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ABSTRACT This work introduces Orthogonal Lattice Universal Wavelet Unit, a novel trainable wavelet
unit to enhance image classification and anomaly detection in convolutional neural networks by reducing
information loss during pooling. The unit employs an orthogonal lattice structure, relaxing the zero-at-π
condition and decreasing the number of trainable wavelet coefficients. This innovation is a key novelty of
the work. The unit modifies convolution, pooling, and down-sampling operations. Implemented in residual
neural networks with 18 layers, it improved detection accuracy on CIFAR10 (by 2.67%), ImageNet1K (by
1.85%), and the Describable Textures dataset (by 9.52%), showcasing its advantages in detecting detailed
features. Similar gains were seen in the implementations for residual neural networks with 34 layers and 50
layers. For anomaly detection in hazelnut images on the MVTec Anomaly Detection dataset, the proposed
method achieved a segmentation area under the receiver operating characteristic curve of 97.15% and
better anomaly localization. The method excels in detecting detailed features, despite increased trainable
parameters from using one-layer fully convolutional networks for feature combination.

INDEX TERMS Anomaly detection, Computer vision, Discrete wavelet transforms, Feature extraction,
Image processing, Image recognition, Machine learning, Supervised learning, Wavelet coefficients, Wavelet
transform.

I. INTRODUCTION

Max pooling and average pooling are common downsam-
pling functions in convolutional neural networks (CNNs)
for computer vision applications. The max pooling method
selects the pixel with the largest value for the down-sampled
feature map, and the average pooling method averages the
pixels in the kernel, smoothing out the feature map. Both of
these conventional pooling methods degrade details in the
down-sampled feature maps because both functions operate
as low-pass filters. Max pooling and average pooling meth-
ods are also deterministic processes with vanishing effects
on feature maps in deeper layers [1]. Because these down-
sampling methods do not perform filtering, feature maps in
common CNN architectures, such as VGG [2], DenseNet
[3], Mobilenets [4, 5], and ResNets [6] are also affected by
aliasing among low-frequency and high-frequency compo-
nents. These effects compromise the performance of models
working on textural data, such as in the Describable Textures
Dataset (DTD) [7]. Detailed features are also needed for

detecting objects like insects [8, 9] due to their intricate and
textural characteristics [10, 11].

Fig. 1 presents several examples where high-frequency or
detail image parts hold important information. The CIFAR10
[12] sample shown in Fig. 1 has most information con-
centrated in the low-frequency region or the approximation
component. In contrast, all other samples from ImageNet1K
[13], MVTec AD [14, 15], and DTD [7] have information
in both low (approximation) and high (detail) frequency re-
gions, demonstrating the importance of both low-frequency
and high-frequency information in images.

Several methods have been proposed [16–18] to deal with
the drawbacks of conventional pooling methods. In [16], the
AVG-TopK pooling model was proposed, which takes K pix-
els with dominant values and averages them, while a universal
pooling method was proposed in [17], which uses a linear
combination of image features, where average pooling, max
pooling, and stride pooling functions are special cases. The
AVG-MAX VPB pooling module was proposed in [18]. In
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FIGURE 1. From left to right, Haar-wavelet and frequency representations of sample images from CIFAR10 (first column), ImageNet1K (second column),
MVTec AD (third column), and DTD (fourth column). The original images (top row) are shown with their frequency representations (middle row) and
wavelet representations (bottom row). Xll , Xlh, Xhl , and Xhh show the coarse approximation and details wavelet representations.

that approach, max pooling and average pooling are applied in
the vertical and horizontal directions. Spectral pooling-based
methods proposed in [19, 20] pool the features from the fre-
quency domain to avoid aliasing, while other methods utilize
the wavelet basis to develop alternative pooling approaches
[21–23]. Spectral-pooling-based approaches mainly utilize
the low-pass frequency information in pooling and discard
the high-frequency parts. Li et al. [21] only used the approx-
imation or low-pass information in the pooling. In contrast,
the work in [22] places more attention and constraints on the
detail, or high-frequency information.

The aforementioned works utilize either max pooling,
which may lead to aliasing, or average pooling, a low-pass
filter method that results in the loss of detailed features in
deeper layers. Additionally, previously proposed wavelet and
frequency-based approaches only employ either low-pass or
high-pass features. Moreover, the filter coefficients in these
prior wavelet-based methods are fixed. There are also a lim-
ited number of works attempting to make wavelets trainable,
as seen in [24, 25]. The work in [25] introduced a wavelet
loss function that applies constraints to low-pass and high-
pass filters while maintaining reversibility and symmetry
conditions on the trainable filters’ coefficients. In contrast,
[24] introduced the relaxation of the perfect reconstruction
constraint, along with a perfect reconstruction loss function,
to train the filter bank’s coefficients.

In the new proposed approach, we leverage both low-
pass and high-pass features in the network and allow the
filter coefficients in the wavelet decomposition to be tunable.

We introduce a new learnable orthogonal wavelet unit using
a lattice structure, named the Orthogonal Lattice Universal
Wavelet Unit (Orthogonal-LatticeUwU), where the lattice
coefficients of the lattice structure are optimized to increase
the classification performance. The use of lattice coefficients
instead of filter coefficients will also reduce the number of
trainable coefficients in the filters. These aspects also differ-
entiate our work from other related studies, highlighting its
novelty. The decomposed wavelet components are combined
to generate the optimal feature maps for the CNN by using a
one-layer Fully Convolutional Network (FCN). The goal of
this implementation is to fully utilize both low-frequency and
high-frequency features from an optimized filter bank. The
proposed Orthogonal-LatticeUwU unit is used to generate
optimal feature maps for the downsampling and pooling func-
tions to achieve better performance. In addition, Orthogonal-
LatticeUwU followed by non-stride convolutional layers can
replace the traditional stride convolutional layers and further
enhance CNN performance. The proposed units in our work
enable the wavelet to be specifically trainable during CNN
training, a novel aspect that, to our knowledge, has not been
explored in previous research. We apply the proposed units
on ResNet18-based architecture then compare our proposed
method with wavelet-based variants, such as WaveCNet [21],
Wavelet-Attention CNN [22], Convolutional Wavelet Neural
Network (CWNN) [23], Learnable Discrete Wavelet Pooling
(LDW-Pooling) [25], wavelet unit with perfect reconstruc-
tion relaxation (PR-relaxation) [24], and spectrum-based ap-
proaches such as SpectralPooling [19] and DiffStride [20] on
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CIFAR10 [12], ImageNet1K [13], and DTD [7] datasets.We
then incorporate the proposed units into anomaly detection
and segmentation tasks in the hazelnut category group of
the industrial inspectionMVTec Anomaly Detection (MVTec
AD) dataset [14, 15]. The key elements of the proposed new
method are as follows:

• We propose Orthogonal-LatticeUwU, a learnable or-
thogonal wavelet unit based on the lattice structure to
improve classification performance. As orthogonal filter
banks and their lattice structure are used, perfect recon-
struction is maintained and the number of parameters is
minimized.

