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Abstract 

Structural health monitoring (SHM) systems provide real-time damage and performance information for 

civil, aerospace, and other high-capital or life-safety critical structures. Conventional data processing involves 

pre-processing and extraction of low-dimensional features from in-situ time series measurements. The 

features are then input to a statistical pattern recognition algorithm to perform the relevant classification or 

regression task necessary to facilitate decisions by the SHM system. Traditional design of signal processing 

and feature extraction algorithms can be an expensive and time-consuming process requiring extensive 

system knowledge and domain expertise.  

Genetic programming, a heuristic program search method from evolutionary computation, was recently 

adapted by the authors to perform automated, data-driven design of signal processing and feature extraction 

algorithms for statistical pattern recognition applications. The proposed method, called Autofead, is 

particularly suitable to handle the challenges inherent in algorithm design for structural health monitoring 

problems where the manifestation of damage in structural response measurements is often unclear or 

unknown. Autofead mines a training database of response measurements to discover information-rich 

features specific to the problem at hand. This study provides experimental validation on three structural 

health monitoring applications including ultrasonic damage detection, bearing damage classification for 

rotating machinery, and vibration-based structural health monitoring. Performance comparisons with 

common feature choices for each problem area are provided demonstrating the versatility of Autofead to 

produce significant algorithm improvements on a wide range of problems. 

Keywords: feature design, structural health monitoring, genetic programming, algorithm design, signal 

processing, pattern recognition 



1. Introduction 

Structural health monitoring (SHM) systems provide real-time damage and performance information for 

civil, aerospace, and other high-capital value or safety critical structures. Summary reviews on the field are 

provided in Doebling, et al. [1] and Farrar, et al. [2]. For the interested reader, Farrar and Worden provide a 

more comprehensive treatment of the field of SHM in their recent work [3]. The conventional data flow for 

SHM systems begins with acquisition of time series structural response measurements. After pre-processing, 

a set of one or more damage-sensitive features is calculated in a feature extraction process, which, for data-

driven SHM applications, is then fed to a pattern recognition algorithm to perform the desired task. The 

classification or regression analysis forms the basis for decision-making under the uncertainty and noise that 

typically affect the SHM process. 

Development of effective features for a specific SHM system presents two key difficulties. First, the 

features must be sensitive to the damage states of interest in the system such that statistically detectable 

changes occur when the system undergoes damage. Traditionally, designers of feature extraction algorithms 

have relied either on engineering judgment of the expected behavior of the system under damage or on the 

parameters and predictive errors of models, which can be data-based or physics-based [3]. Second, the 

features must be insensitive to the varying operational or environmental conditions the system may 

experience in use. SHM axiom IVb states that “Without intelligent feature extraction, the more sensitive a 

measurement is to damage, the more sensitive it is to changing operational and environmental conditions” 

[4]. The design of robust, damage-sensitive features for a specific application can be an expensive and time-

consuming task requiring extensive system knowledge and domain expertise, or absent that, substantial trial-

and-error. 

The objectives of a fully data-driven approach to feature design are thus two-fold. First, the question is 

posed “How should we process response measurements to extract damage information when minimal system 

and domain knowledge is available?” An automated, data-driven approach to feature extraction algorithm 

design directly infers from a training database of response measurements a feature set specific to the problem 

at hand. Such an automated approach provides the additional benefit of significantly reduced time and effort 



for the overall SHM system design process. Second, we propose that the additional goal of designing robust 

features may be met directly by including examples of the expected operational and environmental variability 

within the training database. Thus, the fundamental assumption in this approach is that data are available that 

are known to span the desired classification or regression spaces.  

The adopted approach to automated feature extraction algorithm design, called Autofead, uses a custom 

genetic programming variant to search for the optimal processing path from measured responses to features 

relevant to the SHM task [5]. Genetic programming is an evolutionary, heuristic search method in the 

program space which has been successfully adapted to a wide range of data mining and engineering design 

problems [6,7]. In Autofead, candidate feature extraction algorithms are evolved using a wrapper approach 

where fitness is computed as the error of a standard pattern recognition algorithm using the measured 

features. 

