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'CLASSICAL THEORY AND CALCULATIONS OF CIRCULAR DICHROISM
IN HELICAL POLYMERS

'Alan'Isadore Levin

ABSTRACTV
| _Infthis thesis we derive a new theory of optical éctivity
in helical polymers. Helical symmetry and periddic boundary

conditions are applied to élassical poiarizability theory.

This allows us- to express the infinite polymer result in

closed form. Our result is all order in. inter-monomer

interactions, and gives the polymer circular dichroism

' bandshape in terms of monomer transition bandshapes. While

‘the_theory.is essentially equivalent to timefdepehdent

Hartree theory, the use of empiriqal mbnomér bandShapes,'
rather than ab initio wavefunctions; makes caiculations
much more pfacticala We also éxplicitly'treat é compléx |
unit of symme try containing’manyuoptical transitions.

This theory is applied-to calculate the following

polynucleotide sequences: poly(A), poly(T), pély(G), poly(C),

poly(A-T), poly(G-C) poly[(A—T)‘(A—T)], polyf(G—C)f(G-C)],v
poly(A-T), poly(G-C), poly[(A-G)'(C—T)], poly[(AQC)-(G-T)],

poly(A—C), poly(G—T); poly(A-G), poly(C-T) in RNA; and

FB and C form DNA geometries. In addition,calculations are

carried out for poly[(A-A-T):(A-T-T)] and poly[(A-G-C) ~(G-C-T)]

in RNA and B-DNA geometries. Calculations are presented for



polyadenylic acid and polyionsinic acid in nonfstandardv.
geometries; Chainlength studies indicate that previous
..assumptioﬁs,in the éligomer calculations were justifiéd; '
an oligomer containing 10 base_pairs-giVeé a reasonable
approximation to the.polymer CD (£,20% at the first long
wavelength maximum). Comparison of tﬁe calculations with
experiment suggests'that certain monomér properties, par-
ticulafly'those of guanine,:are in efrorw
Polarizability theory isvalsé applied to sfudy'the melting
behavior of adenine and fhymine containing polynucleotideéﬁ
'CD spectra of polyd(A),,polyd(T), poly[de);d(T)3 and poly
[d(AQT)'d(A—T)] have been measuréd,as a function of tempérae
ture; From these data difference spectra have beeﬁvcalcuiated
by subtracting the spectrum measured»ét iow temperature fr@m
‘the spectra measured ét higher temperatures.ibThe CD difference
spectra obtained upon mélting of thé two doublefsfranded
polymers are very similar. .From a compérison of these differ-
ence spectra with calculated ones we suggest that optiéél
transitions neaf 272 nm (on A) and 288 nm (most probabiy on
T) are present. The premeltihg changes of the CD spectrum
of pbly[d(A-T)°d(AeT)j éfeidue to a change in conformation
in which_the secondary'Strugture goes  from C- tobB—typé
spectrum by increasing the A-type nature of the pdlymer.
/Such a change is not observed‘fop poly[d(A)-d(T)]. Instead

a transition between two different B—type'geOmetries occurs.

L I
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INTRODUCTION

One of the central tenets of modern molecular biology
is the belief fhat structure determines function. This is
a strong motivation for the physical chemical approach to
biology. Of course, the concept of structure must be
extended to include more than the organization of covalent
bonds in a macromolecule. These higher levels of étructural
organization are generally referred to as the conformation
of the polymer. |

Watson and Crick's classic work [Nature 171, 737 (1953)]
is a monument to this structure-function principle. Their
model for the structure of DNA not onlybaccounted for the
X-ray diffraction data, but suggested how genetic informa-
tion is passed from one genération to the next. As more
structural data was amassed, the general importance of helical
strucfures in both biological and synthetic macromolecules
was recogniied.

A helical molecule does not have a superimposable
mirror image, and thus exhibits optical activity. Optically
active molecules show characteristic differences in the
refraction and absorption of right and left circularly
polarized light. It is not surprising,jtherefore, that
optical rotary dispersion (QRD) and circular dichroism (CD)
are particularly sensitive probes of helical conformation
in solution. In fact, optical solution studies corroborate

the X-ray crystal evidence for many helical polymers.
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However, the X-ray data cannot always be applied directly
‘to solution studies. Tunis-Schneider and Maestre [J. Mol.
Biol. 52, 521 (1970)] and Ivanov et. al., [Biopoiymers 12,
89 (1973)] have demonstrated that both native and synthetic
polynucleotides in solution have a wide and relatively
continuoué range of analogues to the predicted crystal
structures. |

While_optical properties, especially CD, have been
used to monitor conformational changes-in éo1ution, they have
not yielded more detailed structural information. We need
a practical and reliable means of calculating polymer optical
properties from a given model geometry.v.With such a tool we
could translate the observed optical chaﬁges into changes in
structure.

While there has been considerablé refinement in the
quantum mechanical theories of polymer optical activity,
calculations based on theée approaches are extremely diffi-
cult. As usual for large systems (several atoms), it is
hard to obtain useful wave functions. We will, therefore,
focus our attention on classical and semi-classical theories
of polymer optical activity. (Of course Qe cannot expect to
calculate monomer optical properties classically, and must
use quantum mechanics or empirical monomer data instead.)

In the first three chapters we exémine theories of
optical activity for polymers or aggregates of arbitrary
structure. We lay the groundwork of the classical theory

in . Chapter I. Beginning with an analysis of Maxwell's
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équationa in matter, we develop the classical formalism and
finish with aﬁ example'which demonstrates the pragression
from a simple molecular polarizability to the absorption
and refraction of a solutiqn. This preliminary material is
important, not only‘ta see where the more generai theory

comes from (Chapter III), but to understand the nature of

the approximations involved in deriving classical polariza-

bility theory.

We.discuss the physiCal basis of optical activity, the
quantum theory of,optical activity, and two sémifclassical
attempta to caléﬁ;ate the optical activity of polymefs in

Chapter II. In Chapter II1 we'present DeVoe's all order

polafizability theory [J. Chem. Phys. ig,.3199'(l965)]3 and

compare it to the earlier thedries.

In the seaond half of thia:thasis we develop and apply
a new tﬁeory of optical activity iﬁ'helicai polymers; This
is the first classical theory to incorporate helical aymmetry

and periodic boundary conditions. This is also the first

.explicit'treatment of .a complex unit of symmetry containing

many optical transitions. Like the DeVoe result, our theory

is a consistent treatment of the polymer CD bandshapé in

terms of the monomer absorption spectra. For these reasons
we think that our appfoach is the most practical and reliable

method cﬁrrently'available for Calculating the Optical

- properties of helical polymers.

Cﬁapter IV contains. the derivation as well as a discus-

sion of helical symmetry, and & comparison of our result and

.
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recent quantum %heories for helical polymers. In Chapter V,
>poiynucleotide CD calcUlations_bésed on the results of
Chaptér IV are compared with earlier oligomer calculations
and previously measured CD spectra. 'Finaliy, in Chapter Vi,
we measuré the spectra of adenine and thymine containing
deoxy-polymers and use‘polarizability theory to‘interpret
these spectra. The changes in the CD of these polymers
wifh temperature are reiatéd to conformational change which
precede melting. Our apalysis of these data alsc suggests
the presence of new.transitions invfhé near UV spectra of

adenine and thymine.
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Chapter I

Classical Electrostatics and Theory of Dispersion

I. Maxwell's Equations in Matter

We will consider the microscopic eléctfic respénse of .
matter in detail and give the magnetié‘responsé by analogy.
Qur starting point is the following:

V;E = Ump
E is the electric field vector and p is the charge dénsity.

The formal solution of this equation is:

E(r) ='-yf1—%%l)—dr'. o o " (:Q
For simple systems all we need do is speéify the location
and magnitude of each charge.in the system. For a descrip-~
tion of matter, however,Athis eQuation is ihapplicable. The
charge density will fluctuate wildly over the dimensions of
a single molecule, and the number of charges in any macro-
'3copic quantity of matter is very large. ' For these reasons
we will éettle for a less detailed solution Which_gives the
averagé field over some volumé containing many'moiecules,
but that is still small compared with:macroscopic dimensidné;
Our basic measure of macroscopic dimensions will-Bé the
wavelength of light that intefécts with the systeﬁ. This
wavelength is an indication of the variation of the external

electric field which interacts with the system.



For a point R in the microvolume v equation (1) becomes:

E(R) :"VfTi%% dr" | NS

where r is some origin in the molecule ‘and the integration
is carried out over molecular coordinates r'. We will assume

that |R-r| >> |r'| and expand equation (2) in a Taylor's

series in r' about |R-r|. This is just a multipole expansion
(see section VI A). Retaining only the monopole and dipole
terms: '

E(R = -V[—4—+ v (——)-u| (3)

: | R-x| |R-r|

q = Sfp(x")dr' n = Ir'p(rf)dr'

q is the monopole and u is the dipole of the molecule. This
approximation will be good as long as the macroscopic fields
vary over dimensions large compared to the molecular dimen-

sions. If necessary, the quadrupole and higher terms gould

be retained in equation(S);thwever we will drop them in

the rest of our work. Equation (3) giveé the electric field
at R due to the molecule at rl The averége contribution to

the electric field at R from all the molecules in the micro-

volume is given by:

E(R) = -v/ dr N(p) |92 + <p>-9¢ ) Y
v .
| | |rR-x| | R-x|

'whebe N(r) is the number density and‘<q>and <u> are the average

monopole and dipole of the molecules in v. In substituting



these average quantities, we have assumed that averaging

and differentiation are interchangeable:!

Taking the divergence of both sides of equation (4) gives:

~ V+E = umN<q> = 4mNV<p>.

In deriving this result we have used the identity:

2 1

| R-r|

v

( ) = -4m8(R-x)

(see section VI B). We see that in matter, to our degree

of approximation there is an added term: -V(47mN<p>), this

is called the polarization charge. Another way of expressing

these relations is by defining the new field:

‘D= E + 47D P = N<u>

p' = N<g> VeD = Uump',

- Again N<g> and N<uy> are the average charge and average induced
dipole of the molecules in the volume v with N molecules per
unit volume. p' is recognized as the free charge density

and P is the polarization. To a first approximation

P = xe(t)E
where Xe is the electric'susceptibility tensor. This
approximation is generally valid for the electric fields of

light in the one photon processes we will consider.



'Taking the Fourier transforms we find:

alw) = / X, () POt 4t

]

and a(w) is called the electric polarizability. By a com-

pletely analogous analysis for the magnetostatics:2

B = H + 41M M = N<m>.

7B = 0 ‘M = B(wH

where M is the magnetization, B8(w) is the magnetic polari-
zability and m is the magnetic dipole. Finally we add the
other two important equations:

9B Y

__E. vaH:-E—J'l'

D
3t

<1
X
=1
1l
i
Q-
0l

We now have a complete description of the response of our
molecular system to light. In the absence bf_freevcharges

and conductance:

8D

t

Q

B
It

ol
@

For plane monochromatic wave solutions the last two equations

are
. oo _ - w
kvX;E i~ B k x H.- = D

where |k| = nw/c ‘is called the dispersion relation. cvisvthg



- speed of light in vacuo and n is the refractive index, w is
the circular frequency. k is the direction of propagation
of the wave train and E, D, B and H are perpendicular to k.
All‘these solutiods for E, D, B and:H look alike:

- - : .
ei‘bk r Twt

E(r,w) = E,

Using the dispersion relation and the two curl equations

n? - 1 = YrE#-[P - % k x M]/IEI2 ' (6)

* denotes chplex conjugate. This is a very important re-
lation since the complex refractive ‘index is expressed in
terms of the induced electric and magnetic moments. Thev
regractive index contains all the information about the
system's optical response. The majbr difficulty Will be
calculating the P and M for an individual molecule. In
practice ohe usually tries to express a and B in terms of

molecular parameters.
ITI. Internal and External Fields

We will now discuss the influenée of an external field
on a molecule in solution. Again we will take a microvolume
large compared to molecular dimensions containing one solﬁte
molecule. Now we ask; "What»ié the influence of the solute
molecules outside this microvolume on the field of the
molecﬁles inside the microvolume?". According to equation

(4) in the absence of free charge, the exterior field is:



E(R) = -V P(R) V —=— dr .
v | R-r]|

This integration is over the total volume of the solution
excluding the microvolume. Using the identity: V(AB) =

(VA)B + A(VB)

B(R) -v/, 9(_BL), dr+v/ 2 o
v! |R-x| v!' |R-r|

Applying Gauss's theorem to- the first integral gives:

- -y / P(r)en 4o / (=7-P(x)) dr].
- ' |R-r| v'  |R-r| ‘

So, for any volume v' bounded by the surface I' the field

E(R)

external to that volume is

E(R) = P(r)'n(R-r) ;5 ./~ (-V-B(x)) (R;£) dr
' ' |R-—r|3 v' |rR-r|® |

P(r)+n is the surface polarization charge density and -V-P(f)
is the polarization charge density;"If we»how return to our
microvolume v bounded by surface I inside the macroscopic

volume v' boundéd by surface L'.

E(R) = / | (-V-P(r))(l;-—r) dr + / P(r)'n(R_;r) ds
: v'-v | R-x| ' | R-r|

+ / P(r)-n(Rgr) ds . (7)
JI | R-r| -
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where "v", the microvolume is excluded from the first integral.

Since the polarization is constant over the microscopic sur-
face I, we can set P(r) = P(R). Making the following substi-
tutions: | |

| (R-x) = |[r| ¢ ds = ]rl2 sin® de d¢

neP = |P| cost

the last integral in equation (7) becomes:

' 2m m _ | |
|P| £ cos® sin® do-d¢. (8)
0 0 :

- So that we have defined a polar spherical coordinate system
with P along the polar axis. If we now express £ in terms
of the right handed_orthogonal cartesian system €] X €, = €4
with €4 along the polar axis parallel to P: | .

£ = sin® cos¢ €, + sin® sin¢g €, + cosH €5 »

1 2

Substituting this into the integral equation 8 we find that

the integrals with coefficients €y and €, vanish since they

contain an odd power of cosé or sing¢. Tﬁe result is thus

just %1 || €q- But our coordinates were chosen so that P

is along €3 Therefore the integral over the surface I in

eQuation (7) is Jjust E%E . This process is just a special

case of space averaging of all the polarization contributions

from solute molecules outside the microvolume (see section IV).
Since the polarization is cbnstant over the microscopic

surface, V-P(r), (the microvolume)_makeé no contribution to

the first integral, i.e. it is not necessary to exclude v

from the volume integral since it makes no contribution.



Thus the field in the microvolume is:.

E(R) = ./~ (—V-P(r))(?—r) dr  + j[  P(r)-n(RSr) ds + 3%2
v' | R-x| JT! |R-r|

but this ié jusf the external field for fhe entire solution
plus E%E + So E. . = E__ . +’E%E; In later chapters we will
be concerned with polymers in dilute solution. Within each
micrévolume containing oné polymer_we will have to consider
the interactions and fields within thié polymer, but not
intebpolymer interacfions specifically.  In fhe above expression

the influence of other polymers in solution is essentially

a continuum effect.
- IIT. Intrapolymer Interactions and Monopoles

Inside the microvolume of a single pdlymer mélécule we
will generally ignore static fie%ds and.couple the optical'.
transitions of the monomérs dynamically. This will involvé_ '
calculafing.the energy of interaction of transition charge
densities of the monomers. If we follow the method of the
first section and expand the total éharge densitiés in multi-
poles we.find>that’fhe first nonzero term is the fémiliar

dipole-dipole interaction:!

Vig = WiTygtHy
e.e. .*R. . .*R. .
I A 3 e, Rl] e R;1
‘1] R 3 R 5
17 13

where e; is the unit direction vector of dipole My and Rij



Q0 04601 705

is the vector between the centers of transitions i and j.
There are nononopole terms since the monopole of a transi-
ition charge density is zero. The approximation will only be
gobd if the distance between the transitions is large com-
pared with the distances over which the transitions are.
delocalized. This is equivalent to the assumption that
|R-r| >> r' which was necessary in defiving equation (3).
For many pqumers this is not the case, and another approach
must be found for calculating'vij. We will follow the
method of London® as elucidated by Hirschfelder and Haugh.*

The form of the potential is:

jfpi(ri) pj(rj)-dri drj
|r.-r.+R. .| -
+ ] 1]

where pi and pj are the transition.charge densities. This
expression is also the starting point for the dipole-dipole
interaction given above. However if r, and rj are similar

in magﬁitude to Rij the multipole gxpansion may not even be

- convergent.. Instead we divide each transition charge density
into regions of like charge. The charge is integrated over
each region (this is the monop61eiof the region), and placed

according to the first moment:

s _ . .o
q; = Jg Pylrg) drg  Rg = Jg rgp;(rg) drg.

We then calculate Vij according to Coulomb's law:

' s T i j
.. = ; 3 - + X
Vs SET: a3 qJ/IRS Ry * Ry
Al : b

J



Hirschfelder ané Haugh have derived this expression by
expanding the.interactions between the regions in multipdles. 
The dipole terms in their expansion are zero due to the
choice of origin in each region. The appfoximation is
good as long as the distance between the monopoles is
iarge compared with the size of the regions defining the
monopoleé. If this is not the case, the dipole terms are
still zero; but higher moments become important.

In deriving the classical theory we will always have
the electric field of light interact with the electric
'dipole moments in our system. However, we will find it
necessary to express intramolecular interaétions_with
different apprdximatidns for the reasons outlined above.
Because the future discussions are couched in polabizabili—'.‘
ties and local fields, we hust be ab;e to express the
intramolecular interactions involving the dipole of i
interacting with the field due to tfansificn j. Siﬁce the_
enefgy of interaction of the dipole ui with the field Eﬁ'is

u,*E,, we ask, "What is the field at r, due to the transition
J : v

j that will give rise to a given interaction Vij?",Clearly:“
| Vs I
e.*E.(r.) = —=1 . (8a)
i 7371 s | o T
1

Vij is perfectly general. The only assumption is that only
the dipole of transition i interacts with the field of
transition j. This is how the monopole-monopole interaction

(or any other interaction) is introduced into the local
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field theory; Another approach uséd by Johnson and Tinoco’

is to simply calculate the monopole field and set:

= H

.pmnon
Vij i E. _(ri)
where .
mon ) ) i
BP0y s D — M (nor)
J 1 3 |Ri _rS|3 i3 7S

The next step in this progression is to write the interaction:

- . dip = ° . - . 'o |
i3 My Ej (ri) : ug (Tij uj) = My Tij uj
where the dipole field of the monopoles is used. This brings

us full circle back to the dipole-dipole interaction.
IV. Space Averaging

To calculate some vector quantity of a molecule'such
as the polarization, we generally choose some coﬁvenient
coordinate system fixed in the molecule. This will be
called the internal or molecular coordinate system.

Since we are_interested in properties in solutions with
random orientations, we will have tQ.avérage our calculated
quantities over all these orientations. In the absence of
any preferred direction in space, the average of any vector
quantity over.random orientations is zero. For example,

a solution of molecules with permanent dipoles will not
have a net dipole moment unless there is an external field

present. In the case of induced moments there is always a



12

lab fixed preferred direétion, for example in the caée of
electric polarization it is the direction of thé external
field. 1In our»opticai sfudies the lab fixed axes will be
determined by the polariéation and propagation directions

of the incident light. If A, B and C are vectors in the
internal coordinate system, and el, éz,_es are lab fixed axes,

we will have to space average the terms:

. Y iik.r ' .‘ . . ’ ’
<A ele €,e > (Qa)
tiker ' : :
<A.g, B-e,e™ > _ . (Sb)
k = |1_<l €,

Of course in taking the space average A, B, and r are alwaysv
fixed relatiye to each other. In typical discussions of

space averaging® it is demonstrated that:

u
Wi+
>
w
o

<Asg. Bereg.>
1 J

"
o=
(o)

<A+g.Bee. C+e, >
1 3 :

K AxB-C

where 854 is the Kroeneker délta'anq dijk'is zero if any
of the i,j,k are the same and * 1 according to whe ther ijk.
is an odd or even permutation of 123, i.e. §,,, = 1, 6213'=,Fl.
There are sevefal ways to deduce these relations.  They ma§
bevderivedvfrom the general properties of orthdgonal tréns—
formations between vector spaces, or'by expreésing fhé'
transformation in terms of Euler anglés»and integrating.

Expanding the exponentials in equations (9a) and (9b) gives:
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<are, B-sz(ltik°r-)>= t’“—l—é—‘l AxBer » (10a)
ey = L oa.

<A-g, B-el(ltzk°r)> = 3 A'B _ (10b)

We will now derive the expressions for equations (9a) énd (9b)
keeping the full exponential. In doing so we will follow a
course intermediate between the brute force integrations-and
the vector analysis mentioned earlier. The necessary integrals

can be found in section VI.. To average (9a) we first take r

'along k:

B
it

IAksineA cos¢ € + 81neA 51n¢A €, * coseA 63)

lBKsinGB cos¢p € * sinQB sin¢B €

v )
[

, t cosby €3)
Ace, Bre, = |a| |B] sineA sinBy cos¢, singy.

Letting ¢A SN + ¢, and ¢p = 9p + ¢ we integrate over ¢:

2%
J[' cos(¢A+¢) sin(¢B+¢) d¢
0

2n
d¢
0

2 . : ' .
/f (cos¢A cos¢ - sin¢A sin¢)(sin¢B cos¢d +:sin¢ bqs¢B)d¢

0
2T
d¢
0

: . l ) : . . |
<Are, 5‘52>e3 = 5 [al |8 sin6, sinfy §1n(¢8_¢A)

but |A| sin6, and IB| sin 9, are the projections of A and B
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into the plane perpendicular to k, and sin(¢g=¢,) is their

cross product so:

Now it remains to average over all possible orientations of

k relative to r with A and B fixed relative to r. We choose:

D = AszT.: Dxel + D eé'+ D e,

r = | €, /

kr = |k| |r' cos®

k+D = (sin® coséD, *+ sin® sing D + cose D,) |k
r+D = || D,

We will integrate over 8 and ¢:

27 ﬁ
sin8 d6 d¢
b] 0 . ‘

Y

<COS¢> = <'sin(’p> = 0
.' SO .

< k-p e#ik°r 5 =

2|k|

D ™ , n ‘ -
‘ Z_/ cos® -eth.(| || cosé sin6 de/ / sin® 46
0 _ _

0
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-zl g [eindlil b | cosclil lrg)}. (11)
2 (x| [|z|) (x| =] :
To evaluate equation (9b) we again begin by averaging
around k.
€,°A €,°B = sin@, sinby |Aa[ |B| cosd, cosé,
v ) o 2w _ _
<Ase, B*el>63 = sind, sin@y |a] |B| ; cos(¢A+¢)cos(¢Bf¢)d¢/2n
‘2n . .
= sin8, sinéy [A|[3B] 5 (cos¢, cos¢ - sin¢, sin¢)
x (cos¢B cos ¢- sin¢B sin¢) de¢/2w
Clal e
= ———57——J51neA‘slneB cos(¢A—¢B)
but z
|a] sind, = | kxa|
. and
|B| sineg = |kxB|
and cos(¢A-¢B) is just the angle between the vectors:
< s . = (kxA) * (kxB) s 1 k*k kB
€l'A El‘B>e = 5 — = 5
T T3 21k| 2|k|

Ak A*B

1 (aex) (keB)]
Z e A.B -
2 2
[ |x| ]
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Now once again we average over all the orientations of k

A}

relative to r with A and B fixed relative to r:

r=|r| e,
"k = |k|(sinb cos¢ €; * sind sin¢ €, + cos8 €4).
ker = |k| |r| cos8
(k°A)(k;B) = sinze(cosz¢A B, + sin2¢ A B ) ¢+ cosze A_B
lkIZ : X X vy z7z

where we have dropped any terms containing odd powers of

sin¢ or cosé. <cosz¢> = <sin2¢> = %.

