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ABSTRACT: Fluorescence lifetime imaging microscopy (FLIM)
has become a standard tool in the quantitative characterization of
subcellular environments. However, quantitative FLIM analyses
face several challenges. First, spatial correlations between pixels are
often ignored as signal from individual pixels is analyzed
independently thereby limiting spatial resolution. Second, existing
methods deduce photon ratios instead of absolute lifetime maps.
Next, the number of fluorophore species contributing to the signal
is unknown, while excited state lifetimes with <1 ns difference are
difficult to discriminate. Finally, existing analyses require high
photon budgets and often cannot rigorously propagate exper-
imental uncertainty into values over lifetime maps and number of
species involved. To overcome all of these challenges simulta-
neously and self-consistently at once, we propose the first doubly nonparametric framework. That is, we learn the number of species
(using Beta-Bernoulli process priors) and absolute maps of these fluorophore species (using Gaussian process priors) by leveraging
information from pulses not leading to observed photon. We benchmark our framework using a broad range of synthetic and
experimental data and demonstrate its robustness across a number of scenarios including cases where we recover lifetime differences
between species as small as 0.3 ns with merely 1000 photons.
KEYWORDS: lifetime imaging, FLIM, confocal, Bayesian, Gaussian process, Beta-Bernoulli

■ INTRODUCTION
Among many fluorescence microscopy techniques,1−7 fluo-
rescence lifetime imaging microscopy1,2 (FLIM) has been
pivotal in elucidating static properties and chemical inter-
actions occurring within subcellular environments, fluids, and
solid materials.8−27 For example, FLIM has been employed in
deducing nanoscale maps of optical,9,11−13 thermodynam-
ic,14−21 and chemical parameters.22−26 Furthermore, FLIM has
also been employed in drug discovery to monitor drug activity
within complex biological environments.28,29

In typical FLIM experiments, data consist of a series of
photon arrival times, following laser pulses whose statistics are
dictated by the present number of fluorophore species and
excited state lifetime. Photon arrival times can then be decoded
to learn the number of fluorophore species, as well as their
associated lifetimes. In imaging across regions of space, we may
also decode the corresponding lifetime maps.
Here, we assume that the input arrival times (the FLIM

data) are collected by using a scanning confocal setup. In this
setup, a pulsed laser, often with a Gaussian waist, scans the
sample at a constant speed over uniformly spaced horizontal
trajectories, where the spacing defines the pixel size. The
excited fluorophores then emit photons with a random delay

drawn from a distribution characteristic of the fluorophore
species, Figure 1a. Moreover, the recorded arrival times are
further contaminated with instrumental noise. That is: (1) the
detector delay in recording the arrival times and (2) the
unknown exact time of excitation due to the finite breadth of
excitation pulses. Together, these are often modeled using a
Gaussian distribution, termed the instrumental response
function (IRF). The exponential waiting time of de-excitation
for each fluorophore species and the effects of the IRF thus
result in two layers of stochasticity in reported photon arrival
times given by the convolution of the exponential and IRF
distributions.
To learn the number of fluorophore species as well as their

associated lifetimes from FLIM data, the community relies
either on model-free methods, such as phasor-based
approaches30−33 and neural networks,34−36 or on model-
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based methods such as FLIM data analysis techniques
including time-correlated single photon counting (TCSPC)
histogram fitting to extract lifetimes from photon arrival
histograms via least-squares fitting;37−39 photon-by-photon
likelihood maximization;40−42 construction of Bayesian poste-
riors over lifetimes warranted by the data;43−49 and classic
deconvolution methods.50−52

In spite of this progress in FLIM data analysis, only one such
technique that we developed does not assume a number of
fluorophore species a priori while propagating error over the
number of species warranted by the data.53 Even so, we limited
ourselves to a single pixel (i.e., single illuminated confocal
spot) and therefore did not leverage spatial correlations across
pixels to extract high-resolution lifetime maps required to
smoothly and quantitatively interpolate lifetime maps between
and below pixel areas.
While heuristics exist to deduce the number of fluorophore

species,54 these do not model the physics properly to
propagate errors/information from all of the sources and rely
on data preprocessing, which fundamentally limits the ability of
these methods to separate close lifetimes. Indeed, other
existing techniques, except the one above, require prior
knowledge of the number of fluorophore species34−41,43−47,55

while, when analyzing images, analyze them in a spot-by-spot
(spatially decorrelated) manner.30,31,39,44−46,53

