
UC Berkeley
UC Berkeley Previously Published Works

Title
Formal Scenario-Based Testing of Autonomous Vehicles: From Simulation to the Real World

Permalink
https://escholarship.org/uc/item/86q4p5p8

ISBN
978-1-7281-4149-7

Authors
Fremont, Daniel J
Kim, Edward
Pant, Yash Vardhan
et al.

Publication Date
2020
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/86q4p5p8
https://escholarship.org/uc/item/86q4p5p8#author
https://escholarship.org
http://www.cdlib.org/


Formal Analysis and Redesign of a Neural
Network-Based Aircraft Taxiing System with VERIFAI

Daniel J. Fremont1,2, Johnathan Chiu2,
Dragos D. Margineantu3, Denis Osipychev3, and Sanjit A. Seshia2

1 University of California, Santa Cruz, USA
2 University of California, Berkeley, USA

3 Boeing Research & Technology, Seattle, USA

Abstract. We demonstrate a unified approach to rigorous design of safety-critical
autonomous systems using the VERIFAI toolkit for formal analysis of AI-based
systems. VERIFAI provides an integrated toolchain for tasks spanning the de-
sign process, including modeling, falsification, debugging, and ML component
retraining. We evaluate all of these applications in an industrial case study on
an experimental autonomous aircraft taxiing system developed by Boeing, which
uses a neural network to track the centerline of a runway. We define runway sce-
narios using the SCENIC probabilistic programming language, and use them to
drive tests in the X-Plane flight simulator. We first perform falsification, automat-
ically finding environment conditions causing the system to violate its specifica-
tion by deviating significantly from the centerline (or even leaving the runway
entirely). Next, we use counterexample analysis to identify distinct failure cases,
and confirm their root causes with specialized testing. Finally, we use the results
of falsification and debugging to retrain the network, eliminating several failure
cases and improving the overall performance of the closed-loop system.

Keywords: Falsification · Automated testing · Debugging · Simulation · Au-
tonomous systems ·Machine learning.

1 Introduction

The expanding use of machine learning (ML) in safety-critical applications has led to an
urgent need for rigorous design methodologies that can ensure the reliability of systems
with ML components [15,17]. Such a methodology would need to provide tools for
modeling the system, its requirements, and its environment, analyzing a design to find
failure cases, debugging such cases, and finally synthesizing improved designs.

The VERIFAI toolkit [1] provides a unified framework for all of these design tasks,
based on a simple paradigm: simulation driven by formal models and specifications.
The top-level architecture of VERIFAI is shown in Fig. 1. We first define an abstract
feature space describing the environments and system configurations of interest, either
by explicitly defining parameter ranges or using the SCENIC probabilistic environment
modeling language [6]. VERIFAI then generates concrete tests by searching this space,
using a variety of algorithms ranging from random sampling to global optimization
techniques. Finally, we simulate the system for each test, monitoring the satisfaction or
violation of a system-level specification; the results of each test are used to guide further



2 D. J. Fremont et al.

Abstract 
Feature 
Space

Search Monitor

Simulator
(external interface)

Error 
Table 

Analysis

Closed-Loop 
System

Environment 
Description
(e.g. Scenic 
program)

System 
Specification

Fig. 1. Architecture of VERIFAI.

search, and any violations are
recorded in a table for auto-
mated analysis (e.g. clustering)
or visualization. This architec-
ture enables a wide range of
use cases, including falsifica-
tion, fuzz testing, debugging,
data augmentation, and parame-
ter synthesis; Dreossi et al. [1]
demonstrated all of these ap-
plications individually through
several small case studies.

In this paper, we provide an integrated case study, applying VERIFAI to a complete
design flow for a large, realistic system from industry: TaxiNet, an experimental au-
tonomous aircraft taxiing system developed by Boeing for the DARPA Assured Auton-
omy project. This system uses a neural network to estimate the aircraft’s position from
a camera image; a controller then steers the plane to track the centerline of the runway.
The main requirement for TaxiNet, provided by Boeing, is that it keep the plane within
1.5 m of the centerline; we formalized this as a specification in Metric Temporal Logic
(MTL) [11]. Verifying this specification is difficult, as the neural network must be able
to handle the wide range of images resulting from different lighting conditions, changes
in runway geometry, and other disturbances such as tire marks on the runway.