• To achieve better classification performance, we relax
the smoothness constraints (zeros at π) on the filter.

• The lattice coefficients are initialized using a synthesis
procedure given the existing wavelet filter coefficients.

• The proposed method is implemented and tested on a
wide range of image classification datasets, achieving
excellent performance.

• The proposed unit is also used in anomaly detection.

In this paper, related works on conventional pooling methods
and frequency and wavelet-based approaches are first dis-
cussed. Subsequently, the proposed Orthogonal-LatticeUwU
unit, its theory and implementation are presented. The pro-
posed unit is evaluated for image classification and anomaly
detection tasks on ImageNet1K [13], CIFAR10 [12], DTD
[7], and MVTec AD [14, 15] datasets. The results and per-
formance of the proposed method are also illustrated and
compared with other related approaches.

II. RELATED WORKS
A. CONVENTIONAL POOLINGS
Both average and max pooling methods [26] compute local
statistics and are typically followed by a non-strided con-
volution to downsample and extract the feature maps in a
CNN architecture. Max pooling, a prevalent downsampling
method, retains the maximal values, thus preserving promi-
nent features [27]. In contrast, average pooling averages val-
ues over feature maps, producing a smoothing effect; this
method was notably used in LeNet [28]. However, both of
these downsampling methods utilize only a subset of the im-
age features, potentially discarding vital information. Further-
more, downsampling without filtering can result in aliasing
between low-pass and high-pass components in the feature
maps, violating the sampling theory [29]. In addition, it has
been reported that max pooling can degrade object structures
in deep networks [21].

B. FREQUENCY DOMAIN-BASED APPROACHES
To address the aliasing problem inherent in max pooling
and average pooling methods, spectral pooling was intro-
duced [19]. This method uses the discrete Fourier Transform
(DFT) technique to leverage the frequency domain during the
pooling process. Essentially, spectral pooling operates as a
low-pass filter that truncates the frequency representation of

the input, retaining only the lower frequencies to mitigate
aliasing [29]. Spectral pooling was first presented in [19].
However, it was highlighted in [20] that spectral pooling was
non-differentiable with respect to its strides. As a result, the
number of strides must be predefined as a hyper-parameter
for each downsampling layer.
The study in [20] tackled the challenge of determining

stride parameters by introducing DiffStride. This method
autonomously determines the number of strides in spectral
poolings using backpropagation. Because spectral pooling
performs cropping in the Fourier domain, DiffStride deter-
mines the optimal cropping box size via backpropagation.
Despite improvements, both spectral pooling and DiffStride
still omit detailed information from the feature map, which
might reside in the truncated high-pass frequency. In our
work, we address this issue by including both high-pass and
low-pass information in the proposed unit.

C. WAVELET DOMAIN-BASED APPROACHES
Discrete wavelet transform (DWT)-based methods have
emerged as an alternative approach for harnessing the wavelet
domain in CNNs. By leveraging DWT or fast wavelet trans-
form (FWT), these wavelet-centric pooling techniques en-
able CNN models to operate on downsampled features in
the wavelet domain. Using DWT minimizes artifacts typi-
cally seen in neighborhood reduction techniques like max
pooling. Importantly, feature map components decomposed
from DWT can reconstruct the input without aliasing, and
the components can also be selected to form a feature map.
The use of DWT in neural networks as a pooling function
was pioneered in [30], and it has since been incorporated into
models for image classification tasks [21–23].
However, most studies have used only a subset of the de-

composed wavelet components. For instance, [30] employed
a second-order wavelet decomposition for pooling but re-
constructed the image features with only the second-order
wavelet sub-bands. Similarly, [21] revealed that WaveCNet,
applied on the ImageNet1K dataset, predominantly used the
approximation of the first-order decomposition for building
feature maps. The idea of incorporating decomposed detail
components to assemble sub-sampled feature maps was pro-
posed in [22, 23]. Specifically, Wavelet-Attention CNN [22],
tested on CIFAR10 and CIFAR100 datasets, found vertical
and horizontal details to formulate an attention map, which
was then overlaid on a feature map crafted from the DWT
approximation component. Alternatively, [23] described the
Convolutional-Wavelet Neural Network (CWNN) and its ap-
plication to SAR images, using dual-tree complex wavelet
transformation (DT-CWT) and averaged decomposed com-
ponents for downsampling. The methodologies in [23] were
integrated into a ResNet18 architecture for image classifica-
tion on the ImageNet1K dataset, with performance bench-
marks presented in [21]. In addition, there are only a few stud-
ies that have tried to make wavelets trainable, such as those
by [24] and [25]. The research by [25] presented a wavelet
loss function that enforces constraints on low-pass and high-
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FIGURE 2. Analysis (left) and synthesis (right) parts of a two-channel
filter bank architecture is illustrated. A signal can be decomposed into
smaller components in the analysis part and reconstructed with the
decomposed components in the synthesis part.

pass filters while preserving reversibility and symmetry in
the trainable filters’ coefficients. On the other hand, [24]
introduced a method that relaxes the perfect reconstruction
constraint and employs a perfect reconstruction loss function
to train the filter bank’s coefficients.

In this work, we introduce Orthogonal-LatticeUwU with
tunable wavelet coefficients to improve the feature extraction
process. To validate our proposed approach, we implement
and test Orthogonal-LatticeUwU units on a wide range of
datasets, including CIFAR10 [12], ImageNet1K [13], and
DTD [7].