T iicost |k| |z| . |
A.BJC e sinfdé .. sin(|k]| |x|)

~ =
/ sing de | x| lrl»
0 o : -
" 2. .ticos8 |k||zr|
A B cos“6 e~ SR sin® de
2z Jg _

— , - =
sin8 d8
0. . '

[ sin(lkl lz|). sin(|k| |z|) cos(IkIIrI)J
z

A8

k=l \ dx] 2D (x| |z’

o DO
. . 2. *icos® |k| |r| ...
(A B+ AyBy))C sin®8 e o ! sin6 dé

T =
.sind de ; .
O - N
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: ’ () [sin(lkl BARE cos(lkIIrI)J
(A B+ B 2 - - —
x "y (el 12® (] z]?

4

+7k .
<A°€i B-el e=."7’k r? =

2 ikl 1zl N\ dxl 1=D® 0 (k] ()2

Al«Bl [sin(“d]r() - [sin(|k| |=]) coé(lkl Irlj]

(12)

| [sin(]kl [x|) COS(lkllr[)]
+ al.sll |
(k] 1=’ (r] |x])?

where AL is projected in the plane perpendicﬁlar to r and
,A” is projected along r.

If we take the limit of |k| |r| =+ 0:

sin(|k| [r}) (x| [z])?
= l—-——-—-—-——————-—-+ oo;o;
x| |z| 31 -
£im =1
|k| |x]|~0
— L fsin(|k| Iz]) - |k| |z| cosC[k| [x| )] =
x| |z |
11
Lar-357 %l
. 1 )
Lim = 3



18

and to first order in |k|

| ‘e k]

2im <el-A ez-BetZk L, = 3 AxXBer

|k[|z|+0
| . o sixer. _ ab.sl o

£im <€l A El Be > = —5—-— (l"—) +- 3 A" B

k| [x]~>0
1
= EAB

which is identical with the results in equations (1l0a) and
(10b). The result equation (11) has been.published recently.®
Both (11l) and (12) are necessary to calculate the optical
.properties of a system in which the exponential cannot be
expanded.

| The previous workers were interested only in the optical
activity, but the simple absorption and refraction of a véry
large system will also sfray from the dipole limit (expand-
ing the exponeﬁtials) These equatlons are important if
transitions within a system lnteract over distances comparable
to the wavelength of light or if transitlons are delocalized

over large distances. Figure lshows the functions:

£ = sinx
X
g = 3 x [ sinx cosx]

3 2
X X

The use of equations (10a) and (10b) rather than equations
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sin x

3L

sin x _
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]
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(11) and (12) will gfbssly overestimate the optical activity

and absorption (or refraction) of an extended conjugated system.
V. A Simple Example

~We will now apply the principles discussed in the
previous sections of this chapter to a simple solution.
A médel is necéésary to derive the polarizability of a
single solute molecule in a random solution. We take as
our model a harmonically bound electron constrained to
move in one direction and having viscousv(proportional to

velocity) dampihg forces:

. 2 . Twt
mx = -mw_ X - myx + e2°Eoe .

o 1 (13)

x is the displacement from equilibrium, the dots are time
derivatives, mwéz'is.the restoring forge conétant, and my
is a dissipative’constant which includes radiation damping
as well as any'other viscous damping. We have assumed that
fhe oscillations are small in amplitude compared with the

variation of the electric field so that:

E e-zkr “E
o o)

Our molecular reference frame is chosen so that thé;éleétron
moves along the €, axis, m and e are the electron mass and

charge. The steady state solutions to equation (13) are:!

2 2 .
~w") - Zyw

(moz_wz)z r 1242

(w
o

|0

X = €l°EO
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Multiplying both sides. by ee, we recognize the polarizability:

2
o)

2 (w

2 ..
-0 ) - iyw
alw) = = BN 72

: m (mo ~-w )"+ Y w

Since we have not considered any coupling between oscillators,

€€y = Ialslel. (1w)

this is a model for a nomoner polarizability. This simplé-
complex polarizability is said to have a Lorentzian line-
shape. Its real and imaginary parts are related to each

other by the Kronig-Kramers transforms o

a = a' + Za"

I R T e ) 1 '

o' (w) = % [ @a (2 ) dg - (15a)
Jio (W")® - w : '
onl T a'(w') du' |

a"(w) = - = 5 > ' (15b)
“Jo o (w° - :

jﬁ'indicates the principal part of the integral ié taken.

These relatioﬁs hold for the real and imaginaﬁy part of any
. function which is the Fourier transform of a causal response
function. A mathematically precise derivation of these
relétions involves complex analysis which is described
elsewhere,’ however the need for such relations may be
argued as follows: A system that has a causal résponse
function will depend on past bufinot future times. By
Fourier transforning we are mapping this response from

half a line (the real time line) onto the complex plane:

o e
alw) = e™" x(t) 4t

<«
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we immediately see that a(-w) = a*(w), so that we are
mapping from half a line onto half a‘pléne. Since we do not
create information by the Fourier transform, the real and
imaginary parts of a cannot be‘independénf. " The Kronig-
Kramers relations are a consequence of the causality of the
original response function. In this sense the Kronig-Kramers
transforms are a Fourier transform of causality. We will
find these transforms useful repeatedly for determinipg one
part of a éomplex function from its compéhion. For example,
absorption and refraction are related by.thevKronig-Kramers
transforms. Now back to our model system.
_'The_poiarization is given by: |

P = N<a*E. _ >
_ int

According to equation (9b) the average indicated by the

angle brackets is just:

Yar

1 _ 1
3 | a| E;r = 7 lal(Eo + 3 P)

solving for P:
.1 um
P =3 lal EO((l- 3 IGI).
We can now determine the refractive index according to

equation (6) with M = 0 since there are no magnétic.moments:

. e
2 . 3 lal

m
1 -3 |al
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or:

37—:—3 = 2. | S as
We wili assuﬁe that n" is negligible éompared to n' and

that n' = ns,the refractive index of the solvent. Taking

the real part of both éides of equation (16) gives an express-
sion for the refractioh, [(R]. The extinction coefficient

is derived as follows. Beer's law is: log(Io/I) :'acg where
€ is the extinction coefficient; 2 is the path length and c
is the concentration. In passing through a sample, the |

electric field of the light looks like:

E = Eoe+i|k|£eiwt

if n is complex, n = n;_+ in"
E = Eoe+in}wl/q efnfwl/c eiwt
The -real part of the refractive index determines the dif-
ference in phase velocity compared to vacuum. As we indi—2.
cated above it detefmines dispersive propertiés of the mediﬁmr
such as reffaétion. The imaginary part of the refractive
index»causes an expdnential decreésé in the.fiéld as it
transverses the medium;‘ It is reépoﬁsible for absorptive
propertiés of the medium. Since.the»intensity is proportional

to [E[z:
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' -2n"NO W : .
€ = 733N ¢ ' a7

~

.No is Avogadro's number_aﬁd N is the number of molecules
pér unit volume.

Taking the imaginary part of both sides of equation
(16) and substituting into equation (17) gives:

. = (18)

[(E52+2)2] o N w

B 9n_ 6909 W ¢ %
While we have usedva simple model to derive the polarizability
of this system; the rest of dur'calculation of the refractidn
and absorption is more general and will be used in subsequent
- chapters. The bracketed term in eqﬁation (18) involving the
refractive index of the solvent is due to our inclusion of
internal fields in solution. To simplify‘the rést of fhe'

derivations in this work, the_internal fields will be ignored,

i.e. E.: = E

int ‘ however the internal field and the solvent

ext’
effects can always be added to any of our results if the
result (for extinction) is multiplied by the term in brackets

in equation (18).
VI. Multipoles and Miscellaneous Mathematics

A Taylor expansion is just:

Exth) = L 2+ G (-0 a9
n=1 ) : .

where:

- ,dnf(x')

£ (x) e

x'=x
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This is an expansion of f in h about x. We will use the
first several terms of this expansioﬁ to approximate various
functions through this work. We have used it implicitly

in expressing the eprnentials:
ezk°r = 1 + 2ker + oo,
Another important and useful example is the expansion of
1/|R-r| in r about R:
1 1 1 '
: = 5 = 7 ' (20)
. |R-| [(R—r)zll/L [R2—2R-r+r2]l/2 ‘ S

dividing by R2:

1 = - 1 -
- LB 2\11/2 ~
| R-r| R2(1_2r R . E?)
| IRl R :
IR| (, 2r:R ., ri\}/? - (2
(l— r + 5?) o
IR R

where R is a unit direction vector and |R| denotes length.

Using the Taylor expansion of (1+x)-l/2

(ex) 1221 oLy % X2

this will converge as long as -1 < x < l'and will converge

. . ) .A 2 .
rapidly if |x| << 1. Now we let x = - 2reR , . .nd
: | R| R®
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-1/2 riﬁ | rl é(r-R)z'
(1+x) = 1l + == - 5+ s
, IRl 2[R[" . 2|R]|
" we have included all terms through ( LEL )2. Subétituting
this result into equation (21) gives:
1 .1, R | 3(r-R)2 - rz
- 3 (!9
|r-x| [R| [R] 2| R|

We can now use this result to expreSs the electrbStatic,

potential at R due to the density p(r):

o j@(f) dr RF./;p(r) dr ./;(r)(3(r-R)2.- r2) dr.' N ’
V(R) = = + = + = - z — . (22)
|| 8] R |

The three numerators in equation (22) are called the mono-
pole, dipole and quadrupole ﬁoments of the charge distri-
bution p(r). Thus at sufficiently large distances we can
express the potential due to a charge distributioh-as a

sum of moments or averages of the disfribution'(integrations,
over r) which are ihdependent of,the»observation poinf R.
Note the R dependence of each term;_ At very large distandes ,
the distribution acts as if it were concentrated at a single ;
point through its monopole. The form of the quadropole given
_in equation (22) is nqt the most convenient form, but wé»
will take it no further since we drop it in all of what

follows.
2 1

t

B. To evaluate V we will examine it in polar co-
| r-r ' :

ordinates.with r'=0:
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1_1d2(
By
dr

R

) = 0, for all r#0

However for r=0 this 1s not well defined so we must consider

a volume integral around the origin:

{

) 21 = t.];
/:IV -r-;dv-/snvrda

where we have used Gauss's theorem and

3 -2 .
3F da -.r sin6 d6 do¢

SO:

HIH

: 2w fw ' . '
j[ v? dv j/. -(lf) r2 sin6 d6 d¢ = -um .
v a d r »

This is true for any volume integral which includeé'the

origin. Another way of writing this is:
L= —ums(n)

or finally with a shift of origin:

!
V ———— = -47mé(r-r')
r-xt]
C. Integrals involved in space averaging

"
=3

27 2
cos"¢ d¢
a
2w ‘
jr sin2¢ d¢
J ‘

1
=



i . I
j[ etzacose sin6 de

let a=tia and x=cos:

‘ o -1 e e
-1 » : : a =0 +1a ¥
o eax dx -e %% e -ea et et
1 : a o *1a

N
. .

29

T L _ o -1
/ cos8 e#¢_acose sin® de = - / x e ax
0 o . , 1 _ _

integrating by parts:

Cax |71 ax| ™t -t
-xe + & = eax(i_ - X
o 0L2_ a2 o
1 1 1
S0, = o _-a Ce ,
- € +Z _ e -2 - iZi[Slga _ cosa]
o a a

w
.

[T . ; ) -1 o
/ c0529 ¥ 1acoss sinf dg = - / xzeax» dx
0 ' 1 :

,integrating'by parts twice:

- _a0XrxXT 2% 2
= Te [a 7 7 73
a a



I-F

= (ea—e-a)(£ + 2—) - (e%+e™% 2_
. o 3 2
a o
- . 1 _ 2 Lcosa
= ZSJ.na(a —3)_ + —
a - a

S _ .
) / sinze gtracosd sing d6 =
o :

™ . '
/ (l—cosz,e)ei1"3‘Cose siné de
0] - '

using results 1. and 3.:

bsina _ 4cosa
3 2 :
a a

30
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Chapter II

Optical Activity
I. The Physical Basis of Optical Activity

This is not intehded as a review, bﬁt merely as a
sketch Qf previous work on optical activity. Optical
rotation (or optical rbtatory dispersion ORD) is the
‘dispersive form of optical activity. Due to a difference in
phase velocity for right and left circularly polarized light
in a medium, the plane of polarization will be rotated as
the light passes through thé medium. Right ahd left circular

polarization are described by the + and - respectively:

E, =€, E e'K'F

* + o

+

€ =(l//7Xelii€2)

An equal mixture of right and left circularly polarized
rays gives a linearly polarized ray. The polarization

direction depends on the phase difference between the rays:

€ e®S 4 g e'$6= z (coss € - sindvez).

N

For a phase difference of 26, the'plane is rotated clockQ
wise through § as seen iooking iﬁto the iight'ray. (This
is right handed for.chemists and lefthhanded for physicists.)
To see how this phase difference comes abodt we will consider

light propagating along the €3 axis in the molecular frame :
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Let us start with plane polarization along €, (8=0). If
the right and left handed components have slightly different
phase velocities (real part of the refractive index), then

after travelling the distance Az:

E, = €, E explin _wiz/c]

‘E_ = ¢e_E  explin_wiz/c] .

We are for the moment ignoring any absorptive phenomena
(the imaginary part of the refractive index). The phase

difference is:

w
S (n+ - n )Az
or
(n, n)
— - - W _ - -
§ = X (n+ n_)Az z 5 Az .

So that rotétion comes abéut because of the difference in
refractive indices for fight and left cifcularly polarized
light. We can exfend this to inclUde-absorptive phenomena

by letting thé refractive indices be complex, and considefing

a complex rotary parameter:

[61 = %@, - n)) n, = n} + nl .,
Taking the real and imaginary parts:
o QNO "
] .= . W 1 - '
(o] =~ o (nl n!)
. 9N w ' ‘ '
[6] = <=2 (n} - a") S (1)
o2 |
- = ———— "o 1" .
EL7ER T 7303 (P2 T M)
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(6] and [8] are the molar rotation and ellipticity in units

1

of degrees—mole—l-liter-meter- . CD = is the differ-

¢ ep
ence in extinction coefficient for right and left circularly
polarized light (see équation I.17) or the circular dichroism
(CD). Obviously in equation (}) [6] and €, -€g are just
different units for the same phenomenon. The combined ab-
sorbfivévand dispersive effects give rise to elliptically |
polarized lighf, wﬁich is an ﬁnequal mixture of right and
~left handed rays. The'rotation is the angle between the
initial plane and the major axis of'the_ellipse. fhe

ellipticity (and thus the CD) can be related to the ratio

of the major and minor axes of the ellipse.
ITI. Quantum Theory of Optical Rotation

In the past, most efforts have been to calculate'[¢]

at waveléhgths‘faf from any absorption bands. An expressioh
dué~to Stephens.;? derived frqm quantum field théory of
scatterihg is a more general fbrm of the expressions used

by Rosenfeld,? Condon;i and Kirkwood." Ali of these ex~-
pressions involve a time dependent first order perturbation"
expansion of the interaction between the system and the light
in the eigenfunctions of the unperturbéd systém. This is not
to be confuéed with the time}independent.perturbation methods.
used in later sections to express a polymer Hamiltonian as__»
a sum of monomer Hamiltonians plus inter—moﬁomer interaction.
Here the unpepfurbed Hamiltonian is the total polymer

axis, Stephens

Hamiltonian. For rotation about the €,
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expression is:

| LW
| - <0|p,e r3|A><A|p e*ct3|0>
[6]33 = e V 2: 2° i 1 .

hm ve . VA

. <0lpge’ r3IA><AIP e Cr3|0>
Y]

(2)

A~V '

h is Planck's constant, v = w/2m, Py is the €, component of
the linear momentum, Py = P'€q, and'r'3 is the €5 component
of the positioh. If we expand equation (2) to first order

in r and take the average:

_ 1 '
we find:
_ . ' 2
- 8w V
(61 = S 37 <0|ula><A|m|0> ——
A v,y
where:
A .t
<0fulA> 7;5;- <0|pla>
A
and
= &
m = 5 (rxp).

This ié just the Rosenfeld result, and the expansion of the
exponential is just the Rosenfeld aﬁproximationa . We assumed
that w/c << r or A >> 2wr. Im(<0[u]A><A|m|0>) is called
the rotational strength of transition A. If we sum ovef

all transitions:

R, = I Im <0|u[A><A[m|0> = Im <0|uem|0> = 3  (3)
A . - |

z
A
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We have used the identity & |A><A| = 1 to contract, and

the expectation value of uém in the ground state is real.
Equation.(é).is called the rotational sfreﬁgth sum rule.

The difficult quantum mechanical prdblem is now to find

the quantities such as u, m, and v in equations (2) or (3).
This brings us to the not yet age.old problem of finding

use ful wavefunctions. Also, equation (2) is derived based
on scaftering-theory. This means that it is only applicable
far from any>absorption, and it treats énly electronic line

spectra.
ITI. Kirkwood's Polarizability Theory

For real polymer systems invsolufion, we will need to
treat lineshapes, i.e. how to let the ﬁonomers‘interact err
a range of frequencies rather than just one. We will
examine fwo semi-classical attempts to deal with thesé
difficulties. These examples are instruétive because of
the semifclassiCal approach to the problems of deriving
rotational strengths and bandshapes.

-The basic aséumptions of semi-classical theory is no
“electron exchange and no.electron'overlap. This allows
the‘electrons to be assigned to definite monomers in a
polymer or definite groups in a moleculé{ ' The Hamiltonian
for the pqumer is written as the sum of monomer Hamiltonians
§lus‘inter—monomér interactions, the wave;function is writtén
as a product of monomer wavefunctions,'and all the inte-

grations become localized.
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Accofding to Kirkwood:"
<0|u|A><A|m|0> =z {<OluilA><A|mi[0>}
_ g _ |
T ‘ . '
e B 5w, <ofug|arpealn, 0>
: j#EL .
+ I <0|u,|A><A|m,|O>
c . i 3
JEL
or
R, = g{&t - Ty, Re[<0|p, |A>x<A|u.|0>R, . ]
A_iIA _.C Aj#i T 1 .J.. 13.
+ T Im[<0|u.|A><A|m.|0>1} (4)
j#1 * R o

Qhere'Rij is the vector bétween the:centers of monomérs

‘1 and j. The subscript i in the electric mégnetic dipoles -

refers to electrons localized to monomer i. Writing the |

po;ymer Hamiltonian.as:
H=gH +2 1 V..

O O s S

Qhére Vij is the interaction between monomers i and j (we

will consider only dynamic coupling; forstatic field, see

reference 5). The Qave functions may be written as prOduc#s

of the eigenfunctions‘of the Hi:

|0> = 1 |0>, "H, 0>, = E_ |0>,
| i 7L o 1771

Kirkwood dropped the first and third terms in equation (U4)
and expressed the second term using time independent pertur-

bation theofy:
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A = L 5 (57

_ 2T Vioa jobvavaijoujobxpioa
R, = - r I z >
i j#i a#b ' h(vb'-va )

<0 u|b>. <b|H|b>.
]_Iulj v [H|

=
1}
fo of PSS

b

Kirkwood went on to approx1mate Vloa 500 by a dipole-dipole.

interaction:

Vioa 50b = Mica'Tij Miob
We now have an expression for R,, the polymer rotational
strength, in terms of the Hioa and va,'the monomer transiticn
.dipole and tranSLtlon frequency These can be measured
empirically. The transition dlrectlon may be studled by

7 or fluorescence

crystal reflectance,® tretched film studies,
depolarization.® The square of the transition dipole is
proportional to the integrated absorption band, aﬁd the band
center may be taken as V.- of course, the polymer rotationei
- strength also depends on the geometry of'the polymer through
the Rij and Vloa job "
Kirkwood's polarlzability approximation deals with

confributions of bands in the far ultraviolet (UV). (This
wavairkwood's primafy intereét in fact.) The far UV
transitions (the ujob in this case) are all placed at one

frequency, v_. Then equation (5) becomes:

v Vv

- J2m ___oa 2 2 .
Ry ® "he v 2_y iij aibG ij. | J.oal Iujob| ]obxeioa Rij
o a : '
.where e:j ob is the unit direction vector of ujob, and-
V..
G5 = L]
luioaI lu]obI
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but the far Uvbpolarizability is just:?®

5 2\)oujob“job
b h(voz-vz)

Calv) =L a. = L
] 3

The summation over b includes only the far UV transitions.
If monomer j has the three principal polarization axes:

(aj)fr r=1,2,3; then for the far UV

3
T 'z v_ |u.
i

E
j#i r=1 2 1°@

Gij(aj(\)a))rrxei.RiJ (6)

vl
n
0l3

If we had really gbod polarizability data we could substitute
each polarizability into quafion (5) without placing all the
far UV transitioﬁs at Vg In fact, the polarizabilify data
used by Kirkwood was Na D line - electronic polarizabilit§
and equation.(s) is appropriate. Kirkwood went on to substif
tute the pqlarizability Ofluioa into equation (6) as well.