This paper overviews the Autofead method and its applications in the field of SHM as well as providing 

three experimental studies on a wide range of SHM problems. The rest of this paper is organized as follows. 

Section 2 details the current Autofead method. Sections 3, 4, and 5 demonstrate the application of Autofead 

to three SHM problem domains with comparisons to conventional feature choices. Section 3 describes a 

simple ultrasonic damage detection problem. An experiment on damage type classification for a bearing in a 

rotating machine is presented in section 4 followed by a vibration-based damage extent estimation 

experiment in section 5. Section 6 draws conclusions and suggests directions for future work. 

 

2. Autofead 

Autofead is an SHM system development tool for autonomously designing feature extraction algorithms 

from given data sets. Autofead uses a genetic programming variant to solve the feature extraction algorithm 

design problem as depicted in Figure 1. Algorithms are induced directly from a database of labeled dynamic 

measurements. Any numeric sequence (one-dimensional signal) can be used as input, such as time series, 

spectral measurements, frequency response functions, or mode shapes. Solutions represent feature vectors 

evolved in the program space from a pre-defined function library containing common mathematical and 



digital signal processing operations. Solutions are evolved based on error-based fitness measures from a pre-

selected pattern recognition algorithm. 

 
Figure 1. Autofead search data flow diagram. 

The solution structure and function library designed for Autofead are introduced in sections 2.1 and 2.2, 

respectively. Section 2.3 presents the overall search process followed by sections detailing the four primary 

Autofead modules: parameter optimization, fitness cross-validation, evolution strategy, and breeding in 

sections 2.4 through 2.8. Finally, section 2.8 summarizes the configuration of Autofead for the experiments to 

follow. 

2.1. Solution structure 

The Autofead solution structure is highly-constrained and simplified compared to other genetic programming 

systems developed for general purpose feature design such as PADO [8], Zeus [9], and FIFTH [10]. Each 

solution consists of a set of features where each feature is a sequence of functions operating on one or two 

inputs. Features must terminate with a dimension-reduction function such as a summation to output a scalar 

feature from its sequence inputs. This highly restricted structure was chosen primarily for two reasons: first, 

most conventional algorithms are linear in structure and operate on one or two signals; second, inclusion of 

high-level operations within a large function library necessitates constraints on the solution structure to 

restrict the size of the solution space. 



Figure 2 diagrams an example individual containing three features. An individual represents a single 

candidate solution within the evolving Autofead population. The example shown includes 3 features of 

increasing complexity through the inclusion of merging functions and the sliding windows functions in 

features 2 and 3, respectively.. Merging functions allow a feature to operate on two input sequences of the 

same length. Each sequence is processed identically through functions prior to the merging function. The 

sliding windows function transforms the input sequence to a matrix of subsequences. Subsequent functions 

operate on each subsequence individually until the first dimension-reduction function returns the matrix to a 

single sequence. A second dimension-reduction function is then required to compute a scalar feature. Sliding 

windows is especially useful to identify transients and non-stationary behavior in the input sequence. 

 
Figure 2. Example individual solution structure including a simple Feature 1, Feature 2 with a merging 

function, and Feature 3 using the sliding windows function. 

 

2.2. Function library 

The Autofead function library is based on a decomposition of common signal processing and feature 

extraction algorithms into their basic operations. Table 1 lists each function and its output. The behavior of 

some functions is controlled by an additional scalar parameter. For example, low-pass filter requires 

specification of a cutoff frequency parameter. These parameters are optimized prior to fitness evaluation 

through the numerical optimization scheme presented in section 2.4. 