III. PROPOSED METHOD
We introduce Orthogonal-LatticeUwU, an orthogonal
wavelet unit with tunable coefficients based on the lattice
structure. Orthogonal-LatticeUwUunits can be used as down-
sampling and pooling units. Additionally, by pairing a non-
stride convolution layer with Orthogonal-LatticeUwU units,
it’s possible to replace a stride convolution layer and still
retain the detail components in the convolution output.

A. ORTHOGONAL-LATTICEUWU: AN INTEGRATION WITH
LEARNABLE ORTHOGONAL WAVELET UNIT

Orthogonal-LatticeUwU is a unit that leverages both low-
frequency and high-frequency components from aDWT anal-
ysis to find the optimal feature map. Instead of utilizing pre-
defined wavelets, Orthogonal-LatticeUwU is characterized
by trainable coefficients and is constructed using a lattice
structure. In addition, the perfect reconstruction characteristic
of DWT can be achieved through the analysis and synthesis
components of a filter bank. A visualization of the filter
bank structure is provided in Fig. 2, where the analysis and
synthesis parts of the filter bank are shown in the blue and red
rectangular boxes, respectively. For the analysis component,
H0 and H1 are low-pass and high-pass filters, correspond-
ingly. Conversely, F0 and F1 are low-pass and high-pass
filters for the synthesis part, respectively. To achieve perfect
reconstruction, the aliasing cancellation condition must be
fulfilled, and there should be no distortion in the reconstructed
signal. To satisfy the alias cancellation condition, given h0 =
[h(0), h(1), ..., h(N − 1)] as coefficients of H0 with N taps,
the coefficients of the other filters in the orthogonal filter bank
can be deduced through sign alternating flip, order flip, and
alternating signs relations [31], which can be expressed as

follows:
Order Flip: f0(n) = h0(N − 1− n)
Sign Alternating Flip: h1(n) = (−1)nh0(N − 1− n)
Alternating Sign: f1(n) = −(−1)nh0(n),

(1)

where f0, h1, and f1 are filter coefficients of F0,H1, and F1,
respectively. From the relations presented in Eq. (1), the filter
bank satisfies the anti-aliasing condition. Moreover, with the
aliasing cancellation condition, filter coefficients h0 ofH0 is
designed, which reduces the number of parameters needed for
the analysis portion of a classification model. Then, in to find
aH0 that ensures no distortion in the reconstructed signal, one
approach is to impose the orthogonal structure in the filter by
building it with lattice blocks [31], which can be expressed as
follows:[

H0(z)
H1(z)

]
=

[
H0(z)

−z−(N−1)H0(−z−1)

]
=

[
1 0
0 −1

]
RKΛ(z2) · · ·R1Λ(z2)R0

[
1
z−1

]
, (2)

where Rk is a rotation matrix constructing the filter with
k = 0, · · · ,K . The delay matrices within the filter are
represented by Λ(z2). In addition, N is the order of the
filter which can be defined as N = 2K + 1. In this work,
to ensure the half-band condition, we use rotation matrices,
which inherently are orthogonal matrices. Hence, Rk and
Λ(z) can be mathematically expressed as follows:

Rk =

[
cos(θk) sin(θk)
−sin(θk) cos(θk)

]
=

[
ck sk
−sk ck

]
. (3)

Λ(z) =
[
1 0
0 z−1

]
. (4)

In Eq. (3), θk is a rotation angle determining the coefficients
of the wavelet filter bank with k = 0, ...,K . These rotation
angles in the rotation matrices, where either their rows or
columns are orthonormal to each other, are also termed lattice
coefficients and determine the coefficients of the filter bank’s
filters. This orthonormality consequently ensures that the
filters, which result from the multiplication of rotation and
delay matrices, maintain orthogonality.
Instead of training the filter coefficients directly, the pro-

posed method integrates these lattice coefficients as trainable
parameters for the wavelet unit. With lattice coefficients,
the filter bank is orthogonally structured and thus satisfies
perfect reconstruction. Moreover, the number of lattice co-
efficients is (K +1), which is approximately half the number
of filter coefficients N. This helps to reduce the number of
trainable coefficients. In this work, the initialization of the
lattice wavelet unit with trainable lattice coefficients needs
two crucial subroutine procedures: analysis and synthesis.

• The analysis procedure computes the filter coefficients
given the lattice coefficients.

• The synthesis procedure computes the lattice coeffi-
cients given the filter coefficients.
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FIGURE 3. Analysis Procedure diagram. In this diagram, Sign Alternating
Flip can be implemented with h1,k (l ) = (−1)l h0,k (N − 1 − l ), and l is
the coefficient index of the filter, which decreases by two after each
iteration.

In the following section, we will derive analysis and syn-
thesis procedures for image detection. Since the process is
iterative (from stage k to k + 1 for analysis and vice versa
for synthesis), we include the stage index as part of filter
notations. Specifically,H0,k(z) andH1,k(z) correspond to the
low-pass and high-pass filters of the filter bank, constructed
with k+1 lattice coefficients. The detailed analysis procedure
is as follows:[

H0,k(z)
−H1,k(z)

]
= RkΛ(z2)Rk−1Λ(z2)...R0

[
1
z−1

]
(5)

↔
[
H0,k(z)
−H1,k(z)

]
= RkΛ(z2)

[
H0,k−1(z)
−H1,k−1(z)

]
(6)

↔
[
H0,k(z)
−H1,k(z)

]
=

[
ck sk
−sk ck

] [
H0,k−1(z)

−z−2H1,k−1(z)

]
(7)

↔
[
H0,k(z)
H1,k(z)

]
=

[
ckH0,k−1(z)− z−2skH1,k−1(z)
skH0,k−1(z) + z−2ckH1,k−1(z)

]
. (8)

As shown in Eq. (8),H0,k(z) andH1,k(z) are updated based
onH0,k−1(z) andH1,k−1(z) from the previous stage and the
rotation matrix with the lattice coefficient θk . In addition, for
the case k = 0, we have:[

H0,0(z)
H1,0(z)

]
=

[
c0 + z−1s0
s0 − z−1c0

]
. (9)

Algorithm 1 Analysis Procedure
Input: θk (trainable lattice coefficients for k from 0 to K )
Output: H0,K and H1,K

1: for k ← 0 to K do
2: if k = 0 then
3: H0,0(z)← cos(θ0) + z−1sin(θ0)
4: H1,0(z)← sin(θ0)− z−1cos(θ0)
5: else
6: H0,k(z)← cos(θk)H0,k(z)− z−2sin(θk)H1,k

7: H1,k(z)← −z−(2k+1)H0,k(−z−1)
8: end if
9: end for
10: return H0,K and H1,K

...