Ideally, we must therefore avoid data preprocessing (such as
histogram fitting by TCSPC) to learn spatial lifetime maps of
each species simultaneously deduced (as opposed to specifying
the number of species by hand). To be clear, even
hypothesized single fluorophore species specified by hand
may cause problems as apparent single species may further
split into multiple species on the basis of the local chemical

environments to which they are exposed within a cell.56,57 To
further motivate why learning the number of species from the
data is critical, we highlight that multiple species may have
similar lifetimes and exist in spatially overlapping regions,
further underscoring the importance of propagating error and
accounting for spatial correlation across pixels while satisfying
the underlying Poisson emission statistics.
To compensate for the loss of information in data

preprocessing, multiple methods therefore require large
photon budgets that otherwise carry the risk of specimen
photodamage.35,39,46 Here, by contrast, our objective is to
simultaneously deduce: (1) the number of fluorophore species
present within a given FLIM data set and (2) learning absolute
lifetime maps with subnanosecond temporal resolution, i.e.,
distinguishing lifetimes with subnanosecond difference, and
interpolating lifetime maps below subpixel for each species
determined in the first point. We do so by leveraging the
spatial correlations between pixels and information within
pulses (termed empty pulses) that do not lead to any photon
observation. We develop a framework within the Bayesian
paradigm precisely to propagate all sources of errors over items
1−2 above.
Yet, since the number of fluorophore species and their

associated maps are unknown, we must operate within a
Bayesian nonparametric framework illustrated in Figure 1. As
we consider all possible lifetimes in addition to all possible
maps that may explain the data, our framework is, in fact,
doubly nonparametric.
To be precise, we invoke the beta-Bernoulli process

prior58−61 over each candidate species. That is, we associate
a binary weight, b ∈ {0, 1}, to each map where nonzero
weights are ascribed to those lifetime maps warranted by the

Figure 1. Cartoon illustration of a typical FLIM experiment and the BNP-FLIM framework. (a) Every spot in the specimen is illuminated by a train
of laser pulses, designated by pink spikes, where a fraction of them lead to the detection of photons, shown by curly arrows. The photon arrival
times, Δtk, are recorded and used in FLIM analysis to infer the number of fluorophore species as well as their associated spatial maps and
corresponding lifetimes. (b) The sets of photons drawn from all spots are arranged into a two-dimensional pixel array representing the raw FLIM
data. (c) The Bayesian nonparametric FLIM (BNP-FLIM) framework models the input data (nominally) assuming an infinite number of species.
To each species are associated a nominally infinite number of candidate spatial maps for how the fluorophores are distributed. Eventually, as shown
in (c), our method determines: (1) which species are warranted by the data (for which the associated Bernoulli variable, b, is found to be unity)
and what its lifetime is and (2) its associated lifetime map. In the case shown in (c), only the second and mth species are warranted by the data and
have a nonzero associated Bernoulli variable b (i.e., b2 = bm = 1). The map determined for the first species (with b1 = 0) is thus immaterial.
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data. As such, the number of lifetime maps present in a given
data set are enumerated as the number of nonzero weights,
Figure 1c. Next, as our goal is to determine what spatial maps
for each species determined are warranted by the data of all
possible candidate lifetime maps (of a nominally infinite
number), we invoke Gaussian process (GP) priors.61−65 This is
critical in allowing us to learn continuous lifetime maps
smoothly over large spatial regions,55 rather than relying on
concatenated pixel-wise maps derived from independent pixel
analyses. As we will see, a value for the lifetime map can be
deduced at any point in physical space of the infinitely dense
points in the two-dimensional focus plane, even below a pixel
value with correctly propagated uncertainty.
In the following, we show that our Bayesian nonparametric

FLIM (BNP-FLIM) framework learns the number of species
(with corresponding lifetimes with subnanosecond resolution)
while interpolating lifetime maps below pixel size using limited
FLIM data from experiments described above.

■ METHODS
In this section, we briefly discuss the mathematical formulation
for our BNP-FLIM framework and the synthetic data
generation procedure. Full model details developed herein
can be found in the Supporting Information.
Model Formulation. BNP-FLIM starts from stochastic

photon arrivals, designated by t , where the double overbar
represents the entire set of photons from all pixels. The
stochasticity in the data is introduced from the inherent
random nature of the photon emission and detection
processes. The stochastic nature of the arrival times motivates
our probabilistic analysis framework.
Our framework starts from the likelihood, i.e., probability of

the data given model

| = | |P W t P W P t( , ) ( ) ( )
i k

k
i

k
i

(1)

where W represents a set of binary random variables Wk
i for

the kth pulse in the ith pixel indicating whether the pulse leads
to a photon detection or not (empty or nonempty pulse); see
Figure S9. Also, ϑ collects the set of parameters we wish to
learn including: lifetime values (τm for all species), lifetime
maps (Λm), the means of the GPs (νm) on which we place a
hyperprior (a prior over another prior parameters), and the
binary weights (bm) associated with each fluorophore species.
As we will see, the binary weights are Bernoulli random
variables realized to unity for existing species warranted by the
data and zero otherwise. Here, m indexes the number of
species and runs from 1: M. In Bayesian nonparametrics, we
consider M → ∞ a priori and determine which lifetimes
ultimately are warranted by the data; See Supplementary Table
1 and Figure S10 for a detailed summary of the notation.
Furthermore, P(Wk