Table 1. Autofead function library 

Function Output Parameter (*integer type) 

Element operations 

Cube Cube of input values - 

Square root Square root of magnitude of input values, sign retained - 

Exponential Exponential function of input values - 

Sigmoid x/(1+|x|) for input values, x - 

Absolute value Absolute value of input values - 

Square Square of input values - 

Inverse Reciprocal of input values - 

Sign Sign of input values, -1 or 1 - 

Log10 Base-10 logarithm of magnitude of input values - 

Distribution-altering functions (sample order independent) 

Demean Input sequence with mean offset removed - 

Normalize Standard deviations from mean of values in input sequence - 

Center Input sequence with mean of entire dataset removed - 

Center and scale Standard deviations from mean of entire dataset for values in input sequence - 

Set minimum value Input with values below threshold raised to threshold  Data range threshold (0-1) 

Set maximum value Input with values above threshold lowered to threshold  Data range threshold (0-1) 

Control chart Input with central values of data range set to center of range Percentage of range kept (0-1) 

Sort order Indices of values in sorted input sequence, ascending order - 

Order-dependent functions 

Difference First differences of input sequence - 

Cumulative summation Cumulative summation of input sequence - 

Hanning window Input sequence with Hanning window applied - 

Low-pass filter Low-pass filtered input sequence, zero-phase digital filtering by 3rd order 

Butterworth filter 

Normalized cutoff frequency 

(0-1, upper bound = π rad/s) 
High-pass filter High-pass filtered input sequence, zero-phase digital filtering by 3rd order 

Butterworth filter 

Normalized cutoff frequency 

(0-1, upper bound = π rad/s) 

Auto-correlation function Biased estimate of input sequence auto-correlation function for positive lags - 

FFT magnitude Magnitude of FFT of input sequence, [0,π] rad/s bin range - 

FFT phase Phase of FFT of input sequence, [0,π] rad/s bin range - 

FFT real Real part of FFT of input sequence, [0,π] rad/s bin range - 

FFT imaginary Imaginary part of FFT of input sequence, [0,π] rad/s bin range - 

Hilbert magnitude Magnitude of Hilbert transform of input sequence - 

Hilbert phase Phase of Hilbert transform of input sequence - 

Hilbert imaginary Imaginary part of Hilbert transform of input sequence - 

Convolve Convolution of input sequence with pre-specified sequence - 

Wavelet Detail coefficients of discrete-wavelet transform using pre-specified wavelet 

family, parameter value of 0 produces approximation coefficients at the 
maximum useful level of decomposition 

*Wavelet detail level 

Index-altering functions 

Keep beginning Input sequence with samples removed from end *Samples to remove 

Keep end Input sequence with samples removed from beginning *Samples to remove 

Sliding windows For non-windowed input: Subsequences extracted from sliding a window along 
input sequence, number of windows and overlapping samples between adjacent 

windows determined internally 

*Window length 

Transpose windows Swaps window indices and sample indices - 

Merging functions 
Element sum Element-wise sum of two input sequences - 

Element difference Element-wise difference of two input sequences - 

Element product Element-wise product of two input sequences - 

Element quotient Element-wise quotient of two input sequences - 

Cross-correlate Cross-correlation of two input sequences, output is same length as inputs - 

Dimension-reduction functions 

Sum (implicit) Sum of all input values, occurs at end of every feature - 

Slope fit Slope of best linear fit to each input sequence - 

Sliding windows For windowed input: Sequence of sums of subsequences - 

Select Sample at index of input sequence; internal brute force index search to optimize 

performance of output as single feature solution; for windowed input, each 
subsequence is treated as a separate fitness case index selection 

*Internal index selection 

Sorted bisection select Same as select function but with input sequence sorted and using bisection 

index search 

*Internal index selection 



2.3. Search process  

To begin an Autofead search run, the user defines the fitness cases and selects any custom run parameters. A 

fitness case consists of one or two input sequences and the target output value or class. Then, an initial 

population is randomly generated. The size of feature algorithms and feature vectors within the initial 

population is varied, and the use of the functions from the library in the initial population is uniform. Next, 

the search process begins as shown in Figure 3 with optimization of the parameters within the feature 

algorithms. After parameter optimization, N-fold cross-validation is carried out to determine the fitness of  

 
Figure 3. Autofead search process diagram. 



each individual. New solutions are generated preferentially from higher fitness individuals in the breeding 

process. The run continues until termination conditions are met such as a desired fitness level or a maximum 

number of individuals. 