He was interested in the contribution of the_fér Uv only.
,Let us examine the résults in equations (5) and (6).
We‘developed only the second. term in equation (4). Alﬁhough

the first term in equation (4) is just the monomer optical
activity, it is important to realize that’it»Willnbe modi-
fied by interactions with other groups; i;e;,‘fhe'pérturbed
wave functions muét be used to calculate R, . ‘We have chosenA
.to ignofe the first and third terms in equation'(u) becahse

we are primarily interested in electrically éllowed'magnetic-
ally forbidden transitions. (Tinoco 1atervdeveloped'the
theory.to’include magnetic transitions as well as static

field effeéts.s) We will include magnetic transitions in

our development in chaptérs ITT and 1IV.
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Equations (5) and (6) are first order in the potential
Vioa,job'. Although a dipole-dipole interaction was used by
Kirkwood, more general.potential functions may be uéed (see
Chapter I, section III). The tfansitions only couple at a
single frequency, i.e., the theofy is time independent. We
can calculate rotational strengths but no dispersion infor-
mation. The‘Kirkwood theory doés, however, allow us to
calculate far and near UV contributibnévto the polymer
rotational strength based on the empirical line spectra

and polarizabilities of the monomers and the geometry of the

polymer.
'IV. Jonnson-Tinoco Theory

In an effort to calculate the CD of a polymer, Johnson

® first extended the théory to include degenerate:

and Tinoco!
near UV tranéitions. Degenerate perturbation theory (exciton
theory) is used to calculate the near UV contribution to the
- rotational strength. Thére are now excited states: |

! ) | . ey -
| A4y> = t CaixlAi> 'Ai?;‘ 0>, g 10>j"

' There will be a rotational strength éontribution,‘Rk’from'

each state IAk>:

. _ - ‘" - N . . .
Re ® 32 Yk 5 <Ol [A >x<hy fug[0>-R,
) _

. ,TT . ) ’
-3 Yk iZj <0|uilAk>x<_Bklujl»o>.Rij . (7)
, . . .
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The first term is the rotational strength due to the inter-

action of the degenerate near UV transitions, and the second

term is the rotational strength due to the interaction of

"the near UV transitions with the far UV transitions 8. In

. the polarizability approximation

_ kalujIO> z “j'Ebk(rj?_
' \

where Ebk is the field due to all the monomers in the k

“transition:

(r.) =

Ep (T3

22 Copy Bpelry)
bR
Using the exciton coefficients:

k k-
RAk = %g izj aZb Ciak Cjbk Vioca Rijfuiqaxujob_
) )
o c s b Ciak Czﬁk Vioa Bpe{F3) %5 Mi0a" R
uioa ) i<0|ui|a>i

@ includes the far UV polarizability only. ‘The circular

dichroism (CD) is given by

= £ R, f(v-v )
v k k= k

we have assumed all exciton bands have the same shape.

E is the field at rj due to the transition b on monomer % .

(8)

iy



42

Expanding f(v-v,) in V about v:

€. ~-€ )

LR _ - df(v-v)
) = ]Zc: Rk f(\)-_\)) - I Rk ‘—"—a—r——-(\)k—\)).
k
Because of the sum rule: I RAk = 0
I R f(v-v) = f(v-v) L R
Kk < | k Bx

using the orfhogonality of the exciton coefficients:

B 104

f(v=-U) ¥ R, = X f(v=9) I I v.
o x k€ . i,j a

Bialrs)eagxu; o Ry s

The exciton coefficients are solutions to the eigenvalue
problem:

' Viézb
Yk T Vioa T izz Ciak Cebk —H - o (9)
b . .

Thus (G-vk) is first order in V, and since RB is already
first order in V.. = E. (r.)+a./|u.]|
1] ia ] 3 J

- 3f(v-v) (V-v,) R

~ 3Ff(v=v)
(V-v, ) ———FX K v :

@ T (10)

R A

)
k k

égain using the orthogonality of the C: ak equation (10)

becomes:

9f(v=v) T
\Y 2hc

z L Vv, _ R.,.su.
i,j a,b '

and the CD is:

_ TV . If(v-v)
€, = = L L v, Vo 0 M. _XH. , <R,. =52~
L "R 2hc i, a,b ica 10jb "ioa "job 13 v -
+ 5 v, E. (r.)ea.xp, _R.. £(u-v). (11
c 5 a “loa T1a 7j j Tioa 1] ’ ,
b . .
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Let us reexamine this derivation and follow closely

the approximations concerning Vi- We separated the

ajb’
rotational strength into two parts in equatiocn (7). The
first part due to the exciton coupling of the near UV was
solved to zero order in V. The second part expreeéed
rotational strength in the near UV due to coupling with
the far UV using Kirkwood's theory whieh is first order
in V. | |

Likewiee the bandshape f(;—vk) hes expanded to first
order in Vi (which is first order in V).  f(v—J) is zero
AEGv) (5,

av

product of the band shape and the_rotational strength, and

order and 1) is first order in V. Taking the
keeping only first order terms gives equation (10). Note
that RBk is just the Kirkwood reeglt with the interaction
written explicitly in terms of the field and the polariza-
bility. f(v-v) is taken to be the absorption spectrum of
the monomer in the near UV. As before a is a static,
frequency independent polarizabilify. The major advantage
of the Johnson-Tinoco theory is that the polymer CD bandshape
can be calculated from the monomer absorption spectrum and
its first derivative. Also, the theory is essentially [
classical since the exciton coefficients do not appear in
the final result. 1In otner words we need not solve the
eigenvalue equation (9). | ‘

As we mentioned earlier, this theory is first order in
V. However, the question of time dependence is not as clear.

The far UV bands are centered at a single frequency and
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interact with the near UV only at.that frequency. The near
UV bands interact and their degeneracy is split. This
splitting is accounted for by the Taylor's expansion of the
near UV bandshape, but the bandsdo not’really interact at
more than one frequency (the original vi;a)' (In this sense
the bandshape is added in a rather ad Hpc.fashion.) We

will have more to say about this when comparing Johnson-

Tinoco theory with our classical result. f
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Chapter III

De Voe's Classical Polarizability Theory
I. Derivation

In this section we wiil reproduce fhe local field theory
of De Voe.l"2 It is an extension of the classical procedures
outlined?in Chaptér I.

According to equation I.6 we must find P and M to

calculate_the optical properties of our polymer solution via

the refractive index. The electric vector of the light is

E(r) =B eT%°F . (1)
and
P =yt <ug etkori,
1 (2)
M= vtz <m, QtkeTi,
i

where‘the SQms are over all transitions in the microvolume v,
ri is the center of thé i transition, and the angle brackets
denote space averaging (see Chapter I seqtion IV). Since our
microvolume contaiﬁs only one polymer molecule, the sum is
over all the transitions in tﬁe molecule.' The heart of the

classical (De Voel!®’?) theory is

. Bi . '
= ! L) - cv— . !
My ai[Ei(ri) e; S Hfri) eiJei (3;)
= é °'|. v ’

m; c‘[E ei]ei S (3b)

. _ ‘ _ ¢ lmiol
Bi = biai bi = — Im (3c)

* lugol
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[m. | and |ui0[ are the electronic electric and magnetic

io
dipole magnitudes, and e, and ei are their respective unit

direction vectors. 'Ei and Hi are the local electric and
magnetic fields. o is a scalar (we assign‘single oscillators
to the electronic transitions) complex frequency dependent

polarizability. It includes the absorptive as well as the

dispersive behavior of transition i. 1In fact:

a.(w) = a'(w) + Za"(w)
1 1 1
. (4)
" __6909N ¢ _
ai(w)- —EEﬁ; m ei(w)

NO is Avogadro's number and e(w) is the molar extinction of
a solution of monomer transitions with N transitions per -
unit volume. We calculate ai(w).from ag(w) using the  Kronig-
Kramers transforms (equations I.1l5a and I.15b). Actually
equation (4) is the same relationship wevderived in Chapter I
seétion V, equation I.18. vHoweveﬁ,now we are generalizing
aE(wB to be an empifical‘function, that is the monbmef
absorption bandshape. In our simple model ag(w) was a
Lorentzian iine defived from an harMoniéally bound damped
electron. We will give up such a détailed mechanical model
of the electron motion in favor of the generalized empirical
definition of the monomer polarizébility (equation (45).

H' and E' in eéuations (25) and (2b) are the local fields.

E' has contribufioné from the‘external fieldé, the internal
fields of the solution.outside the microvolume, and the

fields due to the other transitions in the microvolume:
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E'(ri) = 3

E(ri)

We have assumed that the field

dipoles of the other transitions.

I.8a shows that:

or:
v, .
Gy, = —=1
13 _ —~
lug b Twyl
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- Ia,

i3 uj-ej]ei (5)

at r. is linear in the

Comparison with equation

If we assume plane monochromatic solutions and approximate

H' by B then equations (2a) and (2b) are: (see section I of>

Chapter I)

=
!

iwbidi
m. =
i

™t P e ! 1a
ai[n (ri) e, zbi kxE ei]ei

E'(r.)-e. e! .
i i ~i

(6a)’

(6b)

In order to simplify the following equations we will drop. -

4

the
Chapter I section V, this term
solvent effects. Substituting

(6a)

u. = ai[E(ri)-ei -z

3
multiplying by e;, dividing by

term to the left:

3 P term from the local field.

As was shown in
involves only environmental

equation (5) into equation

G.. p.*e. - ib. kxE-e'le.
ij 7373 iR

@; and bringing the interaction

= E(r.)+*e. - ib. kxE-e!
i’ 71 7L ] i
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solving this set of equations

: b .nw ’ .
.*e., = L A.. [E(r.)-e, - — kxE-e 7
M. e, 2 A [E( 3 eJ .\——%~— J] “( )
where the solution matrix is
Si. ‘ -1

dij is the Kroneker delta. Substituting equations (7) and

(1) into (2):

ke xs ib.nw
<U. N P, A..[e.*E_ e, -
] ; 1371 o 73 c

ike(ry-ry),

kxE ce! e.] e
o 1 7j
(9)
To do the space averaging we will assume that all intra-

polymer distances are small compared to the wavelength of
lignt:

o Zkers s - ]
k'(rj-ri) = k-rij << 1 eFTTiy T 1+ Lk'rij'

This allows us to use equations I.1l0a and I.10b. We could,
however, extend the theory to arbitrarily large polymers
by using equations I.1ll and I.1l2 which average over the

~entire exponential. Upon averaging:

.<uj eik.rj> = .
(l0a)
}— * l [ ] - s '.
3 i Aij [ei ej E_+ (2 eigej rij _?bi‘ei ej}.RXEo]
<m. eik'rj> = £¥ I A.. elve. b. E E (10b)
] " 3c i i3 j "1 7] "o’ o

When we substitute into equation I.6 the.contribution from

_ ) .
(c/w)kxM will be identical to the contribution from the .
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magnetic dipoles in equation (10a):

+
v

2_ -.ii l . + .L . - 24 e O3
n“-1 = 3 izj Aij[ei ej (2 _eixej rij 2iby e! ej) J. (1)
b}

To find the absorption we take the imaginary part of both
sides ignoring terms first order or higher in k (the ab-

sorption is zero order in k)

znlnll = u’_;l z
i,.

; Im(Aij)ei°ej

we will assume that n' = 1. (This is part of the environ- '

‘

mental solvent influence so we will drop 1it.)

Y
n' = —— I A.. e.re.
: 6 i3 i3 "1 73
and using equation I.17:
—unNo " ‘ . '
€ % ET55W o Im(Aij)ei'ej~' _ | (12)-

To analyze the CD = eL—eR fe_~-€_, We must find nf-l where
+ refers to right and left circular polarization (see

Chapter II section I).

E, = etlEol» | kxE, = FikE,
where k = |k|. With these substitutions equation (11) is:
_ bk : L ¢ xe.or.. - 2b, ele.)k] |
ny-1 = — ifinj[ei-ej t (3 e xe i r; . Zbi éi ej)k] (l2a)'
and
2 2 - B—lr_}.(.. ". b’. E
ﬁ_-n+ = =3 z Aij(ubi e/ e.j eixej‘;ij)

1,3
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Dividing by n_*n_ = 2n and using k = nw/c:
n_-n S L) T A..(4b, el!+e. - e.xe.°r..). (13)
- 68 ¢ .%. Ti] i 71 7] N R S

- —— . ) - '
L"°R © 59098 2 in Im(Aij)(eixej rij Hbi el ej)v(lu).
s .

We have chosen to. calculate the absorptive optical propérties
of our polymer, but by a completely similar method we can

derive (see Chaptef I section V and Chapter II section I):

_ bN ' 4
[R] = I Ry Re(Aij)ei~ej (15)
1,] -
SNO w2 :
- —————— ——— 1 'o - - . .
_E¢] = = izj Re(Aij)(4bi ej-e; eixej'rlj) (18)
b

There is, an optical activity contribution from the couplingv
betweeﬁ'electrénicvtransitions, (as in the Kirkwood aﬁd”
Johnson-Tinoco theories) and a contribution from coupling
between electric and magnetic transitions.

These equations give us another method of calculating
polymer optical activity from monomer4ppoperties. First
the monomer absorptionvspectrum must be resolved into bands
with characteristic directions. Each such band is'aséigned
an oscillator. The complex polarizability of this osciliator
is determihed from equations (4) and I.l5a. We deferﬁihé a déta
for the far UV transitions from the real.fefractive‘index

corrected for the near UV bands:
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nz-i’_ Yra'(w)
n2+2 9

- The assighment of these far UV polarizabilities is discussed

in more detail in Chapter V. For a given geometry, G may

ij
be calculated from the empirical transition dipdles, or
frém ab initio molecular orbital transition densifies. Al~
though Gij is frequency independent,‘the mafrix, A in equation
(8) must be inverted at each'frequency..

The De Voe theory is all order in.the intermonomer
interactions. Also, the use of complex frequency dependent
polarizabilities is a consistent treatmént of both absorption
and dispersion. In other words, ignorihg electron exchange

3

and overlap, this theory is time dependent and self consistent.

This is just the time dependent Hartree approximation.*
II. Comparison with the Kirkwood and Johnson-Tinoco Results

For comparison with perturbation theories we will ex-
pand A;y to first order in Gij' Let [a]ij = §

-1 - -1
[0. ]ij ‘- 8 ’

Yo A
ijoi?

/ag, A= a7t + 617, [a! + 6lefa + x]1 =1

ij i’

where x is some matrix first order in G:
-1 e
1+ (a "ext G*x) + = 1.
we have included only the terms first order in G. This

implies that

or
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Thus
- With this result and dropping the ‘magnetic terms in
equation (14): |
-unNd w? .
€.,"6R * E9OGN — T Gij Im(aiaj)eixej-rij._ 17
c® 1,3
Now ,
Im(a,a.) = ala®l + a!a?-
1] 1] ] 1
and
G.. = G.. e.xe.*r.,. = e.,xXe.*r..
1] Jt i 1 1] B S
Using these and equation I.17,
€,-€, = 29 e, Q) Za!(wj G.. e.Xe.*r. .. | - (18)
L "R c i 1 3 3777 713 "1 T3 1)
- —— ' ' " " -u. - -. Y
(o] = . g ? (af(w) aj(w) *+ af(w) aj(@))Gljelxe] s
- (19)
- from the Kronig-Krémersvtransform we see:
) . . i t " ! t
av(w):_% f&) aéw )d(%)
. 0 (") - w
For comparison with Kirkwood we take:
; v v R
e, = o st g2
i T 6909N ¢ h 'Mio
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or
2m 2
"o .
of = = lugl
The transform gives
‘ Y w' 2 :
e L TN (207
i h w.2 - Wl 1o

1

Far from any absorption dia% >> agag , and

-6 2 2 .
N c 'h . 2 2
l wi - W
. where
—mi v 2 wj lu]'ovlz'
Ry = 5~ L Gy l”iol ( s)e xe. I ..
3t (wj -w) J 1

If we piace all the uj at a‘single faf UV frequency, Wy
this resultris identidal to Kirkwood's theofy.' Thus if we
afe interested in rotations far from-anybabsorpfion, we
need no information about the bandshape;

. For comparison with the Joﬁhson-Tinoco (J-7) thédry,
we again place all the far UV transitions at W and place
allAthe near UV transitions at wye In the J—Tftheory, the
CD conéisted:of 2 barts. The first paft, due fd coupiing
‘'with the far'UV.transitions had the shape of the near UV
- .absorption spectrum of the monomer. We:éan substitute
equation (20) into equétion (18)

O . B
(——7————7) Gij eixej rij
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instead of including the frequéncy dependence of_the_far
UV‘polarizability o'(w), Johnson and Tinoco éésumedvthat
'a'tw) ='a'(ma). Also they used-a monopole field interaction
fér Gij’ Hoﬁever, thgse differences'are rather minor and
the predictidn of bandshape is very similar: far UV tran-
',sitions'coupling’with“the_near uv wiil giVevrise to CD

with bandshape similar to fhe near UV extinction.

For the totally degenefate.near UV transitions,
Johnson and Tinoco took the derivative of the ébsorption
curve as the CD bandshape. According to our derivafioﬁ
the bandshabe should be the product of the near UV ex-
tinction and its own Kronig-Kramers transform. The use
of the derivativé bandshape rather thén equation (20) |
“becomes more questionabie if Qe consider non-degenerate
transitions. Thus De Voe theory,\even in first order,
gives a muéh better descripfion of éoupling betweén tran-
sitions at different frequencies intermediate between tHev
totally degenerate'and widely sepefated cases considered
by Johnson and Tinoco. If the coupling is sufficiently
‘weak, the first order De Voe theory may be useful in in-
terpreting experimental CD spectra (see Chapter Vvi). In

this ordér of approximation the frequency dependence‘and 

the geometry dependence of the CD are well separated.
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-Chapter Iv

Classical Theory for Infinite Helical Polymers
T Introduction

In thds chapter we will applylhelical'symmetry'and:-
periodic boundary conditions to the classical‘theory derived
in Chapter IIi The classical result as it stands cannot be-
applied to extended systems. Recall that we assumed:that
‘all intrapolymer dimensions were small compared with the
wavelength of light. This assumption wiil be bad for a
very long heiix, and we wiil base our symﬁetry argumentS'
on an infinite helix. We will therefore rederive the

classical theory for large helices.
IJT. Helix Geometry and Helical Symmetry

Helical geometry and the helical point subgroup are
dlscussed thoroughly by Rhodes. The.empna31s here is
- developing the bare essentials necessary for our purposes
Con31der a rlght handed orthogonal system of coordl—'

nates with unit vectors:

A right—handedihelical lattice is described by a translation

along € through 8. This

3 3

primitive screw operation may be abbreviated:

by Az and a‘rotation about €

[R(8)|Az]
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where R(8) is the rotational part and Az is the translational

part of the screw operation. Figure 1 shows such a helical

lattice. The € €55 €3 coordinate system will be referred

1
tb as the molecular reference frame.

If all the lattice points are-equivalént,then the screw
operatqr is ahSymmetry operator. For all the lattice sites
to be equivalent, they must all be equidistant from the
ends of the helix. This implies that the helix is un-
limited in léngth or has an arbitrérilyilarge number of
lattice points N. It is'presumed that the N+1 latticepoint is
identical to the first lattice point. This ié the periodic
bbundapy condition. Another way to envision the periodic
-boundary condition for a long lattice is to‘bégin with a .
circular array with lattice points eqﬁally-spaced on its
circumference. This system is strictly periodic. If there
are N lattice pointé, the N+1 lattice point is identical
to the first lattice point. If we allow the radius of the
circle to grow, the circumference will include more and
more lattice points and the curvature of the circumfeﬁence
will decrease. We can make the curvature betweeﬁ lattice
pointé arbitrarily small by allowing the radius (and thus
the number of points) to'grow arbitrarily large. So we |
~can make our ciPCuiar_periddiC afray identical to a linear_ 
periodic érray if the‘numbér of lattice péints is sufficiently
large. |

In the language of group theory, thére are N operators

forming the helical point symmetry group whose typical



Figure 1: Relationship between unit cells in the

molecular reference frame.
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element is:

[R(8)[az1*

[R(28)|422] £ = {1,2,3," "7 ,N}
All the operators commute, and the periocdic Boundary con-~
dition is:
S S

[R(S)IAZ] = E
where E is the identity operator. More succinctly, the
group is Abelian and cyclic. These group attributes insure
that there are N one-dimensional representations of each

group operation, namely the N Nth roots of one;

exp(2wZj/N) i = {1,2,3,""7,N}.
The representative of the 2th operatof in the jth represenfam
tion is:

Pj[R(e)lAz] = exp(2mijR/N).
These irreducible representations will be used to construct
normal modes.

Consider the two-dimensional vector in figure 2. We

will examine what happens to its components when the x and y

axes are rotated through 8. According to the figure:

x! xcosb® - ysinb

y! xsin@ + ycosH.
Instead of viewing this as resulting from a counter clock-
wise rotation of the axes we may regard it from the equivalent

standpoint of a clockwise rotation of the vector itself.

With this result we see that a spatial representation of the



Figuré 2:

A‘change in coordinates caused by rotating

the axes through 6.
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- rotation operator in the molecular reference frame is:

cos @ -sin 6 0
R(B) = sin © cos © g]
0 0 1

An equivalent but more convenilient form for our purpose is:

16 - 10

R(e).z e E g *t e g €t g &g
wnere:
1 2
g, = — ( t ig,) g, = 0 e, e = 1
+ ? + + €,
- v . = - ¥
are the right and left circular unit vectors. We will consi.:r

more than one transition per monomer and perhaps more thah one
monomer at each lattice point. It is more reasonable, there-
fore, to speak of some volume with an origin and coordinate
system defined for each lattice point. For the rotation
operator in the representations given above, the origin in

each unit cell must lie on the € axis. We will choose the

3
coordinate system.in unit cell 0 to coincide with the.mo_
“lecular reference frame,r The coordinate system for unit.
~cell & will have its origin at the point (0,0,242z) and the}
system will be rotated through 2-8 about the 83-axis; for
any direction vector wv_ in unit cell 0 there is a corres-

pohding vector'v2 in unit cell 2. With respect to the

molecular reference frame;

2
VQ = R Vo.
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Similarly for any corresponding position vectors'ri and r.:

3 .
;2 R rO + Az 83.

III. Derivation

As we mentioned earlier (see Chapter IID), in deriving‘
€ and eL—eé we will assume that the'internalAfield'is équal
to the external field. This amounts to ignoring.solvent

~effects in the extinction and CD: | |

(n 2 + 2)2

(EL—E )S = ———3———— (EL-ER)

)

where ng is the solvent refractive index and € and'(eLfeR S

are the extinction:and'CD of the solution.
We first relabel equation III.6a with Arabié unit éell
indices and Greek indices labeling transitions within the cell,
e.g. UZU-is transition ¢ in unit cell ¢. This givés;..
| | - Nn |
- ib0 kXE(rZO)~e' - I G u

‘e
L0 Lomt mT mT
mTt

Hoo %0 ) ac{E(rlc)'eZ b

g o

‘There are Nn equations in the ﬁn unknowns Moot Note'thatvd  1
‘and b do not depend on unit cell but only on the nature of

the transition,'.Taking liﬂear.combinations.of these'eqUaﬁions
'accofding to the irreducible representations Qevobtain thé =

normal mode equations:
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B e o
¥ i exp[2'rr1,3‘2,/NJulcve20 -
a 4 | Nn .
, > h . - : ) Y "_
I i exp[2wzjz/N]{ECr2‘c)ve20 ib_ kgE(rzc) ezc’ ii Gy omrPmt

dividing both sides»by ¢, and bringing the interaction term

to the left:

_ W, _ce :
1 s L0 "o -
= L exp(2mije/M)[—————=— + LI G, e 1=
R o
N | o a; T 2omt mt "mT v
1 o e . -
T L eXp(Zﬂle/N)[Eﬁhzc)elc ib, kXEgr ) ezc]

2

‘examination of the normal modes shows that:

u__-e = éxp[2nij(m42)/MJuzr-e

mT mT T

with this substitution:

;L.. GT =] - N1} =
3 iexp[anjl/V] z LPYLL {a + L qumrexp[an](mvl)/AJ _
' g m . .
l v ] h . - - Y . t

7 eXPE?Wth/N]{E(rlo) e, ~ tby kxE(r, ) elg}

Solving this set of Nn equations we obtain:

N T N

L L

po(idee =g = exp[2n¢32/NJu2T TP Zexp[anjl/ngAn;E(rzc?.ego

- b kXE(r ) e!
g

Lo J'

The coefficients A%o are obtained by inVerfing the following

nxn. matrix:

mT

‘e  }
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. &
al = (9% PO -1
A = {5+ i chmTeXPEZWL](m 2)/N1} . . (1)

At this point we will introduce the helical geometry ex-

- plicitly using the rotation operator to express €5 in

Oc
for the 0 unit cell:

terms of e, . Also the unit cell subscript will be dropped

=

n (jee =

=

)

i expl[2mZjL/N] 5 Aig[E(;go)-Rz-eo—ibc kXE(rio)°Rz-e$]
| (2)

We can write absihilar expression for fhevmagnetic dipole

‘moment mT(j). The macroécopic electric polarization for the

j normal mode, P(j); and the macroscopic magnetic polarization

forthe j normal mode, M(3j), are related to the microscopic

dipoles by the following equations:v

P(j) = <u_(3) explik-r_1J>
7 T T

M(3) = I<m (3) exp[ik-rT]> _ S (3)
T ‘ v

The refractive index of the j normal mode is:
n?(§)-1 = 4rE*-[P(§) - S kxM(§)I/E*-E

where * denotes the complex conjugate. We are interested in

the refractive index for incident circularly polarized light:

-+ N

- _-4—‘"_ .o N j . 2.- By » '..2. " .
n,-l = = ?E_exp(Zntjz/N) z Aw[et R7-e  -i2 b kxe *R eq]

L,T

x exp(ike(xr_~-r ’°€; ' o %)

20))et
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where n, are the refractive indices for right and left
circularly polarized light propagating in the X directioﬁ,'

and € are the unit vectors for right and left circular

polarization in the plane perpendicular to k. The space
averaging indicated by the angle brackets in equation (3)
is done by calculating the-refractive index along each
axis in the molecular reference frame and averaging:

2 .

