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Abstract 
 

The cascade correlation algorithm (CASCOR), a generative 
connectionist model, was used to simulate age-related 
changes on the dimensional change card sort (DCCS), which 
has traditionally been used to evaluate the complexity of 
children’s rule-use abilities. Like 2.5-year-olds, inexperienced 
networks behave as if following one rule; slightly more 
experienced networks (akin to 3-year-old children) behave as 
if following a pair of rules; and the most experienced 
networks (akin to 5-year-olds) behave as if following two 
pairs of rules. Analysis of the networks’ activation levels 
revealed that mastery of simple rules is a necessary 
precondition for using higher order rules. The model also 
generated four novel predictions that can be tested in future 
research with children. 

Introduction 
Since its inception, artificial intelligence has made a large 
impact on the field of psychology. The infusion of computer 
generated models into psychological research has become 
increasingly common. In the past decade, connectionist 
models have become particularly influential as a research 
tool in psychology. Connectionist models benefit 
psychology in three ways: (a) successful simulation requires 
formalization of the assumptions of the model, (b) analyzing 
the solution of a connectionist network may provide insight 
into the psychological mechanisms used, and (c) the model 
may generate novel (and often counter-intuitive) 
predictions. In particular, connectionist modeling used in 
conjunction with empirical research has the potential to shed 
light on patterns of development across a wide range of 
cognitive domains. Researchers in developmental 
psychology have already employed connectionist models to 
simulate developmental phenomenon in a variety of 
cognitive tasks (e.g., McClelland & Jenkins, 1991; Schultz, 
Schmidt, Buckingham, & Mareschal, 1995; see Elman et al., 
1996, for a comprehensive review). Often, the results of 
these simulations call into question contemporary 
explanations of cognitive development. 
 According to Cognitive Complexity and Control theory 
(CCC; Frye, Zelazo, & Palfai, 1995; Zelazo & Frye, 1997), 
developmental improvements on tasks assessing deliberate 
reasoning and intentional action can be attributed to the 
acquisition of increasingly complex rule systems. 
Specifically, CCC postulates that young children (2.5 years) 
can use one rule, slightly older children (3 years) can use a 
pair of rules, while the oldest preschoolers (5 years) can use 
two incompatible pairs of rules. Rule-based card sorting  
paradigms have been employed to illustrate the number of  

Figure 1: Stimuli for DCCS 
 
rules that children can use. In these tasks, children are given 
cards that can be placed in one of two boxes based on a rule. 
For example, Zelazo, Reznick, & Piñon (1995) instructed 
2.5-year-olds to sort pictures into categories such as things 
found inside the house versus things found outside. 
Typically, these children were able to sort the first card 
correctly, but then perseverated and sorted all subsequent 
cards in the same box. Thus, these results demonstrated that 
2.5-year-old children could sort by one rule (e.g., if picture 
of things found inside the house then put card there), but not 
by a pair of rules (e.g., if picture of things found inside the 
house then put card here, but if picture of things found 
outside, then put card there). 
 The Dimensional Change Card Sort (DCCS; Frye et al., 
1995; Zelazo, Frye, & Rapus, 1996) has also been used to 
reveal age-related changes in the number of rules children 
can use simultaneously. In the standard task, children are 
shown two target cards that differ on two dimensions, say 
color and shape (e.g., red car and blue flower). Children are 
presented with test cards that share one dimension with one 
target and the other dimension with the other target (e.g., red 
flower and blue car, see Figure 1). In the pre-switch phase, 
children are instructed to sort the test cards (i.e., match the 
test card to the appropriate target card) according to one rule 
(color or shape). After a predetermined number of pre-
switch trials (e.g., 5, see Zelazo et al., 1996), children are 
asked to sort the same test cards by the other rule. So, the 
same test card will be sorted differently in the pre-switch 
and post-switch phases. On this task, 3-year-old children 
tend to pass the pre-switch phase, but fail the post-switch 
phase. This indicates that these children can sort by one pair 
of rules (e.g., in the color game, if it’s red it goes here, but if 
it’s blue it goes here), but not by two incompatible pairs of 
rules (e.g., if it’s the color game, then if it’s red it goes here, 
and if it’s blue it goes here but if it’s the shape game, then if 
it’s a flower it goes here and if it’s a car it goes here.) Five-
year-old children tend to pass both the pre-switch and post-
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switch phase, which illustrates that they can sort by two 
incompatible pairs of rules in the same context, and 
arguably requires the use of a higher order rule for selecting 
between pairs of rules. 
 The goal of the present study was to simulate the 
development of rule use in children using a generative 
connectionist model. Our study had three objectives: (a) to 
capture the age-related changes that are observed in 
children’s sorting between the ages of 2.5 and 5 years, (b) to 
generate novel predictions, and (c) to explore what the 
internal structure of the connectionist networks reveals 
about the structuring of dimensions and features within the 
dimensions vis à vis success on the task. 