2.4. Parameter optimization scheme 

Before feature vectors can be evaluated for fitness, the parameter values within the algorithms must be 

selected. A single individual can contain multiple features each containing multiple parameters. Due to the 

nature of the parameter surfaces, a global optimization strategy is required; however, global optimization of 

all parameters within an individual at each iteration of the search process is prohibitively computationally 

expensive. Therefore, a sequential global optimization strategy is employed. First, an adaptive parameter grid 

is built and evaluated for each new feature in the population. Grid evaluations are stored for subsequent 

optimizations to reduce repeated computations. Next, parameters are locally optimized starting from the best 

grid point on a randomly selected subset of the fitness cases.  

Additionally, within a single individual, each feature is optimized independently to avoid the requirement of a 

multivariate objective function. Independent optimizations, however, may lead to high correlation between 

features if no method is used to promote orthogonality in the optimization process. For example, in an 

individual containing two identical algorithms that estimate a natural frequency in a parameterized frequency 

band, performance will improve if the two features operate in separate frequency bands. Therefore, a fitness 

case weighting scheme is employed. After the first feature’s parameters are optimized, error-based weights 

are assigned to each fitness case such that difficult fitness cases receive higher weights. Subsequent features’ 

parameters are optimized according to a weighted objective function with the weights adjusted after each 

optimization. 

2.5. Fitness cross-validation 

Fitness of candidate individuals is based on performance of a pre-selected standard pattern recognition 

algorithm. For example, Gaussian Naïve-Bayes, decision trees, and k-nearest neighbors may be used for 

classification tasks. Linear regression is a common choice for regression problems. Error-based fitness 



measures are computed based on the performance of the pattern recognition algorithm using each candidate 

feature vector through N-fold cross-validation.  

2.6. Evolution strategy 

The evolution strategy determines how the population is controlled and allowed to evolve. A generational 

approach is the simplest strategy where the entire population is replaced with an equal number of offspring 

during each iteration of the search process. An issue with the generational approach arises when the search 

moves in a detrimental random direction such that the offspring generation has lower fitness than the parents. 

Introducing elitism is one method to alleviate this problem. Autofead adopts a more advanced (μ/ρ+λ) 

strategy based on methods in Back [11] which maintains a large diverse population of μ individuals. During 

each iteration of the search, the population is truncated to a parent pool of the best ρ individuals from which λ 

offspring are generated. Finally, an updated population is selected from the best offspring and parents such 

that the search only moves in the direction of the offspring if they outperform the parents. Figure 3 depicts the 

(μ/ρ+λ) strategy in the context of the overall Autofead search process. 

2.7. Breeding 

The breeding process generates new features and individuals from the best individuals in the current 

population. Parents are selected by tournament selection from the parent pool. Then, a genetic operator is 

randomly chosen based on pre-determined operator probabilities. Autofead includes five operators. Crossover 

is the most common operator where a segment of code from one feature in the second parent replaces a code 

segment in one feature of the first parent. The reproduce operator clones a single parent. Mutate modifies a 

single feature in one parent by inserting, removing, or swapping one function. Lastly, the add feature and 

remove feature operators control the number of features in an individual. Remove feature eliminates the 

worst feature in the individual based on use of each feature in individual as a single feature solution. 

Similarly, add feature determines which feature from the second parent is most beneficial to transfer to the 

first parent. 

2.8. Experimental configuration 



The Koza tableau in Table 2 summarizes the run parameters and Autofead configuration used in this study. 

The configuration is identical for all problems other than the selection of appropriate classification and 

regression algorithms and fitness measures. Current run parameters are derived from common practice with 

other GP systems and the authors’ engineering judgment. Future parametric studies will be valuable for 

optimizing population size, genetic operator probabilities, individual size limits, and termination conditions. 