2 2

.1 2
<n -]_‘>_ =3 <n -]_>33 + -3— <n -1>J_'
<n2-1>l = %[<n2‘lﬁj.+ <n2-l>22]

We have now shown that a matrix of>diménsion nxn must be
invgrted rather than the originalnNxnN ‘mafrix. However
according to equation'(l) we must invert a different matrix
for each normal mode j. Fortunately,‘the sum over & in
equation (4) leads tOLSelection rulés.(in the-limit of large‘
NJ. These selection rules determine which of the polymer
trénSitioh normal modés is exéited, and for each allowed
transition we must-soive n equations in ﬁ pnkn@wns..

As an examplé consider light propagating along the

helix or €, axis:

- 1
k,-,ke3 | 'E: +

.k'rzoz kiAz + kv:o'

the sum over £ in equation (4) includes the produét:



_in the ¢

 propagating along €
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%:Zexp[Zﬂijl/N]exp[-iszz][exp(ize)e €, +éxp(ei26)e¥e + e3e3]

then the selection rules are:
G(Zﬁi - kAz +6)e=e+.f 6(gﬁi - kdz - 8le e_ + 6(2%1 -kAz)eé;a;
These seiection rules are fof.right_and left circular
polarization in the €15 eé plane and linear polarization
3 direction. We must solve three nxn matricés
corresponding to the three selection rules. In fact as we‘ 
will show later, to first order in kAz only two matrices need
be inverted.

:To find the CD = €1-€x of the system, n_—n;, the
difference between the refractive indices for left and fight

cilcularly polarized light will be calculated. For light

37"
( 2_ 2) = 4w I (A+ e *(e.€ )ee_ - A e +(c.€ $°e dexplikrr__1
S gox 9 T + =" g T0. 0 + - T plLe oT
, .
+ -
+ 8m czr kbo(Aroer.(€+€—)eé + ATceé°(s+e_)-eT)exp[ik-rot] (5)
b
where

+ (N/27)(kAz+8) -
_Ato - Aro‘ Yot © Tt Iy

We want this difference expressed to first'ordeb ih>k. The

magnetic contribution is already first order in k, so that

the k dependence in A_  and exp[ik°rdf] can be ignored for
‘ : : . +

these terms. In the electric contribution both ATo and

exp(ik°rdr) must be expanded to first order in k. Expanding



 thé exponential:

exp(Lk-rCT) = 1+ zk-rGT .
v:fTo first order in k:

Taq - TO

At - A(N/Zn)(kAziS)

8 " nc . nc

rr 9% 3 . ) j -1
" ag to2 Gpgpee¥p(ximd) + ikiz z: By eXP(timd) ]
mz-nc oo+ ntne _ _

The sums over m run over positive and negative values to

convergence. We will use the same procedure we used in

Chapter III to expand'Aii to first order in Gij' In
general:
(C + XAzD)(C™F + kAzF) = I
I + kaz(DC™t + cF) + =1
and
F = -c"ch‘l,
To first order in kAz:
(c + kazp)~t = ¢t - xaze ipc?
+ 8 +9
AT = A, - Kbz [ATTD
' whére:.
0 act ' | -1
A" = [— + 1 G exp(+imo)] —.
a oomT
o m , _ :
Since ¢ G exp(ime) = LG exp(-7mb)
oomT- : otmo
mo - m
aZ? = Al



71

Therefore only two matrices_heed be inverted, namely A‘e and

0 _ A(N/Zﬂ)(ﬂ).

A - Finally,
64 _ . +0 L +8
A ]TO =7 z ATY[Z mGOYmEexp(’:'z,rne)]AE:CI
‘ Y€ m
and
-8 - 6
LA Jrc - -[A ]01
therefore,
N o,
Ag = A, - kazlA ]ro
- 8 . 0
A = A + kAz[A JUT

TO gt

Using these results and dividing equation (5) by n_+n

/

= 2kc/w, we find:

Lrw

(n -n, )y = — [ay + by + ¢yl
-+ c I -
ay = -Az % [Ae] e *(eg.¢ 5-e'
- o1 6t o+ =" %S¢
b .
. - | (6)
b” = 7 czr ATU eT-(e+€_)°eO €3 Ty
s
e . cat ",, e
c” = OZT Aro [eT (s+e_)_e0 bo +4eT (e e_) e, bTJ
b . .

For light propagating perpendicular to the helix axis:

exp[ik-(rT-rno)] z exp[-ikfRz-rG]exp[ik{rT]..,

Since the exponential may be written as a power series in

-ik~Rl-r0 this would imply selection rules including 6, 26,
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36, etc. However, R is unitary and we assume that all radial
distances are small compared to the wavelength of light,

therefore:

| o R L
explik (re—rzc)J = 1 - ik*R’ r, * ik r..

Substituting this into equation (4):

n,%-1 = A 5 5 expl2miia/N] T Al «x
= N . . 13
R o,T '

' L . L .-
(e *R7-e_ - 2ib kxe °R-el] X
) .
- . . + - . !
(1 ik°*R r, zk.rl_)eT e$

For the el,and €, direction we will expand each of three
terms to first order in k. The three terms are bdkxél,

k~R£-rg, and k-rT. For light incident along €

l:
k = kel
1 .

g! = = (e,  i€,)

.t /5 2 3

kxe, = Fike,.
The'magnefic term is
n.%-1 = 8 5 5 exp(2migi/M) £ A (72105 e'+RYie! e_ce!

+ - TN i e g.r T o % o T %
. b o

The selection rules are

. . N® . .. _ N8 . '
(J + zp)eje e, + (J - zf)eé-e+e_ + 8(J)egreqe,
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and -
B I -1,.-8 AR
n’-1 =% 8tk I b [(5)A__e€ e’ + ()A€ *e'
C* _ o,T o) 2 7to T+ o 2" tg -
248 catle og!
( )Aro€3 eolet €$ _
ejre_ = -i/2, ej-e = 1/2, eleey = 2i/)2
since: '
e!' + e = 2 €, e - €' = 2L eé
V2 Y7 -
2 » SR TN 2 |
(n “=n_“) = 81k I b [(5)A__e _re' + (2)A e re'l(=)e, e
+ 9,1 o-" 2" "to ¢t _ 2 Tt T A 2 7T
+ 8mk I b Al e.-e' €,°€ (7)
S Tg"to"3 o "3 Tt _
_ O,T
We will now examine the magnetic coﬁtribution for light
incident along €,:
—4 -‘l . ) —...
k = ke, g} f 7% (esizel) ._ kxe, = Fig ] .
The selection rules are the same but now

r t.
2 . Elre,

- L _
3 4
so that:
2 sil g
(n;-1) = 78k & b_[(SF) (A e

' 8
.oe'+A
o-+ -0

Oyt T
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since:
e! + s— = ...g. €3 g' - 5_'_ - 2_2 el ,
V2 /Z
v'(n-‘-z—ni-z) = 87k z ( )(A €+'é' + Aio -eo")(z—‘l'—)el
S ' o,T Y . J3
. q 0 . | " | o
'+ 8tk I b_A s@! g e ., . (8)

gt 3 (o] T
g,T o] 3

Cbmbining equations (7) and (8) and remembering'that ’

~
.M
+

+ 2Agce el egre ] | ' : F(S)
This will be our technique for the other two térms as well,
We will calculate fhe contributions along €4 and €55 and by
suﬁming them, express the contribution perpendicular to thel
helix in terms of €, and e_ | |

Next we consider the Zk-r_ terms. “The selection rules
are the same as those for the magnetic tefms._.For light

incident along €y

eB'ecAroJ

N

Q

+

Q

|

Q

i+

S|



For light incident along 82:.

2 . +7 -8 8 1 0
n'-1 = u4mik I [(Z)(A_"e.*e_ + A € *e ) + =— A
* 0.1 2.7 o7+ To. T0 -~ 0 /7 T
'. .
e; eT,e2 r
2 2 _ . =Ty, =6 . 8 . .. 2
n_"-n," = umik I [(7T)(Aro€+ e, * A_E_ ec)( e

g,T | Vel

+4mik I (L)A_ _e.*e €.*e_ €,°C
0,1 ¢ 3 o 1 "t "2 "7

Combining equations (10) and (11):

o -8 " | .
(n_"-n,") = umik L [A e, ,ce € _-r e,ve.
T,T
- Ae € *@_€g.*r_ €_.°e_]
T0 - g + "1 "3 "1
+ Urik I A0 e e .(e,*r_€ *e_ - € °r
: g.1 T 3T+ TT - -
3

where in the last term we used the identity:

] - - = "x
a (e+e_ e_e+) b ibxa.

75

0€3‘e01 X

3°er €2°rr

(11)

Finally, the contribution of -ik-R-rd,_will have new

selection rules:
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v6( N + e)e; 93 €3°€, k e_.§+ r,

23 ', . e v
+8( T e)et 63 €5°e, k €, E_°T,

_+6(Z%l)[e;-e_ €.+ k<€

£ + €T, tElte € _re. k-e-_s+-rq]’
+5(Zli + 26)e!l-¢e e';e ke €,°r
N + "= T+ 70 - “+ Tg
| .2_nj. - ! o o 'I‘ . .
+8( T 29)ei_e+ €_re; kee, €_ r,
With these selection rules along'el
n’-1 = -umik I (EQ)EA—ee e e,'r. +2% e e € or lele
- g.T 2 03 "0 "+ o 03 o - T07TF T
b
+4mk I (L)AO te ‘e_ €, °r_ - €,'e_€ °r J(éL)€'°e 
' 2°7t0""~ Tg "+ Tg + 0 - Tg@g F T
ag,T _ . ‘
~ 1yra26 =28 1
. +ty4mk L (2)[A°7e e e r_ - A “"c e €. r_J(=)el-e
. g, 2 T0 - 0 - "0 .rc + g + g7 J5 o+
22 e f=ira-B 8 S |
n “-n = ~umzk L {—=[A_"e_.*e_e€,°r + A _€_*e_€ °*r_JjE ce_
- + , o,T /7 T0 3 O +. o .rc 3 g -"0772 T
1l .0 : -
- 5 A le_ce, EytTy - € ey E_ ryle e .
- 1..26 28 o o
- §[AT0€_ e, E_"Ty - A "€ e, g, ;0323 eT},._ _(13),

For light along €,
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n2-1'= ink E [( ee e € 'r. + ( )A ‘e é r ]el°é
* 3 ¢ + Ta ro 3 g - o7+t °T
O,T . . :
. 1
+Unils I (—»)[A '€, E_*r, - € e, € °r )(-=)]eg!-e
T, o -0 -0t ey TR T
rymik L (B )[Arc _re_ e_rr_ - A-268+-e0 E,'T ](AL)si e
_ o,1T (0] TO’v ag /i'
2 2 -1 -9 . .
n_"-n," = “2mik{— [Aro 3'€q E_°L, - ATO 3°€5 €4 rc]El e
V2
L 0 * [ ] - - -*
-5 A le_re e or - e ce e +r Jesee
1 28 -26 .
t 5 (A (e req e rr, - A Ve ce e rr Jegce . (1)
Combining equations (13) and (1u4):
2 2 - 3 -e ) ‘ . . '_. e - -
(n_"-n, ") = -2mik I [ATO;O (e e_) e €5e; Arcer (e e_) r €

0,T

-4tk I A [e ~(e+e_)-rO €

3 3

Notice that the terms involving selection rules of 28 for
incident light along €, cancel those for incident light
there

along € In other words, upon averaging around €

2° 3
are no contributions from selection rules including multi-
ples of 8 (to first order in k). Comparing equations (12)
and (lé) we see that the ik°rT and —ik'Rl'r,phase differences
méke the same contfibution,to the CD. The perpendicular CD

has equal contributions from inter- and intra-unit cell

phase differences. This is because both were expanded to

‘e
ag

e - rc-(e:+t-:_)~e0 € -eT]. (15)

]
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first order in k before the selection rules were taken.
The sum of the three contributions, equations (9), (12) and
- (15) is:

2w

v(nf‘ﬁ+)l = “E— [bl'+ Cl]

1"

- . . 6 . » ..o .- ‘.
bl LCZT ATc[eT (e+s_) r, €s'e, - T, (e e ) e, €3 eT]
bl

. 0 : v

+7 L A [r_+(e.e )ee_ce,°e =-e *(e,e >r_cec.e_]
g, 10 T +7-7 "1 "3 "o T O+ -7t 73 7o

: = e o‘ v | . f | LIS ' 3 »
| = L A le -(e,e_ el b +el-lee )e b

g,T :

+ 2 1 al el-(e €,)*el b : (18

Lo to T 373 g “o o

g,T

The_éxtinctioh coefficient is related to the‘refractiVe 
index by: -

- 2N w ”
€=C1Im{n} _ Cl:-m.

17
N, is Avogadro's number and N is the number of molecules

per unit volume. The parallel and perpendiculaf CD are:

(steR)” —_— Cl Im[a” + b” + C“]

and_

(E.L-SR)_L = —c— Cl Ime_I_ + C‘L]. o (18
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The total average CD is:
T

1 4 Tw _. ' ‘
CDh = 3 CD” + §-E— Cl Im{bl + C-L}- (19)

Similarly for the optical rotary dispersion (ORD)'invdeg-cmz-

decimole™t:
_[¢ji = 3;2 %vRe(n_—n+)ll= l8§9 E; [bl + el
Bt - |
9N N 2 .
[¢]” = —N9 % Re(n_-n_l_)” = 36N-9- i—z— [a” + b“ + C”]
[6] = 5 Lody + 5 8] (20)

There are three contributions to ‘the optical activity for
light propagéting along €3- a”, thé helical contribution,
is due to the difference in the selection rules for right
and left circularly polarized light propagating parallei to
a helix. It is proportional to Az, the distance Between
unit cells. a" is called the helical térm because it de-
rives from the helical arrangement between unit cells.
b”,_the residﬁal contribution.is due to phase differences
within the unit cell. It is'prbportional to the diétaﬁces
between eiectric dipoles within the'unit cell projeéted on
the ea axis: €g°x ..

to coupling between electric and magnetic moments within the

c“, the magnetic contribution, is due

unit cell.
For light propagating perpendicular to the helix axis

there is no term corresponding to a”. bL is due to phase



differences within the unit cell projected on the ﬁlane
pefpendicular to the helix axis. There is also a magnetic
contribution for light propagating perpendicular to the
helix axis, cl.

‘To determine the AVerage extinction coefficient
EgﬂzkeL;eR)/Z we can ignore the k dependence in equation
'(u).' Te zero order in k equation (4) is:

b |

2L s 5 [
n,-1l = < ? i exp(272jL/N) ozr A, E.°Rire e ce. . (21)

- Thus, for absorption the selection rules are:
o213 - 21y 2Ty
Gﬁ_N‘ f 8le_e, * 8(5p% - Oe,e, *8(5FH)eqe,

for light along e,

n2 1l = 47 I Axe €.°e_eg_ce

£+ - 7 T * 0 F T

' T,T

2. 2 -8 8
- = . . + : - .

n,“+n_"-2 um I [ATG €,0e  €_re_ ATO €_re, €, eTJ

o°T
= 87 I Ae € *e_E,*e (22)

T0 -~ 0 + 1T S

for light along.el:

2 - :l:. - 6 L -i— 8 L] L— ! . ‘ .
ni-1 = unGZT[( )AL GE ey * (PR e _ce ok (/7)Ardsaeale: e,
, : , , A

2,2 8 < ' Zy,=0 2
n;+n"-2 = u4n L [A  (F)e e - (FA_'e e ] = g, e
+ = 9,1 T2 - 0 271"+ T a 5 2 .r

ce " '. o (23)
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for light along PR
2 8 1 .0
n.1 = yr ¢ (2 )[A + A g *e )+ — A e.*e_ le_ el
t - g,T 0 €+'8 0~ 0 /5 1o 3 7o T
2' 2 . - =0 : 8 .'
n;+n"-2 = ur ¥ (=x)[A_"e . e+ A -8y ]( ‘e
+ . 0.1 2 To + -c TO /7 1 .r
+ur sz A e e e, e ' ' (24)
R T0°3-"1t "3 "o - o

Combining equations (23) and (24)-and>using the facts that
0 -8 |

ATG = ATc and . €,= Eliz€2:
2,2 L ) . . 0 . .
(ni+n%-2) = 8wozt[AT°eT (e ,e_) ey * A e *(eze ) e .
b

Combining this with equation (22) and dividing by 3 gives

the total averagé:

li—'
wl;,
=3

[o 0}

2, 2 _ _ . 8 . .
<n++n_—2} = _— +E_ s 3 I A 081(8383) e,

Taking ‘the imaginary part of theboth sides we find:
Im(n2+n2—2) = Z(ﬁ'n" + n'n")
Rt T - ++ -
We assume€ n_=n_=1 (this is a solvent influence assumption

as in Chapter III) and ni+n"=2n". Thus :

um 0 o 2m 0 P
— I A e *(e,e )ee_+ = I A__e_r(e,e_ )l e
3 O,T To t.  + - of o, 1 0 T 33 g

n" =

Using equation (17) we find:’
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Im[ATo e, (6383)-eG]

&nCl

N

uwCl

6 . X
ImFATo eT-(e+e_)-eG]

L
Sl L2
TITE T3

Note that subscripts in the extinction coefficient‘referrtoi
polarization direction rather than propagation direction.
_s“ is the extinction coefficientvfor light,polarizee aiOngp
 the helix axis,-and‘ei is the extinction coefficient for

light polarized in the plane perpendicular to the helix axis.
IV. Discussion

The major advantage of polarizability theory over the
eqnivalent time dependent Hartreel!’? theory lies in its
eaSe.of application without abrinitio wavefunotions. ?or
mos t polymers of interest accurate wavefunctions are very
difficult to obtaln.' The present equations ellow useful
calculatlons to be made in terms of experlmental monomer -
optlcalvpropertles and calculated 1nterectlon‘energ1es;t
CNDO CI calculations® have been used to obtain transitionlit
‘monopoles for estimating the interaction'energies. In
Suitable systems where the monomers are'sUfficiently sepa= o
rated to use a dipole-dipole 1nteractlon, polymer calcula«;n
tlons may be based entlrely on empirical monomer optlcal.
-propertles Whlle the resolutlon of the absorptlon spec—"

trum and a551gnment of the tranSLtlon dlrectlons is not.
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unequivocal, the use offempiricaldmonomer propertiesvis}
much more practical than ab initioICalculations on real
polymer svstems. Satiéfactofy régults‘héve‘been obtained
for oligonucleotides usihg_polariéability theory;°°® this
work allo&s extensipnuto polynucleotides and othermpolymefs
of biological interest. The limitations'éf the method .
should bé kept in mind, hbwever. NQ electron exchange ér
overlap can be considered and the interactions between
transitions. are expressed in terms of lqcal fields. ' Static
vfiéld-effecfs are bmitted, but‘they can easily be added by
using the ﬁroperties_of the monomer. in the static field of
the polymer. Intermolecular interactions and specific,
.solventbiﬁteractioné were not explicitly considered:.

In De Voe's original formulatioﬁ, the maximum dimen-
'sions of the aggregate were assumed to be small éompared”
to the waveiength of light, A, and exp[ik-rj was‘expénded.
to first order in k-r. This is the classical analog of the
_Roseﬁfeld'approximation.7« Clearly this apprdximatibn ié
not good élong the axis of a very long helix. At two.
stages in the pfesent derivation this expansion is in' fact:
made; it is important to note the diffefeﬁt.assumptiOns;
_involved.1vTo obfain the'selection,rules_fOP light incident-v
parallel and pérpendicuiar to the helix aﬁis, we expandéd 
the exponential_aﬁd assumed that thevsi?e“of'the unit cell was
- small comparéd to the wavelength,of light.
”lilltv' ,er[

and
X A

<< 1
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t

'In.the (eL-ER)“ we have thevexpansibn

n
. e
Godmr + 7kdz I mG

TG cexplikmaz] = %
m . . m m=-n

oom Qomt’

c
Here we assume that the sum over interactions converges in
~‘a distance small compared with A:

ncAz:
- << 1
x .

whe re hé is the number of unit cells necessary for con-
vergence and Az isbthe rise along the helix'axis per unit
cell. This last expansion is made to express the difference

between A'. and A~ to first order in k. A+
: . TGO 10 10

| and A;G are
different_be¢ause there are different selection rules.for
right and left circular polarization and both seleCfiQﬁ
rules are a function of kAz.

-In équation (6} the perpendicﬁlar CC appears to be

origin depehdent whereas the'parallel terms contain only

However, as we pointed out in .

the differences-Az and rdr'

the geometry section, the origin in each unit cell'must
be on the helix axis. This follows from thé definition of ag
the rotation bﬁeraforvR. In equation (16) the ro is pro-
 jected into the pléne'perpendicular to thé helix axis and
is[jusf the radial disfance of the transitioh from the‘helix
axis,.>This vaiously'Will not change if the,mdléculé‘isi
APOfated or translated iﬁ spacé;

In contrast with the quantum tﬁeories,e_ls which are
based on a.scafteriﬁg formalism, we treat’both thé'aDSOrptive
and dispersive_behaviof of thg polyﬂep with § gomp%gﬁ

[ (AN oo B PR PR T
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frequency‘dependent polarizability. Thus, the classicai
theory is a consistent treatment of the CD bandshape in
‘terms of the absorption spectra of the monomers in solufidn;
In our formalism the frequency dependent polymer CD ‘is
calculated directly in terms of the monomervextinction'

and its Krdnig-Kramers transform

OL::'= :dt + 1g"
a"(w) = 3 e(w)
unCl
® 1 " 1 : '
a'(m):-%/maéw)gw
' 0 (w"')® - w

Also, we are the first to consider explicitly a complex

unit cell containing several monomers. We éonsider numerous
transitions located throughout the,unif cell. The optical

'activity of this unit cell is éxpressed directly in terms

of electric-electric and electric-magnetic optical actiyity.

