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RESEARCH Open Access

Reservoirs of antimicrobial resistance genes
in retail raw milk
Jinxin Liu1,2, Yuanting Zhu1,2, Michele Jay-Russell3, Danielle G. Lemay4,5,6 and David A. Mills1,2,7*

Abstract

Background: It has been estimated that at least 3% of the USA population consumes unpasteurized (raw) milk
from animal sources, and the demand to legalize raw milk sales continues to increase. However, consumption of
raw milk can cause foodborne illness and be a source of bacteria containing transferrable antimicrobial resistance
genes (ARGs). To obtain a comprehensive understanding of the microbiome and antibiotic resistome in both raw
and processed milk, we systematically analyzed 2034 retail milk samples including unpasteurized milk and
pasteurized milk via vat pasteurization, high-temperature-short-time pasteurization, and ultra-pasteurization from the
United States using complementary culture-based, 16S rRNA gene, and metagenomic sequencing techniques.

Results: Raw milk samples had the highest prevalence of viable bacteria which were measured as all aerobic
bacteria, coliform, and Escherichia coli counts, and their microbiota was distinct from other types of milk. 16S rRNA
gene sequencing revealed that Pseudomonadaceae dominated raw milk with limited levels of lactic acid bacteria.
Among all milk samples, the microbiota remained stable with constant bacterial populations when stored at 4 °C. In
contrast, storage at room temperature dramatically enriched the bacterial populations present in raw milk samples
and, in parallel, significantly increased the richness and abundance of ARGs. Metagenomic sequencing indicated
raw milk possessed dramatically more ARGs than pasteurized milk, and a conjugation assay documented the active
transfer of blaCMY-2, one ceftazidime resistance gene present in raw milk-borne E. coli, across bacterial species. The
room temperature-enriched resistome differed in raw milk from distinct geographic locations, a difference likely
associated with regionally distinct milk microbiota.

Conclusion: Despite advertised “probiotic” effects, our results indicate that raw milk microbiota has minimal lactic
acid bacteria. In addition, retail raw milk serves as a reservoir of ARGs, populations of which are readily amplified by
spontaneous fermentation. There is an increased need to understand potential food safety risks from improper
transportation and storage of raw milk with regard to ARGs.
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Background
Unpasteurized milk for human consumption is currently
legalized for sale in 30 states either in retail stores (n = 13)
or at local farms (n = 17) [1] in the USA, and the demand
for raw milk is increasing [2, 3]. Despite the proposed
health benefits of raw milk for humans [4–6], contamin-
ation of raw milk with zoonotic pathogens including Cam-
pylobacter spp., Shiga toxin–producing Escherichia coli,
and Salmonella enterica have been well documented lead-
ing to serious illnesses [7–11]. In addition to the presence
of potential pathogenic bacteria, raw milk contains
antibiotic-resistant microbes [12–16], and thus the incorp-
oration of raw milk into daily diet may facilitate the dis-
semination of antimicrobial resistance genes (ARGs) to
the human gastrointestinal tract. At present, a compre-
hensive understanding of the antibiotic resistome in raw
milk is lacking.
The raw milk microbiota has been documented in sev-

eral studies, but has mostly focused on the milk at farms
or during transportation [17–19]. However, in-depth in-
vestigations employing high throughput sequencing to
examine the microbiota of raw milk at retail stores re-
main limited. In addition, there is little information on
the extent to which the milk microbiota responds to
various levels of pasteurization and processing. Raw fluid
milk is typically directly consumed; however, it is some-
times deliberately left at room temperature (RT) for 1-5
days to make a product termed clabber [20]. Currently,
the production of this “naturally fermented” milk is in-
creasing with the public’s interest in traditional foods
[21, 22]. Therefore, it is imperative to understand the
dynamic changes of bacterial load, microbiota compos-
ition, and resistome content of raw milk during such
incubations.
To examine this, a total of 2034 retail milk samples

were collected from stores in California, Idaho, Arizona,
South Carolina, and Maine. Eight milk brands in Califor-
nia representing 4 types of commercial milk processing
(raw, vat pasteurized [Vat], high-temperature short time
[HTST], ultra-pasteurized [UHT]) were sampled from 8
independent batches over five months. Vat
pasteurization is the original method of pasteurization,
which heats milk (typically at 145 °F) in a large tank for
at least 30 min. HTST pasteurization, the most common
method of pasteurization in the USA, requires the milk
temperatures to be at least 161 °F for not less than 15 s,
followed by rapid cooling. Compared to HTST, UHT
pasteurizes milk at an even higher temperature (280 °F)
for 2 s and provides extended shelf-life of milk [23]. Col-
lected milk samples were incubated at both 4 °C and
23 °C for up to 24 h, and the live bacterial load and milk
microbiota were characterized during this period. Retail
raw milk samples were also obtained in other states from
3 independent purchases for microbiota profiling. The

milk resistome was characterized via metagenomic se-
quencing in selected milk samples. Via extensive sam-
pling, culturing, and sequencing, this study expands our
understanding of the microbiota composition and anti-
biotic resistome of retail milks as well as their response
to pasteurization, geography, temperature, and spontan-
eous fermentation. These findings highlight the potential
risk for ingestion and transfer of antimicrobial resistance
when consuming raw milk.

Results
The dynamics of viable bacterial populations in various
types of California retail milk during incubations
In order to explore the milk microbiota and antibiotic
resistome, it was relevant to first quantify the viable bac-
teria and understand their dynamic change over incuba-
tions across various types of retail milk. In California,
retail raw milk samples showed overall higher popula-
tions of live bacteria compared to retail milk samples
that had been pasteurized. Prior to any incubations, raw
milk had the highest absolute abundance of aerobic bac-
teria (~ 2.56-log), followed by Vat (Dunn test, P = 0.14),
HTST (P < 0.001), and UHT (P < 0.001) (Fig. 1a). Coli-
forms were present in a similar distribution across milk
types, with raw milk containing the most bacteria (~
1.05-log) which was slightly higher than Vat (P = 0.36)
and significantly more prevalent than HTST and UHT
milks (Dunn test, P < 0.01 in both cases, Fig. 1a). There
was no measurable significant difference in the popula-
tion of E. coli across milk types (Dunn test, P > 0.05, Fig.
1a). At all levels, the bacterial population quantified
remained stable in a cold environment (4 °C) over 24 h
except a drop of E. coli at 4 h in raw milk (Supplemen-
tary figure 1).
According to The California Department of Food and