i |ϑ) and P(Δtki |ϑ), respectively, denote
the likelihood of an individual pulse and photon arrival time. In
the following, we describe each of these likelihood parts in
more detail.
We start by describing the likelihood for the binary

observation Wk
i , P(Wk

i |ϑ). This parameter follows a Bernoulli
distribution with success probability of observing a photon of 1
− π0i leading to the following likelihood

| =P W W( ) Bernoulli( ; 1 )k
i

k
i i

0 (2)

where π0i denotes the probability of observing no photons from
the ith pixel. The explicit form for π0i is derived shortly.
The next observation coincides with the photon arrival times

from nonempty pulses, Δtki , which can originate from any of
the fluorophore species present in input data. To obtain the
portion of the likelihood for the photon arrival times, P(Δtki |ϑ),
we need to take into account the IRF and sum over all possible
events leading to a photon observation, including all N
previous pulses that could have excited the fluorophore and all
M fluorophore species that might have led to this photon. This
returns
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where πmi gives the probability of detecting a photon from the
mth fluorophore species in the ith pixel. Here, τIRF, σIRF, T, and
λm, respectively, denote the IRF offset, IRF variance, interpulse
time (precalibrated parameters), and inverse of the lifetime (1/
τm). Derivation details are provided in Supplementary Note 1.1
and Figure S9.
After introducing likelihoods in broad terms, we now turn

our attention to the probabilities πmi and π0i appearing within
our likelihoods. These quantities are directly related to the
lifetime maps as follows55

= P P(1 )m
i

m
i

r m
r

i
0 0

(4)

where P0m denotes the probability of no photon observation
from the mth species given by55

=P b X X dXexp ( )PSF( ; )m
i

m m
i

0

Ä
Ç
ÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑ (5)

where PSF, ξi, and X, respectively, denote the confocal point
spread function, the center of the ith pixel corresponding to the
center of PSF, and three-dimensional spatial coordinates.
Furthermore, Λm(X) is set to μm(X)ρm(X), where μm(X)
denotes the excitation probability (related to photon
absorption probability and quantum yield) of a fluorophore
of type m during a single pulse and ρm(X) denotes the
concentration of fluorophores.55 Moreover, for lifetime maps
with zero weights (bm = 0), eq 5 reduces to unity leading to
zero probability of observing photons from the corresponding
species.
Here, we learn absolute lifetime maps by leveraging the

information carried by pulses, leading to no photon
observation, termed empty pulses. This is in contrast to
previous FLIM analyses43−48,53 that only take into account the
set of observed photons from different species in pixel i, and
learn the ratio of lifetime maps by calculating probabilities of
photon observations from different species, πmi .
The probability of observing no photon from the ith pixel is

given by the product of probabilities of no photon observation
from all species
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=
=

Pi

m

M

m
i

0
1

0
(6)

where P0mi is the probability of no photon detection from
species m. Considering empty pulses, the sum of these
probabilities is naturally unity

+
=

1i

m

M

m
i

0
1 (7)

under the assumption that there is no more than a single
detected photon per pulse.55 To build further intuition, as a
sanity check, we can verify that removing the contribution
from empty pulses (π0i ) from the above equation results in a
sum no longer equal to unity. As such, methods ignoring
empty pulses rescale probabilities πmi to make them resume to
unity and, as a result, learn only rescaled values, i.e., photon
ratios, rather than the absolute values.
Model Inference. In the previous section, we described

our likelihood model. In this section, we use the derived
likelihood to construct the posterior of all of the unknowns,
which is proportional to the product of the likelihood and
priors on the unknown parameters

| |P t W P t W P( , ) ( , ) ( ) (8)

The most notable priors in the BNP-FLIM framework are the
nonparametric GP priors on the set of lifetime maps and the
nonparametric beta-Bernoulli process priors58−60 on the binary
weights

KGP( , )m m (9)

q A Bbeta( , )m q q (10)

b qBernoulli( )m m (11)

where νm and K are, respectively, the GP prior mean and the
covariance matrix, and Aq, Bq are beta-Bernoulli process
hyperparameters. The remaining, standard priors are discussed
in Supplementary Note 1−2.
The full joint posterior eq 8 does not attain an analytic form

from which we can sample all variables directly. Thus, in
developing the BNP-FLIM framework, we propose a numerical
means by which to sample our posterior to draw inferences
about unknown parameters using Markov Chain Monte Carlo
techniques60,66−74 (see details in Supplementary Note 2).
Furthermore, while nominally the number of fluorophore
species are infinite (M → ∞) within the nonparametric
paradigm, here we instead follow refs 58−60 and set a large
upper limit on the number of species (M) in lieu of infinity and
ensure ourselves that these results are independent in of this
limit.
More specifically, our MCMC chain is structured in such a

way as to sweep through the entire set of parameters (i.e., via
Gibbs sampling) at every iteration by independently drawing
samples from each parameter’s conditional posterior; see
Supporting Information Note 2. To do so, we sweep the
parameter set as follows (the order in which the parameters are
swept is arbitrary):