As a simple example and for comparison with previous

work we consider a unit cell consiSting of a single tran-
sition with no magnetic moment. The unit/direction vector

e = eH'f el where e” is the vector projected onfo thg.hglix
axis and el is the vector projectedbinto.the plane perpen- .'
dicular to the helix axis. We will give the results in terms
of the simplified coordinate system in‘figure 3: el = er.+:¢t.
For this simple system.Ae ié a scalar and there is no matrix

inversion, merely division:
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Figure 3: Simplified coordinate system for 1 transition

per unit cell.
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o = radius of transition.
For comparison with the results of first order perturbation
theory we expand the result to first order in Gon: E '_ - ‘Qi

) e
A = (1 -2a I G cos nb
=0 on _

ta®y = -2 a2

llN 5 o

nG _ sin n@ S - B

where we used the fact that: G, = 6 .- vNow,we examine j}

“o-n Lo
Im(a ): : _ | : - o o | ;{

Iﬁ(az) = Im(a® + ia“)z = 2a'a" .

e =z 4T " . -  "' . | Y

where em'and-am are the monomer extinction and (real)

polarizability. Thus the first order result is:

qw Aze c nG sin né S SRR 1
o e G J_ on k | _ R i

D

n c ) o
-8w ‘ e 20 ayn
CQL = €n%p ° e”et g 0G nSin (ne/2)
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"which is eicac’tly analogous to the Moffitt Fitts and Kirkwood
result for the ORD of an infinite helix.



10.
11.
.12,
13.
14.

15.

. Hug and I. Tinoco, Jr., J. Amer. Chem. Soc. 95,

0

'ChaptergIV Bibliography

W. Rhodes, J. Chem:. Phys. 37, 2433 (1362).

R.A. Harris, J. Chem. Phys. 43, 959 (1965).

2803 (1973).

W. Hug, F. Ciardelli and I. Tinoco, Jr., J. Amer.

' Chem. Soc. 96, 3407 (1374)..
vC;tCech, W. Hug and I. Tinoco, Jr{, Biopolymers 15,
1131 (1976). . |

~ C. Cech, Ph.D. Thesis, Berkeley (1975).

Rosenfeld, Z. Physik 52, 161 (1928).
Rhodes and M. Chase, Rev. Mod. Phys. 39, 348 (1367).
.G. Barnes and W. Rhodes; J. Chem. Phys. 48, 817 (1968).

. Rhodes, J. Chem. Phys. 53, 3650 (1970).

W
D

g |

A.R. Ziv and W. Rhodes, J. Chem. Phys. 57, 5354 (1972).
F.M. Loxsom, J. chém.’Phys. 51, 4899 (1969). |
C.S. Deutsche, J. Chem. Phys. 52 3703 (1370)

W. Méffitt,‘J. chem.,?hys.“gg, 467 (1956).

) | |

. Moffitt, D.D. Fitts and J.G. Kirkwood, Proc. Nat.

Acad. Sci. 43, 723 (1957).



DU U460 1746
91

Chapter V
Calculations of Polynucleotide Circular Dichroism
I. Polynucleotide Conformation

The theoretical toolsbdeveloped'in the previous chap-
ters were motivated in great part by the discovery of.the
impdrtance of helical structure iﬁvbiological ma.cr'_omolecules.l’-2
In particular we will be interested’ in calculating the CD
of double and single stfanded polynucleotides.? To do these
calculations we will need informatign ébout the'polymer
geometry as well aé monomer properties. |

The basic structural unit of a dégble stranded poly-
nucleotide is the base pair. Each,base_pair:contains a .
purine, adenine (A), or guanine (G) hydrogen bonded to a
pyrimidine, uracil (U), thymine (T), or cytosine (C); To
describe the conformation bf the base pair® we will define
two axes perpendicular to . the helix axis. (See figﬁre 1.)
The first, the tilt or dyad axis, is a twofold symmetry
axis which relates the glycosidic links in.the baée—pair.
The second, the twist axis, is'perpendicuiar to both the |
helix and dyad axes and passes through pyrimidine C6. The
conformation of the base~pair is determined by thrée.paré-
meters, D_, the tilt, and the twist. = Looking along the
dyad or tilt axis from the minor groove to the helix axis,
the ﬁilt is the angle ﬁeasured counterciockwisé from the

twist axis to the base plane. (Although the bases are not



Figure 1: Base pair conformation parameters.
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.’strictly planar, the best.least squarés plane is fit to the
base atomé); Looking along the twist akis,bthe twist is thé
ahgle bétween the base plane and the dyad axis measured
countefblockwise from the dyad axis. In figure 1 a posifive
value of twist bfings the purine glydqéidic link above the
"plane of the.page and.the'pyrimidine glycosidic lihk below
fhe,pléne of the page, D, is-defiﬁed in figﬁre 1. vWe have.
ﬁot‘specified the éonformatioh of the sugar phoSphété‘back-_
bone. ‘We will assume it has no iﬁfluencenon‘the CD'iﬁ the
region of interesf (ZQO.nm - 300 ﬁm).s Onéé thé“base pair:' .
conformation is_spécified, the double helix is generated_by-
translating the base pair aloﬁg the~helix axis by Az and |
'rotating the base pair around the helix éxisvby 8.
vTablé I and figures 2, 3 and 4 give the geometrical

p.a.z*e_xmeter's"’’7"8 and experimental CD spe'ctra“’.12 of natural
dodble.strandéd-deoxyribonucleié acid (DNA) in the so called
B‘ and C-DNA7vconformationé, and ribonucleic acid'(RNA) in
A-RNA8 geometry. These'geometrieé are determined frém.X—réy.
diffractidn studies. X-ray scattering-frém fibers!? ungef
| varying conditions of_humidity gives.A,>B or C type patterns.
The CD of these films is measured under thé identical condi-
tions of temperature and humidity.li These studies demon-
strate the Sensitivity of the CD to these conformational
changes. Along with’éolutidn stu.d:vi.e-s,*2 the film CD studies
indicafe that both sYnthefic and native'polynucleofides havé"
a wide and relétively continuous range of confdrmatidnal o

analogues to the X-ray crystal'structures. The CD of a
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Figure 2: 'Geometric'parameters and CD of RNA.
With permission from D. Moore, Ph.D. Thesis,

Ohio University (1974).
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Figure 3: Geqmétric parameters and CD of B-DNA
With permission from D. Moore, Ph.D. Thesis,

Ohio University (1974).
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Figuré'uz Geometric parameters and CD of C-DNA.
With permission from D. Moore, Ph.D. Thesis,

Ohio University (13874).
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polyhuéleotide in solution is sensitive to the temperature,
ionic strength, :and solvent conditioné as well.as the presehce
of proteins. In fact the CD is an important probe of the
organization of DNA into compact or condensed phase struc-
tures in phage headsl“Aand  DNA.!® With a reliable and’
practical method of calculating the CD, these measured
spectral changes could be interpreted in terms of épecific
geometrical.paraméters and proposed conformatidnél changes;
| Mooré_and Wagner!® took an‘importaﬁt step in this
direction with the discovery that DX is' the most important-
factor in determining whether the CD spectrum is A-like
or B-like. Prior to their work, base tilt in the A cohfor—
mation was thought to‘be responsible for the ”noﬁ-consef—
vative'" A-RNA CDvépectrum. Moore and Wagner used the

Johnson-Tinoco theory to calculate the CD.
IT. Monomer Propérties

The.monomer.propérties necessary for our calculationsv
are the transition directions and polarizabilities and the
CNDO monopoles of'each transition. The'resolution of
absorptions spectra into single transition absorptions and
the detefminétion of transition difectimns is discussed in
detail by Cech.!’ Ceéh made a rather extensive study of
monomer properties. Because one of our aims is to continué
vprevious oligomer studies of chain length to the polymer
lihit, we used her monomer properties unless otherwise

specified. These monomer properties are discussed in the
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follqwing:pages,

" The purines were resolvéd.intojfour n+ﬁ*'trénéitions )
plﬁs three backgfouﬁd tranéitions, thé pyrimidines_were,
resolved into three mrm# transitions plus three backgfoﬁnd
_transitions;' The bandshapes of the absorptions adeé 200.”
nm were determined from measured spectra and were generally
close to Gaussian in shape. The three background transitioné'
were taken to be Ldrentzian_bandsfcentered at 118 nm; All'
transitions except one background transition are in the
plane of the base (thus no n+m* transitions were included).

Transition monopoles for the first two long wavelength‘
transitions in each base were calculated ﬁsing'a CNDO-CI
molecular orbital approach.?? Monopolés for the other
transitions were calculated using program BASES (see
appendix ‘A). Although this placément of monopoles is not
unequivocal,.the transition is delocalized by this pro@eaure,
and.the monopoles givé the proper empiriéal transition di-
rection. The transition locétions;-R , are determined-:'

according to:

L |a®|r

s S

L |q®]
=l

where the r, are the atom position vectors Qf'thé base on
which oscillator i‘is located. Program BASES determines
these positions as well as calculating transition directions

relative to the molecular reference frame from the atomic
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X-ray coordinates of any geometry. ALl single strands were
assumed to have the geometry corresponding to half a double
strand unless otherwise specified. No monomer‘CD was in-

cluded in any of the following calculations.
III. Computational Considerations °

Progfam ROTOPI was written to calcalate the Absorption
aod CD of an infinite_polymer based on the equations IV.19 -
" and IV.25. Only w+m* transitions are oonsidered in these
calculations. While the magnetic contributions to the>CD
haye been programmed,bO =.0 is always-used. For consistenoy
with previous oligomer calculations, the subroutines which.
read in the reference base data and polarizability data have
béen altered as little as possible. These input routines |
were developed by C.M. Cech. These routines also generate
a section of double of single helix (an oligomer). This
section of helix is taken asvthe unit cell for the infinite
polymer calculation. .The helical parametérs relating one
uhit cell to another are calculated from the parametérs used
- to generate the unit céll; As an example, in A—RNA'geometry
8 = 32.7° and Az = 2.31 K; If the unit cell contains the
'sequencefr(AAU) the next unit cell is found by rotating
through 6 = 3 x 32.7° and translating Az = 3 x 2.81 . ='8.R3 a.
The same-would apply for any single strand containing three
bases or any double strand containing three base-pairs. Each
would contain three helical staps per unit cell,

- The interaction terﬁs in équations IV.1 must be calculated

for n, unit cells to either side of the 0 unit cell. This‘l

C
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means generating the atomic coordinates of the bases in the

other cells from -n_ to n_. However since G = G

otmo’
only half the interactions need be calculated. The proper

oomt

ghoice of n, depends on sequence and complexity,of the unit
cell as wellras geometry. However,convergeﬁce to within
1% in.the final CD calculations was élways obtaiﬁed by
considefing 20 helical steps to either side. Unless other-
wise specified all calculationé were done for 20 unit cells
to either side of the b_unit cell. A dipole—dipble inter-
action was used to calculate inter;ctions between transitions
more than ten unit cells apart. .Anveffecfive dielectric
‘constant of 2 is used in all calculations. The present
program which funsvin 100 k on the LBL CDC 7600 can aééomo;‘
date 42 oscillators per unit ceil, and 101 frequenéy points.
With 7 oscillators per unit cell a 14 fréquency point cal-
culation takes 1l central processor (CP) secondé; with 39
~oscillators a 14 pointvcalculation takes 120 (CP) seconds.
In comparison, with 130 oscillators a 1l poiht_oligbmer calculation
takes 150 CP seconds . (program ROTOPM is given:in appendix A).
The internal consistency of the theory and thé ROTOPI
program were:tested in a number of ways. A calculation'for.
a linear array of adenine gave n6 CD. 'A hand calculation
.using only the 260 nm.transition of adenine in A-RNA gédmetry’
was.compared with the computer calculation. Calculations
were done in A-RNA geometry for unit cells containing i, 2

and 3 A's. The results were identical. (For these
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calculations n, = 30 was'ﬁsed for (Al),_nc = 15 was used

for (Az); and n_ = 10 was used for (A3)' Thus each calcu-
lation included precisely the séme number of interactions.)
The CD and absorption calculated for these thpee'were
identical. Finally infinite'polymer Calculations with only
the 260 n& transition of adenine were cqmpared with oligomef..
calculations containing 140 bases (the upper limit'of'the;.
ROTOPM.prbgram). In all thfee geomefries the CD agreed‘tdf'
better than 1%. Infinite polymer calcuiatiéﬁs have been‘
:carriéd ogf for”fhe sequences: poly (A), poly(T), poly(A-T),

poly[(A-T)-(A=T)], poly (G), poly(C), poly(G-C), poly[(G-C)-(G-CI,

'poly[(A-G)-(C—T)], poly[(A-C)-(G-T) ], poly(A-T),‘poly(G—C),
o poly(A-C), poly(G;T), poly(A§G), poly(C—T) in thé 
A, B; and C form geomefries. (Theresults of_these caléu4:‘
lations in both digitalized and graphical forms, for the
parallel and perpendicular componenté of the CD and extinc-

tion are given in appendix B.)
IV. Chainlength Dependence

- _Chaiﬁléngth_dependence studies are crucial in évalﬁating
previous polynucleotide calculations done with the De Voe
theory.17218>13 With the fesults of Chapter IV we can

extend the chainlength studies to the infinite polymer limit.
With the earlier progfam core space limited us to

.20 bases (10 base-pairs). Thus it was nécessary to assume
thaf.one turn of the helix was suffiéiént to determiﬁe the

polymer CD. .
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Oligomer chainlength studies.were compared with the
infinite'polymer result for the followiﬁgvsequences: poly(A),
poly(A-T), polyE(A-fS'(A-T)J, poly(G.C)eand'poly[(G-C)j(G-C)]
in all three geometries. We will only pfeeent the results for
the A-RNA geometry. While the spectra Qefe different in the
other geomefries,.the convergence of the chainlength was very
similar and generally depeﬁdent on sequence rather than the
particular geometry chosen. In figures_sﬂand 6 the infinite
polymer calculation is‘oompared to the oligomer containing
20 bases for the sequences poly(A) and poiy[(G-C)'(G-C)J.
Poly(A) is an example of only minor changes in magnitude in
going from the oligomer to the infinite ﬁolymer. In ‘
poly[(G-C)-(G-C)] both the magnitude and the locations of the
maxima and minima are changing. This is'the worst case of
convergence that was found. Thus, moét“ofbthe polymer CD
are Qery similar in shape and peak location with only minor
changes in magnitude. For those polymers which showed only
changes in magnitude Sut no shifts or'shepe changes the
results ere presented in figure 7. The magnitudevof the
first long wavelength maximum is plotted vs. chainlength.
Note that we actuaily plot the ratio of the maximum at any
chainlength to the maximum of the dimer.

The infinite.polymer studies indicate that the general
conclusioneyof previous studies are'justified, and that
considering ten base—pairs‘(or 20 bases) gives a good

approximation to the polymer shape and magnitude (& 20%).
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Figure 5: Comparison of oligo(A)zd--—-,_and infinite

poly(A) calculation
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Figure 6: Comparison of oligo[(G—C)5°(G—-C)5] ----- R

~and p.oly[(G—C)-(G—C)] calculations.
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Figure 7:
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Chainlength dependence of A, A-U, dA and dA-dT.

N

(CD )/(CD2 ) is the ratio of the maximum of
max max .

‘the first long wavelength band in the N—mer to

the first long wavelength maximum in the dimer:
N is the number of bases in the single strand or

the number of base pairs in the double ‘strand.
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This statement is of course based on fﬁe‘present level of
agreement between theory and experiment. With improvement in
our understanding of:monomer properties and polymer conforma-.
tions these differences will:be more important. Also, these
more accurate polymer calculatiohs use iess-coﬁputer‘time
for any repeating sequence less complex than 8 bases (u -
base-pairs).

Finally; these stﬁdies indicate that the theory developed
in Chapter IV for the infinite polymer ié cofrect, in the -
_sénse that the oligomers always_ténd to_converge to the

calculated polymer limit.
v. New Calculations

A number of new.calculafions ﬁave been done prompted
by recent cpystallograﬁhic and CD data. Saenger24 et.al
_havé proposéd X-ray coordinates for poly(A) based on the
X—ray structupe’of.ApApA under acidic conditibns,. The
crystal céntained the zwitter ionic base paired dimer:
Ap-AH+p—AH+-Ap_AH+§-AH+{ This dimer cohtains a helical
region and a looped region. ‘The model coordinates éf'a
| polyCA).helixrafe obtaihed_ffoﬁ the helical sections of
this sfrudture. This helix contains 9 bases per turn com-
pared with.ll baSes.per turn forbA-RNA. The other parame-
ters of the structure are compared in tablé I. |

It was hoped that this structure might give improved
agreement befween calculation and experiment. This 1is

particularly important since adenine containing oligomers
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'were used to assess the polariéability theory calculations.!72!8
As is shown in figure 8, this structure does not give im~:
proved}agreeﬁenf with experiment when compared Qith standard
A-RNA geometry: While the differences bétween the calculated
CD are too small to rule out either geometry, it seems likely
that poly(A) has a'structure closer to A-RNA than that'sug;
gestedvby Saenger et al. . .
‘Recently Gray2?? has measured the CD of poly[d(A=C)‘d(G=T)]
ﬁahd polyf(A-C)'(G-U)]. Calculations‘have been done for this
'sequence in A-RNA and B-DNA geometries. The comparison
between calculatibn and experiment is shown in figures 9 .and
10.  Although the magnitude of the DNA calculation is too-
.large, and the bands of the RNA calculation are too far to
the red, the general trends for the change from B to A con-
formation are seen: The flPSt maximum increases and shifts
to thevblue.'.The difference in magnitude of the B-DNA
,éaléulation is not serious. Our calculation aséﬁmesva.
perfectly rigid polymer, where as there is thermal motionlj
in the solutioﬁ.which tends to decrease the CD. If the
- polymer CD was measured at lower témperature,.the agreement
‘would improve. The shifted bandé and the failurebtd predidt
the negative band at long wavelength'for the RﬁA caléuiation
_are less easily ratlonallzed. - |

In flgures 11 and 12 measured23 poly[d(A-G C)-d(G- C-T)]
and poly[(A—G C) (G-C-U)] spectra are compared with calculatlon
The two calculated spectra are very similar and.ne;ther agrees

well with experiment. We will> not endeavor to place blame
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Figure 8: Comparison of measurea poly(A)'(O?, 0.1M NaCl,

0.01 Tris, pH 7.%) ===--, calculation based on

data of_Saenger et. al, -+-*-, and calculation

based on standard RNA geometry

v

ama e e e pm st
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‘Figure 9: Poly [(A-C)-(G-T)] 20°, .02 M Na' phosphate

buffer, pH 7.0. Measured -----, calculated
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Figure 10: Poly[d(A-C)-d(G-T)]. 20°, .02 M Na* phosphate

buffer, pH 7.0. Measured -----, calculated
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Figure 11: . Poly[(A-G-C)-(G-C-T)]. 20°, .01 M Na*

phosphate buffer, pH 7.0. Measured —-----.

~calculated
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Figure 12: Poly[{d(A-G-C)-d(G-C-T)]. = 20°, .01 M Na'

phosphate buffer, pH 7.0. Measured ————,

calculated
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for the failufe.of'these calculafions. Theisuccess of
other calculations seems to suggest that the monomer pro-
perfies for some 5f the bases are still in doubt, however
failure of the theory or a special geometfy for these |
polymers.cannot be ruled out.

In figures 13 and 14 poly[d(A—A-T)jd(A—T—T)] and
poly[(A-A-U) - (A-U-U)] calculations are compared withvex—
perimeﬁt.z“ Except for the fine structure of the maxihum at
265'nm,vthefagreementris'fairly‘good for the ribo polyﬁer.
.Héré again, the difference in magnitude is not serious. For _
the deoxypolymer we see a very characteristic discrepancy
between calculation\and experiment for deoxy A-T containing 
polymefs. Both polyd(A) énd poly(dA-dT) have similaripeak
structure in the 260 nm to 280 nm region. It has been.
suggested that these deoxypolymers do not have standard
B-férm DNA geometry.  Although there is poor agreement
between measured and calculatéd spectra in this series_of;
A-T containing polymérs, we will discuss imprdved methods
of anélyzing the experimental data in chapter VI. This
analysis and éﬁdfmodel.calculations help locate rotational

stréngths,‘and resolvg peolymer transitions.
VI. Fer’Strénded Polyinosinic Acid

- We have extended previous calculations on polyinosinic acid
(poly(I)).'7°!? Since the model geometries for poly(I)

contain 3 or 4 bases per helical step,?® and 11.5 helical
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Figure 13: Poly[d(A-A-T)-d(A-T-T)]. ~20°, .02 M Na'

phosphate buffer, pH 7.0. Measured X 5 —~m=--

calculated
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Figure 14: Poly[(A-A-T)®(A-T-T)] 20°, .02 ¥ Na'

phosphate-buffer'pH 7.0. Measured =---- ,

caiculated'
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steps per turn of the helix, oligomer calculations wefe
‘extremely difficuif. Previous calculations!” on the
4 stranded poly(I) stfucture_wefe done includingionly the
2'longést waveiéngth tfansitions of inosine:with 68 bases.
The infinité polymer calculation with only 27transitions
is very similar to the oligomer calculation'with 68 bases ‘and
.2'trahsitions per base. The infinite polymér calculation is
"compared with experiment?® in.figure iS}- Since only 2
fransitions wefe used, the sum rulé had to.be obeyed in the
200 nm to 300 nm region.> Thus without including background
transitiéns; the négative peak at 233 nm can not be avoided.

Cech estimated the effect_of the other transitions'inv
inosine by éalcﬁiaﬁing the CD of three of the four strands
using the 7 transitions of guanine and only 12 bases in the
~oligomer. In this calculation, thé.CD no longer had thé"
- minimum at'233'hm,and the maximum at 260 nm and the minimum
at 268 nm Qefe increased. She therefore assumed that
“including the other transitions in the poiy(I) Calcﬁiafién
would have a similar effect. '. | |

To test this hypothesiS»we have done the infinite.
polymer calculations on'u‘stranded poly(I) with 7_tran$itions;
The inosine absorption spectrﬁm bélbw 220 nm was apppogimated by
using guaniné transifionvdire¢tions, polarizabilities, and
monopoies. The use of guanine parameteré, where necessafy,
was coﬁsidered justified siﬁce.both the short wévelength

absbrption and the CNDO calculations_of'fhe two bases are
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Poly(I) CD at 3° in 1.0 M NaCl after gradual
addition of NaCl ~-=--- . Infinite polymer

calculation with only 2 transitions per base:
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very similar. The calculated CD is shown in figure 16.

