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CLASSICAL THEORY AND CALCULATIONS OF C:~RCULAR DICHROISM 

IN HELICAL POLYMERS 

by 

Alan Isadore Levin 

ABSTRACT 

In. thi~ thesis we derive a new theory of optical activity 

in helical polymers. Helical symmetry and periodic boundary 

conditions are applied to classical polarizability theory. 

This allows us to express the infinite polymer result in 

closed form. Our result is all order in inter-monomer 

interactions, and gives the polymer circular dichroism 

bandshape in terms of monomer transition bandshapes. · Wl)ile 

the theory is essentially equivalent to time~dependent 

Hartree theory, the use of empirical monomer bandshapes, 

rather than ab initio wavefunctions' makes calculations 

much more practical. We also explicitly treat a complex 

unit of symmetry containing many optical transitions. 

This theory is applied to calculate the following 

polynucleotide sequences: poly(A), poly(T), poly(G), poly(C), 

poly(A·T), poly(G·C) poly[(A-T)·(A-T)], poly[(G-C)·(G-C)], 

poly(A-T), poly(G-C), poly[(A-G)·(C-T)], poly[(A-C)·(G-T)], 

poly(A-C), poly(G-T), poly(A-G), poly( C-T) in RNA, and 

8 and C form DNA.geometries. In addition,calculations are 

carried out for poly[CA-A-T)·(A-T-T)] and poly[(A-G-C)·(G-C-T)] 

in RNA and 8-DNA geometries. Calculations are presented for 
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polyadenylic acid and polyionsinic acid in non-standard 

geometries. Chainlength studies indicate that previous 

assumptions in the oligomer calculations were justified; 

ari oligomer containing 10 base pairs gives a reasonable 

approximation to the polymer CD (± 20% at the first long 

wavelength maximum). Comparison of the calculations with 

experiment suggests that certain monomer properties, par-

ticularly those of guanine, are in error. 

Polarizability theory is also applied to study· the melting 

behavior of adenine and thymine containing polynucleotides. 

CD spectra of polyd(A), polyd(T), poly[d(A)·d(T)] and poly 

[d(A-T) · d(A-T)] have been measured as a function of teinpera-

ture. From these data difference spectra have been calculated 

by subtracting the spectrum measured at low temperature from 

the spectra measured at higher temperatures. The CD difference 

spectra obtained upon melting of the two double stranded 

polymers are very similar. From a comparison of these differ­

ence spectra with calculated ones we suggest that optical 

transitions near 272 nm (on A) and 288 nm (most probably on 

T) are present. The premelting changes of the CD spectrum 

of poly [d( A-T)· d(A-T)] are due to a change in conformation 

J.n which the secondary structure goes from C- to 8-type 

spectrum by increasing the A-type nature of the polymer. 

Such a change is not observed for poly[d(A)·d(T)]. Inst~ad 

a transition between two different B-type geometries occurs. 

i-
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INTRODUCTION 

One of the. central tenets of modern molecular biology 

is the belief that structure determin~s function. This is 

a strong motivation for the physical chemical approach to 

biology. Of course, the concept of structure must be 

extended to include more than the organization of covalent 

bonds in a ~acromolecule. These higher levels of structural 

organization are generally referred to as the conformation 

of the polymer. 

Watson and Crick's classic work [Nature 1~1, 737 (1953)] 

is a monument to this structure-function principle. Their 

model for the structure of DNA not only accounted for the 

X-ray diffraction data, but suggested how genetic informa-

tion is passed from one generation to the next. As more 

structural data was amassed, the general importance of helical 

structures in both biological and synthetic macromolecules 

was recognized. 

A helical molecule does not have a superimposable 

mirror image, and thus exhibits optical activi~y. Optically 

active molecules show characteristic differences in the 

refraction and absorption of right and .left circularly 

polarized light. It is not surprising, therefore, that 

optical rotary dispersion (ORD) and circular dichroism (CD) 

are particularly sensitive probes of helical conformation 

in solutibn. In fact, optical solution studies corroborate 

the X-ray crystal evidence for many helical polymers. 
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However, the X-ray data cannot always be applied directly 

to solution studies. Tunis-Schneider and Maestre [J. Mol. 

Biol. 52, 521 (1970)] and Ivanov et. al., [Biopolymers 12, 

89 (1973)] have demonstrated that both native and synthetic 

polynucleotides in solution have a wide and relatively 

continuous range of analogues to the predicted crystal 

structures. 

While optical properties, especially CD, have been 

used to monitor conformational changes· in solution, they have 

not yielded more detailed structural information. We need 

a practical and reliable means of calculating polymer optical 

properties from a given model geometry. With such a tool we 

could translate the observed optical changes into changes in 

structure. 

While there has been considerable refinement in the 

quantum mechanical theories of polymer optical activity, 

calculations based on these approaches are extremely diffi­

cult. As usual for large systems (several atoms), it is 

hard to obtain useful wave functions. We will, therefore, 

focus our attention on classical and semi-classical theories 

of polymer optical activity. (Of course we cannot expect to 

calculate monomer optical properties classically, and must 

use quantum mechanics or empirical monomer data instead.) 

In the first three chapters we examine theories of 

optical activity for polymers or aggregates of arbitrary 

structure. We lay the groundwork of the classical theory 

in Chapter I. Beginning with an analysis of Maxwell's 

,.. .. , 
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equations in matter, we develop the classical formalism and 

finish with an example which demonstrates the progression 

from a simple molecular polarizability to the absorption 

and refraction of a solution. This preliminary material is 

important, not only to see where the more general theory 

comes from (Chapter III), but to understand the nature of 

the approximations involved in deriving classical polariza-

bility theory. 

We discuss the physical basis of optical activity, the 

quantum theory of optical activity, and two semi-classical 

attempts to calcufate the optical activity of polymers in 

Chapter II. In Chapter III we present DeVoe's all order 

polarizability theory [J. Chern. Phys. ~' 3199 (1965)], and 

compare it to the earlier theories. 

In the second half of this thesis we develop and apply 

a rtew theory of optical activity in helical polymers. This 

is the first classical theory to incorporate helical symmetry 
/ 

and periodic boundary conditions. This is also the first 

explicit treatment of a complex unit of symmetry containing 

many optical transitions. Like the DeVoe result, our theory 

is a consistent treatment of the polymer CD bandshape ~n 

terms of the monomer absorption spectra. For these reasons 

we think that our approach is the most practical and reliable 

method currently available for calculating the optical 

properties of helical polymers. 

Chapter IV contains the derivation as well as a discus-

sion of helical symmetry, and c:· comparison of our result and 
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recent quantum theories for helical polymers. In Chapter V, 

polynucleotide CD calculations based on the results of 

Chapter IV are compared with earlier oligomer calculations 

and previously measured CD spectra. Finally, in Chapter VI, 

we measure the spectra of adenine and thymine containing 

deoxy-polymers and use polarizabil.i ty theory to interpret 

these spectra. The changes in the CD of these polymers 

with temperature are related to conformational change which 

precede melting. Our apalysis of these data also suggests 

the presence of new transitions in the near UV spectra of 

adenine and thymine. 

.• 
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Chapter I 

Classical Electrostatics and Theory of Dispersion 

Maxwell's Equations ~n Matter 

1 

We will consider the microscopic electric response of 

matter in detail and give the magnetic response by analogy. 

Our starting point is the following: 

V•E = 4rrp 

' E is the electric field vector and p is the charge density. 

The formal solution of this equation is: 

E(r) = - V f. p ( r : ) dr' . · I r-r I 

For simple systems all w~ need do is specify the location 

and magnitude of each charge in the system. For a de scrip-

tion of matter, however, this equation is inapplicable. The 

charge density will· fluctuate wildly over the dimensions of 

a single molecule, and the number of charges in any macro-

scopic quantity of matter is very large. For these reasons 

we will settle for a less detailed solution which gives the 

average field over some volume containing many molecules, 

but that is still small compared with macroscopic dimensions. 

Our basic measure of macroscopic dimensions will be the 

wavelength of light that interacts with the system. This 

wavelength is an indication of the variation of the external 

electric field which interacts with the system. 
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For a point R in the microvolume v equation (1) becomes: 

J p(rl) 
E(R) = -~ IR-r~-rl drl ( 2 ) 

where r is some origin ~n the molecule and the integration 

is carried out over molecular coordinates r 1
• We will assume 

that IR-rj >> lr 1
1 and expand equation (2) in a Taylor's 

series in r 1 about IR-rl. This is just a multipole expansion 

(see section VI A). Retaining only the monopole and dipole 

terms: 

E ( R) = - V [ q + ~ ( l ) •J.I] 
· jR-rj r jR-rj 

( 3 ) 

q = f p ( r 1 
) dr ' ll = !r 1 p ( r 1

) dr 1 

q ~s the monopole and ll is the dipole of the molecule. This 

approximation will be good as long as the macroscopic fields 

vary over dimensions large compared to the molecular dimen-

sions. If necessary, the quadrupole and higher terms could 

be retained in equation (3) ; 2 however we will drop them in 

the rest of our work. Equation (3) gives the electric field 

at R due to the molecule at r. The average contribution to 

the electric field at R from all the molecules in the micro-

volume is given by: 

E ( R) = - ~ f dr N ( r) [ <q > 
v IR-rl 

+ <Jl>·~( 1 >] 
I R-rl · 

(4) 

where N(r) is the number density and <q> and <p> are the average 

monopole and dipole of the molecules in v. In substituting 

.. .. 
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these average quantities, we have assumed that averaging 

and differentiation are interchangeable: 1 

= <aG) ax 

3 

Taking the divergence of both sides of equation (4) gives: 

~·E = 4TIN<q> - 4TIN~<~>. 

In deriving this result we have used the identity: 

~ 2 ( l ) = -4TI~(R-r) 
I R-rl 

(see section VI B). We see that in matter, to our degree 

of approximation there is an added term: -~(4TIN<~>), this 

~s called the polarization charge. &1other way of expressing 

these relations is by defining the new field: 

D = E + 4TIP P = N<~> 

p' = N<q> ~·D- 4Tip 1
• 

Again N<q> and N<~> are the average charge and average induced 

dipole of the molecules in the volume v with N molecules per 

unit volume. p' is recognized as the free charge density 

and P is the polarization. To a first approximation 

P = Xe ( t)E 

where x is the electric· susceptibility tensor. This 
e 

approximation is generally valid for the electric fields of 

light in the one photon processes we will consider. 



4 

Taking the Fourier transforms we find: 

a.(w) = ~~ Xe (t) eiwt dt 

and a(w) is called the electric polarizability. By a com­

pletely analogous analysis for the magnetostatics: 2 

B = H + 41TM M = N<m> 

V'•S = 0 M = S(w)H 

where M is the magnetization, S(w) is the magnetic polari­

zability and m is the magnetic dipole. Finally we add the 

other two important equations: 

V' X E = 1 as -cat V' X H = 41T J + 1 ao 
c c at · 

We now have a complete description of the response of our 

molecular sys tern to light. In the absence of free charges 

and conductance: 

'V•D = 0 V'•B =0 

V' X E 1 as = -cat 'V X H 1 ao = c-a-t· 

For plane monochromatic wave solutions the last two equations 

are: 

k X E w = --. S c k X H w D 
c 

where lkl = nw/c is called the dispersion relation. c is the 

' . . 
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speed of light in vacuo and n is the refractive index, w is 

the circular frequency. k is the direction of propagation 

of the wave train and E, D, B and H are perpendicular to k. 

All these solutions for E, D, B and H look alike: 

tik•r + iwt 
E(r,w) = E

0
e 

Using the dispersion relation and the two curl equations 

n2 - l = 4rrE*·[P- c k x MJ/IEI 2 
w 

( 6 ) 

* denotes complex conjugate. This is a very important re-

lation since the complex refractive index is expressed in 

terms of the induced electric and magnetic moments. The 

refractive index contains all the information about the 
' 

system's optical response. The major difficulty will be 

calculating the P and M for an individual molecule. In 

practice one usually tries to express a and a in terms of 

molecular parameters. 

II. Internal and External Fields 

We will now discuss the influence of an external field 

on a molecule in solution. Again we will take a microvolume 

large compared to molecular dimensions containing one solute 

molecule. Now we ask; "What is the influence of the solute 

molecules outside this microvolume on the field of the 

molecules inside the microvolume? r:. According to equation 

(4) in the absence of free charge, the exterior field is: 
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E(R) - -11 f P(R) 11 l 
v' IR-rl 

dr . 

This integration is over the total volume of the solution 

excluding the microvolume. Using the identity: 11(AB) = 

( 11A)B + A( 11B) 

E(R) = -11 f 'iJ( P(r)) 
v' I R-rl 

dr + 11! 
v' 

P(r) dr 

I R-rl 

Applying Gauss's theorem to the first integral gives: 

E(R) P(r) • n dS 

IR-rl 
+ r ( -11· p ( r) ) dr]. 

Jv' I R-rl 

So, for any volume v' bounded by the surface E' the field 

external to that volume is 

E(R) = ( P(r) •n(R-r) dS 

}r:' I R-rl 
3 

+ J (-'iJ•P(r)) (R-r) dr 
v' IR-rl 3 · 

P(r) ·n is the surface polarization charge density and -11•P(r) 

is the polarization charge density. If we now return to our 

microvolume v bounded by surface E inside the macroscopic 

volume v' bounded by surface L:' • 

E( R) = (-11·P(r))(R-r) dr 
I R-r13 

P(r) •n(R-r) dS 

I R-rl 3 

+ P(r) •n(R-r) dS 

I R-rl
3 

(7) 
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where "v", the microvolume is excluded from the first integral. 

Since the polarization is constant over the microscopic sur-

facer, we can set P(r) = P(R). Making the following substi-

tutions: 

(R-r) = I rl f' 

n • P = I PI cos e 

dS = lr1 2 
sine de d~ 

the last integral in equation (7) becomes: 

12'IT! 'IT 
IPI 

0 0 
f' cose sine de d~. ( 8) 

So that we have defined a polar spherical coordinate system 

with P along the polar axis. If we· now express f' in terms 

of the right handed orthogonal cartesian system E
1 

x E
2 

= E 3 

with E 3 along the polar ax~s parallel to P: 

f = sine cos~ E1 + sine sin~ E2 + cose E 3 . 

Substituting this into the integral equation 8 we find that 

the integrals with coefficients E 1 and E
2 

vanish since they 

contain an odd power of cos~ or sin~. The result is thus 

. 4 'IT I I JUSt 3 P E 3 . But our coordinates were chosen so that P 

is along E 3 . Therefore the integral over the surface r in 

t . (7) ;s · t 4 1rP equ~ ~on ~ JUS ---3- This process is just a special 

case of space averaging of all the polarization contributions 

from solute molecules outside the microvolume (see section IV). 

Since the polarization is constant over the microscopic 

surface, 'il•P(r), (the microvolume) makes no contribution to 

the first integral, i.e. it is not necessary to exclude v 

from the volume integral since it makes no contribution. 
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Thus the field in the microvolume is: 

E(R) = !v' ( - 'i7 • P ( r) ) ( R- r) dr + f.. P(r)•n(R-r) 
dS + 

I R-rl
3 - I 3 R-rl 

but this is just the external fi.eld for the entire solution 

4rrP plus -
3

- S 
4rrP . 

0 Eint = Eext + ~· In later chapters we will 

be concerned with polymers in dilute solution. Within each 

microvolume containing one polymer we will have to consider 

the interactions and fields within this polymer, but not 

4rrP 
-3-

interpolymer interactions specifically. In the above expression 

the influence of other polymers in solution is essentially 

a continuum effect. 

III. Intrapolymer Interactions and Monopoles 

Inside the microvolume of a single polymer molecule we 

will generally ignore static fields and couple the optical 
. I 

transitions of the monomers dynamically. This will involve 

calculating .the energy of interaction of transition charge 

densities of the monomers. If we follow the method of the 

first section and expand the total charge densities in multi-

poles we find that the first nonzero term is the familiar 

dipole-dipole interaction: 1 

V .. = 1.1· •T .. •J.l. 
~J ~ ~J J 

T •. 
~J 

e.e. 
=~ 

3 e. ·R·. e.•R .. 
~ ~] J ~] 

R .. 
~J 

R .. 
~J 

5 

where e. is the unit direction vector of dipole 1.1· and R .. 
~ ~ ~J 
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is the vector between the centers of transitions i and j. 

There are no monopole terms since the monopole of a transi-

tion charge density is zero. The approximation will only be 

good if the distance between the transitions is large com-

pared with the distances over which the transitions are 

delocalized. This is equivalent to the assumption that 

!R-rl >> r' which was necessary in deriving equation (3). 

For many polymers this is not the case, and another approach 

must be found for calculating V ... We will follow the 
~] 

method of London 3 as elucidated by Hirschfelder and Haugh.~ 

The form of the potential is: 

f p . ( r . ) p • ( r . ) dr. dr . 
~ ~ ) J ~ J 

!r.-r.+R . . 1 
~ J ~J 

where p. and p. are the transition charge densities. This 
~ J 

expression is also the starting point for the dipole-dipole 

interaction given above. However if r. and r. are similar 
~ J 

in magnitude to Rij the multipole expansion may not even be 

convergent. Instead we divide each transition charge density 

into regions of like charge. The charge is integrated over 

each ·region (this is the monopole of the region), and placed 

according to the first moment: 

We then calculate v .. 
~] 

according to Coulomb's law: 

L s T . 
RJ R .. j v .. = q. qj I I R~ - + 

~] S,T ~ T ~J 
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Hirschfelder and Haugh have derived this expression by 

expanding the interactions between the regions in multipoles. 

The dipole terms in their expansion are zero due to the 

choice of origin in each region. The approximation is 

good as long as the distance between the monopoles is 

large compared with the size of the regions defining the 

monopoles. If this is not the case, the dipole terms are 

sti 11 zero, but higher moments become important. 

In deriving the classical theory we will always have 

the electric field of light interact with the electric 

dipole moments in our system. However, we will find it 

necessary to express intramolecular interactions with 

different approximations for the reasons outlined above. 

Because the future discussions are couched in polarizabili­

ties and local fields, we must be able to express the 

intramolecular interactions involving the dipole of i 

interacting with the field due to transition j. Since the 

energy of interaction of the dipole J.t. with the field E. is 
~ J 

Jl.•E., we ask, "What is the field at r. due to the transition 
~ J ~ 

j that wi 11 give rise to a given interaction V .. ? " Clearly: 
~] 

e.·E.(r.) 
~ J ~ 

v .. 
= _1:..J.. 

I ]J • I ~ 

(Sa) 

V .. is perfectly general. The only assumption .is that only 
~] 

the dipole of transition i interacts with the field of 

transition j. This is how the monopole-monopole interaction 

(or any other interaction) is introduced into the local 
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field theory. Another approach used by Johnson and Tinoco 7 

is to simply calculate . the monopole field and set: 

where 

V . . = J.l. • E l?0 n( r. ) 
J.] J. J J. 

s 
'"" q. LJ __ .......;;J.;;_--=-3 

s I R . . -rs I l.J 

(R . . -rs) . 
J.] 

The next step in this progression J.S to write the interaction: 

V = 11. ·Ed.ip(r.) = (T ) T . . ... ll·. . .•lJ. = ll· •. ··ll· 
J.] J. J J. J. J.] J ]. J.] J 

where the dipole field of the monopoles is used. This brings 

us full circle back to the dipole-dipole interaction. 

IV. Space Averaging 

To calculate some vector quantity of a molecule such 

as the polarization, we generally choose some convenient 

coordinate system fixed in the molecule. This will be 

called the internal or molecular coo~dinate system. 

Since we are interested in properties in solutions with 

random orientations, we will have to average our calculated 

quantities over all these orientations. In the absence of 

any preferred direction in space, the average of any vector 

quantity over random orientations is zero. For example, 

a solution of molecules with permanent dipoles will not 

have a net dipole moment unless there is an external field 

present. In the case of induced mo~ents there is always a 
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lab fixed preferred direction, for example in the case of 

electric polarization it is t~e direction of the external 

field. In our optical studies the lab fixed axes will be 

determined by the polarization and propagation directions 

of the incident light. If A, B and C are vectors in the 

internal coordinate sys tern, and E 
1

, E 
2

, E 
3 

are lab fixed axes, 

we will have to space average the terms: 

(9aJ 

(9b) 

Of course in t~~ing the space average A, B, and r are always 

fixed relative to each other. In typical discussions of 

space averaging 5 it is demonstrated that: 

<A•E. B•E.> 
1 0 .. = - A•B 

~ J 3 ~J 

<.A• E. B•E. c. e: > 1 
AxB•C = 6°ijk ~ J k 

where o .. is the Kroeneker delta and a .. k ~s zero if any 
~J . ~J 

of the i,j,k are the same and± 1 according to whether ijk 

~s an odd or even permutation of 123, i.e. o123 = 1, o213 = .-1. 

There are several ways to deduce these relations. They may 

be derived from ~he general properties of orthogonal trans­

formations between vector spaces, or by expressing the 

transformation in terms of Euler angles and integrating. 

Expanding the exponentials in equations (9a) and ( 9b) gives: 



oouo~t6u 7 0 7 
13 

(lOa) 

(lOb) 

We will now derive the expressions for equations (9a) and (9b) 

keeping the full exponential. In doing so we will follow a 

course intermediate between the brute force integrations and 

the vector analysis mentioned earlier. The necessary integrals 

can be found in section VI. To average (9a) we first take r 

along k: 

Letting <P A = <P A + <P, and cp 8 = ·cp 8 + <P we integrate over <P: , 

f 21T 
d<P 

0 

<A • e: l B • e: > 
2 e: 3 

f 21T 
d<P 

0 

l 
= 2 IAI 

= 

but I AI sine A and I B I sin e 8 are the projections of A and B 
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into the plane perpendicular to k, and sin(q, 8 -q,~ is their 

cross product so: 

.. 

Now it remains to average over all possible orientations of 

k relative to r with A and B fixed relative to r. We choose: 

k • r = I kl I rl cos e 

r·D = lrl D ' z 

We will integrate over e and <1>: 

(02TT (OTT Jo } 
0 

sine de d<P = 4TT 

<cos<t>> = <sin<P> = 0 

so: 

k•D ±ik•r 
< ---- e > = 

Zlkl 

~z £ n case e± lkl lrl case sine de/ j~ n sine cte 



0··. u~.·· '·i . ' u I 0 8 
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To evaluate equation (9b) we again begin by averaging 

aroW1d k. 

e: 1 ·A e: 1 ·B = sin8A sine 8 IAI IBI cos<PA coscjl 8 

<A•E 1 B•E 1>E
3 

= sineA sine8 IAI IBI J( 2~cos(~A+~)cos(~ 8+~)d~/2~ 

= sin8A sine 8 

= 

but 

and 

and cos(cjlA-cjlB) is .just the angle between the vectors: 

= (kxA)•(kxB) 

21 kl 2 
l 
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Now once again we average over all the orientations of k 

relative to r with A and B fixed relative to r: 

r = lrl e: 3 

k = lkiCsine cos¢ e: 1 +sine sin¢ e: 2 + cose e: 3) 

k • r = I k I I rl cos e 

where we have dropped any terms containing odd powers of 

• A. A. 2,.. . 2,.. 1 
sln~ or cos~. <cos ~> = <sln ~> = 2· 

A· B sin ( I k I I r I ) 
= 

lkl lrl 

= 

I k I I r I sine de 

7011".· } c sine de 

= 



0 U d iJ ,.;1 6 U I l 0 9 
( 

AloJ_ [sin( lkl I rl) _ (sin( lkl I rl) 
2 

lkl lrl <lkl lr1)
3 

cos c I k I I r I ))] 
Clkl lrj)

2 

cos c 1 k 1 . 1 r 1 > l 
<lrl lrl>

2 
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( 12) 

where Al is projected in the plane perpendicular to r and 

~~ is projected along r. 

If we take the limit of lkl lrl + 0: 

sin < I k I I r I ) 

lkl lrl 

iim = 1 

lkll rl +0 

= 1 - ---- + ••••. 
/ ' 3 ! 