Agriculture (CDFA), it is unlawful to distribute raw milk
which contains more than 15,000 bacteria per milliliter
or more than 10 coliform bacteria per milliliter [24].
Given that milk can be unintentionally (e.g., cold chain
disruption) or intentionally (e.g., clabber) incubated at
room temperature, retail milk samples were examined
during a controlled RT incubation. During RT incuba-
tion, aerobic bacteria were significantly enriched in Raw,
Vat, and HTST milk starting at 6 h, 12 h, and 24 h, re-
spectively (LMM, P < 0.05, Fig. 1b). As a result, the
abundance of aerobic bacteria was beyond the CDFA
regulations at 12 h in raw and 24 h in Vat milk (Fig. 1b).
We observed a significant enrichment of coliforms in
raw milk beginning at 12 h (LMM, P < 0.001) and in Vat
milk starting at 24 h (LMM, P < 0.05), which surpassed
the CDFA regulations (Fig. 1c). No significant changes
of coliform counts were observed in HTST and UHT
milk (LMM, P > 0.05, Fig. 1c). Finally, the population of
E. coli indicated a significant increase by the end of
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incubation (24 h) in raw milk (LMM, P < 0.001), while
its abundance remained relatively stable in the other
three types of milk (LMM, P > 0.05, Fig. 1d). In all cases,
there was no measurable bacterial growth observed in
UHT milk (LMM, P > 0.05, Fig. 1).
Given that raw milk is a potential source of food-

borne pathogens, retail milk samples in the present
study were screened for Listeria spp., Salmonella enter-
ica, and E. coli O157:H7. None were detected. Indeed, a
much larger sample size would be needed for a pathogen
prevalence study, which was outside the scope of this

work. However, of the isolated E. coli strains (n = 95),
84.2% (n = 80) possessed at least one antibiotic resist-
ance phenotype, and 35.8% (n = 34) were multidrug re-
sistant (≥ 2 resistance phenotypes). Ceftazidime
resistance was the most prevalent phenotype in this co-
hort (n = 57; 60%) followed by resistance to amoxicillin
(n = 24; 25.3%), tetracycline (n = 24; 25.3%), and strepto-
mycin (n = 22; 23.2%) (Supplementary table 1). Genome
sequencing of one representative multidrug-resistant E.
coli strain JXLQYF114666 indicated the presence of nine
transferrable ARGs (aph(3”)-Ib, aph(6)-Id, blaCMY-2,

Fig. 1 Bacterial population dynamics of retail milk over 24 h room temperature (RT) incubation. a Bacterial populations in freshly purchased retail
milk (without incubation). b Total aerobic bacteria; c Coliforms; d E. coli; populations during the RT incubation within 24 h. A total of 1152 milk
samples were analyzed; Raw (n = 288), HTST (n = 432), Vat (n = 144), and UHT (n = 288). Solid and dashed horizontal lines represent the
California milk threshold for aerobic bacteria (< 15,000 bacteria/mL) and coliforms (< 10 coliform/mL), respectively. ★P < 0.05, ★★P < 0.01, and
★★★P < 0.001 for comparison with raw milk of the same bacterial type. #P < 0.05, ##P < 0.01, and ###P < 0.001 for comparison with start point (0
h) within each type of milk
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blaTEM-1B, mdf(A), catA2, sul2, tet(B), and dfrA14) con-
ferring resistance to seven classes of medically important
antibiotics (Supplementary table 2). The blaCMY-2 gene,
known to confer high-level ceftazidime resistance [25],
appeared to reside on an IncI1 ST12 plasmid in
JXLQYF114666. Conjugation assays demonstrated
ceftazidime-resistance was successfully transferred to
azide-resistant E. coli strain J53 and ceftazidime-
susceptible Pseudomonas aeruginosa strain UCD-
DAM001 at frequencies of 2.8 ± 0.35 (mean ± s.d.) ×
10–4 and 6 ± 1.44 × 10−7 cells per recipient, respectively.
In summary, bacterial populations in retail milk
remained stable at refrigerated temperatures and did not
contain known pathogens; however, RT incubation
increased bacteria beyond state standards in raw and
Vat-pasteurized milk and, even at cold temperatures,
contained E. coli strains harboring a ceftazidime resist-
ance gene which was transferrable.

The dynamics of the retail milk microbiome in California
during 4 °C and RT incubations
The bovine raw milk microbiota has been relatively well-
studied on farms [17, 18], in tanker trucks, and in pro-
cessing facilities [19], but the microbiome of retail raw
and pasteurized milk, remain elusive. To address this
gap, 16S rRNA gene sequencing was used to systematic-
ally characterize the microbiota of California retail milk.
As expected due to differences in live bacterial popula-
tions, we obtained different numbers of reads across
types of milk, in which raw (median 6062; interquartile
range (IQR), 31,578) and Vat milk (median 1678; IQR,
40,718) had a similar high amount of sequences per
sample followed by HTST (median 662; IQR, 2683) and
UHT (median 264; IQR, 1395) milk. Sequencing quality
did not vary systematically across types of retail milk in
California (and raw milk across states) (Kruskal-Wallis,
P = 0.3; Supplementary figure 2c & d).
Overall, retail milk of different processing types pos-

sessed varied microbiota structure (Bray-Curtis, PERMA-
NOVA test by adonis2; P = 0.04), in which HTST and
UHT samples clustered in independent groups while raw
and vat milk overlapped (Fig. 2a). Raw, Vat, and UHT
milk samples indicated comparable alpha diversity, as
measured by both Shannon index and Faith’s phylogenetic
diversity (PD) which remained relatively stable throughout
the RT incubation (LMM, P > 0.05, Fig. 2b and c). HTST
milk microbiota had the highest diversity (LMM, P <
0.001 for both Shannon index and PD, Fig. 2b and c). This
is consistent with the fact that HTST milk commonly
comes from multiple dairies and bacteria that remain after
heat-treatment are likely also diverse [26, 27]. Interest-
ingly, the diversity estimated in HTST milk fluctuated
over the RT incubation, during which both alpha diver-
sities exhibited decreases at 4 h and 24 h (LMM, P < 0.01,

Fig. 2b and c). In addition, we likely underestimated the
alpha diversity of HTST milk as the subsampling depth of
200 reads was not able to capture all of its observed ampli-
con sequence variants (ASVs) (Supplementary figure 2b).
The microbiota variances were further investigated

by examining the taxonomic composition. Pseudomo-
nadaceae was dominant in Raw (> 90%; averaged
relative abundance), Vat (> 70%), and UHT (> 45%)
milks, while Streptococcaceae was more prevalent in
HTST milk samples (Fig. 2d). The dominance of
Pseudomonadaceae is consistent with lower
temperature creating a selective advantage for psy-
chrotolerant Pseudomonas spp. [28, 29]. Similar differ-
ences in microbiota were observed in retail milk kept
in the cold environment, but the dynamic changes of
alpha diversity were attenuated in HTST milk over
the incubation compared to its dramatic change dur-
ing RT incubation (Supplementary figure 3). Taken
together, retail milk in California that underwent dif-
ferent processing and pasteurization procedures pos-
sessed distinct microbiomes. In addition, while viable
bacterial populations measured in raw milk experi-
enced a dramatic increase once incubated at RT, the
relative abundance of the various taxa of raw milk, as
observed by 16S amplicon sequencing, remained
stable over the same incubation.

