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ABSTRACT OF THE DISSERTATION 

Advances in Computational Mass Spectrometry: 

Phosphoproteomics and Proteogenomics 

 

by 

 

Samuel Harris Payne 

Doctor of Philosophy in Bioinformatics 

University of California, San Diego, 2008 

Professor Vineet Bafna, Chair 

Professor William Loomis, Co-Chair 

 

The proteome is a dynamic group of proteins, interacting with and 

modifying each other in response to the environment.  Tandem mass 

spectrometry has become the most convenient and high-throughput means of 

assaying the proteome.  Modern instruments are capable of generating data 

for tens of thousands of peptides from thousands of proteins in a single 

experiment. In this work we present two important applications on proteomics: 

phosphoproteomics and proteogenomics.   

Protein signaling is dominated by reversible phosphorylation.  

Understanding which proteins are phosphorylated, when, where, and by whom 

is key to understanding most cellular signaling.  A variety of obstacles make 
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assaying phosphopeptides with tandem mass spectrometry a difficult task.  

First, phosphorylation is reversible and transitory.  Therefore, although many 

proteins can be phosphorylated, very few are phosphorylated at any given 

time.  Moreover, the phosphorylation event may be sub-stoichiometric.  Thus a 

small fraction of peptides in a proteomic sample are phosphorylated.  

Experimental mass spectrometrists have overcome this with the adoption of 

phosphopeptide enrichment protocols. A sample containing perhaps 1% 

phosphopeptides can be purified to over 90% phosphopeptides.  However, 

even with a high concentration of phosphorylated peptides, 

phosphoproteomics suffers from a second challenge, poor spectral quality. 

Spectra generated by phosphopeptides have low information content and are 

difficult to interpret.  We present an approach for learning the features of 

phosphopeptide spectra, and model these features in a Bayesian network.  

This probability model, when applied to the scoring function of Inspect, 

achieves a dramatic increase in sensitivity versus other peptide identification 

software. 

The second field of study presented in proteogenomics.  The task of 

annotating the genome for protein coding genes is difficult, and requires 

substantial effort.  Yet this is the arguably the most important outcome of the 

genomic era.  Most annotation pipelines utilize nucleotide centric information, 

such as cDNA or homology to known genes, to refine their computational 

predictions.  Unfortunately error rates are still suspected to be high, both in 
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terms of genes which are mispredicted and genes which are wholly missing 

from the annotation.  We present our work on utilizing peptides obtained from 

mass spectrometry to reannotate the genome.  We collect a large corpus of 

MS/MS spectra from Arabidopsis thaliana and annotate spectra from 18,024 

peptides which are not currently in the proteome.  Using these peptides we 

present gene models for 778 genes missing from the current annotation, and 

refine or correct an additional 695 loci, showing that proteogenomics can 

dramatically improve the quality of a genome annotation. 



1 

Chapter 1: Introduction: Proteomics and Mass Spectrometry 

 

As genomics continues to receive significant media attention and 

funding as the new vehicle of biological research, Erin O’Shea and Jonathan 

Weissman remind us that “biological systems ultimately need to be explained 

in terms of the activity, regulation and modification of proteins” 

[Ghaemmaghami 2003].  Proteomics then is the large-scale study of proteins, 

their structure, function and interactions. 

In one of the first proteome-scale experiments, Ghaemmaghami and 

colleagues quantified protein abundance of 4251 yeast proteins, or 80% of the 

proteome, during log-phase growth [Ghaemmaghami 2003].  In this landmark 

effort, all yeast open reading frames (ORFs) were tagged with a dual 

specificity epitope to facilitate efficient purification from cell lysates.  To classify 

protein localization, the same group created a separate library of GFP tagged 

ORFs [Huh 2003].  Twenty-two distinct sub-cellular localizations were used to 

classify 75% of the proteome, including 70% of previously unlocalized 

proteins. 

Many proteins perform their function in a complex, or in conjunction, 

with other proteins.  Therefore, protein interactions are another important 

characteristic of the proteome.  Direct physical interactions can be assayed 

with co-immunoprecipitation, or with two-hybrid screening [Krogan 2006, 

Fields 1989].  From this set of binary interactions, large interaction networks 

can be constructed and compared [Suthram 2005].  Another kind of interaction 



2 

  

is functional interaction, such as proteins working together in a metabolic 

pathway.  Although they may not physically touch, they form a logical 

interaction.  These types of interaction for metabolic and signaling pathways 

are curated at KEGG [Kanehisa 2000].    

The most significant drawback to these projects is the substantial time 

investment required to create materials.  Clone libraries created for the 

Weissman and O’Shea papers consisted of thousands of genetically modified 

yeast strains.  These libraries are a valuable resource to yeast researchers, 

and the results from these papers are of tremendous impact on the scientific 

community in general.  However, similar libraries have yet to be created for 

other organisms, a testament to the technical difficulty involved in whole 

proteome library creation.  Similarly, the effort required to make yeast-two-

hybrid libraries is significant.  For this reason, a different high-throughput 

technology must be utilized to carry forth proteomic research. 

Mass spectrometry-based proteomics is able to offer insights into 

protein content, quantitation, modification, and interaction, without requiring 

extensive clone library creation [Aebersold 2003].  Mass spectrometers take 

as input an ionized biological sample. The output is a spectrum, or mass to 

charge ratios (m/z) of the constituent species of a sample.  Protein mass 

spectrometry primarily uses short polypeptides, proteolyzed proteins, as the 

input sample as these are more amenable to the mass range of the 

instrument.  Additionally, protein mass spectrometry utilizes tandem mass 
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spectrometry, where a single m/z region is isolated and fragmented to produce 

more information about the species.  From this output, protein sequence can 

be inferred.  Commonly, liquid chromatography is coupled to the front end of 

the mass spectrometry instrument, separating a complex peptide sample and 

concentrating its constituent peptides into a small elution window.  In this 

manner, information on thousands of proteins can be gained from a single 

experiment.   

Klaus Biemann discussed the use of electron collision to produce a 

series of peptide fragments which could be used to infer protein sequence 

over 40 years ago [Biemann 1966]. In this work, he presents a de novo 

algorithm for peptide annotation and discusses the difficulties arising from non-

protein peptides, unexpected amino acids, or unexpected linkages, and 

neutral losses which are not part of the primary fragment ladder.   

In 1981 Fred McLafferty discussed the novel technique of tandem mass 

spectrometry, which uses two stages of MS.  In the first stage, all ions present 

in the sample are measured.  Then a single species is isolated, and all others 

are ejected.  In the second stage of MS, the isolated species is collided with 

gas atoms to produce peptide fragment ions [McLafferty 1981].  He also 

discusses advances in chromatography, and the superiority of using two 

orthogonal separation criteria.  It is much easier to isolate a single species by 

distinguishing on two characteristics than on only one.  Both of these ideas 
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(two stage mass spectrometry and two dimensional chromatography) have 

become standards in the proteomics field. 

  

1.1 Computational Mass Spectrometry 

Initially, most spectra were annotated by hand.  Often many of them 

were confirmed by chemically synthesizing the peptide and confirming the 

analysis.  Two issues initiated the movement towards computational 

proteomics: speed and speed.  With the invention and wide-spread adoption of 

ion-trap mass spectrometers, tens and hundreds of thousands of spectra 

began to be generated in a single experiment.  This massive increase in data 

volume overwhelmed the ability of manual annotation.  Secondly, as more 

protein sequence was being discovered and cataloged, the idea of using a 

database to speed up annotation software became realistic.  Although still 

incomplete today, protein repositories like the NCBI and swiss-prot/trembl had 

a reasonably large subset of the human proteome, and using this to limit the 

search space of MS/MS interpretation algorithms could significantly increase 

the speed of annotation. 

Computational mass spectrometry came into its own in the 1990s, 

starting with the publication of SEQUEST, the first sequence aided algorithm 

(database search) to automatically identify peptide sequences from tandem 

mass spectra [Eng 1994].  In this paper, formalisms currently used by most 

database search engines were set forth: data preprocessing, database 
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filtering, and scoring.  An MS/MS spectrum corresponds to (hopefully) only 

one peptide species.  Thus only a small portion of the database is relevant.  

Database filtering is the idea of quickly eliminating much of the obviously 

unrelated sequences, so that scoring can focus its efforts on the most likely 

candidates.  SEQUEST starts filtering with an in silico proteolytic digestion of 

the protein database, to produce peptides from proteins.  For each spectrum, 

peptides with parent masses inconsistent with the spectrum were filtered out 

and removed from consideration. This parent mass filtering paradigm has 

remained the dominant filtering technique for most spectral identification 

programs.  Candidate peptides which pass the filter are then considered for 

scoring.  The task of scoring is to give some numeric measure of how well a 

peptide matches the spectrum.  The best candidate, the one with the highest 

score, is considered the winner.  SEQUEST’s scoring attempts to count the 

number of b/y fragment ions predicted from the candidate peptide which are 

observed in the spectrum.  The assumption here is that the correct peptide will 

have the most peaks in common with the observed spectrum.  Formally, each 

peptide creates a theoretical spectrum consisting of b/y ions, 13C isotopes and 

neutral loss of water and ammonia and a ions.  A simple dot product between 

the peak lists counts the matching peaks.  Spectra with more matching peaks 

score better. Then, the top 500 scoring peptides are re-scored with a more 

complex scoring function, the X-corr.  Finally, the authors note that the 

difference between the best scoring peptide and the runner up, denoted the 
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“delta score”, is a valuable metric  as false annotations often have multiple 

peptides which score equally well.  This realization proved to be the basis for 

subsequent post-processing validation algorithms. 

Later algorithms, including Mascot and X!Tandem were also released.  

Mascot uses a probabilistic scoring function, although the details are not 

publically available [Perkins 1999].  X!Tandem’s major innovation was twofold: 

first, it was released free for public use, secondly, it had a more advanced 

database filter than either Mascot or SEQUEST which made is faster, although 

less sensitive [Craig 2004]. 

In the Bafna lab, Stephen Tanner created Inspect, a database search 

engine with several improvements over the then available tools [Tanner 2005]. 

First, Inspect was created with a highly efficient database filter, which makes it 

orders of magnitude faster than SEQUEST or X!Tandem.  The filtering 

strategy comes from sequence tags within the spectrum.  Consecutive peaks 

of the b/y ladder can be interpreted to annotate consecutive amino acids in the 

peptide. The concept of sequence tags was presented in 1994, and is 

commonly used to judge the quality of a spectrum annotation during manual 

validation [Mann 1994].  By filtering peptides except those with a tag match, 

only ~5 peptides per megabase of database are scored, as opposed to tens of 

thousands with a parent mass filter.  Sensitivity losses for this are typically 

minimal, and acceptable given the dramatic speed improvement.  The second 

major advance of Inspect was the Bayesian network based scoring function.  
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In brief, this uses information from other ions in the spectrum to evaluate the 

probability that a given ion assignment is correct.  This idea is discussed in full 

in Chapter 2, where the dissertation author presents his work adapting this 

framework for phosphorylated peptides. 

Methods for results validation evolved separately from annotation 

algorithms.  Initially researches used an ad hoc validation process and 

rigorous probability values were not often enforced.  Commonly researches 

trusted all results with a given final score and perhaps manually validated a 

subset of the results.  This was facilitated by the publication of score cutoffs 

which the software authors thought were sufficient for a “significant” 

assignment, e.g. Mascot originally reported “a significant match is typically a 

score of the order of 70” [Perkins 1999].  However, as the number of spectra 

per experiment grew, it became increasingly important to quantify the 

likelihood of an annotation being correct.  

Work by Keller and colleagues explored how to assign a probability 

value to each spectrum assignment [Keller 2002].  A crucial piece of 

information in the calculation of a p-value is to determine the probability that a 

false hit receives a given score.  To this end, they generated spectra from a 

set of 18 purified proteins.  These spectra were searched with SEQUEST 

against a special database: the 18 true sequences and the fly proteome, 

which consisted of over 10,000 decoy sequences.   With a database of over 

99% decoy sequences, the likelihood of a false-positive match to a target 



8 

  

sequence is unlikely. To a first approximation, any annotation to a fly 

sequence was false, and any annotation to their 18 was correct.  They created 

a new multi-feature score, which contained the X-corr score and the delta 

score, and plotted the distribution of scores for the true and false annotations.  

