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Abstract

Learning when Objectives are Hard to Specify

by

Kush Bhatia

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Peter L. Bartlett, Co-chair

Professor Anca D. Dragan, Co-chair

Deploying learning systems in the real-world requires aligning their objectives with those of
the humans they interact with. Existing algorithmic approaches for this alignment try to
infer these objectives through human feedback. The correctness of these algorithms crucially
depends on several simplifying assumptions on 1) how humans represent these objectives, 2)
how humans respond to queries given these objectives, and 3) how well the hypothesis space
represents these objectives. In this thesis, we question the robustness of existing approaches
to misspecifications in these assumptions and develop principled approaches to overcome
such misspecifications.

We begin by studying misspecifications in the hypothesis class assumed by the learner and
propose an agnostic learning setup where we demonstrate that all existing approaches based
on learning from comparisons would incur constant regret. We further show that it is neces-
sary for humans to provide more detailed feedback in the form of higher-order comparisons
and obtain sharp bounds on the regret as a function of the order of comparisons. Next, we
focus on misspecifications in human behavioral models and establish, through both theo-
retical and empirical analyses, that inverse RL methods can be extremely brittle in worst
case. However, under reasonable assumptions, we exhibit that these methods do exhibit
robustness and are able to recover underlying reward functions up to a small error term. We
then proceed to study misspecifications in assumptions on how humans represent objective
functions. We begin by showing that taking a uni-criterion approach to modeling human
preferences fails to capture real-world human objectives and propose a new multi-criteria
comparison based framework which overcome these limitations. In the next part, we shift
our focus to hand-specified reward functions in reinforcement learning, an alternative to
learning rewards from humans. We empirically study the effects of such misspecifications
showing that over-optimizing such proxy rewards can hurt performance in the long run.
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Chapter 1

Introduction

The large-scale deployment of learning systems which interact with humans requires aligning
what these systems optimize for with underlying human objectives and values. A major
hurdle towards accomplishing this has been that it is hard for humans to precisely specify
what it means to do the desired task well. Such situations arise, for instance, in autonomous
driving, where one prefers a driving policy which is safe and comfortable [126, 119], in
recommender systems, where one would like them to recommend content which promotes
user’s subjective well being [189], and also in classical natural language processing tasks like
text summarization [159], where the notion of what makes a good summary is difficult to
operationalize. Even in vanilla supervised learning, different mistakes may have different
costs – for instance, misclassifying a stop sign is worse than mis-classifying a road-side
postbox – and it is quite challenging for humans to correctly specify the relative mistakes of
these costs [23].

Prior work on inferring these objectives from human feedback focuses on either learning
these underlying preferences (reward learning) [152, 31, 187, 164] or relying on humans to
specify these objectives by hand (reward engineering) [64]. Under the hood, these methods
make a lot of assumptions: that people can consistently respond to complex queries, that we
can represent the underlying objectives within our hypothesis space, and that humans are
good at reward engineering. The proposed algorithmic approaches crucially rely on these
assumptions to provide guarantees on the models they output.

This thesis is motivated by the concern that all these assumptions are not realistic:
humans resort to simple heuristics when dealing with complex questions and biases their
responses (e.g. representative heuristic) [199], it is often hard to represent everything that a
person might care about (e.g. how courteous their car is to other drivers), and hand-written
rewards by humans have quite often lead to unintended consequences (e.g. watch time as a
proxy for to promote well-being by recommender systems lead to unhappy users [167]). In-
deed, in the face of such misspecifications, the proposed learning algorithms can end up with
incorrect models which could potentially make things worse instead of better. This work
focuses on the design of value aligned models that are robust to such misspecifications by
conceptually understanding how existing feedback modes fail when the underlying assump-
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Figure 1.1. Thesis overview. We look at different forms of misspecifications that arise
when learning systems optimize unknown human objectives. Such misspecifications arise
in the way the objectives are assumed to be represented, in assumptions on how humans
provide feedback given these objectives, and in the representation ability of these learning
systems. This work focuses on understanding the side-effects of such misspecifications and
presents algorithmic approaches to overcome them.

tions are violated and rethinking the right human feedbacks we need to develop provably
robust models. Each chapter in the thesis addresses a different types of misspecifications
that may arise in learning these underlying objectives and provides a systematic way to
address it.

In Chapter 2, we look at the effects of misspecified reward classes, another form of a
representational bias [23]. Algorithms for inferring reward functions from observed human
decisions often posit that the true reward function belongs to some class of reward functions;
for instance, it is a linear function of some pre-defined features. Such an assumption requires
a learner to correctly identify everything a human might care about in their reward function,
and is easily violated. Specifically, in this agnostic setup, we show that commonly used
feedbacks like expert demonstrations as well as vanilla pairwise comparisons are information-
theoretically insufficient to allow any learner to output a good model. To overcome this, we
introduce a family of elicitation mechanisms by generalizing such comparisons, called the
k-comparison, which enables the learner to ask for comparisons across k different inputs at
once. This work brings out an interesting accuracy-elicitation trade-off – as the order k of
the comparison increases, these queries become harder to elicit from humans but allow for
more accurate learning.

In Chapter 3, we examine the effects of misspecified human behavioral models on re-
ward inference [108]. Existing learning algorithms make very strong assumptions about how
humans behave given their objectives. This is in stark contrast to decades of research in
cognitive science, neuroscience, and behavioral economics, wherein obtaining such accurate
human models remains a widely open question. This work asks the question: how accurate
do these models need to be in order for the reward inference to be accurate? and studies it
both theoretically and empirically. In a worst-case scenario, we show that it is unfortunately
possible to construct small adversarial biases in behavior that lead to arbitrarily large errors
in the inferred reward. However, on the positive front, we identify reasonable assumptions
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under which the reward inference error can be bounded linearly in the error in the human
model. From an empirical perspective, we verify our insights in discrete and continuous
control tasks with both simulated biases, as well as real human data.

In Chapter 4, we study the effects of misspecification in the representation of the human’s
objective function [25]. Specifically, we study comparison-based preference learning models
and exhibit how existing uni-criterion methods fail to infer the underlying preferences when
the true utility function is represented via preferences along multiple criteria. To overcome
these limitations, we propose a multi-criteria preference learning model and propose a new
solution concept, Blackwell winner, by taking inspiration from Blackwell’s approachability.
Our proposed framework allows for non-linear aggregation of preferences across criteria,
and generalizes the linearization-based approach from multi-objective optimization. From
a theoretical standpoint, we show that the Blackwell winner of a multi-criteria problem
instance can be computed as the solution to a convex optimization problem. Furthermore,
given random samples of pairwise comparisons, we show that a simple “plug-in” estimator
achieves near-optimal minimax sample complexity. We then showcase the practical utility
of our framework in a user study on autonomous driving.

In Chapter 5, we consider the consequences of misspecified hand engineered reward func-
tions in a reinforcement learning (RL) setup [157]. In several RL applications, the existing
paradigm requires an engineer to specify a reward function which is then optimized to pro-
duce a policy. Misspecifications in these engineered rewards can lead to policies which are
severely misaligned with the true objective, a phenomenon also termed as reward hacking.
In this work, we systematically study this phenomenon from an empirical perspective. As
opposed to supervised learning, where larger or more capable models have been seen to per-
form better than their shallower counterparts, we observe that more capable agents are able
to better exploit reward misspecifications, causing them to attain higher proxy reward and
lower true reward. Moreover, we find instances of phase transitions : capability thresholds
at which the policy’s behavior qualitatively shifts, leading to a sharp decrease in the true
reward.

In Chapter 6, we propose a theoretical framework called Doubly Nonparametric Bandits
for studying reward learning and the associated optimal experiment design problem [24].
Our proposed framework models rewards and policies as nonparametric functions belonging
to subsets of Reproducing Kernel Hilbert Spaces (RKHSs). The learner receives (noisy)
oracle access to a true reward and must output a policy that performs well under the true
reward. For this setting, we first derive non-asymptotic excess risk bounds for a simple
plug-in estimator based on ridge regression. We then solve the query design problem by
optimizing these risk bounds with respect to the choice of query set and obtain a finite
sample statistical rate, which depends primarily on the eigenvalue spectrum of a certain
linear operator on the RKHSs. This framework, and the associated notion of policy regret,
serves as a step towards studying the choice of adaptive queries for policy learning when
both reward and policy classes maybe simultaneously misspecified.
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Part I

Reward learning with misspecified
models
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Chapter 2

Agnostic learning with unknown
utilities

2.1 Introduction

Our focus is on learning predictive models for decision-making tasks. Current paradigms for
classification tasks use datasets consisting of scenarios1 x along with the decisions y taken
by human experts to learn a decision function2 f : X 7→ Y . For instance, in economics such
decisions correspond to whether buyers bought an item at a suggested price [3, 22], in robotics
such feedback comprises expert demonstrations in imitation learning [1, 12], and in machine
learning literature such supervision consists of labels selected by human annotators [26, 70].

When we optimize models to predict correctly on these datasets, we often implicitly
assume that all mistakes are equally costly, and that each scenario x in the data is just as
important. In reality though, this is rarely the case. For instance, the standard 0 − 1 loss
for classification tasks assigns a unit of loss for each mistake, but misclassifying a stop sign
is significantly more dangerous than misclassifying a road-side postbox. In Figure 2.1, we
expand on this insight and illustrate how learning from such revealed decisions can often
lead to suboptimal decision functions.

What is missing from this classical framework is that for most decision-making tasks
there exists an underlying function u∗ : X × Y 7→ [0, 1] which evaluates the utility of a deci-
sion y depending on the surrounding context x. Depending on the decision task, such utility
functions can encode buyer preferences in economics, rewards for robotic skills, or mispre-
diction costs for classification. However, these utility functions are a priori unknown to the
learner since the dataset consists only of context-decision pairs (x, y). Furthermore, asking
human experts to write down these complex utility functions can be quite challenging and
prone to serious errors [9].

One commonly studied approach, referred to as learning from revealed preferences in

1We use the term scenario/context/feature for the vector x interchangeably.
2We consider finite decision spaces Y.
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Figure 2.1. Consider a binary decision-task with decisions G(reen) and B(lue). The
instance space comprises of three equiprobable clusters of datapoints x1, x2 and x3, and
have associated utilities u∗ for decisions B and G. The colour of the datapoints represents
the decision with higher utility. The function class F consists of linear predictors. In
the traditional learning setups where the dataset consists of pairs (x, y), no learner will
have enough information to select between f1 and f2 since the 0 − 1 error for both is 1/3.
In contrast, using a 2-comparison oracle, a learner can ask a query of the form “Which
of u∗(x1,G) + u∗(x3,B) or u∗(x1,B) + u∗(x3,G) is bigger?”. This allows them to infer
that correctly predicting x3 gives a higher overall utility and output the optimal decision
function f2.

economics [22, 18] and inverse reinforcement learning (IRL) in the machine learning liter-
ature [150, 226], assumes that the utility function u∗ belongs to some pre-specified class
and uses the fact that decision y was the optimal decision for scenario x to learn estimates
of these utilities. This setup is called the well-specified or realizable setup. However, this
posited utility class can be misspecified in that the underlying utility u∗ might not belong to
this class. The correctness of such learning approaches crucially relies on the well specified
assumption and offers no guarantees on how their performance degrades in the presence of
class misspecifications.

We overcome this uncertainty in specifying the utility function u∗ by proposing an ag-
nostic learning framework which places no assumptions on the class of utility functions.
Instead, we consider decision functions belonging to some class F = {f | f : X 7→ Y} and
study the objective of obtaining the “best” decision rule in F with respect to the unknown
utility u∗. Formally, given the decision class F and samples from a distribution Dx over the
feature space X , the objective of the learner is to output a model f̂ ∈ F with small excess
risk or regret

err(f̂ ,F) : = sup
f∈F

Ex∼Dx [u
∗(x, f(x))]− Ex∼Dx [u

∗(x, f̂(x))] . (2.1)

Our proposed notion of excess risk measures the performance of an estimator f̂ by comparing
its decisions with those of the best predictive model in the class F under the utility u∗.
Contrast this with the classical agnostic learning framework [100] where the evaluation metric
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for classification measures what proportion of datapoints f̂ predicts correctly

errcl(f̂ ,F) : = sup
f∈F

Ex∼Dx [I[f(x) ̸= yx]]− Ex∼Dx [I[f̂(x) ̸= yx]] , (2.2)

where yx = argmaxy∈Y u∗(x, y) represents the expert decision (revealed decision) for scenario
x. Our above framework generalizes the proper agnostic learning framework – we restrict
our attention to proper learners which output models f̂ ∈ F and the decision class F is
agnostic towards the unknown underlying utility u∗. Indeed, our agnostic framework allows
for misspecification in the decision class F and allows for situations where no predictive
model f ∈ F matches the expert predictions yx for all instances x.

As highlighted by Figure 2.1, such a misspecification in the function class F implies
that no decision function f ∈ F will be able to perfectly fit these optimal decisions yx for
all points x ∈ S. In order to solve the agnostic learning problem, it is necessary for the
learner to understand the how costly these different mistakes are relative to each other.
From the learners perspective, observing only the optimal decisions yx for each instance
x, such as revealed preferences or expert demonstrations, are clearly insufficient to obtain
any information about these costs. One way to overcome this information-theoretic limit of
revealed decisions is to directly elicit the utilities from humans – for scenarios x and decision
y, ask an expert “What is the utility u∗(x, y) for taking the decision y given situation x?”.
However, since the underlying utility u∗ can be quite complex, humans are inept at answering
them reliably [144, 186]. For instance, it can be challenging for humans to correctly specify
the costs of mispredicting, say, a stop sign as a red signal relative to that of predicting it as
a post-box.

On the other hand, it is often easier for humans to provide comparative evaluations based
on these utilities [194, 87] and allow the learner to obtain relative feedback. Using these,
the learner can query an expert with comparison or preference queries asking “For instance
x, which of the two utilities u∗(x, y1) or u

∗(x, y2) is larger?”. Such vanilla comparisons can
allow the learner to infer relative utilities for decisions y1 and y2 for a given context x; the
learner can conclude that mispredicting stop sign as post-box is worse than mispredicting
it as a red signal. However, such feedback still does not provide any information about the
mistake costs across different examples – given a choice, should the learner correctly predict
a stop-sign or correctly predict a post-box?

While vanilla comparisons are insufficient for the agnostic setup, let us consider the other
extreme: suppose that we have access to an oracle which can provide us with comparisons of
overall utilities for functions f1, f2 ∈ F . That is, the oracle can answer question of the form
“Which of the two overall utilities Ex[u

∗(x, f1(x))] or Ex[u
∗(x, f2(x))] is larger?”. Given access

to such an oracle, we will be able to find the optimal classifier in the class F . We call this the
∞-comparison oracle since such preferences requires a human to reason about the utilities
over the entire feature space X at once. Even for a small image classification task with a
million images, this would require a human to compare the utility of a million simultaneous
predictions! While this approach does allows for optimal estimation, the trade-off is that
it puts the complete burden of learning on the human’s side. It is worth highlighting that
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the comparisons between lotteries used to establish the von Neumann-Morgenstern utility
theorem [147] can be shown to be a special case of such an ∞-comparison oracle.

While comparison queries only allow comparison within a single instance, the∞-comparison
oracle takes the other extreme and requires a comparison along all instances. However, we
need not restrict our self to either of these extremes; our key insight is that there is a nat-
ural spectrum of such comparisons, which we call k-comparisons which interpolate between
the single or 1-comparison and the ∞-comparison oracle. Such comparison queries allow a
learner to pick k instances {x1, . . . , xk} and two sets of corresponding decision, {y1, . . . , yk}
and {y′1, . . . , y′k}, and ask “Which of the cumulative utilities

∑
i u

∗(xi, yi) or
∑

i u
∗(xi, y

′
i)

is bigger?”. For instance, for the example in Figure 2.1, giving the learner access to a
2-comparison oracle allows the algorithm to output the optimal decision function.

These higher-order comparison oracles form a natural hierarchy of elicitation mechanisms
for the learner with a k′-oracle being strictly more informative than a k-oracle for k′ > k.
They allow for a natural trade-off between accuracy and elicitation in the learning with
unknown utilities framework. As we increase the order k of the oracle, the learner can
obtain finer information about the utilities u∗ and output functions with lower excess risk.
However, this increase in information comes at the expense of asking for a harder elicitation
from the human expert.

Our Contributions. We propose a novel framework, which we call agnostic learning with
unknown utilities, for studying decision problems wherein the learner is evaluated with re-
spect to an unknown utility function. Within this framework, we show that standard ap-
proaches which work well in the realizable setup, such as revealed preferences as well as
vanilla comparisons, can perform quite poorly in the face of misspecification and can have
excess risk Ω(1). To overcome this, we propose a family of elicitation mechanisms, the k-
comparisons, which allows the learner access to finer information from an human expert
with increasing values of the order k. Our main results, detailed in Section 2.3, provide a
tight characterization of the excess risk as a function of the order k of the comparison oracle
available to the learner. These result brings out an interesting accuracy-elicitation trade-off
– as the order k of the oracle increases, the comparative queries allow for more accurate
learning in our setup but become harder to elicit from humans.

We would like to highlight that increasing the order k of the comparisons could lead to
potentially biased and noisy responses from the human expert. As a consequence, there might
be an additional trade-off involving the quality of the information obtained by increasing the
order. While we do not focus on this aspect of elicitation, it is an interesting direction for
future work.

Related work

This paper sits at the intersection of multiple fields of study: agnostic learning , learning
with nuisance parameters, and utility learning from preferences . Here, we review the papers
that are most relevant to our contributions.
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Agnostic learning. The framework of probably approximately correct (PAC) learning was
introduced in their seminal work by Valiant [202]. This framework formalized the problem
of learning from sampled data in a realizable setup. This was formally extended to the
agnostic setup, with no assumptions on the data generating distribution, by Haussler [100].
Connections of learnability with uniform convergence were first established by Vapnik [205],
and more recently it was established in [178] that for the general learning problem, such
a uniform convergence is not necessary to establish learnability. Similar to the classical
agnostic supervised learning, the learner does not know the distribution Dx but only has
access to it via samples. The key difference is that the classical setup assumes that the
utility function u∗ is known to the learner while our framework does not.

Learning with nuisance parameters. Closely related to our setup is the problem of
learning with a nuisance component [77] which comprises as special case the problems of
heterogeneous treatment effect estimation [52], offline policy learning [14], and learning with
missing data [94] amongst others. In this setup, objective is to learn a predictor with small
excess risk and this risk depends on a underlying nuisance parameter which is unknown to
the learner a priori. The unknown utility u∗ of our setup can be seen as a nuisance component
in their framework. However, the two problems differ in the form of information available
to the learner – they allow the learner to directly elicit (possibly noisy) values of utility u∗.
They additionally require that utility u∗ belongs to some pre-specified function class and
their bounds depend on the rate at which this utility function is learnable over this class.

Another line of work, called double/debiased machine learning in the statistics and econo-
metrics literature [51, 53, 54], addresses semiparametric inference [168, 123] where the func-
tion class F is assumed to be a parametric family along with a non-parametric nuisance
component. In addition to the differences mentioned above, this class of methods focuses
on exact parameter recovery and conditions under which

√
n-consistent and asymptotically

normal estimators can be obtained.

Utility estimation with preferences. The seminal work of von Neumann and Morgen-
stern [147] established that any rational agent whose preferences satisfy certain axioms will
have a utility function. Furthermore, the proof of this expected utility theorem showed these
utilities could be elicited from the agent using preferences over randomized lotteries. As dis-
cussed in Section 2.1, such preferences over lotteries can be seen as a special case of the
∞-comparison oracle. There have been several recent works studying the consequences of
incomplete preferences [153, 88] which show the existence of a class of utility functions which
are consistent with these incomplete preferences. Our k-comparison oracles can be seen as
a quantitative approach to studying such incomplete preferences; for each value of k ≥ 1,
the human expert can only compare lotteries up to a granularity of 1

k
. Our work goes a step

forwards and studies the consequences of such incomplete preferences for decision-making
tasks.
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2.2 Problem formulation

In this section, we formally state our learning with unknown utilities problem and introduce
the k-comparison oracle. Let X ⊆ Rd represent the space of feature vectors, Y denote the
corresponding decision space and F denote a class of decision making functions, given as
F = {f | f : X 7→ Y}. Our framework considers an underlying utility function u∗ : X ×Y 7→
[0, 1] which assigns a non-negative real value for making a decision y ∈ Y given a situation
x ∈ X . Further, let us denote the set

U = {u | u : X × Y 7→ [0, 1]} (2.3)

of all possible such utility functions. For any distribution Dx over the feature space X , we
define the expected utility of a decision function f ∈ F as U(f ;u∗) : = Ex∼Dx [u

∗(x, f(x))].
Observe that such an expected utility model assumes that the utilities are additive across
the different instances x and is a commonly studied model both in the machine learning,
statistics and economics literature. We denote the excess risk of a function f with respect
to the function class F by

err(f,F ;u∗) : = max
f ′∈F

U(f ′;u∗)− U(f ;u∗). (2.4)

Further, we denote the optimal decision for any instance x with respect to the underlying
utility u∗ by yx : = argmaxy∈Y u∗(x, y).

Similar to the classical agnostic learning setup [100], we assume that the learner does
not know the underlying distribution Dx of the instances. However, our setup differs from
it in that we do not assume that the underlying utility function u∗ is known to the learner.
Instead, we provide the learner access to an oracle which allows the learner to elicit responses
to higher-order preferences queries.

Comparison Oracle Since the utility function u∗ is unknown to the learner, our frame-
work allows the learner access to an oracle which provides comparative feedback based on
the utilities u∗. We consider a family of such oracles Ok, each indexed by its order k which
determines the number of different instances the learner is allowed to specify in the compar-
ison query. For an oracle Ok, a learner is allowed to select a set of k situations x ∈ X k and
two pairs of corresponding decisions y1,y2 ∈ Yk. The oracle then compares, in a possibly
noisy manner, the cumulative utilities of the pair (x,y1) and (x,y2) and responds with the
feedback on which one is larger. As the order k of the oracle increases, the queries become
more complex – an expert is required to evaluate a larger number of instances at once. This
family of comparison oracles captures a natural hierarchy of elicitation mechanisms where
with each increasing value of k, a learner has access to more information about the utility
function u∗.

Formally, we represent a k-query by a tuple (x,y1,y2) where the input x = (x1, . . . , xk)
comprises k feature vectors and the corresponding decision vectors y1 = (y1, . . . , yk) and
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y2 = (y′1, . . . , y
′
k).

3 Given such a query q, the oracle Ok provides the learner a binary
response

Ok(q = (x,y1,y2)) =

{
I [u∗(x,y1) ≥ u∗(x,y2)] with prob. 1− ηq

1− I [u∗(x,y1) ≥ u∗(x,y2)] otherwise
, (2.5)

where the parameter 0 ≤ ηq <
1
2
represents the noise level corresponding to query q. Thus,

the oracle4 Ok provides noisy comparisons of the cumulative utilities u∗(x,y1) and u∗(x,y2)
with varying noise level ηq. Observe that we allow the noise levels ηq to be different for each
query q.

Problem Statement We are interested in the agnostic learning with unknown utilities
problem where a learner is provided n samples S = {x1, . . . , xn} with each xi ∼ Dx and
access to the k-comparison oracle described above, and is required to output a decision
function f̂ ∈ F such that error err(f̂ ,F) is small. The caveat is to do so with a minimum
number of calls, which we term the query complexity nq of learning, to the comparison oracle
Ok. Quantitatively, we would like to characterize the excess risk from equation (2.4) in terms
of the number of sampled instances n, the order k of the comparison oracle and properties of
the decision function class F , and the associated oracle query complexity nq to obtain this
bound.

Obtaining such bounds on the excess risk err(f,F ;u∗) in terms of the order k allow us to
quantify the trade-offs in learning better decision functions at the expense of requiring more
complex information from the human expert. Going forward, we focus on the binary decision
making problem where the label space Y = {0, 1} for clarity of exposition. Whenever our
results can be extended to arbitrary decision sets, we provide a small remark about this
extension.

2.3 Main results

With the formal problem setup in place, we discuss our main results for learning in this
framework of unknown utilities. At a high level, our objective is to understand how the
excess risk err(f,F ;u∗) defined in equation (2.4) behaves as a function of the oracle order k
– specifically, at what rates does learning in our proposed framework get easier as we allow
learner to elicit more complex information from the oracle?

For our main results, on the upper bound side, we design estimators for learning from
the k-comparison oracle, and on the lower bound side, we study information-theoretic limits
of learning with such higher-order comparisons. While we state our results for the binary

3We overload our notation and represent the cumulative utilities of the k inputs (x,y) by
u∗(x,y) =

∑
i u

∗(xi, yi).
4Note that while the oracle depends on the underlying utility function u∗, our notation suppresses this

dependence for clarity. We use the notation Ok(q;u
∗) whenever we want to make this dependence explicit.
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decision problem where the label space Y = {0, 1} for clarity, most of our results can be
generalized to arbitrary outcome space Y .

Excess risk with k-comparison oracle (Section 2.4)

We study a class of plug-in estimators which are based on the following two-step procedure:

i. Obtain estimate û of the true utility u∗ on the sampled datapoints.

ii. Output utility maximizing function f̂k,n with respect to the estimated utility û.

For learning the parameters û, we introduce the Comptron (Algorithm 1) and Rob-
Comptron (Algorithm 2) algorithms for the noiseless and noisy comparison oracles respec-
tively. We show that when these estimates û are combined with the two-step plug-in esti-
mator, the excess risk of the function f̂k,n scales as O( 1

k
) and an additive complexity term

capturing uniform convergence of the decision class F with respect to the true utility u∗.

Theorem 2.1 (Informal, noiseless comparisons). Given n samples, the excess risk for the
function f̂k,n ∈ F output by the plug-in estimator using estimates û from Comptron satisfies

err(f̂k,n,F ;u∗) ≤ Complexityn(F ;u∗) +O

(
1

k

)
·

(
1

n

n∑
i=1

I[fERM(xi) ̸= yi]

)
,

where the ERM function fERM ∈ argmaxf∈F
∑n

i=1 u
∗(xi, f(xi)). Furthermore, Comptron

makes only O(n log k) queries to the oracle Ok.

We make a few remarks on this result. First, observe that the complexity term depends
on the true utility function u∗ and not on the estimates û. This ensures that the complexity
term does not depend on the utility class U but rather only on the specific utility u∗ –
indeed, the class U consists of all bounded function and uniform convergence might not even
be possible with finite sample for a large class of distributions Dx. Second, the additional
error of O( 1

k
) accounts for the fact that the utilities u∗ are unknown. One can learn better

decision functions by increasing the order k of the comparison oracle but this comes at
the cost of the human expert answering a more complex set of queries. Furthermore, this
error is multiplied by the 0 − 1 prediction error of the optimal on-sample classifier fERM =
argmaxf∈F

∑
i u

∗(xi, f(xi)). This implies that in the well-specified setup, where there exists
an f ∈ F such that f(xi) = yi on the sampled datapoints, the second term becomes 0 and
the learner pays no additional error for not knowing the utilities u∗. Third, observe that our
proposed algorithms, Comptron and Rob-Comptron, are query efficient; both require only
O(n log k) calls to the k-comparison oracle to produce “good” estimates û.

The proof of the above theorem proceeds in two steps. First, we adapt the classical
proof for upper bounding the risk of ERM procedures to show that the gap err(f̂k,n,F)
decomposes into the complexity term and estimation error ∥û − u∗∥S,∞, evaluated on the
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dataset S. Next, we show that this estimation error scales as O
(
1
k

)
for the Comptron and

Rob-Comptron procedures.
Next, we address the optimality of the above plug-in procedure by studying the information-

theoretic limits of learning with a k-comparison oracle. Specifically, in Theorem 2.3 we estab-
lish that the rate of 1

k
is indeed minimax optimal – for any k > 1 and any predictor f̂ in some

class F , we can construct utility functions u∗ such that excess risk err(f̂ ,F ;u∗) = Ω
(
1
k

)
.

These lower bounds imply that traditional comparison based learning, corresponding to
k = 1, is insufficient for learning good decision rules in our framework.

Instance-optimal learning (Section 2.5).

While the previous results show that the error rate of O( 1
k
) is optimal on worst-case instances,

some instances of our learning with unknown utilities problem might be easier than these
worst-case ones and one would expect the excess risk to be smaller for them. In this section,
we study estimators whose error adapts to hardness of the specific problem instance.

To begin with, in Proposition 2.2 we establish that the plug-in estimator with Comptron
estimates û is not optimal for all instances – it does not adapt to these easier instances.
Inspired from the robust optimization literature, we introduce a randomized estimator prob
and show that it is instance-optimal. Informally, we establish in Theorem 2.5 that for any
instance (Dx, u

∗,F) of the problem, the excess risk for prob is characterized by a local modulus
of continuity; this modulus captures how quickly the optimal decision function in class F
can change in a small neighborhood around u∗ for the distribution Dx. In Theorem 2.4, we
derive a lower bound on the local minimax excess risk and show that the local modulus is
indeed the correct instance-dependent complexity measure for this problem.

However, note that such adaptivity to the hardness of the instance comes at the cost
of query efficiency. Our estimator prob makes an exponential number O(nk) of calls to the
oracle Ok.

2.4 Binary decision-making with k-comparisons

In this section, we obtain upper and lower bounds on the excess risk for the binary prediction
problem with unknown utilities where the learner can elicit utility information using a k-
comparison oracle. In Section 2.4, we introduce algorithms which learn decision-making rules
from higher-order preference queries and obtain upper bounds on the excess risk for such
estimators. Then, in Section 2.4, we turn to the information-theoretic limits of learning from
k-queries and obtain lower bounds on the minimax risk of any estimator.

Recall from Section 2.2, our setup gives the learner access to a dataset S = {x1, . . . , xn}
comprising n points, each sampled i.i.d. from an underlying distribution Dx and to a com-
parison oracle Ok. Before proceeding to define the estimator, we introduce some notation.
For any function f ∈ F , let us denote the empirical cumulative utility with respect to utility
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function u∗ and the corresponding empirical utility maximizer as

Ûn(f ;u
∗) =

1

n

∑
i

u∗(xi, f(xi)) and fERM ∈ argmax
f∈F

Ûn(f ;u
∗) , (2.6)

where the subscript n encodes the dependence on the number of samples. If the underlying
utility u∗ were in fact known to the learner, it would have output the classifier fERM, which,
from the classical learning theory literature, is known to have favorable generalization prop-
erties [179]. For the case of unknown utilities, we extend this ERM procedure to a natural
two-stage plug-in estimator which outputs the minimizer with respect to an estimate ûk of
these utilities.

Excess-risk upper bounds for plug-in estimator

Building on the ERM estimator fERM described in equation (2.6), we design a two stage
plug-in estimator f̂k,n, where the subscript k represents the order of the comparison oracle
used to obtain the estimate.

In the first stage, we form estimates ûk of the true utility function u∗ on the sampled
datapoints S using the k-comparison oracle. The predictor f̂k,n ∈ F is then given by the
empirical utility maximizer with respect to ûk, that is,

f̂k,n ∈ argmax
f∈F

1

n

n∑
i=1

ûk(xi, f(xi)). (2.7)

Before detailing out the procedures for producing utility estimates ûk, we present our first
main result which shows that the excess risk err(f̂k,n,F ;u∗) can be upper bounded as a sum
of two terms: (i) a complexity term corresponding to the rate of uniform convergence of the
cumulative utility U(f ;u∗) over the decision class F and (ii) an estimation error term which
denotes how well the estimates ûk approximate u∗ on the sampled datapoints. Our result
measures this estimation error in terms of a data-dependent norm

∥u∥S,∞ : = sup
i∈[n]

sup
y∈Y

|u(xi, y)|. (2.8)

Recall from equation (2.6) that the function fERM is the minimizer of the empirical utility
Ûn(f ;u

∗). While the following results hold for general decision spaces Y , we later specialize
this in Proposition 2.1 for the binary prediction setup.

Theorem 2.2 (Excess-risk upper bound). Given datapoints S = {x1, . . . , xn} such that each

xi ∼ Dx, and an estimate ûk of the true utility function u∗, the plug-in estimate f̂k,n from
equation (2.7) satisfies

err(f̂k,n,F ;u∗) ≤ 2 · sup
f∈F

(
|U(f ;u∗)− Ûn(f ;u

∗)|
)
+ 2∥u∗ − ûk∥S,∞ ·

(
1

n

n∑
i=1

I[fERM(xi) ̸= f̂k,n(xi)]

)
.

(2.9)
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A few comments on Theorem 2.2 are in order. First, notice that the upper bound on the
risk err(f̂k,n,F ;u∗) is a deterministic bound comprising two terms. The uniform convergence

term captures how fast the empirical utility Ûn(f ;u
∗) converge to the population utility

U(f ;u∗) uniformly over the decision class F . Using standard bounds [21], one can show that
this term is upper bounded by the empirical Rademacher complexity of the class F on the
datapoints S, that is,

sup
f∈F

(
|U(f ;u∗)− Ûn(f ;u

∗)|
)
≤ Eε

[
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

εiu
∗(xi, f(xi))

∣∣∣∣∣
]
: = R̂n(F ◦ u∗) (2.10)

where each εi is an i.i.d. Rademacher random variable taking values {−1,+1} equiprobably.
Such complexity measures are commonly studied in the learning theory literature and one
can obtain sample complexity rates for a wide range of decision classes including parametric
decision classes and non-parametric kernel classes amongst others.

The second term in equation (2.9) is given by a product of two terms. The first part
∥u∗ − ûk∥S,∞ captures the on-sample approximation error of the estimates ûk. Notice that,
in general, the problem of estimating u∗ uniformly over the space X is infeasible since the
class U contains the set of all bounded functions on X × Y . However, the fact that we are
required to estimate the utilities u∗ only on the sampled datapoints S makes learning feasible
in our framework. The second part, 1

n

∑n
i=1 I[fERM(xi) ̸= f̂k,n(xi)] ≤ 1 the mismatch between

the predictions of fERM, obtained with complete knowledge of u∗, and of f̂k,n, obtained from
estimates ûk. Notice that whenever the function class F is correctly specified on S, that is,
there exists a function f ∈ F such that f(xi) = yi), then the predictions of f̂k,n and fERM
will coincide. This follows since the labels yi can be inferred using a 1-comparison. In such
a well-specified setup, this second term vanishes and we recover the upper bound in terms
of the uniform convergence term. Surprisingly, this exhibits that not knowing the utility u∗

affects learnability only when the function class F is misspecified.

Proof. We begin by decomposing the excess error err(f̂k,n,F ;u∗) and then handle each term
in the decomposition separately. Recall that the function fERM is the maximizer of the
empirical utility Ûn(f ;u

∗). Then, for any decision function f ∈ F , consider the error

err(f̂k,n, f ;u
∗) = U(f ;u∗)− Ûn(f ;u

∗) + Ûn(f ;u
∗)− Ûn(fERM;u

∗) + Ûn(fERM;u
∗)− Ûn(f̂k,n;u

∗)

+ Ûn(f̂k,n;u
∗)− U(f̂k,n;u

∗)

(i)

≤ 2 sup
f∈F

(
|U(f ;u∗)− Ûn(f ;u

∗)|
)
+ Ûn(fERM;u

∗)− Ûn(f̂k,n;u
∗)︸ ︷︷ ︸

Term (I)

, (2.11)

where the inequality (i) follows by noting that fERM is the maximizer of Ûn(f ;u
∗). We now
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focus our attention on Term (I) in the above expression.

Ûn(fERM;u
∗)− Ûn(f̂k,n;u

∗) = Ûn(fERM;u
∗)− Ûn(fERM; û) + Ûn(fERM; û)− Ûn(f̂k,n; û)

+ Ûn(f̂k,n; û)− Ûn(f̂k,n;u
∗)

(i)

≤ 2

n

n∑
i=1

I[fERM(xi) ̸= f̂k,n(xi)] · sup
y∈Y

|u∗(xi, y)− û(xi, y)|

≤ 2∥u∗ − û∥S,∞ ·

(
1

n

n∑
i=1

I[fERM(xi) ̸= f̂k,n(xi)]

)
,

where (i) follows by noting that f̂k,n maximizes the utility Ûn(f ; û). Plugging the bound
above in equation (2.11) completes the proof.

We now specialize the result of Theorem 2.2 to the binary prediction setup where the
label space Y = {0, 1}. Recall that for each datapoint xi, we denote the true label by
yi = argmaxy u

∗(xi, y). We now introduce the notion of utility gaps ugap(xi) which measures
the excess utility a learner gains by predicting a datapoint xi correctly relative to an incorrect
prediction. Formally, the gap ugap(xi) for datapoint xi with respect to some utility function
u ∈ U is given as

ugap(xi) : = u(xi, yi)− u(xi, ȳi) , (2.12)

where we denote the incorrect label by ȳ = 1− y. With this notation, the following propo-
sition obtains an upper bound on the excess error of plug-in estimator f̂k,n for the binary
prediction problem in terms of the estimation error in these gaps ugap(xi).

Proposition 2.1 (Upper bounds for binary prediction). Consider the binary decision making
problem with label space Y = {0, 1}. Given n datapoints {x1, . . . , xn} such that each datapoint

xi ∼ Dx, and an estimate ûk of the utility function u∗, the plug-in estimator f̂k,n from
equation (2.7) satisfies

err(f̂k,n,F ;u∗) ≤ 2 · sup
f∈F

(
|U(f ;u∗)− Û(f ;u∗)|

)
+ 2max

i
[u∗gap(xi)− ûgap(xi)] ·

(
1

n

n∑
i=1

I[fERM(xi) ̸= yi]

)
.

(2.13)

The proof of the above proposition follows similar to Theorem 2.2 and is deferred to
Appendix A.1. This specializes the result of Theorem 2.2 and shows that for the binary
prediction problem, estimating the utility gaps ugap well for each datapoint suffices

The upper bound on excess risk given by Proposition 2.1 shows that the function f̂k,n
derived from estimates ûk will have small error as long as the estimates ûgap(xi) approximate
the true utility gaps u∗

gap(xi) for each datapoint xi. Therefore, in the following sections, we
focus on procedures for obtaining the utility estimates ûgap using the k-comparison oracle.
we separate the presentation based on whether the oracle Ok provides noiseless comparisons
(ηq = 0 for all q) or whether the oracle evaluations are noisy.
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Estimating u∗
gap with noiseless oracle

In this section, we propose our algorithm for estimating the gaps u∗
gap when the k-comparison

oracle is noiseless. Recall from equation (2.5), for a query q = (x,y1,y2) comprising k feature
vectors x = (x1, . . . , xk), and two decision vectors y1 = (y1, . . . , yk) and y2 = (y′1, . . . , y

′
k),

such a noiseless oracle deterministically outputs

Ok(q = (x,y1,y2)) = I [u∗(x,y1) ≥ u∗(x,y2)] ,

where recall that u∗(x,y) =
∑

i∈[k] u
∗(xi, yi) is the sum of the utilities under u∗ for the tuple

(x,y). In the binary prediction setup, such queries allow a learner to specify a set of k
instances x and a subset Sq ⊂ x and ask the oracle “whether correctly predicting instances
in Sq has higher utility or the instances in the complement x \ Sq?”.

Recall that Proposition 2.1 shows that excess risk for the plug-in estimator can be
bounded by the worst-error |u∗

gap(xi) − ûgap(xi)| over the set of sampled datapoints S. To
obtain such estimates, we introduce Comptron in Algorithm 1 which is a coordinate-wise
variant of the classical perceptron algorithm [169]. At a high level, Comptron is an iterative
procedure which estimates the utility gaps u∗

gap(xi) for each xi relative to the largest gap

u∗
max : = max

i∈[n]
u∗
gap(xi) ≤ 1. (2.14)

At each iteration t, the queries qi,t are selcted such that ût−1
gap (x,y1) > ût−1

gap (x,y2) under the
current estimates ût−1

gap . If the oracle’s response is ri,t = 1, the estimates are consistent with
the response and it keeps the current estimate. On the other hand, if the response ri,t = 0,
the algorithm decreases its current estimate of the ith datapoint in order to be consistent
with this query. Comptron repeats the above procedure for T = log2 k − 1 timesteps and
finally outputs the estimates ûT

gap.
It is worth highlighting here that Comptron initializes all the estimates as the largest

gap, that is, û0
gap(xi) = u∗

max. Such an initialization is purely symbolic in nature and the
algorithm does not require knowledge of this value. This is because the comparison queries qi,t
allows the algorithm to compare the estimates ûgap with u∗

max and the algorithm maintains
its estimates ût

gap as a multiplicative factor of u∗
max for iterations t. Further, we can use

symbolic estimates to output the plug-in estimator since it is invariant to scaling the utility
gaps by a positive constant,

argmax
f∈F

n∑
i=1

û(xi, f(xi)) ≡ argmax
f∈F

n∑
i=1

ûgap(xi) · I[f(xi) = yi]

≡ argmax
f∈F

n∑
i=1

ûgap(xi)

u∗
max

· I[f(xi) = yi] .

The following lemma provides an upper bound on the estimation error of Comptron and
shows that the output estimates ûgap(xi) are within a factor O(u

∗
max

k
) of the true gaps u∗

gap(xi).
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Algorithm 1: Comptron: Comparison based Coordinate-Perceptron for estimating
u∗
gap

Input: Datapoints S = {x1, . . . , xn}, k-comparison oracle Ok

Initialize: Set T = log2 k − 1
Obtain yi = argmaxy u

∗(xi, y) for each i using 1-comparison.

Obtain index imax using 2-comparisons such that imax = argmaxi u
∗
gap(xi).

Set initial estimates û0
gap = [û0

gap(x1), . . . , û
0
gap(xn)] = u∗

max : = u∗
gap(ximax).

(Note that exact value of u∗
max is not required since comparison queries are relative)

for t = 1, . . . , T do
for i = 1, . . . , n do

Denote by λ = k
2u∗

max

(
ût−1
gap (xi)− u∗

max

2t

)
and query qi,t = (x,y1,y2) where

x = (xi, . . . , xi︸ ︷︷ ︸
k
2
times

, ximax , . . . , ximax︸ ︷︷ ︸
λ times

), y1 = (yi, . . . , yi︸ ︷︷ ︸
k
2
times

, 1− yimax , . . . , 1− yimax︸ ︷︷ ︸
λ times

), y2 = 1−y1.

Query oracle Ok with qi,t and receive response ri,t.

Update ût
gap(xi) = ût−1

gap (xi)− I[ri,t = 0] · u∗
max

2t
.

Output: Gap estimates ûT
gap

Lemma 2.1 (Estimation error of Algorithm 1). Given access to datapoints S = {x1, . . . , xn}
and k-comparison oracle Ok, Comptron (Algorithm 1) uses O(n log k) queries to the oracle
and produces estimates ûgap such that

max
i∈[n]

∣∣ûgap(xi)− u∗
gap(xi)

∣∣ ≤ 2u∗
max

k
. (2.15)

We defer the proof of the lemma to Appendix A.1. The proof proceed via an inductive
argument where we show that the confidence interval around u∗

gap(xi) shrinks by a factor of
1
2
in each iteration for every datapoint xi. Given the above estimation error guarantee for

Comptron, the following corollary combines these with the excess risk bounds of Proposi-
tion 2.1 to obtain an upper bound on the excess risk of f̂k,n.