1 [sin(jkl lrl)- lkl lrl cos(lkl lrl )] = 
lkl I rl

3 

• • • • J 

.tim 1 = 3 



and to first order ln lkl 

±ik•r 
tim <e: •A e:

2 
•Be > 

1 
lkll rl +0 

tim 
±ik•r <e: • A e: 1 •Be > 

1 
lkll rl +0 

1 = - A•B 
3 
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ilkl 
:: AxB•r 

6 

Al•Bl 1 1 AII•BII :: (1--) + 
2 3 3 

which is identical with the results in equations (lOa) and 

(lOb) . The result equation (11) has been published recently. 6 

Both (11) and (12) are necessary to calculate the optical 

properties of a system in which the exponential cannot be 

expanded. 

Tne previous workers were interested only in the optical 

activity~ but the simple absorption and refraction of a very 

large system will also stray from the dipole limit (expand-

ing the exponentials) . These equations are important if 

transitions within a system interact over distances comparable 

to the wavelength of light or if transitions are delocalized 

over large distances. Figure l~hows the functions: 

f :: sinx 
X 

g :: 3 X ( 
sinx ---

x3 
cosx] 

2 
X 

The use of equations (lOa) and (lOb) rather than equations 



0.' '0' 

Figure l:. 

t) 0 .sj 6 0 

s~n x ----­
x 

0 

3 [sin x 
3 

X 

COS X] ... 
2 

X 
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(11) and (12) will grossly overestimate the optical activity 

and absorption (or refraction) of an extended conjugated' system. 

V. A Simple Example 

We will now apply the principles discussed in the 

previous sections of this chapter to a simple solution. 

A model is necessary to derive the polarizability of a 

single solute molecule in a random solution. We take as 

our model a harmonically bound electron constrained to 

move in one direction and having viscous (proportional to 

velocity) damping forces: 

.. 2 • E iwt mx = -mw x - myx + ee: 1• e 
0 • 0 c 

( 13) 

x ~s the displacement from equilibrium, the dots are time 

deriv.atives, mw 2 is the restoring force constant, and my 
0 

is a dissipative constant which includes radiation damping 

as well as any other viscous damping. We have assumed that 

the oscillations are small in amplitude compared with the 

variation of the electric field so that: 

-ikr 
E e ==E 

0 0 

Our molecular reference frame is chosen so that the electron 

mqves along the e: 1 axis, m and e are the electron mass and 

charge. The steady state solutions to equation (13) are: 1 

( 2 2) . 
e wo -w - ~yw 

x = m ( 2 2)2 + 2 2 e:l·Eo · 
wo -w y w 
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Multiplying both sides by eE 1 we recognize the polarizability: 

2 ( 2 2) .. w -w - 1-YW 

a(w) = e 0 
E E 

m ( 2 2)2 + 2 2 1 1 w
0 

-w y w 

Since we have not considered any coupling between oscillators, 

this is a model for a nomoner polarizability. This simple 

complex polarizability is said to have a Lorentzian line-

shape. Its real and imaginary parts are related to each 

other by the Kronig-Kramers transforms: 

a = a 1 + ia 1
' 

2 frr a 1 (w) = -
rr 0 

w 1 a"(w 1
) dw 1 

(w1)2- w2 

a"(w) = _ 2rrJco a 1 (w 1
) dw 1 

wJo (w1)2 w2 

(l5a) 

(15b) 

jlindicates the principal part of the integral is taken. 

These relations hold for the real and imaginary part of any 

function which is the Fourier transform of a causal response 

function. A mathematically precise derivation of these 

relations involves complex analysis which is described 

elsewhere, 5 however the need for such relations may be 

argued as follows: A system that has a causal response 

function will depend on past but not future times. By 

Fourier transforming we are mapping this response from 

half a line (the real time line) onto the complex plane: 

a(w) = iwt e xCt).dt 
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we immediately see that a(-w) = a*(w), so that we are 

mapping from half a line onto half a plane. Since we do not 

create information by the Fourier transform, the real and 

imaginary parts of a cannot be independent. The Kronig-

Kramers relations are a consequence of the causality of the 

original response function. In this sense the Kronig-Kramers 

transforms are a Fourier transform of causality. We will 

find these transforms useful repeatedly for determining one 

part of a complex function from its companion. For example, 

absorption and refraction are related by the Kronig-Kramers 

transformS. Now back to our model system. 

The polarization is given by: 

P = N<a•E. > • 
~nt 

According to equation (9b) the average indicated by the 

angle brackets is just: 

solving for P: 

We can now determine the refractive index according to 

equation (6) with M = 0 since there are no magnetic moments: 

j1T lal 
41T 

1-9 lal 

I 
I 
I 
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4rr 
9 (l. 
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(16) 

We will assume that n" is negligible compared ton' and 

that n' = ns,the refractive index of the solvent. Taking 

the real part of both sides of equation (16) gives an express-

sion for the refraction, [R]. The extinction coefficient 

is derived as follows. Beer's law is: log(I /I) = gc.Q, where 0 . 

e is the extinction coefficient, ~ is the path length and c 

is the concentration. In passing through a sample, the 

electric field of the light looks like: 

if n is complex, n = n' + in" 

+in'w~/c -n"wi/c iwt E = E e e e 
0 

The real part of the refractive index determines the dif-

ference in phase velocity compared to vacuum. As we indi-

cated above it determines dispersive properties of the medium 

such as refraction. The imaginary part of the refractive 

index causes an exponential decrease in the field as it 

transverses the medium. It is responsible for absorptive 

properties of the medium. Since the intensity is proportional 

to IEI 2
: 

and 

I 
log Io = 



0 0 

e: = 
-2n"N w 

0 

2303 N c 
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(17) 

N is Avogadro's number and N is the number of molecules 
0 

per unit volume. 

Taking the imaginary part of both sides of equation 

(16) and substituting into equation (17) gives: 

e: = 
4rr N w 

0 

6909 N c a". (18) 

While we have used a simple model to derive the polarizability 

of this system, the rest of our calculation of the refraction 

and absorption is more general and will be used in subsequent 

chapters. The bracketed term in equation (18) involving the 

refractive index of the solvent is due to our inclusion of 

internal fields in solution. To simplify the rest of the 

derivations in this work, the internal fields will be ignored, 

i.e. E. t = E t' however the internal field and the solvent 
~n ex 

effects can always be added to any of our results if the 
~ 

result (for extinction) is multiplied by the term in brackets 

in equation (18). 

VI. Multipoles and Miscellaneous Mathematics 

A Taylor expansion is just: 

where: 

co 

f(x+h) = I: 
n=l 

1 n n -, f (x) (h-x) n. 
(19) 
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This is an expansion of f in h about x. We will use the . . 
first several terms of this expansion to approximate various 

functions through this work. We have used it implicitly 

in expressing the exponentials: 

ik•r e = 1 + ik•r + •••• 

Another important and useful example is the expansion of 

1/IR-rl in r about R: 

1 

I R-rl 

d .. d" b 2 
lVl 1ng y R : 

1 

I R-rl 
= 

1 

IRI 

1 

R 1--- +-
[ 

2 ( 2 r · R. r 
2 
)] 

1 1 2 

I Rj R2 

1 

" r2 )1/2 ( 1 _2r•R + 
I Rl R2 

1 (20) 

= 

( 21) 

where R is a u.11i t direction vector and jRI denotes length. 

Using the Taylor expansion of (l+x)-112 

(l+x)-1/2 = 1 3 2 l--x+-8 x 2 

this will converge as long as -1 < x < l and will converge 

rapidly if lxl << 1. Now we let x = and 



0 0 I 4 

3(r·R> 2 
+ 

21 Rl 2 
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- · ( I rl ) 2. . - . we have ~ncluded all terms through Subst~tut~ng 

IRI 
this result into equation ( 21) gives: 

1 = _1_ + r·R 

IRI ~ I R-rl 

We can now use this result to express the electrostatic 

potential at R due to the density p(r): 

V( R) 
= ft<r> dr +· R• jrp(r) dr + 

I Rl I Rl 3 

~(r)(3(r•R) 2 - r 2 ) dr 

21 Rl 5 .(22) 

The three numer-ators in equation ( 2 2) are called the mono-

pole, dipole and quadrupole moments of the charge distri­

bution p ( r) . Thus at sufficiept ly large distances we can 

express the potential due to a charge distribution .as a 

sum of moments or averages of the distribution (integrations 

over r) which are independent of the observation point R. 

Note the R dependence of each term. At very large distances 

the distribution acts as if it were concentrated at a single 

point thro~gh its monopole. The form of the quadropole given 

in equation (22) is not the most convenient form, but we 

will take it no further since we drop it in all of what 

follows. 

B. To evaluate iJ2 1 

I r-r' I 
ordinates with r'=O: 

we will examine it in polar co-
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for all r;iO 

However for r=O this is not well defined so we must consider 

a volume integral around the origin: 

where we have used Gauss's .theorem and 

iJ 1 = a 
ar r 

l l = - r2 . da = r 2 sine d8 dcp r 

so: 

This is true for any volume integral which includes the 

origin. fu1other way of writing this is: 

-47To(r) 

or finally with a shift of origin: 

c. 

2 
'iJ l = -47To(r-r') 

I r-r' I 

Integrals involved in space averaging 

cos 2
cp dcp = 7T 

{27T . 2 
} 

0 
sin cp dct> = 7T 

_. 
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1. 

r~ e±iacose sine de 
lo 

let a.=±ia and x=cos: 

-1 
-ea.x 

Ct. 

a. -a. e -e 

:: 2sina 
a 

2 • 

f cose e 

integrating by parts: 

3 • 

-1 
-xeax 

= 

a. 
1 

a. -a. e +e 
CL 

+ 

±iacose 

-1 
eCLX 

T 
1 

a. -a. e -e 
CL2 

= 
1 

sine d8 :: 

ea.x<L :: 
2 

CL 

= + 2 ·csina 
- t. 2 

a 

1
·~ 

2a ± iacose . a d8 cos e s1n 

integrating by parts twice: 

-1 

1 

:: 
CL 

-tl 
-1 

!) 
a. 

1 

~] 
a 

e±ia_e+ia 
:tia 

a.x dx X e 

29 



a -a 1 ~) (ea+e-a) = ( e -e ) (- + 
a 3 a 

2sina(!. ~) + 4cosa 
= a 3 2 a a 

4. 

. r 1T 2 ±iacose _ Jo sin e e sine de = 

using results 1. and 3.: 

= 4sina 
3 a 

4cosa 
2 a 

30 

2 
2 a 
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Chapter II 

Optical Activity 

I. The Physical Basis of Optical Activity 

This is not intended as a review, but merely as a 

sketch of previous work on optical activity. Optical 

rotation (or optical rotatory dispersion ORD) is the 

dispersive form of optical activity. Due to a difference in 

/phase velocity for right and left circularly polarized light 

in a medium, the plane of polarization will be rotated as 

the light passes through the medi.um. Right and left circular 

polarization are described by the + and - respectively: 

E = € E eik•r 
± ± 0 

An equal mixture of right and left circularly polarized 

rays gives a linearly polarized ray. 7he polarization 

direction depends on the phase difference between the rays: 

-io 2 ) e = (coso €
1 

- sino E 2 . 
12 

For a phase difference of 2o, the plane ~s rotated cl-ock­

wise through o as seen looking in to the light ray. (This 

is right handed for chemists and left handed for physicists.) 

To see how this phase difference comes about we will consider 

light propagating along the € 3 axis in the molecular frame : 

nw =- z c 
nw 

k = - € c 3 
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Let us start with plane polarization along e:
1 

(o=O). If 

the right and left handed components have slightly different 

phase velocities (real part of the refractive index), then 

after travelling the distance ~z: 

E = e: E exp[in w~z/c] . 
0 

We are for the moment ignoring any absorptive phenomena 

(the imaginary part of the refractive index). The phase 

difference is: 

or 

w (n - n )~z c + 

w (n+ _ n ) 
o = ~ (n - n )~z = 

1\ + - c 2 
~z . 

So that rotation comes about because of the difference in 

refractive indi~es for right and left circularly polarized 

light. We can extend this to include absorptive phenomena 

by letting the refractive indices be complex, and considering 

a complex rotary parameter: 

[aJ=='E..cn -n) c + n = n' ± ± 

Taking the real and imaginary parts: 

9N 
[~l = ---· -0 ~ (n' - n') 

rrN c + 

[6] 
9N 

= 0 ~ (n" - n") 
rrN c + 

2 -w (n" 
2303c 

n") + • 

+ 

(1) 
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[¢] and [8] are the molar rotation and ellipticity in units 

-1 -1 
of degrees-mole -liter-meter . CD= e 1 -eR' is the differ-

ence in extinction coefficient for right and left circularly 

polarized light (see equation I.l7) or the circular dichroism 

(CD). Obviously in equation (~) [8] and e 1-eR are just 

different units for the same phenomenon. The combined ab-

sorptive and dispersive effects give r1.se to elliptically 

polarized light, which is an unequal mixture of right and 

,left handed rays. The rotation is the angle between the 

initial plane and the major axis of the ellipse. The 

ellipticity (and thus the CD) can be related to the ratio 

of the major and minor axes of the ellipse. 

II. Quantum Theory of Optical Rotation 

In the past, most efforts have been to calculate [¢] 

at wavelengths far from ahy absorption bands. Ari. expression 

due to Stephens, 2 derived from quantum field theory of 

scattering is a more general form of the expressions used 

by Rosenfeld, 3 Condon, 1 and Kirkwood.~ All of these ex-

pressions involve a time dependent first order perturbation 

expansion of the interaction between the system and the light 

in the eigenfunctions of the unperturbed system. This is not 

to be confused with the time independent perturbation methods 

used in later sections to express a polymer Hamiltonian as 

a sum of monomer Hamiltonians plus inter-monomer interaction. 

Here the unperturbed Hamiltonian is the total polymer 

Hamiltonian. For rotation about the e 3 ax1.s, Stephens 
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.w .w 

L: 
< 0 I p 

2 
e -z- cr 31 A>< A I p 

1 
e -z- cr 3 I 0 > 

A 

\) - \) 
A 

vA+v 

( 2 ) 

his Planck's constant, v = w/271', p
1 

is the e1 component of 

the linear momentum, p
1 

= p·e 1 , and r 3 is the e 3 component 

of the position. If we expand equation (2) to first order 

in r and take the average: 

we find: 

where: 

and 

[o J = S'TI'N L <OiuiA><AimiO> 
31'ic A 

<Oill!A> = i e <O IP I A> 
2'TI'mv A 

m = _2e (rxp). 
me 

2 
\) 

2 2 
vA -v 

This is just the Rosenfeld result, and the expansion of the 

exponential is just the Rosenfeld approximation .. We assumed 

that w/c << r or A >> 2'TI'r. Im(<OilliA><AlmiO>) is called 

the rotationai strength of transition A. If we sum over 

all transitions: 

I: R = I: I m <a Ill! A>< A I m I 0 > = Im < 0 Ill • m I 0 > = a ( 3 ) 
A A A 
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We have used the identity r IA><AI = 1 to contract, and 
A 

the expectation value of ~·m in the ground state is real. 

Equation (3) is called the rotational strength sum rule. 

The difficult quantum mechanical problem is now to find 

the quantities such as~' m, and v in equations (2) or (3). 

This brings us to the not yet age old problem of finding 

useful wavefunctions. Also, equation (2) is derived based 

on scattering theory. This means that it is only applicable 

far from any absorption, and it treats only electronic line 

spectra. 

III. Kirk~·10od 's Polarizabili ty Theory 

For real polymer systems in solution, we will need to 

treat lineshapes,'i.e. how to let the monomers interact over 

a range of frequencies rather than just one. We will 

examine two semi-classical attempts to deal with these 

difficulties. These examples are instructive because of 

the semi-classical approach to the problems of deriving 

rotational strengths and bandshapes. 

The basic assumptions of semi-classical theory is no 

·electron exchange and no electron overlap. This allows 

the electrons to be assigned to definite monomers in a 

polymer or definite groups in a molecule. The Hamiltonian 

for the polymer is written as the sum of monomer Hamiltonians 

plus inter-monomer interactions, the wave function is written 

as a product of monomer wavefunctions, and all the inte-

grations become localized. 
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According to Kirkwood:~ 

<OI~IA><AimiO> = E {<OI~- IA><Aim. IO>} 
l l . l 

+ i 'IT E. \)A < 0 I J.l· I A> •R_.X<A I J.l . I 0 > 
c j#i l J J 

+ L: 
j#i 

<0 I ~-IA><Aim·l 0> 
l J 

or 

RA :: L: { Ri . A 
l 

Re [ < 0 I~. I A>x <A I J.l. I 0 > • R .. J 
. l J l] 

+ Im[<OI J.l·IA><Aim·l 0>]} 
l J 

where R .. is the vector between the centers of monomers 
l] 

(4) 

i and j. The subscript i in the electric magnetic dipoles 

refers to electrons localized to monomer i. ~vri ting the 

polymer Hamiltonian as: 

H :: E H. + E 
l i j>i l 

v .. 
l] 

where v .. is the interaction between monomers i and j (we 
l] 

will consider only dynamic coupling; for static field, see 

reference 5). The wave functions may be written as products 

of the eigenfunctions of the H.: 
l 

IO>::: IT IO>. 
. l 
l 

H. IO>. :: E IO>. 
l . l 0 l 

Kirkwood dropped the first and third terms in .equation (4) 

and expressed the second term usi~g time independent pertu~-

bation theory: 
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2 V. . b\! \!bR .. •lJ. bXlJ. = _ __..! I: I: I: lOa ]0 a l] ]0 lOa 

c l j#i a#b h(\!. 2
-\! 

2 ) 
o a 

( 5 ) 

Kirkwood went on to approximate V. by a dipole-dipole 
lOa j o0 

interaction: 

We now have an expression for RA' the polymer rotational 

strength, in terms of the '~-~ioa and \!a' the monomer transition 

dipole and transition frequency. These can be measured 

empirically. The transition direction, may be studied by 

crystal reflectance, 6 stretched film studies, 7 or fluorescence 

depolarization. 8 The square of the transition dipole is 

proportional to the integrated absorption band, and the band 

center may be taken as \!a. Of course, the polymer rotational 

strength also depends on the geometry of the polymer through 

the R. . and V. . b. 
lJ lOa JO 

Kirkwood's polarizability approximation deals with 

contributions of bands· in the far ultraviolet (UV). (This 

was Kirkwood's primary interest in fact.) The far UV 

transitions (the lJ. bin this case) are all placed at one 
]0 

frequency, \! • Then equation (5) becomes: 
0 

where ejob is the unit direction vector of Jljob' and 

v .. 
G .• = 
l] 

l 

·. 
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0 0 u 4 6 7 ~ 0 

but the far UV polarizabili ty is just: 9 

2v ll· bll· . 
a(v)=ra =Er o]o JOD 

J. j b h(v 2-v 2 ) J 0 
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The summation over b includes only the far UV transitions. 

If monomer j has the three principal polarization axes: 

(aj)rr r=l,2,3; then for the far UV 

3 
= rr r E ' E v Ill· I 2 G .. (a. (v ) ) xe. • R. . C 6) 

c i j~i r=l a loa lJ J a rr l lJ 

If we had really good polarizabili ty data tve could substitute 

each polarizability into equation (5) without placing all the 

far UV transitions at v . In fact, the polarizability data 
0 

used by Kirkwood was Na D line electronic polarizability 

and equation (6) is appropriate. Kirkwood went on to substi-

tute the polarizability of lJ. into equation· (6) as well. 
. lOa 

He was interested in the contribution of the far UV only . 

. Let us examine the results in equations (5) and (6). 

We developed only the second.term in equation (4). Although 

the first term in equation (4) is just the monomer optical 

activity, it is important to realize that it will be modi-/ 

fied by interactions with other groups; i.e., the perturbed 

wave functions must be used to calculate R.. We have chosen 
) l 

to ignore the first and third terms in equation ( 4) because 

we are primarily interested in electrically allowed magnetic-

ally forbidden transitions. (Tinoco later developed the 

theory to include magnetic transitions as well as static 

field effects. 5
) We will include magnetic transitions in 

our development in chapters III and IV. 
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Equations (5) and (6) are first order in the potential 

V. . b' Although a dipole-dipole interaction was used by 
lOa, J o 

Kirkwood, more general potential functions may be used (see 

Chapter I, section III). The transitions only couple at a 

single frequency, i.e., the theory is time independent. We 

can calculate rotational strengths but no dispersion infor-

mation. The Kirkwood theory does, however, allow us to 

calculate far and near UV contributions to the polymer 

rotational strength based on the empirical line spectra 

and polarizabilities of the monomers and the geometry of the 

polymer. 

IV. Johnson-Tinoco Theory 

In an effort to calculate the. CD of a polymer, Johnson 

and Tinoco 10 first extended the theory to include degenerate 

near UV transi·tions. Degenerate perturbation theory (exciton 

theory) is used to calculate the near UV contribution to the 

rotational strength. There are now excited states: 

= r c .kiA.> 
i al l 

I A.> = 
l .. 

I a>. 
l 

IO>. 
l 

II I 0 >. 
. J 
J 

Tnere will be a rotational strength contribution, ~ from 

each state I Ak>: 

Rk = -2c1T \lk r <0 I J.l· I A >x<A.. I J.l·l O>•R .. 
. . l k -1< J l] 
l,] 

(7) 
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The first term is the rotational strength due to the inter-

action of the degenerate near UV transitions, and the second 

term is the rotational strength due to the interaction of 

the near UV transitions with the far UV transitions a. In 

the polarizability approximation 

where Ebk is the field due to all the monomers in the k 

transition: 

EbR. is the field at rj due to the transition b on monomer R.. 

Using the exciton coefficients: 

RJ\: = -rr 
t t ciak cjbk Rij.llioaxlljob 2c \). 

i,j a,b ~oa 

( 8) 

R . 1T r r r ciak CR.bk \) . Eb R. ( r . ) • a . x ll . • R .. = 
Bk c i,j R. a,b ~oa J J ~oa .1 J 

a includes the far UV polarizability only. The circular 

dichroism (CD) is given by 

we have assumed all exciton bands have the same shape. 
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-Expanding f(v-vk) ln v about v: 

e:L -e:R · - afCv-v> 
:: E R f(v- v)- E R {vk-v). v k -k k -k av 

Because of the sum rule: E RAk = 0 

using the orthogonality of the exciton coefficients: 

= 1T f(v- v) 
c 

E E v. E. (r.)•a..x)l. •R ..• 
lOa la J J lOa lJ i,j a 

The exciton coefficients are solutions to the eigenvalue 

problem: 

v. + 
lOa (9) 

Thus ( \) -vk) is first order ln V, and since R
8 

is already 
k 

first order in V .. =E. (r.)•a.llll·l 
lJ .la J J J 

afCv-v) ~ = ~ Cv-vk) RA 
av k k 

agaln using the orthogonality of the Ciak equation (10) 

becomes: 

and the CD is: 

(10) 

+ 1TV E E \) . E . ( r . ) . Cl.. X ll. • R.. f ( v -v). ( ll) 
c .. a loa la J J lOa ·lJ l,J 

·. 
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Let us reexamine this derivation and follow closely 

the approximations concerning V. 'b' He separated the 
laJ 

rotational strength into two parts in equation (7). The 

first part due to the exciton coupling of the near UV was 

solved to zero order in V. T'ne second part expressed 

rotational strength in the near UV due to coupling with 

the far UV using Kirkwood's theory which is first order 

in V. 

Likewise the bandshape f(v-vk) was expanded .to first 

order in vk (which is first order in V). f(v-v) is zero 

a f(v -v) 
order and av (v-vk) is first order in V. Taking the 

product of the band shape and the rotational strength, and 

keeping only -first order terms gives equation (10). Note 

that RBk is just the Kirkwood result with the interaction 

written explicitly in terms of the field and the polariza­

bility. f(v-v) is taken to be the absorption spectrum of 

the monomer in the near UV. As before a is a static, 

frequency independent polarizability. The major advantage 

of the Johnson-Tinoco theory is that the polymer CD bandshape 

can be calculated from the monomer absorption spectrum and 

its first derivative. Also, the theory is essentially 

classical since the exciton coefficients do n6t appear in 

the final result. In other words we need not solve the 
~ 

eigenvalue equation (9). 