Then, for any given score, they could empirically determine the probability that 

the annotation was false.   

Most MS/MS experiments do not contain such a highly purified and 

known set of true positive proteins.  Thus, to be applicable, this method had to 

be generalized.  They showed that the scores of any search could be modeled 

as a mixture of distributions. A gamma distribution was chosen to model the 

false annotations, with its tail protruding to the right and slightly overlapping 

with the true distribution, which was modeled with a normal distribution. Many 

labs now have advanced this idea and run all their samples against a target-

decoy database, and directly measure the false-positives at a given score. 

   

1.2 Post-translational Modifications 

Proteins are frequently modified to initiate or regulate their function.  

These modifications can be sequence processing, such as cleavage to 

activate neural signaling peptides, or in terms of chemical additions to amino 

acid sequences like the addition of a methyl group to a lysine.  Most commonly 

the later is referred to as a post-translational modification (PTM), although this 

may technically apply to both cases.  For this dissertation, the term post-
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translational modification refers to a chemical, covalent modification on an 

amino acid. It has long been known that a vast diversity of modifications 

decorate protein sequences [Uy 1977].  Uy and Wold cataloged 140 amino 

acids and amino acid derivatives (PTM) present in proteins.   Recent work by 

the Zubarev group has shown that, in MS/MS samples, there is nearly one 

modification per amino acid [Nielsen 2006].  Here I highlight just two well-

studied examples of modifications that change protein function: the histone 

code and phosphorylation mediated NF-KB activiation. 

Four histone proteins make up the core components of chromatin fibers 

that organize DNA within the nucleus.  The packing state of chromatin has a 

great influence on the ability of transcription factors to find their DNA targets 

and mediate gene transcription.  Condensed chromatin, or heterochromatin, is 

tightly associated and affords little access to DNA.  Hence, genes in these 

regions are generally less active transcriptionally.  Decondensed chromatin, or 

euchromatin, allows for greater access to the DNA and generally correlates 

with increased gene transcription.  Post-translational modifications on the 

histone proteins (methylation, acetylation, phosphorylation, and ubiquitylation) 

are thought to be one of the factors that influence and regulate the state of 

chromatin. Some modifications, e.g. methylation of H3 lysine residue number 

9, have been shown to affect the state of chromatin.  This modification leads to 

dimerization of H3 with heterochromatin protein HP1 and stabilizes higher 

order heterochromatin [Cosgrove 2005]. The Histone Code is a generalization 
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of this phenomena, and states that post-translation modification of the histone 

proteins regulates the chromatin state, and thus leads to changes in gene 

expression.   

Protien phosphorylation is the most widely studied and most widely 

utilized PTM for signal transduction [Ubersax 2007].  Phosphorylation is a 

reversible addition of PO4 to (most commonly) serine, threonine, or tyrosine.  

Protein phosphorylation is an ideal means of signaling, because the cell does 

not need to transcribe or translate any new proteins.  The constituent 

members of the signal are already present, and only need to be activated, or 

relay the signal.  In NF-KB signaling, a transcription factor (NF-KB) is held 

inactive outside the nucleus by its primary inhibitor iKB.  Extracellular signals 

activate iKB kinase, which phosphorylates the inhibitor iKB leading to its 

degradation.  Once the inhibitor is degraded, NF-KB is free to enter the 

nucleus and promote gene transcription.  Thus phosphorylation of iKB serves 

as a signal for its own degradation, and also a switch for the general control 

mechanism of the response pathway. 

Detecting post-translational modifications is an especially attractive 

application for tandem mass spectrometry, as the chemical addition changes 

the mass of the peptide. Early work by Carr and colleagues used mass 

spectrometry to identify n-Tetradecanoyl as a post-translational modification 

on the n-terminus of cAMP-dependent protein kinase [Carr 1982]. In particular, 

the identification of n-terminal modifications was especially exciting because 
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modifications to the n-terminus caused complications with Edman sequencing, 

the standard protein sequencing technique at the time.  Indeed, protein mass 

spectrometry is the only technique capable of identifying PTMs at a proteomic 

scale. 

Some modifications, like methylation, are tightly bound to the peptide 

and do not alter the fragmentation.  Thus identifying peptides with these 

modifications is straightforward.  Database search algorithms accept as input 

a list of potential modification masses and their respective amino acid. 

Programs then alter their amino acid dictionary to include the new masses 

(e.g. 142 for methylated lysine).  However, some modifications like 

phosphorylation are weakly bound to the peptide and alter the fragmentation 

characteristics [DeGnore 1998].  The phosphate bond is so weak that collision 

inside the mass spectrometer frequently breaks only the phosphate bond, and 

nothing else.  This leaves the peptide intact and depletes the spectrum of 

sequence informative backbone breaks.  Unfortunately, the changes to the 

spectrum are so dramatic that standard search algorithms perform poorly.  To 

overcome this, many researchers resort to manual validation of large datasets 

searching for phosphorylated peptides. In Chapter 2, work from the 

dissertation author presents the computational formalism for solving this 

problem.  By learning the characteristic fragmentation of phosphorylated 

peptides, weaker spectra can be accurately annotated.   
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1.3 Proteogenomics 

The identification of a complete protein-coding catalog is a fundamental 

goal of genome projects.  As ab initio gene prediction algorithms remain 

inaccurate, additional evidences are often incorporated into genome 

annotation pipelines, most commonly cDNA and EST libraries [Brent 2008].  

Although extremely beneficial, cDNA and EST libraries have both a theoretical 

and practical drawback.  First, ESTs and cDNAs are evidence of transcription 

and could represent non protein-coding sequence.  Work by Clamp and 

colleagues reject 20% of the human protein-coding genes as chance RNA 

transcripts [Clamp 2007]. More practically, transcript evidence is often 

erroneous.  In the latest Arabidopsis genome release, curators rejected 25% 

of the proposed gene model updates due to poor-quality sequences, 

ambiguous orientation, misalignment and other problems [Swarbreck 2008].  

An alternate technique to improve genome annotation is comparative 

genomics.  Originally used in an ad hoc manner to find known genes, several 

genomes have now been systematically aligned to genomes of closely related 

organisms [Kellis 2003, Lin 2007, Clamp 2007].  The alignment reveals 

regions of genome conservation which are then analyzed for functional 

signatures which can distinguish between protein-coding and non-coding 

elements.  This approach is both labor and cost intensive, in that it requires 

the completion of additional genome projects before the target genome 

benefits.  
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Large scale tandem mass spectrometry experiments can identify tens 

of thousands of peptides from thousands of proteins.  In addition to the original 

biological context, the observed peptide sequences are direct evidence of 

gene expression and translation.  Peptide sequences can be mapped back to 

the genome to validate current gene models and also discover novel protein 

sequences [Tanner 2007, Savidor 2006, Brunner 2007]. Proteomics-based 

genome annotation, or proteogenomics, obviates several problems inherent in 

transcript-based protein prediction.  Specifically, proteogenomics can 

determine reading frame, translational start and stop sites, alternative splicing, 

and the validity of short ORFs. By complementing current annotation pipelines 

with proteogenomics, a more complete and accurate protein coding catalog 

can be achieved.  

One of the fundamental drawbacks of proteogenomics is the inherent 

sampling limitations of a mass spectrometer [Stasky 2004].  Unlike nucleotide 

based assays which work on hybridization, MS/MS data is collected in sync 

with chromatography.  Thus, when more peptides elute from the column than 

can be sampled by the machine - which frequently happens in complex 

samples - not every peptide can be observed.   Observed peptides are also 

limited by ionizability, mass range of the instrument and the length of the 

peptide after proteolysis.  Although this may change with newer technology, 

the efficiency of a single experiment to capture the diversity of the protein 

sample is currently not as complete as microarrays. 
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In Chapter 3, we demonstrate the benefit of proteogenomics in both 

validating and discovering protein-coding genes of Arabidopsis thaliana.  We 

extend previous proteogenomic research in two ways.  First, we utilize 

alternative fractionation techniques to extend coverage of the proteome, 

specifically low-abundance proteins.  Second, we explicitly and thoroughly 

search the genome for novel protein coding sequences.  We search 21 million 

tandem mass spectra against the TAIR7 proteome and find 126,055 unique 

peptides from 12,702 proteins. Additionally we identify 18,024 peptides which 

are not in the current annotation.  These represent almost 900 new genes, and 

corrections and additions to another nearly 700 current genes. 

 

1.4 Open Problems 

As the proteomics community continues to grow and adventure into 

new applications, I believe that computational modeling will play an 

increasingly important role in research.  Some may claim that technological 

advances (such as the zero mass error instruments discussed at ASMS 2008) 

will make computational tools obsolete.  However, I argue that instrumentation 

and experimental improvements will allow or often require new computational 

tools. I cite an example from the history of MS/MS instrumentation.  Hyper 

accurate instrumentation is a “new movement” in tandem mass spectrometry 

easing many computational burdens.  However, in the 1960s, Klaus Biemann 

was reporting 0.003 mass unit deviations [Biemann 1966], the equivalent of 
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the new Orbitrap.  So what have we gained in the last 40 years? Speed.  The 

LTQ instrument records orders of magnitude more data than its predecessors.  

The sacrifice for this technological advancement was accuracy.  So as 

instrumentation changed, it opened new doors for computational research.  

Large data sets were the driving force for efficient algorithms like Inspect.  

Also, less instrument accuracy drove the need for computational error 

correction, like parent mass correction.  Now with the Orbitrap, label free 

quantitation is possible, but requires rigorous statistical and computational 

modeling.  Thus, I believe that future advances will create, not obviate, 

computational proteomics research. Among a myriad of possible topics, I 

discuss here on two potential research topics: the reapplication of an old 

computational tool – the self-convolution, and the integration of systems 

biology into proteomics. 

As instrumentation becomes more accurate, the need for parent mass 

correction may become obsolete.  The underlying algorithm, however, may 

take on a new application. Spectrum self-convolution serves to find the 

regularly occurring ion pairs with a spectrum.  This is accomplished by 

multiplying the intensity of a peak and its cognate (parent mass – peak mass). 

Its original intent was to find the parent mass value (parent mass +/- epsilon) 

which maximized such pairs.  However, now that parent mass is not an issue 

the utility changes.  Using this to judge the number of b/y matching pairs, 

Alexey Nesvizhskii used this algorithm to filter spectra which are unlikely to be 
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true peptide spectra.  I however, wish to explore another application, that of 

discovering novel fragmentation. 

As shown in chapter 2, the definition of peak pair can be expanded 

beyond the simple b/y ladder. By including a numeric offset, we can also find 

pairs with a neutral loss, e.g. b-water and y. In the context of phosphopeptides 

this idea is necessary for proper parent mass correction, as the spectra have 

weak b/y ladders and cannot be corrected without the inclusion of the neutral 

loss offsets. In collaboration with Pieter Dorrenstein at UCSD, we are now 

attempting to do the same for phosphopantetheinyalted peptides.  They too 

undergo a frequent neutral loss that removes intensity from the b/y ladder.  

Using the spectrum self-convolution on accurate parent mass spectra, we can 

discover regular neutral loss products in unannotated spectra.  We hope this 

work will make significant headway into one of MS/MS’s most intriguing 

questions, “what are the other 80% of spectra?” 

Another area of interest for me is the mix of proteomics and systems 

biology.  As datasets continue to increase in size, the proteomics community 

has sometimes devolved into an arms race.  Who can make the most spectra? 

Who can find the most phosphorylation events? As an active participant in 

some races, I cannot be too critical. Such preliminary studies are essential, but 

limited in application.  In the end, discovery and not description is the goal. 