Corollary 2.1. Consider the binary decision making problem with label space Y = {0, 1}.
Given n datapoints {x1, . . . , xn} such that each xi ∼ Dx, the plug-in estimate f̂k,n from
equation (2.7), when instantiated with the output of Comptron (Algorithm 1), satisfies

err(f̂k,n,F ;u∗) ≤ 2 · sup
f∈F

(
|U(f ;u∗)− Û(f ;u∗)|

)
+

2u∗
max

k
·

(
1

n

n∑
i=1

I[fERM(xi) ̸= yi]

)
.

We defer the proof of the corollary to Appendix A.1. Corollary 2.1 exhibits the advantage
of using higher-order comparisons for the learning with unknown utilities problem – as the
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order k increases, the error of the plug-in estimate decreases additively as O
(
1
k

)
. It is worth

noting here that while the higher-order comparisons allow the learner to better estimate the
underlying utilities, the problem gets harder from the side of the human expert. Indeed,
with higher values of k, the expert is required to compare utilities across k different possible
situations which can make the elicitation a harder task.

While the results in this section exhibit how the excess risk err(f̂k,n;F) varies as a function
of k, they rely on the oracle responses being noiseless. In the next section, we consider the
setup where the oracle responses can be noisy and propose a robust version of the Comptron
algorithm for learning in this scenario.

Estimating u∗
gap with noisy oracle

In contrast to the deterministic noiseless oracle of the previous section, here, we consider
learning with unkown utilities when the oracle Ok can output noisy responses to each query.
Recall from equation (2.5), for any query q, the noisy k-comparison oracle the correct re-
sponse with probability 1 − ηq and flips the response with probability ηq for some value of
ηq < 1

2
. While we allow this error probability to vary across different queries, we assume

that this error is bounded uniformly across all queries by some constant η < 1
2
.

Assumption 2.1. For the noisy k-comparison oracle described in equation (2.5), we have
that ηq ≤ η < 1

2
for all queries q.

From an algorithmic perspective, it is well known that the perceptron algorithm itself is
not noise-stable and can oscillate if there are datapoints x which have noisy labels. In order
to overcome this limitation, several noise-robust perceptron variants have been proposed in
the literature; see [117] for an extensive review.

We build on this line of work and present Rob-Comptron (Algorithm 2), a noise-robust
variant of the deterministic Comptron algorithm. The main difference is the presence of an

additional inner-loop with index j which repeatedly queries qi,t for J = Õ
(

1
(1−2η)2

)
times.

In each iteration, the update is again a coordinate-wise perceptron update which matches
the prediction of the current estimate with the average of the oracle responses. Such an
averaging has been previously used in the context of learning halfspaces from noisy data
both in a passive [43] and active [216] framework.

The following lemma, whose proof we defer to Appendix A.1, provides an upper bound
on the estimation error of the gap estimates produced by Rob-Comptron.

Lemma 2.2 (Estimation error of Algorithm 2). Given access to datapoints S = {x1, . . . , xn}
and noisy k-comparison oracle Ok satisfying Assumption 2.1 with parameter η, Rob-Comptron

(Algorithm 2) uses O
(

n
(1−2η)2

· log k · log n log k
δ

)
queries and produces estimates ûgap such that

max
i∈[n]

∣∣ûgap(xi)− u∗
gap(xi)

∣∣ ≤ 2u∗
max

k
, (2.16)

with probability at least 1− δ.
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Algorithm 2: Rob-Comptron: Robust Comptron for estimating u∗
gap with noisy

oracle
Input: Datapoints S = {x1, . . . , xn}, k-comparison oracle Ok, noise level η,

confidence δ
Initialize: T = log2 k − 1, J = 8

(1−2η)2
log
(
nT
δ

)
Obtain yi = argmaxy u

∗(xi, y) for each i using 1-comparison.

Obtain index imax using 2-comparisons such that imax = argmaxi u
∗
gap(xi).

Set initial estimates û0
gap = [û0

gap(x1), . . . , û
0
gap(xn)] = u∗

max symbolically

for t = 1, . . . , T do
for i = 1, . . . , n do

Denote by λ = k
2u∗

max

(
ût−1
gap (xi)− u∗

max

2t

)
Set query qi,t = (x,y1,y2) where

x = (xi, . . . , xi︸ ︷︷ ︸
k
2
times

, ximax , . . . , ximax︸ ︷︷ ︸
λ times

), y1 = (yi, . . . , yi︸ ︷︷ ︸
k
2
times

, 1− yimax , . . . , 1− yimax︸ ︷︷ ︸
λ times

), y2 = 1−y1.

for j = 1, . . . , J do
Query oracle Ok with qi,t and receive response ri,j,t.

Update ût
gap(xi) = ût−1

gap (xi)− I[ 1
J

∑
j ri,j,t <

1
2
] · u∗

max

2t
.

Output: Gap estimates ûT
gap

In comparison to Comptron which requires O(n log k) queries to the comparison oracle,
the robust variant Rob-Comptron requires a fraction 1

(1−2η)2
more queries to achieve a similar

estimation error. Such an increase in query complexity is typical of learning with such noisy
oracles in the binary classification setup [17, 19, 61, 216].

Similar to Corollary 2.1 in the previous section, we can combine the above high-probability
bound on the estimation error to obtain a bound on the excess risk which scales as 1

k
with

the order k of the comparison oracle.

Corollary 2.2. Consider the binary decision making problem with label space Y = {0, 1}.
Given n datapoints {x1, . . . , xn} such that each xi ∼ Dx, the plug-in estimate f̂k,n from
equation (2.7), when instantiated with the output of Comptron (Algorithm 1), satisfies

err(f̂k,n,F ;u∗) ≤ 2 · sup
f∈F

(
|U(f ;u∗)− Û(f ;u∗)|

)
+

2u∗
max

k
·

(
1

n

n∑
i=1

I[fERM(xi) ̸= yi]

)
.

with probability at least 1− δ.

We omit the proof of this corollary since it essentially follows the same steps as that for
Corollary 2.1. This corollary establishes that by increasing the query complexity by a factor
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of O (1/(1−2η)2), one can recover the same additive 1
k
excess risk bound of the deterministic

setup. Combined, Corollaries 2.1 and 2.2 establish the trade-offs in the reduction of the
excess risk while eliciting more complex information about the underlying utility u∗ through
the k-comparison oracle.

Information-theoretic lower bounds

In the previous section, we studied the learning with unknown utility problem from an
algorithmic perspective and showed that the plug-in estimator with Comptron estimates û
achieve an excess risk bound which scales as O( 1

k
) with the order k of the comparison. In

this section, we ask whether such a scaling of the error term is optimal and study this lower
bound question from an information-theoretic perspective.

Recall from Theorem 2.2 that the excess risk decomposes into two terms: (i) a uniform
convergence term for the decision class F with respect to utility function u∗ and (ii) an
estimation error term corresponding to how well ûk approximates u∗ on the sampled data-
points. When the underlying utility function u∗ is known, classical results from the learning
theory literature the uniform convergence complexity term is in general unavoidable [see 178,
Theorem 6.8]. With this, we take the infinite-data limit, where the learner is assumed to
have access to the distribution Dx, and study whether the excess error of O( 1

k
) is necessary.

Our notion of minimax risk is based on the subset of utility functions which cannot
be distinguished by any learner with access to a k-comparison oracle. Formally, given any
oracle Ok(· ;u∗), where we have made the dependence on the utility u∗ explicit, we denote
by Uk,u∗ the subset of utility functions in the class U which are consistent with the responses
of Ok(· ;u∗). With this, we define the information-theoretic minimax risk Mk(F ,Dx) with
respect to the function class F and distribution Dx as

Mk(F ,Dx) : = sup
Ok(· ;u∗)

inf
p∈∆F

sup
u∈Uk,u∗

Ef∼p [err(f,F ;u)] , (2.17)

where the infimum is taken over all procedures which take as input the distribution Dx

over the instances and access to a k-comparison oracle, and output a possibly randomized
estimate p ∈ ∆F . The above notion of minimax risk can be viewed as a three-stage game
between the learner and the environment. The sequence of supremum and infimum depicts
the order in which information is revealed in this game. The environment first selects a
k-query oracle O(· ;u∗) with underlying utility u∗. The learner is then provided access to
the underlying distribution Dx, function class F and the oracle O(· ;u∗) based on which it
outputs a possibly randomized decision function given by p ∈ ∆F . The environment is then
allowed to select the worst-case utility u such that it is consistent with the k-oracle O(· ;u∗)
and the learner is evaluated in expectation over this chosen utility. We call this the minimax
risk of learning with respect to class F and distribution Dx.

Our next main result shows that there exist instances of the binary prediction problem
(F ,Dx) such that the minimax risk Mk(F ,Dx) is lower bounded by 1

k
for any k ≥ 2 up

to some universal constants. Observe that this matches the corresponding upper bounds
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obtained in Corollaries 2.1 and 2.2 exhibiting that the proposed plug-in estimator in equa-
tion (2.7) with Comptron (Rob-Comptron for noisy oracle) utilities is indeed minimax opti-
mal for the binary prediction setup.

Theorem 2.3. There exists a universal constant c > 0 such that for any k ≥ 2, there exist
a binary prediction problem instance (F ,Dx) such that

Mk(F ,Dx) ≥
c

k
.

A few comments on Theorem 2.3 are in order. First, the above result shows a family of
lower bounds for our learning with unknown utilities framework – one for each value of the
order k. Specifically, it shows that for every k ≥ 2, there exists a worst-case instance such
that any algorithm will incur an error of Ω( 1

k
). Compare this with the upper bounds on excess

risk from the previous section. In the limit of infinite data, Corollaries 2.1 and 2.2 exhibit
that the excess risk err(f̂k,n,F ;u∗) = O( 1

k
) for the plug-in estimator f̂k,n. This establishes

that the plug-in estimator with Comptron and Rob-Comptron utility estimates is indeed
minimax optimal.

Proof. In order to establish a lower bound on the minimax risk Mk, we will construct two
utility functions u1, u2 ∈ U such that the k-comparison oracle has identical responses for
both these utility functions. For the purpose of our construction, we will consider noiseless
oracle; the problem only becomes harder for the learner if the oracle responses are noisy.
Given these two utility functions, we next show that their maximizers f1 and f2 are different
for some function class F . We then combine these two insights to obtain the final minimax
bound.

For our lower bound construction, we will focus on a setup where the features are one
dimensional with X = R and the linear decision function class

Flin = {fa | fa(x) = sign(ax), a ∈ [−1, 1]} .

Recall that for any point x, we represent by ugap(x) = u(x, yx) − u(x, ȳx) the utility gain
corresponding to the function u. Before constructing the explicit example, we present a
technical lemma which highlights a limitation of a k-comparison oracle – it establishes that
a k-oracle will not be able to distinguish utility functions for which the utility gaps are in
the range (1− 1

k
, 1).

Lemma 2.3. Consider any utility functions u1, u2 ∈ U . Let datapoints x have utility gain
ui
gap(x) for i = {1, 2}. For any two points x1, x2 such that

u1
gap(x1) = u2

gap(x1) = ugap(x1) and

(
1− 1

k

)
· ugap(x1) ≤ ui

gap(x2) ≤ ugap(x1) ,

the oracle responses for any query q = (x,y1,y2) comprising points x1 and x2 are identical
for u∗ = u1 or u∗ = u2.
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We defer the proof of the above lemma to Appendix A.1. Taking this as given, we pro-
ceed with our lower bound construction.

Utility functions u1 and u2. Our construction considers two datapoints x+ = +1 and
x− = −1 and two utility functions u and ũ satisfying

u1(x+, 1) > u1(x+, 0) and u1(x−, 1) > u1(x−, 0) ,

u2(x+, 1) > u2(x+, 0) and u2(x−, 1) > u2(x−, 0).

Observe that under these utilities, any function fa ∈ Flin can make a correct decision for
either point x+ or point x− but not for both simultaneously. Given these datapoints, the
two utility functions are given by

u1(x+, 1) = 1, u1(x−, 1) = 1− γ1 where γ1 =
1

2(3k + 1)

u2(x+, 1) = 1, u2(x−, 1) = 1− γ2 where γ2 =
2

(3k + 1)
,

and ui(x, 0) = 0 for both i = {1, 2}. Observe that both γ1, γ2 have been set to satisfy the
conditions of Lemma 2.3, that is,(

1− 1

k

)
· ugap(x+) ≤ ui

gap(x−) ≤ ugap(x+) for i = {1, 2}.

Distribution Dx. For any k > 2, consider the distribution Dx over the points {x+, x−}
such that

Pr(x = x+) =
3k

6k + 1
and Pr(x = x−) =

3k + 1

6k + 1
.

By Lemma 2.3, we have that using the k-comparison oracle, no learner can distinguish be-
tween the utility functions u1 and u2 on the distribution Dx. Further, recall that any classifier
fa ∈ Flin can either predict x+ or x− correctly. We now obtain a bound on the excess risk
err(fa,F ;u) for both these cases separately.

Case 1: fa(x+) = 1. In this case, the utility gap is maximized by setting the utility u = u1

in the minimax risk. The corresponding excess risk is given by

err(fa,F ;u1) =
(3k + 1)(1− γ1)

6k + 1
− 3k

6k + 1
=

1

2(6k + 1)
. (2.18)

Case 2: fa(x−) = 1. In this case, the utility gap is maximized by setting the utility u = u2

and the excess risk is given by

err(fa,F ;u2) =
3k

6k + 1
− (3k + 1)(1− γ2)

6k + 1
=

1

(6k + 1)
. (2.19)
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Noting that any predictor f̂ will output a function corresponding to one of the two cases
above and combining equations (2.18) and (2.19) establishes the desired claim.

While the information theoretic results of this section showed that the plug-in estimator
is minimax optimal, the next section focuses on whether this estimator is able to adapt to
easier problem instances – specifically, whether our estimation procedures Comptron and
Rob-Comptron are optimal for every problem instance? We answer this in the negative and
introduce a new estimator which is instance optimal. However, such an adaptivity to easier
instances comes at the cost of an exponential query complexity.

2.5 Instance-optimal guarantees for binary prediction

In the previous section, we proposed query-efficient algorithms, Comptron and Rob-Comptron,
for learning a function f̂k,n with small excess risk using only Õ(n log k) queries to the k-
comparison oracle. Further, the upper bounds in Corollaries 2.1 and 2.2 along with the
lower bound of Theorem 2.3 establish that our proposed algorithms are indeed minimax
optimal over the class of utility functions U . Given this, it is natural to ask whether our
proposed algorithms are instance wise-optimal, that is, do they achieve the best possible
excess-risk bounds for all u∗ ∈ U?

To simplify our presentation, we study this question at the population level,5 where we
assume that the learner has access to the underlying distribution Dx. This allows us to
focus on the excess risk as a function of the order k of the comparison oracle and ignore
the uniform convergence term. We also restrict our attention to the deterministic noiseless
oracle since one can reduce the noisy oracle to the noiseless oracle by using the averaging
technique presented in Section 2.4.

The following proposition shows that the plug-in estimator with Comptron utilities are
not instance-optimal, that is, it does not adapt to the hardness of the learning with unknown
utilities problem instance. Specifically, it constructs a problem instance (F ,Dx) with a
noiseless oracle and shows that the estimate6 f̂k from equation (2.7) with Comptron utility
estimates has an excess risk of 1

k
while there exists an estimator, which uses all k-queries

and is able to achieve zero excess risk.
Recall that for any utility u∗ ∈ U , we denote by Uk,u∗ the subset of utility functions in

the class U which are indistinguishable from u∗ under the k-comparison oracle O(· ;u∗).

Proposition 2.2 (Plug-in with Comptron estimates is not instance-optimal). For every
k > 2, there exists an binary prediction instance (F ,Dx) along with an oracle Ok such that

5Our analysis could be extended to the finite sample setup using the bound obtained in Theorem 2.2.
6Since we are working at the population level, we have dropped the subscript n from f̂k,n
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a) The error of the plug-in estimate f̂k from equation (2.7) with estimated utilities ûk from
Comptron (Algorithm 1) is non-zero, that is,

err(f̂k,F ;u∗) =
1

k
.

b) There exists an optimal predictor f̃ with zero excess-risk, that is,

sup
u∈Uk,u∗

err(f̃ ,F ;u) = 0.

We make a few remarks about the proposition. While the first part of the proposition
shows that the excess risk err(f̂k,F ;u∗) = 1

k
, the second part makes a stronger claim about

the performance of f̃ on all utilities u ∈ Uk,u∗ . This shows that the predictor f̃ performs well
when evaluated on an entire neighborhood around the true utility u∗. We defer the proof of
the proposition to Appendix A.2.

Having established that our estimators from the previous section are not adaptive, we
introduce a notion of local minimax risk and study estimators which are instance-optimal.
We begin by precisely defining this notion of instance-wise minimax optimality. Recall from
Section 2.4, our notion of minimax risk Mk(F ,Dx) was a worst-case notion – the minimax
risk was defined as a supremum over all oracles Ok(· ;u∗). We extend this global minimax
notion to a local minimax one. In particular, for any u∗ ∈ U , we define the local minimax
risk around u∗ as

Mk(F ,Dx;u
∗) : = inf

f̂
sup

u∈U|u∗

[
err(f̂ ,F ;u)

]
, (2.20)

where the infimum is again over the set of all estimators which output a function f̂ ∈ F
given access to distribution Dx and k-comparison oracle Ok. Observe that this local notion
of minimax risk concerns the performance of an algorithm f̂ around a specific instance u∗ as
compared to the worst-case instance.

For any utility function u ∈ U , we define its population maximizer fu ∈ argmaxf∈F U(f ;u).
With this notation, our next theorem provides a lower bound on this local minimax risk in
terms of a local modulus of continuity with respect to the set Uk,u∗ .

Theorem 2.4 (Local minimax lower bound). For any distribution Dx over feature space
X , utility function u∗ ∈ U , function class F and order k of the comparison oracle, the local
minimax risk

Mk(F ,Dx;u
∗) ≥ 1

2
· sup
u1,u2∈ Uk,u∗

(
U(fu1 ;u1)− U(fu1+u2

2
;u1)

)
. (2.21)
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Proof. Consider any two utility functions u1, u2 ∈ Uk,u∗ and let ū = u1+u2

2
. We can then

lower bound the minimax risk as

Mk(F ,Dx;u
∗) ≥ inf

f∈F

(
1

2
err(f,F ;u1) +

1

2
err(f,F ;u2)

)
=

1

2
err(fū,F ;u1) +

1

2
err(fū,F ;u2)

≥ 1

2
(U(fu1 ;u1)− U(fū;u1)) ,

where the last equality follows by noting that err(fū,F ;u2) ≥ 0. Since the above holds for
any choice of u1, u2, the desired bound follows by taking a supremum over these values.

A few comments on Theorem 2.4 are in order. The theorem establishes that the local
minimax risk Mk(F ,Dx) is lower bounded by a local modulus of continuity,

sup
u1,u2∈ Uk,u∗

(
U(fu1 ;u1)− U(fu1+u2

2
;u1)

)
, (2.22)

which captures the worst-case variation in the performance of utility maximizers of utility
in a neighborhood of u∗. For any two utilities u1, u2 ∈ Uk,u∗ , it measures the performance
drop in the utility of a learner uses the maximizer fu1+u2

2
in place of fu1 when the underlying

utility is u1.
Given this lower bound on the local minimax risk Mk(F ,Dx), it is natural to ask whether

this local modulus of continuity exactly captures the instance-specific hardness of the prob-
lem. To this end, our next result answers this in the affirmative. In particular, it shows that
for any u∗, the randomized minimax robust estimator prob ∈ ∆F , given by

prob ∈ argmin
p∈∆F

sup
u∈Uk,u∗

Ef∼p[err(f,F ;u)], (2.23)

(nearly-)obtains the same excess-risk bound as that given by the lower bound in Theorem 2.4.

Theorem 2.5 (Upper bounds for prob). For any distribution Dx over feature space X , utility
function u∗ ∈ U and function class F , the expected excess risk of the randomized estimator
given by the distribution prob ∈ ∆F is

E[err(prob,F ;u∗)] = sup
pu

(Eu′∼pu [U(fu′ ;u′)− U(fpu ;u
′)])

≤ sup
u1,u2∈ Uk,u∗

(U(fu1 ;u1)− U(fu2 ;u1)) , (2.24)

where the distribution pu ∈ ∆Uk,u∗ is over the space of utility functions consistent with u∗.

We defer the proof of Theorem 2.5 to Appendix A.2. Compared with the lower bound
of Theorem 2.4, the bound in (2.24) shows that the local minimax risk can indeed be upper
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bounded by a similar local modulus of continuity. Observe that the while the lower bound
evaluates the performance loss of the maximizer fu1+u2

2
, the upper bound is evaluated on

fu2 . While the minimax estimator prob in equation (2.23) is defined at the population level,
we can naturally extend it to the finite sample regime as

p̂rob,n ∈ argmin
p∈∆F

sup
u∈Ûk,u∗

Ef∼p[Û(fu;u)− Û(f ;u)] (2.25)

where the class of utilities Ûk,u∗ represents the set of all n-dimensional vectors in [0, 1]n which
are consistent with responses to all k-queries on the set of sampled datapoints S. Using a
similar analysis as in Theorem 2.2, one can then upper bound the excess risk of this estimator
in terms of the local modulus on the dataset S and an additional uniform convergence term.

In comparison to the Comptron procedure which uses O(n log k) queries to the compari-
son oracle for estimating utilities, the estimator p̂rob,n uses O(nk) queries to construct the set

Ûk,u∗ . Thus, while this estimator adapts to the problem hardness, such an adaptation comes
at the cost of an exponential increase in query complexity. Achieving instance-optimality by
using fewer queries is an interesting question for future research.
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Chapter 3

Learning with misspecified human
models

3.1 Introduction

The expanding interest in the area of reward learning stems from the concern that it is
difficult or even impossible to specify what we actually want AI agents to optimize when it
comes to increasingly complex, real-world tasks [227, 148]. At the core of reward learning is
the idea that human behavior serves as evidence about the underlying objective. Therefore,
the fundamental assumption we are making when pursuing research in this area is that by
modeling the link between human behavior and the desired objective, we can draw useful
inferences about the latter from the former.

Research on inferring rewards typically uses noisy-rationality as a model for human be-
havior: the human will take higher value actions with higher probability. This has its roots
in mathematical psychology and economics with Luce’s Axiom of Choice [137], which later
became the Luce-Shephard choice rule [138]. It has enjoyed great success in a variety of
reward inference applications [225, 206, 215], but researchers have also started to come up
against its limitations [165][cite here work on inferring beta?]. This is not surprising, given
decades of research in behavioral economics that has identified a deluge of systematic biases
people have when making decisions on how to act, like myopia/hyperbolic discounting [95],
optimism bias [182], prospect theory [114], and many more [193, 65]. These and others
end up creeping into the reward learning tasks AI researchers are interested in. For in-
stance, in shared autonomy, a human operating a robotic arm to grasp objects may behave
suboptimally due to being unfamiliar with the control interface or the robot’s dynamics.

Recent work in reward learning attempts to go beyond noisy rationality and consider
more accurate models of human behavior, by for instance looking at biases as variations on
the Bellman update [48], modeling the human’s false beliefs [165] or learning their suboptimal
perception process [166]. And while we might be getting closer, we will realistically never
have a perfect model of human behavior.
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This raises an obvious question: Does the human model need to be perfect in order for
reward inference to be successful? On the one hand, if small errors in the model can lead
to catastrophic error in inference, the entire framework of reward learning seems ill-fated,
especially as it applies to value alignment: we will never have perfect models, and we will
therefore never have guarantees that the agent does not do something catastrophically bad
with respect to what people actually value. On the other hand, if we can show that as our
models improve, we have a guarantee that reward accuracy also improves, then there is hope:
yes, modeling human behavior is difficult, but at least we know that as we get closer, our AI
agents will be more and more aligned with us.

The main goal of this work is to study whether we can bound the reward inference
error by some function of the distance between the assumed and true human model. We
study this question both theoretically and empirically. Our first result is a negative answer:
we show that given a finite dataset of demonstrations, it is possible to hypothesize a true
human model that generated the dataset and is ”close” to the assumed model, but results
in arbitrarily large error in the reward we would infer via maximum likelihood estimation
(MLE). This unfortunately holds for a very strong notion of closeness, where the assumed
model needs to be close to the true one across every possible reward and every possible state.
However, we also find reason for hope. We identify mild assumptions on the true human
behavior, under which we can actually bound the reward inference error linearly by the
error of the human model. Thus, if these assumptions hold, refining the human model will
monotonically improve the accuracy of the learned reward. We also show how this bound
simplifies for particular biases like false internal dynamics or myopia.

Empirically, we validate our theoretical conclusions on both diagnostic gridworld do-
mains [85], as well as the Lunar Lander game, which involves continuous control over a
continuous state space. First, we verify that under various simulated biases, when the con-
ditions on the human model are likely to be satisfied, small divergences in human models
do not lead to large reward errors. We also demonstrate the same finding when the bias is
grounded by real human demonstration data. Overall, our results suggest an optimistic per-
spective on the framework of reward learning, and that efforts in improving human models
will further enhance the quality of the inferred rewards.

Related Work

Inverse reinforcement learning (IRL) aims to use expert demonstrations, often from a human,
to infer a reward function [151, 225]. Maximum-entropy (MaxEnt) IRL is a popular IRL
framework that models the demonstrator as noisily optimal, maximizing reward while also
randomising actions as much as possible [225, 224]. This is equivalent to modeling humans
as Boltzmann rational. MaxEnt IRL is preferred in practice over Bayesian IRL [164], which
learns a posterior over reward functions rather than a point estimate, due to better scal-
ing in high-dimensional environments [215]. More recently, Guided Cost Learning [75] and
Adversarial IRL [83] learn reward functions more robust to environment changes, but build
off similar modeling assumptions as MaxEnt IRL. Gleave and Toyer [91] connected MaxEnt
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IRL to maximum likelihood estimation (MLE), which is the framework that we consider in
this work. One of the challenges with IRL is that rewards are not always uniquely identified
from expert demonstrations [45, 118]. Since identifiability is orthogonal to the main message
of our work–sensitivity to misspecified human models–we assume that the dataset avoids
this ambiguity.

Recent IRL algorithms attempt to account for possible irrationalities in the expert [73,
165, 177]. Reddy, Dragan, and Levine [165] consider when experts behave according to an
internal dynamics, and show that explicitly learning these dynamics improves accuracy of the
learned reward. Shah et al. [177] propose learning general biases using demonstrations across
similar tasks, but conclude that doing so without prior knowledge is difficult. Finally, Chan,
Critch, and Dragan [48] show that knowing the type of irrationality the expert exhibits can
improve reward inference over even an optimal expert. In this work, we do not assume the
bias can be uncovered, but rather analyze how sensitive reward inference is to such biases.

More generally, reward learning is a specific instantiation of an inverse problem, which
is well-studied in existing literature. In the framework of Bayesian inverse problems, prior
work has analyzed how misspecified likelihood models affect the accuracy of the inferred
quantity when performing Bayesian inference. Owhadi, Scovel, and Sullivan [155] showed
that two similar models can lead to completely opposite inference of the desired quantity.
Meanwhile, Sprungk [184] showed inference is stable under a different measure of distance
between models. In this work, we also derive both instability and stability results, but
consider a different problem of reward learning using MLE.

3.2 Problem formulation

Reward parameters. We consider Markov decision processes (MDP), which are defined
by a tuple (S,A, P, r, γ). Here, S,A represent state and action spaces, P (s′|s, a) and r(s, a)
represent the dynamics and reward function, and γ ∈ (0, 1) represents the discount factor.
In this work, we are interested in the setting where the reward function r is unknown and
needs to be inferred by a learner. We assume rewards are bounded |r(s, a)| ≤ Rmax. We
assume that the reward can be parameterized by reward function parameters θ ∈ Θ. We
denote by r(·; θ) the reward function with θ as parameters.
True vs. assumed human policy. Instead of having access to the reward, we observe the
behavior of an “expert” demonstrator. Let π∗ : Θ × S → ∆(A) be the reward-conditioned
demonstrator policy, and D = {(st, at)}nt=1 be a dataset of demonstrations provided to the
learner, sampled from π∗. We use (s, a) ∼ wπ to denote that observations generated by
policy π, where wπ denotes the discounted stationary distribution. We shorthand wπ∗

as
w∗. Finally, let π̃ : Θ × S → ∆(A) be the model that the learner assumes generated the
dataset; in practice, this is often the Boltzmann rational policy [225], but we can expect that
to change as research in human models evolves.
Reward inference using the assumed policy. Many popular algorithms in inverse
reinforcement learning (IRL) [225, 224] infer the reward function parameters via maximum-
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likelihood estimation (MLE). This is because unlike Bayesian IRL methods that learn a
posterior over rewards, such MLE methods are shown to scale to high-dimensional environ-
ments [215]. Using a dataset D, the learner would estimate parameters

θ̃ = argmin
θ

1

n

n∑
t=1

− log π̃(at | st; θ) := argmin
θ

L(θ; π̃,D) . (3.1)

Let θ∗ be the true reward function parameters. Though θ∗ cannot always uniquely de-
termined in general [45, 118], for simplicity, we make the following assumption that θ∗ is
identifiable.

Assumption 3.1. There exists a unique θ∗ satisfying θ∗ = argminθ L(θ; π
∗,D).

Though Assumption 3.1 is rather strong, we make it only because we view identifiability
as orthogonal to the subject of our work–sensitivity to misspecified models.
Goal: effect of error in the model on the error in the inferred reward. The goal
of our paper is to answer whether we can bound the distance between the inferred reward
and the true reward, dθ(θ

∗, θ̃), as a function of the distance between the assumed human
model and the true human policy, dπ(π

∗, π̃), for some useful notions of distance. If so, then
we know that more accurate policies will monotonically improve the fidelity of the learned
rewards. We discuss our choice of distances below.
Reward inference error. A majority of existing work in reward learning ultimately mea-
sures the performance of the policy optimized over the inferred reward [151, 225]. However,
there are two issues with using this policy based distance metric: (1) we do not necessarily
know what environments to evaluate on, as they could have different start distributions or
dynamics than the training environment, and, (2) it is much difficult to disentangle errors
in the inferred reward from suboptimality in the training of the policy. For these reasons,
we investigate a more straight-forward distance metric, specifically the distance between the
inferred and true parameters dθ(θ

∗, θ̃) = ∥θ̃ − θ∗∥22
Human model error. Since policies are probability distributions, we can measure error
in the human model as the KL-divergence between the model and demonstrator policies.
We consider two different instatiations of policy divergence. The first is a worst-case policy
divergence that takes the supremum over all reward parameters and states:

dwcπ (π∗, π̃) = sup
θ∈Θ

sup
s∈S

DKL(π
∗(· | s; θ)||π̃(· | s; θ)) . (3.2)

Alternatively, we consider a weaker–potentially more practical–divergence that is only over
the true reward parameters θ∗ and in expectation over states, which we dub the weighted
policy divergence:

dwπ (π
∗, π̃) = Es∼w∗ [DKL(π

∗(· | s; θ∗) || π̃(· | s; θ∗))] . (3.3)

The weighted policy divergence only looks at the states visited under the true human behav-
ioral policy π∗ as compared to the worst case metric in eq. (3.2) which compares the policies
on all states and rewards.
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3.3 Worst-case instability of inference

We begin our theoretical analysis by exhibiting a negative result. We prove that even under
the worst-case policy divergence from eq. (3.2), a small difference in the assumed policies
dwcπ (π∗, π) < ε can lead to a large inference error dθ(θ

∗, θ̃). Note that for our lower bound
construction, we use the much stronger notion of worst-case policy divergence and our the-
orem shows that despite the two policies being close on each state and reward pair, the
inference procedure can be extremely unstable and lead to large errors.

Theorem 3.1. There exists an MDP M such that for any policy error ε > 0, assumed
model π̃, and dataset D, there exists a demonstrator policy π∗ that generates D such that the
worst-case policy divergence satisfies dwcπ (π∗, π̃) < ε, and the reward inference error

∥θ̃ − θ∗∥22 >
1

2
sup

θ,θ′∈Θ
∥θ − θ′∥22 .

A few comments on the theorem are in order. First, the theorem shows that there exists
worst case MDPs such that even a small perturbation in the assumed human model can
lead to large inference error – the inference error will be lower bounded by half the range of
possible reward parameters. Second, note that the theorem works for an arbitrarily small
perturbation ε > 0 for which we construct the MDP M with a continuous action space.
Additionally, observe that the theorem holds true for any observed dataset D. We are able
to prove such a strong result by perturbing the policy π∗ on only the observed state-action
pairs in the dataset. We defer the proof of the theorem to Appendix B.1 but provide an
illustrative example below that captures the key essence of the proof.
Illustrative example: Let us consider a stochastic bandit with continuous actions A ∈
(0, 1). Since bandits consist of a single, stationary state, we drop dependence on state in
all quantities. The reward for choosing action a ∈ A is r(a; θ) = aθ(1 − a)1−θ , for some
parameter θ ∈ (0, 1). When θ is close to 0, the reward is higher for actions close to 0, and
vice-versa when θ is close to 1.

For simplicity, let us only consider a dataset of a single action a1. Let us consider a
Boltzmann rational policy as the assumed model, namely π̃(a; θ) ∝ exp(r(a; θ)) and have
the demonstrator policy π∗ be an adversarial perturbation of π̃ that overestimates the reward
of a1:

π∗(a; θ) ∝

{
exp(r(a; θ))

(
1
{
a ̸∈ (a1 − δ

2 , a1 +
δ
2)
}
+ 109 1

{
a ∈ (a1 − δ

2 , a1 +
δ
2)
})

if θ < 0.001

exp(r(a; θ)) otherwise ,

for some δ ∈ (0, 1). The interpretation of this is that the human is believed to be noisily
optimal; however, the human actually overestimates the value of an infinitesimal region
centered at action a1 only if θ is close to 0. Note that dwcπ (π∗, π̃) < cδ for some constant c, so
we can choose δ such that the two policies are “close” to each other. When a1 = 1, we will
infer θ̃ ≈ 1; however, θ∗ ≈ 0, leading to reward inference error equal to the range of reward
parameters.
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3.4 Stability under log-concavity

Theorem 3.1 paints a pessimistic picture on the feasibility of reward inference from human
demonstrations. In this section, we show that under reasonable assumptions on the true
policy we can indeed obtain a positive stability result wherein we can upper bound the
reward inference error by a linear function of the weighted policy error. Our analysis requires
the following log-concavity assumption on the the true policy π∗.

Assumption 3.2. The true and model policies π∗, π̃ are strongly log-concave with respect
to reward parameters θ ∈ Θ. Formally, there exists constant c > 0 such that for any
s ∈ S, a ∈ A, π∗ satisfies

log π∗(a | s; θ′) ≤ log π∗(a | s; θ) +∇θ log π
∗(a | s; θ)⊤(θ − θ′)− c

2
∥θ − θ′∥22 ,

and analogously for π̃.
The adversarial construction of demonstrator policy π∗ in deriving Theorem 3.1 violate

the above log-concavity assumption as they involve drastic perturbations of the actions that
we happened to observe, and reward parameters that deviate from the inferred parameters.
Intuition. We know that log-concavity is violated by unnatural, adversarial constructions,
but, when does log-concavity always hold outside of such contrived examples?

Figure 3.1. Simple navigation environ-
ment where a near optimal policy violates
Assumption 3.2.

Intuitively, we notice that log-concavity
holds only if, as the reward parameter in-
creases, an action that has become less pre-
ferred cannot become more preferred in the
future. This appears to be a natural prop-
erty of many policies; however, we show that
there are simple problems where this is vi-
olated. In Figure 3.1 (left), we present a
simple navigation example where Assump-
tion 3.2 is violated. The environment is a
3×3 gridworld with deterministic transitions
and discount γ = 1. Let s be the center cell,
and a be going up. In Figure 3.1 (right), we show that a natural policy that chooses a
according to π(a | s; θ) ∝ exp(max(θ, 10− θ)) violates log-concavity. The reason is that a is
optimal for θ ∈ [0, 4] ∪ [6, 10] but not in between.

Under Assumption 3.2, we can show that the reward inference error can be bounded
linearly by weighted policy divergence. We state the formal result below, and defer its proof
to Appendix B.1.

Theorem 3.2. Under Assumption 3.2 with parameter c > 0, for any policies π∗, π̃ with
corresponding MLE reward parameters θ̃, θ∗, the reward inference error dθ(θ

∗, θ̃) is bounded
as

ED∼π∗

[
∥θ̃ − θ∗∥22

]
≤ 2

c
Es∼d∗ [DKL(π

∗(· | s; θ∗) || π̃(· | s; θ∗))] .
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Theorem 3.2 differs from Theorem 3.1 in two important ways: (1) the reward inference
error is in expectation over sampled datasets, and (2) the policy divergence is the weighted
policy divergence. Both these properties are desirable, as we are agnostic to tail events due
to randomness in dataset sampling, and we use the weaker of the two notions of divergence
in the upper bound.

Instantiating the upper bound for specific biases

Theorem 3.2 shows that the reward inference error can be bounded by the expected KL-
divergence between the assumed and true policies. To understand the result in more detail,
we now consider different systematic biases that could appear in human behavior, and show
how they affect the weighted policy divergence.

We parameterize both the true and assumed policies as acting noisily optimal with re-
spect to their own “Q-functions”, i.e., π∗(a | s; θ) ∝ exp(Q∗(s, a; θ)) and π̃(a | s; θ) ∝
exp(Q̃(s, a; θ)). Importantly, note that even though this parameterization is used in MaxEnt
IRL with the soft Q-values [225, 224], neither Q∗ nor Q̃ need necessarily be optimal – in
this analysis, we will use Q̃, the human model, as the soft Q-value function, and show what
happens when the true model coming from Q∗ suffers from certain biases. Following prior
work [165, 48], we examine biases that can be modelled as deviations from the Bellman
update. For a tabular MDP M with |S| , |A| < ∞, the soft Bellman update satisfies:

Q(s, a; θ) := r(s, a; θ) + γ
∑
s′

P (s′ | s, a)V (s; θ) , V (s; θ) := log

(∑
a∈A

exp(Q(s, a; θ)

)
.

(3.4)

Formally, we assume that the human demonstrator’s Q-values Q∗(s, a; θ) satisfy (3.4) but
under a biased MDP M∗. We consider two specific sources of bias in the MDP: (1) the
transition model P and (2) the discounting factor γ. By parameterizing the biases in this
way, we now have an intuitive notion of the degree of bias, and can study how the magnitude
of the bias affects the policy divergence in (3.3). For brevity, we simply state the results as
corollaries and defer proofs to Appendix B.1.
Internal dynamics. We first consider irrationalities that result from human demonstrators
having an internal dynamics model P ∗ that is misspecified. For example, studies in cognitive
science have shown that humans tend to underestimate the effects of inertia in projectile
motion [46]. Similar studies have also shown that humans overestimate their control over
randomness in the environment [193], dubbed illusion of control. The latter irrationality
can be formalized in our parameterization by assuming that P ∗(· | s, a) ∝ (P (· | s, a))n,
where as n → ∞, the human will believe the dynamics of the MDP are increasingly more
deterministic. In Corollary 3.1, we show that the policy distance can be bounded linearly
by the bias in transition dynamics:
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Corollary 3.1. Let ∆P = sups,a ∥P ∗(· | s, a) − P̃ (· | s, a)∥1. Also, let π∗, π̃ be the policies

that result from from value iteration using (3.4) with dynamics models P ∗, P̃ , respectively.
Then, their weighted policy divergence is bounded as

Es∼d∗ [DKL(π
∗(· | s; θ∗) || π̃(· | s; θ∗))] ≤ 2|A|Rmax

(1− γ)2
∆P .

Myopia Bias. The other irrationality we study is when humans overvalue near-term re-
wards, dubbed myopia [95]. Such bias can be captured in our parameterization through a
biased discount factor γ∗, where as γ∗ → 0, the human will act more greedily and prioritize
immediate reward. In Corollary 3.2, we bound the distance between policies by the absolute
difference in their internal discount factor.

Corollary 3.2. Let π∗, π̃ be the policies that result from value iteration using (3.4) with
discount factors γ∗, γ̃, respectively. Then, their weighted policy divergence is bounded as

Es∼d∗ [DKL(π
∗(· | s; θ∗) || π̃(· | s; θ∗))] ≤ 2|A|Rmax

(1− γ̃)(1− γ∗)
|γ̃ − γ∗| .

The above result shows that the degree of bias linearly upper-bounds the weighted policy
divergence and hence, from Theorem 3.2, the expected reward inference error.

3.5 Empirical Analysis

Since our theory points to both reasons to be concerned as well as reasons to be optimistic,
we also conduct an empirical analysis to check how different biases affect reward inference.
Namely, in practice, do we find a stable relationship between policy divergence and reward
error.

We tackle this in three ways: (1) simulating the specific biases we analyzed in Section 3.4,
(2) simulating a non-Bellman-update structured kind of bias (a demonstrator that is still
learning about the environment), and (3) collecting real human policies. We consider both
tabular navigation tasks on gridworld, as well as more challenging continuous control tasks
on the Lunar Lander game [36].
Experiment design. Each experiment has a bias we study and an environment (gridworld
or LunarLander). When considering simulated biases, we manipulate π∗ by manipulating
the magnitude of the bias starting at π∗ = π̃ the Boltzmann optimal policy. This helps us
simulate different hypothetical humans, and see what degree of deviation from optimality
ends up negatively impacting reward inference. When modeling bias with real human data,
we instead fix π∗ as the real human policy, and manipulate π̃ by interpolating between the
Boltzmann optimal policy and the real human policy – this emulates a practical process
where human models get increasingly more accurate.
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Figure 3.2. Effect of transition error (measured as the degree of underestimation of
unintended transitions) on (a) weighted policy divergence and (b) reward inference error on
Gridworld environments. In (c), we show a scatter plot of the policy and reward errors for
each P ∗.
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Figure 3.3. Effect of underestimating the discount factor on (a) weighted policy divergence
and (b) reward inference error on Gridworld environments. In (c), we show a scatter plot
of the policy and reward errors for each γ∗.

Tabular experiments with structured biases

Figure 3.4. Gridworld
environments.

First, we consider tabular navigation in gridworld domains
[84], where the task is the reach the goal state and earn a
reward of θ > 1, which is not known to the agent, while
avoiding getting trapped at lava states. To further compli-
cate the task, the agent can also get stuck at “waypoint”
states that yield a reward of 1. Depending on the environ-
ment, it can be better for the agent to stop at the waypoint
state, to circumvent taking the longer, more treacherous
path to the goal state. The agent is able to move in either
of the four directions, or choose to stay still. To introduce
stochasticity in the transition dynamics, there is a 30%
chance that the agent travels in a different direction than
commanded. We consider three different gridworlds (which we simply call environments A,
B, and C) where we vary in the location of the waypoint state (shown in Figure 3.4).

