 
The filled line shows the relative vapor pressure for a given temperature from the Antoine 
equation. 

 

  



 
 
Nature Geoscience, 2019        https://doi.org/10.1038/s41561-019-0388-5 
 

S-11 
 

Figure S6: Annual water year ET by integrated eddy covariance against annual NDVI from 
Landsat for 9 nearest upwind pixels across multiple years at 10 California flux towers. Solid 
black line shows the best fit regression through all sites and for all years was ET (mm) = 117.16 
* exp(2.8025*NDVI) (R2 = 0.8386).  Symbols indicate individual sites as identified by the 
AmeriFlux site code (http://ameriflux.lbl.gov/sites). Thin lines show liner regressions based on 
interannual variability within each site. See ref21 for details. 
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Figure S7: (a) 48-month summer (JJA) 2015 Standardized Precipitation Index (SPI), (b) 48-
month summer 2015 Standardized Precipitation Evapotranspiration Index (SPEI) and (c) summer 
2015 Palmer Drought Severity Index (PDSI) as a function of latitude (degrees N) and elevation 
(meters above sea level). Pixels were screened to exclude locations that burned since 1980, or 
were not conifer dominated, or had a 30-year Normal Precipitation less than 600 mm.  Pixels 
were binned at 100 m elevation and 0.02695o-latitude intervals and means calculated.  Color bars 
are above the corresponding plots.  Units are (a) SPI with negative indicating less P, (b) SPEI 
with negative indicating less P or greater ET, and (c) PDSI with negative indicating more severe 
drought. 
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Figure S8: Elevation patterns of (a) 2016 ∆NDMI, cumulative 2012-15 P-ET, 2015 June to 
August PDSI, 2015 48-month SPI and SPEI, and (b) mean annual ET and P during 2012-2015. 
Pixels were screened for locations within 35.69 to 37.65 latitude, no reported fire since 1980, a 
30-year Normal P of at least 600 mm yr-1 and a conifer dominated WHR class (e.g., only WHR 
types SMC, PPN, MHC, LPN, RFR, WFR, SCN, JPN, DFR, EPN, PJN). Pixels were binned and 
averaged at 100 m elevation intervals. Units in (a) ∆NDMI with negative indicating a greater 
drop in NDMI over time, P-ET in mm 4yr-1 where negative indicates a greater overdraft, 48 
month summer SPI, SPEI or PDSI, where negative indicates lower P.  Units in (b) are mm yr-1 
averaged for 2012-15, where positive indicates greater ET or P.  The area between the P and ET 
curves below ~2300 m elevation with ET > P in (b) corresponds to the negative P-ET in (a).  The 
area between the P and ET curves above ~2300-m elevation with ET < P in (b) corresponds to 
positive P-ET in (a).   
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Figure S9: (a) the difference between 2009-2011 and 2016 NDMI (∆NDMI with positive 
indicating a greater NDMI decline) and the number of dead trees reported by the USFS Aerial 
Detection Survey (USFS ADS, dead trees per ha) as a function of the local aspect (degrees with 
90o indicating East facing slopes and 180o indicating South facing).  (b) Normalized Difference 
Moisture Index (NDMI) during 2009-2011 and 2016 and the percent conifer cover from the 
USFS EVeg. All pixels were screened to include only locations at 600 to 2300 m elevation and 
35.69 to 37.65 o latitude, no reported fire since 1980, a 30-year Normal P of at least 600 mm yr-1 
and a conifer dominated WHR class (e.g., only WHR SMC, PPN, MHC, LPN, RFR, WFR, SCN, 
JPN, DFR, EPN, PJN). Aspect was calculated from the DEM and pixels were binned and 
averaged at 10o intervals. 
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Figure S10: (a) Annual Water Year (Oct-Sept) cumulative Evapotranspiration (ET) in the 
southern Sierra Nevada calculated four ways: i. using the mean ET averaged across all pixels and 
all years (ETmean); ii. considering only NDVI (Fig. S6) (ETjust NDVI); iii. considering only the 
normalized saturated vapor pressure calculated from Tmax (ETjust T); and iv. considering both 
vapor pressure and NDVI (ETT and canopy). (b) Annual Water Year (Oct-Sept) cumulative 
Precipitation (P) in the southern Sierra Nevada, and P-ET calculated using ETmean and ETT and 

canopy).  
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Figure S11: Conceptual model of the controls on tree mortality in the Sierra Nevada during the 
2012-15 drought.  Mortality was closely associated with an extreme P-ET overdraft (Fig. 1c, 2, 
3, 4a, S1, S2bc, S8a). An extreme P-ET overdraft was associated with reduced P and drought, 
and also increased ET as mediated by warmer than usual air temperatures and antecedent canopy 
expansion (Fig. 4b,S5).  Antecedent canopy expansion was associated with wetter and warmer 
periods (Fig. S10). 
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Figure S12: Comparison of (a) NDVI and (b) NDMI time series for each Landsat instrument 
after homogenization.  Lines connect summer means for July to September.  Pixels were 
screened for locations within 35.69 to 37.65 latitude, no reported fire since 1980, a 30-year 
Normal P of at least 600 mm yr-1 and a conifer dominated WHR class (e.g., only WHR types 
SMC, PPN, MHC, LPN, RFR, WFR, SCN, JPN, DFR, EPN, PJN). 
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