Phosphoproteomics, for example, is in need of computation tools to 

advance their questions. For phosphorproteomics research, finding the site of 
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modification is really only the beginning.  This single site is not a pathway.  We 

must determine the responsible kinase, and most importantly the intent of 

modification.  The MAP kinase cascade is a classic example of 

phosphorylation-mediated cell signaling. Here, multiple kinases phosphorylate 

each other to relay the signal down to its final effectors.  A MAP kinase kinase 

kinase (or Map3K) is activated by some extra cellular stimuli and starts the 

relay by phosphorylating a MAP kinase kinase, Map2K.  This protein in turn 

phosphorylates a MAP kinase, which then relays the signal downstream again 

through phosphorylation.  Absent context, a large phosphoproteomics survey 

would only note three proteins with phosphorylation sites, but miss the 

coordination and structure of the signaling cascade. 

Systems biology works to integrate information at a systems level into 

interaction maps and pathways.  This type of infrastructure is what is needed 

for MS/MS applications to uncover biological impact.  Currently this is 

sometimes done in an ad hoc manner, and sometimes it is left undone.  In the 

future, mapping to known pathways will also lose impact, as the purpose is to 

gain new insight. 
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Chapter 2:  Phosphorylation-specific MS/MS scoring. 

 

The promise of mass spectrometry as a tool for probing signal-

transduction is predicated on reliable identification of post-translational 

modifications. Phosphorylations are key mediators of cellular signaling, yet are 

hard to detect, partly because of unusual fragmentation patterns of phospho-

peptides. In addition to being accurate, MS/MS identification software must be 

robust and efficient to deal with increasingly large spectral data-sets. Here we 

present a new scoring function for the Inspect software for phosphorylated 

peptide tandem mass spectra for ion-trap instruments, without the need for 

manual validation. The scoring function was modeled by learning 

fragmentation patterns from 7677 validated phospho-peptide spectra. We 

compare our algorithm against SEQUEST and X!Tandem on testing and 

training datasets. At a 1% false positive rate, Inspect identified the greatest 

total number of phosphorylated spectra, 13% more than SEQUEST and 39% 

more than X!Tandem. Spectra identified by Inspect tended to score better in 

several spectral quality measures. Furthermore, Inspect runs much faster than 

either SEQUEST or X!Tandem, making desktop phosphoproteomics feasible. 

Finally, we used our new models to reanalyze a corpus of 423,000 LTQ 

spectra acquired for a phospho-proteome analysis of S. cerevisiae DNA 

damage and repair pathways and discover 43% more phospho-peptides than 

the previous study. 
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2.1: Introduction 

Finding sites of protein modification has been of great interest in 

proteomics [Jensen 2006]. Protein phosphorylation, which regulates many 

cellular processes [Hunter 2000], has been a prime target of research. To 

enable the large-scale discovery of protein phosphorylation sites, a variety of 

experimental techniques have been developed for phospho-peptide 

enrichment [Zhou 2001, Andersson 1986, Pinske 2004]. As a result, tandem 

mass spectrometry has been widely used to annotate the phosphoproteome of 

both whole cells [Macek 2007, Chi 2007, Olsen 2006, Villén 2007, Molina 

2007, Chitteti 2007, Shu 2004], and sub-cellular fractions [Nousiainen 2006, 

Trinidad 2006, Lee 2007]. As the protocols for isolating phospho-peptides 

improve, the bottleneck for phospho-peptide identification has shifted to data 

interpretation of the MS/MS spectra. Most search algorithms are not optimized 

specifically for phospho-peptide spectra which could have very different 

characteristics.  

Phospho-peptide fragmentation under collision induced disassociation 

(CID) is perceptibly different from unmodified peptides. Cleavage is highly 

biased to the phosphoester bond [DeGnore 1998]. Phosphate loss from the 

precursor typically dominates the MS/MS spectrum, averaging 20-30% of the 

total ion current. Moreover, b/y ions also frequently lose the phosphate, further 

weakening the signal of the b/y ladder, complicating peptide identification. 

Highlighting the difficulty of accurate phospho-peptide identification are studies 
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which set a weak score cutoff followed by either exhaustive manual validation 

[Nousiainen 2006, Lee 2007], or substantial post-processing techniques to 

obtain a low false-discovery rate [Macek 2007, Villén 2007]. Such attempts to 

recover misscored false-negatives require subjective intervention to ensure 

quality identifications. Although manual validation is invaluable for gaining an 

overall confidence in the results, its application to phospho-proteome scale 

searches (tens of thousands of spectra) is neither realistic nor prudent 

[Beausoleil 2006].  

Current algorithmic improvements for phospho-peptide identification 

focus on post-processing instead of the original scoring function. Lu et al. 

developed criteria for automated validation which judges annotations based on 

characteristics of phospho-peptide spectra [Lu 2007]. Due to the potential 

ambiguity in the placement of the phosphate group within the peptide, 

Beausoleil and colleagues have developed a confidence metric for phosphate 

localization [Beausoleil 2006]. While validation and localization are important, 

they help primarily in reducing false-positives, but not false-negatives. To 

overcome poor scoring of false-negatives, a scoring function must be trained 

to discriminate annotations based on the unique fragmentation probabilities of 

phospho-peptide spectra. Moreover, the development of an improved scoring 

function does not preclude application of post-processing techniques.  

Our strategy for scoring phospho-peptides is based on well-established 

principles, specifically, that fragmentation of the peptide backbone is not 
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uniform [Loo 1993, Hunt 1986, Havilio 2003, Breci 2003]; all ion types are not 

equally likely to appear in the spectrum with uniform intensity. Classic 

examples include proline directed fragmentation and the isotopic envelope: 

fragmentation N-terminal to a proline produces more intense b/y ions than 

fragmentation C-terminal to the proline; isotopic peaks (e.g., y+1) rarely occur 

without the monoisotopic peak. More generally, the expected intensity of an 

ion can change based on flanking residue, related peak presence or other 

factors. If we consider annotations in context, we obtain a more discerning 

scoring function. The main contribution of our paper is an automated system 

that learns the fragmentation propensities and peak dependencies of 

phospho-peptides using a large training corpus of annotated spectra. We use 

this knowledge to devise a Bayesian network [Jensen 2001] based scoring 

function for the Inspect software [Tanner 2005].  

Our new algorithm outperforms current algorithms (SEQUEST, 

COMET, X!Tandem) in both speed and accuracy on large training and testing 

datasets of spectra acquired on ion-trap instruments. On a small test set of 

6410 spectra, at a fixed false-discovery rate for each program (1%), Inspect 

had the highest true-positive rate, annotating 13% more spectra than 

SEQUEST and 39% more than X!Tandem. Additionally, when we reanalyze a 

previously published dataset of 423,000 spectra, we recover 43% more 

phospho-peptides than the original work [Smolka 2007]. A better recovery of 

phospho-peptides from the spectra provides a more complete view of the 
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phospho-proteome, enabling researchers to better understand the dynamic 

signaling processes of the cell. Furthermore, the run time was one or two 

orders of magnitude faster than current algorithms, making desktop phospho-

proteome analysis possible. The new models have been incorporated into the 

Inspect software package, which is freely available for download from our 

webserver, http://peptide.ucsd.edu/. In addition to the strong performance of 

the new models, we discuss the distinct characteristics of phospho-peptide 

fragmentation probabilities and the use of Bayesian networks for probabilistic 

scoring, both of which are of independent interest. 

 

2.2 Materials and Methods 

 Overview: MS/MS peptide identification programs typically have four 

major stages: spectral-preprocessing, database filtering (searching), scoring 

and validation [Eng 1994]. Each stage functions as a distinct module within 

Inspect. Ion-trap instruments, like the LTQ, are the workhorse instrument of 

proteomics. However, the accuracy of these instruments necessitates the 

preprocessing steps of parent mass correction and charge state 

determination. The experimental parent mass is often off by 2-3 Da. Moreover, 

the charge state of an LTQ spectrum is ambiguous because the isotopic 

envelope of the precursor cannot be established. High accuracy instruments 

such as a QTOF or Orbitrap may not require these corrections.  
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 After parent mass and charge state are determined, the spectrum is 

searched against a protein database to produce a list of candidate 

annotations. Database filtering is used to rapidly eliminate many of the 

peptides from the database without explicitly scoring them. Parent-mass 

based filters are common but not as effective when dealing with post-

translational modifications. Inspect uses a tag-based search for filtering by 

performing a partial de novo interpretation during pre-processing [Tanner 

2005]. Tag-based filtering is orders of magnitude more efficient than other 

filters, but requires accurate tagging.  

 The filtered peptides are rank-ordered based on scoring against the 

spectrum. This score represents how well the annotation agrees with the 

spectrum’s peak list. The best candidate peptide should get the highest score, 

followed by the next best candidate, and so on. Even with an accurate scoring 

function, the top-scoring peptide might still not be the correct one. It could be, 

for example, that the correct peptide is not in the database, or that there isn’t 

enough information in the spectrum to distinguish between the top two 

peptides. A final validation step is used to determine the probability that the 

top scoring peptide is the correct one. In this work we focus on the 

preprocessing and scoring steps in the context of phosphorylated peptides. 

The filtering and validation steps remain unchanged. The new models are 

incorporated into the Inspect software version 2007.07.12 and later. 
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 Parent Mass Correction: Correcting the observed parent mass is a 

crucial preprocessing step for any de novo MS/MS program [Dancík 1999]. 

Inspect’s tag generation utilizes a partial de novo interpretation of the 

spectrum, and is therefore sensitive to erroneous parent mass values. Peptide 

fragmentation creates matching b/y ion pairs, whose mass sums to the parent 

mass of the precursor ion. Thus given a spectrum, we can determine the 

parent mass by finding matching b/y ion pairs. Our parent mass correction 

routine is based on spectrum self-convolution introduced by Dancík et al. 

[Dancík 1999]. Define M as the measured mass of the charge 1 precursor ion; 

Pi as the m/z of the ith peak in a spectrum; I(v) is the intensity of the peak at 

mass value v (binned to 0.3 Da). Dancík corrected the parent mass of a 

spectrum within the range [M − ε, M + ε] as  

 

 

 

The intuition here is that at the correct parent mass, M*, we will see a large 

number of high intensity cognate pairs corresponding to the b/y ladder [Dancík 

1999, Venable 2006].  

 We extend this algorithm in two ways, exploiting the neutral losses from 

phospho-peptides.  Here it is necessary to define the two types of phosphate 

neutral losses from peptides. The loss of phosphate from a b or y ion is called 
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a fragment neutral loss. The second ion type is neutral loss from the precursor 

ion, or M − p. These two distinct ion types are used in different ways in the 

models. 

 Our first extension to the Dancík algorithm is the inclusion of a mass 

offset into the convolution. In addition to the cognate pair at (Pi, M* − Pi), we 

also expect to see a pair at (Pi, M* − Pi + 1), corresponding to matching a +1 

isotope, e.g. b/y+1 or b+1/y. Similarly we would expect to see cognate pairs 

from neutral losses. We modify the original convolution equation to take as 

input an arbitrary offset, O: 

 

Using the training data as input, we plot �m,O for all values of O between -101 

and +4 (  

Figure 2.1). The highest �m,O values represent offsets for which intense pairs 

(Pi, M* − Pi + O) were found. For example, when no offset is applied ( 

Figure 2.1, x=0), equation 2 sums the intensity of all b/y peak pairs in the 

training set. The strong peaks at -18 and -17 (water and ammonia loss) and 

+1 (isotopic peak) all correspond to known biological events. A strong peak 

was observed at -98, phosphate loss. Unfortunately, this feature did not add 

discriminatory power to the parent mass correction model; see Results for a 

possible explanation. Based on these observations, we define a feature vector 
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 = [f(m,0) f(m,1) f(m,−17) f(m,−18)]. At the correct parent mass, we expect 

to see strong values in .  