Our case study illustrates a complete iteration of the design flow for TaxiNet, ana-
lyzing and debugging an existing version of the system to inform an improved design.
Specifically, we demonstrate:

1. Modeling the environment of the aircraft using the SCENIC language.
2. Falsifying an initial version of TaxiNet, finding environment conditions under which

the aircraft significantly deviates from the centerline.
3. Analyzing counterexamples to identify distinct failure cases and diagnose potential

root causes.
4. Testing the system in a targeted way to confirm these root causes.
5. Designing a new version of the system by retraining the neural network based on

the results of falsification and debugging.
6. Validating that the new system eliminates some of the failure cases in the original

system and has higher overall performance.

Following the procedure above, we were able to find several scenarios where Taxi-
Net exhibited unsafe behavior. For example, we found the system could not properly
handle intersections between runways. More interestingly, we found that TaxiNet could
get confused when the shadow of the plane was visible, which only occurred during cer-
tain times of day and weather conditions. We stress that these types of failure cases are
meaningful counterexamples that could easily arise in the real world, unlike pixel-level
adversarial examples [8]; we are able to find such cases because VERIFAI searches
through a space of semantic parameters [3]. Furthermore, these counterexamples are
system-level, demonstrating undesired behavior from the complete system rather than
simply its ML component. Finally, our work differs from other works on validation of



Formal Analysis and Redesign of an Aircraft Taxiing System with VERIFAI 3

cyber-physical systems with ML components (e.g. [19]) in that we address a broader
range of design tasks (including debugging and retraining as well as testing) and also
allow designers to guide search by encoding domain knowledge using SCENIC.

For our case study, we extend VERIFAI in two ways. First, we interface the toolkit
to the X-Plane flight simulator [12] in order to run closed-loop simulations of the en-
tire system, with X-Plane rendering the camera images and simulating the aircraft dy-
namics. More importantly, we extend the SCENIC language to allow it to be used in
combination with VERIFAI’s active sampling techniques. Previously, as in any prob-
abilistic programming language, a SCENIC program defined a fixed distribution [6];
while adequate for modeling particular scenarios, this is incompatible with active sam-
pling, where we change how tests are generated over time in response to feedback from
earlier tests. To reconcile these two approaches, we extend SCENIC with parameters
that are assigned by an external sampler. This allows us to continue to use SCENIC’s
convenient syntax for modeling, while now being able to use not only random sampling
but optimization or other algorithms to search the parameter space.

Adding parameters to SCENIC enables important new applications. For example,
in the design flow we described above, after finding through testing some rare event
which causes a failure, we need to generate a dataset of such failures in order to retrain
the ML component. Naı̈vely, we would have to manually write a new SCENIC program
whose distribution was concentrated on these rare events (as was done in [6]). With
parameters, we can simply take the generic SCENIC program we used for the initial
testing, and use VERIFAI’s cross-entropy sampler [1,14] to automatically converge to
such a distribution [16]. Alternatively, if we have an intuition about where a failure case
may lie, we can use SCENIC to encode this domain knowledge as a prior for cross-
entropy sampling, helping the latter to find failures more quickly.

In summary, the novel contributions of this paper are:

– The first demonstration on an industrial case study of an integrated toolchain for
falsification, debugging, and retraining of ML-based autonomous systems.

– An interface between VERIFAI and the X-Plane flight simulator.
– An extension of the SCENIC language with parameters, and a demonstration using

it in conjunction with cross-entropy sampling to learn a SCENIC program encoding
the distribution of failure cases.

We begin in Sec. 2 with a discussion of our extension of SCENIC with parameters
and our X-Plane interface. Section 3 presents the experimental setup and results of our
case study, and we close in Sec. 4 with some conclusions and directions for future work.

2 Extensions of VERIFAI

SCENIC with Parameters. To enable search algorithms other than random sampling
to be used with SCENIC we extend the language with a concept of external parameters
assigned by an external sampler. A SCENIC program can specify an external sampler
to use; this sampler will define the allowed types of parameters, which can then be used
in the program in place of any distribution. The default external sampler provides ac-
cess to the VERIFAI samplers and defines parameter types corresponding to VERIFAI’s



4 D. J. Fremont et al.

continuous and discrete ranges. Thus for example one could write a SCENIC program
which picks the colors of two cars randomly according to some realistic distribution, but
chooses the distance between them using VERIFAI’s Bayesian Optimization sampler.