The antibiotic resistome of California retail milk during RT
incubations
To gain a deeper understanding of the milk resistome,
shotgun metagenomic sequencing of DNA extracted
from selected milk samples from California was con-
ducted, garnering 109 Gb of sequencing data from 13
raw and 11 HTST milk microbiomes, with 6.5 (median;
IQR, 2) million 150 bp paired-end (PE) reads per sample.
Vat milk, of which the microbiota overlapped with raw
milk (Fig. 2a), and UHT milk, in which no detectable live
bacteria were observed (Fig. 1), were excluded from this
analysis. Sequencing depth and quality did not vary sig-
nificantly across types of milk on HiSeq 4000 (Supple-
mentary figure. 4a & b).
ARGs were undetected in both HTST and raw milk

samples at the first timepoint (0 h; Fig. 3a); however, the
24 h RT-incubation dramatically increased the measur-
able ARGs in raw milk microbiomes by comparison to
HTST milk (Wilcoxon rank-sum test, P = 0.02, Fig. 3a).
Specifically, ARGs were observed in all incubated raw
milks but the presence of ARGs only occurred in a sin-
gle HTST sample (Fig. 3a). Leveraging a much higher se-
quencing depth with NovaSeq S4, we were able to detect
ARGs in raw milks without incubation, and in both se-
quencing runs (i.e., HiSeq and NovaSeq), ARGs were
significantly enriched via incubation (Wilcoxon signed-
rank test, P = 0.003, Fig. 3b). In total, 49 ARGs
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belonging to 15 ARG groups, representing 7 antibiotic
resistance mechanisms were found in California retail
raw milk samples (Supplementary Data 1). These ARGs
were predicted to confer resistance to 4 classes of antibi-
otics in a normalized abundance (hereafter referred to as
abundance) ranging from 0 to 0.66 copies of ARG per
16S rRNA gene in each sample (Fig. 3b). RT incubation
significantly enriched ARGs belonging to all 4 classes of
antibiotics (i.e., multidrug resistance, aminoglycosides,
beta-lactams, and tetracyclines) within 24 h (Wilcoxon
signed-rank test, P < 0.05, FDR correction for multiple
comparison, Fig. 3b).
Metagenomic assembly was employed to track the bacter-

ial host of the observed ARGs [30]. Overall, we obtained 18,
940 (median; IQR, 14,579) contigs per sample, and the ma-
jority of ARG-containing reads (> 99%) were successfully
aligned to assembled contigs (Supplementary figure 5a and
b). Importantly, most observed ARGs (62-80%) were

assigned a bacterial taxonomy at the family level (Supple-
mentary figure 5c and d). Specifically, nine known bacterial
families were predicted to host these ARGs, with Pseudomo-
nadaceae harboring the highest number of unique ARGs
(36) followed by Enterobacteriaceae (28), Yersiniaceae (14),
and Moraxellaceae (8) (Fig. 3c; Supplementary Data 2).
Therefore, retail raw milk in California was clearly a source
of ARGs conferring resistance to 4 classes of medically im-
portant antibiotics; raw-milk-borne ARGs were readily amp-
lified during RT-incubation and were mostly from
Pseudomonadaceae, Enterobacteriaceae, and Yersiniaceae.

The geographical variances of antibiotic resistome in
retail raw milk across states
Given that milk microbes could originate from animal
skin, feces, and the local environment [31], raw milk sam-
ples from different geographical locations likely possess a
regional-specific resistome [32]. To assess such variances

Fig. 2 The microbiota profiles of retail milk over room temperature incubations. a NMDS of retail milk samples based on Bray-Curtis (k = 3; stress
= 0.15; linear fit, R2 = 0.76; non-metric fit, R2 = 0.96). All 902 samples, after excluding low sequencing read milks (Raw = 270; Vat = 108; HTST =
347; UHT = 177), were included in this analysis. b Alpha diversity as measured by Shannon index in retail milk over RT incubation. c Alpha
diversity as measured by Faith’s phylogenetic diversity (PD) in retail milk over RT incubation. d Bar plot depicting the relative abundance of
bacterial families over time; bacterial families which has a relative abundance less than 1% were grouped into “Others”. ★★P < 0.01, and ★★★P <
0.001 for comparison with start point (0 h) in HTST milk

Liu et al. Microbiome            (2020) 8:99 Page 5 of 15



in the resistome of retail raw milk, a separate set of sam-
ples collected across the USA were subjected to shotgun
metagenomic sequencing on the NovaSeq S4 platform.
We obtained 589 Gb of sequencing data with 20 retail raw
milk microbiomes from 4 states, approximately 40 (me-
dian; IQR, 5.9) million reads (150 bp PE) per sample. Con-
sistent with previous observations, sequencing depth and

quality remained comparable in raw milk samples across
states (Supplementary figure 4c & d). For all shotgun
metagenomic sequencing involved in this study (i.e.,
HiSeq and NovaSeq), we obtained sufficient sequen-
cing depth to capture the bacterial species (profiled
by Kraken2) and ARGs (identified by MEGARes) in
retail milk samples (Supplementary figure 6).

Fig. 3 The resistome profile of California retail milk before and after RT incubation. a Within the sequencing data from HiSeq 4000, ARGs were
undetectable prior to RT incubation in both HTST (n = 5) and raw (n = 6) milk samples. The prevalence of ARGs significantly increased in all RT-
incubated raw milk (n = 7), with a single HTST sample (out of 6) possessing measurable ARGs. A Wilcoxon rank sum test was used for statistical
comparison of the abundance of ARGs between HTST and raw milks (#P < 0.05). Boxplots denote the interquartile (IQR) between the first and
third quartiles (25th and 75th percentiles, respectively) and median is denoted by the horizontal line. b RT incubation enriched the ARGs
conferring resistance to 4 classes of antibiotics. A balanced design of raw milk samples before and after RT incubation from both HiSeq 4000 (n =
13) and NovaSeq S4 (n = 8) were included in this analysis. A Wilcoxon signed-rank test was used to assess the significant changes of ARG
abundance belonging to each class of antibiotics, and an FDR correction was applied for multiple comparisons (★P < 0.05). c The observed ARGs
in raw milk (n = 21) were predicted originate from 9 different bacterial families. Edge thickness indicates the normalized abundance of ARGs
(rounded squares; colored by class of antibiotics) from a predicted bacterial family (circles). Node size represents the number of connections
(degree). Detailed information of ARGs and bacteria networks is available in Supplementary Data 2.
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While raw milk samples from different geographic lo-
cations had varied abundance of ARGs (Kruskal-Wallis,
P = 0.34, Fig. 4a), the diversity of ARGs remained com-
parable (Kruskal-Wallis, P = 0.21, Fig. 4b). Overall, we
observed distinct resistome structure in raw milk from
different states (Bray-Curtis, PERMANOVA test by ado-
nis2; P = 0.002, Fig. 4c). Within the cohort of 4 distinct
sampling areas, 176 unique ARGs were identified that
confer resistance to 12 classes of antibiotics (Fig. 4d;
Supplementary Data 1 and Data 3). ARGs were observed
in 2 (out of 4) raw milk samples from Arizona, in which
the ARG-containing raw milk samples resembled the
resistome structure to those in California (Fig. 4c and d).
In these samples, resistomes were dominated by ARGs
in "multidrug resistances" and aminoglycosides classes
(Fig. 4d). Raw milk samples from South Carolina and
Idaho shared similarities in resistome content. In both