FIGURE 4. Synthesis Procedure diagram. In the diagram, l is the coeffi-
cient index of the filter, which decreases by two after each iteration.

With Eq. (8), Eq. (9) and the lattice coefficients,H0,k(z) and
H1,k(z) can be found for k = 0, ...,K . Fig. 3 further illustrates
this analysis procedure. In addition, the implementation of the
analysis procedure is illustrated through a pseudo-code shown
in Algorithm 1.
In the analysis procedure,H0,k(z) andH1,k(z) can be rep-

resented with tunable lattice coefficients θk . Hence, we need
to derive a synthesis procedure to find the lattice coefficients
θk of the predefined wavelets from their filter coefficients. In
our approach, we use the Daubechies and Symlet wavelets as
initial filters, as they are orthogonal wavelets and filter banks.
Given H0,k(z) in Eq. (8), we can find the lattice coefficient as
follows: {

z−L : h0,k(M) = skh0,k−1(0)

z0 : h0,k(0) = ckh0,k−1(0)
(10)

↔

{
h0,k−1(0) = h0,k(M)/sk
h0,k−1(0) = h0,k(0)/ck

(11)

↔ tanθk =
h0,k(M)

h0,k(0)
, (12)

where M = (2k + 1) is the order of the H0,k(z) filter. In
addition, from Eq. (8), we also have the following:

H0,k−1(z) = ckH0,k(z) + skH1,k(z). (13)

From Eq. (12) and Eq. (13), we can find the lattice coef-
ficients from a given set of filter coefficients. The synthesis

Algorithm 2 Synthesis Procedure
Input: h0,l (wavelet coefficients of H0,K with l from 0 to K )
Output: θk (lattice coefficient values for k from 0 to K )
1: for k ← 0 to K do
2: H1,k(z)← −z−(2k+1)H0,k(−z−1)

3: θk ← arctan( h0,k(2k+1)
h0,k(0)

)
4: for l ← 0 to 2k − 1 do
5: h0,k−1(l)← cos(θk)h0,k(l) + sin(θk)h1,k(l)
6: end for
7: end for
8: return θk (lattice coefficient values for k from 0 to K )
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FIGURE 5. Diagram of low-pass and high-pass component implemen-
tation. The signal goes from left to right. The results from DWT go
to ReLU functions to become the inputs of a one-layer FCN. Because
an FCN can take inputs of arbitrary sizes, the one-layer FCN can read
the decomposed components and finetune the trainable coefficients to
optimally combine the decomposed components. The fine-tuned one-
layer FCN combines the inputs to find the optimal feature map.

procedure is demonstrated in Fig. 4. In addition, the imple-
mentation of the synthesis procedure is illustrated through a
pseudo-code shown in Algorithm 2.

In this work, we fine tune the lattice coefficients in our pro-
posed units from the filter coefficients of Haar, Daubechies,
and Symlet wavelets. As these predefined wavelets are de-
signed for signal representation and have maximal smooth-
ness in the basis function, we relax this condition to improve
classification performance. As only one level of decomposi-
tion is used in this work, smoothness of basis function is not
needed. Furthermore, since orthogonal filter banks and their
lattice structure are used, weminimize the number of parame-
ters in the Orthogonal-LatticeUwU and maintain their perfect
reconstruction. In the initialization step of the Orthogonal-
LatticeUwUmethod, we first employ the synthesis procedure
to extract lattice coefficients from the filter coefficients of the
predefined wavelets. Subsequently, the analysis procedure is
utilized to determine the filter coefficients.

B. 2D IMPLEMENTATION
From the low-pass and high-pass filters H0,K and H1,K , rep-
resented with the trainable lattice coefficients found with the
synthesis and analysis procedures, we compute the high-pass
and low-pass filter matrices, denoted as H and L. These
matrices are used to find the approximation Xll as well as
the detail components Xlh, Xhl , and Xhh. The computation
of L can be mathematically described as follows:

L = DĤ, (14)

where D is the downsampling matrix and Ĥ is a Toeplitz
matrix with filter coefficients ofH0(z).H has a similar form
as L with filter coefficients ofH0(z−1). UsingH and L,Xll ,
Xlh,Xhl , and Xhh are computed as follows:

Xll = LXLT , Xlh = HXLT ,

Xhl = LXHT , Xhh = HXHT .
(15)

C. ONE-LAYER FCN IN THE COMBINATION OF LOW-PASS
AND HIGH-PASS COMPONENTS
In this work, we use a one-layer Fully Convolutional Network
(FCN) to combine features from the sub-sample low-pass

and high-pass components extracted via the Discrete Wavelet
Transform (DWT). Nevertheless, since one-layer FCNs apply
a weight to every feature to find the optimal feature map,
this increases the number of trainable parameters and the
computational complexity of the unit.
Conventional max pooling methods keep the most promi-

nent features in a sub-sampled feature map after the pooling
process and discard the high-pass features, whichmay contain
critical information. To strike a balance, we harness both the
approximation (the low-pass component) and the details (the
high-pass components) from DWT results. This is achieved
by applying a one-layer FCN to find the optimal feature map
with the following decomposed components as inputs: Xll ,
Xlh,Xhl , and Xhh from DWT.
With the stated motivation, we design the proposed unit

with tunable parameters by applying a one-layer FCN. Hence,
the final feature map is a combination of the approximated
features and vertical, horizontal, and diagonal detailed fea-
tures from DWT. The tunable parameters enable us to find
an optimal feature map based on the low-pass features and
vertical, horizontal, and diagonal detailed features. Therefore,
the weights for the combination are fine-tuned and optimized
through back propagation during the training process. The
unit can be mathematically expressed as follows:

Xp = F ′(ReLU(Xll),ReLU(Xlh),

ReLU(Xhl),ReLU(Xhh)), (16)

where F ′ is the one-layer FCNwith tunable weights. Because
an FCN can take inputs of arbitrary size [32], the one-layer
FCN can read the decomposed components and fine tune the
trainable coefficients to optimally combine the decomposed
components. As shown in Eq. (16), the decomposed detail
components via DWT along with the prominent feature map
are first independently processed with rectified linear unit
(ReLU) functions. The implementation of the component
combination is shown in Fig. 5.