In the present study, we used the cascade correlation 
learning algorithm (CASCOR; Fahlman & Lebiere, 1990) to 
simulate children’s performance on the DCCS. Some 
researchers (e.g., Shultz, 1991) have suggested that 
CASCOR is appropriate in simulations of cognitive 
development because it embodies Piaget’s principles of 
assimilation and accommodation. CASCOR is a generative 
algorithm that begins with connections between all the 
inputs and the output, but no hidden units. The model 
attempts to learn the training set in the constraints of this 
architecture, a phase akin to the Piagetian concept of 
assimilation. However, if the training set cannot be learned 
within a specific network architecture, hidden units are 
recruited as needed to increase computational power. Each 
hidden unit receives connections from all input units and all 
previously recruited hidden units. The restructuring of the 
network to create a more adaptive architecture is akin to the 
Piagetian concept of accommodation. One advantage of 
CASCOR is that the hidden unit chosen for recruitment is 
the one that will produce the lowest overall error. 
Consequently, the modified network is poised to solve the 
task at hand, and will do so more efficiently (using fewer 
hidden units) than networks with fixed architectures. 

Training Phase 
Age-related changes in the DCCS were simulated using 
CASCOR. The networks had 15 inputs. The first input 
determined the game that was to be played (color or shape). 
The next 12 input units determined the color and shape of 
the stimulus cards. Each card was coded across 4 attribute 
units (red, blue, car, flower). A value of 1.0 indicated the 
presence of an attribute while a value of 0.0 indicated the 
absence of the attribute. For example, the values {1.0, 0.0, 
0.0, 1.0} indicated a red flower. The test card and the two 
target cards were each represented by specific 
configurations across the 12 units. The 14th and 15th units 
were context units, which determined if the network was 
learning in the training context {1.0, 0.0} or the test context 
{0.0, 1.0}. These context units were necessary to distinguish 
learning that occurred in the natural environment (training) 
from the laboratory environment (test). There was one 
output unit that returned a value ranging from -0.5 to 0.5. 
Matching to the first target card was assigned an output 
value of -0.5, whereas matching to the second target card 
was assigned an output value of 0.5. The target value that 

was closest to the actual output value was considered the 
matching target. 
 In the training set, the network received a set of simple 
rules. The network was presented with the relevant game 
(e.g., color), a bidimensional test card (e.g., red flower), and 
two bidimensional target cards (e.g., a red car and a blue 
flower). For all the examples in the training set, the context 
units were set to the training context (i.e., 1.0, 0.0). 

The network updated its weights based on a supervised 
learning algorithm. The network’s output was compared to 
the expected output (i.e., in the color game, a red flower 
should be matched to the red car), and the weights were 
updated using the quickprop algorithm (Fahlman, 1988) and 
batch learning (i.e., the weights were updated after each 
epoch, as opposed to each example). Quickprop is a weight 
adjustment algorithm that is much quicker than backprop 
because it uses second-order (curvature) information as well 
as first-order (slope) information when adjusting weights, 
whereas backprop is restricted to slope information. Slope 
information indicates the direction of change; curvature 
information provides an index of the change in slope, which 
is used to determine the magnitude of weight change 
(Mareschal & Shultz, 1996; also see Fahlman, 1988, for 
more details). 