 Our second extension of the Dancík algorithm is the explicit use of the 

precursor neutral loss. For phosphopeptides, we expect to see an intense 

neutral loss from the precursor, M−p. We model this by the intensity and skew 

of the peak from the expected position, m/z − 98/z. The most intense peak at 

this location (±0.5 Da) is assigned the M −p identity. Its intensity, Ip, and skew 

from expected location, Sp, are added to the feature set. We use the feature 

set  as input to a Linear Discriminant Analysis model for 

distinguishing the correct mass from a range. Formally,  

 

 

 

The model was trained to find the optimal linear combination of features by 

comparing correct and incorrect parent mass values for spectra in the training 

set. We show in Results that this model vastly outperforms models for 

unmodified spectra. For charge state correction, we closely follow the features 

and methods of Klammer et al., [Klammer 2005], but include the M − p peak 

intensity as an additional feature. 

 Scoring: Inspect’s scoring function is comprised of six features: percent 

of total ion current explained by the annotation, fraction of b ions observed, 

fraction of y ions observed, length of the peptide, number of enzymatically 
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digested endpoints, and the cut-score (described below). Values for each of 

these features are used as input into a Support Vector Machine [Noble 2006], 

which returns the final score of Inspect, the MQScore. A new set of 

fragmentation probabilities impacts only the cut score, as explained below. 

 Note that a peptide (with parent residue mass PM) can be described by 

a set of cuts, or prefix residue masses P1 < P2 < · · · < PM. Note that if a 

certain cut Pj is indeed a true cut for the spectrum, we will see many peaks 

corresponding to the fragment ions that support this cut (b, y, b-H2O. . . ) .  

Figure 2.2 illustrates this for the peptide RGSphosDVEDASNAK. CID 

fragmentation between the 7th and 8th residue (cut P7) predominantly 

produces b7 and y5. However, we also see other related ions. Following Frank 

and Pevzner [Frank 2005], let  denote the probability of detecting a 

set of ions, , given that Pj is a valid cut of the spectrum S. From  

Figure 2.2, Pj is P7;  is [b7, b7 + 1, b7-H3PO4, y5, y5 + 1, y5-NH3, and y5-

H2O]. As the null hypothesis, let denote the probability of observing  

 by chance. The cut-score of a peptide is given by where, 

 

 

 

 The critical part of this is the determination of  

given that the occurrence of fragment ions are not independent. It is usually 
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not possible to estimate all dependencies due to lack of sufficient training 

samples. We approximate this with a Bayesian network [Jensen 2001] 

described by a directed acyclic graph on the ion-types with limited outgoing 

edges (dependencies) for each ion-type. Let  denote the set of ions that  

depends upon. Then, 

 

 

 

The set of dependencies  is not well-understood for phospho-peptides. 

Therefore, we computed a minimum entropy architecture based on observed 

fragmentation in our training data-set.  

 To get robust estimates of conditional probabilities, each possible 

combination of values should have a potentially large number of observed 

instances. To prevent the network from being too large and to ensure that the 

calculated statistics are well-formed, we only include as nodes the ion types 

which are regularly observed in phospho-peptide CID fragmentation. We 

required an observed frequency of 1 instance per spectrum. Observed 

frequency was calculated by making an offset frequency histogram [Dancík 

1999] of all spectra in the training set, Figure 2.3. Also, we generalize this 

framework slightly. Nodes in the network include ion type and also associated 

meta data. The ion-types are listed in Table 2.1. A variety of meta data was 

investigated. Only those with a high information content were kept: amino acid 
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flanking the break, spectrum region (divide m/z range into 5 equally sized 

bins), and whether the phosphate group is on this fragment of the peptide 

(ContainPhos). 

 To estimate , we tabulated the values for these nodes 

for each cut of each spectrum in the training set. From this large table we 

calculated both entropy (Shannon information entropy) and conditional 

entropy. Bayesian networks require a topological ordering for the directed 

acyclic graph. As many network reconstructions are possible, to algorithmically 

compute the optimal ordering would require a much larger training data set. 

Therefore, we use an ordering based on ion prevelance, or the fraction of 

possible ions (for a given ion type) observed in the training data. When 

including the non-ion type nodes, our final order was: spectrum region, 

flanking amino acid, ContainPhos, and the ion list as ordered above, Table 

2.1. Let Pred(X) denote the set of nodes that precede node X in the node 

order. To construct the network, we choose at most 2 parent nodes (i.e. ) 

for each node (i.e. ). Thus, 

 

 

  

 An example probability table is shown in Table 2.2. Peak binning into 

strong, medium, weak, and absent are based off the median peak intensity, 
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and is a learned parameter. The set of I_(j) comprises the Bayesian network 

as shown in  

Figure 2.4. After the network structure is finalized, conditional probability tables 

representing the ion profiles are stored and this becomes our Bayesian model. 

 Generating the Training Set: 62,000 LTQ MS/MS spectra were 

generated from S. cerevisiae and an additional 109,000 LTQ MS/MS spectra 

were generated from S. pombe. These spectra came from whole cell lysates, 

purified by IMAC as described in Sample Preparation. To obtain a corpus of 

highly confident phosphorylated spectra, we relied on the overlap in 

annotation from four independent programs: Inspect [Tanner 2005], 

SEQUEST [Eng 1994], COMET [Keller 2005], and X!Tandem [Craig 2004]. 

SEQUEST was run on a SageN Sorcerer system; other programs were 

downloaded and installed on a local linux cluster. Each program searched the 

dataset allowing up to two phosphorylations on serine, threonine, or tyrosine 

as a variable modification; parent mass tolerance of 3 Da, fragment mass 

tolerance of 0.5 Da. SEQUEST, COMET, and X!Tandem set a semi-tryptic 

cleavage specificity with 2 missed cleavages; Inspect has no such parameter 

due to the tag, not parent mass, filter. The database for S. cerevisiae was 

downloaded from http://www.yeastgenome.org on January 12, 2007; the 

database for S. pombe was downloaded from 

http://pombe.nci.nih.gov/genome on July 28, 2006. Each database was 

concatenated with decoy protein sequences. To create the decoy database, 
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we shuffled each protein record once. Results of Inspect and X!Tandem were 

ranked based on the provided p-values. SEQUEST results were processed 

with the trans proteomic pipeline, and the Peptide Prophet p-value was used 

for ranking. COMET results were ranked by using both the ∆N and Z-score. 

Each program’s results were filtered to 2% false-discovery rate, as measured 

by hits to decoy sequences [Elias 2005]. We compiled the training set from 

these filtered results by requiring that a spectrum be identified by at least three 

of the four programs. We observed that the overlap between any two 

programs was typically 70%. The final set consisted of 7677 spectra (5218 

charge 2 and 2459 charge 3). The total number of distinct peptides was 2293 

charge 2 and 1087 charge 3. This training set was used for all model building. 

There are two test sets. The first is 6410 LTQ MS/MS spectra from S. 

cerevisiae whole cell lysate enriched for phospho-peptides by IMAC. Time 

trials for this test set were performed on a single processor of the linux cluster 

(including a local installation of SEQUEST). The second is 423,000 LTQ 

MS/MS spectra from S. cerevisiae as described [Smolka 2007]. All datasets 

are available from the authors on request. 

 Sample Preparation: Cell growth. For Saccharomyces cerevisiae, fifty 

milliliters of budding yeast cells (BY4741) were grown in YPD medium to an 

OD600 of 0.5 and cells were treated with 0.05% MMS for 3 hours. For 

Schizosaccharomyces pombe, fifty milliliters of fission yeast cells (FY259) 
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were grown in YES medium to an OD600 of 0.5 and cells were treated with 

0.01% MMS for 3 hours.  

 Protein extraction and trypsin digestion. Cells were broken in an ice-

cooled bead-beater with 2 ml lysis buffer containing 50 mM Tris-HCl, pH 8.0, 

150 mM NaCl, 0.2% NP40, 0.5 mM DTT, 5 mM NaF, 10 mM β-

glycerolphosphate, 1mM sodium vanadate, 5mM EDTA, 1mM PMSF, 0.2mM 

Benzamidine, 1 µM Leupeptin,1.5 µM Pepstatin. Cell debris was removed by 

centrifugation at 30,000xG for 30 minutes. Approximately 10 mg of proteins 

were then denatured by boiling in the presence of 2% SDS and 10 mM DTT 

for 5 minutes. Proteins were alkylated with 50 mM iodoacetamide, precipitated 

with 3 volumes of cold ethanol:acetone (1:1, v/v) and then resuspended with 

buffer containing 2 M urea and 50 mM Tris-HCl, pH 8.0. Twenty micrograms of 

trypsin (Worthington, Lakewood, NJ) was added for overnight digestion, and 

then the tryptic peptides were desalted using a 200-milligram C18 column 

(Waters).  

 Phosphopeptide purification and mass spectrometry. Desalted 

peptides were dried in speed-vac, resuspended in 150 µL of 1 % acetic acid 

and loaded to a gel loading tip column containing 25 µL of immobilized metal 

affinity column (IMAC) resin. IMAC resin was prepared from silica Ni-NTA 

(Qiagen), where the nickel was substituted by iron as the bound metal. After 

loading of the peptides, the IMAC resin was washed twice with 25 µL of wash 

buffer containing 25 % acetonitrile, 100 mM NaCl and 0.1 % acetic acid. 
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Bound phosphopeptides were successively eluted by four different eluting 

solutions containing increasing concentrations of phosphoric acid (0.01%, 

0.05%, 0.1%, 1%) to yield four distinct eluted fractions. Each of the four 

elutions was performed with 100 µL of solution and processed independently. 

Each fraction was transferred to a silanized glass insert (National Scientific, 

Rockwood, TN), dried under reduced pressure, resuspended in 10 µL of 0.1 % 

TFA and subjected to mass spectrometry analysis. Mass spectrometry 

experiments were performed using the 1100 QuadPump HPLC system 

(Agilent, Santa Clara, CA), the Ultimate 3000 autosampler (Dionex, 

Sunnyvale, CA), and the LTQ tandem mass spectrometer (Thermo Fischer 

Scientific, San Jose, CA). Four microliters of each eluted fraction were loaded 

using the autosampler via a 5 µL sample loop directly to an in-house packed 

125 µm (inner diameter) x 20 cm microcapillary RP-HPLC column, packed 

with 3 µm C18 resin (Magic beads; Michrom Bioresources, Auburn, CA). For 

RP-HPLC-MS/MS analysis, Buffer I consisted of 0.1 % formic acid and 2 % 

acetonitrile. Buffer II consisted of 0.1 % formic acid and 80 % acetonitrile. A 

120 min gradient from 15 % to 35 % Buffer II was used. Xcalibur 2.2 software 

(Thermo Fischer Scientific, San Jose, CA) was used for the data acquisition, 

and mass spectrometer was set to perform one full MS scan followed by 6 

consecutive MS/MS scans according to the ion intensities detected in the full 

MS scan. The minimal threshold for the dependant scans was set to 6500 

counts, and a dynamic exclusion list was used with the following settings: 
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repeat count of 1, repeat duration of 2 seconds, exclusion list size of 150, 

exclusion duration of 60 seconds, and exclusion mass width of 0.2 % relative 

to the reference mass. Raw data files were converted to mzXML with ReAdW 

2006Nov01, http://tools.proteomecenter.org/ReAdW.php. 

 

  

2.3 Results and Discussion 

To generate the models we first obtained a highly confident training set 

of 7677 phospho-peptide spectra. These spectra were identified by at least 

three independent algorithms (see Methods).  

Correcting the observed parent mass is a crucial preprocessing step for 

any de novo MS/MS program [Dancík 1999]. Inspect uses a partial de novo for 

tag generation and database filtering, and is therefore sensitive to erroneous 

parent mass values. As explained in Methods, we create a new model that 

explicitly uses neutral loss of phosphate. The trained models produce a 

significant improvement over the uncorrected and generic models (Table 2.3). 

For charge 3 spectra, the observed parent mass is only accurate (within 0.5 

Da) 5% of the time. After parent mass correction, the accuracy is 90%. The 

new phosphorylation specific model has nearly twice as many spectra 

accurately predicted to 0.3 Da. We explored efficacy of using -98 as an offset 

for this model (Methods). However, the presence of amino acid masses close 

to 98 Da was confounding (i.e. 97 Da for proline and 99 Da for valine). Given 
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the inaccuracy of the instrument, an offset of -98 Da could be a fragment 

neutral loss, or merely the next peak in the b/y ladder (compare the broad 

peak surrounding -98 with the narrow peak at -18 in Figure 2.1). Thus, when -

98 was added to the feature set, the model gained no extra discriminatory 

power. 