states, “multidrug resistance” was the prominent class of
ARGs, and ARGs conferring resistance to beta-lactams
were more prevalent than observed in Arizona and Cali-
fornia (Fig. 4d). Tetracyclines-related ARGs were more
abundant in samples from South Carolina and ARGs to
trimethoprim were more frequently observed in raw
milk samples from Idaho (Fig. 4d). In general, the differ-
ences observed in resistomes of raw milk can be largely
explained by variances observed in milk microbiota (Fig.
4e and Supplementary figure 7). Specifically, there were
123 different ARGs detected in raw milks from South
Carolina belonging to 15 bacterial families, 43 ARGs ob-
served in raw milks from Idaho belonging to 15 bacterial
families, and 15 unique ARGs originating from 3 bacter-
ial families observed in raw milk samples from Arizona
(Supplementary figure 8, 9 and 10; Supplementary Data 2).
In summary, retail raw milk samples taken through RT

Fig. 4 Geographical variance of raw milk resistomes in the USA. a The total normalized abundance of ARGs in raw milk samples (NovaSeq S4; n =
16) from different states. b The number of observed unique ARGs in raw milk samples (n = 16) from different states. c NMDS of raw milk
resistome based on a Bray-Curtis dissimilarity calculation (k = 2; stress = 0.04; linear fit, R2 = 0.99; non-metric fit, R2 = 0.99). Polygons were applied
to raw milk samples collected from the same area. d Relative abundance of ARGs by class of antibiotics per sample. e Relative abundance of
bacterial genus per raw milk sample across states. A Kruskal-Wallis test was implemented to assess the statistical differences of normalized
abundance and richness across milks
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incubations were found to harbor ARGs conferring resist-
ance to clinically relevant antibiotics; however, the type of
ARGs differed by region.

Discussion
Raw milk is commonly consumed worldwide [12, 22].
In the United States, raw milk is often promoted for
various nutritional and protective benefits. Consump-
tion of raw milk as a general practice has been criti-
cized due to the concern over contamination by food-
borne pathogens [7–11]. The increasing prevalence of
antibiotic resistance (AMR) is a global concern [33,
34], and the role of raw milk in the dissemination of
AMR is unclear. To address this knowledge gap, we
implemented an integrated approach employing
culture-omics and high-throughput sequencing to as-
sess the dynamic changes of microbiome and resis-
tome in raw milk over incubations as well as their
difference from pasteurized retail milk. Our results in-
dicate that raw milk is a clear source of ARGs, which
are readily enriched during RT-incubations, and the
antibiotic resistome varies significantly in raw milk
across states.
The microbial and ARG content of clabber milk—raw

milk incubated at room temperature for several days—
likely varies by different milk sources, varied incubation
time (1-5 days) and seasonally dependent room tempera-
tures. However, the results presented here suggest that
spontaneous fermentation does not grow beneficial lactic
acid bacteria and instead, enrichment of ARGs occurred
even within a short period of RT incubation. In addition
to ARGs enriched due to intentional RT fermentation,
proper cold-chain maintenance can fail during transpor-
tation from the raw milk producer to the consumer or
in the home of the consumer, and therefore inadvertent
short-term RT incubations can also happen. Such incu-
bation likely enriches populations of bacteria in milk
which in turn contributes to a modified resistome with
elevated prevalence of ARGs. A better understanding the
diversity of ARG content as well as the biogeography,
health risk associations and methods to reduce this ARG
reservoir, is clearly warranted.
Our findings also have implications for low-income

countries, where consumption of unpasteurized dairy
products is common [35, 36]. One recent study evalu-
ated the risk factors associated with carriage of
antibiotic-resistant E. coli from people in northern
Tanzania, and direct microbial transmission in raw
milk was found to be the primary predictor of the
prevalence of AMR [12], highlighting the role of raw
milk in maintaining reservoirs of ARGs and transmit-
ting antibiotic resistance.
While comprehensive, our findings have limitations. In

light of the low-biomass nature of milk samples, the

inferred microbial ecology from high-throughput se-
quencing is often mixed with various contaminants [37].
We employed a relatively stringent data filtration (ex-
cluded samples with less than 200 reads) in our 16S
rRNA gene sequencing dataset to reduce false positives.
As expected, in the removed milk samples (n = 395), a
large proportion (median 66.8%; IQR, 64.9%) of the
microbiome were composed of shared ASVs with extrac-
tion controls, indicating potential DNA contaminants
(Supplementary figure 2a). It is therefore possible that
we underestimated true positives given low-sequencing
reads may have been artificially excluded. Also, while
metagenomic assembly offered us a unique opportunity
to connect ARGs to a bacterial host [30], there were
ARGs not assigned to any known bacterial families,
which may be explained by the presence of chimeric
contigs, and limitations of databases or taxonomy as-
signment software. Further, to rule out potential false-
positive identification of ARGs which require single nu-
cleotide changes to confer resistance, we implemented
RGI [38]. Only ARGs which survived this confirmation
were reported in this study. This conservative approach
may also underestimate the diversity of ARGs (i.e., in-
creases the rate of false negatives) present in retail milk
if the short sequencing reads did not capture the SNP
required to confer resistance [39].
In summary, our findings suggest that retail raw milk

has a higher prevalence of ARGs than pasteurized milk,
an effect amplified by RT incubation. Unlike the implied
dominance of “beneficial” lactic acid bacteria in
unpasteurized milk [40, 41], retail raw milk microbiota
varied in samples from distinct geographical locations,
possessed few lactic acid bacteria, and were frequently
dominated with microbes within the family Pseudomo-
nadaceae. Our findings suggest that retail raw milk is a
clear source of antibiotic-resistant bacteria and ARGs.
This potential public health hazard appears to be more
prevalent than specific pathogens with documented
presence in retail samples across brands and regions of
the USA. The public health and medical communities
should continue to inform consumers of the microbial
food safety risks from consumption of raw milk, and the
increased risk from temperature abuse.