The semantics of external parameters is simple: when sampling from a SCENIC
program, the external sampler is first queried to provide values for all the parameters;
the program is then equivalent to one without parameters, and can be sampled as usual4.

X-Plane Interface. Our interface between X-Plane and VERIFAI uses the latter’s client-
server architecture for communicating with simulators. The server runs inside VERI-
FAI, taking each generated feature vector and sending it to the client. The client runs
inside X-Plane and calls its APIs to set up and execute the test, reporting back informa-
tion needed to monitor the specifications. For our client, we used X-Plane Connect [18],
an X-Plane plugin providing access to X-Plane’s “datarefs”. These are named values
which represent simulator state, e.g., positions of aircraft and weather conditions. Our
interface exposes all datarefs to SCENIC, allowing arbitrary distributions to be placed
on them. We also set up the SCENIC coordinate system to be aligned with the runway,
performing the appropriate conversions to set the raw position datarefs.

3 TaxiNet Case Study

3.1 Experimental Setup

TaxiNet’s neural network estimates the aircraft’s position from a camera image; the
camera is mounted on the right wing and faces forward. Example images are shown in
Fig. 2. From such an image, the network estimates the cross-track error (CTE), the left-
right offset of the plane from the centerline, and the heading error (HE), the angular
offset of the plane from directly down the centerline. These estimates are fed into a
handwritten controller which outputs (the equivalent of) a steering angle for the plane.

The Boeing team provided the Berkeley team with an initial version of TaxiNet
without describing which images were used to train it. In this way, the Berkeley team
were not aware in advance of potential gaps in the training set and corresponding poten-
tial failure cases5. For retraining experiments, the same sizes of training and validation
sets were used as for the original model, as well as identical training hyperparameters.

The semantic feature space defined by our SCENIC programs and searched by VER-
IFAI was 6-dimensional, made up of the following parameters6:

4 One complication arises because SCENIC uses rejection sampling to enforce constraints: if a
sample is rejected, what value should be returned to active samplers that expect feedback, e.g. a
cross-entropy sampler? By default we return a special value indicating a rejection occurred.

5 After drawing conclusions from initial runs of all the experiments, the Berkeley team were
informed of the training parameters and trained their own version of TaxiNet locally, repeating
the experiments. This was done in order to ensure that minor differences in the training/testing
platforms at Boeing and Berkeley did not affect the results (which was in fact qualitatively the
case). All numerical results and graphs use data from this second round of experiments.

6 We originally had additional parameters controlling the position and appearance of a tire mark
superimposed on the runway (using a custom X-Plane plugin to do such rendering), but deleted
the tire mark for simplicity after experiments showed its effect on TaxiNet was negligible.



Formal Analysis and Redesign of an Aircraft Taxiing System with VERIFAI 5

Fig. 2. Example input images to TaxiNet, rendered in X-Plane. Left/right = clear/cloudy weather.
Top/bottom = 12 pm / 4 pm.

– the initial position and orientation of the aircraft (in 2D, on the runway);
– the type of clouds, out of 6 discrete options ranging from clear to stormy;
– the amount of rain, as a percentage, and
– the time of day.

Given values for these parameters from VERIFAI, the test protocol we used in all of our
experiments was identical: we set up the initial condition described by the parameters,
then simulated TaxiNet controlling the plane for 30 seconds.

The main requirement for TaxiNet provided by Boeing was that it should always
track the centerline of the runway to within 1.5 m. For many of our experiments we
created a greater variety of test scenarios by allowing the plane to start up to 8 m off
of the centerline: in such cases we required that the plane approach within 1.5 m of the
centerline within 10 seconds and then stay there for the remainder of the simulation. We
formalized these two specifications as MTL formulas ϕalways and ϕeventually respectively:

ϕalways = �(CTE ≤ 1.5) ϕeventually = ♦[0,10]�(CTE ≤ 1.5)

While both of these specifications are true/false properties, VERIFAI uses a con-
tinuous quantity ρ called the robustness of an MTL formula [4]. Its crucial property is
that ρ ≥ 0 when the formula is satisfied, while ρ ≤ 0 when the formula is violated, so
that ρ provides a metric of how close the system is to violating the property. The exact
definition of ρ is not important here, but as an illustration, for ϕalways it is (the negation
of) the greatest deviation beyond the allowed 1.5 m achieved over the whole simulation.