The scoring function of Inspect uses six spectrum features as input into 

an Support Vector Machine [Noble 2006] to get the final MQScore. As 

described in Methods, we use a Bayesian network to model the probability that 

each assigned peak is correct. Phospho-peptide fragmentation characteristics 

lead to a Bayesian network that is significantly different from the one for 

unmodified peptides. For example, our model clearly shows that b ions are 

twice as likely to be accompanied by a phosphate neutral loss than y ions 

(Table 2.2). Indeed the probability of observing y-H3PO4 given a strong y ion 

is very similar to the probability of observing b-H3PO4 given an absent b ion. 

After training, the new Inspect program was run on the test dataset of 

6410 MS/MS spectra and filtered to a 1% false-discovery rate. These results 

were compared to the results of SEQUEST and X!Tandem (Figure 2.5). We 

first note that Inspect is orders of magnitude faster than SEQUEST and 

X!Tandem. Inspect ran in 30 minutes on a desktop PC (1.6 GHz, 2GB RAM). 

X!Tandem took 6 hours and SEQUEST took 36 hours. As for identifications, 

Inspect identified a total of 1089 phospho-peptide spectra. This is 13% more 

than SEQUEST and 39% more than X!Tandem at the same false-discovery 
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rate. Moreover, Inspect also had the strongest overlap with other confidently 

identified spectra. 

When looking at the overlap in Figure 2.5 we see 15-20% of any 

program’s annotations were unique. As it is possible that some of these could 

be false-positive identifications, we attempted to objectively compare the 

quality of these single program identifications. First, we plotted several 

features of phosphorylation spectra as discussed by Lu et al. [Lu 2007]. For 

each feature, we compare the unique annotations to the 501 consensus 

spectra (Figure 2.6). The most distinguishing feature of a phospho-peptide is 

the fragment neutral loss, e.g. b-H3PO4 [Lu 2007]. As a labile modification, 

the phosphate is frequently lost during CID, thus a true phospho-peptide 

spectra will contain many fragment neutral loss peaks. Figure 2.6a plots a 

histogram of the fragment neutral loss count per spectrum. Each line in the 

graph represent the distribution of fragment neutral losses in the identified 

spectra. The blue line is the distribution of the 501 consensus spectra; green is 

for the 203 spectra uniquely identified by Inspect; red is for the 116 spectra 

uniquely identified by SEQUEST; and grey is for the 92 spectra uniquely 

identified by X!Tandem. Here Inspect is the most similar to the consensus 

spectra, averaging more fragment neutral loss peaks per spectrum than 

SEQUEST or X!Tandem. A second highly characteristic feature of phospho-

peptides is the intense M − p peak [Lu 2007]. This peak is typically the base 

peak of the spectrum and contains 20-30% of the total ion current. Figure 2.6b 
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plots the intensity of this peak compared to be base peak of the spectrum. 

Here both Inspect and SEQUEST are very similar to the consensus spectra, 

each having a high percentage of spectra where the base peak is the M−p 

peak. Next we look at a common spectral quality metric, the fraction of b and y 

ions observed (Figure 2.6c, d). Again, Inspect more closely resembles the 

distribution of the consensus spectra, having on average a higher percentage 

of b/y ions observed. Another common quality assurance check, the intensity 

of proline directed fragmentation, shows no difference between the program’s 

annotations, Figure 2.7.  

A close look of the false-negatives of Inspect (the 74 spectra identified 

by SEQUEST and X!Tandem but not Inspect) shows the current deficiencies 

of the program. A total of 53 spectra were missed due to tagging errors. Of 

these, 39 are charge 3 spectra which are notoriously harder to tag. However, 

even though Inspect mis-tagged these spectra, it still identified nearly 20% 

more charge 3 spectra than SEQUEST (Table 2.4), a true-positive gain more 

than covering the false-negative loss. In ongoing research, we plan to improve 

the tagging accuracy of higher charge peptides. Among the remaining false-

negatives, 10 represent spectra that Inspect identified but at a less significant 

p-value than 0.01. Another 9 of the false-negatives are charge determination 

errors; remaining spectra score poorly in the phosphorylation specific scoring 

function. When considering the 1165 spectra that Inspect identifies in total, 

losses for tagging (< 5%) and charge correction (< 1%) are minimal. Moreover, 
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the number of false-negatives for Inspect is smaller than either SEQUEST or 

X!Tandem. It is worth reiterating that as mass-spectrometers become more 

accurate, charge detection, and tag identifications will improve dramatically. 

This potentially enables longer tags, further improving the speed of search.  

After training and testing our models, we compared their performance 

against some of our previous work. A subset of the authors recently published 

a phospho-proteome analysis of DNA damage and repair pathways in S. 

cerevisiae [Smolka 2007]. This study identified 2457 non-redundant phospho-

peptides found in both wild-type and kinase-null cells, using the COMET 

software. The dataset of 423,000 LTQ MS/MS spectra ran for ~40 days on a 

22 processor Linux cluster, a total of ~ 21, 000 CPU hours. We re-ran these 

spectra with Inspect and annotated 41,077 spectra (8118 distinct peptides) at 

a false-discovery rate of 1%. When we restricted the results to peptides found 

in both wild-type and kinase-null samples we found 3518 non-redundant 

phospho-peptides, an increase of 43% from the original results. Additionally, 

the speed of Inspect was evident, running in less than 3 days on a single-

processor desktop PC (66 CPU hours). A grid compiled version of Inspect 

finished the computation in 2 hours. 

 

 
2.4 Conclusions 

 Recent studies have shown the importance of post-translational 

modifications (phosphorylations in particular) in mediating cellular signals. 
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While identification of phosphorylated peptides is key to these analyses, 

manual validation remains a standard of sorts in MS/MS phosphorylation 

studies. One reason for this standard is that a phospho-peptides’s 

characteristic fragmentation pattern is easily picked out by eye. However, the 

other reason is simply that existing software are not trained to take advantage 

of the unique fragmentation patterns. We close this gap by training Inspect on 

a corpus of 7677 validated phospho-peptide spectra (3380 peptides).  

 In both training and multiple testing datasets, the new program 

discovers more phospho-peptides at a given false-discovery rate than any of 

the other programs considered. No program annotated all spectra; each 

algorithm has a measurable false-negative rate. Here we show that the 

learned scoring function of Inspect out performs the other algorithms and has 

the lowest false-negative rate. Second, examination of the quality of the 

identifications using a variety of objective criteria show that the Inspect 

identifications are of uniform high quality. Moreover, the tag-based filtering 

approach of Inspect allows it to be somewhere between 10 and 100 times 

faster than X!Tandem, SEQUEST and COMET. Our methodology is quite 

general and will be applied to other important modifications and 

instrumentation as data becomes available. With an increase in the quality and 

throughput of mass spectrometry data, our methods will find broad 

applicability. 
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Figure 2.1 - Self Convolution of spectra in the training set. A spectrum self-convolution, as 
described in [Dancik 1999] is the product of a spectrum and it is reflection. Formally, eq 1 
describes it as the product of intensity of a peak and it is cognate. Eq 2 introduces a mass 
offset, O, applied to the cognate peak. In this figure, O is plotted along the x-axis. The y-axis 
represents the value of the convolution in intensity units. As the self-convolution in eq 2 is 
applied to many spectra (all spectra in the training set), frequently observed offsets stand out. 
x =  0 represents the matching of b and y ions. The peak at x = 1 represents matching of an 
isotope to the b/y ladder: b + 1 and y, or b and y + 1. The peaks at -18, -17 and -98 
correspond to the neutral losses of water and ammonia and phosphate. The peak for 
phosphate loss is not used in the final model. See Results and Discussion for possible 
explanation. 
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Figure 2.2 - A cut of the peptide. When the peptide RGSphosDVEDASNAK is fragmented 
between the seventh and eighth residue, the predominant resulting species are b7 
(RGSphosDEVD) and y5 (ASNAK). Seven peaks support the this cut of the peptide, each 
adding to the confidence in the assignment. Zoom-in images around b7 and y5 show the 
related ions (/) present in this cut. In the b7 image, related ions include b7 + 1 and b7 - 98. In 
the y5 image, related ions include y5 + 1, y5 - 17 and y5 - 18. Note the break in the y-axis 
scale. 
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Figure 2.3 - The offset frequency function of b ions. Offsets from the prefix residue mass are 
plotted [Dancik 1999]. Offsets in black are the regularly occurring ions included in the model. 
Offsets in gray are not included. The strong gray offsets (e.g., -113) were discovered to be 
parts of the b/y ladder and not a novel neutral loss. Differentiating offsets caused by regularly 
occurring neutral losses from offsets caused by neighboring b peaks was done by iteratively 
removing the strongest offset from the spectra and repeating the analysis. 
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Figure 2.4 - Bayesian Network architecture. The nodes and connections of the Bayesian 
network. 
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Figure 2.5 – Benchmarking Inspect’s new scoring function on test data set 1. The test data set 
of 6410 MS/MS spectra was searched with the new Inspect models, SEQUEST and 
X!Tandem. Each program used as input the same mzXML spectrum file and the same 
database. Search parameters allowed up to 2 phosphorylations per peptide. Results of each 
program were filtered to 1% false-discovery by using the hits to the decoy database. (a) 
Overlap between annotations is plotted in a Venn diagram. Numbers represent individual 
spectra identified by an algorithm(s). (b) Run times are plotted for each program (single 
processor desktop PC). 
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Figure 2.6 – Phosphopeptide spectral qualities. For each plot, the spectral quality feature was 
tabulated for all spectra in the testing data set. The blue line represents spectra annotated by 
all programs (consensus spectra). The green line represents spectra uniquely annotated by 
Inspect, red for unique SEQUEST annotations, and gray for unique X!Tandem annotations. 
Each figure shows the overlaid histogram of the results. (a) Number of fragment neutral loss 
peaks per spectrum. (b) Intensity of the M - p peak compared to the base peak of the 
spectrum. (c) Strength of the b ion ladder. (d) Strength of the y ion ladder. 
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Figure 2.7 - Proline directed fragmentation. Here, we compare the intensity of peaks produced 
by breaks either nterminal or cterminal to proline. As in Figure 6, the blue line is consensus 
spectra; green line is unique Inspect identifications; red line is unique SEQUEST 
identifications; gray line is unique X!Tandem identifications. The plotted function is X ) N/(N + 
C) where N and C represent the intensity of the N-terminal and C-terminal breaks, 
respectively. It is expected that N-terminal ions are much more intense than C-terminal ions, 
due to proline directed fragmentation. As seen, all programs have identical profiles, having a 
large majority of breaks where the N-terminal ion is an order of magnitude stronger than the 
C-terminal ion. 
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Table 2.1 - Ion Set. Ions included in the Bayesian Network. 

C-terminal 

ions y y + 1 y + 2 

y - 

H2O y - NH3 y - H3PO4 

N-terminal 

ions b b + 1 

b - 

H2O 

b - 

NH3 

b - 

H3PO4 

b - H2O - 

H3PO4 

y2+ 

y2+ + 

1 

y2+ - 

H2O 

y2+ - 

NH3 

y2+ -

H3PO4  fragments 

with a +2 

charge b2+ 

b2+ + 

1 

b2+ - 

H2O 

b2+ - 

NH3 

b2+ -

H3PO4   
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Table 2.2 - Conditional Probability Table. Using the observed intensity for Ij and Ip(j), we look 
up the learned conditional probability and score the peak assignment Ij accordingly. This table 
shows two conditional probabilities: the third column for b - H3PO4 given b, the fourth column 
for y - H3PO4 given y. Notice the distinct propensities for fragment neutral loss of a b ion 
compared to a y ion. For example, a strong b peak produces a medium/strong b - H3PO4 43% 
of the time. Remembering that on average only 50% of b ions contain the phosphate moiety, 
almost all phosphorylated b peaks are accompanied by a neutral phosphate loss. In contrast, 
a strong y peak produces a medium/strong y - H3PO4 only 25% of the time, or roughly half of 
the fragments containing a phosphate. 