D. IMPLEMENTATION IN CNN ARCHITECTURES
We integrate Orthogonal-LatticeUwU units into a ResNet
architecture. For the downsampling and pooling layers, we
use the decomposed components along with the max-pooling
results as inputs for a one-layer FCN. In addition, we substi-
tute the two-stride convolution with a non-stride convolution

FIGURE 6. Implementation of Orthogonal-LatticeUwU in CNN architecture.
The diagram shows how Orthogonal-LatticeUwU can be used to replace
max-pooling (a), stride-convolution (b), and downsampling (c) functions in
CNNs.

6 VOLUME 11, 2023
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block followed by the proposed units. The general implemen-
tation of the proposed unit is shown in Fig. 6. In this work,
as we mainly apply Orthogonal-LatticeUwU in a ResNet
architecture. The implementation of Orthogonal-LatticeUwU
in a ResNet block is illustrated in Fig. 7.

We implement the proposed method on the ResNet family
of architectures and then train and test it on CIFAR10 [12],
ImageNet1K [13], and DTD [7] datasets. We train our pro-
posed units on ResNet18 with the proposed units for wavelets
with 2, 4, 6 and 8 coefficients. To initialize Orthogonal-
LatticeUwU’s trainable parameters, we use Haar coefficients
for two taps, Daubechies (DB) 2 for four taps, DB3 for six
taps, and DB4 and Symlet4 for eight taps [33]. These wavelet
types are the two classes of orthogonal wavelets and they are
used to initialize the lattice coefficients. These initializing
coefficients and the optimized ones are shown in Table 1.
As shown in Table 1, most of the coefficients have changed
after optimization, except for the Haar wavelet. In parallel, we
also train the network with the correspondingWaveCNet [21]
models. For CIFAR10 and ImageNet1K, the best results are
then compared with the reported performances of the baseline
ResNet18, WaveCNet ResNet18, CWNN-ResNet18 in [21],
SpectralPool-ResNet18 and DiffStride-ResNet18 from [20],
PR-relaxation ResNet18 from [24], and WaveletAttention
CNN ResNet18 (WA-CNN-ResNet18) described in [22]. We
broaden our evaluation to ResNet34 and ResNet50 archi-
tectures on the DTD and CIFAR10 datasets. For ResNet50
on CIFAR10, we also include the LDW-Pooling ResNet50
performance reported in [25]. Then, we apply the proposed
units in the encoder of CFLOW-AD [34] pipeline for anomaly

TABLE 1. Coefficients of Haar, Daubechies, and Symlets (third column)
and the optimized filters (fourth column). D and S denote Daubechies and
Symlets, respectively.

N Index Original Optimized

2 Haar 0 0.7071 0.7071
1 0.7071 0.7071

4 D

0 0.4830 0.5000
1 0.8365 0.8660
2 0.2241 0.9659
3 -0.1294 -0.2588

6 D

0 0.3327 0.3812
1 0.8069 0.9245
2 0.4599 0.8777
3 -0.1350 -0.4793
4 -0.0854 0.9944
5 0.0352 0.1053

8

D

0 0.2304 0.3067
1 0.7148 0.9518
2 0.6309 0.7767
3 -0.0280 -0.6299
4 -0.1870 0.9680
5 0.0308 0.2510
6 0.0329 0.9989
7 -0.0106 -0.0460

S

0 0.0322 0.9313
1 -0.0126 -0.3643
2 -0.0992 0.1420
3 0.2979 0.9899
4 0.8037 0.6227
5 0.4976 0.7824
6 -0.0296 0.3914
7 -0.0758 -0.9202

FIGURE 7. Implementation of the proposed Orthogonal-LatticeUwU unit
in ResNet architecture. Diagram (a) shows the original ResNet block [6],
while diagram (b) demonstrates the ResNet block implemented with the
proposed Orthogonal-LatticeUwU.

detection in the hazelnut category on MVTec AD [14, 15].

IV. EXPERIMENTS
In this work, we design Orthogonal-LatticeUwU units with
tunable coefficients so that we can relax the zero-at-π con-
dition hold of predefined wavelets, such as Daubechies and
Symlets. We first examine this effect with pole-zero plots
of the filters from the original DB2 and from Orthogonal-
LatticeUwU trained with DB2 initialization. The pole-zero
and frequency-response plots of the original DB2 filter are
shown in Fig. 8, and the same plots of the Orthogonal-
LatticeUwU unit trained with DB2 initialization are illus-
trated in Fig. 9. As it can be observed in Fig. 8 and Fig. 9,
the tunable coefficients of Orthogonal-LatticeUwU relax the
zero-at-π condition after training when compared to the plot
of the original DB2 wavelet. We then applied the Orthogonal-
LatticeUwU units in the ResNet18 architecture and examined
the effects by comparing performance between baseline and
WaveCNet on CIFAR10 [12], ImageNet1K [13], and DTD
[7] datasets. The CIFAR10 dataset comprises 60,000 32 x 32
color images distributed across 10 classes, with 6,000 images
per class. The training set consists of 50,000 images, while the
test set comprises 10,000 images. On the other hand, the Ima-
geNet1K dataset is significantly larger, containing over 1,000
object classes. It includes 1,281,167 training images, 50,000
validation images, and 100,000 test images. Additionally, the
average image resolution in ImageNet1K is 469 x 387 pixels.
Furthermore, the DTD dataset serves as a texture database,
containing 5,640 images across 47 categories, each with 120
images. In DTD, an equal number of images are allocated for
training, validation, and test sets within each category. The
image sizes in the DTD dataset range between 300 x 300 and
640 x 640 pixels. For Orthogonal-LatticeUwU, the 2, 4, 6, and
8-tap units with tunable coefficients are initialized with Haar,
DB2, DB3, and DB4 wavelet coefficients, respectively. Ad-
ditionally, Sym4 coefficients were used to train Orthogonal-
LatticeUwU 8-tap units. Then, the best ResNet18-basedmod-
els integrated with Orthogonal-LatticeUwU were selected
and compared with other reported models on CIFAR10 and
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FIGURE 8. Pole-zero and frequency response plots of the original DB2
are shown in the top and bottom sub-figures, respectively. The pole-zero
plot of Original DB2 with the maximum number of zeros at π, and the
frequency response plot shows a low-pass filter response.