Conclusion
Employing a nation-wide retail milk sampling, we sys-
tematically studied the raw and pasteurized milk micro-
biota and antibiotic resistome. Raw milk microbiota and
resistomes differ across geographical locations, and des-
pite commonly advertised probiotic effects, raw milk
possessed a limited component of lactic acid bacteria
and is frequently dominated with Pseudomonadaceae.
Compared to pasteurized milk, raw milk has a distinct
microbiota with a higher abundance of viable bacteria
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containing antimicrobial resistance genes, both of which
are amplified by spontaneous fermentation at room
temperature. This work indicates that raw milk con-
sumption poses an additional risk to consumers through
transfer of antimicrobial resistance genes.

Materials and methods
Retail milk sampling, experimental design, and DNA
extraction
The initial retail milk sampling occurred between March
and August 2017 from grocery stores in California. A
total of eight milk brands including ultra-pasteurized
milk (UHT; 280-300 °F, 2-6 s; n = 2 brands), HTST pas-
teurized milk (high-temperature short-time, HTST; 161-
165 °F,15-20 s; n = 3 brands), vat pasteurized milk (Vat;
145 °F, 30 min; n = 1 brand), and unpasteurized milk
(raw milk, Raw, n = 2 brands) were examined in this
study. All milk recruited via the initial sampling was
whole milk which is certified as organic and rBST free
(Supplementary table 3). Samples were collected from all
brands of milk through eight independent purchases
(biological replicates). For each purchase, the samples
were aliquoted into three 15 mL tubes with 10mL each
(technical replicates). At 4 °C, milk samples were incu-
bated for 0, 2, 4, 6, and 24 h; at 23 °C, milks experienced
incubations for 0, 2, 4, 6, 12, and 24 h. Consequently,
after incubation, a total of 1920 milk samples were ob-
tained in California for analysis (Table 1).

To assess the geographical variance, a separate sampling
of raw milk occurred between October 2018 and February
2019 in 4 other states including Idaho, Arizona, South Car-
olina, and Maine. Sampling states were chosen based on
the availability of raw milk in retail stores [42] to maximize
the geographical distribution of milk. At each state, two
brands of raw milk produced from two different dairy farms
were purchased at least twice from retail stores (Table 1).
All samples collected were whole, non-homogenized milk,
which are certified as organic and rBST free. Purchased raw
milk was immediately aliquoted into 15mL tubes, and half
of the subsequent milk samples were directly placed in the
freezer (−20 °C), and the remaining were incubated at RT
for 24 h and then were stored at −20 °C. Upon completion
of sampling, a total of 114 samples were delivered on dry
ice for analysis (Table 1).
For all the collected samples, approximately 2mL vor-

texed milk was centrifuged at 10,000×g for 10min (4 °C)
to separate cells and fat from whey [43]. The supernatant
and the fat layer were removed, and the pellet was kept
frozen (−20 °C) [30, 43] until DNA extraction with a ZR
Fecal DNA MiniPrep kit (ZYMO, Irvine, CA, USA).

Quantification of total aerobic bacteria, coliform, and E.
coli in retail milk
In the California cohort, at 23 °C, we collected a total of
1152 samples with 144 samples per milk brand, and we
obtained 960 milk samples from the 4 °C incubation with
120 samples per milk brand. At each temperature for a

Table 1 Sampling scheme and experimental design

Sampling
states

Milk
type

Incubation
temperature

Incubation time No. of milk
brands

No. of
samples

Bacterial
plating

16Sa SMSb (HiSeq
4000)

SMSb

(NovaSeq S4)

California Raw 4 °C, 23 °C 0 h, 2 h, 4 h, 6 h,
12hc, 24 h

2 480 ✓ ✓ ✓ (n = 13) ✓ (n = 8)

Vat 4 °C, 23 °C 0 h, 2 h, 4 h, 6 h,12 h,
24 h

1 240 ✓ ✓ ✕ ✕

HTST 4 °C, 23 °C 0 h, 2 h, 4 h, 6 h,12 h,
24 h

3 720 ✓ ✓ ✓ (n = 11) ✕

UHT 4 °C, 23 °C 0 h, 2 h, 4 h, 6 h,12 h,
24 h

2 480 ✓ ✓ ✕ ✕

South
Carolina

Raw 23 °C 0 h, 24 h 2 24 ✕ ✓ ✕ ✓ (n = 4)

Arizona Raw 23 °C 0 h, 24 h 2 30 ✕ ✓ ✕ ✓ (n = 4)

Idaho Raw 23 °C 0 h, 24 h 2 36 ✕ ✓ ✕ ✓ (n = 4)

Maine Raw 23 °C 0 h 2 24 ✕ ✓ ✕ ✕

For samples from California, the incubations at different temperature shared a single start point (0 h). ✓ indicates all the collected samples were subjected to a
type of analysis unless a number is specified, while ✕ represents the corresponding analysis was not performed. For the HiSeq 4000 run, 13 raw milk samples (6
samples were collected before any incubations and the remaining 7 samples experienced a 24 h incubation at 23 °C) and 11 HTST samples (5 samples were
recruited before incubation and the other 6 were incubated at 23 °C for 24 h) were included to determine the resistome variances between milks as well as before
and after room temperature incubation. Unequal number of metagenomes were obtained (i.e., 13, 11) as a result of unexpected sequencing failure of certain DNA
samples. In the NovaSeq S4 run, 4 raw milk samples after a 24 h incubation at 23 °C from each state (California, South Carolina, Arizona, and Idaho) were used to
assess the geographical variance of milk resistomes, and another 4 samples before incubation from the California cohort were included to validate results
between sequencing platforms/runs
a16S rRNA gene sequencing
bShotgun metagenomic sequencing
cSamples from 12-h incubation under 4 °C were skipped for bacterial plating
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given incubation time, 1 mL milk samples (serial dilu-
tions were applied when appropriate) were used to cul-
ture onto 3M Petrifilm plate (3M, Maplewood, MN,
USA) at 37 °C incubator for 24 h to quantify the total
aerobic bacteria populations, coliform, and E. coli. All
numbers were recorded and transformed into log10 CFU
per mL of milk prior to downstream analysis. Zero
values were adjusted with the analytical detection limit
of our assays, 6.6 CFU/mL for total aerobic counts and
0.33 CFU/mL for both coliform and E. coli, following the
formula “substitution = log (RAND() × (detection
limit))” in Excel (Microsoft Corp., Redmond, WA). Mean
values were calculated from three technical replicates,
representing the biological milk sample, for statistical
analyses. A Kruskal–Wallis test was used to assess the
statistical difference of bacterial populations in different
types of milk prior to incubations, and a Dunn test in
FSA package (0.8.24) was used for multiple comparisons
[false discovery rate (FDR) p value adjustments]. A linear
mixed model (LMM) from the lme4 package (version
1.1.21) was implemented to test for associations between
the incubation time and the bacterial population in each
type of milk. The glht function in multcomp package
(version 1.4.10) in combination with the lsm function in
lsmeans package (version 2.30.0) was used for intra- and
intergroup pairwise comparisons (p values were adjusted
with a single-step method).