In the training phase of the simulation, all possible 
training combinations were used. That is, 2 games (color or 
shape) X 4 test cards (red flower, blue flower, red car, blue 
car) X 4 target combinations (red flower, blue flower, red 
car, blue car for target ‘A’; target ‘B’ differed from target 
‘A’ on both dimensions), which yielded 32 training 
examples. Because the preliminary goal  was to  simulate 
data that were averaged over groups of children, a cross-
sectional design was implemented as per previous studies of 
the DCCS with children (e.g., Zelazo et al., 1996). Twenty 
networks were trained in each of 5 conditions that differed 
on the number of epochs of training that the network 
experienced. The conditions were 50, 75, 100, 150, and 225 
epochs. 

Test Phase 
After various amounts of exposure to the training set, 
training was halted so that the network could be tested. 
Testing consisted of changing the training set to five 
examples (pre-switch trials) that correspond to the five trials 
of the pre-switch phase of the DCCS. In all five trials, the 
network was presented with the same game (i.e., shape), the 
same two target cards (i.e., target ‘A’ was a red flower, 
target ‘B’ was a blue car), and the context nodes were set to 
the test context (i.e., 0.0, 1.0). The two possible test cards 
were presented (i.e., red car and blue flower) on alternate 
trials with one test card presented three times and the other 
test card presented twice. The network updated its 
connection weights after each pre-switch trial. After the fifth 
pre-switch trial, the network was tested on two post-switch 
trials. These were equivalent to the pre-switch trials, except 
now the network was asked to sort by the other dimension 
(e.g., color). The output revealed how the network sorted 
each of the two test cards. Because weights were not 



updated in the post-switch phase, two post-switch trials 
were sufficient for the appropriate categorization of the 
network.  

The network outputs were categorized into one of four 
categories based on criteria used with children (e.g., Zelazo 
et al., 1996):  
(1) Fail Pre-Switch - The network incorrectly sorted on two 

or more pre-switch trials. 
(2) Fail Post-Switch (same box) – The network passed the 

pre-switch phase, but incorrectly sorted on one of the 
two test trials in the post-switch phase (i.e., the network 
put all of the cards in the same box). 

(3) Fail Post-Switch (perseveratively) – The network 
passed the pre-switch but incorrectly sorted both test 
cards in the post-switch phase (i.e., the network 
perseverated on the two original rules). 

(4) Pass Post-Switch – The network correctly sorted both 
test cards in the post-switch phase. 

Results 
The CASCOR network began with the 15 input units and 
the one output unit. Although the network did not initially 
contain hidden units, these were recruited as needed through 
the progression of the simulation. The number of hidden 
units recruited was noted. The number of networks in each 
of the four classifications is displayed in Table 1. 
 

Table 1: Performance of CASCOR networks on DCCS 
 

   
Categorization of Network 

  

 
 
No. of 
Epochs 

 
FPre 

 
FPost 
Box 

 
Fpost  
Pers 

 
Pass  

 
50 

 
12 (1*) 

 
2 (1*) 

 
0 

 
 6 (1*) 

75  5 (5*) 7 (7*) 5 (5*)  3 (2*) 
100 10 (10*) 2 (2*) 5 (5*)  3 (3*) 
150  2 (2**) 1 (1*) 4 (2*, 2**) 13 (3*, 10**) 
225  1 (1**) 0 0 19 (19**) 
 
Note. FPre = Fail Pre-Switch; Fpost Box = Fail Post-Switch (same 
box); FPost Pers = Fail Post-Switch (perseveratively); Pass = Pass 
Post-Switch. The number of hidden units recruited by the networks 
is represented by asterisks (*). For example, 3* means three 
networks recruited one hidden unit, while 10** means 10 networks 
recruited 2 hidden units. 
 