In each environment, we want to the learn the underlying reward parameter θ from
demonstrations; however, the model π̃ is noisily optimal, whereas the demonstrator policy
π∗ is irrational by suffering from false internal dynamics, or myopia. We model these irra-
tionalities by either modifying the transition matrix or discount factor, respectively, in the
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Figure 3.5. Effect of transition error (measured as error in p) on (a) weighted policy
divergence and (b) reward inference error on continuous Lunar Lander environments. In
(c), we show a scatter plot of the policy and reward errors for fixed α.

soft Bellman update in Equation (3.4). Note that the stationary distribution wπ for a policy
π can be exactly computed; hence, instead of sampling data from π∗, we use w∗ to compute
exact quantities (see Appendix B.2 for technical details).
Internal dynamics. The first irrationality we consider is illusion of control, where the
demonstrator policy significantly underestimates the stochasticity in the environment. Such
biased policies π∗ are obtained via value iteration on a biased transition matrix P ∗, where
the human wrongly believes the probability p of unintended transitions is smaller than the
true value. As p → 0, the demonstrator becomes more confident that they can reach the goal
state, and will prefer reaching the goal over the waypoint state, even when the latter is much
closer and safely reachable (see Appendix B.2 for visualizations of the biased policies). In
Figure 3.2, we show the effect of the transition bias (error in p) on both the weighted policy
divergence, and the reward inference error. The sub-linear trend in Figure 3.2a agrees with
Corollary 3.1. Figure 3.2b and c show a sub-linear dependence of the reward inference error
on the policy divergence, as predicted by Theorem 3.2. For environment A, the the reward
error goes up most quickly with the dynamics error, but so does the weighted policy diver-
gence, making this divergence a better indicator of reward error than simply the dynamics
error.
Myopia. The next irrationality we look at is myopia, where the demonstrator policy assumes
a biased discounting factor γ∗ that underestimates the true one. As γ∗ → 0, the biased agent
will much more strongly prefer the closer waypoint state over the goal state. In Figure 3.3,
we see analogous results to the internal dynamics bias. Namely, Figure 3.3a agrees with
Corollary 3.2, and Figure 3.3b and c shows a sub-linear correlation between policy and
reward error, as predicted by Theorem 3.2.

Continuous control experiments

Next, we consider a more challenging domain of navigation with continuous states and
actions. The exact navigation environment is a modification the Lunar Lander game with
continuous actions [38], where the agent receives a reward for landing safely on the landing
pad. The agent is able to take a continuous action in [−1, 1]2 that encodes the directions it
wants to move (left, right, up) via its sign, as well as how much power it wants to use in
each direction via its cardinality. In constrast to the classic version of the game where the
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Figure 3.6. Effect of amount of training on (a) weighted policy divergence and (b) reward
inference error on continuous Lunar Lander environments. In (c), we show a scatter plot of
the policy and reward errors for fixed number of training iterations.

Figure 3.7: Lunar Lander environments.

landing pad is always in the middle, we vary its location. The unknown reward parameter
θ ∈ (0, 1) is the location of the landing pad (as a horizontal displacement normalized by the
total width of the environment). We consider three different environments that differ in the
location of the landing pad (see Figure 3.7). In each environment, the human model π̃ is
the near-optimal one obtained by soft actor-critic [96]. We provide details on the training
procedure in Appendix B.2. In these experiments, we simulate the internal dynamics bias
as well as a new one based on the notion of a demonstrator that is still themselves learning.
Internal dynamics. We first study of the effect of demonstrator policies with biased
dynamics models. We bias the dynamics model by varying a parameter p that describes
how much one unit of power will increase acceleration in the corresponding direction. This
is a plausibly natural human bias as people tend to underestimate the effects of inertia in
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Figure 3.8. Effect of modeling human bias (measured by probability of acting according to
human policy) on (a) weighted policy divergence and (b) reward inference error on discrete
Lunar Lander environments. In (c), we show a scatter plot of the policy and reward errors
for fixed probabilities. We see that more accurate human models correspond to lower reward
inference error.

projectile motion [46]. For each false setting of p, we learn a biased policy that is near-
optimal for that p. As p increase, the biased policy tends to underestimate the amount
of power required to move the lander enough to the right to reach the landing pad (see
Appendix B.2 for visualizations). In Figure 3.5, we show the effect of the transition bias
(error in p) on both the weighted policy divergence and the reward inference error. We see
that even in a challenging continuous control domain, Theorem 3.2 still holds.
Demonstrators that are learning. We next simulate a bias that might arise from humans
that are learning how to do the task (as would be the case, for instance, in our Lunar
Lander task). We do so by varying the amount of training iterations in learning the policy.
The degree of such bias is captured in a parameter ρ ∈ (0, 1), that denotes the number
of training iterations, normalized by the amount used to learn the near-optimal believed
policy. In Figure 3.6, we show the effect of ρ on both the weighted policy divergence and the
reward inference error. Reassuringly, we again notice a sub-linear correlation in line with
Theorem 3.2.

Analysis of real human policies
The previous experiments have considered natural but simulated biases to construct biased
demonstrator policies. However, it remains to be seen whether the findings for simulated
biases hold for biases grounded in real human demonstrations. We consider the same Lunar
Lander game in Section 3.5 but with a discrete action space; this action space consists of only
the 3 directions (left, right, up), where the power in each direction are now fixed constants.
We discretize the action space to create a more intuitive environment that humans can easily
interact in. Using this environment, we create a demonstrator policy grounded in real human
demonstrations. We do this by collecting trajectories from 10 human demonstrators, then
learning a policy that imitates human behavior by running behavior cloning (BC) on the
aggregated trajectories. We visualize trajectories from this policy in Figure 3.9. We observe
that in general, humans tend to be unable to properly account for the effect of gravity,
causing them to crash the lander before it has moved enough horizontally, particularly in



CHAPTER 3. LEARNING WITH MISSPECIFIED HUMAN MODELS 40

Figure 3.9: Visualization of trajectories under the human policy.

environments B and C where the landing pad is horizontally displaced from the middle.
Then, we emulate a process through which the model π̃ would evolve to align more and

more with the true human policy. Specifically, we vary π̃ to interpolate between near-optimal
and the true human policy, while keeping π∗ fixed to the latter. To do so, we vary a parameter
α that controls the probability of sampling from the human policy (vs. the near-optimal
one). In Figure 3.8, we show the affect of α on the weighted policy divergence and reward
inference error, and conclude that larger α result in smaller policy divergence as well as
reward error. In addition, we also match the simulation experiments by keeping π̃ fixed as
the optimal policy, and interpolate between the optimal policy and the real human policy
for π∗ (see Appendix B.2). This suggests that Theorem 3.2 might broadly apply, giving us
hope that better human models π̃ can translate to better reward inference.

3.6 Discussion
Summary. In this paper, we conduct a theoretical and empirical study of how sensitive
reward learning from human demonstrations is to misspecification of the human model.
First, we provide an ominous result that arbitrarily small divergences in the assumed human
model can result in large reward inference error. However, we also show if the true human
policy satisfies a relatively mild assumption, then reward error is upper-bounded linearly by
the policy divergence. Experiments with multiple biases in different environments, as well as
an analysis of the true human policy, reassuringly show remarkably consistent results: over
and over again, we see that as the human model and the true human behavior are more and
more aligned, the reward error decreases. Overall, our results convey the optimistic message



CHAPTER 3. LEARNING WITH MISSPECIFIED HUMAN MODELS 41

that reward learning improves as we obtain better human models.
Limitations and future work. Our upper-bound relies on Assumption 3.2 of log-concavity
of the human policy. However, we hypothesize that weaker assumptions exist from which
we can derive similar bounds as Theorem 3.2. In addition, via Assumption 3.1, we ignore
ambiguity in reward identification. It may be important in the future to consider reward
error and identifiability jointly, potentially through equivalence classes of reward functions.
Interesting directions of further investigation include: (1) how to better model human biases,
or orthogonally, (2) how to modify existing reward inference algorithms to be more robust
to misspecification. A negative side-effect of our work could occur when we mistakenly rely
on the upper-bound in Theorem 3.2 when its conditions are not met, i.e., Assumption 3.2
does not hold, resulting in catastrophically bad inference without knowing it. More broadly,
reward learning in general has the issue that it does not specify whose reward to learn, and
how to combine different people’s values.
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Chapter 4

Learning with multi-criteria
preferences

4.1 Introduction

Economists, social scientists, engineers, and computer scientists have long studied models
for human preferences, under the broad umbrella of social choice theory [28, 13]. Learning
from human preferences has found applications in interactive robotics for learning reward
functions [172, 156], in medical domains for personalizing assistive devices [221, 27], and in
recommender systems for optimizing search engines [49, 106]. The recent focus on safety
in AI has popularized human-in-the-loop learning methods that use human preferences in
order to promote value alignment [57, 173, 8].

The most popular form of preference elicitation is to make pairwise comparisons [194,
34, 136]. Eliciting such feedback involves showing users a pair of objects and asking them a
query: Do you prefer object A or object B? Depending on the application, an object could
correspond to a product in a search query, or a policy or reward function in reinforcement
learning. A vast body of classical work dating back to Condorcet and Borda [58, 33] has
focused on defining and producing a “winning” object from the result of a set of pairwise
comparisons.

In relatively recent work, Dudik et al. [71] proposed the concept of a von Neumann
winner, corresponding to a distribution over objects that beats or ties every other object
in the collection. They showed that under an expected utility assumption, such a ran-
domized winner always exists and overcomes limitations of existing winning concepts—the
Condorcet winner does not always exist, while the Borda winner fails an independence of
clones test [175]. However, the assumption of expected utility relies on a strong hypothesis
about how humans evaluate distributions over objects: it posits that the probability with
which any distribution over objects π beats an object is linear in π.
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(a) (b)

Figure 4.1. (a) Policy A focuses on optimizing comfort and policy B on speed, and these
are compared pairwise in different environments. (b) Preference matrices, where entry (i, j)
of the matrix contains the proportion of comparisons between the pair (i, j) that are won by
object i. (The diagonals are set to half by convention). The overall pairwise comparisons are
given by the matrix POverall

ex , and preferences along each of the criteria by matrices PComfort
ex

and PSpeed
ex . Policy R is a randomized policy 1/2 A +1/2 B. While the preference matrices

satisfy the linearity assumption individually along speed and comfort, the assumption is
violated overall, wherein R is preferred over both A and B.

Consequences of assuming linearity: In order to better appreciate these consequences,
consider as an example the task of deciding between two policies (say A and B) to deploy
in an autonomous vehicle. Suppose that these policies have been obtained by optimizing
two different objectives, with policy A optimized for comfort and policy B optimized for
speed. Figure 4.1(a) shows a snapshot of these two policies. When compared overall, 60%
of the people preferred Policy A over B – making it the von Neumann winner. The linearity
assumption then posits that a randomized policy that mixes between A and B can never be
better than both A and B; but we see that the Policy R = 1/2 A + 1/2 B is actually preferred
by a majority over both A and B! Why is the linearity assumption violated here?

One possible explanation for such a violation is that the comparison problem is actually
multi-criteria in nature. If we look at the preferences for the criterion speed and comfort
individually in Figure 4.1(b), we see that Policy A does quite poorly on the speed axis while
B lags behind in comfort. In contrast, Policy R does acceptably well along both the criteria
and hence is preferred overall to both Policies A and B. It is indeed impossible to come to
this conclusion by only observing the overall comparisons. This observation forms the basis
of our main proposal: decompose the single overall comparison and ask humans to provide
preferences along simpler criteria. This decomposition of the comparison task allows us to
place structural assumptions on comparisons along each criterion. For instance, we may
now posit the linearity assumption along each criterion separately rather than on the overall
comparison task. In addition to allowing for simplified assumptions, breaking up the task into
such simpler comparisons allows us to obtain richer and more accurate feedback as compared
to the single overall comparison. Indeed, such a motivation for eliciting simpler feedback
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from humans finds its roots in the the study of cognitive biases in decision making, which
suggests that the human mind resorts to simple heuristics when faced with a complicated
questions [199].

Contributions: In this paper, we formalize these insights and propose a new framework
for preference learning when pairwise comparisons are available along multiple, possibly con-
flicting, criteria. As shown by our example in Figure 4.1, a single distribution which is the
von Neumann winner along every criteria might not exist. To counter this, we formulate
the problem of finding the “best” randomized policy by drawing on tools from the literature
on vector valued pay-offs in game theory. Specifically, we take inspiration from Blackwell’s
approachability [29] and introduce the notion of a Blackwell winner. This solution concept
strictly generalizes the concept of a von Neumann winner, and recovers the latter when
there is only a single criterion present. Section 4.2 describes this framework in detail, and
Section 4.3 collects our statistical and computational guarantees for learning the Blackwell
winner from data. Section 4.4 describes a user study with an autonomous driving envi-
ronment, in which we ask human subjects to compare self-driving policies along multiple
criteria such as safety, aggressiveness, and conservativeness. Our experiment demonstrates
that the Blackwell winner is able to better trade off utility along these criteria and produces
randomized policies that outperform the von Neumann winner for the overall preferences.

Related work

This paper sits at the intersection of multiple fields of study: learning from pairwise com-
parisons, multi-objective optimization, preference aggregation, and equilibrium concepts in
games. Here, we review the papers that are most relevant to our contributions.

Winners from pairwise comparisons. Most closely related to our work is the field of
computational social choice, which has focused on defining notions of winners from overall
pairwise comparisons (see the survey [35] for a review). Amongst them, three deterministic
notions of a winner—the Condorcet [58], Borda [33], and Copeland [59] winners—have been
widely studied. In addition, Dudik et al. [71] recently introduced the notion of a (randomized)
von Neumann winner.

Starting with the work of Yue et al. [219], there have been several research papers studying
an online version of preference learning, called the Dueling Bandits problem. This is a partial
information version of the classic K-armed bandit problem where the feedback comprises
comparisons between a pair of arms. Algorithms have been proposed to compete with
Condorcet [229, 230, 6], Copeland [228, 214], Borda [111] and von Neumann [71] winners.

Multi-criteria decision making. The theoretical foundations of decision making based
on multiple criteria have been widely studied within the operations research community .
This sub-field—called multiple-criteria decision analysis— has focused largely on scoring,
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classification, and sorting based on multiple-criteria feedback. See the surveys [163, 231] for
thorough overviews of existing methods and their associated guarantees. The problem of
eliciting the user’s relative weighting of the various criteria has also been considered [67].
However, relatively less attention has been paid to the study of randomized decisions and
statistical inference, both of which form the focus of our work. From an applied perspective,
the combination of multi-criteria assessments has received attention in disparate fields such
as psychometrics [158, 141], healthcare [192], and recidivism prediction [210]. In many of
these cases, a variety of approaches—both linear and non-linear—have been empirically
evaluated [66]. Justification for non-linear aggregation of scores along the criteria has a long
history in psychology and the behavioral sciences [92, 82, 200].

Blackwell’s approachability. In the game theory literature, Blackwell [29] introduced the
notion of approachability as a generalization of a zero-sum game with vector-valued payoffs
(for a detailed discussion see Appendix C.1). Blackwell’s approachability and its connections
with no-regret learning and calibrated forecasting have been extensively studied [2, 162, 140].
These connections have enabled applications of Blackwell’s results to problems ranging from
constrained reinforcement learning [145] to uncertainty estimation for question-answering
tasks [127]. In contrast with such applications of the repeated vector-valued game, our
framework for preference learning along multiple criteria deals with a single shot game and
uses the idea of the target set to define the concept of a Blackwell winner.

Stability of Nash equilibria. Another body of literature related to our work studies
Nash equilibria in games with perturbed payoffs, under both robust [5, 132] and uncertain
(or Bayesian) [86] formulations (see the recent survey by Perchet [161]). Perturbation theory
for Nash equilibria has been derived in these contexts, and it is well-known that the Nash
equilibrium is not (at least in general) stable to perturbations of the payoff matrix. On the
other hand, the results of [71] consider Nash equilibria of perturbed, symmetric, zero-sum
games, but show that the payoff of the perturbed Nash equilibrium is indeed stable. That is,
even if the equilibrium itself can change substantially with a small perturbation of the payoff
matrix, the payoff that this perturbation obtains is still close to the payoff of the original
equilibrium. Our work provides a similar characterization for the multi-criteria setting.

4.2 Framework for preference learning along multiple

criteria

We now set up our framework for preference learning along multiple criteria. We consider a
collection of d objects over which comparisons can be elicited along k different criteria. We
index the objects by the set [d] : = {1, . . . , d} and the criteria by the set [k].
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Probabilistic model for comparisons

Since human responses to comparison queries are typically noisy, we model the pairwise pref-
erences as random variables drawn from an underlying population distribution. In particular,
the result of a comparison between a pair of objects (i1, i2) along criterion j is modeled as
a draw from a Bernoulli distribution, with p(i1, i2; j) = P(i1 ⪰ i2 along criterion j). By
symmetry, we must have

p(i2, i1; j) = 1− p(i1, i2; j) for each triple i1 ∈ [d], i2 ∈ [d], and j ∈ [k]. (4.1)

We let π1, π2 ∈ ∆d represent1 two distributions over the d objects. With a slight abuse of
notation, let p(π1, π2; j) denote the probability with which an object drawn from distribu-
tion π1 beats an object drawn from distribution π2 along criterion j. We assume for each
individual criterion j that the probability p(π1, π2; j) is linear in the distributions π1 and π2,
i.e. that it satisfies the relation

p(π1, π2; j) : = Ei1∼π1,i2∼π2 [p(i1, i2; j)] . (4.2)

Equation (4.2) encodes the per-criterion linearity assumption highlighted in Section 4.1. We
collect the probabilities {p(i1, i2; j)} into a preference tensor P ∈ [0, 1]d×d×k and denote by
Pd,k the set of all preference tensors that satisfy the symmetry condition (4.1). Specifically,
we have

Pd,k = {P ∈ [0, 1]d×d×k | P(i1, i2; j) = 1−P(i2, i1; j) for all (i1, i2, j)} . (4.3)

Let Pj denote the d× d matrix corresponding to the comparisons along criterion j, so that
p(π1, π2; j) = π⊤

1 P
jπ2. Also note that a comparison between a pair of objects (i1, i2) induces

a score vector containing k such probabilities. Denote this vector by P(i1, i2) ∈ [0, 1]k,
whose j-th entry is given by p(i1, i2; j). Denote by P(π1, π2) the score vector for a pair of
distribution (π1, π2).

In the single criterion case when k = 1, each comparison between a pair of objects is along
an overall criterion. We let Pov ∈ [0, 1]d×d represent such an overall comparison matrix. As
mentioned in Section 4.1, most preference learning problems are multi-objective in nature,
and the overall preference matrix Pov is derived as a non-linear combination of per-criterion
preference matrices {Pj}kj=1. Therefore, even when the linearity assumption (4.2) holds
across each criterion, it might not hold for the overall preference Pov. In contrast, when
the matrices Pj are aggregated linearly to obtain the overall matrix Pov, we recover the
assumptions of Dudik et al. [71].

Blackwell winner

Given our probabilistic model for pairwise comparisons, we now describe our notion of a
Blackwell winner. When defining a winning distribution for the multi-criteria case, it would

1We let ∆d denote the d-dimensional simplex.
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(a) (b)

Figure 4.2. Two target sets S1 and S2 for our example from Figure 4.1 that capture
trade-offs between comfort and speed. Set S1 requires feasible score vectors to satisfy 40%
of the population along both comfort and speed. Set S2 requires both scores to be greater
than 0.3 but with a linear trade-off: the combined score must be at least 0.9.

be ideal to find a distribution π∗ that is a von Neumann winner along each of the criteria
separately. However, as shown in our example from Figure 4.1, such a distribution need not
exist: policy A is preferred along the comfort axis, while policy B along speed. We thus need
a generalization of the von Neumann winner that explicitly accounts for conflicts between
the criteria.

Blackwell [29] asked a related question for the theory of zero-sum games: how can one
generalize von Neumann’s minimax theorem to vector-valued games? He proposed the notion
of a target set : a set of acceptable payoff vectors that the first player in a zero-sum game
seeks to attain. Within this context, Blackwell proposed the notion of approachability, i.e.
how the player might obtain payoffs in a repeated game that are close to the target set on
average. We take inspiration from these ideas to define a solution concept for the multi-
criteria preference problem.

Our notion of a winner also relies on a target set, which we denote by S ⊂ [0, 1]k, and
which in our setting contains score vectors. This set provides a way to combine different
criteria by specifying combinations of preference scores that are acceptable. Figure 4.2
provides an example of two such sets. Observe that for our preference learning problem, the
target set S is by definition monotonic with respect to the orthant ordering, that is, if z1 ≥ z2
coordinate-wise, then z2 ∈ S implies z1 ∈ S. Our goal is to then produce a distribution π∗

that can achieve a target score vector for any distribution with which it is compared—that
is P(π∗, π) ∈ S for all π ∈ ∆d. When such a distribution π∗ exists, we say that the problem
instance (P, S) is achievable.

On the other hand, it is clear that there are problem instances (P, S) that are not
achievable. While Blackwell’s workaround was to move to the setting of repeated games,
preference aggregation is usually a one-shot problem. Consequently, our relaxation instead
introduces the notion of a worst-case distance to the target set. In particular, we measure
the distance between any pair of score vectors u, v ∈ [0, 1]k as ρ(u, v) = ∥u − v∥ for some
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norm ∥ · ∥. Using the shorthand ρ(u, S) : = infv∈S ∥u − v∥, the Blackwell winner π∗ for an
instance (P, S, ∥ · ∥) is now defined as the one which minimizes the maximum distance to
the set S, i.e.,

π(P, S, ∥ · ∥) ∈ argmin
π∈∆d

[v(π;P, S, ∥ · ∥)], where v(π;P, S, ∥ · ∥) : = max
π′∈∆d

ρ(P(π, π′), S) .

(4.4)
Observe that equation (4.4) has an interpretation as a zero-sum game, where the objective
of the minimizing player is to make the score vector P(π, π′) as close as possible to the target
set S.

We now look at commonly studied frameworks for single criterion preference aggregation
and multi-objective optimization and show how these can be naturally derived from our
framework.

Example: Preference learning along a single criterion. A particular special case of
our framework is when we have a single criterion (k = 1) and the preferences are given by a
matrix Pov. The score Pov(i1, i2) is a scalar representing the probability with which object
i1 beats object i2 in an overall comparison. As a consequence of the von Neumann minimax
theorem, we have

max
π1∈∆d

min
π2∈∆d

Pov(π1, π2)= min
π2∈∆d

max
π1∈∆d

Pov(π1, π2)=
1

2
, (4.5)

with any maximizer above called the von Neumann winner [71]. Thus, for any preference
matrix Pov, a von Neumann winner is preferred to any other object with probability at least
1
2
.
Let us show how this uni-criterion formulation can be derived as a special case of our

framework. Consider the target set S = [1
2
, 1] and choose the distance function ρ(a, b) =

|a− b|. By equation (4.5), the target set S = [1
2
, 1] is achievable for all preference matrices

Pov, and so the von Neumann winner and the Blackwell winner π(Pov, [
1
2
, 1], | · |) coincide. ♣

Example: Weighted combinations of a multi-criterion problem. We saw in the pre-
vious example that the single criterion preference learning problem is quite special: achiev-
ability can be guaranteed by the von Neumann winner for set S = [1

2
, 1] for any preference

matrix Pov. One of the common approaches used in multi-objective optimization is to reduce
a multi-dimensional problem to a uni-dimensional counterpart is by introducing a weighted
combinations of objectives.

Formally, consider a weight vector w ∈ ∆k and the corresponding preference matrix

P(w) : =
∑
j∈[k]

wjP
j

obtained by combining the preference matrices along the different criteria. A winning dis-
tribution can then be obtained by solving for the von Neumann winner of P(w) given by
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π(P(w), [1
2
, 1], | · |). The following proposition establishes that such an approach is a partic-

ular special case of our framework, and conversely, that there are problem instances in our
general framework which cannot be solved by a simple linear weighing of the criteria.

Proposition 4.1. (a) For every weight vector w ∈ ∆k, there exists a target set Sw ∈ [0, 1]k

such that for any norm ∥ · ∥, we have

π(P, Sw, ∥ · ∥) = π(P(w), [1/2, 1], | · |) for all P ∈ Pd,k.

(b) Conversely, there exists a set S and a preference tensor P with a unique Blackwell winner
π∗ such that for all w ∈ ∆k, exactly one of the following is true:

π(P(w), [1/2, 1], | · |) ̸= π∗ or argmax
π∈∆d

min
i∈[d]

P(π, i) = ∆d .

Thus, while the Blackwell winner is always able to recover any linear combination of
criteria, the converse is not true. Specifically, part (b) of the proposition shows that for a
choice of preference tensor P and target set S, either the von Neumann winner for P(w) is
not equal to the Blackwell winner, or it degenerates to the entire simplex ∆d and is thus
uninformative. Consequently, our framework is strictly more general that weighting the
individual criteria. ♣

4.3 Statistical guarantees and computational

approaches

In this section, we provide theoretical results on computing the Blackwell winner from sam-
ples of pairwise comparisons along the various criteria.

Observation model and evaluation metrics.

We operate in the natural passive observation model, where a sample consists of a comparison
between two randomly chosen objects along a randomly chosen criterion. Specifically, we
assume access to an oracle that when queried with a tuple η = (i1, i2, j) comprising a pair of
objects (i1, i2) and a criterion j, returns a comparison y(η) ∼ Ber(p(i1, i2; j)). Each query to
the oracle constitutes one sample. In the passive sampling model, the tuple of objects and
criterion is sampled uniformly, with replacement, that is (i1, i2)∼Unif{

(
[d]
2

)
} and j∼Unif{[k]}

where Unif{A} denotes the uniform distribution over the elements of a set A.
Given access to samples {y1(η1), . . . , yn(ηn)} from this observation model, we define the

empirical preference tensor (specifically the upper triangular part)

P̂n(i1, i2, j) : =

∑n
ℓ=1 yℓ(ηℓ)I[ηℓ = (i1, i2, j)]

1 ∨
∑

ℓ I[ηℓ = (i1, i2, j)]
for i1 < i2 , (4.6)
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where each entry of the upper-triangular tensor is estimated using a sample average and the
remaining entries are calculated to ensure the symmetry relations implied by the inclusion
P̂n ∈ Pd,k.

As mentioned before, we are interested in computing the solution π∗ : = π(P, S, ∥ · ∥) to
the optimization problem (4.4), but with access only to samples from the passive observation
model. For any estimator π̂ ∈ ∆d obtained from these samples, we evaluate its error based
on its value with respect to the tensor P, i.e.,

∆P(π̂, π) : = v(π̂;S,P, ∥ · ∥)− v(π∗;S,P, ∥ · ∥). (4.7)

Note that the error ∆P implicitly also depends on the set S and the norm ∥ · ∥, but we
have chosen our notation to be explicit only in the preference tensor P. For the rest of this
section, we restrict our attention to convex target sets S and refer them to as valid sets.
Having established the background, we are now ready to provide sample complexity bounds
on the estimation error ∆P(π̂, π

∗).

Upper bounds on the error of the plug-in estimator

Recall the definition of the function v from equation (4.4), and define, for each preference

tensor P̃, the optimizer
π(P̃) ∈ argmin

π∈∆d

v(π;S, P̃, ∥ · ∥) . (4.8)

Also recall the empirical preference tensor P̂n from equation (4.6). With this notation,

the plug-in estimator is given by π̂plug = π(P̂n) and the target (or true) distribution by
π∗ = π(P).

While, our focus in this section is to provide upper bounds on the error of the plug-in
estimator π̂plug , we first state a general perturbation bound which relates the error of the

optimizer π(P̃) to the deviation of the tensor P̃ from the true tensor P. We use P(·, i) ∈
[0, 1]d×k to denote a matrix formed by viewing the i-th slice of P along its second dimension.
Finally, recall our definition of the error ∆P(π̂, π

∗) from equation (4.7).

Theorem 4.1. Suppose the distance ρ is induced by the norm ∥ · ∥q for some q ≥ 1. Then

for each valid target set S and preference tensor P̃, we have

∆P(π(P̃), π∗) ≤ 2max
i∈[d]

∥P̃(·, i)−P(·, i))∥∞,q. (4.9)

Note that this theorem is entirely deterministic: it bounds the deviation in the optimal
solution to the problem (4.4) as a function of perturbations to the tensor P. It also applies
uniformly to all valid target sets S. In particular, this result generalizes the perturbation
result of Dudik et al. [71, Lemma 3] which obtained such a deviation bound for the single
criterion problem with π∗ as the von Neumann winner. Indeed, one can observe that by
setting the distance ρ(u, v) = |u− v| in Theorem 4.1 for the uni-criterion setup, we have the

error ∆P(π(P̃), π∗) ≤ 2∥P̃−P∥∞,∞, matching the bound of [71].
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Let us now illustrate a consequence of this theorem by specializing it to the plug-in
estimator, and with the distances given by the ℓ∞ norm.

Corollary 4.1. Suppose that the distance ρ is induced by the ℓ∞-norm ∥ · ∥∞. Then there
exists a universal constant c > 0 such that given a sample size n > cd2k log( cdk

δ
), we have

for each valid target set S

∆P(π̂plug, π
∗) ≤ c

√
d2k

n
log

(
cdk

δ

)
, (4.10)

with probability greater than 1− δ.

The bound (4.10) implies that the plug-in estimator π̂plug is an ϵ-approximate solution

whenever the number of samples scales as n = Õ(d
2k
ϵ2
). Observe that this sample complexity

scales quadratically in the number of objects d and linearly in the number of criteria k. This
scaling represents the effective dimensionality of the problem instance, since the underlying
preference tensor P has O(d2k) unknown parameters. Notice that the corollary holds for

sample size n = Õ(d2k); this should not be thought of as restrictive, since otherwise, the
bound (4.10) is vacuous.

Information-theoretic lower bounds

While Corollary 4.1 provides an upper bound on the error of the plug-in estimator that holds
for all valid target sets S, it is natural to ask if this bounds is sharp, i.e., whether there is
indeed a target set S for which one can do no better than the plug-in estimator. In this
section, we address this question by providing lower bounds on the minimax risk

Mn,d,k(S, ∥ · ∥∞) : = inf
π̂

sup
P∈P

E [∆P(π̂, π
∗)] , (4.11)

where the infimum is taken over all estimators that can be computed from n samples from
our observation model. It is important to note that the error ∆P is computed using the ℓ∞
norm and for the set S. Our lower bound will apply to the particular choice of target set
S0 = [1/2, 1]k.

Theorem 4.2. There is a universal constant c such that for all d ≥ 4, k ≥ 2, and n ≥ cd4k,
we have

Mn,d,k(S0, ∥ · ∥∞) ≥ c

√
d2k

n
. (4.12)

Comparing equations and (4.10) and (4.12), we see that for the ℓ∞-norm and the set
S0, we have provided upper and lower bounds that match up to a logarithmic factor in the
dimension. Thus, the plug-in estimator is indeed optimal for this pair (∥ · ∥∞, S0). Further,
observe that the above lower bound is non-asymptotic, and holds for all values of n ≳ d4k.
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This condition on the sample size arises as a consequence of the specific packing set used for
establishing the lower bound, and improving it is an interesting open problem.

However, this raises the question of whether the set S0 is special, or alternatively, whether
one can obtain an S-dependent lower bound. The following proposition shows that at least
asymptotically, the sample complexity for any polyhedral set S obeys a similar lower bound.

Proposition 4.2 (Informal). Suppose that we have a valid polyhedral target set S, and that
d ≥ 4. There exists a positive integer n0(d, k, S) such that for all n ≥ n0(d, k, S) we have

Mn,d,k(S, ∥ · ∥∞) ≳

√
d2k

n
. (4.13)

We defer the formal statement and proof of this proposition to Appendix C.2. This
proposition establishes that the plugin estimator π̂plug is indeed optimal in the ℓ∞ norm for
broad class of sets S. Note that the result is asymptotic in nature: in order for the proposition
to hold, we require that the number of samples are greater than the value n0. This number
n0 depends on problem dependent parameters and we provide an exact expression for n0 in
the appendix.

Instance-specific analysis for plug-in estimator

In the previous section we established that the error ∆P(π̂plug, π
∗) of the plug-in estimator

scales as Õ

(√
d2k
n

)
for any choice of preference tensor P and target set S when the distance

function ρ = ∥·∥∞. In this section, we study the adaptivity properties of the plug-in estimator
π̂plug and obtain upper bounds on the error ∆P(π̂plug, π

∗) which depend on the properties of
the underlying problem instance.

In the main text, we will restrict our focus to the uni-criterion setup with k = 1 with the
target set S = [1

2
, 1] in which case the Blackwell winner coincides with the von Neumann

winner. Furthermore, we will consider the case where the preference matrix P has a unique
von Neumann winner π∗. This is formalized in the following assumption.

Assumption 4.1 (Unique Nash equilibrium). The matrix P belongs to the set of preference
matrices Pd,1 and has a unique mixed Nash equilibrium π∗, that is, π∗

i > 0 for all i ∈ [d].

For the more general analysis, we refer the reader to Appendix C.3. For any preference
matrix P ∈ Pd,1 and the Bernoulli passive sampling model discussed in Section 4.3 let us
represent by Σi the diagonal matrix corresponding to the variances along the ith column of
the matrix P with

Σi = diag(P(1, i) · (1−P(1, i)), . . . ,P(d, i) · (1−P(d, i)).

Given this notation, we now state an informal corollary (of Theorem C.1) which shows that
the error ∆P(π̂plug, π

∗) depends on the worst-case alignment of the Nash equilibrium π∗ with
the underlying covariance matrices Σi.
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Corollary 4.2 (Informal). For any preference matrix P satisfying Assumption 4.1, confi-
dence δ > 0, and number of samples n > n0(P, δ), we have that the error ∆P of the plug-in
estimate π̂plug satisfies

∆P(π̂plug, π
∗) ≤ c ·

√
σ2
Pd

2

n
log

(
d

δ

)
, (4.14)

with probability at least 1− δ and the variance σ2
P : = maxi∈[d](π

∗)⊤Σiπ
∗.

We defer the proof of the above to Appendix C.3. A few comments on the above corollary
are in order. Observe that the bound above is a high probability bound on the error ∆P

of the plug-in estimator π̂plug. Compared with the upper bounds of Corollaries 4.1 and C.2,
the asymptotic bound on the error above is instance dependent – the effective variance σ2

P

depends on the underlying preference matrix P. In particular, this variance measures how
well does the underlying von Neumann winner π∗ align with the variance associated with
each column of the matrix P. In the worst case, since each entry of P is bounded above by
1, the variance σ2

P = 1 and we recover back the upper bounds from Corollaries 4.1 and C.2
for the uni-criterion case.

Computing the plug-in estimator

In the last few sections, we discussed the statistical properties of the plug-in estimator, and
showed that its sample complexity was optimal in a minimax sense. We now turn to the
algorithmic question: how can the plug-in estimator π̂plug be computed? Our main result in
this direction is the following theorem that characterizes properties of the objective function
v(π;P, S, ∥ · ∥).

Theorem 4.3. Suppose that the distance function is given by an ℓq norm ∥ · ∥q for some
q ≥ 1. Then for each valid target set S, the objective function v(π;P, S, ∥ · ∥q) is convex in
π, and Lipschitz in the ℓ1 norm, i.e.,

|v(π1;P, S, ∥ · ∥q)− v(π2;P, S, ∥ · ∥q)| ≤ k
1
q · ∥π1 − π2∥1 for each π1, π2 ∈ ∆d.

Theorem 4.3 establishes that the plug-in estimator can indeed be computed as the solution
to a (constrained) convex optimization problem. In Appendix C.4, we discuss a few specific
algorithms based on zeroth-order and first-order methods for obtaining such a solution and
an analysis of the corresponding iteration complexity for these methods; see Propositions C.3
and C.4 in the appendix. These methods differ in the way they access the target set S: while
zeroth-order methods require a distance oracle to the target set, the first-order methods
require a stronger projection oracle to this constraint set.
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4.4 Autonomous driving user study

In order to evaluate the proposed framework, we applied it to an autonomous driving envi-
ronment. The objective is to study properties of the randomized policies obtained by our
multi-criteria framework—the Blackwell winner for specific choices of the target set—and
compare them with the alternative approaches of linear combinations of criteria and the
single-criterion (overall) von Neumann winner. We briefly describe the components of the
experiment here; see Appendix C.5 for more details.

Self-driving Environment. Figure 4.1(a) shows a snapshot of one of the worlds in this
environment with the autonomous car shown in orange. We construct three different worlds
in this environment:

W1: The first world comprises an empty stretch of road with no obstacles (20 steps).

W2: The second world consists of a sequence of cones placed in certain sequences (80 steps).

W3: The third world has additional cars driving at varying speeds in their fixed lanes (80
steps).

Policies. For our base policies, we design five different reward functions encoding different
self-driving behaviors. These polices, named Policy A-E, are then set to be the model
predictive control based policies based on these reward functions wherein we fix the planning
horizon to 6. We defer the details of these reward functions to Appendix C.5. A randomized
policy π ∈ ∆5 is given by a distribution over the base policies A-E. Such a randomized
policy is implemented in our environment by randomly sampling a base policy from the
mixture distribution after every H = 18 time steps and executing this selected policy for that
duration. To account for the randomization, we execute each such policy for 5 independent
runs in each of the worlds and record these behaviors.

Subjective Criteria. We selected five subjective criteria to compare the policies, with
questions asking which of the two policies was C1: Less aggressive, C2: More predictable,
C3: More quick, C4: More conservative, and had C5: Less collision risk. Such a framing of
question ensures that higher score value along any of C1-C5 is preferred; thus a higher score
along C1 would imply less aggressive while along C2 would mean more predictable.

In addition to the these base criteria, we also consider an Overall Preference which
compares any pair of policies in an aggregate manner. For this criterion, the users were
asked to select the policy they would prefer when riding to their destination. Additionally,
we also asked the users to rate the importance of each criterion in their overall preference.

Main Hypotheses. The central focus of the main hypotheses is on comparing the ran-
domized policies given by the Blackwell winner, the overall von Neumann winner, and those
given by weighing the criteria linearly.
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MH1 There exists a set S such that the Blackwell winner with respect to S and ℓ∞-norm
produced by our framework outperforms the overall von Neumann winner.

MH2 The Blackwell winner for oblivious score sets S outperforms both oblivious2 and data-
driven weights for linear combination of criteria.

Independent Variables. The independent variable of our experiment is the choice of al-
gorithms for producing the different randomized winners. These comprise the von Neumann
winner based on overall comparisons, Blackwell winners based on two oblivious target sets,
and 9 different linear combinations weights (3 data-driven and 6 oblivious).

We begin with the two target sets S1 and S2 for our evaluation of the Blackwell winner
which were selected in a data-oblivious manner. Set S1 is an axis-aligned set promoting the
use of safer policies with score vector constrained to have a larger value along the collision
risk axis. Similar to Figure 4.2(b), the set S2 adds a linear constraint along aggressiveness
and collision risk. This target set thus favors policies which are less aggressive and have
lower collision risk. For evaluating hypothesis MH2, we considered several weight vectors,
both oblivious and data-dependent, comprising average of the users’ self-reported weights,
that obtained by regressing the overall criterion on C1-C5, and a set of oblivious weights.
See Appendix C.5 for details of the sets S1 and S2, and the weights w1:9.

Data collection. The experiment was conducted in two phases, both of which involved
human subjects on Amazon Mechanical Turk (Mturk) (see Appendix C.5 for an illustration
of the questionnaire).

The first phase of the experiment involved preference elicitation for the five base policies
A-E. Each user was asked to provide comparison data for all ten combinations of policies.
The cumulative comparison data is given in Appendix C.5, and the average weight vector
elicited from the users was found to be w1 = [0.21, 0.19, 0.20, 0.18, 0.22]. We ran this study
with 50 subjects.

In the overall preference elicitation, we saw an approximate ordering amongst the base
policies: C ≻ E ≿ D ≿ B ≻ A. Thus, Policy C was the von Neumann winner along the over-
all criterion. For each of the linear combination weights w1 through w9, Policy C was the
weighted winner. The Blackwell winners R1 and R2 for the sets S1 and S2 with the ℓ∞ dis-
tance were found to be R1 = [0.09, 0.15, 0.30, 0.15, 0.31] and R2 = [0.01, 0.01, 0.31, 0.02, 0.65].

In the second phase, we obtained preferences from a set of 41 subjects comparing the
randomized polices R1 and R2 with the baseline policies A-E. The results are aggregated in
Table C.1 in Appendix C.5.

Analysis for main hypotheses. Given that the overall von Neumann winner and those
corresponding to weights w1:9 were all Policy C, hypotheses MH1 and MH2 reduced whether

2We use the term oblivious to denote variables that were fixed before the data collection phase and
data-driven to denote those which are based on collected data.
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users prefer at least one of {R1, R2} to the deterministic policy C, that is whetherPov(C,R1) <
0.5 or Pov(C,R2) < 0.5.

Policies C and E were preferred to R1 by 0.71 and 0.61 fraction of the respondents,
respectively. On the other hand, R2 was preferred to the von Neumann winner C by 0.66
fraction of the subjects. Using the data, we conducted a hypothesis test with the null and
alternative hypotheses given by

H0 : Pov(C,R2) ≥ 0.5, and H1 : Pov(C,R2) < 0.5.

Among the hypotheses that make up the (composite) null, our samples have the highest
likelihood for the distribution Ber(0.5). We therefore perform a one-sided hypothesis test
with the Binomial distribution with number of samples n = 41, success probability p = 0.5
and number of successes x = 14 (indicating number of subjects which preferred Policy C to
R1). The p-value for this test was obtained to be 0.0298. This supports both our claimed
hypotheses MH1 and MH2.

4.5 Discussion and future work

In this paper, we considered the problem of eliciting and learning from preferences along
multiple criteria, as a way to obtain rich feedback under weaker assumptions. We introduced
the notion of a Blackwell winner, which generalizes many known winning solution concepts.
We showed that the Blackwell winner was efficiently computable from samples with a simple
and optimal procedure, and also that it outperformed the von Neumann winner in a user
study on autonomous driving. Our work raises many interesting follow-up questions: How
does the sample complexity vary as a function of the preference tensor P? Can the process
of choosing a good target set be automated? What are the analogs of our results in the
setting where pairwise comparisons can be elicited actively?
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Chapter 5

Reinforcement learning with
misspecified rewards

5.1 Introduction

As reinforcement learning agents are trained with better algorithms, more data, and larger
policy models, they are at increased risk of overfitting their objectives [171]. Reward hack-
ing, or the gaming of misspecified reward functions by RL agents, has appeared in a variety
of contexts, such as game playing [110], text summarization [159], and autonomous driv-
ing [119]. These examples show that better algorithms and models are not enough; for
human-centered applications such as healthcare [218], economics [197] and robotics [120],
RL algorithms must be safe and aligned with human objectives [32, 109].

Reward misspecifications occur because real-world tasks have numerous, often conflicting
desiderata. In practice, reward designers resort to optimizing a proxy reward that is either
more readily measured or more easily optimized than the true reward. For example, consider
a recommender system optimizing for users’ subjective well-being (SWB). Because SWB is
difficult to measure, engineers rely on more tangible metrics such as click-through rates or
watch-time. Optimizing for misspecified proxies led YouTube to overemphasize watch-time
and harm user satisfaction [189], as well as to recommended extreme political content to
users [167].