PCID (Ij | I∏(j) , S, Pj) 

Ij = b-H3PO4 Ij = y-H3PO4 
I∏(j) 

Intensity 

Ij 

Intensity I∏(j) =b I∏(j) =y 

strong strong 22.50% 9.50% 

strong medium 20.40% 15.20% 

strong weak 3.80% 4.80% 

strong absent 53.30% 70.50% 

medium strong 8.10% 1.70% 

medium medium 25.10% 11.40% 

medium weak 10.80% 8.60% 

medium absent 55.90% 78.40% 

weak strong 3.10% 0.40% 

weak medium 12.90% 4.00% 

weak weak 14.50% 9.40% 

weak absent 69.50% 86.30% 

absent strong 5.40% 1.50% 

absent medium 15.90% 4.10% 

absent weak 9.30% 4.40% 

absent absent 69.40% 90.00% 
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Table 2.3 - Performance of Parent Mass Correction. Data represent the percent of spectra that 
are correct to a given accuracy. The general model is the default Inspect model and was 
trained on unmodified peptides. The phosphorylation specific model was trained on 
phosphopeptides and includes phosphorylation-specific features, see Materials and Methods. 

accuracy 
no 

correction 

general 

model 

phosphorylation 

specific model 

Charge 2    

0.1 Da 4.3 10.8 22.1 

0.3 Da 15.6 47.8 76.4 

0.5 Da 29.6 83.6 93.8 

Charge 3    

0.1 Da 0.5 9.7 26.8 

0.3 Da 2 44.4 70.7 

0.5 Da 4.9 77.9 90.2 
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Table 2.4 Comparison of Inspect and SEQUEST. The test data set of 6410 MS/MS spectra 
from S. cerevisiae was run permitting up to two phosphorylations per peptide. All results were 
filtered to 1% false positives and then compared between programs. Shown are only the 
spectra with a phosphorylated peptide annotation. The rows for peptides are counts of 
nonredundant phosphopeptide species. 

  Inspect SEQUEST 

Total 

Spectra 1089 962 

2+ Spectra 700 645 

3+ Spectra 389 317 

2+ Peptides 619 589 

3+ Peptides 333 287 

Run Time 0.5 h 36 h 
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Chapter 3: Proteogenomic discovery, correction and confirmation of 
Arabidopsis gene models. 

 

Gene annotation underpins genome science but gene model error rates 

are suspected to be high. Most often protein sequence is obtained from the 

genome using transcript evidence or computational predictions.  However, to 

directly identify coding DNA, we obtained 144,079 distinct peptide amino acid 

sequences by tandem mass spectrometry from Arabidopsis thaliana. The 

peptides were derived from three different interpretations of the genome: a six-

frame translation, an exon splice-graph, and the currently annotated proteome.  

18,024 peptides were found that do not correspond to the currently annotated 

proteome. By integrating these peptides into the gene finder AUGUSTUS we 

predict 778 new genes and to refine or expand the annotation of 695 current 

gene models. 

 

3.1 Introduction 

A complete protein-coding catalog is a fundamental goal of genome 

projects.  Much of modern biological research, from micro-array chips to 

protein family and functional classification, depends on a complete and 

accurate proteome.  Extensive proteomic catalogs have been developed 

through the integration of gene prediction algorithms, cDNA and EST 

sequences, and comparative genomics (Kellis 2003, Lin 2007).  As emerging 

research is incorporated into annotation pipelines and manual curation efforts, 
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gene models continue to improve and expand. High throughput gene 

annotation pipelines utilize a variety of information sources, and benefit most 

significantly when new data contains orthogonal information to what is 

currently available (Brent 2008). 

Recent advances in both experimental and computational peptide mass 

spectrometry have enabled the production of large proteomics datasets with 

broad coverage of the proteome (Baerenfaller 2008, Brunner 2007, Tanner 

2007). Proteogenomics, using proteomic information to reannotate the 

genome, supplements nucleotide-based annotation in that it directly 

determines reading frame, translation start and stop sites, exact splice 

boundaries, and the validity of short open reading frames. By complementing 

DNA-based annotation with proteogenomics, a more complete and accurate 

protein-coding catalog can be obtained (Tanner 2007, Gupta 2007, Savidor 

2006, Fermin 2006, Desiere 2005). In spite of its potential for improving gene 

annotation, proteogenomic analysis has not integrated into large-scale 

genome annotation pipelines or public protein sequence repositories.  

Mass spectrometry is an ideal tool for the high-throughput identification 

of proteins in a sample.  However, there are some considerations which must 

be addressed in a genome-wide proteogenomic effort.  First, tandem mass 

spectrometry samples are biased towards the more abundant proteins in the 

cell.  To more deeply sample the proteome, a diversity of samples must be 

assayed (see Methods).  Secondly, as peptides are sampled in line with 
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chromatography, the depth of peptide sampling relies heavily on the ability of 

chromatography to evenly space peptide elution. Finally, proteins in the cell 

may be post-translationally modified (e.g. phosphorylated), which can be 

readily identified by MS/MS software.  Moreover, the identification of post-

translationally modified proteins is essential for understanding the dynamic 

proteome.   

In this project, we demonstrate the benefit of proteogenomics in 

discovering and validating protein coding genes of Arabidopsis thaliana. Our 

goal is both to achieve broad coverage of the proteome, but more importantly 

to discover new protein coding sequences within the arabidopsis genome. We 

searched 21 million tandem mass spectra against two greatly expanded 

databases: a six frame translation of the genome, and a splice-exon graph that 

compactly encodes putative splicing events (Tanner 2007). We introduce a 

new method for false-discovery rate (FDR) estimation for novel events and 

novel genes.  From 2.7 million total spectrum annotations (144,079 peptides), 

we identify 18,024 peptides not in the current genome annotation (4018 

spliced peptides).  These peptides are classified according to their genomic 

location, either internal to an annotated gene or in the intergenic region 

between protein-coding genes. By integrating peptide sequences with other 

genome annotation hints, we produce 778 new genes (930 transcripts) and 

refine 695 current gene models (964 transcripts).  
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A recent publication by Baerenfaller et al., (Baerenfaller 2008) attempts 

a similar proteogenomic annotation of Arabidopsis.  In both our and their 

study, a significant portion of the proteome was validated.  However, we 

annotate dramatically more novel protein coding sequences. Our ability to 

annotate more spectra is in part due to the computational advancements of 

the database search tool, Inspect.  Inspect’s Bayesian scoring function is more 

sensitive than that of SEQUEST, annotating more spectra at a given false-

discovery rate.  This allows us to detect peptides which span splice 

boundaries as well efficiently determine presence and location of post 

translational modifications.  Further, our experimental techniques enabled a 

diverse sampling of the proteome, beyond plant organs, to enrich for 

phosphopeptides.  Our analysis extends beyond the Baerenfaller study to 

integrate our peptide information into an automated gene prediction pipeline. 

 

 

3.2 Results 

Novel Genes: To achieve broad proteomic coverage, we acquired 21 

million spectra from four Arabidopsis organs and a variety of phosphopeptide 

enrichment techniques. Spectra were searched with Inspect against three 

databases and filtered to a 1% cumulative false-discovery rate at the spectrum 

level (Figure 3.1). From the expanded databases (see Methods), we annotate 

18,024 peptides not in the current genome annotation, termed “novel 
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peptides”. 16,348 peptides mapped to a single locus in the genome including 

4018 peptides (22%) that spanned novel splice junctions. Both the six frame 

translation and the spliced-exon database contributed equally to the novel 

peptides and largely did not overlap with each other, with only 5% coming from 

both. This indicates that both databases are valuable for proteogenomic 

studies because they provide different possibilities for discovering novelty. 

Using the common protein reporting standard of two peptides per protein, we 

focused on 1,765 novel peptide clusters comprising 4,575 novel peptides (see 

Methods).  We classify novel peptide clusters according to their position 

relative to annotated protein coding models.  We define intragenic clusters as 

those falling within the boundaries of a protein coding gene and intergenic 

clusters as those falling in the intergenic space.   

Using our novel intergenic peptides, we predict 778 novel genes (with 

930 transcripts) with the gene finder AUGUSTUS (Stanke 2006). Evidence 

from peptides as well as from EST alignments, and genomic conservation with 

rice, poplar, medicago, were given as 'hints' to AUGUSTUS, which tries to find 

gene models that are in agreement with the hints and that have high likelihood 

in an ab initio probabilistic gene structure model. Resulting gene models 

included alternative splice variants, if suggested by the evidence. Of the 778 

novel genes, 55 have both EST and homology support in addition to our 

peptides. 455 genes have support by the peptides and ESTs; 70 genes are 

supported by the peptides and conservation only. The remaining 198 genes 
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have no other support than the peptides. As an independent validation of our 

discoveries, 52 of the 778 loci have now been incorporated in the newest 

Arabidopsis genome release (TAIR8). 

To discover homology with the novel genes, we excised the 

surrounding nucleotide sequence and searched against the non-redundant 

database of proteins (NCBI nr version 03/26/08). For 539 of the loci, the 

underlying sequence revealed a close homolog (e-value < 1e-10), providing 

additional validation, and functional assignments for the new genes. Although 

many of the novel genes we discover are homologous to genes of unknown 

function, we highlight a novel gene involved in photosynthesis, Figure 3.2. Our 

predicted protein, supported by 13 novel and uniquely located peptides, aligns 

with proteins targeted to the chloroplast thylakoid lumen (e-value 1e-75).  It 

also contains the PsbP pfam domain characteristic of photosystem II. A 

second novel locus, containing 4 uniquely located peptides on chromosome 4 

shows strong similarity (e-value 1e-85) with a heat-shock protein 

(AT4G12770) in Arabidopsis. 

We also note several interesting structural features of the intergenic 

clusters. First, a significant fraction (64%) of intergenic clusters overlap 

annotated pseudogenes or transposons (Figure 3.3).  An example of a 

translated pseudogene is at locus AT2G15040, ATRLP18: Receptor like 

protein 18, which has high homology to disease resistance proteins in both 

Arabidopsis and other plants.  We identify 5 peptides, 3 of which are uniquely 
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located at this locus, confirming translation. While most pseudogenes are 

believed to be non-translated artifacts, transposons (which like pseudogenes 

are not typically included in the proteome) contain active protein-coding genes. 

We find evidence of translated proteins in transposons which are unrelated to 

transposon activity.  For example, we identify 3 peptides within the locus 

AT4G07947.  Although annotated as a pseudogene in TAIR7 it has been 

reclassified as a transposable element gene in TAIR8.  The genomic region 

containing these peptides has high similarity to the ubiquitin-like protease 

(Ulp1) family in Arabidopsis, suggesting this may be a gene traveling as 

‘cargo’ with the transposable element (Jiang 2004). 

Refining gene models: In addition to the novel genes, we discovered 

peptide clusters overlapping annotated gene models, suggesting refinement of 

the existing annotation, e.g. new exon, exon boundary change, exon skipping 

or modified translation boundaries. Using AUGUSTUS to refine existing 

models with the new peptide evidence, we predict 964 new or altered 

transcripts in 695 genes. The refinement events can be classified according to 

their type, location, and the transcript being modified.  A majority (521) of the 

events are novel exons, of which 314 are located within introns and 207 are in 

untranslated regions (UTR) of TAIR7 gene models.  Exon boundary changes 

were also prevalent, with typical instances including 5' extension of the first 

exon and alternative donor/acceptor splice sites.  We find evidence for 180 

instances of exon extension, and 191 instances of exon shortening. In five 
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transcripts, peptide evidence supports an exon skipping event. Some 

intragenic loci indicate gene extension beyond the borders of the annotated 

gene model. 323 of these gene extension events were also discovered.   

To provide additional support to our gene refinement events, we again 

excised the nucleotide sequence surrounding a novel cluster and searched 

against the non-redundant database of proteins (NCBI nr version 03/26/08). 