• lifetime maps, Λm�these can be sampled either using
the conceptually simpler Metropolis−Hastings
(MH)61,75,76 or the more efficient elliptical slice
sampling.77 We opt for the latter. Either method of

sampling for lifetime maps is required as the likelihood
derived in eqs 1−3 is not conjugate to the GP prior.

• mean of GP priors, νm�we use MH to sample the GP
means, νm, due to lack of conjugacy between prior and
likelihood;

• lifetimes, τm�we sample the lifetimes, τm, again using
MH due to lack of conjugacy;

• the binary weights, bm�we update the binary weights,
bm, by modifying a subset of bm by randomly selecting a
subset and directly sampling from the posterior for that
subset (see Supplementary Note 2).

In the end, the chain of samples drawn is used for subsequent
numerical analysis.
Synthetic Data Generation. Before we describe our

results, we illustrate our procedure for simulating data. To be
more precise, we explain the data simulation procedure for a
single pixel (ith pixel) in order to later simulate all multipixel
FLIM data used across this study. To do so, we assume a set of

lifetime maps corresponding to fluorophore species
(typically is much smaller than the truncated M we use in
the Methods section to approximate the beta-Bernoulli process
prior). Next, we use lifetime maps to simulate data in the ith
pixel by (1) sampling Wk

i to determine whether the kth pulse
results in a photon or not (i.e., is empty or nonempty pulse)
from a Bernoulli distribution similar to eq 2; (2) sampling the
fluorophore species, { }m 1, ..., , giving rise to the
detected photons, for nonempty pulses, from a categorical
distribution, i.e., a discrete distribution with more than two
options, with probabilities i

1: given by eqs 4 and 5; (3)
sampling the period spent in the excited state by the
fluorophore, Δtext,ki , from an exponential distribution with
lifetime τm; (4) sampling the IRF time, ΔtIRF,ki , from a Gaussian
distribution and adding it to the time spent in the excited state
by the fluorophore; and finally (5) deal with cases where the
sum of both those times generated in steps 3 and 4 exceeds the
interpulse time T.
To elaborate briefly on step 5, since the photon arrival times

are recorded with respect to the immediately preceding pulse
(sometimes termed the “microtime” in FLIM), they are always
smaller than the interpulse window. As such, to allow for the
possibility that some arrival times may exceed the interpulse
window (especially when the excited state lifetime is on par
with the interpulse window), we need to introduce a third term
subtracting integer interpulse windows from the generated
arrival times

= +
+

t t t T
t t

Tk
i

k
i

k
i k

i
k

i

ext, IRF,
ext, IRF,

Å

Ç

ÅÅÅÅÅÅÅÅÅÅ

Ñ

Ö

ÑÑÑÑÑÑÑÑÑÑ (12)

where the bracket returns the integer part of its content. We
note, as a sanity check, that if an arrival time is smaller than the
interpulse window, the third term is zero. Moreover, the
parameters used in the simulations are inspired by values from
the experimental data used later. That is, we sample IRF times
from a Gaussian distribution with mean and standard deviation
of 12.20 and 0.8 ns, respectively. Furthermore, we use
interpulse time and pixel size of T = 12.8 ns and 0.39 μm
and assume a Gaussian PSF (see eq 5) with σxy = 0.54 μm and
σz = 1.56 μm. Other parameter values used in the analyses are
provided in Supplementary Table 2.
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Figure 2. BNP-FLIM robustness with respect to photon counts per pixel and lifetime differences. Three overlapping lifetime maps with different
lifetimes were generated over a region of 5 × 20 pixels and processed by the BNP-FLIM framework. There are two fixed lifetimes of 1 and 4.5 ns in
all simulated data, while we varied the third lifetimes to obtain lifetime differences of (a) 0.3 ns; (b) 0.8 ns, and (c) 1.5 ns. Histograms show the
resulting lifetime samples from the posterior of the BNP-FLIM framework, and the red dashed lines denote ground truth values.