For each experiment, a training database of fitness cases is used for the Autofead runs and a separate test set 

is used for reporting final fitness values. The authors presented early results for these experiments using a 

previous version of Autofead [12] which lacked critical components presented in the previous sections; 

merging functions, the weighted parameter optimization scheme, cross-validation for fitness estimates, and 

the current evolution strategy. These additions and changes resulted in consistently higher-fitness solutions 

for each of the three experiments, and they represent a substantial improvement to the Autofead architecture. 

Table 2. Koza tableau of Autofead parameters 

Parameter Setting 

Objective Design optimal feature set from numeric sequence data 

Solution structure Set of features each composed of a sequence of functions which together compute a feature vector 

Function library 46 functions from Table 1, convolve only used for CBM problem (with actuation signal) 

Pattern recognition Kernel-based Naïve-Bayes for classification, linear regression for regression 

Fitness Classification accuracy for classification,  root mean square (RMS) error for regression 

Population initialization Ramped to initial maximum size of 3 features and up to 5 functions and 3 parameters per feature 

Population size 1,000 individuals, no parent pool truncation, 50 offspring per search iteration 

Selection Tournament (tournament size 2) 

Genetic operators Crossover, 80%; mutate, 5%; reproduce, 5%; add feature, 5%; remove feature, 5% 

Individual size limits 5 features each limited to 15 functions and 8 parameters 

Termination 50,000 individuals 

 

3. Ultrasonic damage detection 

For the first experiment, the goal is to determine the presence of damage simulated by a magnet on a steel 

beam using a single pitch-catch measurement from a pair of piezoelectric elements. The experimental 

structure is shown in Figure 4. The training database contains 500 undamaged measurements with no magnet 

and 500 damaged measurements with the magnet located at 40 different locations on the same side of the 

beam as the actuator and sensor. The undamaged measurements are averaged to provide an additional 

baseline input sequence. By including a baseline as an additional input channel, it is possible for Autofead to 

construct features including a baseline subtraction component. Recorded waveforms include 750 samples 



collected at 2 MHz. The actuation signal was a 200 kHz Gaussian-modulated sine wave with 0.6 normalized 

bandwidth. 

 
Figure 4. Ultrasonic damage detection experiment structure and sensing system. 

3.1. Conventional solution 

Conventional pre-processing operations for this task include matched filtering, envelope analysis, and 

baseline subtraction. The convolve function is configured here to perform convolution with the actuation 

signal for matched filtering. An envelope analysis can be carried out by the Hilbert magnitude function. 

Finally, because the averaged baseline is included as a second input channel, element difference performs 

baseline subtraction. The use of the actuation signal for convolution and inclusion of an average baseline 

channel represent examples of how domain knowledge can be incorporated into Autofead to improve the 

search. For comparison solutions, waveforms are pre-processed by matched filtering and envelope analysis; 

then total energy and peak amplitude features with and without baseline subtraction are computed. Interested 

readers are directed to Farrar and Worden [3], Raghavan and Cesnik [13], Flynn, et al. [14], and Hu, et al. 

[15] for an introduction to the field of guided-wave SHM. 

3.2. Autofead solution 

The Autofead solution contains a single feature based on a cross-correlation between the measured waveform 

and average baseline. Figure 5 characterizes the original input data and how the data progresses through each 

processing step in the Autofead feature. In each image, the black and white lines show the median and 

quartiles, respectively, of sequences from all classes at each sample. These lines show the overall waveform 

shapes at the current processing stage. In the case of small variance at a sample relative to the entire data 



range, the white quartile lines may be hidden under the black median line as in the input signals image. The 

background reveals how the individual classes are distributed over the value range at each sample. The far 

right column of each image shows the sums of the sequences at the current processing step. Lastly, vertical 

and horizontal yellow lines indicate threshold values used by functions in the following step. For example, 

the horizontal line in the bottom-left image after step 2 indicates the thresholds used by the control chart 

function in step 3. 