For 348 loci, the underlying sequence containing the novel events revealed a 

close homolog (e-value < 1e-10).  Several genes that have been extensively 

studied are included among the refined gene models. For example, we found 

an additional 200 amino acid exon in the 5’ UTR of MAPK phosphatase 

(AT3G55270; Figure 3.4). Also, we identified eight peptides corresponding to 

four missing or mispredicted exons at locus AT1G79920 (heat shock protein 

70). The new sequence completes the canonical HSP70 pFam domain. A final 

example is the gene PMI1 (AT1G42550) which, when mutated, results in 

impaired plastid movement and localization (DeBlasio 2005). We find 6 

peptides upstream of the annotated start codon, providing at least 130 amino 

acids of new sequence. 

We identified 70 cases in which the reading frame of the annotation is 

different from the observed peptides, Table 3.1. Assignment of reading frame 

is particularly difficult for nucleotide-based genome annotation (e.g. cDNA).  

However, proteomic evidence unambiguously defines the frame of translation.  

The 70 frame correction events are supported by multiple peptides and 
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extensive homology to other proteins (see Methods). We present here two 

examples: first a whole gene frame correction, and second a partial gene 

correction. Locus AT3G22240 is a short 51 amino acid protein with no 

discernable homology.  Four peptides suggest translation in another frame.  

Translation in the new reading frame yields a protein high sequence identity to 

PCC1, pathogen and clock controlled protein. The second example is 

AT1G63500, a protein kinase, which has four novel peptides in the annotated 

5’ UTR.  These peptides point to a large expansion of the gene and a 

misprediction of the current first exon (Figure 3.5). 

Validation: In addition to gene discovery, we identified 126,055 distinct 

peptides (1.72 million amino acids) and confirmed gene models for 12,702 

proteins (40% of the TAIR7 genes), Figure 3.6. Our claims of coverage are 

conservative. We count only proteins covered by at least two peptides, one of 

which must uniquely map to the designated locus. Of the sequenced peptides, 

87% map to a unique genomic location, unambiguously identifying 

10,690 proteins. In addition, we observed proteins from highly homologous 

gene groups that could not be attributed to a single locus (see Methods). The 

arabidopsis genome has high rates of tandem and segmental duplication and 

many loci contain multiple gene predictions that differ only in the non-

translated regions (Cannon 2004).  We observed peptides from 883 groups of 

indistinguishable proteins (2,012 proteins), bringing the total confirmed gene 

models to 12,702.  



61 

  

 

 

 

3.3 Conclusions 

Historically, the proteomic and genomic communities have operated 

independently, with the genomic community in charge of annotation efforts. 

The predicted proteome is then passed over to the proteomics community for 

validation, and identification of post-translational events. We assert that much 

is to be gained by joining forces, and incorporating proteomic evidence upfront 

into the genomics pipelines. Proteogenomics provides an orthogonal data 

source to predict gene models, with levels of sensitivity that are 

complementary to cDNA sequencing. By investing in proteogenomics to 

complement more traditional cDNA and EST data at the onset of genome 

annotation, a more complete and accurate proteome can be achieved even in 

the early releases.  Here we provide proteomic evidence for 778 new genes 

and refine 695 current gene models, using the reference annotation from 

TAIR7. Recently, TAIR has release the next revision of the genome/proteome, 

TAIR8. Only a small number of our novel peptides (3%) appear in the TAIR8 

release suggesting that the proteogenomic approach still has much to offer the 

arabidopsis community.  

 

3.4 Materials and Methods 
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Sample Preparation: In total 21,170,989 MS/MS spectra were 

collected from 45 LC-MS/MS experiments. For Arabidopsis organ samples 

(leaf, root, flower, and silique), ~ 2g of fresh organs were cut form wild type 

Arabidopsis (Col-0) using a sharp razor blade and transferred into a 50ml 

conical tube filled with liquid nitrogen immediately.  Frozen organs were 

ground in a ceramic mortar and pestle with liquid nitrogen for 15 minutes to 

fine powders, and then transferred to a 50ml conical tube.  50ml cold (-20 oC) 

methanol containing 0.2 mM Na3VO4 was added to the conical tube.  Samples 

were incubated at -20 oC for 15 minutes and then spun down in a refrigerated 

centrifuge at 4,000g for 5 minutes.  Supernatant was discarded.  Two more 

methanol washes were performed and followed by three acetone washes 

using the same procedure. After final acetone wash, sample pellets were dried 

in an Eppendorf Vacufuge Concentrator at 4 oC.  Proteins were extracted by 

adding 1ml of 0.2% RapiGest (Waters) with 0.2 mM Na3VO4 to the dry pellet 

and incubated on ice for 15 minutes.  Samples were spun down at 16,000g in 

a refrigerated centrifuge for 15 minutes.  Pellets were discarded and the 

supernatants were ready for protein digestion. 

 For MM2d cells, cell pellets (~ 100uL pellet volume) were washed by 

1ml HEPES saline buffer (10mM HEPES, 150 mM NaCl) three times.  250 ul 

of protein extraction buffer (2% RapiGest from Waters plus 0.2 mM Na3VO4) 

was added to the cell pellet.  Samples were sonicated in a Branson Sonifier 

450 sonicator equipped with a high intensity cup horn (Branson Part No.101-
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147-046) at 40% output power for 2 minutes with circulating cooling water. Cell 

lysates were centrifuged at 16,100g, 4 oC, for 15 minutes.  Pellets were 

discarded and the supernatants were diluted 10 times in 50 mM HEPES buffer 

(pH 7.2) and ready for protein digestion. 

Cysteines were reduced and alkylated using 1 mM Tris(2-

carboxyethyl)phosphine (Fisher, AC36383) at 95 °C for 5 minutes then 2.5 

mM iodoacetamide (Fisher, AC12227) at 37 °C in dark for 15 minutes.  

Proteins were digested with trypsin (Roche, 03 708 969 001) overnight then 

1% TFA (pH 1.4) was added to precipitate RapiGest. Samples were incubated 

at 4 oC overnight and then centrifuged at 16,100g for 15 minutes.  Supernatant 

was collected and centrifuged through a 0.22 uM filter. 

An Agilent 1100 HPLC system (Agilent Technologies, Wilmington, DE) 

delivered a flow rate of 300 nL min-1 to a 3-phase capillary chromatography 

column through a splitter. Using a custom pressure cell, 5 µm Zorbax SB-C18 

(Agilent) was packed into fused silica capillary tubing (200 µm ID, 360 µm OD, 

20 cm long) to form the first dimension reverse phase column (RP1). A 5 cm 

long strong cation exchange (SCX) column packed with 5 µm PolySulfoethyl 

(PolyLC) was connected to RP1 using a zero dead volume 1 µm filter 

(Upchurch, M548) attached to the exit of the RP1 column. A fused silica 

capillary (100 µm ID, 360 µm OD, 20 cm long) packed with 5 µm Zorbax SB-

C18 (Agilent) was connected to SCX as the analytical column (RP2). The 

electro-spray tip of the fused silica tubing was pulled to a sharp tip with the 
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inner diameter smaller than 1 µm using a laser puller (Sutter P-2000). The 

peptide mixtures were loaded onto the RP1 column using the custom pressure 

cell. Columns were not re-used. Peptides were first eluted from the RP1 

column to the SCX column using a 0 to 80% acetonitrile gradient for 150 

minutes. The peptides were fractionated by the SCX column using a series of 

salt gradients (from 10 mM to 1 M ammonium acetate for 20 minutes), 

followed by high resolution reverse phase separation using an acetonitrile 

gradient of 0 to 80% for 120 minutes.  

Spectra were acquired on LTQ linear ion trap tandem mass 

spectrometers (Thermo Electron Corporation, San Jose, CA) employing 

automated, data-dependent acquisition. The mass spectrometer was operated 

in positive ion mode with a source temperature of 150 oC. As a final 

fractionation step, gas phase separation in the ion trap was employed to 

separate the peptides into 3 mass classes prior to scanning; the full MS scan 

range was divided into 3 smaller scan ranges (300-800, 800-1100, and 1100-

2000 Da) to improve dynamic range. Each MS scan was followed by 4 MS/MS 

scans of the most intense ions from the parent MS scan. A dynamic exclusion 

of 1 minute was used to improve the duty cycle.   

Final totals for spectrum count were: 6,336,450 spectra from roots, 

1,415,293 spectra from M. incognita infected roots, 2,660,544 from leaves, 

1,284,713 from flowers, 1,206,222 from siliques, and 8,267,767 from phospho-

peptide enriched MM2D cell lysates.  All data is uploaded to the Tranche 
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repository (http://tranche.proteomecommons.org/); a hash key for download is 

available from the authors upon request. 

Database Construction: Proper database construction is crucial for 

novel peptide recovery. For gene model confirmation, we use the TAIR7 

release of the Arabidopsis proteome (www.arabidopsis.org).  For proteomic 

discovery, we constructed two greatly expanded databases.  The first 

database was the six frame translation of the Arabidopsis genome, containing 

210 M amino acids.  The second database was a spliced-exon graph 

containing ab initio gene predictions from the AUGUSTUS software (Tanner 

2007, Stanke 2006, Stanke 2008).  AUGUSTUS reported multiple transcripts 

per locus with sampling parameter = 100.   Additionally, we edited the exon 

length distribution to make short exons (< 100 base pairs) 3x more likely.  All 

resulting exon and intron predictions were incorporated into the graph where 

each node is a putative exon and each directed edge indicates a putative 

splice junction.  The resulting graph contained about 16 M amino acids.  For 

the MS/MS searches, all three databases were combined with decoy 

sequences formed by shuffling each target sequence. To ensure minimal 

overlap between target and decoy sequences, any 8mer appearing in the 

decoy sequences which also appears in the target database was re-shuffled. 

Mass Spectrometry, Peptide Identification and Location. All spectra 

above were converted from the vendor formatted RAW files to mzXML using 

the ReAdW software in centroid mode (Nov1, 2006 version). Spectra were 
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searched against the three databases with the Inspect software, release 

2007.09.05.   All datasets, excepting the phospho-peptide enriched samples, 

were searched without allowing any post-translational modifications (PTMs).  

Parameters for this search were: PM tolerance 3.0 Da, 0.5 Da fragment ion 

tolerance, 25 tags/spectrum, +57 Da fixed modification on cysteine.  For 

phospho-enriched samples, we allowed a variable modification of +80 on STY, 

max of 2 PTMs/peptide and searched with Inspect’s phosphopeptide specific 

scoring function (Payne 2008).  All results are filtered to 1% spectrum-level 

false discovery rate using the decoy database strategy (Elias 2007).  In this 

strategy, a scrambled database of the same size is concurrently searched with 

the target sequences against the spectra. A score cutoff is chosen such that 

no more than 1% of the spectra are annotated with a peptide from decoy 

sequences. To count proteins validated by our TAIR7 database search, we 

map peptides back to their protein(s).  We report proteins with two or more 

peptides, and at least 1 uniquely mapped peptide.  For proteins groups which 

have exactly identical coding sequences we report the group of proteins, as 

they share all peptides and do not have any uniquely mapped peptides.  As 

we require multiple peptides per protein identification, our 1% spectrum-level 

FDR translated to an empirical 0.6% protein-level FDR.  The source code for 

Inspect is available at our lab website, http://peptide.ucsd.edu/.   

Clustering and Homology Search: Novel peptides (all of which have a 

genomic location) were clustered.  Peptides within 1000 nucleotides were 
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linked; clusters were aggregated by single linkage. We find that the vast 

majority of peptides within current genes fit this clustering (98%). Any fixed 

width cluster has the potential to misgroup peptides from multiple genes into a 

single group.  This is overcome by the gene finding algorithm which creates 

the best gene model given the evidences, including splitting clusters.  Clusters 

were classified as intragenic or intergenic depending on whether they 

overlapped a TAIR7 protein coding gene model.  We extracted the DNA 

sequence of each cluster with 500 nucleotides abutting the first and last amino 

acid of the predicted peptides and searched versus the NCBI non-redundant 

protein database (NCBI nr) using blast with default parameters. Supplemental 

table 1 lists the top five results of each search.   