Figure 3. In vivo data set containing three fluorophore species. (a) Data acquired by scanning the sample over area of 30 × 40 pixel. The sample is
simultaneously labeled with three fluorophore species of pHrodo with a lifetime of 0.8 ns staining lysosomes, TMRM with a lifetime of 2.8 ns
staining mitochondria, and Lyso-Red with a lifetime of 4.5 ns staining endosomes. This resulted in three lifetime maps interpolated below pixel size
(1/2 pixel). (b) Lifetime maps corresponding to a lifetime of 0.8 ns; (c) lifetime map corresponding to a lifetime of 2.8 ns; and (d) lifetime map
corresponding to a lifetime of 4.5 ns. Scale bars are 2 μm. The color bar cutoffs in (d) apply to (b) and (c) as well.
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■ RESULTS
The overarching aim of our BNP-FLIM framework described
above is to develop the posterior and sample from it to learn
the number of fluorophore species, i.e., number of nonzero
binary weights bm coinciding with the number of species,
warranted by the data, the corresponding lifetimes, τm, and
lifetime maps, designated by Λ1:M, using a set of input photon
arrival times t and pulse occupancies W ; see Supplementary
Table 1 for a description of the parameters.
To do so, the BNP-FLIM framework draws numerical

samples from our joint posterior for these parameters, as
illustrated in the Methods section. Our results as histograms
over numerical samples drawn from our Monte Carlo sampling
scheme. Uncertainties naturally follow from the widths of our
histograms over each quantity of interest, reflecting a
numerical approximation to our true marginal posteriors.
In this section, we use a range of synthetic and experimental

data to benchmark our framework against different lifetime
maps including: (1) simple, smoothly varying, homogeneous
lifetime maps (see Figures 2 and S1) and (2) more difficult
lifetime maps with heterogeneous features similar to those
present in experimental samples (see Figures 3−5 and S2−S7).
In addition, employing simulated data with smoothly varying
lifetime maps, we further evaluate our BNP-FLIM framework’s
performance over a wide range of lifetimes, lifetime differences,
and photon counts (see Figure 2). Finally, we focus our
discussion on a single pixel to determine the number of

photons required to assess the number of species and their
lifetimes as a function of decreasing interpulse times for the
challenging case of similar lifetimes; see Figures 6 and S8.
Robustness with respect to Photon Counts and

Lifetime Resolution. Here, we start by considering smoothly
varying lifetime maps (before turning to more complex maps in
the next section). We use these maps to benchmark our BNP-
FLIM framework against a range of lifetimes, lifetime
differences, and photon counts. To do so, we use three
synthetic maps corresponding to three different lifetimes over
an area of 5 × 20 pixels. We use the combination of these maps
to generate data sets with 10, 20, and 50 photons per pixel
shown in the first, second, and third columns in Figure 2,
respectively. Row a in Figure 2 shows the resulting lifetime
histograms where two of the lifetimes differ by only 0.3 ns
representing a challenging case with subnanosecond lifetime
differences. Here, the BNP-FLIM framework correctly assigns
nonzero binary weights to three lifetime maps and learns the
corresponding lifetimes accomplishing subnanosecond lifetime
resolution even with 10 photons per pixel and 1000 photons in
total. We also note that by increasing the photon counts to 20
and 50 photons per pixel, the histograms’ widths tend to
decrease, signifying smaller uncertainties. Next, as we move to
larger differences in lifetime in rows b and c, we expect to
observe sharper histograms due to less uncertainty. However,
the histograms do not exhibit such behavior due to posterior
broadening for larger lifetimes. This is because fluorophore

Figure 4. In order to test our method on realistic distributions of fluorophores, we consider in vivo FLIM data composed, as a test of our method,
by mixing three single-species lifetime maps into one. That is, we first analyze three data sets each containing a single species to produce the
“ground truth” maps seen in (a)−(c). More concretely: (a) the “ground truth” lifetime map (green) for pHrodo with a lifetime of 0.8 ns; (b) the
“ground truth” lifetime map (red) for TMRM with a lifetime of 2.8 ns; and (c) the “ground truth” lifetime map (blue) for Lyso-red with a lifetime
of 4.5 ns. Now, we combine our three original data sets to produce (d). Next, we apply BNP-FLIM to learn the number of species and their maps
that we show in (e)−(g) and can now compare, respectively, with (a)−(c). Lifetime maps in (a)−(c) and (e)−(g) are reported with a pixel size
equal to 1/2 the pixel size of (d). Scale bars are 2 μm. The agreement between (a)−(c) and (e)−(g) is discussed in the text.