As we mentioned earlier,this theory is first order in 

V. However, the question of time dependence is not as clear. 

The far UV bands are centered at a single frequency and 
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interact with the near UV only at.that frequency. The near 

UV bands interact and their degeneracy is split. This 

splitting is accounted for by the Taylor's expansion of the 

near UV bandshape, but the bands do not really interact at 

more than one frequency (the original v. ). (In this sense 
~oa 

the bandshape is added in a rather ad hoc fashion.) We 

will have more to say about this when comparing· Johnson-

Tinoco theory with our classical result. 

I 

.. 
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Chapter III 

De Voe's Classical Polarizability Theory 

I . Derivation 

In this section we will reproduce the local field theory 
1 z 

of De Voe. ' It is an extension of the classical procedure.s 

outlined in Chapter I. 

According to equation I.6 we must find P and M to 

calculate the optical properties of our polymer solution via 

the refractive index. The electric vector of the light is 

E(r) =E -ik•r e 
0 

(1) 

and 

p -1 r: <lJ. eik•ri> = v 
i ~ 

(2) 

M 
-1 r: <m. eik•ri> - v 

i ~ 

where the sums are over all transitions in the microvolume v. 

r. is the center of the i transition, and the angle brackets 
~ 

denote space averaging (see Chapter I section IV). Since our 

microvolume contains only one polymer molecule, the sum is 

over all the transitions in the molecule. The heart of the 

classical (De Voe 1 ' 2 ) theory is 

lJ. = a. [E! ( r. ) • e. 
~ ~ ~ ~ ~ 

m. 
~ 

=! [E'•e.]e! c ~ ~ 

a. = 
~ 

b.a. 
~ ~ 

Si • - H(r.) •e! ]e; c ·. ~ ~ ... 

b. = 
~ 

c 

i 
Im 

jm. I 
~0 

IJJiol 

( 3a) 

( 3b) 

(3c) 

. . 
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I m. I and I J.l· I are the .electronic electric and magnetic 
~0 ~0 

dipole magnitudes, an.d e. and e! are their respective unit 
~ ·~ 

direction vectors. E! and H. are the loc::~l electric and 
l ~ 

magnetic fields. ai is a scalar (we assign single oscillators 

to the electronic transitions) complex frequency dependent 

polarizability. It includes the absorptive as well as the 

dispersive behavior of transition i. In fact: 

a. (w) = a! (w) + ia'.'(w) 
~ ~ ~ 

(4) 

a'.' (w) =- 6909N c· 
41TN 

-e:.(w) 
~ w ~ 

0 

N ~s Avogadro's number and e:(w) is the molar extinction of 
0 

a solution of monomer transitions with N transitions per 

unit volume. \·Je calculate a!(w) from a'.'(w) using the Kronig-
~ l 

Kramers transforms (equations I.lSa and I.lSb). Actually 

equation (4) is the same relationship we derived in Chapter I 

section V, equation I.l8. However,now we are generalizing 
' 

a'.' ( w) to be an empirical function, that is the monomer 
~ 

absorption bandshape. In our simple model a~(w) was a 
l 

Lorentzian line derived from an harmonically bound damped 

electron. We will give up such a detailed mechanical model 

of the electron motion in favor of the generalized empirical 

definition of the monomer polarizability (equation (4)). 

H' and E' in equations (2a) and (2b) are the local fields. 

E' has contr'lbutions from the external fields, the internal 

fields of the solution outside the microvolume, and the 

fields due to the other transitions in the microvolume: 



E 1 (r;) = E(r.) + 4
31TP- [G .. ll··e.]e. 

~ ~ ~] } J ~ 

We have assumed that the field at r. is linear in the 
~ 
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( 5 ) 

dipoles of the other transitions. Comparison with equation 

I.Ba shows that: 

or: 

e.•E.(r.) = G •. 1)..1.1 
~ J ~ ~] J 

Gij = 
v .. 
~] 

If we assume plane monochromatic solutions and approximate 

H 1 by B then equations ( 2 a) and ( 2b) are: (see section I of 

Chapter I) 

ll· = a . [E 1 
( r . ) • e . - ib. kxE•e! ]e. ( 6 a) 

~ ~ ~ ~ ~ ~ ~ 

iwb.a. 
m. = ~ ~ E 1 (r.)·e. e! (6b) 
~ c ~ ~ ~ 

In order to simplify the following equations we will drop 

the 4
; P term from the local field. As was shown in 

Chapter I section V, this term involves only environment.al 

solvent effects. Substituting equation (5) into equation 

(6a) 

ll· = CL.[E(r.)•e.- r G .. ll··e.- ib. kxE•e 1 ]e. 
~ ~ ~ ~ j ~] J J ·~ i ~ 

multiplying by e. ' 
~ 

dividing by ai and bringing the interaction 

term to the left: 

0 .. 
r ll··e. [ 2.:l. +G .. ] = 
j J J CL i ~] 

E(r.)•e. 
~ ~ 

ib. kxE•e! 
~ ~ 
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solving this set of equations 

lJ. •e. = E A .. [E(r.) •e. -
~ ~ . ~J J J 

J 

where the solution matrix is 

A .. 
~J 

cS. • -1 ' 
= [ ...!..1+ G .. ] 

a. ~J 
~ 

ib.nw 

c 
kxE•e!] 

J 
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(7) 

( 8) 

6 .. is the Kroneker delta. Substituting equations (7) and 
~J 

( 1) in to ( 2 ) : 

e ik•rJ·> = <~ A [ E <lJ. ~... . • e. • e. -
ib.nw 

~ kxE •e! e.] 
o' ~ J 

ik•CrJ·-r·) e 1. > 
J i ~J ~ 0 J c 

( 9 ) 

To do the space averaging we will assume that all intra-

polymer distances are small compared to the wavelength of 

light: 

k ( ) k 1 e ik • rl.· 3. - 1 + .k · r.-r. = ·r .. << ; 1.- •r .. 
J 1. ~J 1.] 

This allows us to use equations I.lOa and I.lOb. We could, 

however, extend the theory to arbitrarily large polymers 

by using equations I .11 and I.l2 which average over the 

entire exponential. Upon averaging: 

(lOa) 

1
3 

EA .. [e.•e. E + c!.
2 

e.xe.•r .. - ib. e!•e.) kxE] 
• 1.] ~ J 0 1. J 1.] ~ 1. J 0 
~ 

iw = -
3 

c E A; 
3
. e ! • e . b . E .. 

i . J 1. J 0 
(lOb) 

When we subs ti tu te in to eq·uation I. 6 the contribution fi'om 
I 

(c/w)kxM will be identical to the contribution from the 



magnetic dipoles in equation (lOa): 

4rr 1 
3 

i: A .. [e.•e. + C-2 e.xe.•r .. 
. . l] l J . l J l] 
l,J 

2ib. e!•e.) 
l l J 

so 

kxE 
--

0
].. (11) 

IE I 0 

To find the absorption we take the imaginary part of both 

sides ignoring terms first order or higher in k (the ab-

sorption is zero order in k) 

2n'n" = 4rr i: 
3 i,j 

Im(A .. )e. •e. 
l] l J 

we will assume that n' = 1. (This is part of the environ-

mental solvent influence so we will drop it.) 

4rr nll = 6 i: 
i,j 

A .. e. •e. 
l] l J 

and using equation !.17: 

-4rrN 
E = 69G9~ ~ Im(Aij)ei•ej . ( 12) 

To analyze the CD 2 = EL -ER =E _ -E+, we must find n± -1 where 

± refers to right and left circular polarization (see 

Chapter II section I). 

kxE = +ikE ± ± 

where k = !kl. With these substitutions equation (11) is: 

2 
n -1 = ± 

and 

4rrk 
3 

2: A .. [e. •e. 
. . l] l J 
l,J 

2 2 n -n - . + 
= 4rrk i: -3-

i 'j 

2b. e!•e.)k] 
l l J 

A .. ( 4b. e! • e . - e. xe . • r .. ) . 
lJ l l J l J l] 

(12a) 
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Dividing by n +n+ = 2n and using k = nw/c: 

"Again with equation I .17, 

4rrN w2 

= 6 go ~~r 2 ~ 
i 'j 

Im(A .. )(e. xe, •r .. 
~J ~ J ~J 

51 

4b. e!•e.) (14) 
~ ~ J 

We have chosen to calculate the abso.rptive optical prope:rties 

of our polymer, but by a completely similar method we can 

derive (see Chapter I section V and Chapter II section L) : 

4rrN 
[R] = 0 L: """9'"N i,j 

[ <P J = 

Re (A .. )e. •e. 
~J ~ J 

(15) 

Re ( A . . ) ( 4 b . e ! • e . - e . x e . • r . . ) . ( 16 ) 
~J l l J l J l] 

There is. an optical activity contribution from the coupling 

between electronic transitions, (as in the Kirkwood and 

Johnson-Tinoco theories) and a contribution from coupling 

between electric and magnetic transitions. 

These equations give us another method of calculating 

polymer optical activity from monomer properties. First 

the monomer absorption spectrum must be resolved into bands 

with characteristic directions. Each such band is assigned 

an oscillator. The complex polarizability of this oscillator 

is determined from equations (4) and I.lSa. We determine a data 

for the far UV transitions from the real refractive index 

corrected for the near UV bands: 
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The assignment of these far UV polarizabilities is discussed 

~n more detail in Chapter V. For a given geometry, G .. may 
~J 

be calculated from the empirical transition dipoles, or 

from ab initio molecular orbital transition densities. Al-

though G .. is frequency independent, the matrix~ A in equation 
~J 

(8) must be inverted at each frequency. 

The De Voe theory is all order in the intermonomer 

interactions. Also, the use of complex frequency dependent 

polarizabilities ~s a consistent treatment of both absorption 

and dispersion. In other words, ignoring electron exchange 

and overlap, 3 this theory is time dependent and self consistent. 

This is just the time dependent Hartree approximation. 4 

II. Comparison with the Kirkwood and Johnson-Tinoco Results 

For comparison with perturbation theories we will ex-

pand A .. to first order in G. . . Let [a] . . = a . . a., 
~J ~J ~] ~] ~ 

[a-l] .. = a . . Ia., A= [a-l + G]-l, [a-l + G]• [a + x] = 1 
~J ~] ~ 

where x is some matrix first order in G: 

we have included only the terms first order in G,. This 

implies that 

-1 
a x = - Ga 

or 

x = aGa. 
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Thus 

A .. = a.[o .. - a.G .. ]. 
~J ~ ~J J ~J 

( 16) 

With this result and dropping the magnetic terms in 

equation ( 14) : 

-4rrN
0 

w2 
= 6909N -c2 !: 

~,] 

G . . Im (a. a . ) e . xe . • r . . . 
l] l J ~ J l] 

(17) 

Now, 

Im(a.a.) = a!a~ + a!a~ 
~ J ~ J J l 

and 

G .. = G .. e. xe. • r .. = e. xe. • r .. l] ]~ ~ J lJ J l J~ 

Using these and equation I.l7' 

2w !: e:.(w) !:a!(w) G .. e. xe. • r .. e: L -e: R = c ~ . J ~J ~ J ~J l J 
(18) 

[ q, J = 
-6N w2 

0 
- 2 !:!: (a!(w) a!(w) + a'.'(w) a'!(w))G .. e.xe.•r .. 

N' . . l J l J . ~] l J l] . c ~ J 
(19) 

from the Kronig-Kramers transform we see: 

a r (w) = 2 w' a"(w')dw' 
(. 1) 2 2 w - w 

- -
Tf 

For comparison with Kirkwood we take: 



or 

Ct.'·' 
21T2 

= ~ IJJ · I 1. 1.0 

The transform gives 

et.! 41T w' = h 1. 2 w. -1. 

Far from any absorption 

where 

[tt>J 

R. = 
1. 

= 
-6No 

N 

-w. 
1. 

c 

2 
w 
c 
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2 

IJJ. I 2 
2 1.0 

. 
w 

(20) 

et.!et.! >> Ct.'.' Ct.'.' ' and 
1. J 1. J 

2 R. (4rr) 
l: 

1. 

2 h 2 
l w. - w 

1. 

2 
w · Ill. I · 

( J ]0 ) • 
2 2 

e. xe. r ... 
( . ) 1. J 1.] w. w 

J 

If we place all the llj at a single far UV frequency, w
0

, 

this result is identical to Kirkwood's theory. Thus if we 

are interested in rotations far from any absorption, we 

need no information about the bandshape. 

For comparison with the Johnson-Tinoco (J-T) theory, 

we again place all the far UV transitions at w and place 
. 0 

all the near UV transitions at wa. In the J-T theory, the 

CD consisted of 2 parts. The first part, due to coupling 

with the far UV transitions had the shape of the near UV 

absorption spectrum of the monomer. We can substitute 

equation· (20) into equation (18) 

EL -E:R = 2w E s.{w) i: 4rr I 12 ( 2wo 2) G .. 
c 1. h lJJ·o l.J 

i j w1 - w 
e. xe. • r .. 

1. J 1.] 
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instead of including the frequency dependence of the far 

UV polarizabili ty a' (w·), Johnson and Tinoco assumed that 

55 

a'(w) = a'(uJa). Also they used a monopole fieldinteraction 

for G. . . Hm·!ever, these differences are rather minor and 
~] 

the prediction of bandshape is very similar: far UV tran-

sitions coupling with the near UV will give rise to CD 

with bandshape similar to the near UV extinction. 

For the totally degenerate near UV transitions, 

Johnson and Tinoco took the derivative of the absorption 

-curve as the CD bandshape. According to our derivation 

the bandshape should be the product of the near UV ex-

tinction and its own Kronig-Kramers transform. The use 

of the derivative bandshape rather than equation (20) 

becomes more questionable if we consider non-degenerate 

transitions. Thus De Voe theory, '--even in first order, 

gives a much better description of coupling between tran-

si tions at different frequencies intermediate between the 

totally degenerate and widely seperated cases considered 

by Johnson and Tinoco. If the coupling is sufficiently 

weak, the first order De Voe theory may be useful in in-

terpreting experimental CD spectra (see Chapter VI). In 

this order of approximation the frequency dependence and 

the geometry dependence of the CD are well separated. 
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Chapter IV 

Classical Theory for Infinite Helical Polymers 

I. Introduction 

In this chapter we will apply helical symmetry and 
' . 

periodic boundary conditions to the classical theory derived 

in Chapter III. The classical result as it stands cannot be 

applied to extended systems. Recall that we assumed that 

all intrapolymer dimensions were small compared with the 

wavelength of light. This assumption will be bad for a 

very long helix, and we will base our symmetry arguments 

on an infinite helix. We will therefore rederive the 

classical theory for large helices. 

II. Helix Geometry and Helical Symmetry 

Helical geometry, and the helical point subgr~up are 

discussed thoroughly by Rhodes. 1 The emphasis here is 

developing the bare essentials necessary for our purposes. 

Consider a right handed orthogonal system of coordi-

nates with unit vectors: 

A right-handed helical lattice is described by a translation 

along e 3 by 6.z and a rotation about e 3 through e. This 

primitive screw operation may be abbreviated: 

[R(e>lt:.zJ 
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where R(8) is the rotational part and ~z is the translational 

part of the screw operation. Figure 1 shows such a helical 

lattice. The E1 , E2 , E 3 coordinate system will be referred 

to as the molecular reference frame. 

If all the lattice points are equivalent,then the screw 

operator is a symmetry operator. For all the lattice sites 

to be equivalent, they must all be equidistant from the 

ends of the helix. This -implies that the helix is un­
( 

limited in length or has an arbitrarily large number of 

lattice points N. It is presumed that the ~+ 1 lattice point is 

identical to the first lattice point. This is the periodic 

boundary condition. Another way to envision the periodic 

boundary condition for a long lattice is to begin with a 

circular array with lattice points equally spaced on its 

circumference. This system is strictly periodic. If there 

are N lattice points, the N+l lattice point is identical 

to the first lattice point. If we allow the radius of the 

circle to grow, the circumference will include more and 

more lattice points and the curvature of the circumference 

will decrease. v.Je can make the curvature between lattice 

points arbitrarily small by allowing the radius (and thus 

the number of points) to grow arbitrarily large. So we 

can make our circular periodic array identical to a linear 

periodic array if the number of lattice points is sufficiently· 

large. 

In the language of group theory, there are 0f operators 

forming the helical point symmetry group whose typical 
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Figure 1: Relationship between unit cells in the 

molecular reference frame. 

: 
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element is: 

[RCe>l~zJ~ = [RC~e>l~~zJ ~ = {1,2,3," .. ,N} . 

All the operators commute, and the periodic boundary con-

dition is: 

where E is the identity operator. More succinctly, the 

group is P..belian and cyclic. These group attributes insure 

that there are N one-dimensional representations of each 

group opere.tion, namely the N Nth roots of one; 

e xp ( 2 rri j IN) j = {1,2,3,"",N}. 

The representative of the £ th operat9r in the j th represent a·· 

tion is: 

r.[RCe>l~z] = exp(2rrij£/N). 
J 

These irreducible representations will be used to construct 

normal modes. 

Consider the two-dimensional vector in figure 2. He 

will examine what happens to its components when the x and y 

axes are rotated through e. According to the figure: 

x 1 = xcose ysine 

y' = xsine + ycose. 

Instead of viewing this as resulting from a counter clock-

wise rotation of the axes we may regard it from the equivalent 

standpoint of a clock~;.;rise rotation of the vector itself. 

With this result.we see that a spatial representation of the 



Figure 2: A change ~n coordinates caused by rotating 

the axes through e. 
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rotation operator in the molecular reference frame is: 

cos e -sin e 0 

R(e) = sin e cos e 

0 0 1 

An equivalent but more convenient form for our purpose is: 

R( 8) 

where: 

e: = ± 

ie 
= e e: 

1 ( £._]_ + 
12 

- ie e: + e + e: + 

= 1 

are the right and left circular unit vectors. t~Je will consi._ . ..::r 

more than one transition per monomer and perhaps more than one 

monomer at each lattice point. It is more reasonable, there-

fore, to spe~< of some volume with art origin and coordinate 

system defined for each lattice point. For the rotation 

operator in the representations given above, the origin in 

each unit ce 11 must lie on the e: 3 axis. V.le will choose the 

coordinate system in unit cell 0 to coincide with th,e mo-

· lecular reference frame. The coordinate system for unit 

cell~ will have its origin at the poi~t (O,O,~~z) and the 

system will be rotated through ~·6 about the e: 3-axis. for 

any direction vector v in unit cell 0 there is a corres-o 

ponding vector v~ in unit cell 1. With respect to the 

molecular reference frame; 

~ = R v . 
0 
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Similarly for any corresponding position vectors r 1 and r
0

: 

III. Derivation 

As we mentioned earlier (see Chapter III), in deriving 

e: and e:L-e:R we will assume that the internal field is equal 

to the external field. This amounts to ignoring solvent 

effects in the extinction and CD: 

Cns2 + 2)2 

e:s = 9ns e: 

where ns is the solvent refractive index and e:s and (e:L~e:R)s 

are the extinction and CD of the solution. 

We first relabel equation III.6a with Arabic unit cell 

indices and Greek indices labeling transitions within the cell, 

e.g. lJ tcr is transition cr in unit cell L This gives: 

Nn 
Ptcr·eto = acr{E(rta)·eto - iba kxE(r1a)·eio - EE 81omTPmT·emt}. 

mt 

There are Nn equations in the Nn unknowns p10 . Note that a 

and b do not depend on unit cell but only on the nature of 

the transition. Taking linear .combinations of these equations 

according to the irreducible representations we obtain the 

normal mode equations: 
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= 

a Nn 
_q_ 2: ex p ( 2 rr i j 9. IN J { E (r 11 cr) • e 11 cr - i b k x E ( r ) • e ' - E 2: G lJ • e } 
H 11 "' "' cr · icr 9.cr icrmT mT mT 

"' m't 

dividing both sides by a and bringing the interaction term cr 

to the left: 

l.l • e 
~ E exp(2rrij9./H)( icr icr + 
.~ 9. acr 

EE G l.l •e ] = icrmT mT mT · 
m'! 

;IE exp(2rrij9./N)[E(rn )•en - ib kxE(r )•e'] 
•' i ,cr ,cr cr · icr icr 

examination of the normal modes shmvs that: 

with this substitution: 

1 0 
Eexp[2rriji/~] E lJ ·e {---22 + E G

11 
exp[2rrij(m-9.)/E]} ·= 

N i '! iT iT a 0 m ,crmT · 

Solving this set of N~ equations we obtain: 

l.l (j)•e 
T T 

The coefficients A~cr are obtained by inverting the following 

nxn matrix: 
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0 
= {~ + t Gn exp[27Tij(m-0/N]}-l, 

Ct. x.OmT a m 
(1) 

At this point we will introduce the helical geometry ex-

plicitly using the rotation operator to express e~0 in 

terms of e 00 . Also the unit cell subscript will be dropped 

for the 0 unit cell: 

ll (j)•e 
T 

l . ~ Jl, = r e xp [ 2 7T i j 1 IN J r A J [ E C r ) • R • e - i,b k x E C r ) • R • e ' J N 1 0 
-rcr ~cr a a !l.a a 

( 2 ) 

We can write a similar expression for the magnetic dipole 

moment m (j). The macroscopic electric polarization for the 
T 

j normal mode, P(j), and the macroscopic magnetic polarization 

forthe j normal mode, M(j), are related to the microscopic 

dipoles by the following equations: 

p ( j) = t<ll (j) exp[ik·r ]> 
T T T 

M(j) = t<mT(j) exp[i~·r-r]> 
T 

The refractive index of the j normal mode is: 

(3) 

where f; denotes the complex conjugate. He are interested in 

the refractive index for incident circularly polarized light: 

4 7T EE exp(27Tij~/N) 
N j!l. 

. 1 1 
E AJ [e:'·R •e -i2 b

0 
kxe:'•R •t'] 

-rcr ± a t a 
~,T 

x exp(ik•(r -rn ))e •e:' 
T x.O T =1= 

(4) 
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where n± are the refractive indices for right and left 

circularly polarized light propagating in the R: direction, 

and· e:' are the unit vectors for right and left circular ± 
polarization in the plane perpendicular to k. The space 

averaging indicated by the angle brackets in equation (3) 

is done by calculating the~refractive index along each 

axis in the molecular reference frame and averaging: 

We have now shown that a matrix of dimension nxn must be 

inverted rather than the originalnNxnN matrix. However 

according to equation (1) we must invert a different matrix 

for each normal mode j. Fortunately, the sum over~ in 

equation (4) leads to ~election rules tin the limit of large 

N). These selection rules determine which of the polymer 

transition normal modes is excited, and for each allowed 

transition we must solve n equations in n unknowns .. 

As an example consider light propagating along the 

helix or e: 3 axis: 

k = ke: . 3 e:' = ± 

the slim over .9. in equation (4) includes the product: 
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then the selection rules are: 

o( 21Tj- kt.z +e)e: e: + o(21Tj- kt.z- 8)e:+e:- + cC 2N1Tj -kt.z)e:
3

e:
3

• lT ~ + N 

These selection rules are for right ·and left circular 

polarization in the e: 1 , e: 2 plane and linear polarization 

in the e: 3 direction. ~e must solve three nxn matrices 

corresponding to the three selection rules. In fact as we 

will show later, to first order in kt.z only two matrices neej 

be inverted. 