ImageNet1K. Furthermore, we extend our study to ResNet34
and ResNet50 for DTD and CIFAR10 to see if improvements
seen in ResNet18 models can still be observed. To train
the ResNet-family-based CNN models, we set up the same
training procedure used in [6, 21] with random translation
and rotation as augmentation techniques and a cross-entropy
loss function. We also train the models from scratch by using
stochastic gradient descent (SGD) with a batch size of 256
and an initial learning rate of 0.1. Finally, we apply our best
Orthogonal-LatticeUwU ResNet18 units as encoders for the
CFLOW-AD pipeline to detect anomalies in hazelnut images
from the MVTec AD dataset [14, 15]. We evaluate the perfor-
mance of the Orthogonal-LatticeUwU encoders against base-
line and WaveCNet ResNet18 encoders based on detection
and segmentation area under the curve (AUC) metrics and
their corresponding heat maps. In this study, we conducted
model implementations, including our own models, models
from other studies, and baseline models, on a GTX 1080 TI
machine for both training and testing phases.
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FIGURE 9. Pole-zero and frequency response plots of the Orthogonal-
LatticeUwU with DB2 initialization are shown in the top and bottom
sub-figures, respectively. The pole-zero plot of the unit shows the re-
laxation of the zero-at-π condition, and the frequency-response shows
the change of the filter’s response.

A. IMAGE CLASSIFICATION WITH RESNET18-BASED
ARCHITECTURE

In this section, we show the performance of Orthogonal-
LatticeUwU implementation with CNNs as demonstrated in
Fig. 6 on CIFAR10 [12], ImageNet1K [13], and DTD [7]
for the classification task. CIFAR10 is a set of images with
low resolution; ImageNet1K is a dataset of high-resolution
images, and DTD focuses on high-resolution images that
include large amounts of textures and details. In this ex-
periment, the proposed units are applied on the ResNet18
architecture and work as pooling, down-sampling, and stride-
convolution functions. For Orthogonal-LatticeUwU, the 2,
4, 6, and 8-tap units with tunable coefficients are trained
with the coefficients initialized with Haar, DB2, DB3, and
DB4 wavelet coefficients. In addition, Sym4 coefficients are
used to initialize Orthogonal-LatticeUwU 8-tap. With trained
models integrated with our units, the performance of the
variousOrthogonal-LatticeUwUmodels is comparedwith the
baseline and WaveCNet models.
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TABLE 2. Accuracy of Orthogonal-LatticeUwU ResNet 18 models with dif-
ferent number of taps and initialization-wavelet types trained on CIFAR10.

Wavelet Accuracy(%)
None (Baseline) 92.44

Orthogonal-LatticeUwU ResNet18 (ours) WaveCNet ResNet18 [21]
2-tap Haar 94.97 94.76
4-tap DB2 95.05 94.93
6-tap DB3 95.03 94.56
8-tap DB4 95.11 93.81
8-tap Sym4 94.99 94.84

For the image classification task in this study, we use
accuracy as the main evaluation metric. The accuracy metric
can be defined as follows:

Accuracy =
Number of correct predictions
Total number of predictions

. (17)

The comparison shows that the proposed units improve the
baseline’s performance. The accuracy from proposed units, in
most cases, is better than the accuracy from WaveCNet mod-
els. Then, the best performance of Orthogonal-LatticeUwU is
compared with the other reported performances of Wavelet-
Attention CNN ResNet18 [22] (WA-CNN-ResNet18),
SpectralPool-ResNet18, DiffStride-ResNet18 [20], Con-
volutional Wavelet Neural Network ResNet18 (CWNN-
ResNet18) [21], wavelet unit with perfect reconstruction
relaxation ResNet18 (PR-relaxation ResNet18) [24] on CI-
FAR10 and ImageNet1K datasets. As we could not find other
reported works using ResNet18-based architecture on DTD,
we do not make the same comparison analysis on the DTD
set. Comparison results show that models with the proposed
Orthogonal-LatticeUwU achieve the best performance.

1) On CIFAR10 with low-resolution images
In this experiment, the models are trained on CIFAR10 for
200 epochs with randomly horizontally flipped and randomly
shifted images. The same training pipeline and setup used
in other methods is also used in the comparison. In gen-
eral, the proposed Orthogonal-LatticeUwU method shows
an improvement over the baseline ResNet18 modelthat is
comparable to or better than WaveCNet. As shown in Ta-
ble 2, all of the Orthogonal-LatticeUwU models outperform
the baseline by at least 2.53%. In addition, the Orthogonal-
LatticeUwU models outperform the WaveCNet models by
an additional 0.21–1.3%. The best performing Orthogonal-
LatticeUwU model is the Orthogonal-LatticeUwU with 8-
Tap DB4 ResNet18 model, which achieved 95.11% accuracy,
whereas the best performance observed by WaveCNet is
94.93% accuracy achieved with the WaveCNet DB2 ResNet
model.

2) On ImageNet1K with high-resolution images
In this experiment, the models are trained on the ImageNet1K
dataset for 90 epochs with randomly horizontally flipped
and randomly cropped images. The same training pipeline
and setup that was used in other approaches is also used
in the comparison and analysis. In general, the proposed
Orthogonal-LatticeUwU methods show a clear improvement

TABLE 3. Accuracy of Orthogonal-LatticeUwU with different number of taps
and initialization-wavelet types for ResNet18 trained on ImageNet1K.