E. coli isolation and antibiotic susceptibility testing
In the course of bacterial quantification, if present, 1-2 E.
coli isolates were collected randomly per milk sample which
resulted in a total of 95 presumptive E. coli isolates from
California. The bacterial species identities were further con-
firmed by examining the entire 16S rRNA gene via Sanger
sequencing [44]. All isolates were subjected to antibiotic
susceptibility testing with a breakpoint assay [12]. Briefly,
MacConkey agar was prepared with 16 clinically relevant
antibiotics (Supplementary Table 1) of fixed concentration,
which was guided by the Clinical and Laboratory Standards
Institute minimum inhibitory concentrations for Enterobac-
teriaceae [45]. Genomic DNA of an E. coli strain with a
multidrug resistance phenotype (Ampicillin-Ceftazidime-
Chloramphenicol-Ciprofloxacin-Penicillin G-Piperacillin-
Streptomycin-Tetracycline), which was labeled as E. coli
strain JXLQYF114666, was extracted using a DNeasy Blood
& Tissue Kit (Qiagen, Hilden, Germany) and was subse-
quently sequenced on an Illumina MiSeq platform (Reagent
kit v2; 250 bp PE) at UC Davis DNA Technologies & Ex-
pression Analysis Core. Genome sequencing reads were as-
sembled into contigs using SPAdes (3.10.1) with default
parameters. Assembled contigs were run through ResFinder
(3.1, [46]) and PlasmidFinder (2.0, [47]) to assess the pres-
ence of acquired ARGs and plasmids in E. coli strain
JXLQYF114666, respectively. The plasmid type of

blaCMY-2-harboring contig (53,836 bp) was characterized by
using pMLST-2. 0[47].

Conjugation experiments
A conjugation assay [48] was performed to determine
whether the blaCMY-2 gene was present on a conjugative
plasmid, with E. coli strain JXLQYF114666 as the donor
and azide-resistant E. coli J53 (ATCC BAA2731) and
ceftazidime-susceptible P. aeruginosa strain UCD-
DAM001 as recipients. Briefly, separate cultures of
donor and recipient were prepared aerobically overnight
(37 °C, 220 r.p.m.) in LB broth. The following day, indi-
vidual overnight cultures were inoculated into fresh LB
(1:100) until an OD600nm of 0.6-0.8. Then, equal amount
of donor and recipient cultures (2 mL) were centrifuged
for 5 min at 10,000×g, and the pellets were resuspended
in 50 μL LB broth and mixed. The resultant suspension
was spread onto a LB agar plate and incubated station-
ary overnight at 37 °C. E. coli transconjugants were se-
lected on Mueller–Hinton agar plates containing
ceftazidime (16 μg/mL) and sodium azide (150 μg/mL),
and P. aeruginosa transconjugants were selected on
Pseudomonas isolation agar (Hardy Diagnostics, Santa
Maria, CA) with ceftazidime (16 μg/mL). The presence
of blaCMY-2 gene was confirmed by PCR [49] and se-
quencing in transconjugants. Transfer frequencies were
calculated as the number of transconjugants obtained
per input recipient cell.

16S rRNA gene sequencing and data analysis
Duplicate DNA samples (out of three replicates) from the
incubation assay in California (n = 1,280), together with
raw milk DNA from other states (n = 114) and extraction
controls (i.e., blanks without any biological samples added;
n = 37) were prepared for 16S rRNA gene sequencing as
previously described [30]. Briefly, the forward F515 primer
which includes an eight-nucleotide barcode unique to
each sample and a two-nucleotide linker sequence (5′-
NNNNNNNNGTGTGCCAGCMGCCGCGGTAA-3′)
and the reverse R806 primer (5′-GGACTACH
VGGGTWTCTAAT-3′) were used to amplify the V4 re-
gion of the 16S rRNA gene. PCR reactions were carried
out in triplicate in a 15-μL reaction containing 1X GoTaq
Green Mastermix (Promega, Madison, WI, USA), 1 mM
MgCl2 and 2 pmol of each primer. The PCR amplification
conditions included an initial denaturation step of 2min
at 94 °C, followed by 25 cycles of 94 °C for 45 s, 50 °C for
60 s, and 72 °C for 90 s, followed by a final extension step
at 72 °C for 10min. Triplicate reactions were combined
and purified using a Qiagen PCR purification column and
submitted to the DNA Technologies & Expression Ana-
lysis Core at UC Davis for sequencing on an Illumina
MiSeq platform (Reagent kit v2; 250 bp PE).
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Raw sequencing reads were demultiplexed by using
the Sabre software (sabre pe) (https://github.com/
najoshi/sabre), and the sequencing quality was assessed
by using FASTQC (version 0.11.9) per sequence [50]. In
light of the number of sequences obtained from blank
control samples (< 138 reads/sample), samples with low
sequencing read counts (< 200 reads) were excluded,
resulting in a total of 902 samples (Raw = 270; Vat =
108; HTST = 347; UHT = 177) for downstream analysis.
In the remaining samples (n = 902), potential sequencing
contaminants were further identified and removed using
decontam (version 1.4.0; method = “prevalence”) with
the default probability threshold [51]. Applying the same
filtration criteria, in other states, 97 raw milk samples
(AZ = 24; ID = 32; ME = 21; SC = 20) with 7458 (me-
dian; IQR, 15,796) sequences survived for further ana-
lysis. Our data filtration excluded a total of 395 retail
milk samples (HTST = 146; UHT = 137; Raw = 69; Vat
= 39), in which 66.8% (median; IQR, 64.9%) of sequen-
cing reads represented shared ASVs with extraction con-
trols (Supplementary figure 2a).
The remaining sequencing reads were then loaded into