To find the CD= e: 1-e:R of the system, n_-n+, the 

difference between the refractive indices for left and right 

cilcularly polarized light will be calculated. For light 

propagating along e:
3

,: 

2 2 + -(n_ -n+ )II= 41T r (A e •(e: e: )•e -A e •(e: e: )•e )exp[ik•r ] 

+ 81T r 
cr,T 

where 

cr,T Tcr T + - cr Tcr cr + - T crT 

kb (A+ e • ( e: + e: ) e 1 + A- e 1 
• ( e: + e: ) • e ) e xp [ i k • r ] ( 5 ) 

cr T(J T - cr T(J cr - T · . (] T 

= A(N/21T)(kt.z±8) 
T(J 

We want this difference e}{pressed to first order in k. The 

magnetic contribution is already first order in k, so that 
+ 

the k dependence in A- and exp[ik•r ] can be ignored for 
T(J crT 

. + 
these terms. In the electric contribution both A-~ and 

· Tv 

exp(ik•r ) must be expanded to first order in k. Expanding 
crT 



the exponential: 

e xp ( i k • r crT ) = 

To first order in k: 

1 + ik·r 
O"T 

A± = A(N/2rr)(k6z±8) = TO" TO" 
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0 nc 
r crT + L.--a 

cr 
E G

0 
.exp(±ime) + ik6z 

crmT 

nc 
!: G

0 
ex~C±im8)]-l 

crmT • · 
m=-nc m=-nc 

The sums over m run over positive and negative values to 

convergence. We will use the same procedure we used in 

Chapter III to expand Aij to first order in Gij' In 

general: 

(C + k6zD)(C-l + k6zF) = I 

I+ k6z(DC-l + CF) + ... =I 

and: 

To first order in k6z: 

where: 

0 
= [_£l + E G exp(±im8)]-1 . 

· a
0 

m ocrmT 

Since E G exp(im8) = L: G exp(-im8) 
OO"IDT OTIDO" m m 

-e e 
A = ArT ... 

TO" . v • 
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Therefore only two matrices need be inverted, namely A8 and 

AO = A(N/ 2 ~)(0). Finally, 

= i +e · +e E A- [E mG
0 

exp(±im8)]A-
y,e: TY m yme: EO 

and 

e 
= -[A JOT 

therefore, 

Using these results and dividing equation (5) by n +n 
- + 

= 2kc/w, we find: 

E 
o,T 

e [A] e •(e:+e: )•e
0 TO T -

(6) 
bll = i E 

O,T 
e • (e: e: ) • e · e: • r 

T + - 0 3 OT 

E 
o,T 

[e •(e: e: )•e' bcr + e'·(e: e: )•e b ] 
T + - 0 . T + - 0 T 

Fo~ light propagating perpendicular to the helix axis: 

Since the exponential may be written as a power series 1n 

-ik•Ri·rcr this would imply selection rules including e, 28, 
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38, etc. However, R is unitary and we assume that all radial 

distances are small compared to the wavelength of light, 

therefore: 

Substituting this into equation (4): 

. 2 
n -1 ± = 4

1J l: l: exp[2Tiij t/N] l: 
J t a,T 

X 

For the e:
1 

and e: 2 direction we will expand each of three 

terms to first order in k. 

The magnetic term is 

2 n _, = 
± -

41T iT E l: exp(2Tiitj/N) 
j t 

The selection rules are 

The three terms are b kxe:~, 
a -

l: 
a,T 

(:r2k)b 
a 

e: ' • Rt • e I e • e: I 
± a T ,: 



() u r.) u i!f 6 u 

and 

2 
n -1 = ± 

since: 

E 
cr,T 

€ I + € I : 
+ 

2 2 
(n -n+ ) = 81rk E 

cr,T 

7 3 7 

e:l 
+ 

E: I : 
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± 

e 1 •e = ±i/12 ± 3 

2i 
e:3 

We will now examine the magnetic contribution for light 

incident along e: 2 : 

( 7) 

1 e:l = (e:3±ie:1) 
± 12 

kxe: 1 = i=ie 1 

+ ± 

The selection rules are the same but now 

.. ; 
= " 2 

-i = 2 

so that: 

e:'·e: 
± 3 = 1 

li 

2 
(n±-1) = + • e e b [(=l:..}(A- e: •e 1 +A e: •e') + 

a 2 -rcr + a -ra a 

1 0 (--)A e:•e ']e: 1 •e IT 1cr 3 a 1= T 



S1.::1Ce: 

e:l + e: 
+ 

2 2 
(n . -n+ ) = 871'k r 

o,T 

€ I 
+ 

€ I :: 
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2i 

· a e 2 • b c=.!::..)(A- e: •e 1 +A e: •e 1 )(-1:..)e: •e 
o 2 TO + o To - o .f2 1 T 

+ 871'k r 
o,T 

0 b A e: •e 1 e: •e • o TO 3 o 3 T ( 8) 

Combining equations (7) and (8) and remembering that 

2 2 Cn -n+ ) :: 871'k r 
o,T 

-e e b [A e: •e 1 e: •e + A e: 
0 TO + 0 - T TO 

+ 2A0 e: •e 1 e: 3 ·eTJ . TO 3 0 
( 9 ) 

This will be our technique for the other two terms as well. 

We will calculate the contributions along e: 1 and e: 2 , and by 

surnmlng them, express the contribution perpendicular to the 

helix in terms of e:+ and e:_. 

Next we consider the ik•r terms. The selection rules 
T 

are the same as those for the magnetic terms. For light 

incident along e: 1 : 

2 471'ik r [(::_lA-ee: ·e e . ± Ao J n -1 = + (-)A e: •e e: • e X 
± 2 TO + 0 2 TO - o 12 3 o TO o,T 

e • e: I 
T i= 

e: • r 
1 T 



n 2_n 2 
+ 

0 0 . 
- t) 

-4'lTik 

u 

For light incident along E 2 : 

2 
n -1 = ± 

2 2 
n -n - + 

4rrik 

E'•e E •r + T. 2 T 

7 3 8 

Combining equations (10) and (11): 

2 2 
(n -n+ ) - 4rrik E •e 

3 T 
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(10) 

X 

(11) 

+ 4-rrik E 
cr,T 

A 0 e · E (E • r E • e - € • r € • e ) 
(JT cr 3 + T - T - T + T 

where in the last term we used the identity: 

a•(E E - E E )•b = ibxa. 
+ - - + 

Finally, the contribution of -ik•R•r , will have new 
(J 

selection rules: 

(12) 



+ o ( 2 ;rj - 6 ) e: 1 • e: e: • e k • e: 
N ± 3 3 cr + 

e: • r 
- (J 

+ ~·c 2 ;rj + 26) I k u e: •e: e:+•e,.,. •e: e: ·r N ± - v - + a 

+o c2;rj 
. N - 26)e: 1 •& e: ·e

0 
k•e:+ e: ·r

0 . ± + 

With these selection rules along e:
1 
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2 
n -1 = -4;rik +i -6 6 

l: (=-)[A e: •e e: •r + A..,.,.,.e:
3
·e

0 
e: ·r ]e: 1 •e 

2 TO 3 a . + a c v - (J :j: T cr,T 

+4;rk 

+4;rk 

2 2 n -n - + 
-i [ -8 6 , = -4;ri.k l: {-. A e: •e e: •r + A e: ·•e e: ·r JE •e 

cr , T 12 T (J 3 (J + a T(J 3 (J - (J 2 T 

(13) 

For light along e:
2

: 
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. e 
(~)A e: •e e: •r ]e:loe 

2 tcr 3 a - a • t 

+l 0 l + 4 'IT i L E ( =--) [A ( e: o e e: o r - e: _ • e"' ~ • r )(-) ] e: ' o e 
a 'T 2 tcr + . a - a v + (J /2 + T 

2 2 n -n 
- + 

E: 0 r 
(J 

1 0 
- - A [e: oe 2 t(J (J 

e: 0 r -+ (J 

+ 1 [A26 e: oea e: or - A- 26 e: oe ·e: or ]e: oe }. (14) 2 t(J - a T(J + a + (J 3 T 

Combining equations (13) and (14): 

2 2 (n -n · ) = 
- + -21Tik [ -e e E A r o(e:+e: )•e e: oe ~A e: ·Ce: e: )·r e: •e ] tcr a t 3 a tcr t + - a 3 a cr,t 

-41Tik 0 E A~0 [e0 o(e:+e:_)or0 e: oe - r o(e: e: )•e e: oe ]. 
• 3 T (J + - (J 3 T cr,t 

Notice that the terms involving selection rules of 29 for 

incident light along e: 1 ca.r1cel those for incident light 

along e: 2 . In other words, upon averaging around e: 3 there 

are no contributions from selection rules including multi-

ples of e (to first order in k). Comparing equations (12) 

and (15) we see that the ik•r and -ik·Rt•r phase differences 
T 

make the same contribution to the CD. The perpendicular CD 

has equal contributions from inter- and intra-unit cell 

phase differences. This is because both were expanded to 

(15) 
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first order in k before the selection rules were taken. 

The sum of. the three contributions, equations (9), (12) and 

(15) is: 

= i I: 
cr,T 

2rrw = --c 

Ae [e •(E+E )•r E •e - r •(E E )•e E ·e J 
TCJ T (J 3 cr T + - (J 3 T 

0 +ii: A (r•(E+E)•e.,.E•e -e•(EE)•r E•e] 
Tcr 

T , 3 (J T + - T 3 (J 
cr,T 

)·e' bcr + e'·(E E )·e b J 
cr t + - (J T 

. (16) 

The extinction coefficient is related to the refractive· 

index by: 

E = cl Im{n} 
- 2N w 

cl = 2303~N · (17) 

~~ ~s Avogadro's number and N is the number of molecules 
0 

per unit volume. The parallel and perpendicular CD are: 

and 

2rrw 
c 
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The total average CD· is: 

CD -- 1 CD 4 
TIW c I {b + } 3 II + 3 c 1 m 1 cl · (19) 

Similarly for the optical rotary dispersion (ORD) in deg-cm2-

decimole-1: 

(20) 

There are three contributions to the optical activity for 

light propagating along e: 3 . all, the helical contribution, 

is due to the difference in the selection rules for right 

and left circularly polarized light propagating parailel to 

a helix. It is proportional to ~z, the distance between 

unit cells. all is called the helical term because it de­

rives from the helical arrangement between unit cells. 

bll, the residual contribution is due to phase differences 

within the unit cell. It is proportional to the distances 

between electric dipoles within the unit cell projected on 

the e: 3 axis: e: 3 • rO'T. ell , the magnetic contribution, is due 

to cpupling between electric and magnetic moments within the 

unit cell. 

For light propagating perpendicular to the helix axis 

there is no term corresponding to a~. bl lS due to phase 
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differences within the unit cell projected on the plane 

perpendicular to the helix axis. There is also a magnetic 

contribution for light propagating perpendicular to the 

helix axis, c1. 
To determine the average extinction coefficient 

e: = (e: 1 +e:R) /2 we can ignore the k dependence in equation 

(4). To zero order ink equation (4) is: 

2 . 
n -1 = ± . 

47T lf E E exp(2'1Tij~/N) 
j ~ 

E 
cr,T 

e:'·RQ.•e e ·e:' 
± cr T + 

Thus, for absorption the selection rules are: 

for light along e: 3 

2 4'1T E n -1 = ± 
O',T 

2 2 
-2 4'1T n+ +n = 

= 8'1T E 
a,T 

+e 
A e:+·e e: • e 

T(J - a + T 

E [A-8 e: • e 
TO' + a 

0' '.T 

e 
A e: •e e: ·e 

TO' - cr + T 

for light along e: 1 : 

2 n -1 
± 

2 . 2 
n +n -2 = + -

e . 
4'1T E [A (~2 )e: ·e 

TO' - cr cr,-c 

+ 4'1T E 
O',T 

e: •e e: •e 
3 T 3 0' 

e: •e + Ae 
T TO' 

e: • e 
- 0' 

2 

12 

e: • e J + T 

e: • e 
2 T 

( 21) 

(22) 

( 2 3 ). 
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for light along £2 : 

2 . ±i -e e 1 o · 
n -1:: 4ir r C-2 )[A,..cr.£+"ecr +A e: •e )+-A e: •e ]e •e:!. 

± • HI - C1 '2 TO 3 C1 T + 
C1,T '/4 

2 2 n +n -2 
+ -

(24) 

Combining equations (23) and (24) and using the facts that 

A~cr:: A~~ and e:±:: e: 1±ie: 2 : 

2 2 
(n +n -2) 

+ -
:: 81T ~ [A8 e •(e:+e: )•e 

TC1 T C1 cr,T 

' 

0 +A e •(£ 3e:
3
)·e ]. 

Tcr t cr 

Combining this with equation (22) and dividing by 3 gives 

the total average: 

16ir 
3 

e • ( e: e: ) • e + 83rr ~ A 0 e • C e: 3 £ 3 ) • e . T + - C1 TO' T cr cr,T 

Taking-the imaginary part of theboth sides we find: 

2 2 Im(n +n -2) :: 2(n'n" + n'n"). . + - + + 

We assume· n+=n_=l (this is a solvent influence assumption 

as in Chapter IIr') arid n~+n~·=2n". Thus: 

n rr :: 
4ir 
3 cr,T 

+ 2 if 
3 

Using equation (17) we find:· 
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e:ll = 4rrC1 Im[·A~cr e •(e: e: )•e] 
T 3 3 cr 

e:l = 4rrC1 Im[A8 e •(e: e: )•e] 
TO T + - cr 

1 + 2 e: = J e:ll 3 e:l 

l'fote that subscripts in the extinction coefficient refer to 

polarization direction rather than propagation direction. 

e:ll is the extinction coefficient for light polarized along 

the helix axis,. and e: l is the extinction coefficient for 

light polarized in the plane perpendicular to the helix axis. 

IV. Discussion 

The major advantage of polarizabili ty theory over the 

equivalent time dependent Hartree 1 ' 2 theory lies in its 

ease of application without ab initio wavefunctions. For 

most polymers of interest accurate wavefunctions are very 

difficult to obtain. The present equations allow useful 

calculations to be made in terms of experimental monomer 

optical properties and calculated interaction energies. 

CNDO CI calculations 3 have been used to obtain transition 

monopoles for estimating the interaction energies. In 

suitable systems where the monomers are sufficiently sepa-. 

rated to use a dipole-dipole interaction, polymer calcula~ 

tions may be based entirely on empirical monomer optical 

properties.~+ Hhile the resolution of the absorption spec.,.. 

trum and assignment of the transition directions is not 

,,·•' 

. . 
.. 
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unequivocal, the use of·empir~cal. monomer properties is 

much more practical than ab initio calculations on real 

polymer s~rstems. Satisfactory results }1ave been obtained 
'!, 

for oligonucleotides using polarizabili ty theory; 5 
'

6 this. 

work allows extension to polynucleotides and otherpolymers 

of biological interest. The limi tati.ons of the method 

should be kept in mind, however. No electron exchange or 

overlap can be considered and the interact.ions between 

transitions are expressed in terms of local fields. . Static 

field effects are om.i tted, but they can easily be added by 

using ,the properties of the monomer in the static field of 

the polymer. Inter~olecular interactions and specific .. 

. solvent interactions were not explicitly considered; 

In D~ Vee's original formulation, the maximum dimen-

sions of the aggregate were assumed to be small compared 

to the wavelength of li-ght, A, and exp[ik•r] was expanded 

to first order in k·r. This is the classical analog of the 

Rosenfeld approximation. 7 Clearly this approximation is 

not good along the axis of a very long helix. At two 

stages in the present derivation this expansion is in fact 

made;_ it is important to note the different assumptions 

involved. To obtain the selection rules for light incident 

parallel and perpendicular to the helix axis, we expanded 

the exponential and assumed that the size of the unit cell was 

small compared to the wavelength of light. 
' / 

A. 



E G exp[ikm~z] = ocrm-r E G + ik~z ocrm-r 
m m 

nc 
E mG

0 
• crm-r m=-n c 
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Here we assume that the sum over interactions converges in 

a distance small compared with A: 

n. t:.z· 
_c_ << 1 

A 

where n is the number of uni-t cells necessary for con­e 

vergence and ~z is the rise along the helix axis per unit 

cell. This last expansion is made to express the difference 

between A+ and A- tofirst order ink. 
TCJ TCJ 

different because there are different selection rules for 

right and left circular polarization and both selection 

rules are a function of k~z. 

In equation (6) the perpendicular CD appears to be 
. 

origin dependent whereas the parallel terms contain only 

the differences -~z and r
0

T. However, as we pointed out in 

the geometry section, the origin in each unit cell must 

be on the helix axis. This follows from the definition of 

the rotation operator R. In equation (16) the r is pro~ 
(j 

jected into the plane perpendicular to the helix axis and 

is just the radial distance of the transition from the helix 

axis. This obviously will not change if the molecule is 

rotated or translated in space. 

In contrast with the quantum theories, 8 - 15 which are 

based on a scattering formalism, we treat both the absorptive 

and dispersive behavior of t~:e polyn;e~ wi "t!).. ~ qomp ~~~ 

•!'• .: ,l,,,f.l 

... 
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frequency dependent polarizability. Thus, the classical 

theory is a consistent treatment of the CD bandshape in 

terms of the absorption spectra of the monomers in solution. 

In our formalism the frequency dependent polymer CD is 

calculated directly in terms of the monomer extinction 

and its Kronig-Kramers transform 

a.··= a.' + ia." 

a."(w) 

a. I (w) 
W I ().II LW I ) dW I 

2 2 (w 1
) - w 

Also, we are the first to consider explicitly a compl~x 

unit cell containing several monomers. We consider numerous 

transitions located throughout the .unit cell. The optical 

activity of this unit cell is expressed directly in terms 

of electric-electric and electric-magnetic optical activity. 

As a simple example and for comparison with previous 

work we consider a unit cell consisting of a single tran-

sition with no magnetic moment. The unit direction vector 

e = ell + e l where ell is the vector projected onto the helix 

el is the vector projected into the plane perpen-axis and 

dicular to the helix axis. He will give the res,ul ts in terms. 

of the simplified coordinate system in figure 3: el = er+ et. 
e For this simple system A is a scalar and there is no matrix 

inversion, merely division: 
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Figure 3: Simplified coordinate system for l transition 

per unit cell. 
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CD II 211'W 2 9 ~z = c1 el Im A c 

CDl 
411'W 

c1 P (Im A0 = - e e c t II 

A a = (1 + t Gon 
eine>-1 = a n 

[Ae] = i(Ae)2 t nGon eina 
n 

p - radius of transition. 
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- Im A9> 

a 
l + a t Gon 

eine 
n 

For comparison with the results of first order perturbation 

theory we expand the result to first order in G
0
n: 

where we 

Im( a 2) : 

nc 
(l - 2a 1:" Gon cos: ne 

n=O 

used the 

Im(a2> 

€ m 

= 

n c 
t 

n=O 

fact 

nGon sin ne 

that: Gon = 

Im(a' + . ") 2 "t-a = 

G • o-n Now we examine 

2a'a" 

= a" 

where e and a are the monomer extinction and (real) m m 
polarizabili ty. Thus the first order result is: 

nc 
4w 2 

= c e a Llzel t nG sin ne 
m m n=O on 

nc 
= - 8

w em am p ellet t G nsin2 (n9/2) 
c n=O o 

'+ 

·i 
;'fl. ,.,,I 
. ,:[· 

; 

' .. ,'·. · .. 

I. 
: '!'.· .. 

1

.; 

\ ~.:.' 
; .·i 
''.I 

i:" . ,/· 
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·which is exactly analogous to the· Moffitt Fitts and Kirkwood 
1 s 

result for the ORD of an infinite helix. 
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Chapter V 

Calculations of Polynucleotide Circular Dichroism 

I. Polynucleotide Conformation 

The theoretical tools developed in the previous chap­

ters were motivated in great part by the discovery of the 
l 2 

importance of helical structure in biological macromolecules. ' 

In particular we will be interested/ in calculating tl1e CD 

of double and single stranded polynucleotides. 2 To do these 

calculations we will need information about the polymer 

geometry as well as monomer properties. 

The basic structural unit of a double stranded poly-

nucleotide is the base pair. Each. base pair contains a~-

purine, adenine (A), or guan~ne (G) hydrogen bonde-d to a 

pyrimidine, uracil (U), thymine (T) , or cytosine (C). To 

describe the conformation of the base pair 3 we will define 

two axes perpendicular to.L~e helix axis. (See figure 1.) 

The first, the tilt or dyad axis, is a twofold symmetry 

axis which relates the glycosidic links in the base-pair. 

The second, the twist axis, is perpendicular to both the 

helix and dyad axes and passes through pyrimidine C6 . The 

conformation of the base-pair is determined by thre'e para-

meters, D , the tilt, and the twist. Looking along the 
X 

dyad or tilt axis from the minor groove to the helix axis, 

the tilt is the angle measured counterclockwise from the 

twist axis to the base plane. (Although the bases are not 
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Figure 1: Base pair conformation parameters. 
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strictly planar, the best least squares plane is fit to the 

base atoms). Looking along the twist axis, the twist is the 

angle between the base plane and the dyad axis measured 

counterclockwise from the dyad axis. In figure 1 a positive 

value of twist brings the purine glycosidic link above the 

plane of the page and the pyrimioine glycosidic link below 

the plane of the page. D. is defined in figure 1. We have 
X 

not specified the conformation of the sugar phosphate back-

bone. We will assume it has no influence on the CD in the 

region of interest (200 nm 300 nm). 5 Once the base pair 

conformation is specified, the double helix is generated by 

translating the base pair along the helix axis by ~z and 

rotating the base pair around the helix axis by e. 

Table I and figures 2, 3 and 4 give the geometrical 

parameters 6 ' 7 ' 8 and experimental CD spectra11
'

12 of natural 

double stranded deoxyribonucleic acid (DNA) in the so called 

86 and C-DNA 7 conformations, and ribonucleic acid (RNA) in 

A-RNA 8 geometry. These geometries are determined from X-ray 

diffraction studies. X-ray scattering from fibers 11 under 

varying conditions of humidity gives A, B or C type patterns. 

The CD of these films is measured under the identical condi-

tions of temperature and humidity. 11 These studies demon­

strate the sensitivity of the CD to these conformational 

changes. Along with solution studies, 12 the film CD studies 

indicate that both synthetic and native polynucleotides have 

a wide and relatively continuous range of conformational 

analogues to the X-ray crystal structures. The CD of a 
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Table I 

0 , ·co) !J.z (A) e bases per turn 

A-RNA 2.81 32. 7 11 

B-DNA 3.38 36.0 10 

C-DNA 3. 32 38.6 9.3 

Poly(!) 3.1f.l 31.3 11.5 

Poly(A} 2.82 40.0 9 



Figure 2: Geometric parameters and CD of RNA. 

With permission from D. Moore, Ph.D. Thesis; 

Ohio University (1974). 
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Figure 3: Geometric parameters and CD of B-D.NA 

With permission from D. Moore, Ph.D. Thesis, 

Ohio University (1974)~ 
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Figure 4: Geometric parameters and CD of C-DNA. 

With permission from D. Noore, Ph.D. Thesis, 

Ohio University (1974). 
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polynucleotide in solution is sensitive to the temperature, 

ionic strength, ,and solvent conditions as well as the presence 

of proteins. In fact the CD is an important probe of the 

organization of DNA into compact or condensed phase struc­

tures in phage heads 1 '+ and 1jJ DNA. 15 With a reliable and·· 

practical met~od of calculating the CD, these measured 

spectral changes could be interpreted in terms of specific 

geometrical parameters and proposed conformational changes. 

Moore and Wagner 16 took an important step in this 

direction with the discovery that D is· the moit important 
X 

factor in determining whether the CD spectrum is A-like 

or B-like. Prior to their work, base tilt in the A confor-

mation was thought to be responsible for the nnon-conser-

vativen A-RNA CD spectrum. Hoore and ~vagner used the 

Johnson-Tinoco theory to calculate the CD. 

II. Monomer Properties 

The monomer properties necessary for our calculations 

are the transition directions and polarizabilities and the 

CNDO monopoles of each transition. The resolution of 

absorptions spectra into single transition absorptions and 

the determination of transition directiGns is discussed in 

detail by Cech. 17 Cech made a rather extensive study of 

monomer properties. Because one of our aims is to continue 

previous oligomer studies of chain length to the polymer 

limit, we used her monomer properties unless otherwise 

specified. These monomer properties are discussed in the 
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following pages. 