The negative peak at 280 nm is relati?ely unaffected,

but the maximum at 255 nm is greatly increased. There is

- no longer a minimum at 233 nﬁ. In general, the agreement
with experiment is poorer when the background transitions
are included. This suggests that the monomer properties of

inosine (and probably guanine) are in error.
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Figure 16: Poly(I) calculation with 7 transitions per base.
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. Chapter VI

Circular Dichroiém'évadenine and Thymine
Containing Synthetic Polynucleotides®
I. Introduction

T3 it is well-known that

From X-ray diffraction studies!
'DNA can assume a numbervof distinc£ structures, the main
-types being the A, B, C and D structﬁres{ ‘The A, B and C
conformations were related to circular dichroism (CD) by |
méasﬁring CD spectra of DNA films.*”® When thesé Film

spectra are compared to solution spectra,’’?®

it becomes
clear that both DNA and synthetic polynucleotides in
.solution do not occur in one well—defined conformation.
'Instead, more or less continuous transitions occur dué to

8

changes in salt concentration,® solvent cbmposition,’ and

temperature”’11

In this paper we describe the temperature
dependence of the adenine (A) and thymine (T) containing-
synthetic polymers polyd(A), polyd(T),-poly[d(A)'d(T)J‘and
poly[d(A-T)-d(A-T) . |

The reasons for this study are numerous. it was hoped
to get information.about premelfing conformational changesv,
vwhich oécur in the double stranded polymeré. It is not

clear which structural transitions are involVedfand whether

they are the same for poiy[d(A)°d(T)] and poly[d(A-T)-d(A-T)].

* The materlal in this chapter has been submitted to
Biopolymérs for publication with coauthors Jan Greve
and Marcos F. Maestre
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12513 i+ js clear that the CD of polynu-

From fheory
cleotides is determined by the structure of the polymer
and the optical transitions of the bases. Any change in
CD brought about by a conformation change occurs atbwave—
lengths determined by the location of the polymer rotational
- strength bands. By studying polymers cohtaining only A and
T, information about the location of the polymer bands due

to A and T should be obtained. Such data are badly needed!* ™!’

to improve calculations of polynucleotide spectra.
IT. Materials and Method

CD spectra were measured with a Cary 60 spectrophotometer
equipped with a 6001 unit. The computerized data-collecting

system has -been described before.!®

Temperatures were
measured with a thermocouple inserted in a water-filled
cuvet which was in an identical position as the sample cuvét.
Absorption measurements were made on a Cary l4 or Gilford

spectrophotometer. All polymers were purchased from P.L.

Biochemicals. The data‘provided by the manufacturer are:

A max(nm) E(lmol'l) SZOW(S) Cat. No. Batch No.

polyd(A) 258.5 8,600 6.8 7,836 526-35
polyd(T) 264 8,520 8.5 7,834 508-68
poly[d(A)-d(T)] 258 6,000 - 7,860 526-26

poly[d(A-T)-d(A-T)] 262 6,600 7.8 7,870 508-101
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Thé lyophiliied polymers were dissolved in buffer solution
and stored frozen. 'fhebuffers used were : Buffer I;'.
10 mMKC1, 2 mMTris pH 7.8, 0.1 mMEDTA; Buffef II; Buffer I
plus 10 mM MgSO,. | |
Poly[d(A)-d(T)J;in buffef.I showed'a b percent.increase

in absorption in raising the temperaturé froﬁ 20°‘C'to 40° C
-éﬁd then melted at 47° C. Poly[d(A—Tj~d(A-T)] in buffef I
melted at 44° C, in buffer II at 67.5° C.

- CD data are. presented as'the_CD per»mole'of monomer
el -tp Qﬁefe e, and ep ére thé e#tinction coéfficients_qu
left and right circularly polarized light respectively.

III. Results

~ CD spectra of polyd(A), polyd(f), poly[dCA)'d(T)] and
poly[d(A-T)-d(A-T)] have been published before.10>11519520
Our spectra are in good agreement with these data, provided
the comparison is made befween spectra measured under similar
conditions. |

CD Spectra

Poly[d(A-T)-d(A-T)]. CD spectra of poly[d(A-T):d(A~T)

in buffervII are shown in figure 1. The premelfing changes
-Cfigure la) involve mainly changes in amplitude of the extrema; ‘
Upon melting (figure 1b) bofh ampiitude and pdsition of‘the_ |
extrema change. A similar premelting béhavior'was'found in
buffer I. The CDvspectra of melted poiy[d(A*T)'d(A-T)] in
buffer I ét 53°C and in buffer II at 71.5°C have extrema at

the same wavelengths but the amplitudes are gréater in buffer I.
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Polyd(A)*d(T). The temperature dependence of the

polyd(A)-d(T) CD spectrum is shown in figures 2 and 3. In
buffer I (figure 2) an isosbestic point is detected at

264 nm. The changes iﬁ Ae observed in going from 1° C

(double stranded) to 48.2° C (melted) occur in only one direc-
tion at each particular wavelength. A similar behavior is
found in buffer II between 2.5° C and 65° C (figure 3. Above
65° C, however, the CD spectrum behaves differently in this
buffer. At 260 nm Ae decreases upon raising the temperature
from 2.5° C to 65° C, increases in going from 65°C to 76° C
and then decreases upon denaturation. As shown in figure 4,
the spectrum measured at 71.1° C resembles the low temperature

spectrum measured for poly[d(A-T)-d(A-T)].

Polyd(A) and polyd(T). CD spectra of polyd(A) and

polyd(T) measured in buffer I are shown in figures 5 and 6.
Difference CD Spectra

The spectral Changés observed upon varying the tempera-
ture look complicated and it is not clear what the relation
is between the spectral changes of poly[d(A-T)-d(A-T)] and-
poly[d(A)-d(T)]. To change this situation we calculated
difference spectra by subtracting the CD spectrum measured
at low temperature from the spectra obtained at higher
temperatures.

Poly[d(A)-d(T)]. Difference spectra obtained for

poly[d(A)-d(T)] in buffer I are shown in figure 7. They

all have a characteristic appearance with maxima at 288 nm,
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272 nm and 246 nm and minima at 257 nm and 214 nm. The
diffefence spectra obtained for polyﬂd(A)'d(T)] in buffer
Ii (figure 8) have extréma at the séme wavélengﬁhs. More;
over, the magnitudes of the differehce spectraAoﬁtainéd
after mélting are almost the same for buffer I and buffer
IT exdept fqr the 214 nm trough which. is avfactor of twov

‘deeper in buffer II.

" Poly[d(A-=T)-d(A-T)]. In figure 9 the difference spectra
for‘ﬁoly[d(A—T)-d(A—T)] in buffer II'afe,shown} Up unfii-
60° C the difference spectra have a ma#imum at 264 nm énd }
minima at 283 and 217 nm. After melting the differeﬁcé‘
spectrum looks like the one obtained for poly[d(A)-d(T)]
’aftef'melting. Above 220 nm all extrema have the same
sign.and occur at the same wavelength. .The only difference
1s that the magnitudes of the.poly[d(AeT)fd(A—T)J difference
: spectrum are smaller. The difference spectra for poly
td(A—T)'d(A—T)J in buffer I (figure 10) are similar to those
found in buffer II. |

Polyd(A) and polyd(T). Difference spectra for polyd(A)

and polyd(T) are shown in figures 11 and 12. The polyd(T)
spectra have extrema at 273 ﬁm, 254 nm and 216 nm. . The polyd(A)
differenéé spectra show extrema at-282vnﬁ, 265 nm, 254_ﬁm
and 232 nm. | | |
Iy. Discuésion .
Theory
From De Voe's!? classical coupled oscillator theory it

follows that the CD of a polynucleotide to first order
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(weak interaction) is:

(e

_ 2w :
L--e:R) = i e. L a. G.. e. e, r.. 1)

¢ 1y 73713 T 7Y i

where €; and o refer to extinction and (real) polariza-

bility of oscillators i and j and the bases;-ei and e.

]
are the oscillator directions, and rij is the vector from
transition i to transition j; and @;; contains the interaction’
parametérs.

Equation (1) shows that in first 6rder-the frequency

and geometry dependence of the CD spectrum is separated.

This follows also from first order Quantum Mechanical
theory.!? Therefore, a rqtational strengtﬁ band arising

from interaction of two fransitiOns 1 and j should always
be seen at the same frequehcy no mattef what the geometry vf
of the polynucleotide is. The geometry détermines the
relative amplitudes of thé différent ban&s in the CD spectrum.
In particulér, any rotational strength band preseht in the CD
‘spectrum should occur at the same wavelength in a difference
spectrum. ~If is, however, possible that not all rotational
strength bands present in the original spectrum are seen in
fhe difference spectrum. Those due to iﬁtéractions which are
left unchanged by the temperature induced.conformational
change are subtracfed. Moreover, it is clear that each
distinct structural chahge will yieid a different difference

spectrum as the structural parameters are different.

! ’
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To determine frequencies of the near UV transitions from.
the spectra, it should be kept in mind that according to‘
equation (1) éach transitionvmay give riée to either‘one or
two peaks. One peak (non-conservative), centéred af the
same frequency as the maximum of €55 will be observed if
“transition j is so far frdm i that aj is almost constant at
frequencies where e # 0. Two peaks of opposite sign (con-
servative) will be observed if transition j is the same as
i, but i and j are located on different bases. Then the
fréquéncy of transition j is found as that frequency betweénA
_ the twovpeaks.at which the CD is zero. When transition i
énd j do not coincide but are close, the offhand prediction
is.difficult and exact calculations have to be made.

From the discussion above it is clear that original and
difference spectra contain the'same frequency information.

It éhould be kept in mind, however, that equation (1) is an
approximation in whicﬁ only base to base interactions are
considered. Any contributions from base to backbone inter-
actions?! and intrinsic CD of the bases!? should be added.

The contribution of these factors fo'the CD is not well known,
but it is evident that their contribution to a differencé
spectrum is smaller than to an original CD spectfum as they
are either completely, or for the greater part, subtracted.
Moreover, the numbér of base to base interactions which
contribute to the difference spectrum is smaller. This may

cause the difference spectra to be better resolved. The
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difference specfrum of a denatured and a double stranded
polynucleotide, for inétance, is mainly determined by
interstrand interacfions since the contributions to the
CD spectrum due to intrastrand interactions are largely
subtracted. It is these facts which make the difference
spectra obtained upon melting have a charactéristic shape

which is similar for poly[d(A)-d(T)] and poly[d(A-T)-d(A-T)].
Transition Frequencies

'for the reasons mentioned above, we will try to deter—1
mine the location of,thevfotational strength bands using
méinly the difference spectra.

The (conservative) peaks at 254 nm and 273 nm in the
polyd(T) difference spectrum must arise from the w+m* tran-

sition at 263 nm!*°%?

which also causes the absofption
maximum to be at 264 nm. We do not find evidence for the
presence of traﬁsitions at 256 nm and 278 nm as suggested in
the literature.?? The 216 nm peak in the polyd(T) difference
spectrum may be one of a conservative‘pair due to a tran-
sition located near 206 nm.?!"*

The polyd(A) difference spectrum is mucﬁ more compli-
cated. The 232 nm trough comes from a w=+m* transition as
described by Bush and Scheraga.?’ The absqrption maximum
of the polynucleotide is at 258.5 nm so it is clear that a -

‘T+m* transition must be located there. The 254 nm and 265

nm extrema and the crossover at 258 nm in the difference
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speétrum arise from this transition. The 282 trough could
then arise from an n—+m* transition as suggested by Bush and

Scheraga,??

A different interpretation will be discussed
below, however.

It is clear that the change in conformation .induced by

denaturation of the double stranded polymersvis_quite drastic.

Yet, above 220 nm the extrema and érossovers seen in the
melting difference spectra of poly[d(A)-d(T)] and poly
[d(A-T)'d(A-T)] occur at the same wavelengths. We will,

therefore, focus our attention on this wavelength area.

It is not evident a priori what the result of coupling

the 258 nm A and 262 nm T transitions will be since they

are very close. We therefore calculated the contribution

to the CD of poly[d(A)-d(T)] and poly[d(A—T)‘d(A-T)] due

to iﬁterstrand interactioﬁ only. The‘calculations were
performed using programs developed in this laboratory by

C.M. Céch The transition wavelengths and the dipole stréngths
were the same as used by her (w+m#* transitionsvof A at 260”nm,
240 nm and 207 nm; T+ % transitions of T at 262 ahd 206 nm).
B-DNA geometry was assumed. The results are shown ‘in

figure 13. A very good agreement in sign and location of
extrema and crosserrs between the experimental results and
the calculétions is obtained betwéen 215 nm and 260 nm. |

We conclude that the extrema at 246 nm and 258 nm in the
éxperimental melting difference épectra afiée from coupling
of the 258 nm, . 232 nm A tfanéition with the 262vnm-T tran-

sition. With the chosen input data it is impossible to
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explaih the experimental spectrum above 260 nm. We there-
fore propose- that two transitions are present which were

not incorporated in the calculations. Most likely the

peak at 272 nm in the melting differencé spectra is caused.

by a transition on A near this wavelength. This transition
must be oriented in such a way that its contributibn to.the

CD spectrum of polyd(A), poly[d(A)-d(T)j and poly[d(A-T) -
d(A-T)] above 260 nm is opposite in sigﬁ to that due to thé
transitions close to 260 nm. This expléins why the CD spectra
of these polymers and pf several A-T rich crab satellitev |
DNAs?"°2% are non-conservative and do ﬁbt look like a B-DNA
vspectrum.‘ This tfansition near 272 nm may also be responsible
for the crossover at 272 nm and (part) of the extrema at |
265 nm and 282 nm in the polyd(A) difference spectruﬁ.

The 287-283 nm peak in the melting difference spectra -
may be caused by .a second transition not used in the calcu-
lations. From our experiments it is not clear whether this
transitipn is an A or a T transition. Moreover, it is not
possible to conclude whether this transition and the one
near 272 nm are w>T¥ or n+mT¥ transitions; In literature
evidence was presentéd26’27 for a m+m* transition on A and

an n-»m* transition on T both at long wavelengths.
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Conformational Changes

" From figureé 8 and 10 it is clear that the premelt and

" the melting difference spectra meaSpred for poly[d(A—T);d(A-T)]

are quite different. This raises the question: What kind

of conformational change occurs before melting? It has

‘been shown?’?® that poly[d(A-T)-d(A-T)] fibers can assume

seQeral different structures. In solution all kinds of
CQﬁfofmational intermediates occur. By énalogy with film
spectra of DNA in the C conformation® and films of d(A—T)'
d(A-T) in the C geometry (M. Maestré,‘unpublished data);'
we propose that the poly[d(A—T)'d(AQT)jstryéture is much
closer to a C-type structure than to a B-type geometry.
Since thevpremelt difference spectrum bears much resemblance
with an A-type DNA CD spectrum,“v’7 we believé that the pre-
melt conformations is one in which the A-type (or A%*-type??):
nature of the conformation increases. Gennis and Cantdr,‘?
using differenf arguments, also suggest such a structural
change for the premelting behavior.

| Invdetail, the alteration of the low temperature géometry‘
for d(A—T)'d(A—T) ("C" geometry), as the temperature is in-
creased, involves a C to B transitién whose géometrical
variation is very similar in charaéter to the one fhat»ié
seen in the B‘to A trahsition. vSeé figure 10. .Thus it is"
those geométficaliparameters which vary monoténidally be;
tween A, B, and C. forms whicﬁ may be the controlling factor
iﬁ the variation of the CD of DNA's as‘a function of

secondary structure. One such paramater, proposed by
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Ivanov,et al, is the rotation per residue angle which is
39° for the C form, 36° for the B form, and 32.7° for the
A form geometries.

It is the alteration of this angle which can be corre-
.lated by the maximum in the 280-280 nm region. An inference
- favoring this interpretation can be drawn from the data of
Maestre and Wang's?® study of the CD of supercoiled DNA's
as a function of numbef of superturns. In this work it is
shown that the increase in rotational strehgths in the
260-300 nm region is apprbximatelyrproportional to the
sterhelical density. Thus, for small variations in the
angle per residue a -linear variation in the CD spectra ean,
be expected. Similar conclusions were drawn by Ivanov,'et
al,’” for trahsitions between B to C geometries. |

At high relative humidities?® poly[d(A)'d(T)J.fibers
are in a B type conformation called B' (Arnott and Selsing?)
which is different from the B* strucfure of poly[d(A-T)-
d(A-T)]. Instead the poly[d(A)-d(T)] premelt difference
spectrum looks like a melting difference spectrum. In
agreement with this a four percent increase in absorption
was found before melting in buffer I. This may be due to
breathing or chain slippage31’3°' Just before melting,
however, especially in buffer II, a discontinuity in the cD
spectral changes was observed. The CD spectrum of poly .
[d(A)-d(T)] measured at 41.1° C (figure 4) resembles a low

temperature poly[d(A-T)-d(A-T)] spectrum. This suggests that
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just prior to melting .the conformation changes, probably”

- from a B" to a B* conformation.

V. Conclusicn

In this'study_the determination of CD difference spectra

~was most useful. Although it is clear that difference spec-

tra containno'more intrinsic information than present in the
Cb spectra from which they are derived, they are more easily
interpreted.  This may also héld true for other synthetic
polynucltoeides. Gray, Tinoco and Chamberlin®! calculated
difference spectravfor the melting of poly[(A)- (U], poly
[(A-U)- (A-U)], polyl(G)-(C), and'poly[(G-C)-(e-C)J. They
suggested that theée difference spectra aré base-pair
épeéific.

Whether the use of difference spectra'in native DNA
studies will be useful 1s unknown. It must be expected |
tﬁat no specific information about optical transitidns will
be present since too many different interactions.are occur-

ring. Yet it may belthat'different conformational changes

>yield specific difference spectra. -

A possible use of difference spectfa may be to determine

- the nature of the DNA conformational changes which fake_plaée

in nucleoproteins. 2233

From our experiments with poly[d(A-T) d(A-T)] and -
poly[d(A)-d(T)] we cbnclude‘that_én optical transition near
272 nm on A and a transition near 287 nm, probably T, aré
present. The premelfing behavior.of poly[d(AaT)‘d(A;T)] is

ascribed to a conformational change in which the A type
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nature of the conformation increases. For poly[d(A)-d(T)]
such a change_ié not found. Instead, a transition between

two B type conformations takes place.
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LEGENDS TO THE FIGURES

CD spectra of poly[d(A-T)-d(A-T)] in buffer II .

at different temperatures. At 71.5°C the poly -

- [d(A-T)*d(A-T)] is melted. Figure la shows the

premelting changes. Figure 1b shows the CD

spectra at temperatures close to the melting

temperature.
CD spectra of poly[d(A) "d(T)] in buffer I at

different'temperatures. At 48.2°C the

‘ﬁoly[d(A)‘d(T)] is melted.

CD spectra of poly[d(A)'d(T)].in buffer_II at’
different temperatures. At 80.5°C the
poly[d(A)-d(T)] is melted.. |

CD spectra of poly[d(A)-d(T)] in buffer II at
71.1°C and of poly[d(A-T)-d(A-T)] in buffer I

at 1e°cC. |

CD spectra of polY[d(A)] in buffer»I at different

temperatures.

: .CD spectra of poly[d(T)] in buffer I at different

temperatures.

CD difference spectra for poly[d(A)-d(T)] in

buffer I. The spectrum measured at 1°c has been

subtracted from the speétra measured at higher

temperatures.
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Figure 9:

Figure 10:

Figurell:

Figure 12:

Figurel3:
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CD difference spectra for poly[d(A)-d(T)] in
buffer II. The spectrum measured at 2.5°C has
been subtracted from the spectra measured at
higher témpératures. |

CD differehce spectra for poly[d(A;T)'d(A—T)] in
buffer II. The spectrum measured at 1°C has been
subtracted from the spectra measured at highef
temperatures. ” »

CD difference‘spectra for poly[d(AdT)'d(A—T)] in
buffer'I. The spectrum measured at 1°C has been
subtraéfed from the spectra méasured ét higher |
temperaturesﬂ

CD difference spectra for poly[d(A)] in buffer I.
The spectrum measured at l5C has been subtracted
from the spectra measured'af highér temperatures.
CD difference spectra for poly[d(T)] in buffer I.
The spectrum measured at 1°C has been subtracted
from the spectra measured at higher temperatures;
Measured and Calculated CD difference speétra'of_'
poly[d(A)-d(T)] and poly[d(A-T)-d(A-T)]. The
measured difference spectra were obtained by
subtracting the spectrum of the double stranded
polymer from the spectrum of the melted polymer.

The calculated spectra give the contribution to

the CD spectra of the double stranded polymers

due to interstrand interaction only. Before
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plotting;the sign bf the calculated. CD was
changed to make comparison with the measured
spectra eésier. The calculations were made Qsing
- the classical all-order de Voe theory for the
optical activity of polymers.. Optical transitions
@ere supposed tb be located at: on A - 260, 240,
207, 187.5 and 119 nm; on T - 262, 206, 175 and
119 nm. The polymers were assumed to beAin B-DNA

geometry.
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APPENDIX A
Computer Programs

Program ROTOPI
Deséription:'

This pfogram}calculates the absofpfién (¢) and

~circular dichroism (CD) spectra of poly nucleotides.
Input: (Cards) | |

-geometry deck (see section a)

bolarizability deck (seeisection b)

unit cell specification‘deck-(see section c)-
Output: (line printer) | : -

reference base data

polarizability data (bptional as pef section b)

unit cell structure |

optical data
Tapes: o

TAPE 1 is used for scratch

TAPE 2 containé output suitable for teletype or

-8 1/2 by 11 reports (similar to digitélized data

in Appendix B)
A Proceduré:' A |
1) read geometry deck
2) write refereﬁce base data
3) reéd.polarizability deck
M)Igenerate polarizabilities>(as per section b)
5) write‘polarizability data (as per section b)

6) find largest common frequency range



171

7) read unit cell_spééificatidn deck -
8) generate unit cell structure
9)4calculafe interactions
lO)af épecified'(in stép‘3j'frequency intefvals‘
cal¢ulate CD and e»accdrding to eqﬁatiqns in
Chapter IV. | .

1D write optical data

a. Geometry deck- (all angles in °; all diStahceS'in 3)'

1)

geometry title card

(2F10.3, 5A10)

col.

. 1-10. vheiical rise pér‘monomef
11-20- angle between monbmefs

1 21-70 A"tilting information

2)

3)

reference base card

(Al, 9x, I2, 8x, I2, 8x, I2, 47x, I1)

col.

1 § basé 1D letter

11-12 - # of atoms in base:

21-22 total #.df oscillators ‘in base
31-32 ;# of in planevoséilléfors>in base.
80 | control |

base plane orientation card

 (2F10.3)

N
col.

1-10 - spherical polar angle of direction per-

pendicular to base plane
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11-20 spherical azimuthal angle of direction
perpendicular to base plane

W) cylindrical atomic coordinate cards (3 atoms per card)
(3F8.3) | |
col.
1-8 )
25-32 » r
44-56 |
9-16 )
33-40 6
S7-64 J |
17-24 7

41-48 } Z

65-72 J
5) ~oscillator card

- (9F8.3, 6x; I2)

- col.