 

In the 50-epoch condition, 12 out of 20 (60%) of the 
networks failed the pre-switch phase. For the slightly more 
experienced network in the 75-epoch condition, 15 out of 20 
(75%) of the networks passed the pre-switch phase. 
Furthermore, 12 out of 15 (80%) of those networks went on 
to fail the post-switch phase. In the 225-epoch condition, 19 
out of 20 (95%) of the networks passed the pre-switch 
phase. All of those networks (100%) went on to pass the 

post-switch phase. Overall, this pattern of results mirrored 
the pattern found in the empirical literature. Namely, the 
youngest children tend to fail the pre-switch phase, 
indicating failure to use a single pair of rules systematically. 
The slightly older children pass the pre-switch phase but fail 
the post-switch phase. Finally, the oldest children tend to 
pass both the pre-switch and post-switch phases, arguably 
indicating that they were capable of using a higher order 
rule for selecting between two incompatible pairs of rules.  

 
Table 2: Number (and row percentages) of networks in 

each classification based on the number of hidden units. 
 

   
Categorization of Network 

  

 
 
No. of 
Hidden 
Units 

 
FPre 

 
FPost 
Box 

 
Fpost 
Pers 

 
Pass 

 
0 

 
11 (61%) 

 
1 (6%) 

 
 0 

 
 6 (33%) 

1 16 (33%) 11 (23%) 12 (25%)  9 (19%) 
2  3 (9%)  0  2 (6%) 29 (85%) 
 
Note. FPre = Fail Pre-Switch; Fpost Box = Fail Post-Switch (same 
box); FPost Pers = Fail Post-Switch (perseveratively); Pass = Pass 
Post-Switch. 

 
 
The number of hidden units the network recruited seems 

to be related, albeit imperfectly, to performance on the 
DCCS. Table 2 displays the classification of networks 
across all five conditions based on the number of hidden 
units. A chi-squared analysis revealed a relation between the 
number of hidden units and the DCCS classification, 32 (6, 
N = 100) = 49.40, p < 01. The majority of networks with no 
hidden units fail the pre-switch phase, while the majority of 
networks with two hidden units pass both the pre-switch and 
post-switch phases. Networks with one hidden unit tend to 
be transitional and distributed across all four conditions. 
Thus, it can be argued that by acquiring more sophisticated 
internal representation (measured by the number of hidden 
units), more complex rules can be solved. 

The current findings are congruent with Siegler’s (1996) 
notion that cognitive development is driven by changes in 
strategy selection. According to this notion, children 
typically have a number of strategies available to them to 
solve any task. With age, the likelihood of selecting more 
appropriate strategies increases. However, even at older 
ages, children sometimes select inappropriate strategies. In 
the current simulations, increases in the number of hidden 
units may correspond to increases in the likelihood of 
selecting a more appropriate strategy. For example, 
networks with two hidden units usually adopt the most 
appropriate strategy (85% of the time), but occasionally 
adopt a less-appropriate strategy.   



 In addition to capturing the general pattern of age-related 
changes on the task, the simulations offer several 
predictions that raise interesting questions for future 
empirical work: 
(1) In networks that passed the pre-switch phase but failed 

the post-switch phase, there was a developmental 
increase in the proportion that failed perseveratively (as 
opposed to sorting cards in the same box). In the four 
network conditions where these types of errors occur, 
the proportions that failed perseveratively were 0%, 
42%, 71%, and 80%, for 50, 75, 100, and 150 epochs 
respectively. We expect a similar increase with 
children. 

(2) The proportion of networks that passed the pre-switch 
phase followed a U-shaped developmental trajectory. 
The proportions in the network conditions were 40% at 
50 epochs, 75% at 75 epochs, 50% at 100 epochs, 90% 
at 150 epochs, and 95% at 225 epochs respectively. It is 
predicted that children will follow a similar U-shaped 
trajectory. 

(3) The unexpected decrease in the proportion of networks 
that pass the pre-switch phase occurred in the same 
condition (100 epochs) as when the networks began to 
fail the post-switch phase perseveratively as opposed to 
putting the cards in the same box. Arguably, this 
occurred because the networks are beginning to 
categorize both dimensions simultaneously. This will 
lead to a decrease in performance in the pre-switch 
phase (sorting is more likely to be based on the wrong 
dimension), and an increase in perseverative errors in 
the post-switch phase (more likely to sort the cards 
according to the dimension that was previously correct). 
It is predicted that careful analyses of children’s 
performance will reveal similar trends. 