The purines were resolved into four rr+rri' · transi tion.s 

plus thre~ background transitions, the pyrimidines were 

resolved into three 1T+1T* transitions plus three background 

transitions. The bandshapes of the absorptions above 200 

nm were determined from measured spectra and were generally 

close to Gaussian in shape. The three background transitions 

were taken to be Lorentzian bands centered at 119 nm. All 

transitions except one background transition are in the 

plane of the base (thus no n+1T* transitions were included). 

Transition monopoles for the first two long wavelength 

transitions in each base were calculated using a CNDO-CI 

molecular orbital approach. 2 2 Monopoles for the other 

transitions were calculated using program BASES (see 

appendix A). Although this placement of monopoles is not 

unequivocal, the transition is delocalized by this procedure, 

and the monopoles give the proper empirical transition di­

rection. The transition locations, R , are determined 

according to: 

R 

r lqs I r 
s s 

= 

where the r are the ~tom positibn vectors of the base on s 

which oscillator l;is located. Program BASES determines 

these positions as well as calculating transition directions 

relative to the molecular reference frame from the atomic 
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X-ray coordinates of any geometry. A11 single strands were 

assumed to have the geometry corresponding to half a double 

strand unless otherwise specified. No monomer CD was in­

cluded in any of the following calculations. 

III. Computational Considerations 

Program ROTOPI was written to calculate the Absorption 

and CD of an infinite polymer based on the equations IV .19 

and IV. 25. Only 1f-+1f:': transitions are considered in these 

calculations. While the magnetic contributions to the CD 

have been programmed, b
0 

= 0 is always used. For consistency 

with previous oligomer calculations, the subroutines which 

read in the reference base data and polarizability data have 

been altered as little. as possible. These input routines 

were dev~loped by C.M. Cech. These routines also generate 

a section of double or single helix Can oligomer). This 

section of helix is taken as the unit cell for the infinite 

polymer calculation. The helical parameters relating one 

unit cell to another are calculated from the parameters used 

to generate the unit cell. As an example, in A-RNA geometry 

e = 32.7° and 6.z = 2. 81 X. If the unit cell contains the 

sequence r(AAU} the next unit cell is found by rotating 

through 8 = 3 x 32.7° and translating 6.z = 3 x 2.81 ~ = 8.43 1!.. 

The same would apply for any single strand containing three 

bases or any double strand containing three base-pairs. Each 

would contain three helical steps per unit cell. 

The interaction terms in equations IV.l must be calculated 

for nc unit cells to either side of the 0 unit cell. This 
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means generating the atomic coordinates of the bases in the 

other cells from -n to nc. c However since G = G 
OO'mT OTmO'' 

only half the interactions need be calculated. The proper 

choice of n depends on sequence and complexity of the unit 
c 

cell as well as geometry. However, convergence to within 

1% in the final CD calculations was always obtained by 

considering 20 helical steps to either side. Unless other­

wise specified all calculations were done for 20 unit cells 

to either side of the 0 unit cell. A dipole-dipole inter-

action was used to calculate interactions between transitions 

more than ten unit cells apart. An effective dielectric 

constant of 2 is used in.all calculation::;. The present 

program which runs in 100 k on the LBL CDC 7600 can accomo-

date 42 oscillators per unit cell, and 101 frequency points. 

With 7 oscillators per unit cell a 14 frequency point cal-

culation takes 11 central processor (CP) seconds; with 39 

oscillators a 14 point calculation takes 120 (CP) seconds. 

In comparison, with 130 oscillators a 14 point oligomer calculation 

takes 150 CP seconds (program ROTOPM is given in appendix A). 

The internal consistency of the theory and the ROTOPI 

program were tested in a number of ways. A calculation for 

a linear array of adenine gave no CD. A hand calculation 

using only the 260 nm transition of adenine in A-RNA geometry 

was compared with the computer calculation. Calculations 

were done in A-RNA geometry for unit cells containing 1, 2 

and 3 A's. The results were identical. (For these 
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calculations n = 30 was used for CA1 ), n = 15 was used c c 

for CA2 ), and nc = 10 was used for CA
3
). Thus each calcu-

lation included precisely the same number of interactions.) 

The CD and absorption calculated for these three were 

identical. Finally infinite polymer calculations with only 

the 260 nm transition of adenine were compared with oligomer 

calculations containing 140 bases (the upper limit of the 

ROTOPM program). In all three geometries the CD agreed to 

better than 1%. Infinite polymer calculations have been 

carri~d out for the sequences: poly (A), poly(T), pdly(A·T), 

poly[(A-T)·CA~T)], poly (G), poly(C), poly(G·C), poly[(G-C)·(G-C], 

poly[CA-G)·(C-T)], poly[CA-C)·(G-T)], polyCA-T), poly(G-C), 

poly(A-C), poly(G-T), polyC.A-G), poly(C-T) in the 

A, B, and C form geometries. (Theresults of these calcu-

lations in both digitalized and graphical forms, for the 

parallel and perpendicular components of the CD and extinc-

ti on are given in appendix B. ) 

IV. Chainlength Dependence 

Chainlength dependence studies are crucial in evaluating 

previous polyn~cleotide calculations done with the De Voe 

theory. 17 ' 18 ' 19 With the results of Chapter IV we can 

extend the chainlength studies to the infinite polymer limit. 

With the earlier program core space limited us to 

20 bases (10 base-pairs). Thus it was necessary to assume 

that one turn of the helix was sufficient to determine the 

polymer CD. 

.. 
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Oligomer chainlength studies were compared with the 

infinite polymer result for the following sequences: poly(A), 
',_ 

poly(A .. T)~ poly[(A-T)·(A-T)], poly(G·C)_and poly[(G-C)·(G-C)] 

in all three geometries. We will only present the results for 

the A-RNA geometry. While the spectra were different in the 

other geometries, the convergence of the chainlength was very 

similar and generally dependent on sequence rather than the 

particular geometry chosen. In figures_ -~ and 6 the infinite 

polymer calculation is ·compared to the oligomer containing 

20 bases for the sequences poly(A) and poly[C.G-C)·(G-C)]. 

Poly(A) is an example of only minor changes in magnitude in 

going from the oligomer to'the infinite polymer. In 

poly[(G-C)·(G-C)] both the magnitU:de and the locations of the 

maxima and minima are changing. This is the worst case of 

convergence that was found. Th_us, most of the polymer CD 

are very similar in shape and peak location with only minor 

changes in magnitude. For those polymers which showed only 

changes in magnitude but no shifts or shape changes the 

results are presented in figure 7. The magnitude of the 

first long wavelength maximum is plotted vs. chainlength. 

Note that we actual+y plot the ratio of the maximum at any 

chainlength to the maximum of the dimer. 

The infinite polymer studies indicate that the general 

conclusions of previous studies are justified, and that 

considering ten base-pairs (or 20 bases) gives a good 

approximation to the polymer .shape and magnitude (± 20%). 



Figure 5: Comparison of oligo(A) 20 ----, and infinite 

poly(A) calculation 
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Figure 6: Comparison of oligo [ (G-C) 
5 

· (G-·C) 5 ] -----, 

and poly[CG-C)·(G-C)] calculations. 
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Figure 7: Chainlength dependence of A, A·U, dA and dA·dT .. 

CCDN )/(CD2 ) is the ratio of the maximum of 
max max 

the first long wavelength band in the N-mer to 

the first long wavelength maxlmum in the dimer. 

N is the number of bases ln the single strand or 

the number of base pairs ln the double strand. 
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This statement is of course based on the present level of 

agreement between theory and experiment. With improvement in 

our understanding of monomer properties and polymer conforma-

tions these differences will be more important. Also, these 

more accurate·polymer calculations use less computer time 

for any repeating sequence less complex than 8 bases (4 

base-pairs). 

Finally, these studies indicate that the theory developed 

in Chapter IV for .the infinite polymer is correct, in the 

sense that the oligomers always tend to converge to the 

calculated polymer limit. 

V. New Calculations 

A number of new calculations have been done prompted 

by recent crystallographic and CD data. Saenger21 et al 

have proposed X-ray coordinates for poly(A) based on the 

X-ray structure of ApApA under acidic conditions. The 

crystal contained the zwitter ionic base paired dimer: 

- + - + - + - + . Ap AH p AH ·Ap AH p AH . This dimer contains a helical 

region and a looped region. The model coordinates of a 

poly(A) helix are obtained from the helical sections of 

this structure. This helix contains 9 bases per turn com-

pared with 11 bases per turn for A-RNA. The other parame-

ters of the structure are compared in table I. 

It was hoped that this structure might g1ve improved 

agreement between calculation and experiment. This is 

particularly important since adenine containing oligomers 
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were used to assess the polarizability theory calculations. 17
'

18 

As is shown in figure 8, this structure does not give im­

proved agreement with experiment when compared with standard 

A-RNA geometry~ While the differences between the calculated 

CD are too sm.al1 to rule out either geometry, it seems likely 

that poly(A} h.as a structure closer to A-RNA than that sug­

gested by Saenger et al. 

Recently Gray 22 has measured the CD of poly[d(A-C)"d(G-T)] 

and poly{(A-C)"(G-U)]. Calculations have been done for this 

sequence in A-RNA and B-DNA geometries. The comparison 

between calculation and experiment is shown in. figures 9 and 

10. Although the magnitude of the DNA calculation is too 

large, and the bands of the RNA calculation are too far to 

the red, the general trends for the change from B to A con­

formation are seen: The first maximum increases and shifts 

to the blue. The difference in magnitude of the B-DNA 

calculation is not serious. Our calculation assumes a 

perfectly rigid polymer, where as there is thermal motion 

in the solution which tends to decrease the CD. If the 

polymer CD was measured at lower temperature, the agreement 

would improve. The shifted bands and the failure to predict 

the negative band at long wavelength for the RNA calculation 

are less easily rationalized. 

In figures 11 and 12 measured 2 3 poly[d(A-G-C) · d(G-C-T)] 

and poly[(A-G-C)·C.G-C-U)] spectra are compared with calculation. 

The two calculated spectra are very similar and neither agrees 

well with experiment. We will" not endeavor to place blame 
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Figure 8: Comparison of measured po1y(A) (0°, 0.1M NaC1, 

0.01 Tris, pH 7.'+) :~:..:.~, calculation based on 

data of Saenger et. al, -·-·-, and calculation 

based on standard RNA geometry ---
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Figure 9: Poly [(A-C)· (G-T)] 20°, .02 M Na+ phosphate 

buffer, pH 7.0. Measured-----, calculated 
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Figure 10: Poly(d(A-C)·d(G-T)]. + 20°, .02 M Na phosphate 

buffer, pH 7.0. Measured ----- calculated 
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Figure 11: Poly[(A-G-C)·(G-C-T)]. 
. + 

20°, .01 M Na 

phosphate buffer, pH 7.0. Measured 

calculated 
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Figure .12: Poly[d(A-G-C)·d(G-C-T)]. 20°, .01 M Na+ 

phosphate buffer, pH 7.0. Measured -----

calculated 
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for the failure of these calculations. The success of 

other calculations seems to suggest that the monomer pro-

perties for some of the bases are still in doubt, however 

failure of the theory or a special geometry for these 

polymers cannot be ruled out. 

In figures 13 and 14 poly[d(A-A-T)·d(A-T-T)] and 

poly[(A-A-U)·(A-U-U)] Calculations are compared with ex­

periment.24 Except for the fine structGre of the maximum at 

265 nm, the agreement is fairly good for the ribo polymer. 

Here again, the difference in magnitude is not serious·. For 

the deoxypolymer we see a very characteristic discrepancy 

between calculation and experiment for deoxy A· T containing 

polymers. Both polyd(A) and poly(dA·dT) have similar peak 

structure in the 260 nm to 280 nm regi6n~ It has been 

suggested that these deoxypolymers do not have standard 

B-form DNA geometry. Although there is poor agreement 

between measured and calculated spectra in this series of 

A·T containing polymers, we will discuss improved methods 

of analyzing the experimental data in chapter VI. This 

analysis· and and -model calculations help locate rotational 

strengths, and resolve polymer transitions. 

VI. Fou~ Stranded Polyinosinic Acid 

We have extended previous calculations on polyinosinic acid 

(poly(I)). 17
'

19 Since the model geometries for poly(I) 

contain 3 or 4 bases per helical step, 25 and 11.5 helical 

I 
~I ~--~-,~-~ 
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Figure 13: Poly[d(A-A-Tl·d(A-T-T)]. 20°, .02 M Na+ 

phosphate buffer, pH 7.0. Measu~ed x 5 -----, 

calculated 
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Figure 14: 

7 6 6 

+ Poly[(A-A-T)"(A-T-T)] 20°, .02 M Na 
I 

phosphate buffer pH 7. 0. Measured 

calculated 
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steps per turn of the helix, oligomer calculations were 

extremely difficult. Previous calculations 17 on the 

4 stranded poly(I) structure were done including only the 

2 longest wavelength transitions of inosine with 68 bases. 

The infinite polymer calculation with only 2 transitions 

129 

is very similar to the oligomer calct,tlation with 68 bases and 

2 transitions per base. The infinite polymer calculation is 

compared with experiment 26 in figure 15. Since only 2 

transitions were used, the sum rule had to be obeyed in the 

200 nm to 300 nm region. Thus without including background 

transitions, the negative peak at 2 3 3 nm can not be avoided. 

Cech estimated the effect of the other transitions in 

inosine by calculating the CD of three of the four strands 

using the 7 transitions of guanine and only 12 bases in the 

oligomer. In this calculation, the CD no longer had the 

minimum at 233·nm,and the maximum at 260 nm and the minimum 

at 26 8 nm were increased. She therefore assumed that 

including the other transitions in the poly(I) calculation 

would have a similar effect. 

To test this hypothesis we have done the infinite 

polymer calculations on 4 stranded poly(I) with 7 transitions. 

The inosine absorption spectrum below 220 nm was approximated by 

using guanine transition directions, polarizabilities, and 

monopoles. The use of guanine parameters, where necessary, 

was considered justified since both the short wavelength 

absorption and the CNDO calculations of the two bases are 
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Figure 15: Poly(I) CD at 3° in 1.0 M NaCl after gradual 

addition of NaCl Infinite polymer 

calculation with only 2 transitions per base 

.. . 
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very similar. The calculated CD is shown in figure 16. 

The negative peak at 280 nm is relatively unaffected, 

132 

but the maximum at 255 nm is greatly increased. There lS 

no longer a minimum at 2 33 nm. In general, the agreement 

with experiment is poorer when the background transitions 

are included. This suggests that the monomer properties of 

inosine (and probably guanine) are in error. 
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Figure 16: Poly(I) calculation with 7 transitions per base . 
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Chapter VI 

Circular Dichroism of Adenine and Thymine 

Containing Synthetic Polynucleotides'~ 

I. Introduction 

From X-ray diffraction studies 1 -
3 it is well-known that 

DNA can assume a number of distinct structures, the main 

types being the A, B, C and D structures. The A, B and C 

conformations were related to circular dichroism (CD) by 

measuring CD spectra of DNA films. 4
-

6 ~fuen these film 

spectra are compared to solution spectra, 7
'

6 it becomes 

clear that both DNA and synthetic polynucleotides in 

solution do not occur in one well-defined conformation. 

Instead, more or less continuous transitions occur due to 

changes in salt concentration, 6 solvent composition,' and 

temperature.l 0 '
11 In this paper we describe the temperature 

dependence of the adenine (A) and thymine (T) containing 

synthetic polymers polyd(A), polyd(T), poly[d(A) ·d(T)] and 

poly[d(A-T)·d(A-T)]. 

The reasons for this study are numerous. It was hoped 

to get information about premelting conformational changes 

which occur in the double stranded polymers. It is not 

clear which structural transitions are involved and whether 

they are the same for poly[d(A)·d(T)] and poly[d(A-T)·d(A-T)]. 

{: The material in this ch.apter has been sub.mi tted to 
Biopolymers for publication with. coauthors Jan Greve 
and Marcos F. Maestre. 
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From theory 12
'

13 it is clear that the CD of polynu­

cleotides is.determined by the structure.of the polymer 

and the optical transitions of the bases. Any change in 

CD brought about by a conformation change occurs at wave­

lengths determined by the location of the polymer rotational 

strength bands. By studying polymers containing only A and 

T, information about the location of the polymer bands due 

to A and T should be obtained. Such data are badly needed 14
-

17 

to improve calculations of polynucleotide spectra. 

II. Materials and Method 

CD spectra were measured with a Cary 60 spectrophotometer 

equipped with a 6001 unit. The computerized data-collecting 

system has -been described before. 18 Temperatures were 

measured with a thermocouple inserted in a water-filled 

cuvet which was in an identical position as the sample cuvet. 

Absorption measurements were made on a Cary 14 or Gilford 

spectrophotometer. All polymers were purchased from P.L. 

Biochemicals. The data provided by the manufacturer are: 

.A max(nm) €(tmol-l) s
20

w(s) Cat. No. Batch No . 

polyd(A) 258.5 8,600 6. 8 7,836 526-35 

polyd(T) 26 4 8,520 8.5 7,834 508-68 

poly[d(A) · d(T)] 258 6,000 7,860 526-26 

poly [d (A-T)· d(A-T)] 262 6 ,6 00 7. 8 7,870 508-101 

-. 
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The lyophilized polymers were dissolved in buffer solution 

and stored frozen. The buffers used were: Buffer I; 

10 mMKCl ~, 2 -mM Tris pH 7. 8, 0.1 mMEDTA; Buffer II; Buffer I 

plus 10 mM MgS0 4 . 

Poly[d(A)·d(T)] in buffer I showed a 4 percent increase 

in absorption in raising the temperature from 20° C to 40° C 

and then melted at 47° C. Poly[d(A-T)·d(A-T)] in buffer I 

melted at 44° C, in buffer II at 67.5° C. 

CD data are> p:resented as the CD per mole of monomer 

e::L -e::R where e::L and e::R are the extinction coefficients for 

left and right circularly polarized light respectively. 

III. Results 

CD spectra of polyd(A), polyd(T) , poly IdCA) · d(T) J and 

poly[d(A-T}•d(A-T)] have been published before. 10 ' 1 ·1 '..l 9 , 211 

Our spectra are in good agreement with these data, provided 

the comparison is made between spectra measured under similar 

conditions. 

CD Spectra 

Poly[d(A-T)·d(A-T)]. CD spectra of poly[d(A-T}·d(A..-T} 

in buffer II are shown in figure 1. The premelting changes 

(figure la) involve mainly changes in amplitude of the extrema. 

Upon melting (figure lb} both amplitude and position of the 

extrema change. A similar premelting behavior was found in 

buffer I. The CD spectra of melted polyidCA-T)·d(A-T)] in 

buffer I at 53°C and in buffer II at 71.5°C have extrema at 

the same wavelengths but the amplitudes are greater in buffer I. 



Polyd(A) ·d(T). · The temperature dependence of the 

polyd(A)·d(T) CD spectrwn is shown in figures 2 and 3. In 

buffer I (figure 2) an isosbestic point is detected at 

264 nm. The changes in A£ observed in going from 1° C 
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(double stranded) to 48.2° C (melted) occur in only one direc­

tion at each particular wavelength. A similar behavior is 

found in buffer II between 2.5° C and 65° C (figure 3. Above 

65° C, however, the CD spectrum behaves differently in this 

buffer. At 260 nm A£ decreases upon raising the temperature 

from 2.5° C to 65° C, increases in going from 65°C to 76° C 

and then decreases upon denaturation. As shown in figure 4, 

the spectrum measured at 71.1° C resembles the low temperature 

spectrum measured for poly[d(A-T)·d(A-T)]. 

Polyd(A) and polyd(T). CD spectra of polyd(A) and 

polyd(T) measured in buffer I are shown in figures 5 and 6. 

Difference CD Spectra 

The spectral changes observed upon varying the tempera­

ture look complicated and it is not clear what the relation 

is between the spectral changes of poly[d(A-T)·d(A-T)] and 

poly[d(A)·d(T)]. To change this situation we calculated 

difference spectra by subtracting the CD spectrum measured 

at low temperature from the spectra obtained at higher 

temperatures. 

Poly[d(A)·d(T)]. Difference spectra obtained for 

poly[d(A)·d(T)] in buffer I are shown in figure 7. They 

all have a characteristic appearance with maxima at 288 nm, 

' 
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272 nm and 246 nm and minima at 257 nm and 214 nm. The 

di£ference spectra obtained for poly[d(A)·d{T)] in buffer 

II (figurP 8) have extrema at the same waveleng~hs. More­

over, the magnitudes of the difference spectra obtained 

after melting are almost the same for buffer I and buffer 

II except for the 214 nm trough which is a factor of two 

deeper in buffer II. 

Poly[d(A..:.T)·d(A-T)]. In figure 9 the difference spectra 

for poly[d(A-T) · d(A-T)] in buffer II are shown. Up until 

60° C the difference spectra have a maximum at 264 nm and 

minima at 283 and 217 nm. After melting the difference 

spectrum looks like the one obtained for poly[d(A)·d(T)] 

after melting. Above 220 nm all extrema have the same 

sign and occur at the same wavelength. The only difference 

is that the magnitudes of the poly[d(A-T)·d(A-T)] difference 

spectrum are smaller. The difference spectra for poly 

[d(A-T)·dLA-T)] in buffer I (figure 10) are similar to those 

found in buffer II. 

Polyd(A) and polyd(T). Difference spectra for polyd(A) 

and polyd(T) are shown in figures 11 and 12. The polyd(T) 

spectra have extrema at 273 nm, 254 nm and 216 nm. The polyd(A) 

difference spectra show extrema at 282 nm, 265 nm, 254 nm 

and 232 nm. 

rv. Discussion 
Theory 

From De Vee's 1 3 classical coup led oscillator th_eory it 

follows that the en· of a polynucleotide to first order 
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(weak interaction)is: 

2w (e:L-e:R) = c E e:. Ea. G .. e. e. r .. 
i ~ j J ~] ~ J ~J 

(1) 

where e:i and aj refer to extinction and Creal) polariza­

bility of oscillators i and j and the bases; e. and e . 
. ~ J 

are the oscillator directions,.and r .. is the vector from 
. ~J 

transition i to transition j; and G. J. contains the interactl.on 
. ~ 

parameters. 

Equation (1) shows that in first· order the frequency 

and geometry dependence of the CD spectrum is separated. 

This follows also from first order Quantum Mechanical 

theory. 12 Therefore, a rotational strength band arising 

from interaction of two transitions i and j should always 

be seen at the same frequency no matter what the geometry 

of the polynucleotide is. The geometry determines the 

relative amplitudes of the different bands in the CD spectrum. 

In particular, any rotational strength band present in the CD 

spectrum should occur at the same wavelength in a difference 

spectrum. ·It is, however, possible that not all rotational 

strength bands present in the original spectrum are seen in 

the difference spectrum. Those due to interactions which are 

left unchanged by the temperature induced conformational 

change are subtracted. Moreover, it is clear that each 

distinct structural change will yield a different difference 

spectrum as the structural parameters are different. 

, 
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To determine frequencies of the near UV transitions from 

the spectra, it should be kept in mind that according to 

equation (1) each transition may give rise to either one or 

two peaks. One peak (non-conservative), centered at the 

same frequency as the maximwn of e:., will be observed if 
]. 

transition j is so far from i that a.. is almost constant at 
J 

frequencies where e:. 1 0. Two peaks of opposite sign (con­
l 

servative) will be observed if transition j is the same as 

i, but i and j are located on different bases. Then the 

frequency of transition j is found as that frequency between 

the two peaks at which the CD is zero. When transition i 

and j do not coincide but are close, the offhand prediction 

is difficult and exact calculations have to be made. 

From the dis cuss ion above it is clear that original and 

difference spectra contain the same frequency information. 

It should be kept in mind, however, that equation (1) is an 

approximation in which only base to base interactions are 

considered. Any contributions from base to backbone inter­

actions21 and intrinsic CD of the bases 12 should be added. 

The contribution of these factors to. the CD is not well knot-m, 

but it is evident that their contribution to a difference 

spectrwn is smaller than to an original CD spectrum as they 

are either completely, or for the greater part, subtracted. 