1-8 cylindfical.coordinates, coordinates of

9-16 oscillator position, first r, then Q,

17-24 then z. |

25-32 polar angle of electric transition direction

33-40  azimuthal angle ofvelectric transition--v
direction

57-6u4 magnetic transition strength (bi in
equation III. 3c)

65-72 dipole strength (in debye)

79-80 control .
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monopole cards

 (8?10)6)9
col.”.
- 1-10- vbﬁevanopole fér‘each atom of in plane
11-20 - | transifioné; fwd monopdles for ea¢h atom
of out of plahe transitions.. Ordér of
monopoles must agree with drderzdf‘atoms
0n.cylindfical atomic coordinate cards.
For out of plane fransitions’give first
above plane and then below plane monopoles
71-80 | | |

for each atom.

Cards 5) and 6) aré'repeated'for eaéh oscillator

specified on the reference base card. The series

- of cards 2) through 6) may bevrepeated_to input a

maximum of U reference bases. If less than 4 bases

are input the geometry deck should end with a éard

having a punch in col. -80. (a col. 80 punch card)-

b.v"polarizabilify deck (all frequencies in kK)

1)

polarizability specificatidn card

col.

1-10

- 11-20

21-30

3L-40

(6E10.0, I2, 7x, Il)

starting ffequency
énding frequency
frequency intervals

dipole strength of transition (debyez)
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41-50 center of band. If this is specified é
Lorentzian polarizability is generated
according to equafion I.14, if this is
ﬁot specified or is 0, then polarizability
is read from poiarizability d;ta cards.

51-60 half width of band

61-62 polarizability ID#. If not specified

o the polarizabilities are numbered

sequentially as they are input
80 control '

2) 'polarizability_dafa cards (neéessary if band center=0)

(2(E8.0,32x))

col.
1-8 First read in real polarizability over
41-48 ‘the entire frequency range in interval.

specified in 1). Then read ih imaginary
polarizability.
Nofes:
| Card 1) and (if necessary) cards 2) may be repeated to
input.a.maximum of 26 polarizabilities. If less than
26 are input the polarizability deck should end with
a col. 80 punch card. If this cafd also has a 1 in

col. 1, the polarizability data will be printed.

c. unit cell specification deck
1)  polymer title card

. (7A10, 2x, F4.0, 1x, I1, 1lx, I1)
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3)

4)
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col.
- 1-70 . tilting-informatioﬁ-

73-76 # of bases in unit cell
.78 # of helical steps in unit cell

80 . . control '

convergence card -

(311, 7#, 6E10.0)

col. 11-20 # of unit cells used to calculate

interaction. This corresponds to

n, in Chapter IV.

(no other fields in this card are
' used by ROTOPI) - |

base specification card

(A1, 3x, I2, ux, 12(I2,3x), 9x, Il)

col.

1 base ID letter

5-6 Total # of transitiohsv(57);5pecific
11-12 transitions to be included. Must be in
16-17 tegers between 1 and 7.

80 . ‘control

‘base position card

(10F5.0)

col.

1-5 Positions on the helix in thé unit cell
6-10 on which to place base speéecified in 3).

Positive number is Watson strand, negative

46-50 number is.Crick strand.
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Notes:
Cards 3) and 4) are repeated to construct the desired
unit cell sequence. When the sequence is completely
- specified, the last base position card is followed
by a‘col. 80 punch card. The series of cards 1) through
u)‘mayvbe repeated to calculate as'many polymers as |
desired. Two.col; 80 punch cards signify the end of

Input.



d. Sample output

Figures Al, A2,

177

and A3 show the reference base data,

the unit cell structure, and the optical data output

of a typical calculation. In figure A3, "FREQ"»is”

frequency, '"CD"
"B" is b[l (see
IV.16), "Ex" 1is

€||/cl’ and "F"

is circular dichroism, "A" is all/A Z,
eqn. IV.S), "c" o+ "D" = bl (see eqn.
the extinction coefficient, "E" is

is €L/cl (seé eqn IV.17).
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Reference base data.

Figure Al




C.

CECH

FOTOPHM (KCNOPOLE - INTERACTICN)

C-DNA,y WILKINS ET AL 19€1, DP=.75 GUT OF PL CNLY

REFERENCE BASE DATA

“Ae

L

ATOM X
1=1.48
2 -.26
3 .00
b =.93
.5-2,23
L-2.52
7-3.02
8-2,24
‘9 -.9%
10-3.72

0sSC - 0u

1 3.78

2 1.57

3 w2

4 4.7

5 10.79

6  9.26

T 7.98

AToh X
1 -.96
2 - 74
3-1.79
4-3.03
5-3.2¢
b-2.17
7 sl
8-w.01

0sC oe

1 3.c¢0

2 2.40

3 4,57

“ ce9¢

5 &.70

& v.co

i

Oe‘
1.09
2+35
3.21
2480
T
3490
4.893
w57
1.2 -

HONOPOLES IN
-.UB&700

= 007400

B.0U0000
G.000000
g.0000u0

0.00UUaY

Ce.tludul

1108230
¥

L.S7
3.22
2.38
2.87
he23
3.14
¢.7c
2405 .

z R THETA HP  xXuP
W12 1,60 157,70 1-1.54
W28 1.12 103.30 3 -.32 1
Jhh 2035 B840, 5 =09, 2
sl 3.34 106,107 7 =499 3
$2€ 3,98 128.€0 9-2.80 2
v12 2,90 150,20 11-2.56 1
«33 4.93 127,80 13-3.09 3
W50 5.3€ 114,60 15-2.30 &
58 4,57 101,90 17-1.02 &
«03  3.8€ 164.70 19-3.79

ONUER FOR ATOMS 1 THRU
«117700 -,085900 -.028¢€00
~¢118E00 066100 -.2873UU

0.000000 -.167191 -.013814

0.0C0000 .129945 .225184

0.0C0U0Y ~.408143 ~.033721

'D.000000 -.28€559 -.500068

L£10860 -.110808 110600

-, 1108U0 .110800 -.110640

z R THETA #HP  XUP
058 w.b7 101,80 1-1.02 4
«46  3.30 103.00 3 -.81 3
J28 2.96 126,98 €-1.85 2
$22 4417 136,60 7-3.15 2
L34 5.34 127.60 9-3.32 &
e52 5.5% 113.40 11-2.24 5
W51 2.79 81.60 13 .3y 2
W05 &,51 152.98 $15-k.08 4

HOhuPOLES IH ORULR FOR ATOMS 1 ThRu

~JU73100

" .63bdub

JLE1T0
.333600

«1124d806

- 110Uk
W1l

T.U1200U -.032200 -.U298G0

YUP - ZUP
.53 .86
.01 1,02
W27 1418
13 1,18
W72 1403
+36 .86
82 1,07
82 1424
1,32
TR 11
10 IN PL
-.018700

«2104U0
~e04l4he0
-.223532
-, U98770

L 496381
-.110800

«110800
YUP  Zup
.50 1.32
16 1,20
W31 1.02
T30 .96
W16 1,08
W2 1.26
.63 1,25
.98 .79

8 IN PL

« 313200

el /uid0 -,U36700 -.12%600 -,033000

L2uutlE

276502

= 2224908

s litzun
e litiud

Wu251 €7 -.182083
- UeiDi¢ -.38327¢
~ d3LU1E -, 14BU53

“s11t0890
S11IGH0 e ilv ety

«lisivy

e 204915
“~e2floob
«214129

~eliluly
Plivtul

=e176751

3 THETA HP

lol,04 2-1
107,63 & -
90,07 -%
1u7.55 8 -
130.18 10-2
152443 12-2
128.34 14-2
115.57 16-2
ig2.78 16 -
166,03 -20-3

1,863
1.06
2,27
3.29
3.56
2.92
ho91
534
4,61
3.90

TRAUS AND FOR POS

+162500 250700
(067206 -.101300
1190565
- 106858 =.118326
S k31480 +465202
237291  .202757

«1310800
-.110800

-.114800
+110800

R THETA WP

1we.73 2 -
Iiho42 & =
1c8.78 6-1
137.9¢ 8-2
128.€5 t10-3
114,03 12-2
B2e7w L&
184,12

h.61
3,28
2.96
Get?
.32
5.50
2471
haSy

TRAMNS

“. 206080t -.918190

L08680u =.133340

-. 023345 $.000000

SULB30n V.BvUVLY

«3508UEL U, bUUULLG

R EYTS TS -1 ] 1)

16-3

COUPLED CSCILLATOR MCDEL T0 INFINITE ORDER

«073300
253700
0.00u000

U.OGUJJQ
v.ObUvug

S115080 =.110000

ALO FGR PJIS 1 THRU 186 OUT OF-FL‘lEANS

Jllvoul

OF H. DEVUE - ~ PRUGKAHM W, HUG
XDN  YOH  ZDN R THETA' o
42 BB =.62 1.57 154,23
W19 117 .48 Le18 99441 F)
W13 2,43 .30 2.43 87.03
286 3.23 -.30 3.40 104,70 .
W17 2.87 .45 3.60 127.04 s
45 1452 -.62 2.88 ltb.24
«36 3,97 -.41 4.95 126.67 o
J18 4.97 -.24 5.42 113,65 b
W89 4.65 ~,16 4,73 100,85 _
<66 1,10 -.77 3.62 163.34 2
1 THRU 20 OUT OF PL TKANS
f}%
-.402100 .069500 .077500
087100 ,065600 018200 -
8.008000 207651 0.UUODOD" —
0,000v00 093537 0.000060 ~
0.000008 .506912 0.u00000 v
' &
0,000000 ~,207822 0.060000
.110300 =-.110800 .110800 -.110800 P
-.1i08u0 . 110800
XON YUN ZON [N THE TA
W89 4,85 -.16 4.73 100,84
.68 3.23 ~.28 3.36 101.€$
W72 2.46 -.hE 3.G0 125,085
296 2.3k -.52 .13 3135.24
W19 k.31 .46 5.3¢ 126456
o1l 5,17 -.22 5.54 112,18
el 2433 .23 2.67 80,53
e35 2.13 .69 4.49 151.€7

6L1

“elliodi



.C.

*oe

ATOr X

JER17
& =.7h
J-1.79
b=3+03
v=3.26
6-2.17
7 .41
8-4.01

05C 0Ou

t 3.00
2 3.3
3 4,82
b bed4
5 €+ 3t

6 L.bb

ATur X

1-1.48
2 -2
3 .6
4 ~.33
£=-2.23
bL-2.52
7-3.402
b-2.24
9 -.90
1 .79
11-3.72¢

gsC  0a
4
2. welY
3 wele
4 Laiw

2 l..d1

Y

baeb?
3.22
238
2487
4423
5.1¢
2.7%
2.U5

MONUPOLES 1IN

«161500
«16160V
001152
2335039
‘.Uul5ib

~e11L600
«115600

Y

ecl
1.0y
2435
3.21
2.b6U
L.l
3.490
4,89
457

25
1,02 -

ﬂGHURULtS IN

—eulb2iv

JUL) 20

Reulunily

0.00u0u0
vatbdbuy
GolbuUULE

e 1708
«1LUAUE

z

v 34
o 46
.28
22
o 34
52
.Sl
.05

R THETA H

Yeb? 10180

3,30 1u8.40
2.9€ 120,94
woell 13€.60
S.d% 127.60
H.94 113,10 ¢
2.7% 81,00 %
bebl 152.90 1

OkUER FOR ATOMS 1 THRU

~.0200uY -.1€3000

~e04u300 . 301000

«215582 2211940

170081 ~.1€EC039

-.24356b6 -, 2787176

W115600 -.115620
~«115€00 .11%600

b4

12
28
LYY
o4
»29
12
33
Sy
«55
28
U3

R THETA 1

1.€60 2157.70
1.12 103,30
2.35 88.%0
3,36 100410
3,58 128.060
2,90 150.20 1t
.93 127.60 1
€.,30 114,00 1
o7 101,80 121
«43 17,20 1
J.0b lbu.7U0 2

UrCLP FUR ATUN3 | THRU

L0120ud ~.0La10Y

«1JULBY -.150100

Getdudie 193741
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 Figure A2: Unit cell structure
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PROGRAM ~UTCRI(INPUT,OQUTPUT,PUNCH,TAPEZS=INPUT,TARPES=QUTPUT,
LTAPE7=PUNCH,TARPEL,TAPER)
COMMON/MISC/GAMDELT s HOS g UU UL »0U ¢ XMHER yNMER
COMMON/EMGOI/XiMM(@2) 9 YHM(2) yZM(&2)
COMMON/ZAIR/AT(28+1031) yAR(26,1C1),UA(26)
COMMON/EZGS/XE(L2Y 2YC(L2) 422 (42),RE(42)
COMMON/ITET/IDA(2) y33U3I(462) :
COMMON/RISC/XR(42) 4 YR(L2) 4IR(L2) '
COﬁHOV/G%AT/G(bZ'bZ)'ul(h2'~2)'u2(k2.h2)
CUMMON/POL/AIT(25) 4ART(26)4UP(6)
COMMON/APCS/XA(22,42) 0YA(22,62),ZA(22, 42) .
COMMCN/MPOL/Q(224+74%) 403 (7 “)'IGB(BZ)'[LOB(“Z)oIOQ(MZ)' TON(L2)
COMPLIX G y31432,ALPHAL,GI(42542)
CUMPLIX AA,3B,CCy30,E2
O0IMENSION CD(LGL).EX(LQL)-U(luL) . ) } '

160 FORMAT(* &, FREQ®y5X+*CO* 011X *A% 311X+ "3%,11K,%C%y 11X, *0*
1510‘/‘1“1Q‘SX‘ollxv's‘leX"F‘)

101 FORMAT(*L*,*CONVERGENCE= *,I2,% UNIT CELLS*)

132 FORMATI(F7 434321244}

110 FORMAT(F3.4,3F3.3+3F3.1) : :

111 FORMAT(* *,* FREQ*,IX+*CO% 40X *PARA® 04X ¢*PIRO*,5(,%EX*,5%X,

LPPLARA®,4X*PERP*,5Xy*N= *,13)

Cosnns ) ’
C THIS CALL TO INPUT READS IN THE GIOMETRY QECK: CALLS
c ASHAPE T3 READ IN THe POLARIZABILITY OJECK; READS: IN
c THE F?RST POLYMER
Cesssas . :

CALL INPUT

1600 N=UP(1) _ _ _
N IS THI CONVERGENCE (SET 'IT TO 20 IF NOT SPECIFIED)
IF(NEQsu IN=20G '
WRITE (6,108 N
WRITZ(Z2,180)H
CALL INTRACIN)
| WRITE (6,160)
Coaoss CALCULATZ THE NUMEIR JF FREJUNCY POQINTS NI
NIs1.01¢(UU~-UL)/OU
00 10 I=1,NI
CeeeseCACULATE FREQUENCY UII) AND READ THE POLARIZABILITIES
c INTC ART AND AIT ( NOTE CHANGE IN SIGN OF AIT )
UlI)=uL+(I=-1)*0U ’
00 1 Ni=L,28
IF(UA(NL1}.EQ.Q.) GO TO 1
K=1.01¢(J(I)=UA(NL))/7QU
AITINL)==AT (NL,K)
ART(N1)=AR(N1, K)

1 CONTINUVES
Ceeees INTERACTION IS REAQ OFF TAPEL RATHEQ THAN RECALCULATED
c .- AT EACH FREQUE NCY
REWIND |

REAC(L) ((GUJybl) s6LIJsL) yJ=14NOS) 4L=1,NOS)
CeeossTHE POLARIZABILITIES ARE ADCED TO THE INTERACTION PRIOR
c TO INVERSION
’ 8O 2 N2=L,NOS
M=IGA(N2)
ALPRAZL .0 /CHPLX(ART (M), AIT (M)
GIN2,N2)=G(N2,N2) +ALPHA
GLINZ I NZ2) =GL (NZ2yN2) #ALPHA
2 CONTLIMUE
CALL INVERT(G,H03)
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CALL INVERT(G1,NOS)
CALL MULT(G3)
EX(I)=0.
Co(IY=0.
AA=(04+G.)
38=(Uasie)
CC=(04404}
D0=(049Ge)
SE=(0es04)
€=0,
F=0.
00 & Nbuz L,Nos
) 0C 5 NS5=1.NQS
) CeseoadlPrA IS ThE:- IMAGINARY. PART OF THE COMPLEX Q0T PROQUCT:
c THE REAL PA«T IS THE NORMAL 00T PROOUCT
: ALPMA= (04 y1a ) B (XEING) *YZ (NS) =XE(NSYI2YE (NLY))
_AIG=AIMAG (G (N& N5}
AA2AA~G3 (NN INS) *(XE(NS) *XE (N&) +YS ({N&L) *YZ (NS) +ALPHA)
982B83¢(0e 914 *GL(NWaNS)*{XE(NG)*XE(NS)+YE(NULIBYEINS) +ALPHA)
L*(ZRINS)I=2ZR{N&))
CC=CC=2.*G{Nuw NS )I*2ZZ (NI *{XE(NSI*YR(NS) =XRINS) *YE (N5))
O0=00+ (s sLe)*GL (NGyHII=( )
1Zc(Nbl'(Xk(Nk)‘Xc(N5)*YR(HB)‘YE(NS)*(0..1 Y*(XR(N&)BYE (NS)
2 =AE(NS)*YR(NW))) :
3= Z:(NS)‘(XQ(N:)‘XELNB)OVR(NS)'YE(NQ)*(0..1.)‘(XE(NB)‘YR(NS)
L=XRINSI*YZ(NWL))))
EEzEEr ( (XE(NWL)*XE(NS) *YZ(NGI*YEINS)) rALPHA) *GL (N yNS)
FzF+AIG*ZE(NW) *ZS(NS)
CONTINUE
4 CONTINUE
A=AIMAG(AR)
"3=AIMAG(38)
CsAIMAG(CC)
0=AIMAG(D0)
E=2AIMAG(EE)
Ci=-6.83286%W(I)/XMER
C23=443245E~42U(I)**2/X4ER
EXPERPECL *F
EXPARA=CL*E
COPERP=C2*(C+0)
COPARA=C2*(DELT*A+8)
EX(I)=EXPERP+EXPARA
CO(I)SCDPERP+COPARA
WRITE(6,102)U(I),C0(I), A.a.C.CoEX(I)-ch
HRIT‘(Z,LLO)U(I),CD(?).COPARA.CUP:R99£X(I)oEXPARA.EXPERP
10 CONTINUE
Ceooee THIS IS A CALL TO A SECONC ENTRY IN SUBROUTINE INPUT.

(V1]

c IT READS IN A NEW POLYMER WITHOUT REAQING IN NEW
c GEOMETRY OR POLARIZASILIT v .0ECKS

CALL INPUTZ

GJd T3 1000

END

SUBROUTINE INTRAC (NNN)

COMMON/MISC/GAM,0ELT +NOS yUU ULvOU s XMER ¢NMER
COMMON/APOS/XA(22,42) yYA (22,421 4ZA(2242)

COMMON/MPOL/Q{22,74+4%) 408(744),I03(42),I008(42),10Q(L2),I0N(L2)
CO"HQV/GHAT/G(“Zq“Z)vul(“&okZ).GZ(“Zv“Z)

COMMON/ROSC /XR(42) yYR(52),ZR(42) ‘
COMMON/CECS/XC(62) 4 YE(H2) +ZE(L2)4RE(42)

OIMENSION Q(3)¢RIJ(3)1EL(3)vEJ(3)

COMPLLX querZ

NL=2*NNN+L
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30 10 I=1,NOS
I1I=108(D)
NI=I0Q(I)
I0I=1003(I)
00 9 J=1I,N35-
JJ=108(J)
NJ=I03 (J)
I0J4=1008(J)
G(I.J)=( or0 )
Gl(IyJ):(OovUo)
G2(Lsd)1=(0490e)
C CALCULATE MONQPGOLZI-MCMOPOLE INTERACTION FOR CLOSEST TEN UNIT CELLS
00 3 N3=sLl.eNL
NZN8<-NNhN=L

c 00 NOT INTERACT TRANSITIONS ON THI SAME 8ASE
IF(N +EQ.0.AND.IDN(I)LEQION(JI) GO TO. 3
FI=N*GAM : ~

SFI=SIN(FI)
CFI=COS(FI)
56=0.
LF(IABS(N)WGT.L0) GO TO S
00 3 N3=1L NI
00 2 N231,NJ - )
RULI=XAINI S I)={XAIN2,J)*CFI=YA(N2,J)*SFI)
RU2I=YAINISyI)=(AAINZ24yJI*SFI+YAIN24J)*CFI)
RUIINI=ZAINISII=2ZA(N2,J) =N *0ELT
O=4 .
00 1 N1=1,3
D=0+R(NL) **2
1 CONTINUE
0=3SGRT ()
GG=GG+Q(NILIDILIII*QIN2,104JyJ4)/0
2 CONTINUE
3 CONTINUE
Gy TQ 8
c CALCULATE 0IPOLZI-CIPOLE FCR UNIT CELLS FURHTER THAN 10
-5 EIZJ=0.
RIJEJI=G .
RIJEI=C.
RIJILI=XRII)I=(XR(JI*CFI=YR(J)*SFI)
RIJ(2)=XR(I)=(XR(JIBSFI+YR(J)I*CFI)
RIJ(3)=2ZR (1) =-ZR(J) =N¥QELT
O0IJ=RIJILI®*2¢RIJ(2)**2¢RTI(3)**2
0IJ=SQARTH(OIN
ET(1)=XE(LD)
El(2)=YE(]L)
EI(3)=ZE(D)
cd{1)=XE(JI*CFI=YE(J)*SFI.
EJ(2)=XE(U)*SFI+YE(J)*CFI
€J(3)=ZE(J) ’
00 & Nu=1,3
SIZJ=CIEJ+ET (NG *CJ(Ny)
RIJEI=RIJEISRIJING)*EI(NG)
RIJEJ=RIJEJ+RIJING) *EJ(NY)
4 CONTINUE
GG=EISJ/01J**3~3.0*RIJEJ*RIVEI/ZDTII"*S
Gd 7O 7
6 66=066%4.30298*%2/(08(I0L,II)*0B(INJY,JJ))
c THIS IS THE EFFECTIVE DIELECTRIC CONSTANT
7 GG=GG/2,
G(IvJ)=G(I3)+GC
GL(IyJ)=GL(I,J)+GE*CHPLX(CFL,SFI)
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G2(I1yd2=532(I4J)+N*GG*CHMPLA(=3FI,CFI)
CONTINUE

GlJsDI=G(I, N

GL(JaI)=CONJGIGLIIGJ))
G2(JyI)=CONJG(G2(L 4y}

CONTINUE '

CONTINUE

REWIND 1L
ARITEALIC(G (K oL ) 4GL(K,4L) yK=1,NOS}) 4L =1 ,NOS)
RETURN

ENQ

SUBROUTINE MULTI(C) -
COMMON/MISC/GAM,JELT s NOSyUUs UL yOU 4 XMER yNMER
COMMON/GMAT /G2 142) 4GL(92,62)9G2(42,+2)
COMPLEIX G+G14s52+,C(02,42),CKJ

00 13 I=14NOS

00 10 J=L1L,NQS

C(LyJ)=(04+0.)