ACS Photonics pubs.acs.org/journal/apchd5 Article

https://doi.org/10.1021/acsphotonics.3c00595
ACS Photonics 2023, 10, 3558−3569

3563

https://pubs.acs.org/doi/suppl/10.1021/acsphotonics.3c00595/suppl_file/ph3c00595_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsphotonics.3c00595/suppl_file/ph3c00595_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsphotonics.3c00595/suppl_file/ph3c00595_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsphotonics.3c00595/suppl_file/ph3c00595_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsphotonics.3c00595/suppl_file/ph3c00595_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsphotonics.3c00595?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsphotonics.3c00595?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsphotonics.3c00595?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsphotonics.3c00595?fig=fig4&ref=pdf
pubs.acs.org/journal/apchd5?ref=pdf
https://doi.org/10.1021/acsphotonics.3c00595?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


species with larger lifetimes are more likely to stay excited
longer than an interpulse period, leading to more photons
detected in one or more pulses following the one inducing
fluorophore excitation. Despite this, we still see histogram
sharpening with more photons per pixel from left to right for
each row. Further, cross sections of lifetime maps correspond-
ing to these lifetimes are represented in Figure S1. Here,
although we are able to achieve subnanosecond lifetime
resolution by using photons from across the entire region, the
spatial lifetime maps are learned using only photons from
specific areas, i.e., pixels, which can result in poorer
uncertainties in the estimated maps, particularly for the case
with 10 photons per pixel, compared to the inferred lifetimes.
Heterogeneous Simulated and In Vivo Lifetime Maps.

Here, we challenge our BNP-FLIM framework using lifetime
maps with more complex features. To do so, we use data
including: in vivo data acquired by labeling three different
subcellular structures using different fluorophore species in
Figure 3; a mixed image composed of single-species in vivo
data in Figures 4 and S3−S6; and synthetic data generated
from heterogeneous lifetime maps mimicking ones recovered
in vivo (see Figure 5).
Here, we start by assessing the performance of the BNP-

FLIM framework using data acquired by scanning an area of 30
× 40 pixels of an in vivo sample stained by three fluorophore
species: pHrodo with a lifetime of 0.8 ns which binds to
lysosomes; TMRM with a lifetime of 2.8 ns which binds to
mitochondria; Lyso-red with a lifetime of 4.5 which binds to
endosomes (see Figure 3a). The BNP-FLIM framework
correctly learns the number of lifetimes present in the data

with the corresponding lifetimes shown in Figure S2. For the
lifetimes, the average difference of the ground truths and the
histogram peaks is approximately 0.2 ns (where the ground
truth in the SI is taken to originate from a very large number of
photons using the phasor method30). Moreover, Figure 3
depicts lifetime maps interpolated below pixel size (1/2 pixel)
corresponding to pHrodo, TMRM, and Lyso-Red shown in
green, red, and blue, respectively. However, in this case, we
cannot benchmark BNP-FLIM using lifetime maps due to the
lack of ground truth maps. For this reason, we use a hybrid
data set consisting of three single species in vivo data and
synthetic data, described below.
We begin by first describing each single-species lifetime map

within the hybrid in vivo data set. These data sets were
acquired by scanning 30 × 40 pixel regions of three different
samples (see Figure S3a−c). Each sample contained one of the
fluorophore species: pHrodo, TMRM, and Lyso-red. Figure
4a−c, respectively, represents the lifetime maps learned from
the raw data shown in Figure S3 reporting lifetime maps at 1/2
the pixel for pHrodo (green), TMRM (red), and Lyso-Red
(blue). These lifetime maps are obtained by analyzing each
individual data set using the BNP-FLIM framework (also see
Figure S3d−f). Moreover, Figure S4 shows the resulting
lifetime histograms where the histogram peaks differ from the
ground truth by less than 0.07 ns on average (where ground
truth lifetimes were again taken to be values found using
phasor method).
We now evaluate the performance of our framework by

combining all three data sets. The ground truth is now taken as

Figure 5. Simulated FLIM data generated from a mixture of three lifetime maps. (a) Ground truth map simulated with lifetime of 1 ns. (b) Ground
truth map simulated with lifetime of 2.5 ns. (c) Ground truth map simulated with lifetime of 4.5 ns. (d) Data generated using a mixture of lifetime
maps in (a)−(c). This data was processed using the BNP-FLIM framework resulting again in three nonzero binary weights and corresponding
lifetime maps with lifetimes of (e) 1 ns, (f) 2.5 ns, and (g) 4.5 ns. Scale bars are 2 μm.
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the lifetime maps shown in Figure 4a−c that were obtained by
analyzing the single-species data sets.
Our BNP-FLIM framework correctly identified three species