For additional experimental results, see the Appendix of the full version [5].

3.2 Falsification

In our first experiment, we searched for conditions in the nominal operating regime of
TaxiNet which cause it to violate ϕeventually. To do this, we wrote a SCENIC program
Sfalsif modeling that regime, shown in Fig. 3. We first place a uniform distribution on



6 D. J. Fremont et al.

Fig. 3. Generic SCENIC program Sfalsif used for falsification and retraining.

time of day between 6 am and 6 pm local time (approximate daylight hours). Next, we
determine the weather. Since only some of the cloud types are compatible with rain, we
put a joint distribution on them: with probability 2/3, there is no rain, and any cloud
type is equally likely; otherwise, there is a uniform amount of rain between 25% and
100%7, and we allow only cloud types consistent with rain. Finally, we position the
plane uniformly up to 8 m left or right of the centerline, up to 2000 m down the runway,
and up to 30◦ off of the centerline. These ranges ensured that (1) the plane began on the
runway and stayed on it for the entire simulation when tracking succeeded, and (2) it
was always possible to reach the centerline within 10 seconds and so satisfy ϕeventually.

However, it was quite easy to find falsifying initial conditions within this scenario.
We simulated over 4,000 runs randomly sampled from Sfalsif, and found many coun-
terexamples: in only 55% of the runs did TaxiNet satisfy ϕeventually, and in 9.1% of runs,
the plane left the runway entirely. This showed that TaxiNet’s behavior was problem-
atic, but did not explain why. To answer that question, we analyzed the data VERIFAI
collected during falsification, as we explain next.

3.3 Error Analysis and Debugging

VERIFAI builds a table which stores for each run the point sampled from the abstract
feature space and the resulting robustness value ρ (see Sec. 3.1) for the specification.
The table is compatible with the pandas data science library [13], making visualization
easy. While VERIFAI contains algorithms for automatic analysis of the table (e.g., clus-
tering and Principal Component Analysis), we do not use them here since the parameter
space was low-dimensional enough to identify failure cases by direct visualization.

We began by plotting TaxiNet’s performance as a function of each of the parameters
in our falsification scenario. Several parameters had a large impact on performance:

– Time of day: Figure 4 plots ρ vs. time of day, each orange dot representing a run
during falsification; the red line is their median, using 30-minute bins (ignore the
blue dots for now). Note the strong time-dependence: for example, TaxiNet works
well in the late morning (almost all runs having ρ > 0 and so satisfying ϕeventually)
but consistently fails to track the centerline in the early morning.

7 The 25% lower bound is because we observed that X-Plane seemed to only render rain at all
when the rain fraction was around that value or higher.



Formal Analysis and Redesign of an Aircraft Taxiing System with VERIFAI 7

Fig. 4. Performance of TaxiNet as a function of time of day, before and after retraining.

– Clouds: Figure 5 shows the median performance curves (as in Fig. 4) for 3 of
X-Plane’s cloud types: no clouds, moderate “overcast” clouds, and dark “stratus”
clouds. Notice that at 8 am TaxiNet performs much worse with stratus clouds than
no clouds, while at 2 pm the situation is reversed. Performance also varies quite
irregularly when there are no clouds — we will analyze why this is the case shortly.

– Distance along the runway: The green data in Fig. 6 show performance as a func-
tion of how far down the runway the plane starts (ignore the orange/purple data
for now). TaxiNet behaves similarly along the whole length of the runway, except
around 1350–1500 m, where it veers completely off of the runway (ρ ≈ −30). Con-
sulting the airport map, we find that another runway intersects the one we tested
with at approximately 1450 m. Images from the simulations show that at this inter-
section, both the centerline and edge markings of our test runway are obscured.

These visualizations identify several problematic behaviors of TaxiNet: consistently
poor performance in the early morning, irregular performance at certain times depend-
ing on clouds, and an inability to handle runway intersections. The first and last of these
are easy to explain as being due to dim lighting and obscured runway markings. The
cloud issue is less clear, but VERIFAI can help us to debug it and identify the root cause.