Addressing reward hacking is a first step towards developing human-aligned RL agents
and one goal of ML safety [101]. However, there has been little systematic work investigating
when or how it tends to occur, or how to detect it before it runs awry. To remedy this, we
study the problem of reward hacking across four diverse environments: traffic control [213],
COVID response [122], blood glucose monitoring [78], and the Atari game Riverraid [37].
Within these environments, we construct nine misspecified proxy reward functions (Sec-
tion 5.2).

Using our environments, we study how increasing optimization power affects reward hack-
ing, by training RL agents with varying resources such as model size, training time, action
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Figure 5.1. An example of reward hacking when cars merge onto a highway. A human-
driver model controls the grey cars and an RL policy controls the red car. The RL agent
observes positions and velocities of nearby cars (including itself) and adjusts its acceleration
to maximize the proxy reward. At first glance, both the proxy reward and true reward
appear to incentivize fast traffic flow. However, smaller policy models allow the red car to
merge, whereas larger policy models exploit the misspecification by stopping the red car.
When the red car stops merging, the mean velocity increases (merging slows down the more
numerous grey cars). However, the mean commute time also increases (the red car is stuck).
This exemplifies a phase transition: the qualitative behavior of the agent shifts as the model
size increases.

space resolution, and observation space noise (Section 5.3). We find that more powerful
agents often attain higher proxy reward but lower true reward, as illustrated in Figure 5.1.
Since the trend in ML is to increase resources exponentially each year [134], this suggests
that reward hacking will become more pronounced in the future in the absence of counter-
measures.

More worryingly, we observe several instances of phase transitions. In a phase transition,
the more capable model pursues a qualitatively different policy that sharply decreases the
true reward. Figure 5.1 illustrates one example: An RL agent regulating traffic learns to
stop any cars from merging onto the highway in order to maintain a high average velocity
of the cars on the straightaway.

Since there is little prior warning of phase transitions, they pose a challenge to monitoring
the safety of ML systems. Spurred by this challenge, we propose an anomaly detection
task [102, 190]: Can we detect when the true reward starts to drop, while maintaining a low
false positive rate in benign cases? We instantiate our proposed task, Polynomaly, for
the traffic and COVID environments (Section 5.4). Given a trusted policy with moderate
performance, one must detect whether a given policy is aberrant.

Related work

Previous works have focused on classifying different types of reward hacking and sometimes
mitigating its effects. One popular setting is an agent on a grid-world with an erroneous
sensor. Hadfield-Menell et al. [99] show and mitigate the reward hacking that arises due to
an incorrect sensor reading at test time in a 10x10 navigation grid world. Leike et al. [133]
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show examples of reward hacking in a 3x3 boat race and a 5x7 tomato watering grid world.
Everitt et al. [74] theoretically study and mitigate reward hacking caused by a faulty sensor.

Game-playing agents have also been found to hack their reward. Baker et al. [16] exhibit
reward hacking in a hide-and-seek environment comprising 3-6 agents, 3-9 movable boxes and
a few ramps: without a penalty for leaving the play area, the hiding agents learn to endlessly
run from the seeking agents. Toromanoff, Wirbel, and Moutarde [195] briefly mention reward
hacking in several Atari games (Elevator Action, Kangaroo, Bank Heist) where the agent
loops in a sub-optimal trajectory that provides a repeated small reward.

Agents optimizing a learned reward can also demonstrate reward hacking. Ibarz et al.
[110] show an agent hacking a learned reward in Atari (Hero, Montezuma’s Revenge, and
Private Eye), where optimizing a frozen reward predictor eventually achieves high predicted
score and low actual score. Christiano et al. [56] show an example of reward hacking in
the Pong game where the agent learns to hit the ball back and forth instead of winning the
point. Stiennon et al. [188] show that a policy which over-optimizes the learnt reward model
for text summarization produces lower quality summarizations when judged by humans.

5.2 Experimental setup: Environments and reward

functions

In this section, we describe our four environments (Section 5.2) and taxonomize our nine
corresponding misspecified reward functions (Section 5.2).

Environments

We chose a diverse set of environments and prioritized complexity of action space, obser-
vation space, and dynamics model. Our aim was to reflect real-world constraints in our
environments, selecting ones with several desiderata that must be simultaneously balanced.
Table 5.1 provides a summary.

Traffic Control. The traffic environment is an autonomous vehicle (AV) simulation that
models vehicles driving on different highway networks. The vehicles are either controlled by
a RL algorithm or pre-programmed via a human behavioral model. Our misspecifications
are listed in Table 5.1.

We use the Flow traffic simulator, implemented by Wu et al. [213] and Vinitsky et al.
[207], which extends the popular SUMO traffic simulator [135]. The simulator uses cars that
drive like humans, following the Intelligent Driver Model (IDM) [196], a widely-accepted
approximation of human driving behavior. Simulated drivers attempt to travel as fast as
possible while tending to decelerate whenever they are too close to the car immediately in
front.

The RL policy has access to observations only from the AVs it controls. For each AV, the
observation space consists of the car’s position, its velocity, and the position and velocity
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of the cars immediately in front of and behind it. The continuous control action is the
acceleration applied to each AV. Figure 5.4 depicts the Traffic-Mer network, where cars from
an on-ramp attempt to merge onto the straightaway. We also use the Traffic-Bot network,
where cars (1-4 RL, 10-20 human) drive through a highway bottleneck where lanes decrease
from four to two to one.

COVID Response. The COVID environment, developed by Kompella et al. [122], simu-
lates a population using the SEIR model of individual infection dynamics. The RL policy-
maker adjusts the severity of social distancing regulations while balancing economic health
(better with lower regulations) and public health (better with higher regulations), similar
in spirit to Trott et al. [197]. The population attributes (proportion of adults, number of
hospitals) and infection dynamics (random testing rate, infection rate) are based on data
from Austin, Texas.

Every day, the environment simulates the infection dynamics and reports testing results
to the agent, but not the true infection numbers. The policy chooses one of three discrete
actions: increase, decrease, or maintain the current regulation stage, which directly
affects the behavior of the population and indirectly affects the infection dynamics. There
are five stages in total.

Atari Riverraid. The Atari Riverraid environment is run on OpenAI Gym [37]. The
agent operates a plane which flies over a river and is rewarded by destroying enemies. The
agent observes the raw pixel input of the environment. The agent can take one of eighteen
discrete actions, corresponding to either movement or shooting within the environment.

Glucose Monitoring. The glucose environment, implemented in Fox et al. [78], is a con-
tinuous control problem. It extends a FDA-approved simulator [139] for blood glucose levels
of a patient with Type 1 diabetes. The patient partakes in meals and wears a continuous
glucose monitor (CGM), which gives noisy observations of the patient’s glucose levels. The
RL agent administers insulin to maintain a healthy glucose level.

Every five minutes, the agent observes the patient’s glucose levels and decides how much
insulin to administer. The observation space is the previous four hours of glucose levels and
insulin dosages.

Misspecifications

Using the above environments, we constructed nine instances of misspecified proxy rewards.
To help interpret these proxies, we taxonomize them as instances of misweighting, incorrect
ontology, or incorrect scope. We elaborate further on this taxonimization using the traffic
example from Figure 5.1.

• Misweighting. Suppose that the true reward is a linear combination of commute time
and acceleration (for reducing carbon emissions). Downweighting the acceleration term
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Env. Type Objective Proxy Misalign? Transition?

Traffic

Mis.
minimize commute
and accelerations

underpenalize acceleration No No
Mis. underpenalize lane changes Yes Yes
Ont. velocity replaces commute Yes Yes
Scope monitor velocity near merge Yes Yes

COVID
Mis. balance economic,

health, political cost
underpenalize health cost No No

Ont. ignore political cost Yes Yes

Atari
Mis. score points under

smooth movement
downweight movement No No

Ont. include shooting penalty No No

Glucose Ont. minimize health risk risk in place of cost Yes No

Table 5.1. Reward misspecifications across our four environments. ‘Misalign’ indicates
whether the true reward drops and ‘Transition’ indicates whether this corresponds to a
phase transition (sharp qualitative change). We observe 5 instances of misalignment and
4 instances of phase transitions. ‘Mis.’ is a misweighting and ’Ont.’ is an ontological
misspecification.

thus underpenalizes carbon emissions. In general, misweighting occurs when the proxy
and true reward capture the same desiderata, but differ on their relative importance.

• Ontological. Congestion could be operationalized as either high average commute time
or low average vehicle velocity. In general, ontological misspecification occurs when the
proxy and true reward use different desiderata to capture the same concept.

• Scope. If monitoring velocity over all roads is too costly, a city might instead monitor
them only over highways, thus pushing congestion to local streets. In general, scope
misspecification occurs when the proxy measures desiderata over a restricted domain
(e.g. time, space).

We include a summary of all nine tasks in Table 5.1 and provide full details in Appendix D.1.
Table 5.1 also indicates whether each proxy leads to misalignment (i.e. to a policy with low
true reward) and whether it leads to a phase transition (a sudden qualitative shift as model
capacity increases). We investigate both of these in Section 5.3.

Evaluation protocol. For each environment and proxy-true reward pair, we train an
agent using the proxy reward and evaluate performance according to the true reward. We use
PPO [174] to optimize policies for the traffic and COVID environments, SAC [97] to optimize
the policies for the glucose environment, and torchbeast [128], a PyTorch implementation
of IMPALA [72], to optimize the policies for the Atari environment. When available, we
adopt the hyperparameters (except the learning rate and network size) given by the original
codebase.
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(a) Traffic - Ontological (b) COVID - Ontological (c) Glucose - Ontological

Figure 5.2. Increasing the RL policy’s model size decreases true reward on three selected
environments. The red line indicates a phase transition.

5.3 How Agent Optimization Power Drives

Misalignment

To better understand reward hacking, we study how it emerges as agent optimization power
increases. We define optimization power as the effective search space of policies the agent
has access to, as implicitly determined by model size, training steps, action space, and
observation space.

In Section 5.3, we consider the quantitative effect of optimization power for all nine
environment-misspecification pairs; we primarily do this by varying model size, but also
use training steps, action space, and observation space as robustness checks. Overall, more
capable agents tend to overfit the proxy reward and achieve a lower true reward. We also find
evidence of phase transitions on four of the environment-misspecification pairs. For these
phase transitions, there is a critical threshold at which the proxy reward rapidly increases
and the true reward rapidly drops.

In Section 5.3, we further investigate these phase transitions by qualitatively studying
the resulting policies. At the transition, we find that the quantitative drop in true reward
corresponds to a qualitative shift in policy behavior. Extrapolating visible trends is therefore
insufficient to catch all instances of reward hacking, increasing the urgency of research in
this area.

In Section 5.3, we assess the faithfulness of our proxies, showing that reward hacking
occurs even though the true and proxy rewards are strongly positively correlated in most
cases.

Quantitative Effects vs. Agent Capabilities

As a stand-in for increasing agent optimization power, we first vary the model capacity for
a fixed environment and proxy reward. Specifically, we vary the width and depth of the
actor and critic networks, changing the parameter count by two to four orders of magnitude
depending on the environment. For a given policy, the actor and critic are always the same
size.
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Model Capacity. Our results are shown in Figure 5.2, with additional plots included
in Appendix D.1. We plot both the proxy (blue) and true (green) reward vs. the number
of parameters. As model size increases, the proxy reward increases but the true reward
decreases. This suggests that reward designers will likely need to take greater care to specify
reward functions accurately and is especially salient given the recent trends towards larger
and larger models [134].

The drop in true reward is sometimes quite sudden. We call these sudden shifts phase
transitions, and mark them with dashed red lines in Figure 5.2. These quantitative trends
are reflected in the qualitative behavior of the policies (Section 5.3), which typically also
shift at the phase transition.

Model capacity is only one proxy for agent capabilities, and larger models do not always
lead to more capable agents [11]. To check the robustness of our results, we consider several
other measures of optimization: observation fidelity, number of training steps, and action
space resolution.

Number of training steps. Assuming a reasonable RL algorithm and hyperparameters,
agents which are trained for more steps have more optimization power. We vary training
steps for an agent trained on the Atari environment. The true reward incentivizes staying
alive for as many frames as possible while moving smoothly. The proxy reward misweights
these considerations by underpenalizing the smoothness constraint. As shown in Figure 5.3a,
optimizing the proxy reward for more steps harms the true reward, after an initial period
where the rewards are positively correlated.

Action space resolution. Intuitively, an agent that can take more precise actions is
more capable. For example, as technology improves, an RL car may make course corrections
every millisecond instead of every second. We study action space resolution in the traffic

(a) Atari - Misweighting (b) Traffic - Ontological (c) COVID - Ontological

Figure 5.3. In addition to parameter count, we consider three other agent capabilities:
training steps, action space resolution, and observation noise. In Figure 5.3a, an increase
in the proxy reward comes at the cost of the true reward. In Figure 5.3b, increasing the
granularity (from right to left) causes the agent to achieve similar proxy reward but lower
true reward. In Figure 5.3c, increasing the fidelity of observations (by increasing the random
testing rate in the population) tends to decrease the true reward with no clear impact on
proxy reward.
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environment by discretizing the output space of the RL agent. Specifically, under resolution
level ε, we round the action a ∈ R output by the RL agent to the nearest multiple of ε
and use that as our action. The larger the resolution level ε, the lower the action space
resolution. Results are shown in Figure 5.3b for a fixed model size. Increasing the resolution
causes the proxy reward to remain roughly constant while the true reward decreases.

Observation fidelity. Agents with access to better input sensors, like higher-resolution
cameras, should make more informed decisions and thus have more optimization power.
Concretely, we study this in the COVID environment, where we increase the random testing
rate in the population. The proxy reward is a linear combination of the number of infections
and severity of social distancing, while the true reward also factors in political cost. As
shown in Figure 5.3c, as the testing rate increases, the model achieves similar proxy reward
at the cost of a slightly lower true reward.

Qualitative Effects

In the previous section, quantitative trends showed that increasing a model’s optimization
power often hurts performance on the true reward. We shift our focus to understanding
how this decrease happens. In particular, we typically observe a qualitative shift in behavior
associated with each of the phase transitions, three of which we describe below.

Traffic Control. We focus on the Traffic-Mer environment from Figure 5.2a, where min-
imizing average commute time is replaced by maximizing average velocity. In this case,
smaller policies learn to merge onto the straightaway by slightly slowing down the other ve-
hicles (Figure 5.4a). On the other hand, larger policy models stop the AVs to prevent them
from merging at all (Figure 5.4b). This increases the average velocity, because the vehicles
on the straightaway (which greatly outnumber vehicles on the on-ramp) do not need to slow
down for merging traffic. However, it significantly increases the average commute time, as
the passengers in the AV remain stuck.

(a) Traffic policy of smaller network (b) Traffic policy of larger network

Figure 5.4. The larger model prevents the AVs (in red) from moving to increase the
velocity of the human cars (unobserved cars in white and observed cars in blue). However,
this greatly increases the average commute per person.
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Figure 5.5. For COVID, ICU usage is a proxy for public health and regulation stage is
a proxy for economic health. The blue line indicates the maximum stage (right) enforced
by the larger policy and the corresponding ICU level (left) at that stage. The red line is
the equivalent for the smaller policy. Because the larger policy enforces regulations much
sooner than the smaller policy, it maintains both low ICU usage and low regulation stage.
However, the larger policy is politically unfavorable: regulations are high even though public
signs of infection, such as ICU usage, are low.

COVID Response. Suppose the RL agent optimizes solely for the public and economic
health of a society, without factoring politics into its decision-making. This behavior is
shown in Figure 5.5. The larger model chooses to increase the severity of social distancing
restrictions earlier than the smaller model. As a result, larger models are able to maintain low
average levels of both ICU usage (a proxy for public health) and social distancing restrictions
(a proxy for economic health). These preemptive regulations may however be politically
costly, as enforcing restrictions without clear signs of infection may foment public unrest [30].

Atari Riverraid. We create an ontological misspecification by rewarding the plane for
staying alive as long as possible while shooting as little as possible: a “pacifist run”. We
then measure the game score as the true reward. We find that agents with more parameters
typically maneuver more adeptly. Such agents shoot less frequently, but survive for much
longer, acquiring points (true reward) due to passing checkpoints. In this case, therefore,
the proxy and true rewards are well-aligned so that reward hacking does not emerge as
capabilities increase.

We did, however, find that some of the agents exploited a bug in the simulator that halts
the plane at the beginning of the level. The simulator advances but the plane itself does not
move, thereby achieving high pacifist reward.

Glucose Monitoring. Consider an RL agent that optimizes solely for a patient’s health,
without considering the economic costs of its treatment plans. In this case, the proxy reward
is based off of a glycemic risk measure, which reflects the likelihood that a patient will suffer
an acute hypoglycemic episode, developed by the medical community [124].

However, a less economically-privileged patient may opt for the treatment plan with the
least expected cost [104, 79], not the one with the least amount of risk. From this patient’s
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(a) Traffic-Mer - Space (b) Correlation for Figure 5.6a

Figure 5.6. Correlations between the proxy and true rewards, along with the reward
hacking induced. In Figure 5.6a, we plot the proxy reward with “•” and the true reward
with “×”. In Figure 5.6b, we plot the trained checkpoint correlation and the early checkpoint
correlation.

perspective, the true reward is the expected cost of the treatment plan, which includes the
expected cost of hospital visits and the cost of administering the insulin.

Although larger model treatments reduce hypoglycemic risk more smaller model treat-
ments, they administer more insulin. Based on the average cost of an ER visit for a hyp-
ogylcemic episode ($1350 from Bronstone and Graham [39]) and the average cost of a unit
of insulin ($0.32 from Lee [131]), we find that it is actually more expensive to pursue the
larger model’s treatment.

Quantitative Effects vs Proxy-True Reward Correlation

We saw in Sections 5.3 and 5.3 that agents often pursue proxy rewards at the cost of the true
reward. Perhaps this only occurs because the proxy is greatly misspecified, i.e., the proxy and
true reward are weakly or negatively correlated. If this were the case, then reward hacking
may pose less of a threat. To investigate this intuition, we plot the correlation between the
proxy and true rewards.

The correlation is determined by the state distribution of a given policy, so we consider
two types of state distributions. Specifically, for a given model size, we obtain two check-
points: one that achieves the highest proxy reward during training and one from early in
training (less than 1% of training complete). We call the former the “trained checkpoint”
and the latter the “early checkpoint”.

For a given model checkpoint, we calculate the Pearson correlation ρ between the proxy
reward P and true reward T using 30 trajectory rollouts. Reward hacking occurs even though
there is significant positive correlation between the true and proxy rewards (see Figure 5.6).
The correlation is lower for the trained model than for the early model, but still high.
Further figures are shown in Appendix D.1. Among the four environments tested, only the
Traffic-Mer environment with ontological misspecification had negative Pearson correlation.
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5.4 Polynomaly: Mitigating reward misspecification

In Section 5.3, we saw that reward hacking often leads to phase transitions in agent behaviour.
Furthermore, in applications like traffic control or COVID response, the true reward may
be observed only sporadically or not at all. Blindly optimizing the proxy in these cases can
lead to catastrophic failure [223, 191].

This raises an important question: Without the true reward signal, how can we mitigate
misalignment? We operationalize this as an anomaly detection task: the detector should
flag instances of misalignment, thus preventing catastrophic rollouts. To aid the detector,
we provide it with a trusted policy : one verified by humans to have acceptable (but not
maximal) reward. Our resulting benchmark, Polynomaly, is described below.

Problem Setup

We train a collection of policies by varying model size on the traffic and COVID environments.
For each policy, we estimate the policy’s true reward by averaging over 5 to 32 rollouts. One
author labeled each policy as acceptable, problematic, or ambiguous based on its true reward
score relative to that of other policies. We include only policies that received a non-ambiguous
label.

For both environments, we provide a small-to-medium sized model as the trusted policy
model, as Section 5.3 empirically illustrates that smaller models achieve reasonable true re-
ward without exhibiting reward hacking. Given the trusted model and a collection of policies,
the anomaly detector’s task is to predict the binary label of “acceptable” or “problematic”
for each policy.

Table D.1 in Appendix D.2 summarizes our benchmark. The trusted policy size is a list
of the hidden unit widths of the trusted policy network (not including feature mappings).

Evaluation

We propose two evaluation metrics for measuring the performance of our anomaly detectors.

• Area Under the Receiver Operating Characteristic (AUROC). The AUROC measures the
probability that a detector will assign a random anomaly a higher score than a random
non-anomalous policy [62]. Higher AUROCs indicate stronger detectors.

• Max F-1 score. The F-1 score is the harmonic mean of the precision and the recall, so
detectors with a high F-1 score have both low false positives and high true negatives. We
calculate the max F-1 score by taking the maximum F-1 score over all possible thresholds
for the detector.
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Baselines

In addition to the benchmark datasets described above, we provide baseline anomaly de-
tectors based on estimating distances between policies. We estimate the distance between
the trusted policy and the unknown policy based on either the Jensen-Shannon divergence
(JSD) or the Hellinger distance. Specifically, we use rollouts to generate empirical action
distributions. We compute the distance between these action distributions at each step of
the rollout, then aggregate across steps by taking either the mean or the range. For full
details, see Appendix D.2. Table 5.2 reports the AUROC and F-1 scores of several such
detectors. We provide full ROC curves in Appendix D.2.

Baseline Detectors Mean Jensen-Shannon Mean Hellinger Range Hellinger

Env. - Misspecification AUROC Max F-1 AUROC Max F-1 AUROC Max F-1

Traffic-Mer - misweighting 81.0% 0.824 81.0% 0.824 76.2% 0.824
Traffic-Mer - scope 74.6% 0.818 74.6% 0.818 57.1% 0.720

Traffic-Mer - ontological 52.7% 0.583 55.4% 0.646 71.4% 0.842
Traffic-Bot - misweighting 88.9% 0.900 88.9% 0.900 74.1% 0.857

COVID - ontological 45.2% 0.706 59.5% 0.750 88.1% 0.923

Table 5.2. Performance of detectors on different subtasks. Each detector has at least one
subtask with AUROC under 60%, indicating poor performance.

We observe that different detectors are better for different tasks, suggesting that future
detectors could do better than any of our baselines. Our benchmark and baseline provides
a starting point for further research on mitigating reward hacking.

5.5 Discussion

In this work, we designed a diverse set of environments and proxy rewards, uncovered several
instances of phase transitions, and proposed an anomaly detection task to help mitigate these
transitions. Our results raise two questions: How can we not only detect phase transitions,
but prevent them in the first place? And how should phase transitions shape our approach
to safe ML?

On preventing phase transitions, anomaly detection already offers one path forward. Once
we can detect anomalies, we can potentially prevent them, by using the detector to purge
the unwanted behavior (e.g. by including it in the training objective). Similar policy shaping
has recently been used to make RL agents more ethical [103]. However, since the anomaly
detectors will be optimized against by the RL policy, they need to be adversarially robust [93].
This motivates further work on adversarial robustness and adversarial anomaly detection.
Another possible direction is optimizing policies against a distribution of rewards [40, 113],
which may prevent over-fitting to a given set of metrics.
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Regarding safe ML, several recent papers propose extrapolating empirical trends to fore-
cast future ML capabilities [115, 105, 68], partly to avoid unforeseen consequences from ML.
While we support this work, our results show that trend extrapolation alone is not enough
to ensure the safety of ML systems. To complement trend extrapolation, we need better
interpretability methods to identify emergent model behaviors early on, before they dom-
inate performance [154]. ML researchers should also familiarize themselves with emergent
behavior in self-organizing systems [217], which often exhibit similar phase transitions [10].
Indeed, the ubiquity of phase transitions throughout science suggests that ML researchers
should continue to expect surprises–and should therefore prepare for them.
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Chapter 6

Reward learning as doubly
nonparametric bandits

6.1 Introduction

Specifying the reward function accurately for a desired objective, or reward engineering, is
challenging to perform by hand, as the consequences of even small errors can be drastic [98].
To address this, reward learning seeks to learn a predictive model of the reward function from
data, which is obtained from carefully selected queries to human annotators. The learned
reward model is then used as the optimization objective for policy learning. Reward learning
has achieved significant empirical success in domains such as text summarization [187, 31],
robot locomotion [60], predicting driving styles [126], and Atari game playing [57].

Despite their success, reward learning methods still lack theoretical grounding. Moreover,
their behavior can be brittle even on simple tasks, due to the difficulty of choosing appropriate
queries and due to feedback loops from adaptive querying [80]. Indeed, an ablation study
in Christiano et al. [57] suggests that random queries can outperform or be competitive with
adaptive query procedures. To address these issues, we provide a theoretical framework
for analyzing reward learning, framing it as a doubly nonparametric experimental design
problem. This framework helps elucidate the role of query selection [47] and also enables
us to derive scaling laws—how the sizes of the policy and reward models affect the query
complexity—for reward learning [116].

Proposed framework. In our framework, we suppose we are given a reward class Cr

and policy class Cπ. Our goal is to find a policy π̂ ∈ Cπ that performs well according to
an unknown true reward r∗ ∈ Cr. To do this, we query policies π ∈ Cπ, observing noisy
estimates of their true reward, and use this information to choose the eventual policy π̂.

To be compatible with modern nonparametric learning methods (i.e. neural nets), we
view Cr and Cπ as subsets of Reproducing Kernel Hilbert Spaces (RKHS). A salient feature
of our proposed framework is that the learner therefore optimizes a nonparametric reward
function over a nonparametric space of policies, making the task “doubly” nonparametric.
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In contrast, previous work considers a nonparametric function class or reward class, but
typically not both. For instance, nonparametric zeroth order or bandit optimization [185,
146, 211] considers a nonparametric function on a finite-dimensional input space. Con-
versely, nonparametric supervised learning [208, 107] minimizes a known loss function over
a nonparametric input space.

The doubly nonparametric nature of our task poses new challenges. The (possibly)
infinite-dimensional RKHS requires the learner to select which subspace to explore given a
finite number of queries. Furthermore, the unknown reward function makes it challenging
for the learner to reason about the information gained from the selected query policies. We
address these challenges by deriving a risk upper bound for a family of plug-in estimators
based on ridge regression, and then optimizing this bound to solve the optimal design task.
Our results show that the quality of the output policy depends on how well the query set Q
is aligned with the eigenfunctions of the policy space.

In addition to the optimal design problem, our framework allows us to study scaling laws
with respect to the reward (or policy) class by varying the rate of decay of their corresponding
eigenspectrum. This decay rate determines the effective dimensionality of a RKHS [222], and
provides a natural proxy for varying the the size of the reward or policy class. Qualitatively,
our main results show that the excess risk asymptotically vanishes as long as the policy class
grows at a slower rate relative to the reward class.

Sharpness of analysis. Our risk bounds apply to reward and policy classes of arbitrary
or even infinite dimensionality. Despite this generality, we show they provide stronger guar-
antees than previous bounds for the specialized settings of compact policy sets and kernel
multi-armed bandits.

In Section 6.4, we look at a special case of our problem when the policy set Cπ is a
compact subspace and thus has finite rank. For these instances, we show that our learning

algorithm obtains a better excess risk O(n− β
β+2 ) versus a rate of O(n− β−1

2(β+1) ) obtained by the
adaptive GP-UCB algorithm [185], where β > 0 is a power law decay rate.

In Section 6.5, we specialize our general results to the well-studied problem of Gaus-
sian process bandit optimization [212], also known as kernel multi-armed bandit (MAB).
Specifically, for the class of Matérn kernels with parameter ν in d dimensions, we show

that our algorithm achieves a regret bound of Õ(T
4ν+d(4d+6)
6ν+d(4d+7) ) which is strictly better than

those achieved by the GP-UCB and GP-Thompson Sampling (GP-TS) [55] algorithms and
comparable with π-GP UCB [112] and supKernelUCB [203, 201]; see Table 6.1 for details.
GP-UCB and GP-TS are only yield sub-linear regret bounds when the smoothness of the
kernel ν > d2—thus in high dimensions, these bounds essentially become vacuous. The π-GP
UCB algorithm was designed specifically to overcome this issue. Our proposed algorithm
achieves sublinear regret for all ν > 3/2.

Our Contributions. We propose doubly-nonparametric bandits as a framework for
theoretically studying the reward learning problem. Within this framework, we obtain finite
sample risk bounds for a ridge regression based plug-in estimator and derive scaling laws for
reward learning. From a technical standpoint, we study the optimal design problem for our
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estimator to select informative query points by showing that the excess risk depends only on
the spectral properties of a certain operator of the two RKHSs and the empirical covariance
matrix. As a corollary of our risk bounds, we provide sharper regret bounds for a class of
kernel MAB problems compared to several existing algorithms, showing that the doubly-
nonparametric lens of reward learning is fruitful even for “singly-nonparametric” tasks. To
obtain these bounds, our reduction carefully constructs two different RKHSs to embed the
input space and reward function into a policy and reward class.

6.2 Framework: Doubly nonparametric Bandits

Our framework considers non-parametric policy learning with non-parametric reward models.
We let π ∈ Hπ denote an arbitrary policy and r ∈ Hr denote an arbitrary reward function,
where Hπ and Hr are Reproducing Kernel Hilbert Spaces. For technical reasons, we assume
the corresponding kernel functions Kπ and Kr both satisfy the Hilbert-Schmidt condition
(see Appendix E.1 for details).

We let F (π, r) ∈ R denote the reward obtained by selecting policy π under reward
function r and consider the case where the evaluation functional F is linear in both π and r.
In other words, F (π, r) = ⟨r,Mπ⟩Hr where M : Hπ 7→ Hr is a known linear mapping from
the policy space to the reward space. Since Hπ and Hr may be infinite-dimensional, linearity
is only a weak restriction–e.g. the map f 7→ f(x) is linear in f for any RKHS.

To incorporate problem structure, we let r∗ denote the true reward function and assume
that r∗ ∈ Cr for some known set Cr ⊆ Hr such that ∥r∗∥Hr = 1. We further assume that
policies π are restricted to lie in some Cπ which is a subset of the unit ball in Hπ (for instance,
Cπ might incorporate physical constraints on implementable policies). Thus, given the true
reward r∗, the optimal policy (for a compact Cπ) is π

∗ ∈ argmaxπ∈Cπ
F (π, r∗). This proposed

framework, which allows for infinite-dimensional policy as well as reward classes, allows us
to study how both the policy and reward space affect the difficulty of learning.

Query access to reward r∗. The true reward function r∗ is unknown to the learner but
is accessible via queries to an oracle (e.g. a human expert), which provide noisy zeroth-order
(or bandit) evaluations of the reward r∗. When queried with a policy π ∈ Cπ, the oracle
provides a response

Oracle Or∗ : π 7→ F (π, r∗) + ϵ with ϵ ∼ N (0, τ 2) , (6.1)

with τ 2 denoting the variance of the response. There are two possible query models: passive
queries [15, 176], where the learner selects all queries at the same time, and active queries [42,
130], where the learner is allowed to select queries sequentially. Our focus in this work will
be on the passive query model, but in many cases we will outperform existing active query
algorithms.

Problem statement. Given passive access to the oracle Or∗ , the objective of the learner
is to output a policy π̂ ∈ Cπ that has small excess risk ∆, defined as

∆(π̂; r∗) : = F (π∗, r∗)− F (π̂, r∗) . (6.2)
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We think of queries to the oracle as expensive, and are interested in achieving low excess
risk with as few queries as possible. This notion of excess risk is also studied by the term
simple regret in pure exploration bandit problems [130].

Representations in ℓ2(N). By Mercer’s theorem, we can represent any RKHS as a
subset of ℓ2(N). Formally, the policy and the reward spaces are isomorphic to the ellipsoids

Hπ : =


∞∑
j=1

κπ,jϕπ,j

∣∣∣ (κπ,j)∞j=1 ∈ ℓ2(N) with
∞∑
j=1

κ2π,j
µ2
π,j

< ∞


Hr : =


∞∑
j=1

κr,jϕr,j

∣∣∣ (κr,j)∞j=1 ∈ ℓ2(N) with
∞∑
j=1

κ2r,j
µ2
r,j

< ∞

 , F

for appropriately chosen eigenfunctions ϕπ,j and ϕr,j, and corresponding eigenvalues µπ,j

and µr,j [209]. These are defined with respect to a base measure P over the input domain;
see Appendix E.1 for details. With a slight abuse of notation, going forward, we will use
π and r to denote the corresponding coefficients (κπ,j) and (κr,j) in the expansion above. 1

With this, the inner products associated with Hπ and Hr simplify

⟨π1, π2⟩Hπ : =
∞∑
j=1

π1,jπ2,j

µπ,j

and ⟨r1, r2⟩Hr : =
∞∑
j=1

r1,jr2,j
µr,j

. (6.3)

Also let Sr : = diag(µ−1
r,j ) and Sπ : = diag(µ−1

π,j) be diagonal matrices comprising the inverse
of the eigenvalues of Hr and Hπ. With this notation, if we view the map M as a (infinite-
dimensional) matrix, its Hermitian adjoint2 is equal to M∗ = S−1

π M⊤Sr.
In order for the evaluation functional g(π, r∗) to be finite for all π ∈ Hπ, the operator

norm ∥S
1
2
r MS

− 1
2

π ∥op must be bounded (see Appendix E.1). We will see later that the decay
of this operator’s singular values is closely related to the difficulty of learning in our setting.

6.3 Algorithm: Policy Learning via Reward Learning

Given the setup above, we now describe a meta-algorithm, policy learning via reward learning
(Algorithm 3), for the non-parametric policy learning problem. The algorithm is a three-
stage procedure: it (i) selects a subset of policies Q to query for reward feedback, (ii) uses
the responses to learn a reward estimate r̂, and (iii) optimizes this learnt estimate to output
the policy π̂plug, that is, π̂plug ∈ argminπ∈Cπ

⟨r̂,Mπ⟩Hr . Such general plug-in procedure have
been studied in the statistics [204] and the machine learning [63] literature. We analyze the
excess risk of this estimator for our doubly-nonparametric setup and use this risk bound to
select our query set Q. We now discuss the two key design choices in our algorithm: the
choice of the reward estimation procedure as well as the choice of query set Q.

1While the eigenfunctions ϕπ and ϕr can be different, this representation can still be used by modifying
the map M appropriately. This is detailed in Appendix E.1.

2Recall the Hermitian adjoint of M satisfies ⟨r,Mπ⟩Hr = ⟨M∗r, π⟩Hπ
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Algorithm 3: Policy Learning via Reward Learning

Input: Number of queries n, policy set Cπ, oracle Or∗

Select n policies Q = {π1, . . . , πn} and receive noisy reward evaluations yi = Or∗(πi).
Estimate r̂ using observed responses {(π1, y1), . . . , (πn, yn)} using ridge
regression (6.4).
Obtain plug-in policy π̂plug ∈ argmaxπ∈Cπ

F (π, r̂).
Output: Policy π̂plug

Reward learning via ridge regression. We estimate the reward r̂ via ridge regression
in the RKHS Hr [81, 183]. Suppose that in the first step of the algorithm, we have already
queried the oracle on n policies and let {(πi, yi)}ni=1 represent the query-response pairs. For
a regularization parameter λreg > 0, the ridge regression estimate of the reward function is

r̂ ∈ argmin
r∈Hr

1

n

n∑
i=1

(yi − ⟨r,Mπi⟩Hr)
2 + λreg∥r∥2Hr

. (6.4)

The parameter λreg, which is usually set as a function of n, controls the bias-variance trade-off
in estimating r∗—smaller values of λreg reduce bias while larger values help reduce variance.

Excess risk bound for fixed query set. Observe that the plug-in estimator π̂plug(Q) is
implicitly a function of the query setQ. Ideally, we want to choose the setQ which minimizes
the expected risk of the plugin estimator. This requires us to solve the optimization problem

Q = argmin
S:|S|≤n

E[∆(π̂plug(S); r
∗)] . (6.5)

However, solving the above precisely requires knowledge about the underlying reward func-
tion r∗, and the combinatorial nature of the optimization problem makes it hard to find an
exact solution. To address this, we first upper bound the excess risk of the plug-in policy
π̂plug in terms of the query set Q = {π1, . . . , πn}. The following theorem3 bounds the excess
risk in terms of the spectrum of the spaces Hr and Hπ, as well as the covariance matrix of
the queried policies ΣQ : = 1

n

∑
π∈Q ππ⊤.

Theorem 6.1 (Excess risk of plug-in). For any query set Q consisting of n policies and
regularization parameter λreg > 0, the excess risk of the plug-in estimator π̂plug is upper
bounded as

E[∆(π̂plug; r
∗)] ≤ 2E[∥M∗(r∗ − r̂)∥Hπ ] . (6.6)

In addition, letting A = MΣQM
⊤Sr + λregI, the expected squared distance is equal to

E[∥M∗(r∗ − r̂)∥2Hπ
] = λ2

reg · ∥M∗A−1r∗∥2Hπ
+

τ 2

n
· tr
[
Sπ(M

∗A−1M)ΣQ(M
∗A−1M)⊤

]
. (6.7)

3Throughout the paper, for clarity purposes, we denote by c a universal constant whose value changes
across lines. All our proofs in the appendices explicitly track this constant.



CHAPTER 6. REWARD LEARNING AS DOUBLY NONPARAMETRIC BANDITS 75

The proof follows a standard analysis of ridge regression and is deferred to Appendix E.2.
Observe that in the above theorem, the query set π ∈ Q participates in the excess risk only
via the covariance ΣQ. The risk bound is the sum of two term: the first corresponding to the
bias and the second corresponding to the variance. In both these terms, ΣQ appears as part
of A−1—thus query sets Q which induce a larger correlation with the map M will generally
have lower excess risk. Choices of queries which are orthogonal to the right singular vectors
of M will have a constant excess risk, since for those directions the matrix A ≈ λregI.

As shown later in the appendix, in the special case when the policy set consists of the
entire unit ball Cπ = {π ∈ Hπ | ∥π∥Hπ ≤ 1}, the excess risk bound can be improved
by a quadratic factor E[∆(π̂plug; r

∗)] ≤ O
(
∥M∗(r∗ − r̂)∥2Hπ

)
. Such a phenomenon was first

observed in the finite-dimensional setup by [170].

6.4 Query selection and statistical guarantees

We now show how to select the query set Q effectively and study the excess risk of the
corresponding plug-in estimator π̂plug obtained via this query set. We will start with the
special case where the policy set Cπ is the unit ball in Hπ and the map M is diagonal, and
then generalize to arbitrary policy sets. In both cases, low excess risk can be achieved by
repeatedly querying (approximations of) the projections of top eigenvectors of M∗M onto
the Hπ space. For the special case when the map M is diagonal, this is reduces to querying
the top eigenvectors of Hπ.

The excess risk will ultimately depend on the the eigenspectrum of the operator S
− 1

2
π M⊤SrMS

− 1
2

π ,
which is similar to the operator M∗M . Additionally, to interpret our results, we instantiate

them for a power law spectrum with exponent β > 0, that is, σj(S
− 1

2
π M⊤SrMS

− 1
2

π ) ≍ j−β ,
where σj corresponds to the j

th singular value of the corresponding operator. Such power law
spectra have been observed in a variety of practical settings, for instance, in the spectrum
of Hessian of trained deep neural networks [90].

Warm-up: Cπ = unit ball, M = diagonal

In order to get some intuition, we study the special case where the policy set Cπ consists of
the entire unit ball in the space Hπ and the map M is diagonal with M = diag(νj). Further,

let us denote the operator M̃ = S
1/2
r MS

−1/2
π .

For this special case, our sampling algorithm (Algorithm 4) simply selects the top J
eigenvectors of the space Hπ to query, for some value J which depends on the decay exponent
β. To see why, observe that for a diagonal map M , the right singular vectors of the operator
M̃ are the same as the eigenvectors of the policy space Hπ. Therefore, the choice of policy
πj in our algorithm is simply the scaled eigenfunction

√
µπ,j · ϕπ,j. Having selected these J

queries, the algorithm queries each one of the n
J
times and uses this as query set Q.

The intuition for this choice of query set Q is that since we are in the passive setup with
no knowledge of r∗, any policy π ∈ Cπ can be an optimal policy. By querying the top J ones
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out of these, we can obtain a good enough approximation to the performance of any policy
in the unit ball. The particular choice of the parameter J depends on the number of queries
n available. Since the oracle responses are noisy, to reduce variance in the responses along
those directions, our algorithm performs multiple queries along the same direction.

If we further consider the special case when the policies and rewards correspond to the
unit balls in the finite dimensional spaces Rdπ and Rdr respectively, our choice of query set
queries the directions {ei}dπi=1, each for J = n

dπ
number of times. Intuitively, this strategy

works well because without any prior over the unknown reward function, the optimal strategy
in the passive setup is to explore all directions equally and this is precisely our set of chosen
queries. This simple query strategy enjoys the following excess risk bound.

Proposition 6.1 (Risk bound for Cπ = unit ball.). For any J ≤ n and regularization pa-
rameter λreg > 0, consider the plug-in estimator obtained via the passive sampling algorithm
which explores the first J eigenfunctions of Hπ. The excess risk satisfies

E[∆(π̂plug; r
∗)] ≤ c ·

(
1 +

τ 2

nλ2
reg

)
·max

{
sup
j≤J

λ2
regJ

2ζj

ζ2j + λ2
regJ

2
, sup
j>J

ζj

}
,

where the quantity ζj =
ν2j µπ,j

µr,j
and c > 0 is some universal constant.

We defer the proof of the above proposition to Appendix E.2. The choice of the ex-
ploration parameter J allows us to trade-off between the two terms inside the maximum.
Typically, the second term will be maximized at j = J+1. For the first term, the supremum
depends on the choice of λreg — for small values of λreg, the sup is achieved at j = 1 while
for larger values, it is achieved at j = J . In order to gain more intuition about this bound,
we instantiate this for the power law decay.

Corollary 6.1 (Risk bound for power-law decay). Suppose that eigenvalues of the police
space Hπ decay as j−βπ , reward space Hr as j−βr and the singular values of map M as
j−βM . This satisfies the power law assumption with exponent β = βπ +βM −βr. The plug-in

estimator with exploration parameter J = n
1

β+2 and regularization λreg = n−β+1
β+2 satisfies

E[∆(π̂plug; r
∗)] ≤ cn− β

β+2 .

The proof of the corollary upper bounds the risk bound with the specific choices of J
and λreg. The above bound shows that our algorithm can learn in the framework as long as
β > 0 or equivalently βπ + βM > βr, with better rates for larger values of β. Thus, for a
fixed size of reward class βr, the learning rate improves as the policy class grows smaller (βπ

increases) – this is intuitive since we are required to search over a smaller policy space. On
the other hand, for a fixed policy class βπ, our excess risk rate gets better as the reward class
grows in size (βr increases) – this is because a larger set of reward functions have similar
optimal policies and hence learning gets easier.
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Algorithm 4: Passive querying strategy

Input: Number of queries n, map M , policy set Cπ, exploration parameter J

Construct linear map M̃ = S
1
2
r MS

− 1
2

π and compute eigenvectors {ϕM̃,j}j of M̃⊤M̃

Set policy πj = ΦπS
− 1

2
π Φ⊤

π ϕM̃,j for all j ≤ J

Obtain policy π̃j ∈ Cπ such that π̃jπ̃
⊤
j ⪰ cππjπ

⊤
j

Form query set Q = {π̃(n/J)
1 , . . . , π̃

(n/J)
nα } where a(b) = {a, . . . , a}} repeated b times

Output: Query set Q

General policy sets

We now describe our choice of query sets Q for general policy sets Cπ. Our strategy, de-
scribed in Algorithm 4, differs from the above special case in that we need to take into
account the interaction of the policy space Hπ with the map M . Specifically, we show in
Appendix E.2 that the upper bound in Theorem 6.1 can be diagonalized for this general case
via a transformation.