00 10 K=1,NOS

CKJU=(0e9d )

00 8 L=1,NOS

CRJI=CKI*G2 (K L) GLL 3}

CONTINUE. 3 :
CUIJ)=C(IyJd)*GL(T,K)*CKJ

CONTINUE

RITURN

END '

SUBROUTINE INPUT .
COMMON/MISC/GAMZDELT yNOS,UU » UL » QU ¢« XMER JNMER
CIMMON/RUSC/XR (42) y YR (L2} ,ZR(&2)
COMMON/ZECS/XE(L2) ,YE(42) 4 ZE (L) 4RE(L2)
COMMON/EMOS/ XM (W2) gy YM (W2) 4ZM (62)
COMMON/PIL/ALT(20) ART(25),UP(B)
COMMGN/IDST/IDA(S2) ,3SU3T 42}
COHHON/HPOL/Q(2217,B)yQB(?v»)vIDS(QZ)vIODB(*Z,vIOC(“Z),IDN(“Z’
COMMON/APCS/XA(22,42) 4YA(22,42),221(22,62)
OIMENSION A(7)48(3) »
OIMENSICN NATOMS (&) oI0 () oNIN(L) Z0SC(12),4,POS(LO) )
QIMENSION RU7,4) oT(748) o Z(74u) yTE(T 40) 4PELT »2) +IPOL(7,4)
OIMENSION TH(?.“)'PW(7'¢)'BI(7 )

JIMENSION TP(4),PP (L)

DIMENSICN AR(L11,4) JAT (1L &) 'A\Z(ll L)
OIMENSICN ARL(ZZ.%).ATL(22.~),AZL(ZZ.&)
REAG(5,300) THETAL,D.8

FORMAT (F10.3,F10.3,5A10)

WRITE (6499)

FORMAT (1n1)

WRITE (6,200)

FORMAT (iX,*C, CECH ROTGPM (MONOPOLE INT‘RACTIUN)‘v“5X|‘CCUPLt
10 OSCILLATOR MOQJEL TGO INF NITE UROER‘)
WRITe (6,201) (3(I),I121,5)

FORMAT (1X435A10,36X,*0F H, DEVOE PROGRAM W. HUG®*) -
NRIT:(G,ZZO) : .
FORMAT (/1x, ERENCE 3ASE OATA*)

30 386 Ioten _

READ(S, 301) IO(I),NATOHS(I)oNOSC'hIN(I)vISEP
FORMAT (ALs9XyI2+8XsI248XsI2,87%x,I1)
IF({ISEP.NE.G) GO TO 331

REAG(5,302) TP(I),PP(D)

FORMAT (2(FLG.3)) .

JJJI=NATOMS(I)

READ(3+303) ((AR(JI D) s AT (I WDV 4AZUIWIN) yd2L,yJdd)
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303 FORMAT (3F3.3)
RADT=TP(I)®.5174533 .
RADP=PPIII®. 0174333 : L e
XP=SIN(RACT)*C0OS(RAJP) . I
YP=SIN(RADT)I*SIN(RASP)
ZP=CO03(RAOT)
WRITE (8,221) IDI(D) - .

221 FORMAT (/1XoLlH*3A 19LH% 42X oPATOM* 12X 4% X * 5K s2Y® 33X ,%2%,5Xy *R*,3X, -

1‘THETA‘o1X"HP‘,ZX"XUP‘,SX.‘YUP‘.SX,‘ZUP"kK,‘R‘.KX,‘THETA"LX.

L1*HP*,2X o * XON* 43X, *YON*, 3%, ‘zou‘.ux.‘a*.sx.‘rnern‘ /)

00 901 J=1,J4J
QP SPSCIFIES FRACTION ALONG UNIT YECTOR PERPINDICULAR TO PLANE
OF BA3E THAT MONOPGLE POSITIONS ARE MOVED
JP=.75
K=24*J
LsK~1
RAD=AT(J,I1*,3174533 . :
X=AR(J,1) *COS(RAD) : : . i
YSAR(JI) *SIN(RAD) . :
XUP=X+{(CP*XP)

AGN=X=(CP*XP)
YUP=Y+(CPAYP)
YON=Y=(DP*YP)
RUP=XUP®XUP+YLUP*YUP
RON=XON*XON+YIN*YON
ARL(K,I)=SQRT{RON}

ARL (L, I)=3QRT(RUP)

AZ1 (K IV=AZ (ST )~(0P*ZP) .
AZLA(L I)1=AZ(J, 1) +(DP*2ZP)
ACN=ABS (XON)

AUP=ABS (XUP)

CIF(AONWLT..0UGL) GO TQ 910
TON=YON/XON
ATL(K,Z)sATAN(TDNI*57,2553 !
IF(AONOLT o3) ATL(KsI)=ATL(K,I)+133. o
GO TO 91t . ' |

910 ATL(K,I)=290, - i i '
IF(YONLLTde) ATL(K,I)=-90. C
IF(YONJEJeTe) ATL(K,I)=0a . ?

911 CONTINUC
IF(AUR.LT..000L) GO TO 312
TUP=YUP /XUP
ATL(L,I)=ATAN(TUP)*57,2953
"IF(XUP.LT.J) AT1(L,I)=AaT1(L,I)+180,

GJd TO 913

912 AT1(L,1)=930.

IF(YUP.LT.J«) ATL(L,I)=-93,
IF(YUP,EQsds) ATL(L,I)=

913 CONTINUE
WRITE(6+223) JoXo¥sAZ (S 1) sAR(IWII AT (41D Lo XUP,YUPLAZLUL,1),

TARL (L oI sATL (L oL ) oKy XCNy YONYAZL(KsI) 4 ARL(KyI)4ATL(K,I)

223 FORMAT (7X 2121 9(F5.291X) 1FBu201X02(L24F5.2)1KsF5¢2981XsF5.241X,

1F Se211XsFBe241X))

301 CONTINUE ' .
JJ=NIN(I) : -
KJ=2*4JJ : '
WRITE (8,222) JJJrKJ |

222 FORMAT (/5X ,*0SC*,2X,*03* ,3X,*MONCPOLES IN ORDER FOR ATOMS 1 THRU z

1*,12,% IN PL TRANS ANO FOR POS L THRU *,I2,* OUT OF PL TRANS®) ' !
IF(JJ.EQ.G) GI TO 240
00 382 Jz1l,J9
READ (S54,304) RUJyIDoTHUISIIwZ I gI) ZTECIZI) yPE(IZI) o TMU L) yPHMIJ 1)
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g’
“

304
335
226

382
240

225
383
241
3340
a1

390

134

102

230
23

206

207

208

101

103

209

204

191

18I (JeI) 4 0B8(JVI1)IPOL(UJLT)

FORMAT (3F3.346X,12)

REAC(S,305) (QlLyJs1) sL=1,dJdJ}

FORMAT (3FLC,5)

WRITE (6842240 Jy0B8{JeI) s (QlLydel)slz1,34d)

FORMAT (/3Xel201XsF5.2,2X3L1(FB84641X))

CONTINUE

CONTINUE

IF(JJ.3Q. NOSC) GG TO 261

KzJJerl

30 333 us=KsNOSC

READ (54304 ROIWIVeTUI I eZ (eI oTE(IWIIWPE(J I)OT‘(J'I)QPH‘JQI)O
13I(JeI1),08¢J41)IPOLIJLI)

READ(55305) (Q(LyJdsI) yiz=t,KJ)

ARITE (069223) Jy0B8LJsI) o (QLL,JoI) sl=1,KJ)

FORMAT (/5X+I241XyFS. ZoZKyll(FQ.Ole)v/oLSX.ll(Fd 6'LX))
CONTINUE

CONTINUE

CONTINUE

CONTINUE

CALL ASHAFE

ENTRY INPUTZ

CONTINUE ’

READ(5,100)Y (A{(I),I=1,7),XMERLNMER,ISEP
FORMAT(7ALC 92X sFbaalxysIlatX,I)

IF (XMER.2Q.0) XMER=1L.
[F (NHER.ZQ,0) NMER=L
IF (ISEP.NE.3) STOP
GAM=ze0174533*THETA®NMIR
CJELT=I*NMER

NIDN=3 .
READ(5,102) IGMAT,IPNCH, IPLT (UP(I)4I=1,6)

FORMAT (3IL,7Xx,8€10.0)

WRITE (8, 99)

WRITZ (©,230) (A(I)yI=1,7)

FORMAT (7A10)

WRITE(29230)(A(I)oI=1,+7)

FORMAT (/777743077

WRITE (86,2008)

FORMAT (//2X,%3ASE® 42X ,*P0S ON*,7X»*SLECTRIC OSCILLATOR POS:TIQNS.
123X ,*0IRZCTION UNIT vz CTOQS';XSX.‘*AG asc*)

ARITE (5,237

FORMAT (83X, *RELIX®)

ARITE (5,208)

FORMAT (20X o ®X % 33X p*Y® 33X 42 2%, 7X sy *'R®*46Xo *THETA® 42X *0SC*y1X,
l‘POL"SX"X"SX"Y‘oSX"Z'vsK"TH;TA"Sx"PHI‘.BX;’OSC‘-ZX,‘BI“)
NOS=0

00 1 IUx=1,10

REAJ(5,101) IQASENNBR,IIUSCtI)I=1,12),ISEP

FORMAT (AL o3X3I298X912(I1243X)e3%Xs1I1)

IF(ISEP.NELO) GO TO 53

REAG(5,103) (POS(I)vI:l-lC{

FORMAT (10F5.0)

LINEL=]

HRITE (6+210)

WRITE (68,209) I3ASE

FORMAT (Lh+,3X,A1)

00 3 I=isb

IF (I9ASZ.EQ.I0(I))F GJ TO &

CONTINUE

ARITE (6,204} .

FORMAT (//1X4*8ASE UNKNOWN?®)

i
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STOP
4 CONTINUE
00 2 J=1,13
IF (POS(J).EW.G) GO 7O 1
NION=NIDN®L
STRANG=1.
AC=1HW
IF(POS(J) +GT4L) GO TO 15
STR;ND:'X-
WC=LHG
15 POSJU=A3S(PAS(J)) o
IF(LINEL.ECQ.1) WRITE(S,210)
: ARITE (64211) WC,POSJ
211 FORMAT (Lh+49X,814F2,3)
210 FORMAT (1)
PUSJ=POSI-1.
CINE2=G
NNOS=NOS
20 ¢ M=1,N3R
KzI0SC (M)
NOS=NOS + 1
TT=(T(L+1)*STRAND) + (POSJ*THETA)
TRAG=TT*, 0176533
ION(NGS)=NION
RE (NOS)Y=R UK »I)
XR(NOS) 2k (Ky 11 *COS(TRADY
YRINUS) =R (K, 1) *SIN(TRAD) _
ZR(NO3)Y=(Z (X, L)*STRAND) + (POSJ*D)
TTE=TZ (K, 1)
LFEPOS(U)WLTud) TTE=130.-TE(L, 1)
TZRAD=TTL *, 0174533
PPE=(PE (K, 1) *STRAND) +(POSJU*THETA)
DERAD=PPZ*,5174533
X& {NO3)=SIN(TERAD) *COS(RPERAD)
YE(NOS)=3IN(TERAD) *SIN(PERAD)
ZE(NOS)=COS(TERAD)
IDA(NOS)I=IPOL (K, )
108 (NDS)I=T
IDOB(NOS) =K
IF(LINE2.EQ.1) WRITE(3,210) -
WRITE(69212) XRUINGS) 4 TRINCS) »ZRINOS) +R (K1) ,TT,NGS,I0A (NOS),
LXE(NOS) »YEINOS) ,ZE (NQS) +TTE, PPE '
212 FORMAT (LH* 3 33X s 3(F7e292X)s1XsFS542¢2X4F7, ZOZXQI3 1X,12, 3(2XpF7 4)
12X 1FBa292X4F742)
IF(BI(K,I).EQ.0) GO TO 5
TTM=TH (K, D)
IF(POS(J) «LTeG) TTM=130.-TM(K,I)
THRAD=TTH*.0176533
PPM=(PMI{K, 1) *STRAND) + (POSJ*THETA)
PMRAD=PPM*,0174533
XM (NOS)=SIN(TMRAD) *COS(OMRAD)
YM(NOS)=SIN(TMRAD) *SIN(PMRAD)
ZM(NOS)=COS (THRAD)
3SUBI(NOS)=AI(K D)
WRITE(B,213) NOS,SSUBIINCS) +XMINOS) o YH(NOS) »ZM (NOS)
213 FORMAT (LH+,91XsI5,F5.2,3F10.4) :
G0 TQ 9 '
6 XM(NIS)I=D,
YM(NOS)=s,
ZH(NOS):U.
B3UBL(NOS)=8I(X,I)
3 CONTINUE
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1/
MM=NIN(I)

IF(XK.GT.4M) GO TO 10
NMPT3I=zNATOMS(I)
IDQINQS)=NMPTS
093 8 L=1,NMPTS
ANGLE= (AT (L +I)*STRAND) #(PCSU*THETA)
RAGzANGLI*¢ 0174533
XA(LyNQS)=AR(L,+I)*COS(RAD)
YACL)NOS) =AR(L,1)*SIN(KAD)
ZALLyNOS)=(AZ(L,yI)*STRAND I+ (POSJ*D)
CONTINUE
GO0 TO 11
CONTINUE
NMPTS=2¢*NATCHMS(I)
I0Q(NOS)=NMPTS
00 7 L=1,NMPTS
ANGL:—(ATx(L.I)‘STRAND)v(POSJ‘THETAl
RAD=ANGLZI®,3174533
XA(L,NQS)Y=ARL(L,I)*COS(=AD)
YA(LsNOS) =ARL (L, I)*SIN(RAD)
ZA(L NOS)=(AZL (L, I)'STRANO)*(POSJ‘D)
CANTINUE
CUNTINUE
LINEZ2=1L
LINEL=1
CONTINUE
CONTINUE
RETURN
ENG
SUBROUTINE ASHAP=
COMMON/MISC/GaM, DELTvVOStUU ULOOUOX*ERONHER
COHHON/AIR/AI(zﬁoLOI)'AQ(ZDvlﬂi)odA(ZG)
COMMON/POL/ALTI26) 4ART(28),UP(6) :
EQUIVALENCE (TUA.LP(L))o(*UE'UP(Z))o(TUD UP(3)).(DS'UP(Q)).
LUK UP(S5) )3 (GKUP(E))
OIMENSION UE(28) ,U0(28),IPTS(26)
00 25 I=1.,2e
UA(I)=0C.,
UE(I)=G.
uo(IN=0. -
CONTINUE
D0 1 I=21,27
READ(5,108) TUA.TUE’TUO'OS'UK'GKO(,ISCP
FORMAT (oEL1040,I2417x41I1)
IF (ISEP.NE.C) GO TQ 2
IF (KeEQed) K=I
UA(K)=TUA
UE(K)=TUE
"UD(K)=TUO
RIZ=(TUE-TUA)/TLD
RA3=A3S(RIZ) ¢ 1.01
IAB=RAS3
IRPT3I(KI=IAB
IF(IAB.GT..10G1) GO TO 5
IF (UK.NELJ) GO TO 3
REAQ (5,101) (AI(K.J) J=1,128)
-TRHIS IS INPUT FORMAT FOR 60 POINT QECK ™
FORMAT (5(E3.0,3x))

THIS IS INPUT FGRMAT FOR 1 POINT ODECK
FORHAT(Z(:& 0,32x1))
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READ (541C1) (AR(KJ) »J=1,IA3)
Gd T0 7 - ’

IF (GKJ.Ede0) GK=063%SURT (UK)
00 o J=1.,I48

UDEL=(J=11*TUD

IF(RIZ.LT.0.) UOEL=-UJEL
U=TuA+UCZL ‘

UKUzUK*UK

yu=u*uy

UNMU=zUKU=UU

UU=0S*UK*10. 0563/ (UMU*UMU+UU*GK*GK)

T3aM=yMU*uUy

IF (ABS(TSM).GT.1000036.) GO TO §

AR(KyJ)=T8M
T3M=U*GK*UU :
IF (TBM.GT.10CY033+) GO TO S

TAT(K.Jd)=TBM

CONTINUE

CONTINUE

IF(RIZJGTL0.) GO TO 1
IA=IAB8/72

00 & J=1,IA

JT=IAd+1~J

TBM=AL (K. J)
AL{K,J3)=AL(KdT)
AL(K,JT)=T3M

TBM=AR(Ky J)

AR (K yJzAR(K,JT)

AR (KyJT)=TBM ’

CONTINUE

Ua(K)=TUE

UE(K)=TuA

CONTINUE

ARITE (5.220)

FORMAT (1X,*POL GUT OF RANGE™)
SToP

UL=3e

Uus10ES

00 22 I=1,28
UL=AMAXLIUL,UA(I))
UT=sAMINL{UULUE(T))
IF(UT.NEsUs) uu=uT
IF(UO(I).EQ.0.) GO TO 22
IF(IelTe26) 1i=I+1

ouU=LD () -

IF (UD(I1).EQ.Q) GO TO 22
IF (UD(I).2Q.UD(I1)) 63 TO 22
ARITE (6,270}

FORMAT (1X,*POL IMCCMPATISLE®)
sSTQP )

CONTINUE

IF(TUANE D) GO TO 33
RETURN '

CONTINUE

WRITE (6,280)

FORMAT (///7:X,*POLARIZABILITIES®)

- 00 31 I=1,26

201

IF(UD(TI}.EQ.C.) GO TO 3t

WRITE (©4201) I,UALI),UZ(I),U0(D)
FCRMAT (//1X,*NBR=*,13,104,*START FREQ=*

lF?cJ,‘ GELTA:‘nF?-J)
1A8=zIPTS(D) :

194

END FREQa*,
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135

399
-44d40
420
&30
430
550
600
616
6240
630
Y]
6540
660
6730
700
705
710
740
800

WRITE (6,204)

FORMAT (/1X,*IMAGINARY®)

ARITE (6,205) (AL(I,J),4=1,1A3)

FORMAT (1X,10FL12.3)

WRITE (64200)

FORMAT (/L1X,*REAL*)

ARITE (8,205) (AR(I,4)4J=1,1A8)

CONTIMUE '

RETURN

ENO .

SUBRAUTINE INVERT (A4N)

COMPLEX A(L2,42) 4PIVOT(42,42) AMAX,SWAP,T
JIMENSION IPIVOT(42) 4INJIEX(42,2) :
SQUIVALENCE (IROW,JRQOHW)- (ICTLUM,JCOLUMY, (AMAX, T, SWAP)
00 23 J=LWN V : ' :
IPIVOT (U =g

33 556 I=1,N

AMAX=0.0

)] 133 J=1,yN

IF (ZPIVOT(JY=1) 63y L1035, 6G

DO 100 K=1N

IF (IPIVOT(K)~1) 3803, 100, 740

IF (CA9S(AMAX) -CABS(A(J X)) 85, 133, 100
IROW=J '

ICOLUM=K

AMAX=A{JsX)

CONTINUE

CONTINUE

"IF(CA3S(AMAX)) 110,800,110

IPIVOT(ISCLUMI=IPIVOT (ICOLUM) +L
IF (IROW-ICOLUM) 1s4C, 20d, 140
JETeRM4==IcTERM

00 200 L=i,N

SWAPSA(IRCH,L)
ACIROW,L)3ACTICOLUM,L)
A{ICOLUM, L) =SHAP
INOEX(Iy1)=IROW
INDEX(1,2)=ICOLUM
PIVOT(I)=ACICOLUM,ICOLUM)
A(ICOLUM,ICOLUM) =1.0 .

00 35G L=1.N .
A{ICOLUMyL)=ACICOLUM,L)/PIVOT(I])
30 €50 Li=i,N .
IF(L1-ICOLUM) 400,550,400
T=A(LL,ICOLUM)

A(L1,ICCLUMY=0.0

30 450 L=1,N
AtLLsL)=A(LL,L)~A(ICOLUM,L)*T
CONTINUE

.00 710G I=1.N

L=N+1-]

IF (INDEX(L.1)=INDEX{L,2)) €30, 710, 630
JROW=INDE X (L 41}
JCOLUM=INOEX (L 42)

00 705 K=1,.N
SHAP=A (Ky JRONW)

A(K s JROW) =A (K, JCOLUN)
A(<yJCOLUM) =SWAP
CONTINUE .

CONTINUE

RETURN

DETZRM = 0.

196
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Program ROTOPM (Author: C. Cech)

Description:
This program calculates the € and CD spectra of
oligonucleotides
Input: (cards)
geometry deck . (see Ia)
polarizability (see Ib)
oligomer specification deck (see Chapter V ref. 17)
OQutput: (line printer)
reference base data
polarizability data (optional)
cligomer structure

optical data

Procedure is similar to ROTOPI-except equations from chapter

IIT are used in step 10. See Chapter V reference 17 for

details.

Listing of ROTOPM is on microfiche labelled: "APPENDIX A

PROGRAMS™
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IIT. Program BASES (Author: I. Tinoco, Jr.)

Listing is given on microfiche labelled "APPENDIX A PROGRAMS"
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APPENDIX B

This appendix contains the results of calculations
on 16 polymers (see Chapter V, section III) in RNA,
B-DNA and C-DNA geometries. These 14 pt ca;culations are
given in digitalized form on the microfiche labelled:
"APPENDIX B.DIGITALIZED DATA" and as plots on the microfiche
labelled: "APPENDIX B PLOTS".
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Figure Bl shows a sample frame of digitalized data. The
average extinction and CD are giyen as well as the perpen-

-dicular and parallel contributions to the average CD.



POLY GT
LAMBOA
295.9
2874
279. 3
27147
26446
257.7
251.3
24541
239.2
2336
228.3
223.2
21803
213.7

C~-ONA

- Co
<085
’003“
'20615
-5+812
‘6.751

=2.669

1919
3550
3.053
2072
2+106
3.659
€e708
10.300

PARA
-e316
‘10381
-505“3
-8e432
=84427
'“9?60
‘0876
«99%
1245
1.070
1.787
Le0GS
T.781
12323

PERP
ebQ?2
1307
1925
1+ €20
1.678
2300
2.735
2556
1807

1.002

«319
‘03“5
-1.074
=2+024

EX
783.8
2445. 1
4502. 8
5982.3
7160, 5
8238.6
B8387.8
7099. 6
5159, 5
335%2. 1
2429.3
2640.5
326501
4650.0

PARA

7754

2431.3
La75.90

593€.9

7102+ 6
846€.0

.8303.8

706431
5112.8

'331500

2400.2
2385.5
32406
4621.3

200

PERP
8.5 -
13.8
27.8
4S.3
57.9
BL.b
640
S€.5
LEsB
37.0
2%.7
2%.0
24e5
28,7
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4

Figure B2 shows a sample frame of the plotted data. The
solid line is the average, the dots are the parallel contri-

bution, and the V's are the perpendicular contribution.
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