QIIME2 (version: 2019.1, [52]) (qiime tools import --type
‘SampleData [PairedEndSequencesWithQuality]’ --source-
format PairedEndFastqManifestPhred33). The sequence
quality control and feature table construction were per-
formed using DADA2 [53] (qiime dada2 denoise-paired
--p-trim-left-f 21 --p-trim-left-r 23 --p-trunc-len-f 242 --p-
trunc-len-r 250). The feature table was rarefied at the
maximum sampling depth of 200 reads, and was used to
calculate the alpha diversity as measured by Shannon
index and Faith’s phylogenetic diversity (qiime diversity
core-metrics-phylogenetic). Our rarefaction curve analysis
(qiime diversity alpha-rarefaction) indicated that a sub-
sampling of 200 reads per sample was able to capture the
majority of the observed ASVs in this cohort (Supplemen-
tary figure 2b). A linear mixed model (LMM) from the
lme4 package [54] (version 1.1.21) was implemented to
test for associations between the incubation time and the
alpha diversity in each type of milk. The glht function in
multcomp package [55] (version 1.4.10) in combination
with the lsm function in lsmeans package [56] (version
2.30.0) was used for intra- and intergroup pairwise com-
parisons (p values were adjusted with a single-step
method). Beta diversity was examined with Bray-Curtis
distance matrices based on a CSS [57] normalized
feature table and was visualized using non-metric
multidimensional scaling (NMDS) in R [58]. Differ-
ences in beta-diversity were tested using adonis2
(PERMANOVA test) in the vegan package [59] after
checking for differences in dispersion using betadis-
per. Taxonomy was assigned using QIIME2 (qiime
feature-classifier classify-sklearn) against the SILVA
database (release 132, [60]).

Shotgun metagenomic sequencing
The initial metagenomic sequencing run with retail milk
samples solely from California (raw = 13, HTST = 11)
was completed on an Illumina HiSeq 4000 platform and
the second sequencing run with raw milk samples from
4 states (n = 20) was performed on an Illumina NovaSeq
S4 platform (Table 1). Both sequencing libraries were
prepared following the same procedure in the UC
Berkeley Functional Genomics Laboratory (FGL) and
were sequenced with the 150 paired-end reads strategy
in the Vincent J. Coates Genomics Sequencing Labora-
tory at the University of California, Berkeley.
Briefly, each sample was sheared using the 150 bp set-

ting of the Diagenode Bioruptor, then purified and con-
centrated with the Qiagen Minelute cleanup kit. End
repair, a tailing of DNA fragments, and adapter ligation
were performed using the KAPA Hyper Prep library kit.
Next, 9 cycles of indexing PCR were performed using
the KAPA Hi-Fi Hotstart amplification kit. Cleanup and
dual-SPRI size selection were completed using AMPure
beads. Libraries were checked for quality on the AATI
fragment analyzer.
Raw sequences were used to assess the sequencing

quality by calculating the average quality score per se-
quence using FASTQC (version 0.11.9) [50]. To avoid
host DNA contamination, BMTagger in bmtools (ver-
sion 1) was used to remove reads aligning to the bovine
genome (version UMD3.1) from all samples. The result-
ing reads were then trimmed using Trimmomatic (ver-
sion 0.36) [61] and merged using FLASH (version
1.2.11) [62] prior to downstream analysis. Taxonomy
profiling of metagenomes were performed using Kra-
ken2 [63] to map against a custom database including
RefSeq [64] and 4941 metagenome-assembled rumen ge-
nomes [65]. The relative abundance of the bacterial
genus was estimated using Bracken [66].

Antibiotic resistome analyses
Merged sequencing reads were aligned to the ARG data-
base MEGARes (version 1.0.1) [67] using BWA with de-
fault settings [68]. In the generated SAM formatted file,
alignments tagged with “RequiresSNPconfirmation” were
extracted which were further subjected to a secondary
functional validation by using Resistance Gene Identifier
(RGI) (version 5.1.0) with “Perfect” and “Strict” algo-
rithms [38]. This secondary analysis is critical to rule out
false-positive ARGs which often require single nucleo-
tide mutations to confer resistance [69]. Sequencing
reads did not survive the RGI-based confirmation were
excluded from the SAM file, and the remaining align-
ments were then analyzed through ResistomeAnalyzer
(-t 80; at least 80% of nucleotides in the reference se-
quence that were aligned to by at least one sequence
read) to quantify ARGs (https://github.com/cdeanj/
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resistomeanalyzer). This analysis outputs data into gene,
group, mechanism, and class levels corresponding to the
levels of the annotation in the database hierarchy [67],
and the gene-level data (e.g., TEM-77, TEM-107, TEM-
73, etc.) were used to calculate the ARG diversity.
MEGARes (version 1.0.1) is a manually curated database
that consists of a collection of 3824 ARGs with the refer-
ence sequences ranging in size from 211 to 4185 bp [67].
The counts data were normalized with 16S rRNA gene
by including the information of ARG sequence length
and sequencing depth. Normalized ARG abundance was
expressed as “copy of ARG per copy of 16S rRNA gene”
as suggested by Li et al. [30, 70, 71]. The number of
reads mapping to 16S rRNA bacterial gene was deter-
mined using METAXA2 (version 2.1.3) [72], and 1432
bp was used for calculations as the average length of 16S
rRNA gene. Differences in resistome structure across
states based on Bray-Curtis distance measures were
tested using adonis2 (PERMANOVA test) in the vegan
package after checking for differences in dispersion
using betadisper.
Metagenome assemblies were generated with trimmed

but un-merged reads for each sample using MEGAHIT
(version 1.0.6) with default parameters [73]. The assem-
bled contigs were used to predict the bacterial origin of
observed ARGs. Specifically, the ARG-aligned sequen-
cing reads, which survived the RGI confirmation, were
used to align to contigs with BWA-MEM [68], and con-
tigs that contain ARG sequences were kept for taxo-
nomic assignment. taxator-tk (version 1.3.3) [74], a
software designed to perform taxonomic analysis of as-
sembled metagenomes, was applied to predict the bac-
terial origin of contigs. In particular, we used taxator-tk
with our custom database which includes both RefSeq
[64] and 4941 rumen-related metagenome-assembled
genomes [65] with parameters -a megan-lca -t 0.3 -e
0.01 to assign taxonomy of ARG-containing contigs at
the family level. All networks were visualized using
Cytoscape (version 3.7.2) [75].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s40168-020-00861-6.

Additional file 1: Supplementary Data 1. List of ARGs observed in
milk samples from California.

Additional file 2: Supplementary Data 2. Data employed in all
network analyses in this work.

Additional file 3: Supplementary Data 3. List of ARGs observed in
raw milk from Arizona, Idaho, and South Carolina.

Additional file 4: Supplementary Table 1. Antibiotics and minimum
inhibitory concentration used for the breakpoint assay. All 95 E. coli
strains isolated from retail raw milk in California were subjected to the
antibiotic susceptibility testing with a collection of 16 clinically relevant
antibiotics.