Let us denote the operator M̃ = S
1/2
r MS

−1/2
π . Our transformation reveals that the relevant

directions to query for this general case corresponds to the columns of ΦπS
−1/2
π Φ⊤

π VM where ,
then VM are the eigenvectors of the self-adjoint operator M̃⊤M̃ – and it is precisely a subset
of these directions that our algorithm queries.

In order to be able to query these policies, we require the set Cπ to contain some policies
which align well with them. We formally state this regularity assumption below.

Assumption 6.1 (Regularity assumption on Cπ). For any eigenfunction ϕM̃,j of the operator

M̃⊤M̃ , consider the policy πj = ΦπS
−1/2
π Φ⊤

π ϕM̃,j. There exists a policy π̃j in policy set Cπ

such that for some constant cπ > 0, we have π̃jπ̃
⊤
j ⪰ cππjπ

⊤
j .

The above assumption requires that for every choice of the policy πj in Algorithm 4, the
set Cπ has the another policy π̃j which is collinear with it. This assumption can be relaxed
in various ways (for instance via convexification) but we omit this as it is not needed for our
results. Given this assumption, the following theorem, a generalization of Proposition 6.1,
provides a bound on the excess risk for the plug-in estimate for general policy sets Cπ.

Theorem 6.2 (Risk bound for general policy sets Cπ.). For any J ≤ n, regularization
parameter λreg > 0 and set Cπ satisfying Assumption 6.1, let π̂plug be the estimator output
by Algorithm 3. The squared excess risk satisfies

(E[∆(π̂plug; r
∗)])2 ≤ c ·

(
1 +

τ 2

nλ2
reg

)
·max

{
sup
j≤J

λ2
regJ

2ζj

ζ2j + λ2
regJ

2
, sup
j>J

ζj

}
,

where the values ζj correspond to the jth eigen values of the operator M̃∗M̃ with M̃ =

S
1
2
r MS

1
2
π .
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We defer the proof of this theorem to Appendix E.2. The proof of this theorem goes
via a transformation which diagonalizes the excess risk bound and reduces the problem to a
similar setup as that of Proposition 6.1. Additionally, Assumption 6.1 allows us to generalize
the results to arbitrary policy sets Cπ. Note that the above upper bounds the square of the
excess risk. As discussed in Section 6.3, one can obtain a quadratic improvement in this rate
if the set Cπ is the entire unit ball in Hπ. We specialize the above bound for the power law
decay assumption in the following corollary.

Corollary 6.2 (Risk bound for power-law decay). Suppose that eigenspectrum of the op-

erator S
− 1

2
π M⊤SrMS

− 1
2

π satisfy the power law assumption with exponent β > 0, that is,

σj(S
− 1

2
π M⊤SrMS

− 1
2

π ) ≍ j−β. The plug-in estimator π̂plug with parameter J = n
1

β+2 and reg-

ularization λreg = n−β+1
β+2 satisfies E[∆(π̂plug; r

∗)] ≤ cn− β
2(β+2) for some universal constant

c > 0.

The above bound indicates that for the general case, learning is possible if the spectrum
decay has parameter β > 0. To get such a spectrum decay with the operator defined in
the above corollary, one sufficient condition is that the map M does not flip the larger
eigenvectors of Hπ towards the smaller eigenvectors of Hr, that is, the map M preserves the
ordering of the eigenvectors of Hπ when transformed to the space Hr. Such a misaligned
scenario would require learning a very accurate representation of the reward to learn a good
policy and will make learning harder. It is worth highlighting that while we discuss our
bounds with such a power law assumption on the relevant eigenvalues, one can also obtain
similar rates for singular values with exponential decay, by optimizing the value of J to trade
off the bias and variance terms.

Comparison with UCB-style adaptive algorithms

We next turn to evaluating the sharpness of Theorem 6.2. Existing frameworks for studying
“singly”-nonparametric setups require the input domain to be compact. In our doubly-
nonparametric setup, the input space is the policy set Cπ which is often non-compact (i.e. the
unit ball is not compact in infinite dimensions). We address this for singly-nonparametrics
algorithm by taking a finite-dimensional approximation.

Even though our proposed method is passive, it achieves better rates than well-known
adaptive sampling algorithms. Specifically, in the power law setting of Section 6.4, the analy-

sis of GP-UCB algorithm [185] provides a rate of O(n− β−1
2(β+1) ), which is strictly worse than the

O(n− β
β+1 ) obtained by our analysis in Corollary 6.1. We refer the reader to Proposition E.1

in Appendix E.4 for an exact statement. The proof adapts the analysis from [185], which
hinges on a quantity called the information gain, which we bound for our setup. While we are
comparing upper bounds for the two algorithms, we believe that our improved bound is due
to a better algorithm and not an analysis gap. While we expect adaptive algorithms to per-
form better than passive ones in general [129], UCB style algorithms require the construction
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Algorithm Regret RT Non-vacuous regime

GP-UCB [185], GP-TS [55] Õ(T
2ν+d(3d+3)
4ν+d(2d+2) ) ν > d2+d

2

Our work Õ(T
4ν+d(4d+6)
6ν+d(4d+7) ) ν > 3

2

π-GP-UCB [112] Õ(T
2ν+d(2d+3)
4ν+d(2d+4) ) ν > 1

SupKernelUCB [201] Õ(T
ν+d
2ν+d ) ν > 1

Table 6.1. Our algorithm specializes to the case of kernel multi-armed bandits and yields
strong bounds. For a d-dimensional Matérn kernel with smoothness ν, we outperform both
GP-UCB and GP-TS unless ν ≳ d2. The only works to achieve better bounds for small ν
are π-GP UCB, which was designed specifically for the Matérn kernel and a recent analysis
of the SupKernelUCB which achieves near minimax rates.

of confidence intervals around input points, which crucially dictate the regret bounds of such
algorithms. In the frequentist setup, the best known such bounds [201] are known to yield
suboptimal regret rates and it is an open question as to whether these can be improved.

6.5 Bounds for kernel multi-armed bandits

In the previous subsection, we saw that our passive sampling algorithm actually outperforms
existing adaptive sampling algorithms for the reward learning task we care about. Here we
take this a step further—we specialize our algorithm to the case of kernel MABs, and show
that it outperforms standard algorithms for that setting and is competitive with a specialized
algorithm for Matérn kernels.

We consider the task of maximizing an unknown function f ∗ : X 7→ R over its domain
X ⊂ Rd. In the kernel multi-armed bandit (MAB) setup, this unknown function f belongs
to an RKHS H, equipped with a positive-definite kernel4 K, such that ∥f ∗∥H = 1. Let us
further restrict our attention to the space of input points X = {x ∈ Rd | ∥x∥2 ≤ 1}. The
learner is allowed to access this function via a noisy zeroth-order oracle

Of∗ : x 7→ f ∗(x) + ηwhere η ∼ N (0, τ 2) . (6.8)

Going forward we will assume that τ = 1. The above oracle is similar to the reward oracle
Or∗ , except that the query points x belong to a finite dimensional space and f ∗ is a non-
linear function of the query point x. The goal in MAB is to minimize the T -step regret RT :
= T ·maxx∈X f ∗(x)−

∑T
t=1 f

∗(xt), where xt is the datapoint queried in the tth round. There
have been several algorithms proposed to solve this problem including general purpose UCB

4We require that the kernel K be a Mercer’s kernel satisfying K(x, x) = c for all x ∈ X .
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algorithms [185, 55], Thompson sampling approaches [55], and special-purpose algorithms
for specific kernels [112].

We next show that kernel MAB can be cast as a special case of our non-parametric
policy learning framework. The resulting regret bounds, derived from an application of The-
orem 6.3, are better than several general purpose algorithms (GP-UCB, IGP-UCB, GP-TS)
and comparable to those specialized for the Matérn kernel (π-GP-UCB) and SupKernelUCB.

In order to reduce kernel MAB to our framework, we need to introduce three elements –
the policy space Hπ, the reward space Hr and the map M . We would like spaces Hr and Hπ

such that (1) the resulting objective F (r, π) is linear in this space, (2) the resulting rewards
and policies have unit norm in their respective space, and (3) we have a good understanding
of the eigenvalues of the resulting operator. This last point ensures that we can employ our
upper bounds from Section 6.4.

Before we define these, we let Cϵ denote an ϵ-net of the input space X under the ℓ2 norm
and denote its size by Ncov(ϵ). We define the kernel matrix K ∈ RNcov×Ncov on points selected
in the cover as K(i, j) = K(xi, xj) for all (xi, xj) ∈ Cϵ × Cϵ.

Reward space Hr. Given the RKHS H as well as the elements of the cover Cϵ, we view
the reward function as a map from Cϵ to R, or equivalently as a vector in RNcov(ϵ). More
precisely, letting f̃ = [f(x1), . . . , f(xNcov)] denote the vector of evaluations of a function f ,
we define Hr : = span{f̃ | f ∈ H} with ⟨f̃1, f̃2⟩Hr : = f̃⊤

1 K
−1f̃2. With this notation, we

define the true reward r∗ : = f̃ ∗ = [f ∗(x1), . . . , f
∗(xNcov)].

Policy Space Hπ. Similarly to rewards, we will embed policies in RNcov . For any point
x ∈ Cϵ, let kx = [K(x, x1), . . . ,K(x, xNcov)] denote the corresponding vector in RNcov ob-
tained by evaluating the kernel K over the cover. Then, the space Hπ : = span{kx | x ∈
Cϵ} with ⟨k1, k2⟩Hπ : = ⟨k1, K−2k2⟩ . The choice of the above norm ensures that ⟨ki, kj⟩Hπ =
⟨K−1ki, K

−1kj⟩ = δi,j for all (xi, xj) ∈ Cϵ×Cϵ . Thus in particular, Hπ contains an orthonor-
mal embedding of the set of vectors {kx}x∈Cϵ .

Map M . Both the reward space Hr and policy space Hπ can be associated with RNcov .
Under this transformation, the evaluation f ∗(x) for any x ∈ Cϵ corresponds to the standard
inner product with F (r∗, πx) = f ∗(x) = (f̃ ∗)⊤K−1kx = ⟨r∗, kx⟩Hr . This indicates that we
should take the map M to be the identity. Furthermore, as a simple application of Mercer’s
theorem it follows that this map M is a bounded linear operator.

We make an additional assumption on the kernel function K, requiring it to be Lipschitz
in its input arguments. This assumption is often satisfied, in particular for the Matérn kernel
when ν > 3/2.

Assumption 6.2 (Lipschitz Kernel K). The Kernel K associated with the Hilbert space
H is LK-Lipschitz with respect to the ℓ2-norm for some LK > 0: |K(x, y) − K(x, x)| ≤
LK∥x − y∥2 for all x ∈ X , y ∈ X . Furthermore, the kernel satisfies K(x, x) = 1 for all
points x ∈ X .

Applying Theorem 6.2 under the above assumption, we obtain the following excess risk
bound for the plug-in estimator evaluated on the unknown function f ∗.
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Figure 6.1. (a) Corroborating upper bound from Corollary 6.1. Our theoretical bounds
predict a rate of n−0.27 and the experiment shows an almost matching rate of n−0.28. (b) As
the dimension d is increased, the excess risk curves asymptote at different levels for different
n. This shows that our algorithm achieves non-vacuous error for the doubly-nonparametric
set in the regime d → ∞.

Theorem 6.3 (Excess risk for Kernel MAB). Suppose that the eigenvalues of a LK-Lipschitz
kernel K satisfy the power-law decay µj ≍ j−β. Let x̂plug be the output of Algorithm 3 using
n queries to the oracle Of∗. Then, for any value of β > 1 + 2

d
+ log(1

δ
) and ϵ ∈ (0, 1), the

excess risk satisfies

max
x:∥x∥2≤1

f ∗(x)− f ∗(x̂plug) ≲ N
1

β+2
cov (ϵ) · n

−β
2(β+2) +N

1−β
2

cov (ϵ) +
√

LKϵ ,

with probability at least 1− δ.

For Matérn kernels, it is known that the eigenvalues decay with parameter β = 1 + 2ν
d
[112].

Using this, we can obtain the following corollary.

Corollary 6.3 (Regret bound for Matérn Kernel). Consider the family of Matérn kernels
with parameter ν > 3

2
defined with the Euclidean norm over Rd. The T -step regret of our

algorithm is Rmat,T = Õ
(
T

4ν+d(6+4d)
6ν+d(7+4d)

)
.

The above bound is for regret, which is an online notion, while our previous results are
offline notions. We get from one to the other using a standard batch-to-online conversion
bound based on an explore-then-commit strategy. Table 6.1 compares the above bound to
the existing literature.
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Raphael Marinier, Léonard Hussenot, Matthieu Geist, Olivier Pietquin, and Marcin
Michalski. “What matters in on-policy reinforcement learning? A large-scale empirical
study”. In: arXiv preprint arXiv:2006.05990 (2020).



BIBLIOGRAPHY 83

[12] Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. “A survey
of robot learning from demonstration”. In: Robotics and autonomous systems 57.5
(2009).

[13] Kenneth Joseph Arrow. Social Choice and Individual Values. Wiley, 1951.

[14] Susan Athey and StefanWager. “Efficient policy learning”. In: arXiv preprint arXiv:1702.02896
(2017).

[15] Anthony C Atkinson. “The usefulness of optimum experimental designs”. In: Journal
of the Royal Statistical Society: Series B (Methodological) 58 (1996).

[16] Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob Mc-
Grew, and Igor Mordatch. “Emergent Tool Use From Multi-Agent Autocurricula”.
In: International Conference on Learning Representations. 2020.

[17] Maria-Florina Balcan, Andrei Broder, and Tong Zhang. “Margin based active learn-
ing”. In: International Conference on Computational Learning Theory. Springer. 2007,
pp. 35–50.

[18] Maria-Florina Balcan, Amit Daniely, Ruta Mehta, Ruth Urner, and Vijay V Vazi-
rani. “Learning economic parameters from revealed preferences”. In: International
Conference on Web and Internet Economics. 2014.

[19] Maria-Florina Balcan and Phil Long. “Active and passive learning of linear separators
under log-concave distributions”. In: Conference on Learning Theory. 2013, pp. 288–
316.

[20] Vitor Balestro, Horst Martini, and Ralph Teixeira. “Convex analysis in normed spaces
and metric projections onto convex bodies”. In: arXiv preprint arXiv:1908.08742
(2019).

[21] Peter L Bartlett and Shahar Mendelson. “Rademacher and Gaussian complexities:
Risk bounds and structural results”. In: Journal of Machine Learning Research 3.Nov
(2002), pp. 463–482.

[22] Eyal Beigman and Rakesh Vohra. “Learning from revealed preference”. In: Proceed-
ings of the 7th ACM Conference on Electronic Commerce. 2006.

[23] Kush Bhatia, Peter L Bartlett, Anca D Dragan, and Jacob Steinhardt. “Agnostic
learning with unknown utilities”. In: arXiv preprint arXiv:2104.08482 (2021).

[24] Kush Bhatia, Wenshuo Guo, and Jacob Steinhardt. “Reward Learning as Doubly
Nonparametric Bandits: Optimal Design and Scaling Laws”. In: (2022).

[25] Kush Bhatia, Ashwin Pananjady, Peter Bartlett, Anca Dragan, and Martin J Wain-
wright. “Preference learning along multiple criteria: A game-theoretic perspective”.
In: Advances in neural information processing systems 33 (2020), pp. 7413–7424.

[26] Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.



BIBLIOGRAPHY 84

[27] Erdem Bıyık, Nicolas Huynh, Mykel J Kochenderfer, and Dorsa Sadigh. “Active
preference-based gaussian process regression for reward learning”. In: arXiv preprint
arXiv:2005.02575 (2020).

[28] Duncan Black. “On the rationale of group decision-making”. In: Journal of Political
Economy 56.1 (1948), pp. 23–34.

[29] David Blackwell. “An analog of the minimax theorem for vector payoffs.” In: Pacific
Journal of Mathematics 6.1 (1956), pp. 1–8.

[30] Peter Boettke and Benjamin Powell. “The political economy of the COVID-19 pan-
demic”. In: Southern Economic Journal 87.4 (2021), pp. 1090–1106.
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dits.” In: Journal of Machine Learning Research 12.5 (2011).

[43] Tom Bylander. “Learning linear threshold functions in the presence of classification
noise”. In: Proceedings of the seventh annual conference on Computational learning
theory. 1994.

[44] Xu Cai and Jonathan Scarlett. “On lower bounds for standard and robust Gaus-
sian process bandit optimization”. In: International Conference on Machine Learning.
PMLR. 2021.

[45] Haoyang Cao, Samuel N. Cohen, and Lukasz Szpruch. “Identifiability in inverse rein-
forcement learning”. In: CoRR abs/2106.03498 (2021).

[46] Alfonso Caramazza, Michael McCloskey, and Bert Green. “Naive beliefs in “sophisti-
cated” subjects: Misconceptions about trajectories of objects”. In: Cognition 9 (1981).

[47] Kathryn Chaloner and Isabella Verdinelli. “Bayesian experimental design: A review”.
In: Statistical Science (1995), pp. 273–304.

[48] Lawrence Chan, Andrew Critch, and Anca Dragan. “Human irrationality: both bad
and good for reward inference”. In: preprint arXiv:2111.06956 (2021).

[49] Olivier Chapelle, Thorsten Joachims, Filip Radlinski, and Yisong Yue. “Large-scale
validation and analysis of interleaved search evaluation”. In: ACM Transactions on
Information Systems (TOIS) 30.1 (2012), pp. 1–41.

[50] Xiaohui Chen and Yun Yang. “Hanson–Wright inequality in Hilbert spaces with ap-
plication to K-means clustering for non-Euclidean data”. In: Bernoulli 27.1 (2021),
pp. 586–614.

[51] Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian
Hansen, Whitney Newey, and James Robins. Double/debiased machine learning for
treatment and structural parameters. 2018.

[52] Victor Chernozhukov, Matt Goldman, Vira Semenova, and Matt Taddy. “Orthog-
onal machine learning for demand estimation: High dimensional causal inference in
dynamic panels”. In: arXiv preprint arXiv:1712.09988 (2017).

[53] Victor Chernozhukov, Denis Nekipelov, Vira Semenova, and Vasilis Syrgkanis. “Plug-
in regularized estimation of high-dimensional parameters in nonlinear semiparametric
models”. In: arXiv preprint arXiv:1806.04823 (2018).

[54] Victor Chernozhukov, Whitney K Newey, and James Robins. Double/de-biased ma-
chine learning using regularized Riesz representers. Tech. rep. cemmap working paper,
2018.

[55] Sayak Ray Chowdhury and Aditya Gopalan. “On kernelized multi-armed bandits”.
In: International Conference on Machine Learning. 2017.



BIBLIOGRAPHY 86

[56] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario
Amodei. “Deep Reinforcement Learning from Human Preferences”. In: Advances in
Neural Information Processing Systems. 2017.

[57] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario
Amodei. “Deep reinforcement learning from human preferences”. In: Advances in
Neural Information Processing Systems. 2017.

[58] Marquis de Condorcet. “Essai sur l’application de l’analyse a la probabilité des deci-
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[203] Michal Valko, Nathaniel Korda, Rémi Munos, Ilias Flaounas, and Nelo Cristianini.
“Finite-time analysis of kernelised contextual bandits”. In: arXiv preprint arXiv:1309.6869
(2013).

[204] Aad W Van der Vaart. Asymptotic statistics. Vol. 3. Cambridge university press, 2000.

[205] Vladimir Vapnik. “Principles of risk minimization for learning theory”. In: Advances
in neural information processing systems. 1992, pp. 831–838.

[206] Dizan Vasquez, Billy Okal, and Kai O. Arras. “Inverse Reinforcement Learning al-
gorithms and features for robot navigation in crowds: An experimental comparison”.
In: IEEE/RSJ International Conference on Intelligent Robots and Systems. 2014.

[207] Eugene Vinitsky, Aboudy Kreidieh, Luc Le Flem, Nishant Kheterpal, Kathy Jang,
Cathy Wu, Fangyu Wu, Richard Liaw, Eric Liang, and Alexandre M. Bayen. “Bench-
marks for reinforcement learning in mixed-autonomy traffic”. In: Conference on Robot
Learning. 2018.

[208] Grace Wahba. Spline models for observational data. SIAM, 1990.

[209] Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint. Cam-
bridge University Press, 2019.

[210] Glenn D Walters. “Taking the next step: Combining incrementally valid indicators to
improve recidivism prediction”. In: Assessment 18.2 (2011), pp. 227–233.

[211] Yining Wang, Sivaraman Balakrishnan, and Aarti Singh. “Optimization of smooth
functions with noisy observations: Local minimax rates”. In: Advances in Neural In-
formation Processing Systems. 2018, pp. 4338–4349.

[212] Christopher KWilliams and Carl Edward Rasmussen.Gaussian processes for machine
learning. Vol. 2. 3. MIT press Cambridge, MA, 2006.

[213] Cathy Wu, Abdul Rahman Kreidieh, Kanaad Parvate, Eugene Vinitsky, and Alexan-
dre M. Bayen. “Flow: A Modular Learning Framework for Mixed Autonomy Traffic”.
In: IEEE Transactions on Robotics (2021).

[214] Huasen Wu and Xin Liu. “Double Thompson sampling for dueling bandits”. In: Ad-
vances in Neural Information Processing Systems. 2016.

[215] M. Wulfmeier, P. Ondruska, and I. Posner. “Maximum Entropy Deep Inverse Rein-
forcement Learning”. In: Neural Information Processing Systems Conference, Deep
Reinforcement Learning Workshop. 2015.

[216] Songbai Yan and Chicheng Zhang. “Revisiting perceptron: Efficient and label-optimal
learning of halfspaces”. In: Advances in Neural Information Processing Systems. 2017.

[217] F Eugene Yates. Self-organizing systems: The emergence of order. Springer Science
& Business Media, 2012.

[218] Chao Yu, Jiming Liu, and Shamim Nemati. “Reinforcement learning in healthcare:
A survey”. In: arXiv preprint arXiv:1908.08796 (2019).



BIBLIOGRAPHY 97

[219] Yisong Yue, Josef Broder, Robert Kleinberg, and Thorsten Joachims. “The k-armed
dueling bandits problem”. In: Journal of Computer and System Sciences 78.5 (2012),
pp. 1538–1556.
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Appendix A

Deferred content from Chapter 2

A.1 Deferred proofs from Section 2.4

Proof of Proposition 2.1

The first part of the proof essentially follows the same as that for Theorem 2.2. The proof
differs in how we upper bound Term (I) from equation (2.11).

Û(fERM;u
∗)− Û(f̂k,n;u

∗) ≤ 1

n

n∑
i=1

(I[fERM(xi) = yi]− I[f̂k,n(xi) = yi])(u
∗
gap(xi)− ûgap(xi))

=
1

n

n∑
i=1

(I[f̂k,n(xi) ̸= yi]− I[fERM(xi) ̸= y1])(ûgap(xi)− u∗
gap(xi))

(A.1)

(i)

≤ 1

n

n∑
i=1

I[fERM(xi) ̸= yi](u
∗
gap(xi)− ûgap(xi))

≤ max
i

[u∗
gap(xi)− ûgap(xi)] ·

1

n

n∑
i=1

I[fERM(xi) ̸= yi], (A.2)

where inequality (i) follows from the fact that û is a lower estimate of u∗. This establishes
the desired claim.

Proof of Lemma 2.1

We begin by noting that for any given datapoint xi, the deterministic comparison oracle Ok

when queried with qi,t outputs

Ok(qi,j) = I
[
k

2
u∗
gap(xi) ≥ λu∗

max

]
,
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for values1 of λ ∈ [k
2
]. This effectively allows one to compare the utility gap u∗

i with u∗
max at

a multiplicative granularity of 2
k
. With this observation, let us establish that for any time

t ∈ [T ], for any datapoint xi ∈ S, we have

ût
gap(xi)−

u∗
max

2t
≤ u∗

gap(xi) ≤ ût
gap(xi). (A.3)

The proof will proceed via an inductive argument.

Base Case. For initial time t = 0, by the boundedness of the utility functions, we have for
all xi,

û0
gap(xi)− u∗

max = 0 ≤ u∗
gap(xi) ≤ u∗

max = û0
gap(xi).

Induction Step. Assume that for some t = s, equation (A.3) holds for all xi ∈ S. We will
now show that it holds for t = s+ 1. Note that by the induction hypothesis, the value of λ
at time s+ 1 can be equivalently written as

λ =
k

2u∗
max

·

(
ûs
gap(xi)− u∗

max

2s
+ ûs

gap(xi)

2

)
,

that is, as a scaled mid-point of the confidence interval at time s. the query qi,t then com-
pares the gap u∗

gap(xi) with the mid-point of the confidence interval.

Case 1. If the response ri,t = 1 which implies that ûs
gap(xi) ≥ 2λ

k
, the upper estimate remains

the same and the lower estimate is (implicitly) moved to the mid-point 2λ
k
since we know from

the oracle’s response that u∗
gap(xi) is greater than the mid-point. Thus, after each update,

the confidence interval shrinks by a factor of 1
2
and reduces to 1

2s+1 at the end of time t = s+1.

Case 2. On the other hand if ri,t = 0, the estimate ûs+1
gap (xi) is updated to be the midpoint

u∗
max

2s+1 while the lower estimate remains the same because of the oracle’s response.

Combining both the cases above, we see that at time t = s + 1, the confidence interval
for u∗

gap(xi) is exactly
1

2s+1 for both the cases. Thus, we must have that

ûs+1
gap (xi)−

u∗
max

2s+1
≤ u∗

gap(xi) ≤ ûs+1
gap (xi).

This establishes the first part of the claim. The bound on the query complexity follows from
the fact that for each datapoint xi, we use log2 k − 1 queries to the oracle in the procedure.
This establishes the desired claim.

1We denote by [d] the set of integers {1, . . . , d}.
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Proof of Corollary 2.1

The excess risk of the plug-in estimator can be upper-bounded from Proposition 2.1 as

err(f̂k,n,F ;u∗) ≤ 2 · sup
f∈F

(
|U(f ;u∗)− Û(f ;u∗)|

)
+max

i
[u∗gap(xi)− ûgap(xi)] ·

1

n

n∑
i=1

I[fERM(xi) ̸= yi]

Lemma 2.1
≤ 2 · sup

f∈F

(
|U(f ;u∗)− Û(f ;u∗)|

)
+

2u∗max

k
· 1
n

n∑
i=1

I[fERM(xi) ̸= yi] , (A.4)

where the last inequality follows by noting that Comptron produces an estimate ûgap of the

utility gap u∗
gap(xi) with an additive error of 2u∗

max

k
.

Proof of Lemma 2.2

To establish the above claim, we show that the updates to the gap estimates ût
gap performed

by Rob-Comptron mirror those performed by the deterministic Comptron with high prob-
ability. For any datapoint xi and any time t ∈ [T ], denote by r∗i,t = E [ri,j,t] the expected
value of the response for query qi,j,t. By Assumption 2.1, we have that I[r∗i,t < 1

2
] provides

the true label for the query qi,j,t. By an application of the Hoeffding’s inequality, we have,

Pr

(
I

[
1

J

∑
j

ri,j,t <
1

2

]
̸= I

[
r∗i,t <

1

2

])
≤ exp

(
−J(1− 2η)2

4

)
.

Taking a union bound over all datapoints xi and time t ∈ [T ], and substituting the value of
J = 8

(1−2η)2
log(nT

δ
), we have,

Pr

(
∃i, t s.t. I

[
1

J

∑
j

ri,j,t <
1

2

]
̸= I

[
r∗i,t <

1

2

])
≤ δ. (A.5)

From the above equation, we have that with probability at least 1−δ, every update performed
by Rob-Comptron uses the correct label. Combining the above with the proof of Lemma 2.1
establishes the required claim.

Proof of Lemma 2.3

Observe that from the conditions of the lemma statement, we have(
1− 1

k

)
· ugap(x1) ≤ u1

gap(x2), u
2
gap(x2) ≤ ugap(x1).

Assume without loss of generality that u1
gap(x2) > u2

gap(x2). Observe that any k-query
comprising only points x1 and x2 must have the form

x = (x1, . . . , x1︸ ︷︷ ︸
j1 times

, x2, . . . , x2︸ ︷︷ ︸
j2 times

), y1 = (y1, . . . , y1︸ ︷︷ ︸
j1 times

, ȳ2, . . . , ȳ2︸ ︷︷ ︸
j2 times

), y1 = (ȳ1, . . . , ȳ1︸ ︷︷ ︸
j1 times

, y2, . . . , y2︸ ︷︷ ︸
j2 times

)
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with j1 + j2 = k. For any query q to be different under the oracles Ok(· ;u1) and Ok(· ;u2),
we should have

I[j1u1
gap(x1) > j2u

1
gap(x2)] = 1 and I[j1u2

gap(x1) > j2u
2
gap(x2)] = 0

since u1
gap(x2) > u2

gap(x2). In order for the above equation to be satisfied, we requires that the

ratio j1
j2

≥ 1− 1
k
. However, under the constraints j1+ j2 = k, this is not possible. Hence, it is

not possible to distinguish between the utilities u1 and u2 using a k comparison oracle.

A.2 Deferred proofs from Section 2.5

Proof of Proposition 2.2

Our example construction will focus on the real-valued feature space X = R, binary decision
space Y = {0, 1}, and the class of linear decision functions

Flin = {fa | fa(x) = sign(ax), a ∈ [−1, 1]} .

Distribution Dx. Our example will focus on three points x1 = 1, x2 = 2, x3 = −1 with
their population probabilities given by

Pr(x = x1) = p, Pr(x = x2) = p, and Pr(x = x3) = 1− 2p ,

for some value p > 0 which we define later. Note that our final choice of p will depend on
the order k of the comparison oracle.

Utility function u∗. Given the above three points, we set the utility u∗(xi, 0) = 0 for all
datapoints xi. The utilities for label y = 1 are given by

u∗(x1, 1) = 1, u∗(x2, 1) =
4

k
, and u∗(x3, 1) =

2

k2
.

With these utilities, observe that the true label yi = 1 for all the datapoints. Further, any
predictor f ∈ Flin can either correctly predict the points {x1, x2} or the point x3 but not all
three simultaneously.

Performance of predictors. For this setup described above, we now proceed to describe
the optimal function f ∗, the plug-in estimate f̂k and an alternate predictor f̃ which outper-
forms the plug-in estimate. Observe that any estimator will pick either f−1 or f+1 depending
on the value of p.
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Optimal Classifier. The difference in the expected utility between the classifiers f+1 and f−1

is given by

U(f+1;u
∗)− U(f−1;u

∗) = p ·
(
1 +

4

k

)
− (1− 2p) ·

(
2

k2

)
=

p

k2
· (k + 2)2 − 2

k2

=
1

k2

(
p(k + 2)2 − 2

)
.

Given the calculation above, the optimal classifier f ∗ is given by

f ∗ =

{
f+1 for p ≥ 2

(k+2)2

f−1 otherwise
. (A.6)

Plug-in estimate f̂k. We now study the prediction f̂k obtained by using the prediction û
from Comptron (Algorithm 1). Recall that since Comptron produces upper estimates for
u∗
gap (which is equivalent to u∗ since u∗(x, 0) = 0) within an error of 2

k
, the output estimates

will be

û(x1, 1) = 1, û(x2, 1) =
4

k
, and û(x3, 1) =

2

k
.

Observe that while Comptron is able to correctly learn the utilities for x1 and x2, it overes-
tiamtes the utility for the point x3. Let us look at the difference of estimated utilities

U(f+1; û)− U(f−1; û) = p ·
(
1 +

4

k

)
− (1− 2p) ·

(
2

k

)
=

p

k
· (k + 8)− 2

k

=
1

k
· (p(k + 8)− 2).

Given the above calculations, we see that the function f̂k is given by

f̂k =

{
f+1 for p ≥ 2

k+8

f−1 otherwise
. (A.7)

Alternate estimator f̃ . While Comptron compares the utilities of both x2 and x3 with respect
to x1 (equivalently ximax), consider the alternate procedure which differs in the estimation of
utility gap u∗

gap(x3). Instead of using the proposed queries q3,t of Comptron, we modify those
as q̃3,t = (x,y1,y2) where

x = (x3, . . . , x3︸ ︷︷ ︸
k
2
times

, x2, . . . , x2︸ ︷︷ ︸
λ times

), y1 = (y3, . . . , y3︸ ︷︷ ︸
k
2
times

, 1− y2, . . . , 1− y2︸ ︷︷ ︸
λ times

), y2 = 1− y1.
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Following the same proof as of Lemma 2.1, we can show that one can obtain an upper estimate
ũ(x3, 1) =

8
k2
. This follows from the fact that we can deduce that u∗(x3) ∈ [0, 2u

∗(x2)
k

] from
the above queries and combining this with the fact that u∗(x2) ≤ 4

k
. Evaluating the difference

between the utilities with respect to ũ, we get

U(f+1; ũ)− U(f−1; ũ) = p ·
(
1 +

4

k

)
− (1− 2p) ·

(
8

k2

)
=

p

k2
· ((k + 2)2 + 12)− 8

k2

=
1

k2

(
p((k + 2)2 + 12)− 8

)
.

Using such estimates ũ with the plug-in estimator in equation (2.7), we have that the function

f̃ =

{
f+1 for p ≥ 8

(k+2)2+12

f−1 otherwise
. (A.8)

Thus, the three estimators f ∗, f̂k and f̃ differ in the threshold for p for switching between
the functions f+1 and f−1. Setting a value of p = 1

k+8
, we see that for k > 10

2

(k + 2)2
<

8

(k + 2)2 + 12
<

1

k + 8︸ ︷︷ ︸
p

<
2

k + 8
.

Thus, for this setting of p, while the predictor f ∗ = f̃ = f+1, the estimator f̂k = f−1 and
hence it incurs an excess risk err(f̂k,F ;u∗) = 1

k
. This establishes the first part of the claim.

For the second part, observe that the estimator f̃ outputs f+ for the particular setting
of p for all ũ3 ∈ [0, 8

k2
]. This set precisely captures the set of all utilities which are consistent

with the k oracle O(· ; k). Since the optimal decision function f ∗ = f+, this establishes the
second part of the claim.

Proof of Theorem 2.5

Let us represent by ∆F the space of probability distributions over the function F . The error
of the estimator prob can then be upper bounded as

E[err(prob,F ;u∗)] = inf
p∈∆F

sup
u′∈ U|u∗

Ef [err(f,F ;u′)]

= inf
p∈∆F

sup
u′∈ U|u∗

sup
f ′∈F

Ef [U(f ′;u′)− U(f ;u′)]

(i)
= sup

p∈∆F×U|u∗

inf
f∈F

E(f ′,u′) [U(f ′;u′)− U(f ;u′)] ,
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where the equality (i) follows from an application of Sion’s minimax theorem and the space
∆F×U|u∗ denotes the space of all distributions over the joint space F×U|u∗ . Let us decompose
the distribution p = qu · qf |u where qu represents the marginal distribution over the space
U|u∗ and qf |u denotes the conditional distirbution of sampling a function f ∈ F given utility
function u. Denote by

fu : = argmax
f∈F

U(f ;u) and fp : = argmax
f∈F

Eu∼p[U(f ;u)]

as the maximizers for the corresponding (expected) utility functions. Then, the excess risk

E[err(prob,F ;u∗)] = sup
p∈∆F×U|u∗

inf
f∈F

E(f ′,u′) [U(f ′;u′)− U(f ;u′)]

= sup
pu

sup
pf |u

inf
f∈F

(
Eu′∼puEf ′∼pf |u′

[U(f ′;u′)]− Eu′∼pu [U(f ;u′)]
)

(i)
= sup

pu

sup
pf |u

(
Eu′∼puEf ′∼pf |u′

[U(f ′;u′)]− Eu′∼pu [U(fpu ;u
′)]
)

(ii)
= sup

pu

(Eu′∼pu [U(fu′ ;u′)− U(fpu ;u
′)]) ,

where the inequality (i) follows from the fact that fpu maximizes the expected utility with
respect to pu and (ii) follows by noting that the maximizing distribution pf |u′ = I[f = fu′ ].
Noting that fpu is the maximizer corresponding to the distribution pu, we have,

E[err(prob,F ;u∗)] = sup
pu

(Eu′∼pu [U(fu′ ;u′)− Eũ∼pu [U(fũ;u
′)] + Eũ∼pu [U(fũ;u

′)]− U(fpu ;u
′)])

≤ sup
pu

(Eu′∼pu [U(fu′ ;u′)− Eũ∼pu [U(fũ;u
′)]])

(i)

≤ sup
u1,u2∈ U|u∗

(U(fu1 ;u1)− U(fu2 ;u1)) ,

where the inequality (i) follows by upper bounding the expected deviation with a worst-case
deviation. This establishes the required claim.
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Appendix B

Deferred content from Chapter 3

B.1 Proofs

Proof of Theorem 3.1

Without loss of generality, let π̃ satisfy π̃(a | s; θ) = exp(Φ(s, a; θ))/Z(s; θ). Note that this
parameterization can be used to express any probability distribution. Also, for any δ > 0,
let us define

Bδ(D) =
n⋃

t=1

(
at −

δ

2
, at +

δ

2

)
as a union of δ

2
-balls around the actions that appear in dataset D. Then, for any θ∗ ∈ Θ, let

π∗ satisfy

π∗(a | s; θ) =

{
1

Z′(s;θ)
(exp(Φ(s, a; θ))1{a ̸∈ Bδ(D)}+ C 1{a ∈ Bδ(D)}) if θ = θ∗ ,

1
Z(s;θ)

exp(Φ(s, a; θ)) otherwise ,

where C is the supremum C = sups,a,θ exp(Φ(s, a; θ)). By construction, it is clear that MLE
on D using π∗ would yield reward parameter θ∗. Since such π∗ can be constructed for any
θ∗, we can choose θ∗ that satisfies ∥θ̃ − θ∗∥22 > supθ,θ′ ∥θ − θ′∥2/2. What remains is showing
that there exists δ such that dwcπ (π∗, π̃) < ε.

Bounding the worst-case policy divergence. Note that the worst-case divergence is
necessarily satisfied at θ∗. Fix any state s ∈ S. We have,

DKL(π
∗(· | s; θ∗)||π̃(· | s; θ∗)) =

∫
A
π∗(a | s; θ∗) log π∗(a | s; θ∗)

π̃(a | s; θ∗)
da

=

∫
A\Bδ(D)

π∗(a | s; θ∗) log π∗(a | s; θ∗)
π̃(a | s; θ∗)

da+

∫
Bδ(D)

π∗(a | s; θ∗) log π∗(a | s; θ∗)
π̃(a | s; θ∗)

da .
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We consider each term individually. Starting with the first term, we have∫
A\Bδ(D)

π∗(a | s; θ∗) log π∗(a | s; θ∗)
π̃(a | s; θ∗)

da ≤ log
Z(s; θ∗)

Z ′(s; θ∗)

≤ 1

Z(s; θ∗)
|Z(s; θ∗)− Z ′(s; θ∗)| ,

where we use that the policies only differ in their normalizers in the first inequality, and that
log(t)− log(s) ≤ 1

min{t,s} |t− s| in the second. Now, using that

Z ′(s; θ∗) =

∫
A\Bδ(D)

exp(Φ(s, a, ; θ∗)da+ C |Bδ(D)| ,

we have ∫
A\Bδ(D)

π∗(a | s; θ∗) log π∗(a | s; θ∗)
π̃(a | s; θ∗)

da ≤ C

Z(s; θ∗)
|Bδ(D)| .

Now, let us consider the second term. we have∫
Bδ(D)

π∗(a | s; θ∗) log π∗(a | s; θ∗)
π̃(a | s; θ∗)

da ≤
∫
Bδ(D)

π∗(a | s; θ∗) |logC − Φ(s, a; θ∗)| da+ log
Z(s; θ∗)

Z ′(s; θ∗)

≤ 2 logC |Bδ(D)|+ C

Z(s; θ∗)
|Bδ(D)| ,

where we reuse the bound for the first term, and use that |ϕ(s, a; θ∗)| ≤ logC. Combining
the two bounds yields

DKL(π
∗(· | s; θ∗)||π̃(· | s; θ∗)) ≤ 2 logC |Bδ(D)|+ 2C

Z(s; θ∗)
|Bδ(D)| .

Using that |Bδ(D)| ≤ nδ by construction, we can solve for δ = O(ε/n) such that dwcπ (π∗, π̃) <
ε, as desired. This completes the proof.

Proof of Theorem 3.2

Recall that L(θ; π,D) is the negative log-likelihood of demonstrations D under policy π and
reward parameters θ. Note that we can write

L(θ; π̃,D) =
1

n

n∑
t=1

− log π̃(at | st; θ) =
1

n

n∑
t=1

− log π∗(at | st; θ) + log
π∗(at | st; θ)
π̃(at | st; θ)

= L(θ; π∗,D) +
1

n

n∑
t=1

log
π∗(at | st; θ)
π̃(at | st; θ)

.
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By the law of large numbers, we have that under expectation over dataset D,

ED∼π∗

[
1

n

n∑
t=1

log
π∗(at | st; θ)
π̃(at | st; θ)

]
= Es∼d∗ [DKL(π

∗(· | s; θ∗) || π̃(· | s; θ∗))]

Using Assumption 3.2 on π∗, for any θ ∈ Θ, we also have

L(θ; π∗,D) ≥ L(θ∗; π∗,D) +∇θL(θ
∗; π∗,D)⊤(θ∗ − θ) +

cn

2
∥θ − θ∗∥22 .

By definition of θ∗ and Assumption 3.1, we know that ∇θL(θ
∗; π∗,D) = 0. Substituting

θ = θ̃ and rearranging yields

∥θ̃ − θ∗∥22 ≤
2

c

(
L(θ̃; π∗,D)− L(θ∗; π∗,D)

)
.

Analogously, using Assumption 3.2 on π̃ 1, we have that

∥θ̃ − θ∗∥22 ≤
2

c

(
L(θ∗; π̃,D)− L(θ̃; π̃,D)

)
.

Combining the two bounds yields,

∥θ̃ − θ∗∥22 ≤
2

c

(
L(θ∗; π̃,D)− L(θ∗; π∗,D) + L(θ̃; π∗,D)− L(θ̃; π̃,D)

)
≤ 2

c

(
1

n

n∑
t=1

log
π∗(at | st; θ∗)
π̃(at | st; θ∗)

− 1

n

n∑
t=1

log
π∗(at | st; θ̃)
π̃(at | st; θ̃)

)

Taking an expectation over dataset D yields the desired result

E
[
∥θ̃ − θ∗∥22

]
≤ 2

c
Es∼d∗

[
DKL(π

∗(· | s; θ∗) || π̃(· | s; θ∗))−DKL(π
∗(· | s; θ̃) || π̃(· | s; θ̃))

]
≤ 2

c
Es∼d∗ [DKL(π

∗(· | s; θ∗) || π̃(· | s; θ∗))] ,

which is the desired result.