(as the maximum a posteriori estimate) and their coinciding
lifetime maps are shown in Figure 4e−g with the learned maps
interpolated below pixel size (1/2 pixel) for pHrodo (green),
TMRM (red) and Lyso-Red (blue). To quantitatively compare
the resulting maps in Figure 4a−c and the ground truth maps
(Figure 4e−g), we calculated their absolute relative differences
given by |ΔΛ|/max(Λtrue), where Λtrue denotes the ground
truth map. The error maps are shown in Figure S5 with the
mean errors of ≈3%, ≈8%, and ≈6% for pHrodo, TMRM, and
Lyso-Red, respectively. Moreover, the resulting histograms of
the number of nonzero binary weights and the corresponding
lifetimes are shown in Figure S6. For lifetimes, the average
difference between ground truth values and histogram peaks is
approximately 0.12 ns.
After assessing the performance of our BNP-FLIM frame-

work using in vivo data, we continue to benchmark our
framework using synthetic FLIM data containing three
complex lifetime maps (see Figure 5a−c) similar to those in
experimental data with lifetimes of 1, 2.5, and 4.5 ns, generated
over an area of 32 × 32 pixels (see Figure 5d). We used our
BNP-FLIM framework to analyze this data. The resulting
lifetime maps are shown in Figure 5e−g with average absolute
relative differences of ≈5%, ≈ 8%, and ≈5%, respectively.
Moreover, the histograms of the number of nonzero binary
weights warranted by the data and the corresponding lifetimes
are given in Figure S7. Here, the histogram in the number of
species has peaks at the true value of 3 and peaks of the
lifetime histograms differ from the ground truths by less than
0.08 ns on average (see Figure S7).
Finally, we narrow our focus to a single pixel to investigate

the effect of interpulse time (T) on the photon counts required
to deduce the number of fluorophore species as well as their
lifetimes for in vitro (see Figure 6) and simulated data (see
Figure S8). Experimental data sets were acquired using Rho6G
and a combination of RhodB and Rho6G with lifetimes only 1

ns apart, namely, 1.4 and 2.4 ns, respectively. These data sets
were originally collected with T = 25 ns.53 From these data, it
is possible to generate arrival times with smaller interpulse
times using Δt = Δt − T ⌊Δt/T⌋. Here, the bracket gives the
integer part of its content. Our framework deduces the single
lifetimes using only 90 and 150 arrival times acquired
experimentally for T = 25 ns (under the reasonable assumption
that no dye can statistically remain excited longer than the
interpulse time given our finite sample) and T = 4 ns (where
many dyes remain excited for multiple interpulse times
following the pulse giving rise to the original excitation),
respectively. Moreover, for experimental data sets with two
species, we can distinguish the number of lifetimes and their
associated lifetime values using approximately 2000 and 6000
photons for T = 25 ns and T = 6 ns; see Figure 6. In both
cases, shorter interpulse times require more photons as shorter
interpulse times result in photon emissions of multiple pulses
following excitation giving rise to a less informative posterior.
In the case of T < 6 ns (red curve in Figure 6c), our BNP-
FLIM framework could not distinguish the two lifetimes due to
the abundance of photon emissions following multiple laser
pulses.
As a further test beyond the in vitro data analyzed, the

simulated data sets were generated using either one or two
lifetimes of 1.4 and 2.4 ns (similar to the experimental data in
Figure 6) and interpulse times of 25, 12, 8, 6 and 4 ns over a
single pixel; see Figure S8. BNP-FLIM started deducing the
correct lifetime for data sets containing a single lifetime using
approximately 20 photons for T = 25 ns and 70 photons for T
= 4 ns; see Figure S8. For cases with two species, our
framework inferred the correct number of lifetimes for T = 25
ns using 800 photons and 3000 photons for T = 6 ns. Finally,
we add that in contrast to Figure 2, these data represent a more
difficult case as all species are overlapping in a single pixel (no
spatial information), while for Figure 2, we can leverage spatial
separation to discriminate between fluorophore species and
their associated lifetime values. As such, we need more photons
here than we do in Figure 2.

Figure 6. Required a minimum number of photons in order to infer the number of fluorophore species and corresponding lifetimes with respect to
the interpulse time window (T). As an example only, we present histograms of experimental photon arrival times for one species (with lifetimes of
2.4 ns) under two different interpulse windows: (a) has T = 25 ns and (b) has T = 6 ns. The data sets used here were originally collected with an
interpulse time of 25 ns, and data sets with smaller interpulse times are generated from the raw data as detailed in the text. In (c), we show the
smallest photon counts required for our BNP-FLIM framework to begin deducing the exact number of lifetimes and the corresponding lifetimes
(with less than ≈18% average error). The blue curve represents results for data sets acquired using a single dye of Rho6G with a lifetime of 2.4 ns.
The red curve represents results for data sets obtained using two dyes of Rho6G and RhodB with lifetimes of 2.4 and 1.4 ns, respectively. The two
lifetimes are only 1 ns apart and are collected over a single pixel. Here, pdf denotes the probability density function obtained by normalizing the
area under the histogram to one.
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■ EXPERIMENTAL METHODS
Experimental data were acquired on an ISS-Alba confocal
microscope. Excitation was provided by a 780 nm 2-photon
laser pulsed at 80 MHz (Calmar Laser). Emission was
collected by an avalanche photodiode (Excelitas Technologies)
and an ISS A320 Fast FLIM unit for lifetime determination. A
760 short-pass dichroic was used to split the excitation and
emission light; no additional emission filter was used. Images
were collected with a 16 μs pixel dwell time with an image size
of 256 × 256 pixels and a 0.39 μm pixel size, accumulating 7−9
frames for each data set. After each experiment, the images
were preprocessed by extracting individual photons and
constructing a list of arrival times for each photon, both in
reference to the start of the measurement and to the previous
laser pulse. MDA-MB-231 cells were seeded in a glass-bottom
8-well plate (Ibidi GmbH) previously coated with 2 μg/mL
Fibronectin in Dulbecco’s phosphate buffer solution (DPBS)
without Ca, Mg, Phenol Red (GenClone, Genesee). Cells were
stained with 50 μg/mL pHrodo Green Dextran, 10,000 MW,
100 nM TMRM, and 50 nM LysoTracker Deep Red
(Invitrogen) for 4 h and subsequently imaged.