Inspecting Fig. 5 again, observe that performance at 2–3 pm with no clouds is poor.
This is surprising, since under these conditions the runway image is bright and clear;
the brightness itself is not the problem, since TaxiNet does very well at the brightest
time, noon. However, comparing images from a range of times, we noticed another
difference: shortly after noon, the plane’s shadow enters the frame, and moves across
the image over the course of the afternoon. Furthermore, the shadow is far less visible
under cloudy conditions (see Fig. 2). Thus, we hypothesized that TaxiNet might be
confused by the strong shadows appearing in the afternoon when there are no clouds.

To test this hypothesis, we wrote a new SCENIC scenario with no clouds, varying
only the time of day; we used VERIFAI’s Halton sampler [9] to get an even spread of
times with relatively few samples. We then ran two experiments: one with our usual
test protocol, and one where we disabled the rendering of shadows in X-Plane. The
results are shown in Fig. 7: as expected, in the normal run there are strong fluctuations



8 D. J. Fremont et al.

Fig. 5. Median TaxiNet performance by time of day, for different cloud types. (For clarity, indi-
vidual runs are not shown as dots in this figure.)

Fig. 6. TaxiNet performance by distance along the runway. Solid lines are medians. The lowest
median value for original TaxiNet clipped by the bottom of the chart is −32.

Fig. 7. TaxiNet performance (with fixed plane position) by time of day, with and without shadows.



Formal Analysis and Redesign of an Aircraft Taxiing System with VERIFAI 9

in performance during the afternoon, as the shadow is moving across the image; with
shadows disabled, the fluctuations disappear. This confirms that shadows are a root
cause of TaxiNet’s irregular performance in the afternoon.

Figures 4 and 6 show that there are failures even at favorable times and runway
positions. We diagnosed several additional factors leading to such cases, such as starting
at an extreme angle or further away from the centerline; see the Appendix [5] for details.

Finally, we can use VERIFAI for fault localization, identifying which part of the
system is responsible for an undesired behavior. TaxiNet’s main components are the
neural network used for perception and the steering controller: we can test which is in
error by replacing the network with ground truth CTE and HE values and testing the
counterexamples we found above again. Doing this, we found that the system always
satisfied ϕeventually; therefore, all the failure cases were due to mispredictions by the neu-
ral network. Next, we use VERIFAI to retrain the network and improve its predictions.

3.4 Retraining

The easiest approach to retraining using VERIFAI is simply to generate a new generic
training set using the falsification scenario Sfalsif from Fig. 3, which deliberately in-
cludes a wide variety of different positions, lighting conditions, and so forth. We sam-
pled new configurations from the scenario, capturing a single image from each, to form
new training and validation sets with the same sizes as for original TaxiNet. We used
these to train a new version of TaxiNet, Tgeneric, and evaluated it as in the previous
section, obtaining much better overall performance: out of approximately 4,000 runs,
82% satisfied ϕeventually, and only 3.9% left the runway (compared to 55% and 9.1%
before). A variant of Tgeneric using VERIFAI’s Halton sampler, THalton, was even more
robust, satisfying ϕeventually in 83% of runs and leaving the runway in only 0.6% (a 15×
improvement over the original model). Furthermore, retraining successfully eliminated
the undesired behaviors caused by time-of-day and cloud dependence: the blue data in
Fig. 4 shows the retrained model’s performance is consistent across the entire day, and
in fact this is the case for each cloud type individually.

However, this naı̈ve retraining did not eliminate all failure cases: the orange data in
Fig. 6 shows that THalton still does not handle the runway intersection well. To address
this issue, we used a second approach to retraining: over-representing the failure cases
of interest in the training set using a specialized SCENIC scenario [6].

We altered Sfalsif as shown in Fig. 8, increasing the probability of the plane starting
1200–1600 m along the runway, a range which brackets the intersection; we also em-
phasized the range 0–400 m, since Fig. 6 shows the model also has difficulty at the start
of the runway. We trained a specialized model Tspecialized using training data from this
scenario together with the validation set from Tgeneric. The new model had even better
overall performance than THalton, with 86% of runs satisfyingϕeventually and 0.5% leaving
the runway. This is because performance near the intersection is significantly improved,
as shown by the purple data in Fig. 6; however, while the plane rarely leaves the runway
completely, it still typically deviates several meters from the centerline. Furthermore,
performance is worse than Tgeneric and THalton over the rest of the runway, suggesting
that larger training sets might be necessary for further performance improvements.



10 D. J. Fremont et al.

Fig. 8. Position distribution emphasizing
the runway beginning and intersection.
Probabilities corresponding to the origi-
nal scenario (Fig. 3) shown in comments.