Moreover, the number of base to base interactions which 

contribut~ to the difference spectrwn is smaller. This may 

cause the difference spectra to be better resolved. The 
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difference spectrum of a denatured and a double stranded 

polynucleotide, for instance, is mainly determined by 

interstrand interactions since the contributions to the 

CD spectrum due·to intrastrand interactions are largely 

subtracted. It is these facts which make the difference 

spectra obtained upon melting have a characteristic shape 

which is similar for poly[d(Al·d(T)] and poly[d(A~T}·d(A-T)]. 

Transition Frequencies 

For the reasons mentioned above, we tvill try to deter­

mine the location of the rotational strength bands using 

mainly the difference spectra. 

The (conservative) peaks at 254 nm and 273 nm in the 

polyd(T) difference spectrum must arise from the rr~rr* tran­

sition at 263 nm 14
'

22 which also causes the absorption 

maximum to be at 264 nm. We do not find evidence for the 

presence of transitions at 256 nm and 278 nm as suggested in 

the 1i terature .. 2 3 Th~ 216 nm peak in the polyd( T) difference 

spectrum may be one of a conservative pair due to a tran­

sition located near 206 nm. 14 

The polyd(A} difference spectrum is much more compli­

cated. The 232 nm trough comes from a rr~rr* transition as 

described by Bush and Scheraga. 20 The absorption maximum 

of the polynucleotide is at 258.5 nm so it is clear that a 

rr~rr1: transition must be located there. The 254 nm and 265 

nm extrema and the crossover at 258 nm in the difference 
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spectrum arise from this transition. The 282 trough could 

then arise from an n+rr* transition as suggested by Bush and 

Scheraga~ 20 A different interpretation will be discussed 

below, however~ 

It is clear that the change in conformation induced by 

denaturation of the double stranded polymers is quite drastic. 

Yet, above 220 nm the extrema and crossovers seen in the 

melting difference spectra of poly[d(A)·d(T)] and poly 

[d(A-T)·d(A-T)] occur at the same wavelengths. We will, 

therefore, focus our attention on this wavelength area. 

It is not evident a priori what the resu~t of coupling 

the 258 nm A and 262 nm T transitions will be since they 

are very close. We therefore calculated the contribution 

to the CD of poly[d(A)·d(T)] and poly[d(A-T}·d(A-T)] due 

to interstrand interaction only. The calculations were 

performed using programs developed in this laboratory by 

C.M. Cech The transition wavelengths and the dipole strengths 

were the same as used by her (rr+rr* transitions of A at 260 nm, 

240 nm and 207 nm; rr+rr* transitions of T at 262 and 206 nm). 

B-DNA geometry was assumed. The results are shown in 

figure 13. A very good agreement in sign and location of 

extrema and crossovers between the experimental results and 

the calculations is obtained between 215 nm and 260 nm. 

We conclude that the extrema at 246 nm and 258 nm in the 

experimental melting difference spectra arise from coupling 

of the 258 nm, 232 nm A transition with the 262 nm T tr~1-

sition. With the chosen input data it is impossible to 



146 

explain the experimental spectrum above 260 nm. We there­

fore propose that two transitions are present which were 

not incorporated in the calculations. Most likely the 

peak at 272 nm in the melting difference spectra is causid 

by a transition on A near this wavelength. This transition 

must be oriented in such a way that its contribution to the 

CD spectrum of polyd(A), poly[d(A) ·d{T)] and poly(d(A-T) · 

d(A-T)] above 260 nm is opposite in sign to that due to the 

transitions close to 260 nm. This explains why the CD spectra 

of these polymers and of several A-T rich crab satellite 

DNAs 2 ~' 25 are non-conservative and do not look like a B-DNA 

spectrum. This transition near 272 nm may also be responsible 

for the crossover at 272 nm and (part) of the extrema at 

265 nm and 282 nm in the polyd(A) difference s.pectrum. 

The 287-289 nm peak in the melting difference spectra 

may be caused by a second transition not used in the calcu-

lations. From our experiments it is not clear whether this 

transition is an A or a T transition. Moreover, it is not 

possible to conclude whether this transition and the one 

near 2 7 2 nm are rr-+;r~" or n-+-rr;'~ transitions. In literature 

evidence was presented 26 '
27 for a rr-+rr* transition on A and 

an n-+TI* transition on T both at long wavelengths. 

.. 



0 u ·.:,;.- 6 0 7 7 6 
147 

Conformational Changes 

From figures 9 and 10 it is clear that the premelt and 

the melting difference spectra measured for poly[d(A-T)·d(A-T)] 

are quite different. This raises the question: What kind 

of conformational change occurs before melting? It has 

been shown 2
'

28 that poly[d(A-T)·d(A-T)] fibers can assume 

several different structures. In solution all kinds of 

conformational intermediates occur. By analogy with film 

spectra of DNA in the C conformation 4 and films of d(A-T)· 

d(A-T) in: the C geometry 01. Maestre, unpublished data), 

we propose that the poly [d(A-T) · d(A-T)] str~cture is much 

closer to a C-type structure than to a 8-type geometry. 

Since the premelt difference spectrum bears much resemblance 

with an A-type DNA CD spectrum, 4 
' 7 we believe that the pre­

melt conformations is one in which the A-type (or A*-type 29 ) · 

nature of the conformation increases. Gennis and Cantor, 11 

using different arguments, also suggest such a structural 

change for the premelting behavior. 

In detail, the alteration of the low temperature geometry 

for d(A-T) · d(A-T) ("C" geometry), as the temperature is in-

creased, involves a C to 8 transition whose geometrical 

variation is very similar in character to the one that is 

seen in the 8 to A transition. See figure 10. Thus it is · 

those geometrical parameters which vary monotonically be-

tween A, B, and C forms which may be the controlling factor 

in the variation of the CD of DNA's as a function of 

secondary structure. One such paramater, proposed by 
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Ivanov, et al, is the rotation per residue angle which is 

39° for the C form, 36° for the B form, and 32.7° for the 

A form geometries. 

It is the alteration of this angle which can be corre­

lated by the maximum in the 280-280 nm region. An inference 

favoring this interpretation can be drawn from the data of 

Maestre and Wang's 35 study of the CD of supercoiled DNA's 

as a function of number of superturns. In this work it is 

shown that the increase in rotational strengths in the 

260-300 nm region is approximately proportional to the 

superhelical density. Thus, for small variations in the 

angle per residue a -linear variation in the CD spectra can 

be expected. Similar conclusions were drawn by Ivanov, et 

al, 7 for transitions between B to C geometries. 

At high relative humidities 29 poly[d(A)·d(T)] fibers 

are in a B type conformation called B' (Arnott and Selsing 3
) 

which is different from the B* structure of poly[d(A-T}· 

d (A-T)]. Instead the poly [d(A) · d(T) J premel t difference 

spectrum looks like a melting difference spectrum. In 

agreement with this a four percent increase in absorption 

was found before melting in buffer I. This may be due to 

breathing or chain slippage! 1
'

30 Just before melting, 

however, especially in buffer II, a discontinuity in the CD 

spectral changes was observed. The CD spectrum of poly 

[d(A)·d(T)] measured at 41.1° C (figure 4) resembles a low 

temperature poly[d(A-T)·d(A-T)] spectrum. This suggests that 
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just pr~or to melting .the conformation changes, probably 

from a B 1 to a B''¢ conformation. 

'i.' 

V. Conclusion 

In this study the determination of CD difference spectra 

was most useful. Although it is clear that difference spec-

tra con~ainno more intrinsic information than present in the 

CD spectra from which they are derived, they are more easily 

interpreted. This may also hold true for other synthetic 

polynucltoeides. Gray, Tinoco and Chamberlin 31 calculated 

difference spectra for the melting of poly[(A) · ( U)], poly 

[(A-U)·(A-U)], poly[(G)·(C), and poly[(G-C)·(G-C)]. They 

suggested that these difference spectra are base-pair 

specific. 

Whether the use of difference spectra in native DNA 

studies will be useful is unknown. It must be expected 

that no specific information about optical transitions will 

be present since too many different interactions are occur­

ring. Yet it may be that.different conformational changes 

yield specific difference spectra. 

A possible use of difference spectra may be to dete.rmine 

the nature of the DNA conformational changes which ta}<e place 

in nucleoproteins. 32 ' 33 

From our experiments with poly[d(A-T)·d(A-T}] and 

poly[d(A)·d(T)] we conclude that an optical transition near 

272 nm on A and a transition near 287 nm, probably T, are 

present. The premelting behavior of poly[d(A-T}"d(A-T)] is 

ascribed to a conformational change in which the A type 



nature of the conformation increases. For poly[d(A)·d(T)] 

such a change is not found. Instead, a transition between 

two B type conformations takes place. 

150 
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LEGENDS TO THE FIGURES 

Figure 1: CD spectra of poly[d(A-T)·d(A-~)] in buff~r II 

at different temperatures. At 71. 5°C the poly 

[d(A-T) · d(A-T)] is mel ted. Figure la shows the 

premelting changes. Figure lb shows the CD 

spectra at temperatures close to the melting 

temperature. 

Figure 2: CD spectra of poly[d(A)"d(T)] in buffer I at 

different temperatures. At 48.2°C the 

· poly[d(A)·d(T)] is melted. 

Figure 3; CD spectra of poly[d(A)·d(T)] in buffer II at 

different temperatures. At 80.5°C the 

poly[d(A)·d(T)] is melted. 

Figu~e 4: CD spectra of poly[d(A)·d(T)] in buffer II at 

7l.l°C and of poly[d(A-T)·d(A-T)] in buffer I 

at l °C. 

Figure 5: CD spectra of poly[d(A)] in buffer I at different 

temperatures. 

Figure 6: CD spectra of poly[d(T)] in buffer I at different 

temperatures. 

Figure 7: CD difference spectra for poly[d(A)·d(T)] in 

buffer I. The spectrum measured at l°C has been 

subtracted from the spectra measured at higher 

temperatures. 
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Figure 8: CD difference spectra for poly[d(A)·d(T)] in 

buffer II. The spectrum measured at 2.5°C has 

been subtracted from the spectra measured at 

higher temperatures. 

Figure 9: CD difference spectra for poly[d(A-T)·d(A-T)] in 

buffer II. The spectrum measured at l°C has been 

subtracted from the spectra measured at higher 

temperatures. 

Figure lO:CD difference spectra for poly[d(A-T)"d(A-T)] in 

buffer I. The spectrum measured at l°C has been 

subtracted from the spectra measured at higher 

temperatures. 

Figurell: CD difference spectra for poly[d(A)] in buffer I. 

The spectrum measured at l°C has been subtracted 

from the spectra measured at higher temperatures. 

Figurel2: CD difference spectra for poly[d(T)] in buffer I. 

The spectrum measured at l°C has been subtracted 

from the spectra measured at higher temperatures. 

Figure 13: Measured and Calculated CD difference spectra of 

poly[d(A)·d(T)] and poly[d(A-T)·d(A-T)]. The 

measured difference spectra were obtained by 

subtracting the spectrum of the double stranded 

polymer from the spectrum of the melted polymer. 

The calculated spectra give the contribution to 

the CD spectra of the double stranded polymers 

due to interstrand interaction only. Before 

; 
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plotting,the sign of the calculated CD was 

changed to make comparison with the measured 

153 

spectra easier. The calculations were made using 

the classical all-order de Voe theory for the 

optical activity of polymers. Optical transitions 

were supposed to be located at: on A- 260, 240, 

207, 187.5 and 119 nm; on T - 262, 206, 175 and 

119 nm. The _polymers were assumed to be in B-DNA 

geometry. 
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I. Program ROTOPI 

Description: 

APPENDIX A 

Computer Programs 

170 

This program calculates the absorption (£) and 

circular dichroism (CD) spectra of poly nucleotides. 

Input: (Cards) 

geometry deck (see section a) 

polarizability deck (see section b) 

unit cell sp~cification deck (see section c)·· 

Output: (line printer) 

reference base data 

polarizability data (optional as per section b) 

unit cell structure 

optical data 

Tapes: 

TAPE l is used for scratch 

TAPE 2 contains output sui table for teletype or 

8 l/2 by ll reports (similar to digitalized data 

in Appendix B) 

Procedure: 

l) read geometry deck 

2) write reference base data 

3) read polarizability deck 

4) generate polarizabilities (as per section b) 

5) write polarizability data (as per section b) 

6) find largest common frequency range 

-
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7) read unit cell specification deck 

8) generate unit cell structure 

9) calculat~ interactions 

lO)at specified (in step 3) frequency int~rvals 

calculate CD and E according to equations in 

Chapter IV. 

lDwrite optical data 

a. Geometry deck (all angles in °; all distances in ~.) 

1) geometry title card 

( 2 F 1 0 . 3 , 5 Al 0 ) 

col. 

1-10 helical rise per monomer 

11-20 angle between monomers 

21-70 tilting information 

2) reference base card 

(Al, 9x, I2, 8x, I2, 8x, I2, 47x, Il) 

col. 

1 base ID letter 

11-12 # of atoms in base 

21-22 total # of oscillators in base 

31-32 ·# of in plane os'cillators in base 

80 control 

3) base plane orientation card 

(2Fl0.3) 

col. 

1-10 spherical polar angle of direction per-

pendicular to base plane 



11-20 
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spherical azimuthal angle of direction 

perpendicular to base plane 

4) cylindrical atomic coordinate cards (3 atoms per card) 

5) 

(9F8. 3) 

col. 

1-8 } 
25-32 r 

44-56 

9-16 } 

3 3-40 . e 

57-64 

17-24} 
41-48 z 

65-72 

·oscillator card 

(9F8.3, 

col. 

l-8 

9-16 

17-24 

25-32 

33-40 

57-64 

65-72 

79-80 

6x, I2) 

cylindrical coordinates, coordinates of 

oscillator position, first r, then e, 

then z. 

polar angle of electric transition direction 

azimuthal angle of electric transition 

direction 

magnetic transition strength (b. ln 
l 

equation III.3c) 

dipole strength (in debye) 

control 
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6) monopole car.ds 

'( 8Fl0. 6) 

cOl.·· 

1-10· 

11-20 

71-80 

bne monopole for ~ach atom of in plane 

transitions; two monopoles for each atom 

of out of plane transitions. Order of 

monopol~s must agree with order of atoms 

dn.cylindrical ato~ic coordinate dirds. 

For out of plane transitions give first 

above plane and then below plane monopoles 

for each atom. 

Notes: 

b. 

Cards 5) and 6) are repeated for each oscillator 

specified on the reference base card. The series 

of cards 2) through 6) may be repeated to input a 

maximum of 4 reference bases. If less than 4 bases 

are input the geometry deck should end with a card 

having a punch in col. 80. (a col. 80 punch card)· 

polarizability deck (all frequencies in kK) 

1) polarizability specification card 

(6El0.0, I2, 7x~ Il) 

col. 

1-10 starting frequency 

11-20 ending frequency 

21-30 frequency intervals 

3J.-40 dipole strength of transition (debye2 ) 

/ 



41-50 

51-60 

61-6 2 

80 
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center of band. If this is specified a 

Lorentzian polarizability is generated 

according to equation I.l4, if this is 

not specified or is 0, then polarizability 

is read from polarizability data cards. 

half width of band 

polarizability ID#. If not specified 

the polarizabilities are numbered 

sequentially as they are input 

control 

2) polarizability data cards (necessary if band center=O) 

Notes: 

(2(E8.0,32x)) 

col. 

1-8 

41-48 

First read in real ·polarizability over 

the entire frequency range in interval 

specified in 1). Then read in imaginary 

polarizability. 

Card 1) and (if necessary) cards 2) may be repeated to 

input a max1mum of 26 polarizabilities. If less than 

26 are input the polarizability deck should end with 

a col. 80 punch card. If this card also has a 1 in 

col. 1, the polarizability data will be printed. 

c. unit cell specification deck 

1) polymer title card 

( 7 Al 0 , 2 x , F 4 . 0 , lx , I 1 , lx , I 1 ) 



col. 

1-70 

73-76 

.78 

80 

I 9 0 

til;ting information· · 

# of bases in unit cell 

# of helical steps in unit cell 

control 

2) convergence card 

(3Il, 7x, 6El0.0} 

175 

col. 11-20 # of unit cells used to calculate 

interaction. This corresponds to 

n in Chapter IV. c 

(no other fields in this card are 

used by ROTOPI) 

3) base specification card 

CAl, 3x, I2, 4x, 12(I2,3x), 9x, Il) 

col. 

1 base ID letter 

5-6 Total# of transitions (~7);specific 

11-12 

16-17 

80 

transitions to be included. Must be in 

tegers between 1 and 7. 

control 

4) base position card 

(lOFS.O) 

col. 

1.-5 Positions on the helix in the unit cell 

6-10 on which to place base specified in 3). 

Positive number is \-!atson strand, negative 

46-50 number is Crick strand. 
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Notes: 

Cards 3) and 4) are repeated to construct the desired 

unit cell sequence. When the sequence is completely 

specified, the last base position card is followed 

by a col. 80 punch card. The series of cards 1) through 

4) may be repeated to calculate as many polymers as 

desired. Two. col. 80 punch. cards signify the end of 

Input. 
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d. Sample output 

Figures Al, A2, and A3 show the reference base data, 

the unit cell structure, and the optical data output 

of a typical calculation. In figure A3, "FREQ" is 

frequency, "CD" is circular dichroism, "A" is all I D. z' 

"B" is bll (see eqn. IV.6), "C" + "D" = bl (see eqn. 

IV.l6), "Ex" is the extinction coefficient, "E" is 

. ' 
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Figure Al: Reference base data. 
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J ... .;; .111721 .2~btlt .uz.stt7 -.1dl~d3 -.zu~915 -.ulJJ"s o.ou~o~o o.oo~ooo 

.. c;:,'j, ,33J6~d ,Z74iaa -.~ol02{ -,JJS27{ -.Z(lbb~ .u~IJu~ ~.uuuuu~ u.~oo.~o 

S t;,7U .1t~dijb -.~~2UII1 ~ • .s.s~a1~ -.lubu5J .2t':IIZ9 .3JOubO u.ouuuu~ u.ouu~oa 

0 t:,cU -,ll:;b\lf.i .li~~iJ•J -.ll~OOL! .lL .. i..l1tJ ·.ll:..bOt. • .lJ..,t,Ul! - ... 11 1_;000 .ll~aO\J -.tl!,'lU6J .11~0\;~ ·.ll~uJ\i 
.li;.auu -.ll~l;~tl .ll~t.:-:10 -.11-.,t.fiu .11::·t...u1.1 

~ 
-...) 

<D 

0 

c 
t:-~...,, 

.'!f•·.W., -
~J 

.... la.!L 

0• 

c;;, 

~ 

..0 

N 



•c• ATO~ J. 

! -.'JL 
<: -.7<. 
J-1.79 "-J. uJ 
:.-3,26 
6•2 .17 
7 ... 1 
6-lt. U1 

osc ou 

y 

~ ,':J/ 
J,U 
lo3b 
2otl7 
... z3 
~ .10 
2. 7~ 
2.o:; 

l 

,;d ... ~ 
.26 
.22 
.J .. 
,;2 
• 51 
.os 

R HtElA Ill' xUP 

... ~1 lG1.60 1-l.U~ 

J.Ju JYJ.uO 1 -.61 
2.9e lZu.Yu ;-1.u~ 
~.11 1Jt,60 7•J,1U 
~.J~ 127.60 9-J.ll 
~.j~t 1tJ.10 11-~.z .. 
2.7~ tl1.~0 1l .J~ 
... ~1 1s~.9o ts~~t.u6 

YUP 

<t,!;Q 
Jol<t 
~.31 

~.79 
... to 
!i.02 
2.o9 
1.9tl 

ZUP 

1. 12 
1.20 
1.02 

• 96 
1. 08 
lo 26 
1, Z!i 

.79 

R THETA liP XUN 

... u 1lJ2,79 
l.l .. llllt. 'o2 
2. 'IG 128.76 
'tol7 137o':IO 
S,J2 1L8otS 
5.50 ll<t.OJ 
Zo i1 62o7't 
... s .. 1:-4.12 

2 -. 0 'l 
.. - ,;, 6 
G-1.72 
6-Z, 'H 

10-3.19 
12•2 .11 
lit • 4 7 
1&-l.':IS 

hiN 

... os 
J.Z'J 
z.<to 
Zo'l't 
'toll 
!io17 
2,61 
2.1J 

ZUN 

... lb 
-.26 
- ... o 
-.52 
-.411 
-.22 
•,2J 
-.&9 

k 

... 7J 
J,j(, 

J,Ou 
... 16 
s.Jo 
s.~u z,,, 
'tolt9 

TH£ 1A 

111u.b .. 
101,1;3 
12!;.0:i 
135.2lt 
126.5& 
112.16 
60,53 

151.67 

HOhUPOLES 1~ OkUER FOR ATOHS 1 THRU 8 IN PL TRANS AND fOR POS 1 THRU 11> OUT OF PL TRANS 

J,UO ,1G15~U •,U200UU -.163000 .UolUOO •,3100110 ,2650011 -.001900 ,012'+UU 

2 3,.,·3 ,1Gl&uu •,O .. bJUO ,JOlOUU -.120100 ,000600 •,05320U ·,U2J400 -.220200 

~ ... 62 ,01111~2 o21551l2 ,211940 -,OOo3'tS •,213092 -.209236 0.000000 o,oooouu 

.. u.:. .. o33503Y o17Qij61 •o1t~Q39 •o332~52 •,166996 o161971 Q,OOUOQO UoOOOOOO 

7 &.J~t •,001~1~ •,2ij3~ob -,276776 ,0063~6 .2602~1 o2752ZO 0,000000 Q,OQOUOU 

6 ~.b6 •,11~&~0 .11~6~0 -.1156aD .117tOO -,11~600 oli~~OC •,115600 .115600 •,115600 .115600 -.115&00 
,11~&00 •oll560U .11~600 •,11~EOO o11S6DU 

•G• ATur. X 

1-1. 'ttl 
2 -.Zt. 
J , Dll 
.. -.93 
!; ·2. 2 j 
11 -z .~2 
7-J,Uii: 
b -2. 2" 
'l -.9o 

10 • 19 
11-J.1£ 

o.;l: Oil 

y 

ot.l 
loll'f 
2,35 
3.21 
ZobO 
1.4 .. 
J,yo 
... 11':1· 
... s1 

.25 
loilZ 

l 

.12 

.Zil 
,41, ..... 
.2':1 
.12 
•. JJ 
.su 
.so 
.211 

•,OJ 

li THE.TA liP XUP 

1.£:0 1~7.70 
1.12 lOJ,JO 
2.JS 118,!,.0 
J,jlo 1011.10 
J.5e 1211.t.o 
2. 9 0 1 !iU, 211 
4.~J 1<.'1.1111 
~.JC 111o,t.O 
... u1 101.bu 
.~l 1(,20 

J,clu lt.lt.7U 

1·1.5<t 
3 .-, JZ 
5 -,IIU 
7 -. 'H 
9·2.JO 

11-2.58 
1J•J,U':I 
15·2.JO 
17-lo02 
19 • /j 
21-J. 7-j 

YUP 

.53 
lo 0 1 
2.21 
J o1 j 
z.1z 
1.36 
3,62 
... 61 
..... 9 

.17 

.q-.. 