Wavelet Accuracy(%)
None (Baseline) 69.76

Orthogonal-LatticeUwU ResNet18 (ours) WaveCNet ResNet18 [21]
2-tap Haar 71.61 71.47
4-tap DB2 71.30 71.48
6-tap DB3 70.80 71.08
8-tap DB4 70.63 70.35

8-tap Symlet4 71.38 71.42

TABLE 4. Accuracy of Orthogonal-LatticeUwU with different number of taps
and initialization-wavelet types for DTD.

Wavelet Accuracy(%)
None (Baseline) 33.99

Orthogonal-LatticeUwU ResNet18 (ours) WaveCNet ResNet18 [21]
2-tap Haar 40.37 25.53
4-tap DB2 43.51 23.62
6-tap DB3 40.59 24.36
8-tap DB4 40.80 26.91

8-tap Symlet4 40.16 35.27

to the baseline and achieve a competitive performance to the
WaveCNet models. As shown in Table 3, the best perfor-
mance comes from the Orthogonal-LatticeUwU 2-tap Haar
ResNet18 model, which showed accuracy of 71.61%. In ad-
dition, the performance results from Orthogonal-LatticeUwU
and WaveCNet are comparable to each other and bring con-
sistent improvements to the baseline in all cases.

3) On DTD with high-resolution textural images
On DTD, the models are trained for 700 epochs in total with
randomly horizontally flipped and randomly cropped images.
In this experiment, the proposed Orthogonal-LatticeUwU
method shows a clear improvement to the baseline model and
achieves outstanding performance compared to the WaveC-
Net models. As shown in Table 4, Orthogonal-LatticeUwU
consistently achieves improvement compared with the base-
line model.
Results from the CIFAR10, ImageNet1K, and DTD ex-

periments show that the Orthogonal-LatticeUwU models
achieve higher performance improvement over the baseline
thanWaveCNet models when implemented in a ResNet18 ar-
chitecture, with the best model fromOrthogonal-LatticeUwU
outperforming the best model from WaveCNet in all three
experiments. In addition, significant improvements in the per-
formance of the Orthogonal-LatticeUwUmodels were seen in
the DTD experiments, when compared to the performance of
WaveCNet models. This may be explained by Orthogonal-
LatticeUwU’s utilization of both low-pass and high-pass
components when processing DTD images, which are rich in
details and textural features, whereas the WaveCNet models
only use low-pass features.
In these experiments, models were implemented on a GTX

1080 TI machine. Table 5 provides information on the av-
erage inference time of the proposed methods, WaveCNet
models, and the baseline on DTD dataset with a batch size
of 256. Based on the average inference time reported on
DTD, the inference time values of the proposed methods are
comparable with the baseline’s inference time. However, the
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numbers of parameters associated with the proposed method
is a potential drawback. On DTD, the number of parameters
in the baseline ResNet18 is 11,200,623, and the number of pa-
rameters in Orthogonal-LatticeUwUResNet18 is 21,022,845.
This higher number is attributed to the utilization of FCN for
every pixel in the featuremaps during the feature optimization
process.

4) Comparison with other approaches on CIFAR10 and
ImageNet1K
In this section, we select the Orthogonal-LatticeUwUmodels
with the best performance shown in Table 2 and compare
them with the reported performance of Wavelet-Attention
CNN ResNet18 [22] (WA-CNN-ResNet18), SpectralPool-
ResNet18, and DiffStride-ResNet18 from [20]. The best per-
formance results on CIFAR10 are shown in Table 6. As shown
in Table 6, the Orthogonal-LatticeUwU 8-TapDB4 ResNet18
model achieves better performance than other spectrum and
wavelet-based approaches, except for the PR-relaxation Sym-
let2 ResNet18, to which our method has comparable per-
formance. For the ImageNet1K experiment, the best results
from Table 3 are compared with the reported performance of
SpectralPool-ResNet18 and DiffStride-ResNet18 from [20],
the best performance from WaveCNet-ResNet18-DB2 [21],
and CWNN-ResNet18 [21], as shown in Table 7. Results
show that the Orthogonal-LatticeUwU 2-tap Haar ResNet18
model achieves better performance than what has been re-
ported for other approaches.

B. EXTENSION STUDY FOR IMAGE CLASSIFICATION WITH
RESNET34 AND RESNET50 ARCHITECTURES ON CIFAR10
AND DTD
On DTD, the proposed Orthgonal-LatticeUwU unit is ap-
plied to ResNet34 and ResNet50 and compared with the
corresponding WaveCNet network for 2-tap and 4-tap cases
with Haar and DB2, respectively. Performance results are
shown in Table 8. From Table 8, Orthogonal-LatticeUwU
achieves the best performance on DTD with a clear and
significant improvement to the baseline in both 2-tap and 4-
tap experiments. Orthogonal-LatticeUwU is also applied to
ResNet34 and ResNet50 and trained on the CIFAR10 dataset.
The performance of the models is compared to that of other
approaches and the baseline model. In addition, the reported
performance of LDW-Pooling ResNet50 on CIFAR10 [25] is
also included for the comparison. The performance results of
these models are shown in Table 9. A drop in performance

TABLE 5. Average Inference time of Orthogonal-LatticeUwU ResNet18,
WaveCNet ResNet18, and the baseline model with different numbers of
taps on DTD dataset for a batch size of 256 on a GTX 1080 TI machine.

Wavelet Inference Time (second)
None (Baseline) 0.021

Orthogonal-LatticeUwU ResNet18 (ours) WaveCNet ResNet18 [21]
2-tap Haar 0.023 0.032
4-tap DB2 0.021 0.030
6-tap DB3 0.022 0.047
8-tap DB4 0.029 0.026

8-tap Symlet4 0.036 0.021

TABLE 6. Accuracy of the best Orthogonal-LatticeUwU models compared
to other approaches with ResNet18 architecture on CIFAR10.

Models Accuracy(%)
baseline-ResNet18 [6] 92.44
SpectralPool-ResNet18 [19] 92.50 (+0.06)
DiffStride-ResNet18 [20] 92.90 (+0.46)
WA-CNN-ResNet18 [22] 92.57 (+0.13)
WaveCNet-ResNet18 sym4 [21] 94.84 (+2.40)
PR-relaxation Symlet2 ResNet18 [24] 95.13 (+2.69)
Orthogonal-LatticeUwU 8-tap DB4 ResNet18 (ours) 95.11 (+2.67)

TABLE 7. Accuracy of the best Orthogonal-LatticeUwU models compared
to other approaches with ResNet18 architecture on ImageNet1K.