(4) Although 60% of the networks at 50 epochs failed the 
pre-switch phase, those that passed tended to pass the 
post-switch phase (6 out of 8, 75%). It is predicted that 
the youngest children (2.5-year-olds) who are able to 
pass the pre-switch phase will succeed in the post-
switch phase. Perhaps these children have learned to 
sort a pair of rules, but fail to link the rules in the pre-
switch to the rules in the post-switch. As a result, the 
post-switch phase is treated independently of the pre-
switch phase, with a consequent absence of proactive 
interference. 

Analysis of Network Activations 
A primary benefit of connectionist simulations to cognitive 
psychology is the ability to analyze the internal 
representations of the networks. To that end, cluster 
analyses were carried out on the activations of the hidden 
units and the output node in the networks for each of the 
training examples. Figure 2 displays graphically the results 
from the analysis of one randomly selected network in the  
225-epoch condition1 (i.e., after the network had learned to 

                                                           
1 Cluster analyses on less experienced nets revealed similar 
patterns as the 225-epoch condition. However, the results were 

sort successfully on both pre-switch and post-switch trials). 
Each training example is represented by a string of seven 
letters. The first letter denotes which game the network is 
required to play. The next six letters denote the test card, the 
first target and the second target respectively. Training 
examples that are clustered together elicit similar activation 
levels from the hidden units and the output. Because the 
features of the first target card necessarily determine the 
features of the second target card (e.g., red flower is always 
paired with blue car), only the first target card is discussed 
in the analysis. 

As can be seen from Figure 2, group A contains all of the 
examples that have flowers both in the test card and in the 
target card. In contrast, all training examples that have cars 
in the test card and in the target card are in group B. Thus, 
the network appears first to discriminate, at least partially, 
on the basis of the shape dimension. 

Group A (the flower group) can further be separated into 
2 subgroups, C and D. Of all the test cards in group A, 
subgroup C contains all of the blue test cards, whereas 
subgroup D contains most of the red test cards (75%). 
Similarly, group B (the car group) can be further separated 
into subgroups E and F. Of all the test cards in group B, 
most of the blue test cards (80%) are in subgroup E, 
whereas most of the red test cards (75%) are in subgroup F. 
Therefore, once the shape dimension is established, the 
network appears to discriminate on the basis of color. 

Correct performance on the DCCS requires more than 
successful categorization of the stimuli by the appropriate 
dimension. It is also necessary to categorize the stimuli by 
the type of game that is to be played. In Figure 2, all 
branches labeled G indicate the six places where this occurs. 
Based on the network’s activation levels, we can speculate 
that success on the DCCS may first involve categorizing the 
stimuli by one dimension. Once this categorization has been 
established, the stimuli are then categorized by the other 
dimension. Only when both dimensions are appropriately 
categorized can a higher order rule that discriminates 
between the two dimensions, such as the type of game, be 
considered. This interpretation is consistent with CCC 
theory (Frye at al., 1995; Zelazo & Frye, 1997). For 
example, Zelazo (1999) suggested that success on the pre-
switch phase of the DCCS requires the conjunction of two 
simple rules into a contrastive pair of rules. Each pair of 
rules must then be mastered before a higher order rule 
controlling their selection can be evoked. Without this 
higher order rule, children will select the rule that is most 
strongly associated with the given context (i.e., fail 
perseveratively on the post-switch phase). 