 
Figure 5. Autofead feature signal processing flow for ultrasonic damage detection experiment. 

These visualizations allow for easier understanding and interpretation of feature behaviors and in some 

cases indicate opportunities for further improvement. In the input signals image, the homogeneous 

background prior to first arrival indicates identical class distributions. The larger magnitude arrivals show 

bands where a single class contains most of the extreme values. After cross-correlation, the extreme values 

belong primarily to the damaged class, and the sum in the last image shows near perfect class separation. 

3.3. Feature distributions 

Figure 6 shows class-conditioned histograms and probability density function (PDF) estimates for the 

Autofead feature and four conventional features. From the distributions, the Autofead feature clearly provides 

greater separation of the undamaged and damaged classes. The unusual distributions for the damaged class 



are primarily due to the inclusion of 40 different magnet locations with varying levels of detection difficulty. 

For example, one would expect peak amplitude without baseline subtraction to either be smaller, larger, or 

identical with damage to the undamaged class if only a single damage location was included. 

 
Figure 6. Class-conditioned feature probability density estimates for ultrasonic damage detection experiment. 

3.4. Solution fitness 

The receiver operating characteristics (ROC) curves in Figure 7 show the trade-off between false positives 

and correct detections using each feature from Figure 6. The ROC curves confirm that the Autofead feature 

outperforms the conventional solutions with nearly perfect classification accuracy at 99.9%. However, it is 

important to note that the Autofead solution is designed to be specific to the training database, which only 

contains a single beam, single sensor pair, and single damage type in a controlled laboratory environment in 

this case. The comparison solutions may generalize better to variation of the conditions of the experiment as 

well as other ultrasonic structural interrogation applications. To design a general feature for these 

applications, any expected structural, operational, and environmental variability would need to be included in 

Autofead’s training database. 



 
Figure 7. ROC curves and fitness (classification accuracy) for five ultrasonic damage detection features. 

 

4. Damage type identification for rotating machinery 

The second experiment involves identifying three bearing health states in the Machinery Fault Simulator 

from Spectraquest, Inc. depicted in Figure 8. The system consists of a motor and driveshaft supported by 

three bearings connected to a belt-driven gearbox. Damage is introduced by replacing a healthy bearing with 

an artificially damaged unit. The damaged units include a bearing with an outer race defect and a bearing 

with ball spalling damage. The goal is to identify which of the three bearings is installed in the bearing 

housing nearest the gearbox drive belts.  

 
Figure 8. Rotating machinery experiment structure and sensing system. 



In this experiment, the motor is driven at a single nominal shaft speed of 1,000 rpm (16.7 Hz). 1,280 

sample measurements are recorded form an accelerometer on top of the bearing housing at 2.56 KHz. The 

training database includes 1,280 fitness cases for each of the three bearings. The system is disassembled and 

rebuilt to change bearings 24 times to avoid experimental errors introduced by any inconsistency in assembly. 

4.1. Conventional solution 

Conventional solutions for comparison are selected from ten metrics presented in Lebold’s review of 

vibration analysis methods for rotating machinery [16]. Calculation of many of the metrics requires 

knowledge of the internal geometry of components such as bearings and gearboxes to identify fundamental 

frequencies for various filtering operations. Of the ten metrics, FM4 and RMS provide the best performing 

pair of features for use with a kernel-based Naïve-Bayes classifier. 

4.2. Autofead solution 

Figure 9 shows the signal processing flow for the two features in the Autofead solution. The first feature is 

approximately the median value after a non-linear scaling operation from the first two steps, then high-pass 

filtering, and lastly an envelope analysis. This feature is difficult to interpret due to the untraditional pre-

processing sequence. Feature 2 is simply the energy within a narrow frequency band after the sigmoid 

operation, which primarily reduces the effect of outliers. Both features contain parameters that are optimized 

to remove lower-frequency components of the response. 