ZUP 

• 6& 
1. 02 
1.18 
t. 1' 
1.03 

• 6b 
1.07 
1, Zit 
lo Jl 
1.02 

• 71 

TH(TA 111' XON 

1o<.J 161.05 
t.u~ lll7.&1 
c.~;· ':IO,OG 
J,cJ 1U7,51t 
3.~., LiO.lel 
z.·a 1!>2.13 
4, H 1211.9" 
5ol't 115,57 
loot>! 1112,77 

oi!i 13,0J 
3.~u tt.6.UJ 

2•1o't2 
.. -.19 
6 ol J 
6 -.6& 

10·2.17 
12•2 ... 5 
1 .. -2.96 
16·2.16 
18 -.ll'j 
2u .8.; 
22-J.bt 

YUN 

.06 
lo17 
2.4J 
3.2't 
z,67 
1.52 
3.-l7 
4d7 
... as 

.J2 
1 .1 u 

lON 

-.6.! 
-.46 
-.Ju 
-.30 
-.'t!J 
- ,6z· 
-.41 
-.z .. 
-.16 
-.Ito 
-.77 

R THETA 

t.<,;7 l!j't,23 
1.16 ':l'lo't2 
2o43 8/oO't 
J.'+u tu~o.ro 
Jo&ll 127,04 
2.116 1411.24 
...9:> 1Zo.t>7 
5,42 11 J, &5 
... 7J 100,65 

.9i! 20.&1 
J,&;: Hdol" 

NONUPULlS lN UnDL~ FL~ ATUM5 1 THKU 11 ·lh PL TKAHS ANO FUR PO~ 1 THRU 22 OUT Of fl l~ANS 

~.cl -.~2~2~" ,OilUU~ •,01a100 -.U~6b00 .U!b~OU .01~10ti .1oJUOU •,272100 ,U57J~U .UOb!iOU ,y5UbUO 

z .... ':1 ,u1UIIu ol1li1Uol ·.ISII1UO ,Jdo':IUu ·,J;?66UIJ •,uJ;:'1uu .1-t~t!UO ·.1'37UJu •,051'lllll .ulS'liiU •,IJ .. f>&tuO 

J ... <:l ~.u(ul.i.u ~.iiJu<il.u .1'>.)7•1 .Utt:t.bil -,O.i/131 .t~ .. J~:. -.211012 O,UolOOUO •o1~i..o11 O,UIIIJUUU ll.uuODUU 

't ~.(.,~ O,OOUOUO Q,U"duuu oi~J.c~ .~jU~JU -.~~ti/J. ·.1U .. UJ4 ··1~1~jo ~.UUUUUO ,u9cj~~ II,UOU(III~ IJ,UUUOOO 

, 1 •• J1 •• ~~J~~' u.iJ•~•L -.Jd~JIJ -.~~~-~~ -.ILJ1~u - ... l~Ulb •• JJJ~5 u.ououug .~dJJu'l u.uuouuu u.uuuuuo 

c t.os ~.uuuuu~ u.uuouuu -.2t1~;3 - ... 7oJI/ •• 1~~J1 .z~osa •• ~~77jJ o.ououuu -.1':11Jit" u.uuoouu o.uo~uoo 

7 7o·H •,ll•Hii olu.UJ ·olLw7~.: ,I•JIJio ·.llil7~l ohl'ht ·.10ii7Uu .1ilu7~1l ·.lOu/UO .111U7GY •oliiJ7oJIJ 
,lLU/UU -.luUiuO .J~uloU ·,lu"i~O .IU07~U -.luY/~u .1~~7110 •,1UU/u~ ,1ijiJ700 •,10~700 ,10U7UIJ 

,, 

..... 
(X) 

0 
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Figure A2: Unit cell structure. 



POLY GT 

BASE PUS Otl E.LECTRIC OSCillAlOR POSITIO•IS 
HLLll( 

I( v z fl. Thl TA 

G w 1 •2 eliiJ't J.t9l:i ,3830 ... l'l 120,!;& 
•1, ItO 19 2.hll7 • 3620 J,11 116.211 
·1.5lobU s.ts~.o ,3320 J.~l 116.10 
-1.57JJ J.OII:ill .l61t0 3.31 117. 61t 
-1.t5o1 J. 1.J2.l , J7UO s.s .. 111.a7 
-1.5762 3.ll0io7 • 3&30 l.H 117.611 
-1.1t99a 2,37J9 .3050 2.d1 122.28 

w 2 -lo.t>bi'1 1. 671>3 J .1l70 ... IJ6 160.21t 
-3.6990 .9171 3.6210 3. 81 16&.07 
-3 • d IIO.It 1.t.oJ8 3. 7l uo ... 22 15&.79 
-3.11171 1.&t>J9 3.7200 ... u 156.77 
-3.8737 1eb7'H J.722Q ... u 15b.5& 
-3.63811 1 ..... 11 3,6920 3. 'J1 158.39 

Ol~ECTlON UNIT VECTORS 

OSC POL I( y z 
1 20 .9o7D .2 312 ,1071 
2 21 -.:iltla ,IIJ95 .o .. oo 
3 22 -.55i>J • d 301 • OJ/II 
.. 23 -. 111• a - .1 97 3 -.10it3 
s 2ft ·2401 -.967S ..:.o?-J2 
E: 25 .9&70 .2312 .1 071 
7 26 -.oe5it -.1023 ,9'H 1 
8 a o51tQ5 .8335 .1145 
9 9 .9115 ... 069 .0597 

10 10 -.7S11t • ob ~Jit -.0917 
1111 -.5itG5 -.ans -.111,5 
12 12 o81t13 - .5J&It -.061)& 
13 1 J -.Oil59 - .1 32 3 .9912 

THElA 

bJ,85 
61.71 
a7.111t 
9:>.99 
9io·.51t 
83,115 

7 •. 6E. 
(IJ.Itl 
do.~8 
95.26 

·9t, :07 
93.82 

7. &1 

PHI 

1l.lt5 
122 ,lilt 
12J.liJ 

-1&8.:i6 -7£·. (16 
1l ... 5 

-12':l.alt 
57 .o .. 
2~t.06 

-138.99 
-122.96 
-J2.52 
-n.ss 

riAC. OSC 

osc IH 

1-' 
00 
N 
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Figure A3: Optical data. 



~ONVl~(E~Ci= 20 UNIT ~lllS 

HC.Q cu A a c 0 
JJ.iiOil 8. 54b.st-02 7.~oH2~-ot -3.b76JC•ou 2.7110E+OO •4,J376l+OO 
J .. ,HOU -3.J6 .. tli:.-02 <:, i~OO[tLO •1,29201::+01 ~.Jl57~+0ij -1.~"60E+L1 

J5,6UO· ~~.bl~JLtOO ~.~&"J~+OO -1.~HY9~+01 1.76boE+Ol •2,4bJ3E+Ol 
Jl>,tSUO -t. 612Jl t 0(1 b,262b~t0U •1,27d7t+01 2.JDJ2E+Ol -2.d5b4t+G1 
37,600 -tJ.7~1H.+OO lt,75<;:;t:tUO -4.32t-6£+00 2.193~EtU1 ·2.7JS9tt01 
lH .1100 -t,i..bOUt+OU 2,152t1[tUU 9.it29JE:-U1 l,b6U1E+U1 -2,3865E+01 
J'1,6UU 1.~19~E+UO -J.tJUll-01 4.9tB2;::tUO 1.U4o6E+01 -1.862YEt01 
!oO,iiOO J,j49Hl+OO -1,1973[+00 !:-.16%£+00 5.931JE+00 -1.J09JE+U1 
41.oOU J.u52~l+OO -9,J811l-01 2.<;JJ2£t00 J,tJl~£+00 -6.0159£+00 
<t2,60U z.u71ot~ou -~.ld57£-0l 7 ... 2 62 c:- 0 1 1.t~b~Et00 -4.1767E+OO 
'+3 .110 tl Z.lU~bLtU~ •ti,676~£-01 2.58!:>9£-01 6,11~2£-01 -1,380JE+OO 
..... aoo 3.65'11£+00 -1.5361[+00 9~6~06~-01 -2.2525£~01 1,0212Et00 
.. ~.800 t.1017Et00 -2.5171~+00 2.~1J0lt00 -7.&379£·01 J,1310Et00 
.. &.8UU 1.UJ~U~t01 •4,t327£t00 4.7J9bE+OO -1.16'12Et00 5.46Z5E+OO 

~ ... 

I ll( E f 
7.dJH1c+02 -o.oo~aE+OO -7.2&~Jl-02 
2,44:;1E.+Ol -z.oJozL•o1 -l.t7J~l-ul 
~t.;uzBc+OJ -J.&J2~l+01 -z.z~~tc-ot 

5.9d2JC:+OJ -4,6t:UI)(+01 ·J.581ul:.·li1 
7i1b0Sc+OJ •S,~o01E+U1 -4.1t~09l-01 

8,2J06E+Ol -6.1158E+01 ~4.63~Jl-u1 
8,3676EtU3 -6.0o2dE+01 -4.6710E-01 
7.0996t+OJ -S.U1oJEt01 •4,022Jc•U1 
5.15~5EtOJ -J,ji4~£t01 -3.242tiE·01 
J,J521Et0~ ~2.2507£+01 -2.~141(·01 

2.429~~+03. -1.592~£+01 -1~~700£-01 
Z.41tlSC+03 -1.5it73E+01 -1. tldll-01 
3.2651£+03 -2.0561[+01 -1.~557£-01 
4.o500Et03 -2.d6~4E+U1 -1.76J~E-01 

., 

...... 
co 
+=' 
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e. Listing 
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~RGG~AH ~~TCPIIINPUT,OUT?UT,?UNCH,TAPE5:INPUT,TAPE&=OUTPUT, 
1T~PE7:PUNCH,TA?E1,TAPE2l 

COH HONIM.i: SCIG~I1, DEl. T ,tiOS, UU, Ul. ,au, X:1ER ,NME~ 
C01'1110NIE:10;iiX,'11'-2l ,Y.'1( .. 2l tZI11lo2l 
C 0 1'1 MON I A .i: iU A I I 2 o , 1 H l , A~ I 2 o , 1 C 11 , U A ( 2 f:ll 
C01'1MONIEEGSIXC:I421 tfC.I421 ,ZE:<'-2l,RE1'+2l 
CQ;1MONI IDC::T I IDA I .. z I , 3SU3I I 42 I 
COHM0Nif<.OSC/XR1Lt21 ,YRI'+21 oZRI'+21 
CQ;'1MONIG11AT/GI'-2o'-2l .~1142,'+21 ,G21'>2t'+21 
COMMONI?OL.IAIT 12ol ,AR.T 12o l ,UP(ol 
C 01'1 MON I i.? GS I X A I 22 •. 42 l , 'fA ( 2 2, '-2 l , Z A ( 2 2, ltZ l 
COHMCNIMPOl.IQI22,7,~oJ oudl7,'-l ,IQ31'>2l ,ICJSI'-21 ,ID01'+2l o!ONI421 
COMPl.::X G,~1,v2,ALP~A,GJI .. 2,lo2l 
COHPL.::A AA,JB,CC,JO,EE 
D.i:•'1ENSION COilOll,EXIlu1l ,ut1ull . 

1 iJ 0 F O~MA T { • •, • :: RE Q • , 5 X , •co •, l1X t •A • t 11 X, •3 • , 11 X , •C • t 11X , •0 • t 
l5X,•!•,-a,•~x•,t1X,•E•o11X,•F•l 

101 FO~MATI•L•,•CQN~ERGENCE: •,I2,• UNIT CEl.LS•l 
1J2 FORHATIF7.J,dE12.'-1 
110 FOR~IA T IF5 ol, 3F 3. 3, 3F3 ,1) 

c••••• 
C T~IS ~~L.L TO INPUT ~E,CS IN THE GEOMETRY OEC(: CALLS 
C ASh!PE TO ~C:AO IN THC. PCL~RIZA8ILITY JECK; READS IN 
C ThE FIRST ~OLYHER c······· C.4l.L. INPUT 

1000 N:UPill 
N IS THE CONV~RG~NCE !SET Ii TO 20 IF NOT SPEC!FIEDl 
IFIN.EQ.uiN:2u 
WRITC::!&,10llN 
w~IH:<Z,J.ill :1 
CAL.1.. 4:-H,~~C(Nl 
WRITE:!6,l\i0l 

C ••••• CAL.CUl.AT~ THE NUHE!R JF F~E~UNCY POINTS NI 
NI:l.C1•1UU-ULJIOU 
DO 10 !=l ,ru 

c ••••• CACUl.~T~ F~!QUE~CY U!Il AND READ THE POLARIZABILITI!S 
C INT0 ART AND ~IT I NOTE CHANGE IN SIGN OF AIT I 

UIIl=Ul.+II-ll•Ou 
00 1 N~:l,25 
IFIUAINl.I.EQ.O.I GO TO l 
K=1.0 1+ (.J II I -UA INl I l /uU 
AITINl.l:-oHINl,Kl 
.4RT!N1l:i;R(N1,Kl 

1 CONTINUt. 
C ••••• INTE~ACTION IS REAO OFF T.4PEl RAT~E~ iHAN RECAl.CUl.ATEO 
C AT E~CH ~REQUENCY 

REHINO l 
RE11CI1l I IGIJ,i.J ,G11J,l.) ,J:l,NOSl ,l.::1,NOSI 

C ••••• THE POLARIZABILITIES ARE .40CED TO THE INTE~ACTION ?RIOR 
C TO INVERSION 

DO 2 N2:l,NOS 
M:IGAIN2l 
~L.P~A:t,Q/CMPLX(A~TI~l,AITIMJJ 

GIN2,N2l:GIN2,~21•ALP~A 

Gl!N2,N21:Gl!N2,N2l•~LPHA 

2 CCN T L'IUE 
CALL !NVE~TIG 9 t1GSJ 

.. 



6 u 

CALL INVERT!Gl,t'iOSI 
C~LL MULT !G3 I 
EX I II ::0, 
CO!Il:O, 
AA=!O,,Q,) 
aa:tu.,.;.> 
CC:!O.,Q,I 
DO=!Q, ,c.. I 
EE: !0.,0.1 
E=O• . 
F=o. 
00 '+ N'+:1 >NOS 

. 00 5 N5:1,~0S 

7 9 6 

c ••••• ALP"A IS TnE·IHAGINAR1 ?ART OF THE COHPL~X DOT PRODUCT: 
C ~Hf RE~L PA~t !S THE ~ORHAL DOT PROOUCT 

187 

ALP11A: ( Q, , 1. I 4 (X E ( N'+l •y ~ ( N5 I -XE (N 5} • YE ( N'+ I I 
AIG=AIMAG!G(N~,NSII 
AA:AA-G31N~~N51 4 1XEIN51 4 XE!N'+I+YE!N~I•YE!NS>•ALPHAI 
98:83+!0. ,1,1 4 Gl!N~,N51 4 !XE!N~I 4XE!N51+1E!Nloi 4 YE!NSI+ALPHAI 

t•!Z~!NSI-Z~IN~II 
CC:CC-2.•G(N~~N51 4 Z~IN~l 4 !XEIN5l"YRIN51-XR(N5l•YE!N51 I 
00%00Hu. 1lo >•Gt !N~.tlSI•( 

1ZE ( N~ I • (X R ( N'> I • X f ( N5 I H R ( N~ I • Y E IN 5) + ( 0, tl• l • (X~ (Nit) 4 Y E ( N5 I 
2 -~EINSI•YRIN!olll 
3 - Z E ( N 5 l • ( X~ ( N 5 I • XE IN lo I + Y R ( N 5 I • Y E ( N '+ I + ( 0 , , 1. I • ( X E ( N '+ I • 'f R ( N 5 I 
lt-X.{ INS I +y E (Nit I I I I 

EE: t:E .. ( IX E ( N~ I 4 XE ( NS I HE ( Nlo I • Y E IN 51 I •ALPHA I •Gl (Nit 1 NS I 
F:F•AIG•ZEIN~I·Z~!N51 

5 CONTINUE 
It CONTINUE 

A:Al:'IAG !A AI 
3=AII1AG 1381 
C.::AIMAG <CCI 
O::AIMAG 1001 
E:zAI:1AG!EEI 
C 1: -6 • 8 8 2 6 •u ( I I I X MER 
C2:z-~o.32~5E-~o•U<I1••21X~ER 
EXPERP=Ct•F 
EXPA~A=Ct•E 
COPERP=C2 • I C+O I 
COPARM=C2 "!DEL T•A+BI 
EX!II::Ex?ERP+EXPARA 
CO!II.::CQPERP+CQPARA 
•HU TE < & , 1 a z 1 u II 1 ,co< I 1 1 A . .a, c ,c ,e:x II 1 , e:, F 
WRITE 12,110 I U (I I ,CO I! I , CO PARA, COPERP, EX (I I , E XP ARA, EXPERP 

11l CONTINUE 
C •• ,,.THIS IS A CALL TO A SECONC ENTRY IN SUBROUTINE INPUT. 
C IT REAOS IN A NEW POLYMER ~ITHOUT READING IN NE~ 
C GEOMETRY OR POLARIZABILITl OEC~S 

CALL INtlU TZ 
GO TO 10u0 
ENO 
SUBROUTINE INTRAC!NNNI 
COMMON/HISC/GAH,QELT,NQS,UU,UL,OU,XHER,NHE~ 
C 0 HMO N I A P 0 S I X A ( 2 2 , '+ 21 , Y ~ ( 2 2 , It 2 I , Z A ( 2 2 , It 2 I 
COHMONIMPOLI·Q!22,7,t+l ,Q8!7,lol ,IQal'+21 ,IQOB<~2> ,IQQ!'+2l ,IONI'-21 
COMMON/GMATIG!lo2,1t2l ,G1!'+2o'+21 ,G21'+2t'+21 
COMMON/R.OSC/XRI'+21 ,Y~!:.21,ZRI'+ZI 
C OMHON/ E~ CS /Xc ( <.2 l , YE ( .. 2 l , ZE ( '+2 l , ~E ( ~t2 I 
DIMENSION q_(JI,KIJ!31,E!131,EJ131 
COMPLC::X G ,G 1 ,G2 
NL:2"NNtH1 



00 10 I:l,NOS 
II= IDS III 
r-~I:IOQIIl 
IDI.::IOOdiil 
DO '3 J.::!,NOS 
JJ.::IOBIJI 
NJ:: !D~ I.J l 
!OJ=IODaiJl 
GII,Jl=l~ ,,Q,I 
Gti!,JI:(O,,O.l 
G21l.Jl=IO.,u.l 

188 

C CALCU LA T~ MllNQPOLE-MmiOPllLE 
00 d Nd=loNL 

INTE~ACTION FOR CLOSEST TEN UNIT CELLS 

N=N6-Nt•N-l 
C 00 i'<OT INTERACT TRANSITIONS ON TH;: SAME BAS~ 

!FIN ,c;Q,O.AND.!O~IIl.E'J..IDNIJll GO Tu. 3 
FI=N•GAM 
SFI.::S!N IF II 
CFI.::COS<Fil 
GG=jj, 
!Ft!AdSINl.GT.t~l GO TO 5 
DO 3 NJ=l. ,NI 
DO 2 N2=t,NJ 
Rlll:XAIN3,Il-(XAIN2 1 Jl•CFI-YAIN2,Jl•SFil 
R<2l.::YA(NJ,Il-(XA(N2,Jl•SFI+YA(N2tJI•CF:l 
Rl3l=ZAI1'<3,Il-ZA!~2,Jl-N •DELT 
u:u. 
00 1 Nl:l,3 
D=O+RI.-.111••2 

1 CONTINUE 
o:sc;;n 101 
GG=GG+Q(N~,IDI,!Il•QIN2,IDJ,JJl/D 

2 CONTINUE 
3 COrHii'<UE 

Gu TO o 
C CALCULATE IJI?OL::-CIPOLE FCR UNIT CELLS FURHTER THAN 10 

5 EIEJ=O. 
~IJ~J=O, 

RlJc:I:O. 
RlJill:XRI!I-IXRIJI•CFI-YR(Jl•SFil 
RIJ12l=XRIIl-IXRIJl•SF!+Y~IJl•CFII 
RIJI3l::ZR<Il-ZRIJl-N•OELT 
DIJ=RIJ<ti••2+RIJ12l••z+RIJIJI••z 
OIJ=SQRTIOIJl 
EIIli=XEIIl 
EI12l=YEIIl 
EI13l=ZE1l:l 
EJill:XEIJl~CFI-YEIJI•SFI 
EJ12l.::XE(~l•SFI+YC:IJI•CFI 
EJI3l=ZEIJI 
DO w. N!o.:L,J 
~IE J: ~I EJ +E I ( N!o I •E J IN-. I 
RIJEI~RIJEI+RIJIN~tl•EIIN!ol 
RIJEJ=RIJEJ+RIJIN~tl•EJ(N~I 

'+ CONTINUE 
GG=EIEJ/OlJ••3-.3.0•RIJEJ•RIJEI/DIJ••5 
GO TO 7 

a GG:GG•~.dU2'38••2/IOSI!OI,IIl•DeiiDJ,JJil 
C T~IS IS THE EFFECTIVE DIELECTRIC CONSTANT 

7 GG:GG/2, 
GII,Jl:GII,JI+GG 
G 1 < I , J l : G 1 I I , J l + GG • C :1 i> LX I C F I , SF I I 

... 



() 0 0 7 

G2!I,~I=G2!I,~I+N•GG•CMPLX!-SFI,CFIJ 
8 CONTI~UE 

G!J,II=G!!,JI 
Gl!J,II=:ONJG!Gl!I,Jll 
G21J,li:CONJGIG2!I,JI I 

'3 CO~fJ:NUE 

lC CONTINUE. 
RC:Wi:NO 1 
riR.!TC: I 11 < !G t K ,l.) , G 1 I K, Ll , K= 1, NOS J , L = 1 , NOS I 
RETURN 
ENO 
SUS~OUTINE HULTICI 
COHMON/HISC/GA~,JELT,NOS,UU,UL,QU,X~ERoNMER 
COMMON/G,•uiT/G('+2o421 ,Gl!'+2o!o21 ,G2!C.2, .. ZI 
COMPLEX GoGl,.:iZ,C!io2,421 ,CKJ 
QO 10 I=l oNOS 
JO lil J:l,NOS 
Cti,JI=til .. O,J 
DO 10 K=l ,NOS 
CKJ:(Q,,J.I 
00 8 L=l,NOS 
CKJ=CKJ+GZ!K,LI•Gl!L,JI 

d CONTINUE 
Cti,JI=C!I,Jl+Gl!I,KI•CKJ 

11) CONT:i:NUE 
RETURN 
C:NO 
SUBROUTWE IN?UT 
COHHON/HISC/G~H,OELToNOS,UUoUL,QU,X~ER,NHE~ 
CJH~ION/ROSC/XRI!o21 ,VR!'-21 ,ZRt'-21 
COHMON/EECS/XE (421 91'E !42 I ,zE (421 oRE (421 
COHMON/EMOSIXM(42l,YM!,.2l olo'lt421 
COMMON/POL/A IT t2ol ,ART t2ol ,UP!ol 
COHHON/IJET/IQAt .. Zl,9SU3!!421 
COHMON/HPOL./Q!22o7o41 ,Odt7,:.1 ,I09t421 ,IQ03t42l oiDCt42l olONI'-21 
COHMON/t.PCS/X.1122,'+21 ,U(22,421,Z.ll22,42l . 
OIM~NSION At71,Bt5l 
OIHENSICN NATOMStiti,IQ!:.I,NIN!4lo!OSC!lZI,POS!101 
JIHENS.i:ON Rt7,41,T t7o'+l ,z t7o'+l 9 TE (7,41 ,?Et7 ,:.1 ,IPOLI7,41 
DIMENSION TH!7 0 1oi,?Ht7, .. 1,6It7 9 iol 
JIHENSION TP(41 9 ?Pt4l 
OIMt.NSICN 'AiU11o4l ,ATtllt41,AZtl1,41 
uiMt.NSICN AR1t22,4l,AT1!22t'+l ,AZl !22,'+1 
RE.10t5,3001 THETA,Q,B 

300 FORMAT !F10.3,F10.3,5.11ul 
WRITE te,,gg) 

gg FORMAT tl i11.1 
WK!TE (E),21JOI 

189 

20C FORMAT (lX,•C. CECH ROTOPH (MONOPOLE INTERACTIONI•,t.Sx,•CCUPLE 
1J OSCILLATO~ HOJEL TO INF:NITE ~~OER•I 

WRITC: lo,201l <a<II.t:1,SI 
201 FORMAT tlXt5A10,3E.X,•OF H. O'VOE PROGRAM We HUG•l 

WRLTC:t6,2201 
220 FORMAT !/1.< ,•;U:FERE:NCE 3ASE DATA•! 