Proof of Corollary 3.1

Recall that π̃, π∗ are parameterized by Q-values Q̃, Q∗ that satisfy the soft Bellman update
in (3.4). Fix state s. We have

DKL(π
∗(· | s; θ∗)||π̃(· | s; θ∗)) = Ea∼π∗(·|s;θ∗)

[
Q∗(s, a; θ∗)− Q̃(s, a; θ∗)

]
+ log

∑
a′ exp(Q̃(s, a′; θ∗))∑
a′ exp(Q

∗(s, a′; θ∗))
.

1In the statement of Assumption 3.2 in the main paper, we only assume log-concavity for π∗. This will
be corrected in a future revision to include both π∗, π̃
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For any action a, we have

Q∗(s, a; θ∗)− Q̃(s, a; θ∗) = γ
∑
s′

P ∗(s′ | s, a)V ∗(s′; θ∗)− γ
∑
s′

P̃ (s′ | s, a)Ṽ (s′; θ∗)

= γ
∑
s′

P ∗(s′ | s, a)V ∗(s′; θ∗) + γ
∑
s′

P ∗(s′ | s, a)Ṽ (s′; θ∗)

− γ
∑
s′

P ∗(s′ | s, a)Ṽ (s′; θ∗)− γ
∑
s′

P̃ (s′ | s, a)Ṽ (s′; θ∗)

= γ∥P ∗(· | s, a)− P̃ (· | s, a)∥1Ṽ (s′; θ∗) + γ
∑
s′

P ∗(s′ | s, a)(V ∗(s′; θ∗)− Ṽ (s′; θ∗))

≤ Rmax

1− γ
∆P + γ

∑
s′

P ∗(s′ | s, a)max
a′

{Q∗(s′, a′; θ∗)− Q̃(s′, a′; θ∗)}

≤ . . .

≤ Rmax

(1− γ)2
∆P .

Now, let us consider the normalization term. We have

log

∑
a′ exp(Q̃(s, a′; θ∗))∑
a′ exp(Q

∗(s, a′; θ∗))
≤ 1∑

a′ exp(Q̃(s, a′; θ∗))

∑
a′

exp(Q̃(s, a′; θ∗)) log
exp(Q̃(s, a′; θ∗))

exp(Q∗(s, a′; θ∗))

≤
∑
a′

(Q̃(s, a′; θ∗)−Q∗(s, a′; θ∗))

≤ |A|Rmax

(1− γ)2
∆P .

Combining the two bounds and taking an expectation over s yields the desired result.

Proof of Corollary 3.2

The proof follows the format of the proof for Corollary 3.1. Fix state s. We have

DKL(π
∗(· | s; θ∗)||π̃(· | s; θ∗)) = Ea∼π∗(·|s;θ∗)

[
Q∗(s, a; θ∗)− Q̃(s, a; θ∗)

]
+ log

∑
a′ exp(Q̃(s, a′; θ∗))∑
a′ exp(Q

∗(s, a′; θ∗))
.
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For any action a, we have

Q∗(s, a; θ∗)− Q̃(s, a; θ∗) = γ∗
∑
s′

P (s′ | s, a)V ∗(s′; θ∗)− γ̃
∑
s′

P (s′ | s, a)Ṽ (s′; θ∗)

= γ∗
∑
s′

P (s′ | s, a)V ∗(s′; θ∗) + γ∗
∑
s′

P (s′ | s, a)Ṽ (s′; θ∗)

− γ∗
∑
s′

P (s′ | s, a)Ṽ (s′; θ∗)− γ̃
∑
s′

P (s′ | s, a)Ṽ (s′; θ∗)

= (γ∗ − γ̃)
∑
s′

P (s′ | s, a)Ṽ (s′; θ∗) + γ∗
∑
s′

P (s′ | s, a)(V ∗(s′; θ∗)− Ṽ (s′; θ∗))

≤ Rmax

1− γ̃
|γ∗ − γ̃|+ γ∗

∑
s′

P (s′ | s, a)max
a′

{Q∗(s′, a′; θ∗)− Q̃(s′, a′; θ∗)}

≤ . . .

≤ Rmax

(1− γ̃)(1− γ∗)
|γ∗ − γ̃| .

Now, let us consider the normalization term. We have

log

∑
a′ exp(Q̃(s, a′; θ∗))∑
a′ exp(Q

∗(s, a′; θ∗))
≤ 1∑

a′ exp(Q̃(s, a′; θ∗))

∑
a′

exp(Q̃(s, a′; θ∗)) log
exp(Q̃(s, a′; θ∗))

exp(Q∗(s, a′; θ∗))

≤
∑
a′

(Q̃(s, a′; θ∗)−Q∗(s, a′; θ∗))

≤ |A|Rmax

(1− γ̃)(1− γ)
|γ̃ − γ∗| .

Combining the two bounds yields the desired result.
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Figure B.1. Visualization of gridworld policies (as state-visitation distributions) with
(a) different transition biases (probability p of unintended transitions), and (b) different
discount factors.

B.2 Experiment Details

Tabular experiments

Environment and training details Recall that the gridworld environments we consider
are described by 8 × 4 grids, with a start and goal state, and walls, lava, and exactly one
waypoint state placed in between. We consider a sparse reward where the agent earns a
reward of θ = 3 upon reaching the goal state. Alternatively, if the agent reaches a lava or
waypoint state, then its reward is 0 or 1, respectively, for the rest of the trajectory. The
agent is able to move in either of the four direction (or choose to stay still), and there is a
p = 30% chance that the agent travels in a different direction than commanded. We choose
γ∗ = 0.98 high enough that the goal state is preferred over the closer waypoint state under
the optimal policy.

A reward-conditioned policy (model or demonstrator) under each environment is given
by π(a | s; θ) ∝ exp(Q(s, a; θ)), where Q(s, a; θ) were derived by value iteration using the
an MDP model (can be the true underlying MDP or a biased one) of the environment.
During reward inference, we discretize the reward parameter space Θ = [1, 4] with resolution
64. Because the environment is tabular, instead of sampling demonstrations D from π, we
can instead compute wπ the discounted stationary distribution. Specifically, let ρ be the
distribution of the starting state (which in our case, is an indicator vector at the start state
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Figure B.2. Visualization of Lunar Lander trajectories for policies with (a) biased internal
dynamics that underestimate left-right acceleration and (b) correct internal dynamics.

of each environment), then wπ satisfies:

wπ(s) = (1− γ)ρ(s) + γ∗
∑
s′∈S

∑
a′∈A

wπ(s′)π(a′ | s′)P (s | s′, a′) .

We can use this to solve for the true state visitations w∗ for any demonstrator policy π∗,
which can be used to compute the weighted policy divergence as in (3.3) without explicitly
sampling a dataset D of demonstrations.

Visualization of biased policies In Figure B.1, we visualize the demonstrator policies π∗

under the systematic biases considered. We see that in Figure B.1(a), when the demonstrator
underestimates the probability of unintended transitions, it heavily prefers the goal state,
which has higher reward but is much more dangerous to reach, over the waypoint state
Conversely, in Figure B.1(b), when the demonstrator underestimates the discount factor,
they strongly prefer the waypoint state that yields lower reward but is much closer.

Continuous control experiments

Environment and training details Recall that the domain we consider is the Lunar
Lander game, where an agent needs to navigate a lander onto the landing pad. The reward
function yields a large reward for landing on the pad, and a penalty for crashing or going out
of bounds. The magnitude of the reward depends on the speed and tilt of the lander upon
reaching the landing pad. The physics of the game are deterministic. The reward parameter
θ ∈ [0, 1] we try to infer is the location of the landing pad (expressed as normalized horizontal
displacement).

In this domain, we train a reward-conditioned policy π(a | s; θ) by folding the reward
parameter θ into the state representation, which is an 8-dimensional vector capturing the
lander’s current location, velocity, and tilt. The policy is parameterized as a 3-layer fully-
connected neural network with hidden dimension of 128, and outputs a squashed Gaussian
distribution over actions. Because the state and action space are continuous, we use soft-
actor-critic (SAC) [96] with fixed entropy regularization α = 1. We train the policy for 600
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Figure B.3. Effect of human bias (measured by probability of acting according to human
policy) on (a) weighted policy divergence and (b) reward inference error on discrete Lunar
Lander environments. In (c), we show a scatter plot of the policy and reward errors for
fixed probabilities.

episodes of length at most 1, 000, with a batch size of 264, until the policy was able to land on
the landing pad with a high success rate. During reward inference, we discretize the reward
parameter space Θ = [0, 1] with resolution 32. We sample datasets D consisting of 10, 000
observations, and report the mean and standard error of policy and reward error across 10
independent samples of datasets.

Visualization of biased policies In Figure B.2, we visualize the demonstrator policies
π∗ under different degrees of internal dynamics bias. Recall that parameter p describes how
much one unit of power will increase acceleration in the left-right directions. When p is
underestimated, the policy will not move right enough to reach the landing pad; in contrast,
when p is properly estimated, the policy will reach the landing pad with a high success rate.

Additional experiment with human policies

In line with the experiments with simulated biases, we run an additional experiment similar
to the one in Section 3.5, where we instead keep π̃ fixed as the optimal policy, and interpolate
between the optimal policy and the real human policy for demonstrator policy π∗. We show
the effect of the interpolation proportion on policy divergence and reward inference error in
Figure B.3. Again, we notice the consistent message that policy error bounds reward error.
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Appendix C

Deferred content from Chapter 4

C.1 Blackwell’s approachability

Blackwell [29] introduced the concept of approachability as a generalization of the minimax
theorem to vector-valued payoffs. Formally, a Blackwell game is an extension of two-player
zero-sum games with vector-valued reward functions.

Let X ,Y denote the action spaces for the two players and r : X × Y 7→ Rk be the
corresponding vector-valued reward function. Further, let S ⊆ Rk denote a target set. The
objective of player 1 is to ensure that the reward vector r lies in the set S while that of
player 2 is ensure that the reward r lies outside this set S. Following [2], we introduce the
notion of satisfiability and response-satisfiability.

Definition C.1 (Satisfiability). For a Blackwell game parameterized by (X ,Y , r, S), we say
that,

• S is satisfiable if there exists x ∈ X such that for all y ∈ Y, we have that r(x, y) ∈ S.

• S is response-satisfiable if for every y ∈ Y, there exists x ∈ X such that r(x, y) ∈ S.

In the case of scalar rewards, Von Neumann’s minimax theorem indicates that any set
which is satisfiable is also response-satsifiable. In other words, there exists a strategy for
Player 1, oblivious of Player 2’s strategy which ensures that the reward belongs to the set S if
the set S is response-satisfiable. The existence of such a relation was crucial in obtaining the
concept of the Von Neumann winner described in Section 4.2 for the uni-criterion problem.

However, such a statement fails to hold in the general vector-valued case (see [2] for a
counterexample). In order to overcome this limitation, Blackwell [29] defined the notion of
approachability as follows.

Definition C.2 (Blackwell’s Approachability). Given a Blackwell game (X ,Y , r, S), we say
that a set S is approachable if there exists an algorithm A which selects points in X such
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that for any sequence y1, . . . yt ∈ Y,

lim
T→∞

ρ

(
1

T

T∑
t=1

r(xt, yt), S

)
→ 0 ,

where xt = A(y1, . . . , yt−1) is the algorithm’s play at time t for some distance function ρ.

The celebrated Blackwell’s theorem then claims that any set S is approachable iff it
is response-satisfiable. This means that while no single choice of action in the set X can
guarantee a response in the set S, there exists an algorithm which ensures that in the repeated
game, the average rewards approach the set S, for any choice of oppenent play.

Note that our definition of achievability is a stronger requirement than Blackwell’s ap-
proachability. While approachability requires the time-averaged payoff in a repeated game to
belong to the pre-specified set S, achievability requires the same to be true in a single-shot
play of the game. Indeed, as the following lemma shows, one can construct examples of
multi-criteria preference problems which are approachable but not achievable.

Proposition C.1 (Approachability does not imply achievability). There exists a preference
tensor P ∈ Pd,k and a target set S ⊂ [0, 1]k such that
a) For the Blackwell game given by (∆d,∆d,P, S), the set S is approachable, and
b) The set S is not achievable with respect to P.

Proof. We will consider an example in a 2-dimensional action space with 2 criteria. Consider
the preference matrix given by:

P1 =

[1
2

1

0 1
2

]
and P2 =

[1
2

0

1 1
2

]
, (C.1)

along with the convex set S = [1
2
, 1]2. The tensor P represents the strongest possible trade-

off between the two objects: Object 1 is preferred over 2 along the first criterion while the
reverse is true for the second criterion.

The Blackwell game given by (∆d,∆d,P, S) can indeed be shown to be approachable.
The set S is response-satisfiable since for every strategy y ∈ ∆d chosen by the column player,
the choice of x = y would yield a reward vector P(x, y) = [1

2
, 1
2
] ∈ S. Then, by Blackwell’s

theorem [29], the set S is approachable.
In contrast, consider any choice of distribution π1 = [p, 1 − p] for the multi-criteria

preference problem. The corresponding score vectors for responses i2 = 1, 2 are given by:

r1 = P(π1, i2 = 1) =
[p
2
, 1− p

2

]
and r2 = P(π1, i2 = 2) =

[
1

2
+

p

2
,
1

2
− p

2

]
.

For any choice of the parameter p ∈ [0, 1], one cannot have both r1 and r2 simultaneously
belong to the set S. Hence, we have that the set S is not achievable with respect to P.
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This example can be extended to any arbitrary dimension k by extending the tensor to
have Pj equal to the all-half matrix for any criterion j > 2 and the target set to be S = [1

2
, 1]k.

Similarly, in order to extend the example to any dimension, consider the preference tensor
(for k = 2)

P1
d =



P1 P1/2 · · · P1/2

P1/2 P1 · · · P1/2

... · · · . . .
...

P1/2 P1/2 · · · P1


and P2

d =



P2 P1/2 · · · P1/2

P1/2 P2 · · · P1/2

... · · · . . .
...

P1/2 P1/2 · · · P2


,

with the smaller matrices P1 and P2 from equation (C.1) at the diagonal and P1/2 denoting
the all-half tensor of the appropriate dimension. A similar calculation as for the d = 2 case
yields that the set S is not achievable. This establishes the required claim.

C.2 Proof of main results

In this section, we provide formal proofs of all the results stated in the main paper. Ap-
pendix C.4 to follow collects some additional results and their proofs.

Proof of Proposition 4.1

We establish both parts of the proposition separately.

Proof of part (a)

For any weight vector w ∈ ∆k, consider the set

Sw =
{
r ∈ [0, 1]k | ⟨w, r⟩ ≥ 1/2

}
.

The set Sw is clearly convex. Indeed, for any two vectors r1, r2 ∈ Sw and any scalar α ∈ [0, 1],
we have

⟨w, αr1 + (1− α)r2⟩ = α⟨w, r1⟩+ (1− α)⟨w, r2⟩ ∈
[
1

2
, 1

]
.

It is straightforward to verify that the set Sw is also monotonic with respect to the orthant
ordering.

We now show that a von Neumann winner π∗ of the (single-criterion) preference matrix
Pw : = P(w) can be written as π(P, Sw, ∥ · ∥) for an arbitrary choice of norm ∥ · ∥. For each
π̃ ∈ ∆d, we have

⟨w,P(π∗, π̃)⟩ =
∑
j∈[k]

wjP
j(π∗, π̃) = Pw(π

∗, π̃))
(i)

≥ 1

2
,
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where the inequality (i) follows since π∗ is a von Neumann winner for the matrix Pw. Thus,
we have the inclusion P(π∗, π̃) ∈ Sw for all π̃ ∈ ∆d, so that maxπ̃∈∆d

ρ(P(π∗, π̃), Sw) = 0 for
any distance metric ρ. Consequently, we have

π∗ ∈ argmin
π∈∆k

max
π̃∈∆d

ρ(P(π, π̃), Sw),

which establishes the claim for part (a).

Proof of part (b)

Consider the multi-criteria preference instance given by target set S = [1
2
, 1]k, the ℓ∞ distance

function and the preference tensor P

P1 =

[1
2

1

0 1
2

]
, P2 =

[1
2

0

1 1
2

]
, and Pj =

[1
2

1
2

1
2

1
2

]
The unique Blackwell winner for this instance (P, S, ∥ · ∥∞) is given by

π(P, S, ∥ · ∥∞)︸ ︷︷ ︸
π∗

= [1/2, 1/2] . (C.2)

For any weight w ∈ [0, 1]k, consider the von Neumann winners corresponding to the weighted
matrices Pw

π(Pw, [1/2, 1], | · |) =


[1, 0] for w s.t. Pw(1, 2) > 0.5

[0, 1] for w s.t. Pw(1, 2) < 0.5

π ∈ ∆2 otherwise

. (C.3)

Comparing equations (C.2) and (C.3) establishes the required claim.

Proof of Theorem 4.1

Let us use the shorthand π̃ : = π(P̃). We begin by decomposing the desired error term as

∆P(π̃, π
∗)

= v(π̃;S,P, ∥ · ∥)− v(π̃;S, P̃, ∥ · ∥)︸ ︷︷ ︸
Perturbation error at π̃

+ v(π̃;S, P̃, ∥ · ∥)− v(π∗;S, P̃, ∥ · ∥)︸ ︷︷ ︸
≤0

+ v(π∗;S, P̃, ∥ · ∥)− v(π∗;S,P, ∥ · ∥)︸ ︷︷ ︸
Perturbation error at π∗

In order to obtain a bound on the perturbation errors, note that for any distribution π, we
have

v(π;S,P, ∥ · ∥)− v(π;S, P̃, ∥ · ∥) = max
i1

[ρ(P(π, i1), S)]−max
i2

[ρ(P̃(π, i2), S)]

(i)

≤ max
i

[ρ(P(π, i), S)− ρ(P̃(π, i), S)], (C.4)
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where step (i) follows by setting the i2 equal to i1. Noting that the distance is given by the
ℓq norm, we have

v(π;S,P, ∥ · ∥)− v(π;S, P̃, ∥ · ∥) ≤ max
i

[min
z1∈S

∥P(π, i)− z1∥q −min
z2∈S

∥P̃(π, i)− z2∥q]

(i)

≤ max
i

[∥P(π, i)− P̃(π, i)∥q],

where the inequality (i) follows by setting z2 equal to z1. Taking a supremum over all
distributions π completes the proof.

Proof of Corollary 4.1

By Theorem 4.1, it suffices to provide a bound on the quantity maxi ∥P(·, i)− P̂(·, i))∥∞,∞

for the plug-in preference tensor P̂. Now by definition, we have

max
i

∥P(·, i)− P̂(·, i))∥∞,∞ = max
i1,i2,j

|Pj(i1, i2)− P̂j(i1, i2)| .

For each i = (i1, i2, j) representing some index of the tensor, let Ni : = #{ℓ | ηℓ = i} denote
the number of samples observed at that index. Since Ni can be written as a sum of i.i.d.
Bernoulli random variables, applying the Hoeffding bound yields

Pr

{∣∣∣Ni −
n

d2k

∣∣∣ ≥ c

√
n log(c/δ)

d2k

}
≤ δ for each δ ∈ (0, 1).

Note that we also have n ≥ c0d
2k log(c1d/δ) by assumption. For a large enough choice of

the constants (c0, c1), applying the union bound yields the sequence of sandwich relations

n

2d2k
≤ Ni ≤

3n

2d2k
for all indices i with probability greater than 1− δ. (C.5)

Furthermore, conditioned on Ni (for i = (i1, i2, j)), the Hoeffding bound yields the relation

Pr

|Pj(i1, i2)− P̂j(i1, i2)| ≥ c

√
log(c/δ)

Ni

 ≤ δ for each δ ∈ (0, 1).

Putting this together with a union bound, we have

Pr

max
i1,i2,j

|Pj(i1, i2)− P̂j(i1, i2)| ≥ c

√
log(cd2k/δ)

mini Ni

 ≤ δ. (C.6)

Combining inequalities (C.5) and (C.6) with a final union bound completes the proof.
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Proof of Theorem 4.2

Suppose throughout that k ≥ 2, and recall the axis-aligned convex target set S0 = [1
2
, 1]k.

We split our proof into two cases depending on whether d is even or odd.

Case 1: d even. We use Le Cam’s method and construct two problem instances with
preference tensors given by P0 and P1. Two key elements in the construction are the
following 2× 2× 2 tensors, which we denote by Pcr and P̃cr, respectively. Their entries are
given by

P1
cr =

[
1
2

1
2
+ γ

1
2
− γ 1

2

]
, P2

cr =

[
1
2

1
2
− γ

1
2
+ γ 1

2

]
,

P̃cr

1
=

[
1
2

1
2
+ γ

d
1
2
− γ

d
1
2

]
and P̃cr

2
=

[
1
2

1
2
− γ

d
1
2
+ γ

d
1
2

]
.

Note that these tensors are parameterized by a scalar γ ∈ [0, 1/2], whose exact value
we specify shortly. Also denote by P1/2 the 2 × 2 × 2 all-half tensor. We are now ready to
construct the pair of d× d× k preference tensors (P0,P1).

In order to construct tensor P0, we specify its entries on the first two criteria according
to

P1:2
0 =



P1/2 P1/2 · · · P1/2

P1/2 Pcr · · · P1/2

... · · · . . .
...

P1/2 P1/2 · · · Pcr


, (C.7)

and set the entries on the remaining k − 2 criteria to 1/2.
On the other hand, the first two criteria of the tensor P1 are given by

P1:2
1 =



P̃cr P1/2 · · · P1/2

P1/2 Pcr · · · P1/2

... · · · . . .
...

P1/2 P1/2 · · · Pcr


, (C.8)

with the entries on the remaining k − 2 criteria once again set identically to 1/2.
Note that the tensors P0 and P1 only differ on the first 2 × 2 × 2 block. Furthermore,

the following lemma provides an exact calculation of the values minπ v(π;P0, S0, ∥ · ∥∞) and
minπ v(π;P1, S0, ∥ · ∥∞).

Lemma C.1. We have

V0 : = min
π

v(π;P0, S0, ∥ · ∥∞) = 0 and V1 : = min
π

v(π;P0, S0, ∥ · ∥∞) =
γ

3d− 2
.
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Given samples from these two instances, we now use Le Cam’s lemma [see 198, Chap 2]
to lower bound the minimax risk as

Mn,d,k(S0, ∥ · ∥∞) ≥ |V0 − V1|
2

(1− ∥Pn
0 − Pn

1∥TV) =
γ

2(3d− 2)
(1− ∥Pn

0 − Pn
1∥TV) , (C.9)

where Pn
0 and Pn

1 are the probability distributions induced on sample space by the passive
sampling strategy applied to the tensor P0 and P1, respectively.

Using Pinsker’s inequality, the decoupling property for KL divergence and the fact that
that KL(P∥Q) ≤ χ2(P∥Q), we have

∥Pn
0 − Pn

1∥TV ≤
√

n

2
KL(P1∥P0) ≤

√
n

2
χ2(P1∥P0) . (C.10)

The chi-squared distance between the two distributions P0 and P1 is given by

χ2(P1∥P0) =
1

d2k

∑
(i1,i2,j)

(
Pj

1(i1, i2)

Pj
2(i1, i2)

− 1

)2

(i)
=

2

d2k

((
2γ

d

)2

+

(
−2γ

d

)2
)

=
16γ2

d4k
,

where step (i) follows from the fact that P1 and P2 differ only in 4 entries and that the
passive sampling strategy samples each index uniformly at random. Putting together the
pieces, we have:

Mn,d,k(S0, ∥ · ∥∞) ≥ γ

2(3d− 2)

(
1−

√
n

2

16γ2

d4k

)
(ii)
=

1

48
√
2

√
d2k

n
.

where step (ii) follows by setting γ2 = d4k
32n

and using the fact that 3d − 2 ≤ 3d. Note that
since we require γ2 ≤ 1

4
, the above bound is valid only for n ≳ d4k. This concludes the proof

for even d.

Case 2: d odd. By assumption, we have d ≥ 5. In this case, we construct P0 and P1

exactly as before, but replace Pcr in the last two rows of both P0 and P1 with the following
modified 3× 3× 2 tensor:

P1
cr,3 =

 1
2

1
2
+ γ 1

2
− γ

1
2
− γ 1

2
1
2
− γ

1
2
+ γ 1

2
+ γ 1

2

 and P2
cr,3 =

 1
2

1
2
− γ 1

2
+ γ

1
2
+ γ 1

2
1
2
+ γ

1
2
− γ 1

2
− γ 1

2

 .

By mimicking its proof, it can be verified that this modification ensures that the correspond-
ing values V0 and V1 still satisfy Lemma C.1. Thus, the lower bound remains unchanged up
to constant factors.
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Proof of Lemma C.1

Let us compute the two values separately.

Computing V0. The choice of distribution π∗ = [1, 0, . . . , 0] yields the score vector [1/2, 1/2, . . . , 1/2],
which is in the set S0. Thus, we have V0 = 0.

Computing V1. Note that the optimal distribution π∗ achieving the value V1 will be of
the form

π∗ = [p/2, p/2, (1− p)/(d− 2), . . . , (1− p)/(d− 2)] for some p ∈ [0, 1].

This follows from the symmetry in the preference tensor for row objects ranging from 3 to
d. Given such a distribution π∗, the distance of the reward vector from the set S0 is given
by

inf
z∈S

∥P(π∗, i2)− z∥∞ =


γp
2d

i2 = 1, 2

γ(1−p)
d−2

o.w.
.

Thus, for any value of p > 2d/(3d− 2), the distance is maximized for i2 ∈ {1, 2}, and yields
a value γp/(2d). On the other hand, for p < 2d/(3d−2), the maximizing index is i2 ≥ 3, and
the maximizing value is γ(1− p)/(d− 2). Optimizing these values for p yields the claim.

Instance dependent lower bounds

In this section, we give a formal statement of Proposition 4.2 along with its proof.
We begin by defining some notation. For any α, β ∈ [−1

2
, 1
2
] and choice of criteria j1, j2 ∈

[k], we define the tensor P
(j1,j2)
α,β ∈ [0, 1]2×2×k as

Pj1
α,β =

[ 1
2

1
2
+ α

1
2
− α 1

2

]
, Pj2

α,β =

[ 1
2

1
2
+ β

1
2
− β 1

2

]
and Pj

α,β =

[1
2

1
2

1
2

1
2

]
for j ̸= {j1, j2} .

Further, we denote by P1/2 the all-half tensor whose dimensions may vary depending on the
context. Any distribution π over the two objects can be parameterized by a value q ∈ [0, 1]
with q being the probability placed on the first object and 1−q the probability on the second
object. We will consider the distance function given by the ℓ∞ norm. Given this distance
function, we overload our notation for the value

v(q;P
(j1,j2)
α,β , S) = max

i
[ρ(P

(j1,j2)
α,β (q, i), S)] and V(P(j1,j2)

α,β ;S) = min
q

v(q;P
(j1,j2)
α,β ;S) .

(C.11)
We now state our main assumption for the score set S which allows us to formulate our lower
bound.
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Assumption C.1. There exists a pair of criteria (j1, j2), values α0 ∈ (0, 1
2
] and β0 ∈ [−1

2
, 0],

and a gap parameter γ > 0 such that

V(P1/2;S) + γ ≤ V(P(j1,j2)
α0,β0

;S)

for the all-half tensor P1/2 ∈ [0, 1]2×2×k.

The assumption above indicates that there exists a pair of criteria along which one
can observe some sort of trade-off when they interact with the underlying score set S. The
preference tensor P

(j1,j2)
α0,β0

captures this trade-off and the gap parameter γ quantifies it. Going
forward, we assume without loss of generality that (j1, j2) = (1, 2) and drop the dependence

of the tensor on these indices, writing Pα0,β0 ≡ P
(1,2)
α0,β0

. The following lemma indicates the
importance of the special values of (α, β) = (0, 0) for which P0,0 = P1/2.

Lemma C.2. For any α, β ∈ [−1
2
, 1
2
], we have V(P0,0;S) ≤ V(Pα,β;S).

The above lemma establishes that for any set, the value attained by setting (α0, β) = (0, 0)
will be lower than any other setting of the same parameters. For any parameter δ ∈ [0, 1],
denote by Pwt,δ the weighted tensor

Pwt,δ : = (1− δ)P0,0 + δPα0,β0 .

In order to understand the value V(Pwt,δ;S), we establish the following structural lemma
which gives us insight into how this value varies as a function of the parameter δ ∈ [0, 1].

Lemma C.3. Consider a target set S that is given by an intersection of h half-spaces. Then,
the value function V(Pwt,δ;S) is a piece-wise linear and continuous function of δ ∈ [0, 1] with
at most 4h pieces.

The above lemma states that the value V(Pwt,δ;S) is a piece-wise linear function of δ.
Consider the first such piece which has a non-zero slope. Such a line has to exist since
V(Pwt,δ) is continuous in δ and we have V(Pwt,0) < V(Pwt,1). Also, this slope has to be
positive since we know from Lemma C.2 that V(Pwt,0) ≤ V(Pwt,δ) for any δ ∈ [0, 1]. Denote
the starting point of this line by δ0 and the corresponding slope by m0, and observe that the
value V(Pwt,δ0) = V(Pwt,0). With this notation, we now proceed to prove the lower bound
on sample complexity for any polyhedral target score set S.

Proposition C.2 (Formal). Suppose that we have a valid polyhedral target set S satisfying
Assumption C.1 with parameters (α0, β0). Then, there exists a universal constant c such that

for all d ≥ 4, k ≥ 2, and n ≥ d2k
δ̄2

(1/2−δ0α0)2

α2
0+β2

0
, we have

Mn,d,k(S, ∥ · ∥∞) ≥ c
m0(

1
2
− δ0α0)√

α2
0 + β2

0

√
d2k

n
. (C.12)
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Proof. For this proof, we focus on the case when the number of criteria k is even. The proof
for the case when k is odd can be obtained similar to the proof of Theorem 4.2.

We use Le Cam’s method for obtaining a lower bound on the minimax value and construct
the lower bound instances using the tensor given by Pwt,δ. For some δ ∈ [0, 1] (to be fixed
later), consider the parameter δ1 = δ0 + δ. Using these values of δ0 and δ1, we create the
following two instances P0 and P1:

P0 =


Pwt,δ0 P1/2 · · · P1/2

P1/2 Pα0,β0 · · · P1/2

... · · · . . .
...

P1/2 P1/2 · · · Pα0,β0

 and P1 =


Pwt,δ1 P1/2 · · · P1/2

P1/2 Pα0,β0 · · · P1/2

... · · · . . .
...

P1/2 P1/2 · · · Pα0,β0

 ,

where Pα0,β0 is as given by Assumption C.1. The following lemma now shows that that
there exists a small enough δ̄ such that the value function V(Pwt,δ;S) is linear in the range
δ ∈ [δ0, δ1].

Lemma C.4. There exists a δ̄ ∈ (0, 1) such that for all δ ∈ [0, δ̄] and δ1 = δ0 + δ, we have

a. The value V(Pwt,δ1 ;S) = V(Pwt,δ0 ;S) + δm0.

b. The minimizer π∗
1 for P∗

1 is given by π∗
1 = [q0, 1− q0, 0 . . . , 0].

We defer the proof of this lemma to the end of the section. Thus, for a small enough value
of δ ∈ [0, δ̄], we have |V(P0) − V(P1)| = δm0. As was shown in the proof of Theorem 4.2,
the minimax rate is lower bounded as

Mn,d,k(S, ∥ · ∥∞) ≥ |V(P0)− V(P1)|
2

(1− ∥Pn
0 − Pn

1∥TV) ≥
δm0

2

(
1−

√
n

2
χ2(P1∥P0)

)
,

(C.13)
where Pn

0 and Pn
1 are the probability distributions induced on sample space by the passive

sampling strategy and the preference tensor P0 and P1 respectively. In order to obtain the
requisite lower bound, we proceed to compute an upper bound on the chi-squared distance
between the two distributions P0 and P1 as

χ2(P1∥P0) =
1

d2k

∑
(i1,i2,j)

(
Pj

1(i1, i2)

Pj
0(i1, i2)

− 1

)2

(i)

≤ 2

d2k

((
α2
0δ

2

(1
2
− δ0α0)2

)
+

(
β2
0δ

2

(1
2
+ δ0β0)2

))
(ii)

≤ 2δ2

d2k

(
α2
0 + β2

0

(1
2
− δ0α0)2

)
,
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where (i) follows from the fact that the instances P0 and P1 differ only in 4 entries and
(ii) follows from the assumption that |α0| ≥ |β0|. Now, substituting the value of δ2 =
d2k
4n

· ( 1
2
−δ0α0)2

α2
0+β2

0
and using the above bound with equation (C.13), we have

Mn,d,k(S, ∥ · ∥∞) ≥
m0(

1
2
− δ0α0)

8
√

α2
0 + β2

0

√
d2k

n
,

which holds whenever we have δ ∈ [0, δ̄] or equivalently n ≥ d2k
4δ̄2

( 1
2
−δ0α0)2

α2
0+β2

0
. This establishes

the desired claim.

Proof of Lemma C.2

For any α, β ∈ [−1
2
, 1
2
], consider the value

V(Pα,β;S) = min
q∈[0,1]

max
i

[ρ(Pα,β(q, i), S)]

= min
q∈[0,1]

max
τ∈[0,1]

[ρ(Pα,β(q, τ), S)]

(i)

≥ ρ

([
1

2

]k
, S

)
= V(P1/2;S) ,

where (i) follows by setting τ = q and
[
1
2

]k
denotes the vector with each entry set to half.

This establishes the claim.

Proof of Lemma C.3

Let us denote by q0 any minimizer of the value v(q;Pα0,β0 , S) and the two score vectors
corresponding to the choices for i in equation (C.11) by z1,i : = Pα0,β0(q0, i). Observe that
for Pwt,δ, the distribution given by q0 is still a minimizer of its value. Further, the score
vectors for the two column choices are given by:

zδ,i = (1− δ)

[
1

2

]k
+ δz1,i for i = {1, 2}.

Recall that the distance function is given by ρ(zδ,i, S) = minz∈S ∥zδ,i − z∥∞. Now, the mini-
mizer z will lie on the closest hyperplane(s) to the point zδ,i. In order to establish the claim,
it suffices to show that for any fixed hyperplane1 H, the distance function given by ρ(zδ,i, H)
is a piece-wise linear function for δ ∈ [0, 1].

Let us consider a point zδ,i which does not belong to the half-space given by H, since
otherwise, the distance to the half-space is 0. If we have ρ(zδ,i, H) = ζ, then the vector

1we use the hyperplane H and the half-space induced by it interchangeably.
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zδ,i + ζ1k must lie on the hyperplane H. This follows from the monotonicity property of the
hyperplane H.

For any δ = 1
2
δ1 +

1
2
δ2 such that zδ1,i and zδ2,i do not belong to the half-space given by

H, we have

ρ(zδ,i) =
1

2
ρ(zδ1,i)︸ ︷︷ ︸

ζ1

+
1

2
ρ(zδ2,i)︸ ︷︷ ︸

ζ2

,

where the above equality follows since zδ1,i + ζ11k and zδ2,i + ζ21k both lie on the hyperplane
H and therefore zδ,i +

ζ1+ζ2
2

1k also lies on the hyperplane. Combined with the fact that for
any point zδ,i which lies in the half-space given by H, the distance ρ(zδ,i, H) = 0, we have
that the function ρ(zδ,i, H) is a piece-wise linear function with at most 2 linear pieces for
δ ∈ [0, 1].

Since ρ(zδ,i, S) is a minimum over h hyperplanes, this function is itself a piece-wise linear
function with at most 2h pieces. The desired claim now follows from noting that the value
function V(Pwt,δ;S)is a maximum over two piece-wise linear functions each with at most 2h
pieces.

Proof of Lemma C.4

Consider δ1 = δ0+ δ such that δ0 and δ1 share the same linear piece. This can be guaranteed
to hold true for all δ ≤ δ̄1 by the piecewise linear nature of the value V(Pwt,δ).

For part (b) of the claim, let us consider the tensor P̃ = P1(3 :, 3 :) formed by removing
the first two rows and columns from the tensor P1. Then, from Assumption C.1, we have
that V(P̃;S) ≥ V(P1/2;S) + γ̃ for some γ̃ > 0. Selecting a value of δ̄2 such that δ̄2m0 ≤ γ̃,
we can ensure that condition (b.) is satisfied.

Finally, setting δ̄ = min(δ̄1, δ̄2) completes the proof.

Proof of Theorem 4.3

Let us prove the two claims of the theorem separately. We use the shorthand v(π) : =
v(π;P, S, ∥ · ∥) for convenience.

Establishing convexity. Consider any two distributions π1, π2 ∈ ∆k and a scalar α ∈
[0, 1]. Since the set S is closed and convex, we have

v(απ1 + (1− α)π2) = max
i∈[d]

min
z∈S

[ρ(P(απ1 + (1− α)π2, i), z)]

(i)
= max

i∈[d]
min

z1,z2∈S
[ρ(αP(π1, i) + (1− α)P(π2, i), αz1 + (1− α)z2)]

(ii)

≤ max
i∈[d]

(
α ·min

z1∈S
[ρ(P(π1, i), z1)] + (1− α) ·min

z2∈S
[ρ(P(π2, i), z2)]

)
≤ αv(π1) + (1− α)v(π2) ,
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where (i) follows from the convexity of S and linearity of the preference evaluation (Eq. (4.2)),
(ii) follows from the convexity of the distance function given by ℓq norm and (iii) follows from
distributing the max over the two terms. This establishes the first part of the theorem.

Establishing the Lipschitz bound. Consider any two distributions π1, π2 ∈ ∆d. The
difference in their value function can then be upper bounded as

|v(π1)− v(π2)| = |max
i1∈[d]

[ρ(P(π1, i1), S)]−max
i2∈[d]

[ρ(P(π2, i2), S)]|

(i)

≤ max
i∈[d]

|ρ(P(π1, i), S)− ρ(P(π2, i), S)|

= max
i∈[d]

|min
z1∈S

ρ(P(π1, i), z1)−min
z2∈S

ρ(P(π2, i), z2)|

(ii)

≤ max
i∈[d]

max
z∈S

|ρ(P(π1, i), z)− ρ(P(π2, i), z)| ,

where (i) follows from using the inequality |maxx f(x) − maxy g(y)| ≤ maxx |f(x) − g(x)|
and (ii) follows through a similar inequality |minx f(x) − miny g(y)| ≤ maxx |f(x) − g(x)|.
Since the distance function ρ is specified by the ℓq norm ∥ · ∥q, we have

|v(π1)− v(π2)| ≤ max
i∈[d]

∥P(π1, i)−P(π2, i)∥q

=

[
k∑

j=1

(
⟨π1 − π2,P

j(·, i)⟩
)q] 1

q

(i)

≤ k
1
q · ∥π1 − π2∥1 ,

where (i) follows from an application of Hölder’s inequality (ℓ1 − ℓ∞) to the inner product
⟨π1 − π2,P

j(·, i)⟩ and the fact that Pj(i1, i2) ∈ [0, 1] for any (i1, i2, j). This establishes the
Lipschitz bound and concludes the proof of the theorem.

C.3 Local asymptotic analysis for plug-in estimator

In this section, we study the adaptivity properties of the plug-in estimator2 π̂plug and derive
upper bounds on the error ∆P(π̂plug, π

∗) which depend on the properties of the underly-
ing problem instance (P, S, ρ). Contrast this analysis with the upper bounds obtained in
Corollary 4.1 and the perturbation result of Dudik et al. [71, Lemma 3] which provides a
worst-case upper bound on the error ∆P independent of the underlying preference tensor P.

Our focus in this section will be on the uni-criterion setup with k = 1 with the target set
S = [1

2
, 1] in which case the Blackwell winner coincides with the von Neumann winner. Recall

2For this section we use the notation π̂plug and π̂ to interchangeably to denote the plug-in estiamtor.
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from Section 4.2 that for the uni-criterion setup, the von Neumann winner for a preference
matrix P ∈ [0, 1]d×d is defined to be the distribution π∗ satisfying

π∗ ∈ argmax
π∈∆d

min
i∈[d]

π⊤Pei , (C.14)

where ei denotes the basis vector in the ith direction. Observe that the vector π∗ corresponds
to the mixed Nash equilibirum (NE) strategy of the zero-sum game with pay-off matrix P
for the row player (maximizing player). Given this equivalence, we focus on the more general
problem of estimating the Nash distribution of a zero-sum game with pay-offs A ∈ [0, 1]d×d

given sampled access to the matrix A.
We consider a slighlty modified passive sampling regime introduced in Section 4.3 wherein

each sample consists of an observation y ∼ N (Ai1,i2 , σ
2
i1,i2

), where the indices i1, i2 ∼ Unif([d])
are sampled independently. We term this the Gaussian passive sampling model in contrast
to the Bernoulli sampling model considered in the main text. Note that in the asymp-
totic regime, the Bernoulli sampling model is equivalent to the Gaussian sampling model
with variance σ2

i1,i2
= Ai1,i2 · (1−Ai1,i2). We further assume that the variances satisfy

maxi1,i2 σ
2
i1,i2

≤ 1. Given access to n samples from this model, we are interested in un-
derstanding the performance of the plug-in estimator

π̂plug ∈ argmax
π∈∆d

min
i∈[d]

π⊤Ânei ,

where Ân is the empirical estimate of the matrix, defined analogous to the estimate P̂ in
equation (4.6). In particular, we will be interested in obtaining a bound on the error

∆A(π̂plug, π
∗) : = min

i∈[d]
(π∗)⊤Aei −min

i∈[d]
π̂⊤
plugAei ,

which measures the gap in the value obtained when distribution π̂plug is played compared
with the value obtained by the Nash distribution π∗. Observe that the optimization problem
for obtaining Nash equilibrium in equation (C.14) can be written as the following linear
program with decision variables (π, t)

max t

such that π⊤Aei ≥ t for all i ∈ [d],∑
i

πi = 1 and πi ≥ 0 for all i ∈ [d].
(Nash)

The above linear program has d + 1 variables (π, t) and 2d + 1 constraints including one
equality constraint. Similarly, the one can rewrite the objective for the plug-in estaimtor
π̂plug as the solution to a perturbed version of the above linear program

max t

such that π⊤Ânei ≥ t for all i ∈ [d],∑
i

πi = 1 and πi ≥ 0 for all i ∈ [d].
(Pert)
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Before stating our main result concerning the asymptotic distribution of the error ∆A(π̂plug, π
∗),

we introduce some notation first. Let us denote by x = (π, t) the variables and by matrix C
and vector csim the set of constraints in the linear program (Nash), that is,

C : =

[
A⊤ −1d
Id 0

]
and csim : = [1d, 0], (C.15)

where we have denoted by 1d the all-ones column vector in d dimension and by Id the d× d
identity matrix. Using this notation, we can rewrite this LP as

max t

such that Cx ≥ 0, c⊤simx = 1
(C.16)

It will also be convenient to define the extended matrix Cext : = [C; c⊤sim] which contains both
the equalit and inequality constraints. For the perturbed version of the linear program (Pert)
we denote the analagous matrices respectively by Ĉ and Ĉext. Observe that the simplex
constraint encoded by the vector csim is deterministic and hence remains the same for both
the original and perturbed linear programs.