While in this case it was straightforward to
write the SCENIC program in Fig. 8 by hand,
we can also learn such a program automati-
cally: starting from Sfalsif (Fig. 3), we use cross-
entropy sampling to move the distribution to-
wards failure cases. Applying this procedure to
Tgeneric for around 1200 runs, VERIFAI indeed
converged to a distribution concentrated on fail-
ures. For example, the distribution of distances
along the runway gave ∼79% probability to the
range 1400–1600 m, 16% to 1200–1400 m, and
5% to 0–200, with all other distances getting
only ∼1% in total. Referring back to Fig. 6, we see that these ranges exactly pick out
where THalton (and Tgeneric) has the worst performance.

Finally, we also experimented with a third approach to retraining, namely augment-
ing the existing training and validation sets with additional data rather than generating
completely new data as we did above. The augmentation data can come from counterex-
amples from falsification [2], from a handwritten SCENIC scenario, or from a failure
scenario learned as we saw above. However, we were not able to achieve better perfor-
mance using such iterative retraining approaches than simply generating a larger train-
ing set from scratch, so we defer discussion of these experiments to the Appendix [5].

4 Conclusion

In this paper, we demonstrated VERIFAI as an integrated toolchain useful throughout
the design process for a realistic, industrial autonomous system. We were able to find
multiple failure cases, diagnose them, and in some cases fix them through retraining. We
interfaced VERIFAI to the X-Plane flight simulator, and extended the SCENIC language
with external parameters, allowing the combination of probabilistic programming and
active sampling techniques. These extensions are publicly available [1,7].

While we were able to improve TaxiNet’s rate of satisfying its specification from
55% to 86%, a 14% failure rate is clearly not good enough for a safety-critical sys-
tem (noting of course that TaxiNet is a simple prototype not intended for deployment).
In future work, we plan to explore a variety of ways we might further improve per-
formance, including repeating our falsify-debug-retrain loop (which we only showed a
single iteration of), increasing the size of the training set, and choosing a more complex
neural network architecture. We also plan to further automate error analysis, building
on clustering and other techniques (e.g., [10]) available with VERIFAI and SCENIC,
and to incorporate white-box reasoning techniques to improve the efficiency of search.

Acknowledgments. The authors are grateful to Forrest Laine and Tyler Staudinger for
assistance with the experiments and TaxiNet, to Ankush Desai for suggesting using
SCENIC as a prior for cross-entropy sampling, and to the anonymous reviewers.

This work was supported in part by NSF grants 1545126 (VeHICaL), 1646208,
1739816, and 1837132, the DARPA BRASS (FA8750-16-C0043) and Assured Auton-
omy programs, Toyota under the iCyPhy center, and Berkeley Deep Drive.



Formal Analysis and Redesign of an Aircraft Taxiing System with VERIFAI 11

References

1. Dreossi, T., Fremont, D.J., Ghosh, S., Kim, E., Ravanbakhsh, H., Vazquez-Chanlatte, M.,
Seshia, S.A.: VerifAI: A toolkit for the formal design and analysis of artificial intelligence-
based systems. In: 31st International Conference on Computer Aided Verification (CAV). pp.
432–442 (2019), https://github.com/BerkeleyLearnVerify/VerifAI

2. Dreossi, T., Ghosh, S., Yue, X., Keutzer, K., Sangiovanni-Vincentelli, A.L., Seshia, S.A.:
Counterexample-guided data augmentation. In: 27th International Joint Conference on Arti-
ficial Intelligence (IJCAI). pp. 2071–2078 (7 2018). https://doi.org/10.24963/ijcai.2018/286

3. Dreossi, T., Jha, S., Seshia, S.A.: Semantic adversarial deep learning. In: 30th In-
ternational Conference on Computer Aided Verification (CAV). pp. 3–26 (7 2018).
https://doi.org/10.1007/978-3-319-96145-3 1

4. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications. In: Havelund, K.,
Núñez, M., Roşu, G., Wolff, B. (eds.) Formal Approaches to Software Testing and Runtime
Verification. pp. 178–192. Springer Berlin Heidelberg, Berlin, Heidelberg (2006)

5. Fremont, D.J., Chiu, J., Margineantu, D.D., Osipychev, D., Seshia, S.A.: Formal analysis
and redesign of a neural network-based aircraft taxiing system with VerifAI (2020), https:
//arxiv.org/abs/2005.07173