Conclusions 
In conclusion, the CASCOR simulations were successful in 
its three goals. First, the age-related changes on the DCCS 
task were simulated. Namely, inexperienced networks failed 
the pre-switch phase, slightly more experienced networks 

                                                                                                  
more variable. It appears that experience stabilizes the clustering 
structure. 



passed the pre-switch phase but failed the post-switch phase 
and the most experienced networks passed both the pre-
switch and post-switch phases. Second, novel predictions 
were generated and will be tested in future research. These 
include (1) an age-related increase in the number of children 
who fail the post-switch phase perseveratively (as opposed 
to sorting all the test cards in the same box), (2) a U-shaped 
developmental curve depicting performance on pre-switch 
trials, and (3) those very young children who pass the pre-
switch phase will also pass the post-switch phase due to a 
relative lack of proactive interference. Third, cluster 
analyses on the hidden and output unit activations suggest 
that the formation of a higher order rule requires that the 
stimuli can be appropriately categorized by the appropriate 
dimensions. Further empirical research, coupled with 
modifications to modeling, hopefully will lead to an 
increased understanding of the mechanisms involved in the 
development of children’s flexible rule use. 
 

Acknowledgements 
This research was supported in part by a research grant from 
NSERC of Canada to Philip David Zelazo. We thank Ulrich 
Müller for providing constructive comments on an earlier 
draft of this manuscript. 

References 
Elman, J. L., Bates, E. A., Johnson, M. H., Karmiloff-Smith, 

A., Parisi, D., & Plunkett, K. (1996). Rethinking 
innateness: A connectionist perspective on development. 
Cambridge, MA: MIT Press. 

Fahlman, S. E. (1988). Faster-learning variations on back-
propagation: An empirical study. In D. S. Touretzky, G. 
E. Hinton, & T. J. Sejnowski (Eds.), Proceedings of the 
1988 Connectionist Models Summer School. Los Altos, 
CA: Morgan Kaufmann. 

Fahlman, S. E., & Lebiere, C. (1990). The cascade-
correlation learning architecture. In D. S. Touretzky (Ed.), 
Advances in neural information processing systems, Vol. 
2 . Los Altos, CA: Morgan Kaufmann. 

Frye, D., Zelazo, P. D., & Palfai, T. (1995). Theory of mind 
and rule-based reasoning. Cognitive Development, 10, 
483-527. 

Mareschal, D., & Shultz, T. R. (1996). Generative 
connectionist networks and constructivist cognitive 
development. Cognitive Development, 11, 571-603. 

McClelland, J. L., & Jenkins, E. (1991). Nature, nurture, 
and connections: Implications of connectionist models for 
cognitive development. In K. VanLehn (Ed.), 
Architectures for intelligence. Hillsdale, NJ: Erlbaum. 

Figure 2: Cluster analysis on hidden and output unit activations of a 
randomly selected network in the 225-epoch condition. 



Shultz, T. R. (1991). Simulating stages of human cognitive 
development with connectionist models. In L. Birnbaum 
& G. Collins (Eds.), Machine learning: Proceedings of 
the eighth international workshop. San Mateo, CA: 
Morgan Kaufmann. 

Shultz, T. R., Schmidt, W. C., Buckingham, D., & 
Mareschal, D. (1995). Modeling cognitive development 
with a generative connectionist algorithm. In T. J. Simon 
& G. S. Halford (Eds.), Developing cognitive 
competence: New approaches to process modeling. 
Hillsdale, NJ: Erlbaum. 

Siegler, R. S. (1996). Emerging minds: The process of 
change in children’s thinking. New York: Oxford 
University Press. 

Zelazo, P. D. (1999). Language, levels of consciousness, 
and the development of intentional action. In P. D. 

Zelazo, J. W. Astington, & D. R. Olson (Eds.), 
Developing theories of intention. Mahwah, NJ: Erlbaum.  

Zelazo, P. D., & Frye, D. (1997). Cognitive complexity and 
control: A theory of the development of deliberate 
reasoning and intentional action. In M. Stamenov (Ed.), 
Language structure, discourse, and the access to 
consciousness. Amsterdam & Philadelphia: John 
Benjamins. 

Zelazo, P. D., Frye, D., & Rapus, T. (1996). An age-related 
dissociation between knowing rules and using them. 
Cognitive Development, 11, 37-63. 

Zelazo, P. D., Reznick, J. S., & Piñon, D. E. (1995). 
Response control and the execution of verbal rules. 
Developmental Psychology, 31, 508-517. 

 