Models Accuracy(%)
baseline-ResNet18 [6] 69.76
SpectralPool-ResNet18 [19] 69.93 (+0.17)
DiffStride-ResNet18 [20] 69.72 (-0.04)
WaveCNet-ResNet18-DB2 [21] 71.48 (+1.72)
CWNN-ResNet18 [23] 70.06 (+0.3)
Orthogonal-LatticeUwU 2-tap Haar ResNet18 (ours) 71.61 (+1.85)

TABLE 8. Accuracy of Orthogonal-LatticeUwU with different number of taps
and initialization-wavelet types on ResNet34 and ResNet50 for DTD.

Wavelet ResNet34
None (Baseline) 24.47%

Orthogonal-LatticeUwU (ours) WaveCNet [21]
2-tap Haar 41.49% 32.39%
4-tap DB2 38.88% 32.23%
Wavelet ResNet50

None (Baseline) 20.74%
Orthogonal-LatticeUwU (ours) WaveCNet [21]

2-tap Haar 37.34% 19.15%
4-tap DB2 35.90% 30.21%

TABLE 9. Accuracy of Orthogonal-LatticeUwU with different number of taps
and initialization-wavelet types on ResNet34 and ResNet50 for CIFAR10.

Wavelet ResNet34
None (Baseline) 94.33%

Orthogonal-LatticeUwU (ours) WaveCNet [21]
2-tap Haar 95.44% 95.07%
4-tap DB2 95.61% 95.12%
Wavelet ResNet50

None (Baseline) 94.09%
LDW-Pooling ResNet50 [25] 92.13%

Orthogonal-LatticeUwU (ours) WaveCNet [21]
2-tap Haar 94.43% 94.31%
4-tap DB2 94.60% 94.09%

in all models is observed in the DTD study when the depth
of the network is increased. This is because there is a lack
of data in the training set for DTD. In the case of CIFAR10,
with the ResNet34 architecture, Orthogonal-LatticeUwU has
better accuracy thanWaveCNet in both 2-tap and 4-tap cases.
With ResNet50, Orthogonal-LatticeUwU’s improvement to
the baseline is also higher than that ofWaveCNet for the 2-tap
and 4-tap cases.

C. AS THE ENCODER OF CFLOW-AD ON MVTEC AD
(HAZELNUT)
In this experiment, we evaluate the proposed method along-
side other models using the MVTec AD dataset. As previ-
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TABLE 10. Segmentation and Detection AUROCs of CFLOW-AD pipeline
with the Orthogonal-LatticeUwU, WaveCNet, and baseline ResNet18 en-
coders for hazelnut category in MVTec AD.

Models Segmentation AUROC Detection AUROC
Baseline ResNet18 CFLOW-AD 96.45% 92.46%
Orthogonal-LatticeUwU 2-tap Haar ResNet18 CFLOW-AD 97.15% 89.57%
WaveCNet Sym4 ResNet18 CFLOW-AD 96.20% 87.61%

ously mentioned, MVTec AD is specifically designed for
bench-marking anomaly detection methods, with a focus on
industrial inspection [14, 15]. In this experiment, the area
under the receiver operating characteristic (AUROC) curve
is utilized to assess the performance of the models both at
the image-level (for anomaly detection) and at the pixel-level
segmentation (for localization). ResNet18 with the proposed
unit is used as the encoder in the CFLOW-AD [34] pipeline
for the anomaly detection task on hazelnut images from
MVTec AD [14, 15], which shows a comparable performance
to the baseline ResNet18 along with theWaveCNet ResNet18
encoders. The models are evaluated with segmentation and
detection AUROCs, shown in Table 10. For the result, the
CFLOW pipeline with the Orthogonal-LatticeUwU 4-Tap
ResNet18 encoder has the best segmentation performance
and the second-best detection result. Defect detection result
examples are also visualized in Fig. 10. From Fig. 10, we can
see that the heat maps from Orthogonal-LatticeUwU show a
more localized result than baseline and WaveCNet.

V. CONCLUSION
We develop Orthogonal-LatticeUwU, a wavelet unit with a
built-in learnable orthogonal wavelet unit constructed with
the lattice structure. With the tunable coefficients, we relax
the zero-at-π condition, which enforces a maximum number
of zeros at π. The decomposed components fromOrthogonal-
LatticeUwU are used as inputs for a one-layer FCN to find
the optimal feature map for CNNs. The proposed technique is
implemented on ResNet family architectures, which achieve
competitive performance on CIFAR10 and a noticeable im-
provement on ImageNet1K and DTD. The proposed method
is also used in the ResNet18 encoder of the CFLOW-AD
pipeline for the anomaly detection task on hazelnut objects,
which also shows a promising performance improvement,
as well as more accurate and localized heat maps. The re-
sults from the proposed method implemented across various
datasets demonstrate its competitive performance on normal
images and excellent performance on images with textural
and detailed features. This advantage has been shown to
benefit the detection of anomaly patterns and features in
manufactured products. In addition, the proposedmethod also
has competitive inference time compared to the baseline.
Note that the proposed methods are currently used in image
classification and anomaly detection tasks. In future work, we
plan to extend this work in other tasks, such as detection and
segmentation. The feature optimization process in our future
work will also be simplified to reduce the number of trainable
parameters. Instead of using a one-layer FCN, which applies
a weight for each feature, we will apply weights only to the
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FIGURE 10. Anomaly detection for hazelnut objects in the MVTec AD
dataset with four examples. From left to right: the first column shows
the mask and input of each example, and the second, third, fourth,
and fifth columns show the corresponding heat-maps and input images
from baseline, WaveCNet sym4, and Orthogonal-LatticeUwU 4-tap DB2,
respectively.

four decomposed components, reducing computational com-
plexity. In the next study, we will also relax the orthogonality
constraint by using a biorthogonal lattice structure, which
still maintains the perfect reconstruction constraint and allows
more freedom to fine-tune the wavelet coefficients.
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