Observe that the constraint polytope for the LP (Nash) is a closed convex set since the
Nash distribution π belongs to the simplex ∆d and the variable t ∈ [0, 1]. Therefore, the
optimal solution x∗ = (π∗, t∗) will lie on one of faces whose dimension 0 ≤ kf ≤ d. In the
special case when kf = 0, we say that the LP admits a unique solution which is a vertex of
the constraint polytope. Let us denote by subsets J1 ⊆ {1, . . . , d} and J2 ⊆ {d+ 1, . . . , 2d}
the subset of constraints (rows of the constraint matrix C) which are tight for the set of
optimal solutions and let us represent their union by J = J1 ∪ J2. Observe that in addition
to the equality constraint c⊤simx = 1, there can be at most d constraints tight, that is,
|J | ≤ d. Further, we denote by Ĵ1, Ĵ2 and Ĵ the corresponding subsets for the perturbed
linear program (Pert).

We first establish a technical lemma which establishes that given enough samples, the
active constraints for the original LP (Nash) given by J will be contained in the active
constraints Ĵ for the solution of the perturbed LP (Pert).

Lemma C.5. Consider the perturbed LP (Pert) for any payoff matrix A ∈ [0, 1]d×d with
noise distribution following the Gaussian passive sampling model. Then, for all n > n0(A, δ),
we have that the active constraint sets J for the original LP and Ĵ for the perturbed LP satisfy
J ⊆ Ĵ with probability at least 1− δ.

We defer the proof of the lemma to the end of the section. Observe that depending on the
sampling of the noise variables, the subset Ĵ can vary with the noise variables. Each of these
different subset can be seen as adding additional constraints on top of the |J | constraints
which charaterize the set of Nash equilibria for the original LP. Thus, when we look at the
constraint matrix Cext,Ĵ , any x = (π, t) satisfying Cext,Ĵ · x = [0d, 1]

⊤ will necessarily have π
as a Nash equilibrium.
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Before stating our main result, we introduce some notation which is essential for the
statement. Let use represent by Φ := A⊤

Ĵ1,Ĵc
2

the rank r matrix of constraints which are

tight in the perturned LP and its singular value decomposition by Φ = UΣV ⊤ and the
corresponding noisy matrix

Â⊤
Ĵ1,Ĵc

2
=
[
U1 U2

] [Σ1 0
0 0

] [
V ⊤
1

V ⊤
2

]
+

[
Z11 Z12

Z21 Z22

]
︸ ︷︷ ︸

Zn

,

where the matrix Z represents average zero-mean gaussian noise with n samples obtained
from the passive sampling model. Further, we let Z̃n : = U⊤ZnV denote the noise matrix
rotated by the directions given in U and V . With this, we state our result which characterizes
the error ∆A for the plug-in estimator π̂plug in terms of properties of the underlying matrix
A and the noise matrix Z̃.

Theorem C.1. For any payoff matrix A ∈ [0, 1]d×d and for samples n > n0(A, δ) obtained
via the Gaussian passive sampling model, we have the error ∆A of the plug-in estiamte π̂plug

satisfies

∆A(π̂plug, π
∗) ≤ t∗max

i∈Ĵ1
e⊤i U1

(
Z̃11 − Z̃12Z̃

−1
22 Z̃21

)
Σ−1

1 U⊤
1 1Ĵ1 +OP (∥Z̃11 − Z̃12Z̃

−1
22 Z̃21∥22)

+ (t̂− t∗)(1 +OP (∥Z̃11 − Z̃12Z̃
−1
22 Z̃21∥2)) , (C.17)

with probability at least 1− δ.

A few comments on the theorem are in order. Observe that the upper bound on the error
is a stochastic quantity where the randomness is not only in the entries of the matrix Z̃ but
also in the matrices U and Σ which depend on the (possibly) random subsets Ĵ1 and Ĵ2. The
upper bound depends primarily on two terms, up to lower order error factors, one measures
the alignment of the Schur complement Z̃11 − Z̃12Z̃

−1
22 Z̃21 with the rotated and renormalized

ones vector 1Ĵ1 , and the second which measures the convergence of the empirical value t̂
to the true value t∗. Going forward, we first provide a complete proof this result and then
specialize it to the special case when the true Nash π∗ is unique and lies in the interior of the
simplex ∆d – this greatly simplifies the above expression and allows us to study the problem
dependent adaptivity properties of the plug-in estimator π̂plug.

Remark C.1. The above analysis can be extended to the multi-criteria preference learning
setup k > 1 whenever the distance function ρ = ∥ · ∥∞ and the target set S is a polytope
by extending the linear program to handle the additional constraints. Similar to the result
above, the final upper bound on the error will then depend only on the constraints which are
tight in the original and perturbed programs. It remains an interesting problem to study the
asymptotic error for general convex target sets for which the optimization problem can be
written as a convex program.
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Proof of Theorem C.1. We will establish the claim by analyzing the structure of the solution
x̂ = (π̂plug, t̂) output by solving the perturbed linear program (Pert). Recall from our notation

that given access to n noisy samples of the matrix A, the set Ĵ = Ĵ1 ∪ Ĵ2 represents the
set of constraints which are tight for the perturbed LP with the empirical matrix Â where
|Ĵ | = d. Also, observe that since these samples come from the Gaussian passive sampling
model, we will have that the solution x̂ will be unique3 with probability 1.

Given this uniqueness, we can express the solution x̂ = (π̂, t̂) as the solution to the
following set of linear equationsÂ⊤

Ĵ1
−1|Ĵ1|

IĴ2 0|Ĵ2|
1d 0

 ·

π̂|Ĵ1|
π̂|Ĵ1|
t̂

 =

0|Ĵ1|0|Ĵ2|
1

 .

Let us denote by the vector bĴ : = [−1|Ĵ1|, 0|Ĵ2|]
⊤ and by the matrix C̃Ĵ : = [Â⊤

Ĵ1
; IĴ2 ]. Using

a standard block matrix inversion formula, we have that the output solution

π̂ = t̂C̃−1

Ĵ
bĴ and t̂ =

1

1⊤d C̃
−1

Ĵ
bĴ

.

In order to further simplify the above expression, let us denote by ÂĴ1,Ĵc
2
the matrix formed

by selecting the rows Ĵ1 and the columns Ĵ c
2 : = [d] \ Ĵ2 from the matrix Â. The estimate π̂

is then given by

π̂Ĵc
2
= −t̂Â−T

Ĵ1,Ĵc
2

· 1|Ĵ1| and π̂Ĵ2
= 0.

Plugging in the above value of the estimate π̂ into the error term ∆A(π̂, π
∗), we get,

∆A(π̂, π
∗) = min

i∈[d]
e⊤i A

⊤π∗ − min
i′∈[d]

e⊤i′A
⊤π̂

(i)
= max

i′∈[d]
min
i∈[d]

e⊤i A
⊤
·,Ĵc

2 ,
π∗
Ĵc
2
− e⊤i′A

⊤
·,Ĵc

2
π̂Ĵc

2

(ii)

≤ max
i∈Ĵ1

e⊤i A
⊤
Ĵ1,Ĵc

2

(
π∗
Ĵc
2
− π̂Ĵc

2

)
(iii)
= max

i∈Ĵ1
e⊤i A

⊤
Ĵ1,Ĵc

2

(
t̂Â−T

Ĵ1,Ĵc
2

− t∗(A⊤
Ĵ1,Ĵc

2
)†
)
1|Ĵ1|

where equality (i) follows from noting that one of the Nash equilibria will have the compo-
nents π∗

Ĵ2
= 0 from Lemma C.5, (ii) follows from upper bounding the min and noting that

the only columns of A that can be minimizers are those in Ĵ1 for large enough samples n,
and (iii) follows by substituting the values of π̂ and the nash distribution π∗. We can further

3For the case when an entire column of matrix A is determinisitc, those constraints (if tight) can be
combined with the other deterministic constraints and the analysis can proceed from there.
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split the error term into two components, one which looks at the error in value t̂, and the
other corresponding to the error in matrix Â.

∆A(π̂, π
∗) ≤ t∗max

i∈Ĵ1
e⊤i A

⊤
Ĵ1,Ĵc

2

(
Â−⊤

Ĵ1,Ĵc
2

− (A⊤
Ĵ1,Ĵc

2
)†
)
1|Ĵ1| + (t̂− t∗)max

i∈Ĵ1
e⊤i A

⊤
Ĵ1,Ĵc

2
Â−⊤

Ĵ1,Ĵc
2

1|Ĵ1|

(C.18)

Let us denote by Φ := A⊤
Ĵ1,Ĵc

2

. Then, we can rewrite the matrix Â⊤
Ĵ1,Ĵc

2

= Φ + Zn where

the matrix Zn represents the zero-mean noise from the Gaussian passive sampling model.
Further, let Φ = UΣV ⊤ denote the SVD of the matrix Φ. With this, the first term in the
above decomposition for any fixed value of i is given by

e⊤i Φ((Φ + Zn)
−1 − Φ†)1|Ĵ1| = e⊤i UΣ

(
(Σ + U⊤ZnV )−1 − Σ†)U⊤1|Ĵ1|.

Let us denote by Z̃n : = U⊤ZnV the effective noise matrix. Using the block matrix inversion
formula, the above expression can be written as

e⊤i Φ((Φ + Zn)
−1 − Φ†)1|Ĵ1| = e⊤i

[
U1 U2

] [Σ1 0
0 0

]([
Σ1 + Z̃11 Z̃12

Z̃21 Z̃22

]−1

−
[
Σ−1

1 0
0 0

])[
U⊤
1

U⊤
2

]
1Ĵ1

(i)
= e⊤i U1Σ1

(
(Σ1 + Z̃11 − Z̃12Z̃

−1
22 Z̃21)

−1 − Σ−1
1

)
U⊤
1 1Ĵ1 . (C.19)

where Σ1 is the diagonal matrix with non-zero singular value of Φ and equality (i) follows
from the fact that U⊤

2 1Ĵ1 = 0. To see this, recall that U represents the column space of the
matrix Φ = A⊤

Ĵ1,Ĵc
2

, that is the row space of the matrix A⊤
Ĵ1,Ĵc

2

with U2 representing the null

space of this matrix. Since we know that (π∗)⊤A⊤
Ĵ1,Ĵc

2

= t∗1|Ĵ1|, all vectors in the null space

will necessarily have to be orthogonal to the vector 1|Ĵ1|. Combining the above error bound
with equation (C.18), we have,

∆A(π̂, π
∗) ≤ t∗max

i∈Ĵ1
e⊤i U1Σ1

(
(Σ1 + Z̃11 − Z̃12Z̃

−1
22 Z̃21)

−1 − Σ−1
1

)
U⊤
1 1Ĵ1

+ (t̂− t∗)max
i∈Ĵ1

e⊤i U1Σ1

(
(Σ1 + Z̃11 − Z̃12Z̃

−1
22 Z̃21)

−1
)
U⊤
1 1Ĵ1

≤ t∗max
i∈Ĵ1

e⊤i U1

(
Z̃11 − Z̃12Z̃

−1
22 Z̃21

)
Σ−1

1 U⊤
1 1Ĵ1 +OP (∥Z̃11 − Z̃12Z̃

−1
22 Z̃21∥22)

+ (t̂− t∗)(1 +OP (∥Z̃11 − Z̃12Z̃
−1
22 Z̃21∥2)) ,

where the final inequality follows from the Taylor series expansion (I + X)−1 = I − X +
O(∥X∥22) whenever ∥Z∥2 < 1. This establishes the desired claim.

Asymptotic error under uniqueness assumption. Having established an upper bound
on the error for the general setup in Theorem C.1, we now consider the specific scenario where
the payoff matrix A is a preference matrix and has a unique von Neumann winner π∗. This
is formalized in the following assumption.
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Assumption C.2 (Unique Nash equilibrium). The payoff matrix A belongs to the set of
preference matrices Pd,1 and has a unique mixed Nash equilibrium π∗, that is, π∗

i > 0 for all
i ∈ [d].

For any preference matrix A ∈ Pd,1 and the Bernoulli passive sampling model discussed
in Section 4.3, the asymptotic variance for the Gaussian passive sampling model is σ2

i,j =
Ai,j · (1−Ai,j). Let us represent by Σi the diagonal matrix corresponding to the variances
along the ith column of the matrix A with

Σi = diag(A1,i · (1−A1,i), . . . ,Ad,i · (1−Ad,i).

Given this notation, we now state a corollary which specializes the result of Theorem C.1 to
payoff matrices satisfying the above assumption.

Corollary C.1. For any payoff matrix A satisfying Assumption C.2 and for samples n >
n0(A, δ), we have that the error ∆A of the plug-in estimate π̂plug satisfies

∆A(π̂plug, π
∗) ≤ ∥Znπ

∗∥∞ +OP (∥Zn∥22)

≤ c ·

√
σ2
Ad

2

n
log

(
d

δ

)
+OP (∥Zn∥22) , (C.20)

with probability at least 1− δ and the variance σ2
A : = maxi∈[d](π

∗)⊤Σiπ
∗.

We make a few remarks on the above corollary. Observe that the above is a high probabil-
ity bound on the error ∆A of the plug-in estimator π̂plug. Compared with the upper bounds
of Corollaries 4.1 and C.2, the asymptotic bound on the error above is instance dependent –
the effective variance σ2

A depends on the underlying preference matrix A. In particular, this
variance measures how well does the underlying von Neumann winner π∗ align with each
variance associated with each column of the matrix A. In the worst case, since each entry
of A is bounded above by 1, the variance σ2

A = 1 and we recover back the upper bounds
from Corollaries 4.1 and C.2 for the uni-criterion case. The second term in the upper bound
comprising the operator norm of the sampling noise, ∥Zn∥22, can be shown to be Od(

1
n
) with

high probability, and therefore contributes as a lower order term.

Proof of Corollary C.1. Observe that Assumption C.2 implies that the set of tight con-
straints for the LP (Nash) are the ones corresponding to payoff matrix A. That is, the
set J1 = [d] and J2 = ϕ. Following Lemma C.5, we have, for n large enough, the subset
of tight constraints for the perturbed LP (Pert) satisfy Ĵ1 = J1 and Ĵ2 = J2. Further, the
uniqueness assumption guarantees that the matrix A is full rank and hence, invertible.

Since the matrix Â is itself a preference matrix (by construction), the value t̂ = t∗ = 1
2

and therefore, using the upper bound on the error from Theorem C.1, we have,

∆A(π̂, π
∗) ≤ t∗max

i∈[d]

[
e⊤i ZnA

−⊤1d
]
+OP (∥Zn∥22)

≤ ∥Znπ
∗∥∞ +OP (∥Zn∥22)
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where the final inequality follows by noting that π∗ = t∗A−⊤1d and recall that Zn denotes the
zero mean noise-matrix obtained by the passive Gaussian sampling model with (asymptotic)
variance σ2

i,j = Ai,j · (1−Ai,j). Let us denote by ΣA the diagonal matrix measuring the
alignment of the Nash equilibrium π∗ with the variance of the ith column of the underlying
matrix A, that is,

ΣA(i, j) =

{
(π∗)⊤Σiπ

∗ for i = j

0 otherwise
.

Following a similar calculation as in the proof of Corollary C.2, we have that each entry of
the matrix Zi,j will have samples Ni,j = Θ( n

d2
). Combined with a standard bound for the

maximum of sub-Gaussian random variables [209], we have for n > n0(A, δ), with probability
at least 1− δ,

∆A(π̂, π
∗) ≤ c ·

√
σ2
Ad

2

n
log

(
d

δ

)
+OP (∥Zn∥22) ,

for some universal constant c > 0 and where the variance σ2
A = maxi∈[d] ΣA(i, i).

Example: Generalized Rock-Papers-Scissor. While in the worst-case, the variance
determining the sample complexity of learning Nash from samples is σ2

A = Θ(1), we will
now construct a family of preference matrices A(d), for different values of dimension d, and
show that σ2

A = O(1
d
). This exhibits that the plug-in estimator π̂plug can indeed adapt to the

problem complexity and has a sample complexity of Õ( d
ϵ2
) for these class of easier problems

compared to the worst-case complexity of Õ(d
2

ϵ2
).

Our example is a high-dimensional generalization of the classical Rock-Papers-Scissors
(RPS) game. Recall, that the pay-off matrix for the RPS game is

ARPS =

R P S
R 0.5 0 1
P 1 0.5 0
S 0 1 0.5

.

Observe that the above payoff matrix encodes a deterministic game: Rock beats Scissor,
Scissor beats Paper, and Paper beats Rock. Similar to this, we define a randomized version
of the above RPS game with payoffs where we allow a small probability 0.25 with which the
lesser preferred item in a match-up can defeat the other, for example, Scissor against Rock.
Explicilty, such a payoff matrix A(3) is given by

A(3) =

R P S
R 0.50 0.25 0.75
P 0.75 0.50 0.25
S 0.25 0.75 0.50

.
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Similar to the deterministic RPS game, the above randomized game can be seen to have a
unique Nash equilibrium with π∗ = [1

3
, 1
3
, 1
3
].

We now describe a d-dimensional generalization of the above payoff matrix, for any odd
value of d = 2d′ + 1. For the element e1, the first entry will be set to 0.50, the next d′

entries to be 0.25 and the final d′ entries to be 0.75 – game-theoretically, this means that
the element e1 loses to elements e2 − ed′+1 and is preferred over elements ed′+2 − e2d′+1, both

with probability 0.75. Similarly, for the ith element, the row A
(d)
i is given by

A(d)(i, j) =


0.50 for j = i

0.25 for j ∈ [i+ 1 (mod d), i+ d′ (mod d)]

0.75 for j ∈ [i+ d′ + 1 (mod d), i+ 2d′ (mod d)]

.

It is easy to see from the form of the pay-off matrix that each element ei is preferred over
d′ elements and has a lower preference than d′ elements. By the symmetry of the payoff
matrix, the unique Nash equilibrium is given by the distribution π∗ = 1

d
1d which lies in the

interior of the simplex ∆d and hence satisfies Assumption C.2. Further, we can compute the
variance σ2

A(d) as

σ2
A(d) = max

i∈[d]
(π∗)⊤Σiπ

∗ = max
i

(
1

4d2
+
∑
j ̸=i

3

16d2

)
≤ 1

d2
+

3

16d
,

Plugging this variance in the upper bound obtained in Corollary C.1, for n > n0(A, δ) we
have

∆A(d)(π̂plug, π
∗) ≤ c

√
d

n
log

(
d

δ

)
(C.21)

with probability greater than 1 − δ. Thus, to obtain an ϵ-accurate solution for the payoff
matrix A(d), the plug-in estimator π̂plug requires Õ( d

ϵ2
) samples, a factor d less than the

worst-case sample complexity of Õ(d
2

ϵ2
).

Proof of Lemma C.5

Recall from our discussion above that the the constraint set for the LP (Nash), the constraint

polytope is a closed convex set and has a finite number |V | = O((2d+ 2)
d+1
2 ), which follows

from McMullen’s theorem [142]. Let us denote each vertex of the polytope by xv = (πv, tv)
and the corresponding set of d constraints which define the vertex by Jv. Further, let V ∗

denote the set of optimal vertices.
Because of the random Gaussian noise, for n = Ω(d2), we have that the solution x̂ =

(π̂plug, t̂) will be unique with probability 1. In order to establish the claim of the lemma, we
can equivalently show that for any vertex xv /∈ V ∗, the corresponding vertex x̂v will not be
output by the perturbed LP. This follows from the observation that for n > O(d2 log(1/δ))
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and for any vertices xv, we have

P

(
|t̂v − tv| ≥ c

√
d2

n
log

(
1

δ

))
≤ δ,

for some universal constant4 c > 0. Taking a union bound over all |V | vertices, we have

P

(
∃ xv s.t. |t̂v − tv| ≥ c

√
d2

n
log

(
|V |
δ

))
≤ δ.

Therefore, whenever maxv tv ≤ t∗ − γ for some γ > 0, we have that after n > c d
2

γ2 log
(

|V |
δ

)
,

with probability at least 1− δ, we have,

max
v/∈V ∗

t̂v < min
v∈V ∗

t̂v , (C.22)

and therefore the perturbed LP will have active constraint set satisfying J ⊆ Ĵ . This proves
the desired claim.

C.4 Additional results and their proofs

This section covers additional sample complexity results as well as optimization algorithms
for finding the Blackwell winner of a multi-criteria preference learning instance.

Sample complexity bounds for ℓ1 norm

Corollary C.2. Suppose that the distance ρ is induced by the ℓ1 norm ∥ · ∥1. Then there
exists a universal constant c > 0 such that given a sample size n > cd2k log( cdk

δ
), we have

for each valid target set S

∆P(π̂plug, π
∗) ≤ ck

√
d2k

n
log

(
cdk

δ

)
(C.23)

with probability exceeding 1− δ.

Proof. Being somewhat more explicit with our notation, let N(i1,i2,j) denote the number
of samples observed under the passive sampling model at index (i1, i2, j) of the tensor.
Proceeding as in equation (C.6), we have

Pr

{
∥Pj(·, i2)− P̂j(·, i2)∥∞ ≥ c

√
log(cd/δ)

mini1∈[d] N(i1,i2,j)

}
≤ δ.

4the constant c can change values across lines, but will always remain a universal constant independent
of problem parameters.
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Summing over all criteria j ∈ [k] along with a union bound, we obtain

Pr

{
∥P(·, i2)− P̂(·, i2))∥∞,1 ≥ ck

√
log(cdk/δ)

mini1,j N(i1,i2,j)

}
≤ δ.

Finally, in order to obtain a bound on the maximum deviation in the (∞, 1)-norm, we take
a union bound over all d choices of the index i2, and apply inequality (C.5) to obtain

max
i2

∥P(·, i2)− P̂(·, i2))∥∞,1 ≤ ck

√
d2k

n
log

(
c
dk

δ

)
with probability exceeding 1− δ.

A few comments regarding the corollary are in order. The above corollary suggests that
the sample complexity required for obtaining an ϵ-accurate solution with respect to the ℓ1
norm is n = Õ(d

2k3

ϵ2
). Observe that this bound is a factor of k2 worse than the corresponding

one for ℓ∞ norm established in Corollary 4.1. This additional sample complexity occurs since
for any vector v ∈ Rk, we have ∥v∥1 ≤ k∥v∥∞. This implies that the error when measured
with respect to ℓ1 can be upto k times larger; since the sample complexity scales as 1

ϵ2
, the

corresponding increase with respect to the number of criteria k is quadratic.

Optimization algorithms

Recall that Theorem 4.3 established that the objective function v(π;P, S, ∥ · ∥q) is convex
in π and Lipschitz with respect to the ℓ1 norm. This implies that one could compute the
plug-in solution π̂plug as a solution to a constrained optimization problem. In this section, we
discuss a few specific algorithms based on zeroth-order and first-order methods for obtaining
such a solution.

Zeroth-order optimization

Zeroth-order methods for minimizing a function f(x) over x ∈ X work with a function query
oracle. That is, at each time step, the algorithm has access to an oracle which returns the
value f(x) for any point x ∈ X . In our setup, since we are interested in minimizing the value
function v(π;P, S, ρ) over π ∈ ∆d, such a function query requires access to the target set S
via an oracle O0

S such that
O0

S(z) → min
z1∈S

ρ(z, z1) ,

for the underlying distance function ρ(·). The oracle O0
S essentially takes as input a score

vector z ∈ [0, 1]k and outputs the distance of this point to the target set S. Given this
oracle, it is easy to see that for any π, one can compute the corresponding value function
v(π;P, S, ρ).
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Algorithm 5: Zeroth-order method for multi-criteria preference learning

Input: Time steps T , step size η, smoothing radius δ
Initialize: θ1 = 0
for t = 1, . . . , T do

πt = argmaxπ∈∆d
⟨θt, π⟩ − r(π) where r(π) =

∑
i πi log(πi)

Sample ut uniformly from the Euclidean unit sphere {u | ∥u∥2 = 1}
For every i ∈ [d], query points z1,i = P(πt + δut, i) and z2,i = P(πt + δut, i)
Set v(πt + δut;P, S, ρ) = maxi ρ(z1,i, S) and v(πt − δut;P, S, ρ) = maxi ρ(z2,i, S)

Set sub-gradient estimate ĝt =
d
2δ
(v(πt + δut;P, S, ρ)− v(πt − δut;P, S, ρ))ut

Update θt+1 = θt − ηĝt

Output: π̄T = 1
T

∑T
t=1 πt

There have been several algorithms proposed for optimization with such oracles when the
underlying function f is convex [76, 4, 181, 69, 149, 180] or non-convex, smooth [89]. The key
idea in the proposed algorithms is to utilize the zeroth-order oracle to constuct estimates of
the (sub-)gradient of the function f using a class of techniques called randomized smoothing.
The algorithms then differ in the construction of these estimates depending on the underlying
randomness as well as on the number of oracle calls during each time step.

Given the results of Theorem 4.3, we can restrict our focus on algorithms for the class of
convex Lipschitz function f . To this end, Shamir [180] proposed an algorithm for optimizing
such functions which required two function evaluations at each time. The algorithm, adapted
to the multi-criteria preference learning problem, is detailed in Algorithm 5. For our setup,
we select the negative entropy regularization, r(π) =

∑
i πi log(πi) to suit the geometry of

our domain X = ∆d.
The proposed algorithm, maintains an estimate of the distribution, πt, and at each time

step t, queries the function value v(·;P, S, ρ) at the following two points: πt + δut and
πt − δut, where u is sampled uniformly from the Euclidean unit sphere and δ > 0 represents
the smoothing radius. Given these queries, the sub-gradient estimate, ĝt is then obtained as:

ĝt : =
d

2δ
(v(πt + δut;P, S, ρ)− v(πt − δut;P, S, ρ))ut .

The sub-gradient estimate is then used to update the parameter estimate πt+1 using the
mirror descent algorithm with the specified regularization function. The zeroth-order method
in Algorithm 5 does not require the underlying function to be smooth and hence works for
our problem setup with arbitrary non-differentiable distance functions. We can now obtain
the following convergence result, based on Theorem 1 from the work of Shamir [180].

Proposition C.3. Suppose the conditions of Theorem 4.3 hold, and that Algorithm 5 is run
for T iterations with step-size ηt =

c
k1/q

√
dT

and smoothing radius δ = c log d√
T
, and produces a
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sequence π1, π2, . . . , πT . Then we have

v (π̄T ;P, S, ∥ · ∥q) ≤ min
π∈∆d

v(π;P, S, ∥ · ∥q) + ck
1
q ·

√
d log2 d

T

where π̄T = 1
T

∑T
t=1 πt.

Proof. By Theorem 4.3, the value function v(π;P, S, ∥ · ∥q) is convex and Lv = k
1
q -Lipschitz

with respect to ∥ · ∥1. Also, the choice of the regularizer r(π) =
∑

i πi log(πi) is 1-strongly
convex with respect to the ∥ · ∥1. Plugging in the above values in Theorem 1 from [180]
establishes the above convergence rate.

Thus, in order to obtain a distribution π̂ that is ϵ-close to π∗ in function value, we need

to run Algorithm 5 for T = O

(
k
2
q d log2 d

ϵ2

)
iterations. Also, note that each iteration of the

algorithm requires d calls to the oracle O0
S. Therefore the total oracle complexity of the

procedure is O

(
k
2
q d2 log2 d

ϵ2

)
.

First-order optimization

In this section, we look at first-order methods to compute the plug-in estimator. Let us
denote by ∂v(π) the set of sub-differentials of the function v(·;P, S, ∥ · ∥) evaluated at π.
Further, let the set Γ(π) denote the set of maximizers for a policy π, that is,

Γ(π) =

{
π̃ ∈ ∆d | π̃ ∈ argmax

π2∈∆d

min
z∈S

[∥P(π, π2)− z∥]
}

. (C.24)

Note that both of these quantities depend implicitly on the tuple (S,P, ∥ · ∥), but we have
dropped this dependence in the notation. Given the setup above, Lemma C.6 below charac-
terizes this set ∂v(π) for any smooth ℓq norm (with 1 < q < ∞).

Lemma C.6. Suppose that the distance is induced by a smooth ℓq norm for 1 < q < ∞.
Then the set of sub-differentials of v at π is given by:

∂v(π) = conv

{
P(·, π2) [P(π, π2)− ΠS(P(π, π2))]

∥P(π, π2)− ΠS(P(π, π2))∥q
| π2 ∈ Γ(π)

}
,

where ΠS(z) denotes the unique projection of the point z onto set S along ∥ · ∥q.

We defer the proof of the above lemma to later in the section. Note that in order to
access such a sub-gradient, we need access to an oracle O1

S that provides projection queries
of the form

O1
S(z) → argmin

z1∈S
ρ(z, z1).
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Algorithm 6: First-order method for multi-criteria preference learning

Input: Time steps T , step size η
Initialize: θ1 = 1k
for t = 1, . . . , T do

Set the distribution πt =
θt

∥θt∥1

Obtain gt ∈ conv
{

P(·,π2)[P(πt,π2)−ΠS(P(πt,π2))]
∥P(πt,π2)−ΠS(P(πt,π2))∥q | π2 ∈ Γ(πt)

}
[See eq.(C.24) for

Γ(πt)]
Update θt+1,i = πt,i exp(−ηgt,i)

Output: π̄T = 1
T

∑T
t=1 πt

The oracle O1
S takes in a point z and outputs the closest point in the set S to this point.

Given such an oracle, we can compute the sub-gradient of the function v(π;P, S, ρ) using
Lemma C.6 by evaluating it at the point given by P(π, π2) for some π2 ∈ Γ(π).

Given access to such a projection oracleO1
S, we detail out a procedure based on a standard

implementation of mirror descent with entropic regularization (or Exponentiated gradient
method) in Algorithm 6 to minimize the objective v(π;G). Note that we select the negative
entropy function, r(π) =

∑
i πi log(πi), as the regularization function for the mirror descent

procedure since our parameter space is given by the simplex ∆k and the negative entropy
function is known to be 1-strongly convex with respect to ∥ · ∥1 over this space.

The algorithm works by maintaining at each time instance a distribution πt over the set of
objects and updates it via an exponentiated gradient update. That is, the sub-gradient gt is
evaluated at the current point πt using access to both O1

S and O0
S, and is used to update each

coordinate of the variable θt. The updated distribution πt+1 is obtained via a KL-projection
of θt onto the simplex ∆k, which can be shown to be equivalent to the normalization θ/∥θ∥1.
We now proceed to prove a convergence result for this gradient-based Algorithm 6, based on
a standard analysis of the mirror descent procedure (for example, see [41, Theorem 4.2]).

Proposition C.4. Suppose the conditions of Theorem 4.3 hold and consider any ℓq-norm for

1 < q < ∞. Suppose that running Algorithm 5 for T iterations with step-size ηt =
1

k1/q

√
2 log d

T

produces a sequence π1, π2, . . . , πT . Then we have

v(π̄T ;P, S, ∥ · ∥q) ≤ min
π∈∆d

v(π;P, S, ∥ · ∥q) + k
1
q ·
√

2 log d

T

where π̄T = 1
T

∑T
t=1 πt.

Proof. Note that the function v(π;P, S, ∥ ·∥q) is convex and k
1
q -Lipschitz with respect to the

ℓ1 norm from Theorem 4.3. Further, the mirror map given by negative entropy function is
1-strongly convex with respect to ∥ · ∥1. Plugging in these values in Theorem 4.2 from [41]
establishes the required convergence rate.
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In order to obtain an ϵ-accurate solution in function value, it suffices to run the above

algorithm for T = O

(
k
2
q log d
ϵ2

)
iterations, with each iteration using 1 call to the oracle

O1
S and d calls to the oracle O0

S (to obtain the set Γ). Thus, we see that the total oracle

complexity changes as O1
S : O

(
k
2
q log d
ϵ2

)
calls and O0

S : O

(
k
2
q d log d
ϵ2

)
calls – effectively, an

O(d log d) decrease in the calls to O0
S is compensated by a corresponding increase of O( log d

ϵ2
)

calls to the stronger oracle O1
S.

Proof of Lemma C.6. Consider the function ϕ(π1, π2) = maxz∈S ∥P(π1, π2)− z∥ over the
domain π2 ∈ ∆d. For any fixed π2, we have that the function ϕ(π1, π2) is convex in π1. Thus,
by Danskin’s theorem, we have that the subdifferential set is given by:

∂v(π) = conv

{
∂ϕ(π, π2)

∂π
| π2 ∈ Γ(π)

}
, (C.25)

where conv represents the convex hull of the set. Let us now focus on the partial derivative
∂ϕ(π,π2)

∂π
for any π2 which is a maximizer. This partial derivative involves differentiation of

a metric projection onto a convex set, which has been studied extensively in the literature
of convex analysis [160, 220, 7]. Recently, Balestro et al. [20] established that for distance
functions given by smooth norms, the derivative of metric projection for any z /∈ S is given
by:

∇ρ(z, S) = ∇min
z2∈S

∥z − z2∥ =
z − ΠS(z)

∥z − ΠS(z)∥
,

where ΠS(z) denotes the unique projection of the point z onto set S. Combining this with
the chain rule of differentiation, we have that:

∂ϕ(π, π2)

∂π
=

P(·, π2) [P(π, π2)− ΠS(P(π, π2))]

∥P(π, π2)− ΠS(P(π, π2))∥q
.

The above, in conjunction with equation (C.25) establishes the desired claim.

C.5 Details of user study

In this section, we provide the deferred details of the user study from Section 4.4.

Self-driving environment. The self-driving environment consists of an autonomous car
which can be controlled by providing real-valued inputs acceleration and angular acceleration
at every time step. We allow the policies to have access to the dynamics of this environment.
Observe that there is no explicit reward function in the environment and each policy differs
in the way it optimizes a chosen reward function to drive the car forward in a safe manner.
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Policies. The MPC based Policies A-E were constructed by optimizing linear rewards
comprising features F1-F9 as

F1 Distance from the starting point along y-axis.

F2 Velocity of the autonomous car.

F3 Distance from the center of each lane.

F4 Gaussian collision detector for nearby objects.

F5 Collision detector which works at smaller radii than F4.

F6 Over-speeding feature which penalizes higher speeds.

F7 Reward for over-taking vehicles in the front.

F8 Gaussian off-road detector.

F9 Reward to promote speeding up near obstacles.

For each of the base policy, we set the weights of the features to encode different driving
behaviors.

Pol A programmed to prefer the right-most lane and progress forward at a slow speed.

Pol B programmed to prefer the left-most lane and move forward as fast as possible.

Pol C programmed to be conservative, avoids collision and proceeds forward.

Pol D programmed to get attracted towards other cars and obstacles.

Pol E programmed to prefer center lane and exhibit opportunistic behavior by moving ahead
of other cars.

Details of target set and linear weights. We selected the two data-oblivious sets to
trade-off between the criteria C1-C5 as

S1 = {z | z ∈ [0, 1]5, z1 ≥ 0.3, z2 ≥ 0.3, z3 ≥ 0.2, z4 ≥ 0.3, z5 ≥ 0.4},
S2 = {z | z ∈ [0, 1]5, z1 ≥ 0.25, z2 ≥ 0.25, z3 ≥ 0.25, z4 ≥ 0.25, z5 ≥ 0.25, z1 + z5 ≥ 0.9}.

(C.26)

In addition, we selected 9 set of weights w1:9 for linearly combining the different criteria.

w1: Average of the users’ self-reported weights.

w2: Weight vector obtained by regressing the overall criterion on C1-C5 with squared loss
as

w2 ∈ argmin
w∈∆5

∑
i1,i2

(Pov(i1, i2)−
∑
j

w(j)Pj(i1, i2))
2.
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w3: Weight obtained by regressing Bradley-Terry-Luce (BTL) scores. The BTL parametric
model assumes a real-valued score vi for each policy and posits that Pr(Pol i ⪰ Pol j) =
exp(vi)/ exp(vi) + exp(vj). Denoting the scores obtained from the overall preferences
by vov and those obtained from the individual criteria by vj for j ∈ [5], the weight

w2 ∈ argmin
w∈∆5

∑
i

(vovi −
∑
j

w(j)vji )
2.

w4: Data-oblivious weight w4 = [0.2, 0.2, 0.2, 0.2, 0.2].

w5: Data-oblivious weight w5 = [0.25, 0.5/3, 0.5/3, 0.5/3, 0.25].

w6: Data-oblivious weight w6 = [0.30, 0.4/3, 0.4/3, 0.4/3, 0.30].

w7: Data-oblivious weight w7 = [0.5/3, 0.5/3, 0.25, 0.5/3, 0.25].

w8: Data-oblivious weight w8 = [0.4/3, 0.4/3, 0.3, 0.4/3, 0.30].

w9: Data-oblivious weight w9 = [0.3, 0.1/2, 0.3, 0.1/2, 0.3].

The set of data oblivious weights were chosen to account for different trade-offs along the
criteria C1-C5 including the uniform weight w4.

Data Collection. Table C.1 shows the comparison data collected from the Mturk users
in both the phases of the experiment. The entry i, j of the comparison matrices represents
the fraction of users which preferred Policy i over Policy j. The top 5 rows and columns
of each matrix correspond to the baseline policies while the bottom rows correspond to the
two randomized policies R1 and R2 obtained as the Blackwell winner corresponding to sets
S1 and S2 respectively.

In addition, we would like to highlight some details from an experiment design perspec-
tive. Since the experiment was run in two phases, we could not guarantee the same set of
subjects to participate in both parts of the experiment. In order to limit distribution shifts,
we restricted the nationality of the subjects to United States and began both the phases on
the same time and day of the week. Also, in order to prevent biased evaluations, the order-
ing of the policy pairs as well as the ordering policies within a comparison was randomized
across the users.

Figures C.1, C.2 and C.3 shows the experiment setup we used for obtaining comparison
data from Amazon Mechanical Turk users consisting of the instructions, the policy compar-
ison page and the questionnaire that the users were asked to fill out.
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A B C D E
A 0.50 0.64 0.45 0.41 0.39
B 0.36 0.50 0.30 0.30 0.25
C 0.55 0.70 0.50 0.55 0.57
D 0.59 0.70 0.45 0.50 0.52
E 0.61 0.75 0.43 0.48 0.50
R1 0.49 0.80 0.22 0.46 0.29
R2 0.49 0.88 0.66 0.61 0.41

(a) C1: Aggressiveness

A B C D E
A 0.50 0.57 0.50 0.50 0.41
B 0.43 0.50 0.30 0.39 0.45
C 0.50 0.70 0.50 0.43 0.59
D 0.50 0.61 0.57 0.50 0.57
E 0.59 0.55 0.41 0.43 0.50
R1 0.46 0.71 0.32 0.51 0.39
R2 0.51 0.71 0.61 0.59 0.51

(b) C2: Predictability

A B C D E
A 0.50 0.16 0.25 0.32 0.30
B 0.84 0.50 0.89 0.82 0.68
C 0.75 0.11 0.50 0.73 0.61
D 0.68 0.18 0.27 0.50 0.41
E 0.70 0.32 0.39 0.59 0.50
R1 0.73 0.22 0.76 0.78 0.76
R2 0.90 0.24 0.44 0.66 0.66

(c) C3: Quickness

A B C D E
A 0.50 0.59 0.45 0.57 0.39
B 0.41 0.50 0.32 0.34 0.32
C 0.55 0.68 0.50 0.48 0.59
D 0.43 0.66 0.52 0.50 0.50
E 0.61 0.68 0.41 0.50 0.50
R1 0.44 0.80 0.20 0.39 0.24
R2 0.41 0.80 0.71 0.59 0.39

(d) C4: Conservativeness

A B C D E
A 0.50 0.52 0.41 0.50 0.43
B 0.48 0.50 0.32 0.55 0.55
C 0.59 0.68 0.50 0.55 0.57
D 0.50 0.45 0.45 0.50 0.50
E 0.57 0.45 0.43 0.50 0.50
R1 0.54 0.68 0.32 0.49 0.41
R2 0.63 0.73 0.59 0.61 0.54

(e) C5: Collision Risk

A B C D E
A 0.50 0.39 0.25 0.43 0.34
B 0.61 0.50 0.30 0.50 0.50
C 0.75 0.70 0.50 0.57 0.61
D 0.57 0.50 0.43 0.50 0.48
E 0.66 0.50 0.39 0.52 0.50
R1 0.66 0.76 0.29 0.59 0.39
R2 0.66 0.73 0.66 0.56 0.51

(f) Overall Preferences

Table C.1. Each matrix consists of pairwise comparisons between policies elicited from a
user study with around 50 participants on Mturk. An entry i, j of the comparison matrices
represents the fraction of users which preferred Policy i over Policy j. Policies A-E comprise
the base set of policies while Policies R1-R2 are the randomized Blackwell winners obtained
from the sets in equation (C.26). While Policy C is the overall von Neumann winner, Policy
R2 is preferred over it by 66% of the users.
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Figure C.1. Instructions provided to the users before the experiment began. The users
were asked to compare behavior of policies and were told to expect some policies to exhibit
a randomized behavior.
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Figure C.2. Layout of the experiment where each panel shows a GIF exhibiting a Policy
controlling the autonomous vehicle in one of the worlds of the environment. The users were
instructed to compare behaviors across each of the columns before proceeding to answer the
questions.
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Figure C.3. Layout of the questions panel comprising the 6 comparison questions and
the form for reporting the relevance of each criterion in the overall evaluation.
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Appendix D

Deferred content from Chapter 5

D.1 Mapping The Effects of Reward Misspecification

(a) traffic merge - Misweighting (b) traffic bottle - Misweighting]

(c) traffic merge - Space (d) COVID - Misweighting

Figure D.1. Additional model size scatter plots. Observe that not all misspecifications
cause misalignment. We plot the proxy reward with “•” and the true reward with “×”.
The proxy reward is measured on the left-hand side of each figure and the true reward is
measured on the right hand side of each figure.
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(a) traffic bottle - Misweighting (b) Correlation for Figure D.2a

(c) traffic merge - Misweighting (d) Correlation for Figure D.2c

(e) traffic merge - Ontological (f) Correlation for Figure D.2e

Figure D.2. Correlations between the proxy and true rewards, along with the reward
hacking induced. In the left column, we plot the proxy reward with “•” and the true reward
with “×”. In the right column, we plot the trained checkpoint correlation and the randomly
initialized checkpoint correlation.

Effect of Model Size

We plot the proxy and true reward vs. model size in Figure D.1, following the experiment
described in Section 5.3.

Correlation between Proxy and True Rewards

We plot the correlation between proxy and true rewards, following the experiment described
in Section 5.3. Interestingly, we see that reward hacking still occurs when there is positive
correlation between the true and proxy rewards, e.g., in Figures D.2a/D.2b. Unsurprisingly,
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Env. - Misspecification # Policies # Problematic Rollout length Trusted policy size

Traffic-Mer - misweighting 10 7 270 [96, 96]
Traffic-Mer - scope 16 9 270 [16, 16]

Traffic-Mer - ontological 23 7 270 [4]
Traffic-Bot - misweighting 12 9 270 [64, 64]

COVID - ontological 13 6 200 [16, 16]

Table D.1. Benchmark statistics. We average over 5 rollouts in traffic and 32 rollouts in
COVID.

proxy-true pairs which are highly correlated, e.g., Figure D.2c/D.2d do not exhibit reward
hacking. Finally, proxy-true pairs which are negatively correlated, e.g., Figure D.2e/D.2f
exhibit the most reward hacking.