Additional file 5: Supplementary Table 2. Antibiotic resistance genes
detected from whole-genome sequencing of E. coli strain JXLQYF114666.

Additional file 6: Supplementary Table 3. Metadata of retail milk
samples collected in California. This retail milk sampling occurred
between March and August 2017 from grocery stores in California.

Additional file 7: Supplementary Figure 1. The bacterial population
in retail milk over incubations at 4°C. a, Total aerobic bacteria b, Coliform
c, E. coli populations during the 4°C incubation within 24h. A total of 960
milk samples from California were analyzed; Raw (n=240), HTST (n=360),
Vat (n=120), and UHT (n=240). Solid and dashed horizontal lines (red)
represent the California milk limit for aerobic bacteria (< 15,000 bacteria/
mL) and coliform (< 10 coliform/mL), respectively. A linear mixed model
(LMM) from the lme4 package (version 1.1.21) in R was implemented to
test for associations between the incubation time and the bacterial
population in each type of milk. ★P < 0.05 for comparison with start
point (0 hour) in raw milk.

Additional file 8: Supplementary Figure 2.The descriptive analysis of
16S rRNA gene sequencing in retail milk. a, The relative abundance of 15
shared ASVs (with extraction controls) in excluded low-read milk samples
(n=395). Milk samples were ranked by sequencing depth. b, The rarefac-
tion curve of observed ASVs across types of retail milk in California. The
vertical orange line indicates the subsampling read depth for rarefied fea-
ture table. c, The distribution of sequencing reads by phred quality score
in retail milk from California. d, The distribution of sequencing reads by
phred quality score in raw milk across states in the United States. A
Kruskal-Wallis test was used to assess the statistical significance of se-
quencing quality variance.

Additional file 9: Supplementary Figure 3. The microbiota profiles of
retail milk over 4°C incubations. a, alpha diversity as measured by
Shannon index in retail milk over 4°C incubation. b, alpha diversity as
measured by Faith's phylogenetic diversity (PD) in retail milk over 4°C
incubation. c, Bar plot depicting the relative abundance of bacterial
families over time; bacterial families which has a relative abundance less
than 1% were grouped into “Others”. A linear mixed model (LMM) from
the lme4 package (version 1.1.21) was implemented to test for
associations between the incubation time and the alpha diversity in each
type of milk. ★P < 0.05 for comparison with start point (0 hour) in HTST
milk.

Additional file 10: Supplementary Figure 4. The descriptive analysis
of shotgun metagenomic sequencing in retail milk. a, The sequencing
depth of HTST and raw milk samples in California sequenced via HiSeq.
b, The distribution of sequencing reads by phred quality score in retail
milk from California. c, The sequencing depth of raw milk samples
sequenced via NovaSeq across states. d, The distribution of sequencing
reads by phred quality score in raw milk across states in the United
States. A Kruskal-Wallis test was used to assess the statistical significance
of sequencing depth and quality variances.

Additional file 11: Supplementary Figure 5. Descriptive analyses of
metagenomic assembly and taxonomic assignment of ARGs. All raw milk
samples harboring ARGs (n=23) were included in this analysis. a, Boxplot
depicting the distribution of number of metagenomic assembled contigs
in raw milk across states. A Kruskal-Wallis test was used to assess the stat-
istical significance of contigs between states. b, The percentage of ARG-
containing sequencing reads which were successfully aligned to metage-
nomic assembled contigs. c, The percentage of ARG-containing contigs
assigned at the family level. d, The percentage of ARG-containing reads
assigned at the family level.

Additional file 12: Supplementary Figure 6. Rarefaction curves of
taxonomic profiling (kraken 2) and resistome analysis (MEGARes) in retail
milk. a, The rarefaction curve of kraken 2 observed bacterial species in
raw milks samples (n=16). Only raw milk samples sequenced via NovaSeq
and used for taxonomic comparisons in Figure 4e were included in this
analysis. b, The rarefaction curve of observed ARGs via MEGARes in retail
milk across states. All retail milk samples harboring ARGs in this cohort
(n=24; Raw=23, HTST=1) were included in this analysis.

Additional file 13: Supplementary Figure 7. The microbiota of retail
raw milk from five states in the United States. a, alpha diversity as
measured by Shannon index in raw milk across states. b, alpha diversity
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as measured by Faith's phylogenetic diversity (PD) in raw milk across
states. c, NMDS of raw milk samples based on Bray-Curtis (k=3; stress =
0.17; Linear fit, R2=0.80; Non-metric fit, R2=0.97). Subsampling to obtain
equal sample size (n = 20) for each state was completed prior to per-
forming the ordination analysis and PERMANOVA. The centroid of each
ellipse represents the group mean, and the shape was defined by the co-
variance within each group. d, Bar plot depicting the relative abundance
of bacterial families across states; bacterial families which has a relative
abundance less than 1% were grouped into “Others”. e, Best taxonomic
discriminators of retail raw milk microbiota across states ranked by ran-
dom forest classifier (mean importance > 0.01). ASVs were ranked by a
random forest classifier available in the randomForest package (4.6.14) in
R. a-b, A Kruskal–Wallis test was used to assess the statistical difference of
alpha diversity in raw milk from different states, and a Dunn test in FSA
package (0.8.24) was used for multiple comparisons [false discovery rate
(FDR) p value adjustments]. Different letters indicate statistically significant
groups.

Additional file 14: Supplementary Figure 8. The predicted bacterial
families of ARGs observed in raw milk from South Carolina. There were
123 ARGs originating from 15 bacterial families were detected in milk
samples. Families harboring <10 individual ARGs were not labeled, and
detailed information of ARGs and bacteria networks is available in
Supplementary Data 2. Edge thickness indicates the normalized
abundance of ARGs (rounded squares; colored by class of antibiotics)
from a predicted bacterial family (circles). Node size represents the
number of connections (degree).

Additional file 15: Supplementary Figure 9. The predicted bacterial
families of ARGs observed in raw milk from Idaho. There were 43 ARGs
originating from 15 bacterial families were detected in milk samples.
Families harboring <10 individual ARGs were not labeled, and detailed
information of ARGs and bacteria networks is available in Supplementary
Data 2. Edge thickness indicates the normalized abundance of ARGs
(rounded squares; colored by class of antibiotics) from a predicted
bacterial family (circles). Node size represents the number of connections
(degree).

Additional file 16: Supplementary Figure 10. The predicted bacterial
families of ARGs observed in raw milk from Arizona. There were 15 ARGs
originating from 3 bacterial families were detected in milk samples.
Detailed information of ARGs and bacteria networks is available in
Supplementary Data 2. Edge thickness indicates the normalized
abundance of ARGs (rounded squares; colored by class of antibiotics)
from a predicted bacterial family (circles). Node size represents the
number of connections (degree).
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