■ CONCLUSIONS
Fluorescence lifetime imaging techniques allow us to probe life
within complex subcellular environments. In particular, these
techniques have been employed to detect changes in cellular
metabolism due to cancer metastasis78−80 whose ensuing
metabolic shift is detected by monitoring varying levels of free
and bound NADH within breast tissue cells.78 Moreover,
quantitative interpretation of FLIM data remains limited by
fundamentally unknown numbers of fluorophore species to
which to fit the data and high photon counts required to
determine lifetimes separated by small differences, such as
difficulty in discriminating lifetimes with subnanosecond
differences. Further, the spatial resolution of raw FLIM data
is limited to the PSF size given an optimal pixel size, namely,
half of the PSF size according to the Nyquist criterion. While
quantitative FLIM methods can resolve features beyond the
PSF size when deconvolving data, these approaches remain
limited to the pixel size (the distance between scanned lines)
in reconstructing lifetime maps. Here, using BNP-FLIM, we
can provide smooth lifetime maps by interpolating beyond the
pixel size leveraging all spatial correlations across pixels; see
Figure 3 and 4. Addressing these issues requires a framework
leveraging all spatial information and the known physics of the
problem by incorporating it directly into the likelihood. This
physics includes Poisson photon emission statistics and spatial
correlations across pixels as well as all existing noise sources,
e.g., IRF, to simultaneously learn the number of species and
associated maps.
Of importance here is the fact that simulated data can be

generated at will to test the number of photons required as
lifetimes of different species become more similar, their
distribution overlaps more closely in space (e.g., Figure 2
versus Figure S8), and the number of species rises or interpulse
times shrink (e.g., Figure S8). In principle, there is no
theoretical limit imposed on how similar lifetimes can be given
infinite photons, though there may be practical limits
pertaining to the breath of the IRF and photodamage induced
on the sample required in the collection of large photon
numbers. We also argue that the number of photons we use to
achieve subnanosecond lifetime resolution from this exercise

essentially defines a lower bound as BNP-FLIM introduces
minimal data preprocessing. Any form of preprocessing, e.g.,
arrival times binning,37−39 naturally results in information loss
and thus requires more photons in deducing lifetimes or their
spatial distribution.49

Due to our choice of Monte Carlo samplers in BNP-FLIM,
the computational cost scales linearly with the number of pixels
and photon counts. Moreover, the computational cost also
depends on the type of data analyzed. For instance, more
challenging data sets, such as data sets containing lifetime maps
with more complex features or multiple lifetime maps (where
background could be considered yet another species),
complicate the posterior’s shape. This necessarily requires us
to draw more samples from the posterior and therefore
introduces a higher computational cost. For example, it took 2
days of computer wall time (not active human work) to
analyze the single species in vivo data sets shown in Figure S3,
while it took about a week of wall time to analyze the in vivo
data set containing three lifetime maps shown in Figure 4d on
a regular desktop machine with AMD Ryzen 9 3900X 3.8 GHz
CPU and 64 GB RAM.
Although we assumed a Gaussian IRF for simplicity while

retaining sufficient accuracy, the BNP-FLIM framework is also
capable of accommodating any type of IRF by simply
modifying eq 3 at no additional computational cost. Moreover,
here, we assumed that parameters of the IRF distribution, e.g.,
offset and variance, can be precalibrated. However, our inverse
strategy can be generalized to learn these parameters along
with the rest of the unknowns by adding appropriate priors on
these parameters. Furthermore, for species present at low
concentrations, the probability of no excitation, appearing in
eq 5, can be approximated by the first two terms of their
Taylor expansion, leading to simpler expressions and reduced
computational complexity.
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