D.2 Polynomaly

Benchmark Statistics

See Table D.1 for Polynomaly’s statistics.

Receiver Operating Characteristic Curves

We plot the ROC curves for the detectors described in Section 5.4. Our detectors are
calculated as follows.

Let P and Q represent two probability distributions with M = 1
2
(P + Q). Then the

Jensen-Shannon divergence and the Hellinger distance between them is given by

JSD(P ||Q) :=
1

2
KL(P ||M) +

1

2
KL(Q||M)

Hellinger(P,Q) :=
1

2

∫ (√
dP −

√
dQ
)2

.
(D.1)

Our proposed detectors estimate the distance D(πtrusted, πunknown) between the trusted
policy πtrusted and unknown policy πunknown as follows: We generate r rollouts of πunknown,
where r = 5 in the traffic environment and r = 32 in the COVID environment. Every s steps
of a rollout, where s = 10 in the traffic environment and s = 1 in the COVID environment,
we set P to be the action distribution of πunknown given the unknown agent’s state at that
timestep in the rollout and Q to be the action distribution of πtrusted given the unknown
agent’s state at that timestep in the rollout. Intuitively, if P and Q are far apart, then the
trusted agent would have performed a different action than the unknown agent at that given
timestep, indicating a possible case of reward hacking. We then compute either JSD(P∥Q)
or Hellinger(P,Q) following Equation (D.1). These distances are collected every s steps over
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the entire rollout, and we calculate metrics on these distances (range, mean, etc.) to assign
an anomaly score to the untrusted policy.

Figure D.3: ROC curves for Traffic-Mer - misweighting.

Figure D.4: ROC curves for Traffic-Mer - scope.

Figure D.5: ROC curves for Traffic-Mer - ontological.
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Figure D.6: ROC curves for Traffic-Bot - misweighting.

Figure D.7: ROC curves for COVID - ontological.
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Appendix E

Deferred content from Chapter 6

E.1 Technical details for proposed framework

RKHS assumption

The Hilbert spaces Hπ and Hr are Reproducing Kernel Hilbert Spaces defined by kernel
functions Kπ,Kr : X × X 7→ [0, 1] respectively defined over a compact instance space X .
Further, the kernels Kπ and Kr satisfy the Hilbert-Schmidt condition∫

X×X
Ki(x, z)

2dP(x)dP(z) ≤ ∞ for i = {π, r} , (E.1)

for some distribution P over space X . Mercer’s theorem [143] implies that such kernel
functions have an associated set of eigenfunctions (with corresponding eigenvalues) that
form an orthonormal basis for L2(X ,P). We restate a version of this theorem below [209].

Theorem E.1 (Mercer’s theorem). Suppose that the space X is compact and the positive
semi-definite kernel K satisfies the Hilbert-Schmidt condition (E.1). Then there exists a
sequence of eigenfunctions (ϕj)

∞
j=1 that form an orthonormal basis of L2(X ,P) and non-

negative eigenvalues (µj)
∞
j=1 such that∫

X
K(x, z)ϕj(z)dP(z) = µjϕj(x) for all j = 1, 2, . . . . (E.2)

Furthermore, the kernel function has the expansion

K(x, z) =
∞∑
j=1

µjϕj(x)ϕj(z) , (E.3)

where the convergence of the sequence holds absolutely and uniformly.
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Conditions for reward boundedness

For learning to be feasible in the proposed framework, we would require that the evaluation
functional F (π, r∗) is bounded for any policy π ∈ Hπ. Using the fact that ∥r∗∥Hr ≤ 1 and
∥π∥Hπ ≤ 1, we have

F (π, r∗) = ⟨r∗,Mπ⟩Hr = (r∗)⊤SrMπ ≤ ∥S
1
2
r MS

− 1
2

π ∥op . (E.4)

Thus one sufficient condition for the reward functional to be bounded is to ensure that the
operator norm ∥S

1
2
r MS

− 1
2

π ∥op is finite. In the special case when the map is diagonal with
M = diag(νj), the above condition simplifies to

F (π, r∗) ≤ sup
j≥1

νjµ 1
2
π,j

µ
1
2
r,j

 . (E.5)

Regularity assumptions on map M

We assume that the map M is a compact bounded operator from the policy space Hπ to
the reward space Hr. By Schauder’s theorem, the adjoint M∗ is also a compact operator.
Thus, the map M∗M : Hπ → Hπ is a compact self-adjoint operator. This allows us to use
the spectral theorem for compact self-adjoint operators which guarantees the existence of
eignevalues and eignefunctions for the operator M∗M and a corresponding singular value
decomposition for the map M [125].

Non-aligned RKHSs

As mentioned in the Section 4.2, if the eigenvectors of the spaces Hr and Hπ are not aligned,
one can consider the following simple transformation which resolves this. Let Φπ and Φr

represent the eigenvectors.

r̃ = Φrr, π̃ = Φ⊤
π π, and M̃ = Φ⊤

r MΦπ . (E.6)

The above transformation implies that ∥r̃∥Hr ≤ 1 and ∥π̃∥Hπ ≤ 1.

E.2 Proof of main results

In this section we provide the proofs for the main results of this work. Appendix E.4 to
follow contains the proofs for the other results.

Proof of Theorem 6.1

We begin by proving the result for the special case when the policy set Cπ consists of the
entire unit ball and then generalize the analysis to arbitrary policy sets.
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Case 1: Cπ is unit ball in Hπ. For this special case, observe that the the optimal policy
π∗ and the plug-in policy π̂plug for any reward estimate r̂ can be written as

π∗ =
M∗r∗

∥M∗r∗∥Hπ

and π̂plug =
M∗r̂

∥M∗r̂∥Hπ

, (E.7)

where the operator M∗ is the adjoint of of the map M . To prove a bound on the excess risk
using the plug-in estimate, we use the following lemma which bounds this error in terms a
deviation of the estimated and true rewards.

Lemma E.1. Consider any vectors x and y with finite non-zero norm under some inner
product ⟨·, ·⟩. Then, we have

⟨x, x

∥x∥
− y

∥y∥
⟩ ≤ ∥x− y∥2

2∥y∥
. (E.8)

The proof of the above lemma is presented in Section E.2. Taking the above as given,
we can upper bound the excess risk

∆(π̂; r∗) = ⟨M∗r∗,
M∗r∗

∥M∗r∗∥Hπ

− M∗r̂

∥M∗r̂∥Hπ

⟩Hπ

≤
∥M∗(r∗ − r̂)∥2Hπ

2∥M∗r̂∥Hπ

. (E.9)

Case 2: Arbitrary set Cπ. For this case, consider the excess risk of plug-in estimator
π̂plug obtained by maximizing reward estimate r̂

∆(π̂; r∗) = ⟨M∗r∗, π∗ − π̂plug⟩Hπ

= ⟨M∗(r∗ − r̂), π∗⟩Hπ + ⟨M∗r̂, π∗ − π̂plug⟩Hπ + ⟨M∗(r̂ − r∗), π̂plug⟩Hπ

(i)

≤ 2∥M∗(r∗ − r̂)∥Hπ , (E.10)

where the final inequality follows from the fact that π̂plug maximizes F (π; r̂) over the set Cπ.
Thus, we see that for both the cases above, we can upper bound the excess risk of the

plug-in estimator in terms of the norm ∥M∗(r∗ − r̂)∥Hπ . Next, we evaluate this for the ridge
regression based reward estimator for any set of n queries Q = {π1, . . . , πn} with covariance
matrix Σ = 1

n

∑
i πiπ

⊤
i . For any regularization parameter λreg > 0, we have,

r̂ = arg min
r∈Hr

1

n

n∑
i=1

(yi − ⟨r,Mπi⟩Hr)
2 + λreg∥r∥2Hr

(i)
= (MΣM⊤Sr + λregI)

−1 · 1
n

n∑
i=1

yiMπi

= r∗ − λreg(MΣM⊤Sr + λregI)
−1r∗ + (MΣM⊤Sr + λregI)

−1

(
M

n

n∑
i=1

ϵiπi

)
, (E.11)
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where and equality (i) follows by substituting the value of yi = F (πi, r
∗) + ϵi. Let us denote

by matrix A = MΣM⊤Sr + λregI. Therefore, the error in reward estimation

r̂ − r∗ = λregA
−1r∗ + A−1

(
M

n

n∑
i=1

ϵiπi

)

∼ N
(
λregA

−1r∗,
τ 2

n
A−1MΣM⊤A−⊤

)
, (E.12)

where the final distribution follows from our assumption on the noise variables ϵi ∼ N (0, τ 2).
Using this above distributional form, we have

E[∥M∗(r∗ − r̂)∥2Hπ
] = λ2

reg · ⟨M∗A−1r∗,M∗A−1r∗⟩Hπ +
τ 2

n
· tr
[
SπM

∗A−1MΣnM
⊤A−⊤(M∗)⊤

]
= λ2

reg · tr
[
(r∗)⊤A−⊤(M∗)⊤SπM

∗A−1r∗
]
+

τ 2

n
· tr
[
SπM

∗A−1MΣM⊤A−⊤(M∗)⊤
]
.

(E.13)

The final bound for the general policy set Cπ follows from using the above bound with a
an application of Jensen’s inequality. In order to convert the above bound to a high proba-
bility bound, we require an infinite dimensional analog of the Hanson-Wright concentration
inequality. Using Theorem 2.6 from Chen and Yang [50] along with equation (E.12), we
obtain

Pr(∆(π̂; r∗) ≥ E[∆(π̂; r∗)] + t) ≤ 2 exp

(
−Cmin

(
t2

∥Γ∥2HS

,
t

Γ∥op

))
where the covariance matrix Γ = S

1
2
πM∗A−1MΣM⊤A−⊤(M∗)⊤S

1
2
π .

Proof of Lemma E.1

Let the vector y = x+ δx for some difference vector δx. Using this, we have

⟨x, x

∥x∥
− y

∥y∥
⟩ = ⟨x, x

∥x∥
− x+ δx

∥x+ δx∥
⟩

=
∥x∥

∥x+ δx∥

(
∥x+ δx∥ − ∥x∥ − ⟨x, δx⟩

∥x∥

)
(i)

≤ ∥x∥
∥x+ δx∥

(
∥x∥+ ⟨x, δx⟩

∥x∥
+

∥δ2x∥
2∥x∥

− ∥x∥ − ⟨x, δx⟩
∥x∥

)
=

δ2x
2∥x+ δx∥

, (E.14)

where (i) follows from using the inequality
√
a2 + z ≤ a+ z

2a
. This establishes the result.
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Proof of Proposition 6.1

Let us denote the the map M = diag(νj) and the covariance matrix Σ = diag(σj). From the
upper bound obtained in Theorem 6.1, we have,

E[∥M∗(r∗ − r̂)∥2Hπ
] = λ2

reg · ∥M∗A−1r∗∥2Hπ
+

τ 2

n2
·

n∑
i=1

∥M∗A−1Mπi∥2Hπ

(i)

≤ λ2
reg · ∥S

1
2
πM

∗A−1S
− 1

2
r ∥2op +

τ 2

n
· tr
[
SπM

∗A−1MΣM⊤A−⊤(M∗)⊤
]

(ii)

≤ λ2
reg · sup

j≥1

[
ν2
jµr,jµπ,j

ν4
j σ

2
j + λ2

regµ
2
r,j

]
+

τ 2

n
· sup
j≥1

[
ν4
jµ

2
π,j

ν4
j σ

2
j + λ2

regµ
2
r,j

]
, (E.15)

where inequality (i) follows from using the fact that ∥r∗∥Hr ≤ 1 and inequality (ii) uses
the diagonal structure of the map M as well as the fact that each policy πi ∈ Q has unit
Hπ-norm.

Recall that the choice of querying strategy queries each scaled eigenfunction
√
µπ,jϕπ,j of

the policy space n1−α times. Therefore the jth entry of the covariance matrix Σ is given by

σj =

{
µπ,j

nα for j ≤ nα

0 otherwise
. (E.16)

Plugging the above value of σj into equation (E.15), we obtain

E[∥M∗(r∗ − r̂)∥2Hπ
] ≤ max

{
sup
j≤nα

λ2
regn

2αζj

ζ2j + λ2
regn

2α
, sup
j>nα

ζj

}
+

τ 2

n
·max

{
sup
j≤nα

n2αζ2j
ζ2j + λ2

regn
2α
, sup
j>nα

ζ2j
λ2
reg

}
(E.17)

This concludes the proof of the proposition.

Proof of Corollary 6.1

We now derive explicit finial sample rates for the case when the spectrum of the map
M⊤SrMS−1

π satisfies a power law decay for some parameter β > 0. In the notation used in
Proposition 6.1, we have the quantity

ζj ≍ j−β. (E.18)

Our proof strategy will be to instantiate the bias and variance terms for this setting of ζj and
finally select a setting for the exploration parameter α and regularization parameter λreg.
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Bounding Bias. The bias term in the proposition is a max over two terms

Bias2 = max

{
sup
j≤nα

λ2
regn

2αζj

ζ2j + λ2
regn

2α
, sup
j>nα

ζj

}
. (E.19)

We consider the two terms in the analysis here separately. For the first term,

sup
j≤nα

λ2
regn

2αζj

ζ2j + λ2
regn

2α
= λ2

reg sup
j≤nα

[
1

j−β

n2α + λ2
regj

β

]
≤ λregn

α , (E.20)

where the final inequality follows from using a2 + b2 ≥ 2ab. For the second term, we have

sup
j≥nα

ζj = sup
j≥nα

j−β = n−αβ. (E.21)

Bounding Variance. Recall that the variance term (assuming τ = 1) is given by

Variance =
1

n
·max

{
sup
j≤nα

n2αζ2j
ζ2j + λ2

regn
2α
, sup
j>nα

ζ2j
λ2
reg

}
. (E.22)

We again consider both terms of the maximum separately. For the first term,

1

n
· sup
j≤nα

n2αζ2j
ζ2j + λ2

regn
2α

≤ n2α−1 , (E.23)

where the inequality follows from ignoring the term λ2
regn

2α in the denominator. For the
second variance term,

sup
j>nα

ζ2j
nλ2

reg

=
n−2αβ

λ2
regn

. (E.24)

Setting regularization parameter. By setting λreg > n−αβ−α, we can have that the bias
term is dominated by λregn

α. Similarly, the above setting also implies that the variance
term is dominated by n2α−1. Combing these observations, we have that the expected error
is upper bounded by

∆(π̂plug; r
∗) ≤ λregn

α + n2α−1 where λreg > n−αβ−α. (E.25)

Setting λreg = n−α(β+1) and then α = 1
β+2

, we get that

∆(π̂plug; r
∗) ≤ n− β

β+2 . (E.26)

This completes the proof of the corollary.
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Proof of Theorem 6.2

In order to prove the general theorem, we exhibit a transformation which allows us to reduce
the problem to that with the diagonal structure described in Proposition 6.1.

We will consider orthogonally diagonalizable matrices Sr and Sπ which represent the
eigenvectors and eigenvalues of the Hilbert spaces Hr and Hπ. Consider the following set of
transformations for any reward r ∈ Cr and policy π ∈ Cπ.

r̃ = S
1
2
r r, π̃ = S

1
2
π π, M̃ = S

1
2
r MS

− 1
2

π . (E.27)

With this transformation, we can rewrite the objective function above

max
π̃

⟨r̃, M̃ π̃⟩ s.t. ⟨π̃, π̃⟩ = 1 and ⟨r̃, r̃⟩ = 1 ,

where the inner product ⟨·, ·⟩ denotes the standard ℓ2 inner product. Observe that we have
overloaded notation to denote by r̃∗ = r̃. Further, using these above transformations, we
can rewrite the adjoint operator

M∗ = S−1
π M⊤Sr = S

− 1
2

π (S
1
2
r MS

− 1
2

π )⊤S
1
2
r = S

− 1
2

π M̃⊤S
1
2
r . (E.28)

Recall from Theorem 6.1, the matrix

A = MΣM⊤Sr + λregI = S
− 1

2
r

[
M̃Σ̃M̃⊤ + λregI

]
S

1
2
r , (E.29)

where the covariance matrix Σ̃ = 1
n

∑
i π̃π̃

⊤. We have used the fact here that the matrices
Sπ and Sr are orthogonally diagonalizable and hence symmetric. Finally, we will denote the
singular value decomposition of the compact map M in the matrix form as

M̃ = UM̃ΛM̃V ⊤
M̃

.

The existence of such a decomposition is guaranteed by the regularity assumptions we con-
sider on the map M in Appendix E.1. We will now analyze the bias and the variance terms
from the upper bound on E[∥M∗(r∗ − r̂∥2Hπ

] from Theorem 6.1.

Bound on bias. The squared bias term is given by

λ−2
reg · Bias2 = r⊤A−⊤(M∗)⊤SπM

∗A−1r

= r⊤S
1
2
r S

− 1
2

r · S
1
2
r (M̃Σ̃M̃⊤ + λregI)

−1S
− 1

2
r · S

1
2
r M̃S

− 1
2

π · Sπ ·M∗A−1r

= r̃⊤(M̃Σ̃M̃⊤ + λregI)
−1M̃ · S

1
2
π S

− 1
2

π M̃⊤S
1
2
r · S− 1

2
r (M̃Σ̃M̃⊤ + λregI)

−1S
1
2
r r

= r̃⊤(M̃Σ̃M̃⊤ + λregI)
−1M̃ · M̃⊤(M̃Σ̃M̃⊤ + λregI)

−1r̃

= r̃⊤UM̃(ΛM̃V ⊤
M̃
Σ̃VM̃ΛM̃ + λregI)

−1Λ2
M̃
(ΛM̃V ⊤

M̃
Σ̃VM̃ΛM̃ + λregI)

−1U⊤
M̃
r̃ , (E.30)

where we have used the SVD decomposition for the matrix M̃ in the last step.
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Bound on variance. The variance term is given by

Var =
τ 2

n
· tr
[
SπM

∗A−1MΣnM
⊤A−⊤(M∗)⊤

]
=

τ 2

n
· tr
[
M̃⊤(M̃Σ̃M̃⊤ + λregI)

−1M̃Σ̃M̃⊤(M̃Σ̃M̃⊤ + λregI)
−1M̃

]
=

τ 2

n
· tr
[
ΛM̃(ΛM̃V ⊤

M̃
Σ̃VM̃ΛM̃ + λregI)

−1ΛM̃V ⊤
M̃
Σ̃VM̃ΛM̃(ΛM̃V ⊤

M̃
Σ̃VM̃ΛM̃ + λregI)

−1ΛM̃

]
.

(E.31)

Finally, by making a substitution for reward r̃ = U⊤
M̃
r̃ and policy π̃ = V ⊤

M̃
π̃ in equa-

tions (E.30) and (E.31), we recover back the bias variance expressions used in the analysis
for Proposition 6.1. What remains to be shown is that our particular choice of query policies
correspond to basis vectors in this transformed space. For this, observe that the sampling
policies

πj =
∞∑
i=1

√
µπ,i · ⟨ϕM̃,j, ϕπ,i⟩ϕπ,i for j ≤ nα ,

is such that the transformed policies

π̃j = V ⊤
M̃
S

1
2
π πj = V ⊤

M̃
S

1
2
π · S− 1

2
π VM̃ej = ej , (E.32)

indeed correspond to the basis vector. This finishes the proof of the desired claim.

Proof of Corollary 6.2

The proof of this corollary follows similar to that of Corollary 6.1 in terms of bounding the
bias and the variance. The final rate follows by an application of Jensen’s inequality to
conclude

E[∥M∗(r∗ − r̂)∥Hπ ] ≤ (E[∥M∗(r∗ − r̂)∥2Hπ
])

1
2 . (E.33)

The final rate that we get in this case is thus upper bounded by the square root of the rate
observed in Corollary 6.1. This concludes the proof.

E.3 Gaussian process bandit optimization

In this section, we discuss in detail the application of our framework to the problem of
frequentist Gaussian process bandit optimization, also known as Kernelized multi-armed
bandits (MAB) problem. Recall the reduction of the Kernel MAB problem to our setup
required us to define three elements.
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Reward space Hr. Given the RKHS H as well as the elements of the cover Cϵ, we view
the reward function as a map from Cϵ to R, or equivalently as a vector in RNcov(ϵ). More
precisely, letting f̃ = [f(x1), . . . , f(xNcov)] denote the vector of evaluations of a function f ,
we define

Hr : = span{f̃ | f ∈ H}
with ⟨f̃1, f̃2⟩Hr : = f̃⊤

1 K
−1f̃2

, (E.34)

where ⟨·, ·⟩ represents the standard ℓ2 inner product. With this notation, let us define the
true reward r∗ : = f̃ ∗ = [f ∗(x1), . . . , f

∗(xNcov)].

Policy Space Hπ. For the policy space Hπ in our setup, we let

Hπ : = span{kx = [K(x, x1), . . . ,K(x, xNcov)] ∈ RNcov | x ∈ Cϵ}
with ⟨k1, k2⟩Hπ : = ⟨k1, K−2k2⟩ .

(E.35)

The choice of the above norm ensures that

⟨ki, kj⟩Hπ = ⟨K−1ki, K
−1kj⟩ = ⟨ei, ej⟩ = δi,j for all (xi, xj) ∈ Cϵ × Cϵ .

For the policy space Hπ, we have created an orthonormal embedding of the set of vectors
{kx}x∈C. Observe that this policy set that we construct satisfies the regularity Assumption 6.1
because each vector k is an eigenvector of the space Hπ.

Map M . By our assumption that the kernel K is a Mercer’s kernel, we have that Hπ ⊆ Hr,
that is, for all x ∈ C, the vector kx ∈ Hr. Furthermore, both Hr and Hπ are sub-spaces of
RNcov and we can take the map M = INcov .

With these definitions, we now explicitly establish a correspondence between our doubly
nonparameteric bandit problem and the Kernel MAB problem.

Connecting the problems

Given an RKHS H with an associated Mercer’s kernel K, the objective of the zeroth-order
bandit optimization problem is

max
x∈X

f ∗(x) such that ∥f ∗∥H ≤ 1 , (P1)

with access to oracle

Of∗ : x 7→ f ∗(x) + η where η ∼ N (0, τ 2) .

Equivalently, the objective in our reward learning framework is

max
π∈Hπ

⟨r∗, π⟩Hr such that ∥r∗∥Hr ≤ 1 and ∥π∥Hπ ≤ 1 , (P2)
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with the corresponding spaces and inner products are defined in the previous section. The
oracle required in our setup responds with

Or∗ : π 7→ ⟨r∗, π⟩Hr + η where η ∼ N (0, τ 2) ,

for any policy π ∈ Hπ such that ∥π∥Hπ ≤ 1. Our first lemma below states that obtaining
such a n oracle is indeed feasible if we are able to restrict our queries π to include only points
kx for which the vector kx ∈ Cϵ.

Lemma E.2. Given access to oracle Of∗ for a function f ∗, the corresponding oracle Or∗

can be implemented when the query set consists of {kx}x∈Cϵ.

Proof. For any query point k, the oracle Or∗ needs to compute the value ⟨r∗, k⟩Hr = f ∗(x).
Thus, these two oracles on the provided query set are exactly identical.

Lemma E.3. For any f ∗ ∈ H satisfying ∥f ∗∥H ≤ 1, we have that ∥r∗∥Hr ≤ 1.

Proof. Observe that an alternate way to define the RKHS norm is given by

∥f∥H : = sup
S⊆X ;|S|≤∞

f |SK−1
S f |S .

The fact that ∥r∗∥Hr is computed on Cϵ ⊂ X establishes the desired claim.

Finally, we turn to establishing a relation between the solutions obtained from solving
the relaxed problem (P2) as compared to solving the original problem (P1). We denote the
corresponding maximizers for both problems

x∗ ∈ argmax
x∈X

f ∗(x) and x∗
π ∈ argmax

x∈Cϵ
⟨r∗, kx⟩Hr , (E.36)

The following lemma now relates both these maximizers together.

Lemma E.4. For an RKHS H with kernel K satisfying Assumption 6.2 with constant LK >
0 and any function f ∗ ∈ H, let x∗ ∈ X and x∗

π ∈ Cϵ be the maximizers as defined in
equation (E.36), we have

f ∗(x∗
π) ≥ f ∗(x∗)−

√
2cLKϵ . (E.37)

Proof. Denote by ΠCϵ(x
∗) : = argminx∈Cϵ ∥x∗ − x∥2 the projection of the point x∗ onto the

set Cϵ. Then, we have

f ∗(x∗)− f ∗(x∗
π) = f ∗(x∗)− f ∗(ΠCϵ(x

∗)) + f ∗(ΠCϵ(x
∗))− f ∗(x∗

π)

≤
√

2cLKϵ .

This completes the proof of the lemma.

The above lemma shows that solving Problem P2 is equivalent to solving Problem P1
up to an additive factor of

√
2cLKϵ when we are working with an ϵ-cover over the domain

space.
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Analysis for bandit optimization

Recall from the previous section that the quantity which determines the rate of decay is the
ratio of eigenvalues

ζj =
µ̂π,j

µ̂r,j

=
µ̂2
r,j

µ̂r,j

= µ̂r,j ,

where µ̂r,j is the jth eigenvalue of the kernel matrix K. Let us denote by P denote the
uniform distribution over the input space X and let us suppose that the cover Ncov is formed
using random samples from this distribution. Let us denote by {µj} the eigenvalues and by
ϕj the corresponding eigen vectors of the Mercer kernel K. For every point x ∈ X , let us
denote by

Φ(x) : =
(√

µjϕj(x)
)∞
j=1

,

the corresponding featurization of the point x. Then, for S : = Ex∼P[Φ(x)Φ(x)
⊤], we have

[S]j,k = [Ex∼P[Φ(x)Φ(x)
⊤]]j,k = Ex∼P[

√
µj
√
µkϕj(x)ϕk(x)] = µjδj,k . (E.38)

Observe that the kernel matrix K and the (scaled) sample covariance matrix Ncov · Ŝ =∑
x∈C Φ(x)Φ(x)

⊤ are similar matrices and thus have the same eigenvalues. The following
lemma, adapted from Koltchinskii and Lounici [121, Theorem 9] relates the eigenvalues of
the sample covariance matrix Ŝ to those of the underlying kernel K.

Lemma E.5. For any λS > 0 and size of the cover satisfying Ncov(ϵ) > c · tr(S(S+λSI)
−1)

ϵ2S
+

1
ϵ2S
log
(
1
δ

)
, we have,

µ̂j ≤ (1 + ϵS)µj + λSϵS for all j , (E.39)

with probability at least 1− δ.

The following corollary of Lemma E.5 provides us with a way to control the deviation of
the eigenvalues µ̂j from the corresponding µj in a multiplicative manner.

Corollary E.1. For any value of decay parameter β > 1 and γ < β, we have, for all j, the
eigenvalues

µ̂j ≤
3

2
µj +

N−γ
cov

2
, (E.40)

with high probability.

Proof. Let us understand the condition Ncov(ϵ) ≫ tr(S(S+λSI)
−1)

ϵ2S
and see what restrictions it

puts on the value of the covering number. Lets suppose that the true eigen values µj ≍ j−β
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and we set the value of λS ≍ N−γ
cov . Therefore, the sum

∑
j

j−β

j−β + λS

≲ N
γ
β
cov +

1

N−γ
cov

∑
j>N

γ
β
cov

j−β

≲ N
γ
β
cov +

N
γ
β
cov

β − 1
.

Thus, if we set ϵS = 1
2
, then for any β > 1 and γ < β, the above condition on the cov-

ering number will be satisfied and we get desired bound on the deviation of the empirical
eigenvalues from population eigenvalues.

The above corollary is essential to our argument because often times we have a good
understanding of the decay of the eigenvalues of the kernel K associated with the RKHS and
this allows us to relate the set of empirical eigenvalues to these.

We now present a proof of Theorem 6.3, restated below, which upper bounds the excess
risk for this setup. We will then use a batch to online conversion bound to convert this to a
regret bound and specialize to the Matérn kernel later.

Theorem E.2 (Restated Theorem 6.3). Suppose that the eigenvalues of a LK-Lipschitz
kernel K with respect to a distribution P over X satisfy the power-law decay µj ≍ j−β. Let
x̂plug be the output of Algorithm 3 using n queries to the oracle Of∗. Then, for any value of

γ ∈ (1 + 1
d

log(1/ϵ)
log(LK/ϵ2)

, β) and ϵ ∈ (0, 1), the excess risk

max
x

f ∗(x)− f ∗(x̂plug) ≲ N
1

β+2
cov (ϵ) · n

−β
2(β+2) +N

1−γ
2

cov (ϵ) +
√
LKϵ ,

with high probability.

Proof. Our strategy, as before, will be to explore nα directions and assume τ 2 = 1. Recall,
that for symmetric matrices, Theorem 6.2, the excess error of the plug-in estimator can be
upper bounded as

E[∆(π̂plug; r
∗)]2 ≤ λ2

reg sup
j≥1

 1
ν2j σ

2
j

µπ,jµr,j
+

λ2
regµr,j

µπ,jν2j

+
1

n
sup
j≥1

[
ν4
jµ

2
π,j

ν4
j σ

2
j + λ2

regµ
2
r,j

]
.

Bounding Bias. We will split the analysis into two cases.
Case 1: j > nα. For this case, we have that σj = 0 and therefore

λ2
reg sup

j>nα

µ̂π,j

λ2
regµ̂r,j

= sup
j>nα

Ncovµ̂j ≲ sup
j>nα

Ncov(µj +N−γ
cov) ≤ Ncovn

−αβ +N1−γ
cov , (E.41)
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with the above holding with high probability from an application of Corollary E.1 for any
1 < γ < β.

Case 2: j ≤ nα. For this case, we have σj =
µπ,j

nα . The bias can then be upper bounded
as

λ2
reg sup

j≤nα

 1
ν2j µπ,j

n2αµr,j
+

λ2
regµr,j

µπ,jν2j

 ≤ λregn
α , (E.42)

where the final inequality follows from using a2 + b2 ≥ 2ab.

Bounding variance. As we did in the section above, let us split the analysis into two
cases.

Case 1: j > nα. For this case, the variance term simplifies to

1

n
sup
j>nα

[
µ2
π,j

λ2
regµ

2
r,j

]
=

1

λ2
regn

sup
j>nα

[
N2

covµ̂
2
j

]
≤ N2

cov

λ2
regn

sup
j>nα

[
µ̂2
j

]
≲

N2
covn

−2αβ +N
2(1−γ)
cov

λ2
regn

. (E.43)

Case 2: j ≤ nα. For the second case, we can upper bound the variance term

1

n
sup
j≤nα

 ν4
jµ

2
π,j

ν4j µ
2
π,j

n2α + λ2
regµ

2
r,j

 ≤ n2α

n
, (E.44)

where the last inequality follows from ignoring the second term in the denominator.

Setting regularization parameter. From the analysis in the above paragraphs, we have

Bias2 ≤ max{Ncovn
−αβ +N1−γ

cov , λregn
α} ≤ max{Ncovn

−αβ, λregn
α}+N1−γ

cov , (E.45)

Variance ≤ max{N
2
covn

−2αβ +N
2(1−γ)
cov

λ2
regn

,
n2α

n
} ≤ max{N

2
covn

−2αβ

λ2
regn

,
n2α

n
}+ N

2(1−γ)
cov

λ2
regn

. (E.46)

For regularization parameter λreg > Ncovn
−αβ−α and γ > αβ

logn Ncov
, we have

Bias2 ≤ λregn
α +N1−γ

cov ,

Variance ≤ n2α

n
.

Excess risk bound. To obtain the final excess risk bound, we set α = 1+logn Ncov

β+2

E[∆(π̂plug; r
∗)]2 ≤ λregn

α +
n2α

n
+N1−γ

cov

≤ Ncovn
−αβ + n2α−1 +N1−γ

cov

(i)

≲ N
2

β+2
cov n

−β
β+2 +N1−γ

cov , (E.47)
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where inequality (i) follows from our particular choice of α. Combining the above bound
with Lemma E.4 completes the proof.

The following corollary instantiates the above theorem for the case when the input space
is the unit ball, that is, X = Bd(1).

Corollary E.2. Let the input space X = Bd(1) and the kernel K satisfy Assumption 6.2.
Then, for any β > 1 + 2

d
, we have

max
x

f ∗(x)− Ex∼π̂plug
f ∗(x) ≲ L

d
β+2+2d

K n
−β

2(β+2+2d) . (E.48)

Proof. From the bound in Theorem 6.3, we have,

max
x

f ∗(x)− Ex∼π̂plug
f ∗(x) ≲ N

1
β+2
cov (ϵ) · n

−β
2(β+2) +N

1−γ
2

cov (ϵ) +
√
LKϵ

(i)

≤ N
1

β+2
cov (

ϵ2

LK
) · n

−β
2(β+2) +N

1−γ
2

cov (
ϵ2

LK
) + ϵ

(ii)

≤ L
d

β+2

K ·
(
1

ϵ

) 2d
β+2

· n
−β

2(β+2) +

(
LK

ϵ2

) d(1−γ)
2

+ ϵ

(iii)

≤ L
d

β+2

K ·
(
1

ϵ

) 2d
β+2

· n
−β

2(β+2) + 2ϵ , (E.49)

where inequality (i) follows from substituting ϵ → ϵ2/LK, (ii) follows from the fact that

Ncov(ϵ) ≍
(
1
ϵ

)d
, and (iii) follows from using the assumption that β > γ > 1 + 2

d
log(1/ϵ)

log(LK/ϵ2)
.

Finally, setting ϵ ≍ L
d

β+2+2d

K n
−β

2(β+2+2d) , we get

max
x

f ∗(x)− Ex∼π̂plug
f ∗(x) ≲ L

d
β+2+2d

K n
−β

2(β+2+2d) .

This establishes the desired claim.

Regret bound for Matérn Kernel

In this section, we specialize the bound from Theorem 6.3 for the special class of Matérn
kernels. Recall that the Matern kernel is a distanced based kernel with K(x, y) = f(∥x−y∥).
Denote by r = ∥x− y∥, the exact form for the kernel is given by

KMatern,ν(r) =
21−ν

Γ(ν)

(√
2νr

l

)ν

Kν

(√
2νr

l

)
, (E.50)

with parameters ν and l and where Kν is the modified Bessel function of the second kind.
Going forward, lets fix the scale parameter l = 1 without loss of generality.

The following lemma then bounds the Lipschitz constant for this class of kernels when
the distance function is the ℓ2 norm.
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Lemma E.6 (Lipschitz Matérn Kernel). Consider the Matérn kernel with parameter ν > 3
2
.

The Lipschitz constant of this kernel is bounded by

LK ≤ sup
r∈(0,1)

[
e22−ννKν−1(1)

Γ(ν)
· re−

√
2νr]. (E.51)

Proof. The approach will be to show that the kernel function KMatern,ν is a Lipschitz function
of the distance r and then cover the ℓ2 ball in the d dimensional space appropriately. We
now look at the derivative of the function KMatern,ν(r) with respect to r.

∂KMatern,ν(r) =
21−ν(

√
2ν)ν

Γ(v)

(
νrν−1Kν(

√
2νr∂r + rν∂Kν(

√
2νr
)

(i)
=

21−ν(
√
2ν)ν

Γ(v)

(
νrν−1Kν(

√
2νr)− rν

(
√
2νKν−1(

√
2νr) +

ν
√
2ν√

2νr
Kν(

√
2νr)

))
∂r

= −21−ν(
√
2ν)ν

Γ(v)

(
rν
√
2νKν−1(

√
2νr)

)
∂r , (E.52)

where (i) follows from the identity ∂Kν(z) = (−Kν−1(z)− ν
z
Kν(z))∂z.

For any ν > 1
2
, we have the inequality

Kν(x)

Kν(y)
< expy−x

(y
x

)ν
for 0 < x < y. (E.53)

Instantiating the above with y = 1 and ν > 3
2
, we have

|∂KMatern,ν(r)| ≤
21−ν(

√
2ν)ν

Γ(v)

(
rν
√
2ν · e−

√
2νr

(
√
2νr)ν−1

· eKν−1(1)

)

≤ e22−ννKν−1(1)

Γ(ν)
· re−

√
2νr . (E.54)

The Lipschitz constant for this case can now be obtained by taking a sup over r ∈ (0, 1).

While our upper bound was in terms of sample complexity, in order to compete with the
cumulative regret formulation, we adapt an explore-then-commit strategy. The following
lemma relates the sample complexity bound to a cumulative regret bound.

Lemma E.7 (Batch to online conversion). Suppose an algorithm has sample complexity
O(n−α)) in the passive learning setup, the explore then commit strategy based on this learning

algorithm would have regret O(T
1

1+α ).

Proof. For some parameter γ > 0, let the explore then commit algorithm explore for T γ steps
and the commit to the strategy obtained post this exploration for the remaining T −T γ time
steps. The cumulative regret for such an algorithm is

RT = T γ + T−αγ(T − T γ) ≤ T γ + T 1−αγ . (E.55)

Setting γ = 1
1+α

finishes the proof.
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We now proceed to prove Corollary 6.3 which instantiates the bound in Theorem 6.3 for
the class of Matérn kernels.

Corollary E.3 (Restated Corollary 6.3). Consider the family of Matérn kernels with pa-
rameter ν > 3

2
defined with the euclidean norm over Rd. The T -step regret of the explore-

then-commit algorithm is

RMat,T ≲ O

(
L

d2

2ν+d(3+2d)

K · T
4ν+d(6+4d)
6ν+d(7+4d)

)
.

with high probability.

Proof. First, observe that excess risk bound in Corollary E.2 can be converted to a corre-
sponding T -step regret bound by an application of Lemma E.7 such that

RT ≲ O

(
L

d
β+2+2d

K · T
2β+4+4d
3β+4+4d

)
. (E.56)

For the class of Matérn kernels, the decay parameter β = 1 + 2ν
d

[112, Theorem 9]. Using
this wit the above regret bound, we get,

RMat,T ≲ O

(
L

d2

2ν+d(3+2d)

K · T
4ν+d(6+4d)
6ν+d(7+4d)

)
.

This completes the proof.

E.4 Adaptive sampling via GP-UCB

In this section, we prove an upper bound on the expected risk of the Gaussian process upper
confidence bound algorithm (GP-UCB) algorithm of Srinivas et al. [185]. In order to adapt
their algorithm for our setup, consider the function

fr(x) : = ⟨r,Mx⟩Hr such that D = {x | ∥x∥Hπ ≤ 1}. (E.57)

We have used x to denote policies in this setup to be consistent with the notation in Srinivas
et al. [185]. Observe that the domain defined above is not compact – a necessary condition
for the algorithm to work. One work around this is to truncate the unit ball after a finite
number of dimensions and bound this truncation error. The excess risk incurred by this
truncation can be made arbitrary small. Going forward, we ignore this truncation. The
regret for the UCB algorithm is shown to be upper bounded by Õ(γT

√
T ) where γT is the

information gain with

γT : = max
x1,...,xT∈D

1

2
log det(I + [K(xi, xj)]

T
i,j=1) , (E.58)
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where we have assumed without loss of generality that the noise variance τ = 1. For our
setup, the kernel function K(xi, xj) = ⟨Mxi,Mxj⟩Hr . We additionally require that the
reward function r belongs to the RKHS spanned by the set {Mx | x ∈ D}. Denote by

S = S
1
2
πM⊤S−1

r S
1
2
π and suppose that its eigenvalues satisfy a power law decay with σj(S) =

ζj = j−β. The following lemma upper bounds the information gain for this setup in terms
of the power law parameter β > 0.

Lemma E.8 (Information Gain.). The information gain γT for the above setup is bounded
as

γT = O(log(T ) · T
1

β+1 ) . (E.59)

Proof. The quantity of interest here is the information gain

γT : = max
x1,...,xT

1

2
log det(I +XSX⊤) such that ∀j ∥xj∥2 ≤ 1 , (E.60)

where the matrix X = [x⊤
1 ; . . . ;x

⊤
T ] and we have assumed that the noise variance is 1. From

the setup described above, we have that the eigen values of S decay as λj ≍ j−β. It is easy
to see that

Fig({xt}) : =
1

2
log det(I +XSX⊤) (E.61)

is a monotonic sub-modular function. Thus, the value of γT can be upper bounded by
(1−1/e)−1 times the value of the greedy maximization algorithm. The greedy maximization
algorithm is equivalent to picking

xt = argmax
x

Fig(Xt−1 ∪ {x}) .

It is easy to see that at each time t, the unit vector xt will be an eigen vector of the matrix
S. Given this observation, we can finally upper bound the value of the info gain

γT ≤ c · max
m1,...,mT

T∑
j=1

log(1 +mjλj) such that mj ≥ 0 and
∑
j

mj = T.

Solving the above optimization problem, the optimal choice of the variables

mj = max

{
1

λ
− 1

λj

, 0

}
and

∑
j

mj = T . (E.62)
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Setting λ = T− β
β+1 ensures that there are T

1
β+1 active directions. Substituting the above

values of mj in the expression for γT , we get

γT ≤ c ·
∞∑
j=1

log(1 + max(
λj

λ
− 1, 0))

≤ c · log
(
λ1

λ

)
·

∞∑
j=1

I[λj > λ]

(i)
= O(log(T ) · T

1
β+1 ) ,

where (i) follows from setting λ = T− β
β+1 . This establishes the required claim.

We are now ready to state this our sample complexity bound for GP-UCB for this subclass
of problems.

Proposition E.1 (Sample complexity for GP-UCB). Suppose that the police space Hπ,
reward space Hr and the map M satisfy the power law decay assumption with exponent
β > 0. The estimator π̂ucb output by the GP-UCB algorithm satisfies

E[∆(π̂ucb; r
∗)] ≤ Õ(n− β−1

2(β+1) ) . (E.63)

The proof of the sample complexity bound in Proposition E.1 now follows the regret
bound of Õ(γT

√
T ) along with using the upper bound on the information gain from Lemma E.8.

E[∆(π̂plug; r
∗)] = Õ(n

1
β+1

− 1
2 ) = Õ(n− β−1

2(β+1) ) . (E.64)

More recently, [44] extended the analysis of [203] to show that the SupKernelUCB algorithm
achieves a regret bound Õ(

√
γTT ). Using this modified bound, one can improve the above

analysis to obtain excess risk

E[∆(π̂plug; r
∗)] = Õ(n

1
2(β+1)

− 1
2 ) = Õ(n− β

2(β+1) ) , (E.65)

which is still worse than those obtained by the bounds by our proposed ridge regression
estimator.

E.5 Further details on experimental evaluation

In the simulation study, we work with d dimensional RKHSs Hr and Hπ. In order to simulate
the nonparmeteric regime, we typically use value of n which are less or at most a constant
times the dimension d. We set the matrices Sπ = diag(j−1.75), Sr = diag(j−1) and the map
M = I. This is allowed since the policy space is smaller than the reward space. With this,
the effective decay parameter β = βπ −βr = 0.75. We sampled the true reward r∗ uniformly
at random from the unit ball in Hr. We further sampled the oracle noise ϵ ∼ N (0, 0.01). All
plots were averaged over 10 runs.
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