Figure 10 shows the parameter spaces for the two parameters in feature 1 and three parameters in feature 

2. In each image, fitness levels are computed with all other parameters in the individual held to their final 

optimized values indicated by the black squares. These surfaces show some of the complexity and variety of 

parameter optimization problems encountered within a single Autofead run. The parameter space for feature 

1 is fairly smooth and unimodal, while the space for the integer parameters in feature 2 is dominated by a 

large low-fitness region. The small region of higher fitness is fairly rough, containing many local extrema. 

Finally, the surface for the minimum value parameter in feature 2 includes a significant discontinuity around 

0.75. In each case, Autofead’s parameter optimization scheme provided results near the global optimum. 



 
Figure 9. Signal processing flow for two Autofead features in rotating machinery experiment solution. 

4.3. Feature spaces and fitness comparison 

The two-dimensional feature spaces for the Autofead solution and conventional metrics are given in Figure 

11 including decision boundaries from the Naïve-Bayes classifier. The conventional solution relies primarily 

on the RMS metric to separate the classes and achieve classification accuracy of 78%. In comparison, the two 

features in the Autofead solution complement each other to provide excellent separation between all three 

classes resulting in 99% classification accuracy.  



 
Figure 10. Parameter surfaces for Autofead solution features to rotating machinery experiment. 

 

 
Figure 11. Feature space and decision boundaries for solutions to rotating machinery experiment. 

 



 

5. Vibration-based damage extent estimation 

The final experiment uses the bolted, aluminum bookshelf structure in Figure 12 with the goal of estimating 

damage extent from vibration-based response measurements. The structure is composed of four  

2.5 cm thick aluminum plates measuring 30.5 cm wide by 30.5 cm deep. The plates are supported by 

rectangular columns at each corner for a total structure height of 53.1 cm. The entire structure is mounted on 

a rail system to constrain the motion to a single primary direction. An electrodynamic shaker provides 

excitation along the midline of the bottom floor though a stinger and load cell. Responses are measured by an 

accelerometer mounted to the midline of each floor in the primary direction of motion. 

 
Figure 12. Bookshelf experiment structure and sensing system. 

Damage is introduced by changing the width of the gap in a bumper and column system mounted on the 

second and third floors, respectively. Relative motion of the two floors causes impacts between the bumper 

and column. When the width of the gap is small, more impacts occur representing a higher level of damage. 

Six damage levels are included in the training database with the task of estimating the damage level using 

linear regression from the four response measurements and the input measurement from the load cell. 



Damage level 0 represents a wide enough gap such that no impacts occur. Damage levels 1, 1.33, 1.54, 2, and 

4 are proportional to their respective gap widths of 0.20, 0.15, 0.13, 0.10, and 0.05 mm. 

The structure was excited by band-limited white noise from 20-150 Hz to include the first three natural 

frequencies. Response measurements were collected at 320 Hz for 3.2 seconds (1,024 samples); 200 fitness 

cases are included in the training database from each of the six damage levels. Full details of the structure, 

data acquisition system, and test plan are found in Figueiredo, et al. [17]. 

5.1. Conventional solution 

A multitude of possible solutions exist in the literature for vibration-based damage detection and localization 

such as those in Farrar and Worden [3] and Hu, et al. [18]. For this example, conventional solutions were 

selected from the methods compared in Figueiredo, et al. [17]. The statistical moments solution includes the 

mean, variance, skewness, and kurtosis for each of the four response channels for a total of 16 features. 

Skewness is a particularly useful feature for this problem as the simulated damage case is highly asymmetric.  

The natural frequencies solution includes estimates of the first three natural frequencies of the structure 

estimated from the complex mode indicator function. Two solutions are based on autoregressive (AR) time 

series modeling. First, AR(5) parameters uses the parameters from a fifth-order model as features. A separate 

model is fit for each response channel to generate 20 features. Lastly, AR(20) RMS error includes the root 

mean square error level for each response channel using a 20
th
 order model fit to responses from damage 

level 0. The RMS error is expected to increase as the damage level increases. 