00 38G I=l ,c. 
REA0(5,3il11 IOIII,NATOMS!II,NOSC,I\IN<!I,IS;:P 

3~1 FORMAT tA1,9X,I2o8X,I2,dX,I2,47X,I11 
IF<ISE?,NE,ul GO TO 331 
~EAGt5,3021 TPtii,PPt!l 

302 FOR.,'IAT !21F1U.3ll 
J~J=NATUMStii 

~EAO<~o3031 (tt •. ~(J,Il,~TtJ,II,AZ!J,Ili,J:l,JJJl 



303 FORMAT I~Fd.3l 

~AOT:TPII J•,Gl7'+5.33 
~AOP::PP<IJ•,Q174~33 

x?=S!NI~ACTl•COS<R~JPl 

YP:S!N<RAOTJ•SINIRAuPI 
ZP::COSIR.:.OTl 
>~RITE 1&,22.1.1 IiJIII 

221 FORMAT 111X,1H•,AltlH•,2x,•D.TJM•,2x,•x•,5x,•v•,:;x,•z•,5x,•R•,3x, 
t•TH~TA•,1X,•MP•,2x,•xuP•,Jx,•YuP•,3x,•zUP•,'+x,•R~,3X,•THETA•olX, 
1•MP•,2x,•xoN•,Jx,•YON•~Jx,•zON•,~x,•R•,JX,•THETA•,;) 

00 90 J. J= 1, JJJ 
C OP SP~CIFIES F~ACTION A~ONG UNIT VECTOR PE~P~NO!CU~A~ TO ?~ANE 
C OF 3A5E THAT MONOPOLE ?OSIT!JNS ARE HOVED 

JP::,75 
K=2 •J 
L.=K-1 
~AU::AT(~,II",Jl7~533 

X:AR(J,J.J •COS IRAQI 
'f::AfdJoil •SINIRAOI 
XUP::X + ( OP •x? I 
XCiN::X-IOP•XPI 
YUP=l' HOP•YP I 
YON:Y-(QP•YPI 
RUP:XUP•XUP+YuP•YUP 
~ON=XON•xON+YJN•YON 
AR11K,Il::S~RTIRONI 

AiU <~.Il=S~RTIRUPI 
.lZ1 (K,Il::AZIJ,::: 1-IQP•ZPI 
.lZ11L,Il:AZIJ,!lHQP•ZPI 
AON::ABSIXONI 
AUP=A8SIXUPI 
IF<.:.ON.LT •• OUG11 GO 'l'J '31il 
TON::YQN/XON 
AT 1 ( K , ! l :: .lT A ~I ( T 0 N I • 57 , 2 ':5 3 
IFt.<ONoLT.:l ATliK,Il:ATliK,!l+ldu. 
GO TO 9ll 

910 AT11K,I1=90. 
IFIYON.LT,J,l AT1<Koil::-90. 
:F<YONoEJ,O.I ATl(K,II:u. 

911 CONTINUC:: 
IFIAU?oLT •• OOOJ.l GO TO i12 
TUP::YU?/XUP 
A T1 I L,! l =AT AN ( TU PI • 57 , 2 95 d 
IF<xuP.L.T.JI ATlU .. ,Il:ATliL,Il+180. 
GJ TO '313 

912 AT1<L.,I1='30. 
IF<YU?.LT,a.l ATl<Loii::-'3J. 
IF (YU P, E.Q. 0 , l AT l ( L , I I: Q , 

913 CONTINUE 
WRITE16,<!2.31 J,X,Y,AZ(J ,Il,AR(J,II,AT(J,!I,L,XUP,YUP,AZ11Loii, 

1 A R 1 < L , I l , AT 1 ( 1.., I I , K, x CN, YON, AZ 1 ( K, I I , AR 1 (I<, I l , A T1 ( K , I I 
223 FORMAT 17Xoi2.~(FS,2,lXI,F&.2,1Xo21I2,F5.2,1~.F5o2o1XoFS.Z,lX, 

1FS.2,1X,F&,2,lXI I 
'30 1 CONTI NUt: 

JJ:: NIN ( Il 
i(J::Z•JJJ 
WRITE 1&,2221 JJJ,J(J 
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222 FORMAT (/5X,•osc•,2x,•oa•,3x,•HONOPOLES IN O~OER F:lR ATOHS 1 THRU 
1•oi2o'" l~ PL T~ANS ANO FOR POS 1 THRU •,I2,• OUT OF PL TRANS•! 

IF(JJ,EQ.GI GJ TO 2'+0 
tJO 332 J::l,JJ 
REAG IS,Jll'+l R(J,II,TIJ,Il,ZIJ,II,TEIJ,II,PE!J,IJ,P1(J,Il,PM(J,II, 



0 u J' 

0 I 

18I !Jtil ,oe<J.Il .IPOL!J.Il 
30~ FORMAT (gFd,3,&x,I21 

~EAO<S,405l (Q(L,J,Il oL=1,JJJl 
305 FORM.U <oFlC • .:.l 

8 

WRITE !&,22~1 J,Q61J.II ,(Q(L,J,Il ,Lzt,JJJI 
22~ FCRHAT (/~X.I2,1X,F5,Z,2X,111F8,&,1XI l 
HZ CONTINU~ 
2~0 CONTINUE 

IFIJ.J,E:Q,NOSCI GO TO 21t1 
K:JJ+l 
JO 3d3 J:K,NOSC . 

191 

~ E A 0 I 5 , 3 0 ~ l R I J , I I , T I J , I l , Z I J , I I , T E I J , I l , i' E I J , .I I , T M ( J , I l , P 11 I J , I I , 
13 I I J, I I , 0 a I J , I I , I? OL I J , I l 
~EA015,3051 IQ(L,J,Il tL=loKJl 
IIRITE 16,2251 J,QSIJ,Il, IQIL,J,II ,t.:1,KJI 

225 FORMAT I/SX,I2,lX,F5,2,2X,11(F8,6,1Xl ,l,l5X,11(Fd.6,lXIl 
31!3 CONTINUE 
2'+1 CON Tl: NUE. 
3dll CONTINuE 
301 CONTINUE 

CALL IOSHil FE 
C:NTR'I' !NPUT2 

3q0 CONTINUe 
REAOI':i,luOl IAIIl,I=1,7l,XME~.N11ER,ISEP 

100 FORMATI7A1Co2X,F~o0o1X,I1,1X,I11 
IF IXMER.C:Q,OI XMEt(.:t. 
IFINME~.EQ,OI N11ER=1 
rF IISE:P. NE ,iJ l S TO? 
G~M:,ul745J3•TH~TA•N11ER 
iJC:L T=J•N,'1t~ 
NION:J 
.~ C: A 0 I 5 , 1 Ll 2 I I G 11 A T , I P N CH , I P L T , I U? I I I , I = 1 , o I 

102 FORMAT 13Il,7X,6Et:l.Ol 
WRITE lot c;il 
WRITE <o,2301 IAIII,I:1,71 

230 FORMAT 17 .UO l 
WKITE12,23ll l.l.!Il ,I:1,71 

231 FORMATIII/7A10/II 
WRITE lo,20ol 

20& FORMATI//2X,•6ASE•,zx,•POS ON•,7x,•e:t.ECTRIC OSCILLATOR ?OSITION$•, 
123X,•QI~ECTION UNIT VSCTORS•,15X,•MAG OSC•I 

>4RITE <&,2J71 
207 FORMAT 18X,•HELIX•I 

~RITE lo.2081 
2oa FORMAT 12Gx~·x•,ax,•Y•,ax,•z•,7x,•R•,e.x,•THETA•,zx,•osc•,1x, 

1•Pot.•,sx,•x•,ax,•y•,ax,•z•,sx,•TH~TA•,sx,•PHI•.~x.•osc•,2x,•at~l 
NOS:O 
oo 1 IJK=1.1u 
Q.EA015,1Gll IuA~Eti~BR,! IIJSCI Il ,I:1,121,:SE!' 

101 FORMAT (A1,3X,I2,~X,l21!2,3Xl,9X,I11 

IFIISEP,NE,OI GO TO 5J 
.Q.EAuiS,1031 IPOSIII oi:1,1CI 

103 FORMAT llOFS.OI 
L.INt:l=O 
WRIT~ 1&,2101 
WR!iE (6,2091 I3HE 

20'1 FORMAT 11t.+,3X,A11 
00 3 I:1,4 
IF II~AS:: ,C:Q,IOI: II- GJ TO '+ 

3 CONTINuE 
ti!<.ITE 1&,2041 

204 FORMAT (/ /lX, •SASE lHIJ<tWWN•I 



STOP 
Lt CONTINUC: 

00 z J=l,!J 
IF I?OS!Jl,E!..i.Gl GO TO 1 
N ID N: N IOIH1 
STi<.AND=1· 
"C:lHW 
IFIPOS(Jl,GT.~l GO TO 15 
STR;.NQ:-t, 
WC=lHC 

15 POS~=~~S<?OSIJII 
IF!io:i:NE1.EC.~ll "RIT:<o,21ul 
;1RITE (Eo, 211 l '4C ,?OSJ 

211 FOR~AT lln+,9X,Al,F2.~l 

210 FORMAT llXl 
?uSJ=POSJ-l, 
LINC:2::0 
NNOS:NOS 
JO :' H=1,NdR 
K::IOSC(Ml 
.~OS::NO;i + 1 
TT= IT <«d. l •SE.l.NOI + IPIJSJ•THETAl 
TRAC::TT•.Ct7Lt533 
~ON (o~uS l:: NIQN 
~EINOSl=~<K,:i:l 

(~(NOSI::~(K,Il•COS<TR.~OI 

YRIN0Sl:~(K,Il•SIN!Ti<.A0l 
Z"l1<05l=IZ!:<,ll.•STRAN0l + IPOSJ•Ol 
TTE::T;: !K, r> 
IFIPOS!.Jl .-.T.ul TTE:tdO.-TE!.<.Il 
fE~AO=TT~•.Ol7~S33 

PPC::IPC:!,(,!J•Si~ANOl+IPOSJ•THETAl 
~t:RAO:?P~•.Ot7~SJ3 

X~INOSl=SIN<T:RAOl•COS<?E~AOl 

YE<~OSl=5INITC:RAOJ•SI~IPC:qAOl 
ZEINOSl:COS<TERAOl 
IOAINOSl=IPOLIK,Il 
!OB<tiOSl=I 
IOOBINOSI:K 
IFIL!NE2.t:Q.1l WRITE!5,2101 

192 

WR.ITE!Eo,Zl2l XRINCSI tfRINCSl ,ZR<NOSl ,R<K,II ,TT,NOS,IOAINOSI, 
1Xt: INOSJ ,YEINOSI ,z,:: (NO;il ,TTE,PPE 

212 FORMAT (1H+,15X,JIF7.~, ZXl,1x,F5,2,2X,F7,2,2X,I3,1X,I2,312X,F7,Ltl 
12X,FQ,2,2X,F7.2l 

IF!di<K,Il.EQ,OI GO TO Eo 
TTH=TH (K, Il 
IF<POS!Jl .LT.'"! TTH:UO.-TH!K,Il 
TMRAO:TT~•.Ot7Lt533 
PPH=(PM<<,IJ•STRANOl+(PCSJ•THETAl 
PHRAO:?PM•,at7LtS3J 
XMINOSl~SINITHRAOl•COS(PH~AOl 
YH(NOSl=SINIT~RAOI•SINI?MRAOI 
ZM<NOSI:COSITHRADl 
3SUBI!N05l:3~(~,II 
W~ITE!o,213l NOS,SSUB!l~CSl ,Xo'1(N0Sl ,YHIN0$1 ,ZHINOSI 

213 FORMAT (lH+,91XtiS,FS.Z,3F10.~1 

GO TO 9 
& XMINJSl=Q, 

YH(NOSJ:.;, 
ZHINOSl:O, 
d5U6l(N0Sl=9I(K,Il 

9 CONTiNUE 



0 

c 

n u 0 ttj 6 q ... 7 ~ . "J 9 

'111:N~N I I I 
IF II<..GT.MHI GO TO 10 
:-l11PT~:NATOMS (! l 
IOQI:-lOSl:NMPTS 
OJ 6 1.=1,N11PTS 
ANGI.C::IATII.oii•STRANOl~IPCSJ•THETAI 
~AG:ANGt.~•.U17~SJ3 
XAILoNOSl=ARIL,Il•COSIR~Ol 

YAILoNJSl:ARII.oll•SIN!~AOI 
ZAII.,NOSl:tAZILoii•STRANOI~IPOSJ•Q) 

8 CONTINUE. 
GO TO 11 

10 CONT:i:NUE 
NHPTS=~•NATCHSIII 

IOQ INOSl:NMPTS 
DO 7 L:1,NMPTS 
ANGLE=IATlll.,!l•STRANOI+!POSJ•THETAI 
RAO:ANGL~·.~l7*533 
XAII.,NOSI:ARl!Loil•CQS(;ADI 
YA(I.,N0Sl=AR1 ll.o!I•S!NI?..AOI 
ZAIL,NOSI:IAZl!l.,ll•ST~ANOI+!POSJ•Ol 

7 CONTINUE. 
ll CONTINL:£ 

5 1.INE2:l 
2 LINt:1=1 
1 CONTINUE 

SU CONTINUE 
RETURN 
ENG 
SUB~OUT!NE ASHAP~ 
C011MON/H!SC/G~M,JELT,HOS,UU,ULtOU,XMERoNHE~ 

COMHONHI RIA I I 2&, 1011 , A~ I 2&, 101 l , UA I 2 & I 
COHHON/P01./AIT12&l,A~TI~~I,UP!&l 

19 3 

C:QUIVAI.E.NCE ITUA,UP!lll t!TUEoUP!2ll, ITUO,UPI3ll ,(QS,UP!loll, 
11UK,UP!51 I, IGK,U?I61 I 

OIHENS:i:ON UEI26l ,UDI26J ,IPTSI2&i 
DO 25 I=l,Zo 
UA(lJ:O. 
UE!Ihil. 
UO!II:O. 

25 CONTINUE 
00 1 I:l,27 
REAOIS,100l TUA,TUE,TUO,DS,uK,GK,<,ISEP 

100 FORMAT loE1C.O,I2,17X;Ill 
IF IISEP.NE.Cl GO TO 2 
IF IK.EQ. ill K:I 
UA!Kl=TUA 
UE I Kl: TUE 

· UD!Kl=TUD 
RIZ=ITUE·TUAl/T~O 

RAa:AaS<~IZI + 1.~1 
IAB:RAS 
IPT:i!Kl=US 
IFIIAS.GT.1011 GO TO 5 
IF IUK.NE .o I GO TO 3 
READ IS,lllll IA:i!K,JI ,J=l,IABI 
THIS IS INPUT FORMAT FOR &0 POINT DECK.·· 

101 FORMAT ISIE:!i.O,dXII 

C THIS IS INPUT FGR.I1AT FOR 1lo POINT_ DECK 
101 FORMATI21E6.0,32Xll 

c 



RC:AO 15,10ll IA~!K,Jl ,J:1,IA3l 
GO TO 7 

3 IF !Gi<,EJ,Ol GK~O.S"SURT !Ui<l 
00 o J:1.IA6 
UOEL=IJ•1l•TUO 
IF!f'.IZ.LT.O.l UOEL=-UJEL 
U:TUA+UOC:L 
UKU:uK•lJK 
uu=u•u 
UMU:Ui<U•IJU 
UU:OS"UK•10.0c9/IUMU•UMU+UU"Gi<•GKl 
r a11 =u11u•uu 
IF IA6S!T611l.GT.l01l00~(j.l GO TO 5 
M.K.<K,Jl:TBH 
T3:1=u•GK•uu 
IF !TSM.~T.1CCUOJO .1 GO TO 5 
~I IK,Jl:T6M 

o CONTrNUE 
7 COrHINUE 

IF!~IZ,GT.O,l GO TO 1 
I~= !Ad/2 
00 .. J:1,IA 
JT:IAd+1•J 
TBH=AI<K,Jl 
AI!K,Jl=~IIi< 1 JTl 
A I ( K, J T l :: T:3M 
TBH=Aid K, Jl 
~F..< K,Jl :C.RI .<,JTI 
~RII<.,JTl:TBH 

It CONTINUE 
U~o~(Kl:TUE 

UEIKl:TUA 
1 CONTrNUf. 
5 ',jRITE <o,220l 

220 FORMAT 11x,•POL OUT OF ~ANGE•l 
STOP 

2 UL=il• 
UU: 10 ES 
00 22 I=l ,zc 
UL:A11AX1(UL,UA!Ill 
UT:AMIN11UU,UEIIll 
IFIUT.NE.Uol UU=UT 
IFIUOIIl.~Q.Q,J GO TO 22 
IFII.LT.2cl ll=I+1 
DU=UO!!l 
IF IUOIIl l .EQ.Ol GO TO 22 
IF tuDIIl.EQ.U.OIIlll GO TO 22 
~RITE !&, 270 l 

27Q FORMH !lX,•POL INCCHPATISLE:•l 
STOP 

22 CONTINUE 
IFITUA.NC:,iJ.l GO TO 3J 
RETURN 

3Q CONTINUE 
wRITE 1&,20Ql 

200 FOR.I"AT !1//!.X,•;JOLARIZASILITIES•J 
DO 31 I=l,2o 
IFIUOIIl.EQ,Q,J GO TO 31 
wRITE (6,20ll !,UA!Il ,UC:!:l ,UOIIJ 

201 FORMAT I//LX,•NI3R=•,I3,LO.<,•START F~EQ:•,F7.J," 
1F7.3,• OELTA:•,F7.3l 

IAd=IPTSI :1 

194 



0 n. 
'>it;/ 6 8 0 

WI(!TE 1&,20'+1 
20~ FORMAT (/lX,•!MAGINARY•l 

w"-ITE 1&,2051 IAIII,.JI.J:1,IAal 
205 FORMAT !1X.l0Fl2.SI 

WKITE lo,2uol 
201) FUR.HAT 1/lX,•R.C:Al.•l 

wRITE 1&,2051 IARII,Jl,J=l.IABI 
31 CONTI!ItUE: 

~!::TURN 
E:NO 
SUBROUTINE IhVERTIA,Nl 

0 

COHPl.C:X Al'+2,1+2l ,P!vOT<<+2,42l ,AMAX,S..,AP,r 
iHHENS!ON IPIIJOT ('+21, INJC:X (1+2, 21 
EQUI'JALENCE IIRQ;j,JROWI., <!COLUH,JCOl.UMI, (.l:1AX, T, SWAPI 

1S 00 2J J=l ,N 
20 I?IVOT<.JI=O 
3C 00 SSC. I:J.,N 
40 AI1AX:Q,Q 
'+5 00 10:) J=1.~ 
SO IF <IPI VOT (JI-ll &0, 105, &0 
&ll DO 100 K=1tN 
70 IF <I?IVOTIKI-ll dO, 100, 740 
SO IF ICA9SIAMAXI•CABSIAIJ,I(lll 85,10(), 100 
85 IRO~=J 
gQ ICOLUH=K 
'35 AMAX:A(.J,!<l 

100 CONTINUE 
105 CONTINUE 

IF I C.o\dS 1Ao'1.o\X l I 110 ,!!Q 0,110 
110 !PI~OT<I:CLU~I=IPIVOTIICOLUMI+1 
130 IF IIROW•!COLUMI 1'+C, 261), 11+0 
1'+0 J~T~RM:·J~TERM 
15 0 00 20 0 L=:., N 
1&0 SWAP=AIIRC..,,LI 
170 All~OW,LI:A<ICOLUMtLl 
2a0 AIICOLUM,Ll:SWAP 
2&0 INOEX1:,11:IROW 
27u INOEXCI,2l=ICOLUM 
310 ?!VOTIII:ACICOLUH,ICOLUMI 
330 A!ICOLUH,ICOLUMl:1,0 
31+0 DO 350 L=1oN 
350 AIICOLUH,Ll:AIICOLUM,LI/PIVOTJII 
380 oo :sa L1=1.N · 
390 IF!Ll.·ICJLUHI 1+00,550,1+00 
'+Ou T:A(LloiCOLUHl 
420 A(LloiCOLUHI:Q,u 
430 00 '+50 L=1,N 
I+SO A(L1,LI:AILl,LI-AIICOLUH,LI•T 
550 CONT:::NUE 
&00 DO 71G I=1,N 
&10 L=N•1-I 
620 IF <IN0£;(1Lo11-INOE:XCL,211 630, 71(1, &JO 
&30 JROW=INOEXIL,ll 
a'+O JCOLUH:INOEXIL,21 
&SO 00 705 K:1,N 
&&0 ~W~P=~IK,J~OWl 

670 AIK,JKOWI:AIK,JCOLUHl 
700 Al~tJCOLJMI:SWAP 
705 CONT!NUC: 
7lll ~ONTI.'IUE 
71+0 R.li:TUR.N 
800 DET£RH = Q, 

195 



II. Program ROTOPM (Author: C. Cech) 

Description: 

This program calculates the s and CD spectra of 

oligonucleotides 

Input: (cards) 

geometry deck 

polarizability 

(see Ia) 

(see Ib) 

196 

oligomer specification deck (see Chapter V ref. 17 ) 

Output: (line printer) 

reference base data 

polarizability data (optional) 

oligomer structure 

optical data 

Procedure is similar to ROTOPI except equations from chapter 

III are used in step 10. See Chapter V reference 17 for 

details. 

Listing of ROTOPM J.S on microfiche labelled: '' P.PPENDIX A 

PROGRAMS II 



0 0 8 0 
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III. Program BASES (Author: I. Tinoco, Jr.) 

Listing ~s given on microfiche labelled "APPENDIX A PROGRAMS" 



APPENDIX B 

This appendix contains the results of calculations 

on 16 polymers (see Chapter V, section III) in RNA, 

B-DNA and· C-DNA geometries. These 14 pt calculations are 

given in digitalized form on the microfiche labelled: 

198 

"APPENDIX B DIGITALIZED DATA" and as plots on the microfiche 

labelled: "APPENDIX B PLOTS". 

.j 

' 

,.; 

,•' 



0 0 0 4 6 0 2 
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Figure Bl shows a sample frame of digitalized data. The 

average extinction and CD are given as well as the perpen-

-dicular and parallel contributions to the average CD . 

. , ' 
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POLY GT C-ONA J 

LAHBOA co PARA PERP EX PARA PEFCP ,,-

295.9 ·085 -.:n& .c.o 2 783.8 775.«. 8.5 
287.«. -·034 -1·381 1· 3'+ 7 24'+5. 1 2 L31• 3 13·8 
279.3 -2.615 -«..540 1· 925 450 2· 8 '+475.o z7.8 
271.7 -&.812 -8.432 1• 6ZO 5982·3 5936.9 '+5.3 
26ft.& -&.751 -8.1t27 1e676 71oo.5 710 ~- 6 57.9 
257.7 -z.&&o -'+. <:&a 2·300 8230·0 8toE.o 64.6 
251·3 1• 919 -.87& 2· 795 836 7. 8 6JQ3e8 6lte0 
245·1 3. 550 .994 z.ss& 7099.6 70'+3·1 5E.5 
239·2 3·053 1aZlt5 1· 607 5159.5 5112•8 46.6 
233•0 z. 072 1·070 1·002 3352·1 3J1S.o 37·0 
228·3 2 •10& 1o787 • 319 2'+29. 9 2'+00·2 29.1 
223·2 3e&59 c..oos -. 345 2'+10·5 2385.5 25.0 
218o3 6.7Q6 7.761 -1·074 3265.1 3240.& 24o 5 
213·7 10.30 0 12· 323 -2·02'+ '+cso.o 4621·3 2 e. 1 



'-

\_ 

0 0 ; 0 ' 6 . , ,_:;i 
•_;;.· 

201 

-' 

Figure ~2 shows a sample frame of the plotted data. The 

solid line is the average, the dots are the paralle 1 con tri-

bution, and the ?'s are the perpendicular contribution. 
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MICROFICHE APPENDICES 
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