6. Fremont, D.J., Dreossi, T., Ghosh, S., Yue, X., Sangiovanni-Vincentelli, A.L., Seshia, S.A.:
Scenic: A language for scenario specification and scene generation. In: 40th ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI). pp. 63–
78 (2019). https://doi.org/10.1145/3314221.3314633

7. Fremont, D.J., Dreossi, T., Ghosh, S., Yue, X., Sangiovanni-Vincentelli, A.L., Seshia, S.A.:
Scenic: A language for scenario specification and scene generation (2019), https://github.
com/BerkeleyLearnVerify/Scenic

8. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples.
CoRR abs/1412.6572 (2014)

9. Halton, J.H.: On the efficiency of certain quasi-random sequences of points in
evaluating multi-dimensional integrals. Numerische Mathematik 2(1), 84–90 (1960).
https://doi.org/10.1007/BF01386213

10. Kim, E., Gopinath, D., Pasareanu, C.S., Seshia, S.A.: A programmatic and semantic ap-
proach to explaining and debugging neural network based object detectors. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

11. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-time systems
2(4), 255–299 (1990)

12. Laminar Research: X-Plane 11 (2019), https://www.x-plane.com/
13. McKinney, W.: Data structures for statistical computing in python. In: van der Walt, S., Mill-

man, J. (eds.) 9th Python in Science Conference. pp. 51–56 (2010), https://pandas.pydata.
org/

14. Rubinstein, R.Y., Kroese, D.P.: The Cross-Entropy Method: A Unified Approach to Combi-
natorial Optimization, Monte-Carlo Simulation, and Machine Learning. Springer, New York,
NY (2004). https://doi.org/10.1007/978-1-4757-4321-0

15. Russell, S., Dewey, D., Tegmark, M.: Research priorities for robust and beneficial artificial
intelligence. AI Magazine 36(4) (2015). https://doi.org/10.1609/aimag.v36i4.2577

16. Sankaranarayanan, S., Fainekos, G.E.: Falsification of temporal properties of hybrid sys-
tems using the cross-entropy method. In: Hybrid Systems: Computation and Control (part
of CPS Week 2012), HSCC’12, Beijing, China, April 17-19, 2012. pp. 125–134 (2012).
https://doi.org/10.1145/2185632.2185653, https://doi.org/10.1145/2185632.2185653

17. Seshia, S.A., Sadigh, D., Sastry, S.S.: Towards Verified Artificial Intelligence. CoRR (2016),
http://arxiv.org/abs/1606.08514

https://github.com/BerkeleyLearnVerify/VerifAI
https://doi.org/10.24963/ijcai.2018/286
https://doi.org/10.1007/978-3-319-96145-3_1
https://arxiv.org/abs/2005.07173
https://arxiv.org/abs/2005.07173
https://doi.org/10.1145/3314221.3314633
https://github.com/BerkeleyLearnVerify/Scenic
https://github.com/BerkeleyLearnVerify/Scenic
https://doi.org/10.1007/BF01386213
https://www.x-plane.com/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://doi.org/10.1007/978-1-4757-4321-0
https://doi.org/10.1609/aimag.v36i4.2577
https://doi.org/10.1145/2185632.2185653
https://doi.org/10.1145/2185632.2185653
http://arxiv.org/abs/1606.08514


12 D. J. Fremont et al.

18. Teubert, C., Watkins, J.: The X-Plane Connect Toolbox (2019), https://github.com/nasa/
XPlaneConnect

19. Tian, Y., Pei, K., Jana, S., Ray, B.: Deeptest: Automated testing of deep-neural-network-
driven autonomous cars. In: Proceedings of the 40th International Conference on Soft-
ware Engineering. p. 303–314. ICSE ’18, Association for Computing Machinery, New
York, NY, USA (2018). https://doi.org/10.1145/3180155.3180220, https://doi.org/10.1145/
3180155.3180220

https://github.com/nasa/XPlaneConnect
https://github.com/nasa/XPlaneConnect
https://doi.org/10.1145/3180155.3180220
https://doi.org/10.1145/3180155.3180220
https://doi.org/10.1145/3180155.3180220

	Formal Analysis and Redesign of a Neural Network-Based Aircraft Taxiing System with VerifAI