5.2. Autofead solution 

The Autofead solution uses three features as depicted in Figure 13. Features 1 and 2 use the response from 

floor 2 where the bumper is mounted. Feature 3 uses a cross-correlation between the top two floors. While 

these features are difficult to interpret due to highly non-linear behaviors of some of the element operations, it 

is clear that higher damage levels contain more high-frequency content. 

Investigation of the three-dimensional feature space formed by the Autofead solution reveals the 

complementary nature of the three features. Figure 14 depicts a three-dimensional scatter plot with PDF 

estimates along each feature axis conditioned to the six damage levels. Features 1 and 3 both increase 



monotonically with the damage level but cannot separate damage levels 0 and 1; however, feature 2 provides 

the additional information needed to separate the lowest two damage levels.  

 
Figure 13. Signal processing flow for three Autofead features in bookshelf experiment solution. 

 



 
Figure 14. Feature space for Autofead solution to bookshelf experiment. 

5.3. Damage extent estimates 

To evaluate the relative performance of the Autofead solution and four comparison solutions, distributions of 

the damage level estimates from each solution are shown in Figure 15 along with the true damage levels 

shown by vertical, dashed lines. Clearly, the Autofead solution and AR(5) parameters provide the most 

accurate and consistent estimates across the damage levels. Damage level 1 is an interesting case where 

bimodal behavior is observed for some of the solutions with one mode overlapping damage level 0. This 

result is most likely due to a mislabeling of measurements in the training database in cases where the gap 

width was set correctly to 0.20 mm but no actual impacts occurred within the measurement. However, 

without an independent measure of impact counts, this hypothesis could not be confirmed. If true, the 

Autofead solution significantly outperforms the other solutions in separating the measurements from damage 

level 1 where impacts do and do not occur. 

Table 3 provides the fitness levels (RMS error) for each of the five solutions at each individual damage 

level. The two best solutions at each damage level are shown in bold. The results for damage level 1 do not 

follow the trends of the other levels due to the previously discussed bimodal behavior issue. For all other  



 
Figure 15. Damage level estimate distributions for five solution to bookshelf experiment. 

levels, as well as on average, the Autofead solution provides the lowest or second-lowest error level. While 

the error is similar for the next best solution of AR(5) parameters, the dimension reduction provided by 

Autofead is significantly better using only 3 features compared to 20. 

Table 3. Damage extent estimate RMS errors 

Damage level Autofead 
Natural 

frequencies 

Statistical 

moments 

AR(5) 

parameters 

AR(20) 

RMS error 

0 0.36 0.98 0.56 0.39 0.47 

1 0.45 0.24 0.44 0.48 0.45 

1.33 0.16 0.44 0.30 0.16 0.34 

1.54 0.15 0.58 0.24 0.16 0.30 

2 0.21 0.78 0.50 0.19 0.53 

4 0.14 1.41 0.30 0.23 0.52 

Average 0.25 0.74 0.39 0.27 0.44 

 

6. Conclusions 

This work presents and experimentally validates the Autofead approach to automated feature extraction 

algorithm design, particularly suited for cases where domain knowledge is minimal. Significant performance 

improvements over conventional feature extraction methods are presented for damage detection, damage 



classification, and damage extent estimation experiments. Autofead can develop complete measurement to 

feature space algorithms for signal processing and feature extraction or serve as useful tool for feature 

designers in SHM and other fields to provide significant insight into databases of numeric sequence 

measurements. With Autofead, algorithms can be inferred from data alone or in conjunction with domain 

knowledge provided through transformation of the input space, augmentation of the function library, 

selection of appropriate pattern recognition algorithms, or fitness function customization. Future development 

of the method will evaluate and improve on the generalization capability of evolved solutions when the 

available training measurements are limited to a subset of possible conditions the system would operate under 

in actual usage. Additionally, the choice of classification or regression algorithm to use may be evolved 

within the Autofead search process as no single algorithm is suitable for all problems. 
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