Frame Correction: We found evidence of many novel peptides out of 

frame with the current gene models.  From these we picked a subset to 

highlight and present in Supplemental Table 2.  From the list of all novel 

peptides which overlap a known gene locus, we generated a list of peptides 

which overlap the coding region of the locus but in a different frame.  Our 

reported results require at least two out-of-frame novel peptides.  To increase 

our confidence in the assertion that the gene is (at least partially) mis-

predicted, we also tabulated several features for these novel peptides.  As 

splicing sometimes causes that only a portion of the peptide is out of frame 

with the reference annotation, we filtered out peptides which had fewer than 

three amino acids out of frame.  In these cases we do not doubt the accuracy 
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of the MS/MS annotation.  However, with only one or two amino acid(s), there 

are likely several close genomic regions with an appropriate nucleotide 

sequence.  Additionally, we determined whether the novel peptides conflict 

with observed MS/MS peptides which support the current gene model and 

frame.  On a few occasions there was peptide and homology support for the 

both the annotated frame and a new frame, possibly suggesting alternative 

splicing.  (There are instances within the current annotation of the same DNA 

sequence being translated in multiple frames.) 70 proteins had novel peptides 

which met these three requirements: multiple peptides out of frame, sequence 

out of frame is at least 3 amino acids, and no conflicting TAIR peptides.  There 

were also instances of novel peptides present in the 5’ and 3’ untranslated 

regions of genes.  In some instances these are likely to merely be expansion 

of the current sequence.  However, some of these also appear to be frame 

mis-predictions.  

False Discovery Rate Calculations: Local False Discovery Rate 

(lFDR): The most commonly reported statistic for false-discovery rate is the 

cumulative false-discovery rate, cFDR, or the fraction of false-positive spectra 

with a score greater than t.  This number is meant as an estimate of error for a 

data set and is often misinterpreted as a confidence in a single spectrum 

annotation. For example, consider a data set with 1000 spectra annotated at a 

1% cFDR at score t0. At this cutoff, 10 of the 1000 spectra are estimated to be 

false-positives.  As the score cutoff is relaxed and more spectra are 
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accumulated, we set the next cutoff t1 for a 5% cFDR and note 1200 spectra 

are annotated.  60 of the 1200 are estimated false positives.  cFDR 

assignments to these new spectra would be between 1% and 5%.  However, 

this is not accurate.  The entire data set has a 5% false discovery rate, but for 

the 200 newly included spectra, the false discovery rate is much higher.  Of 

the 60 total false-positive spectra, 50 came from these 200 new annotations, 

or 25% false discovery.  Thus a cumulative FDR calculation fails to deliver an 

accurate quality metric.  Unfortunately, this point has not been previously 

addressed in proteomics studies.  When considering that we annotate over 2.7 

million spectra at a cFDR of 1%, a more lax 5% cFDR could have included 

significant number of spectra which in reality had an unacceptable false-

discovery rate. 

To more accurately measure the quality of our assignments, we define 

a local false discovery rate (Efron 2001). For score t, and bin-size δ, define 

local-FDR (lFDRδ(t)), as the fraction of incorrect identifications with score in 

[t,t+δ).   

 

)()()()( 100 tftftftlFDR +=
δ

 

 

Where 
)(0 tf
 is the number of false annotations with score in [t,t+δ) and 

)(1 tf  is the number of true annotations with score in [t,t+δ).  While local FDR is 
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a continuous function, we empirically measure it over a discretized range. 

Unlike microarray experiments where the number of false data points must be 

estimated, by using the decoy database search strategy, we can directly count 

this value; 0f is simply the distribution of matches to the decoy database and 

1f  is the distribution of matches to the true database. We compute a local 

FDR for each spectrum using δ=0.1. Our dataset is large, therefore, a 

significant number of spectrum-peptide matches fall in each bin and we can 

achieve a more accurate local FDR. For higher score regions with fewer 

spectrum-peptide matches, bins were expanded to include at least 1000 

annotations. As spectra of different charge states have distinct score 

distributions (data not shown), the FDR should be separately calculated.  

Inspect identifies spectra of charge <= 3, and we compute lFDR separately for 

charge 3 spectra. A change in FDR for peptides of different lengths has also 

been reported. As Inspect explicitly takes peptide-length into account while 

scoring, this bias is not observed in our identifications (data not shown). The 

minimum peptide length for Inspect is 7 amino acids; 0.8% of all reported 

spectral identifications are of length 7. 

Spectral FDR versus Peptide FDR (pFDR): The redundancy 

introduced by repeated observation (multiple spectra) of peptides changes the 

false discovery rate for peptides. If 100 spectra identified the same peptide, 

the peptide identification is incorrect only if all spectral identifications are 

incorrect. At the same time, spectra identifying the same peptide cannot be 
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treated as independent. A systematic error might lead to similar spectra to all 

be mis-annotated. Therefore, we conservatively assign the FDR for a peptide 

to be the minimum local FDR of all spectra identifying that peptide. 

Event level FDR (eFDR): The identification of distinct peptides can be 

reasonably assumed to be independent. Even peptides that overlap in 

sequence have completely different spectra, as prefix/suffix masses are all 

changed by the distinct terminal residues. In identifying an event, (e.g. a novel 

exon), we estimate the FDR of the event as the product of the local FDR of the 

peptides supporting that event, and use an eFDR cut-off of 5%. 
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Figure 3.1 - Workflow. All mass spectra are compared to three databases using 
Inspect.  Spectra are filtered to a 1% false discovery rate and grouped into peptides.  
Novel peptides are separated from those that appear in TAIR7. Novel peptides are 
then segregated based on genome location.  Those that overlap a current gene model 
(intragenic) are further classified by how they refine the model.  Peptides that do not 
overlap a gene model (intergenic) are classified by whether they overlap a 
pseudogene. 
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Figure 3.2 - Novel gene supported discovered by proteogenomics. (A) A cluster of 13 
uniquely located peptides which do not overlap a current gene model (Chr3). The 
prediction track shows the single exon gene model produced by AUGUSTUS. (B) The 
predicted sequence shows strong homology to a Thylakoid lumen family protein 
(sp|P82658|TL19_ARATH). It also shows strong similarity to proteins in both 
grapevine (emb|CA040861.1) and rice (Os08g0504500). 
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Figure 3.3 – Peptides overlapping a predicted transposable element gene. (A) 5 
peptides, 4 unique, overlap locus AT4G07947 which is annotated as a transposable 
element gene. (B) Sequence alignment of an Arbaidopsis Ulp1 (ubiquitin like 
protease) showing strong conservation.  
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Figure 3.4 – Addition of a 5’ exon to MAP Kinase Phosphatase, AT3G55270. A). The 
predicted protein coding sequence is well covered by peptides (All track), but we 
observe two additional peptides in the 5’ UTR.  B). The two novel peptides lie in a 
single ORF, frame 1.  C). A portion of the translated UTR sequence is aligned to 
grapevine (V.v.).  Peptides from proteogenomics are bolded. 



76 

  

 

Figure 3.5 – Refined Gene Model. TAIR locus AT1G63500 encodes a protein kinase.  
(A) Four novel peptides map within the 5’ UTR and the first exon.  (B) Zoom of the 
region shows that the current first exon (frame 3) is out of frame with the peptides 
(frame 2). (C) Sequence alignment with Arabidopsis and grapevine proteins supports 
translation in the frame supported by peptides (observed peptides highlighted in 
alignment). 
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Figure 3.6 - Discovery curve showing the number of distinct peptides matching to 
TAIR7 recovered as a function of the number of annotated spectra.  The discovery 
curve is separated to show the contribution of each individual dataset. 
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Table 3.1 - Frame Correction Loci.  Each locus is proposed to be annotated (at least 
partially) out of frame.  There are multiple lines of evidence.  Shown are the number of 
proteomic peptides identified in a frame different from the TAIR annotation, whether 
each peptide has at least three amino acids out of frame, and whether there are 
proteomic peptides which confirm the TAIR annotation, and thus conflict with the 
proposed new frame annotatino. 

Locus 

Peps 

Out 

of 

frame 

Min 

length 

met 

Conflicts 

with TAIR 

peps  

AT1G11905 3 Y N  

AT1G15120 3 Y N  

AT1G16840 2 Y N  

AT1G18580 2 y n  

AT1G19130 10 y n  

AT1G21695 2 Y Y  

AT1G29560 3 y n  

AT1G29600 2 Y N  

AT1G53705 3 y n  

AT1G56100 11 y n  

AT1G63500 2 y n  

AT1G63820 2 y y  

AT1G65090 2 y n  

AT1G67350 9 y n  

AT1G71360 2 Y Y  

AT1G71530 3 y n  

AT1G72840 2 y n  

AT1G76820 14 y n  

AT1G79920 7 y n  

AT2G02730 3 y n  

AT2G02810 2 y n  

AT2G03600 2 y n  

AT2G07280 2 y n  

AT2G09865 2 y n  

AT2G24680 2 y n  

AT2G30120 3 y n  

AT2G34200 2 y n  

AT3G06290 2 y n  

AT3G08770 3 y y  

AT3G09660 2 y n  

AT3G19290 2 y n  



79 

  

AT3G22240 5 y n  

Table 3.1 (cont.) 

 

 

Locus 

Peps 

Out 

of 

frame 

Min 

length 

met 

Conflicts 

with TAIR 

peps  

AT3G47836 3 y n  

AT3G55970 2 y n  

AT4G00340 0 y n  

AT4G01925 2 y n  

AT4G02260 2 y n  

AT4G02700 2 y n  

AT4G05631 2 y n  

AT4G14240 2 y n  

AT4G15020 0 y n  

AT4G15770 0 y n  

AT4G15930 2 y y  

AT4G16260 4 y y  

AT4G16380 0 y n  

AT4G17120 2 y n  

AT4G17245 3 y n  

AT4G19460 2 y 

2:1 

novel:TAIR  

AT4G20310 2 y n  

AT4G22850 2 y n  

AT4G23760 3 y n  

AT4G36600 2 y n  

AT4G36780 2 y n  

AT4G36800 4 y n  

AT4G39420 2 y y  

AT5G02160  5 y n  

AT5G06350 2 y n  

AT5G07670 2 y n  

AT5G13010 2 y n  

AT5G13850 16 y y  

AT5G26680 3 y n  

AT5G32070 2 y n  

AT5G39570 5 y n  

AT5G43530 2 y n  

AT5G43580 2 y n  

AT5G44280 2 y n  

AT5G46540 2 y n  
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AT5G58790 2 y n  

AT5G59980 3 y n  
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Chapter 4: Usability and Software Development 

 

 A conflict of interest underlies the creation of academic software.  The 

primary focus of graduate students and their professors is to publish.  The 

most important qualities for publication are novelty of the algorithm or 

application.  Improving the usability of a current idea is generally not 

considered publishable.  Thus given a limited amount of time, researchers 

typically opt to invest in producing new ideas at the expense of refining or 

improving existing software.  The command line often is the only interface; a 

tool unknown to many biologists. 

 Although this decision is best for the individual researchers, it may not 

be optimal for the scientific field as a whole. The result is “research grade” 

software, meaning that it works well for a limited set of inputs.  Atypical or 

unanticipated inputs are generally poorly dealt with. Two classic examples of 

this in the proteomics community are spectrum file formats and ever changing 

quantitation protocols.   

 The effort required to parse a new spectrum format is not overly 

demanding.  Depending on the complexity of the format and the flexibility of 

the software, this task could take up to two weeks of focused software 

engineering.  It is a poor assumption that researchers are good software 

engineers; software is never as flexible as it could be.  Regardless, most 

programs only allow a subset of formats.   
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 The proteomics community is becoming more quantitative.  More often 

researchers are looking to quantify the difference between samples, both in 

the relative and absolute.  At this leading edge of research, there is no 

consensus on the best way to establish a quantitative experiment.  There is a 

tremendous diversity of setups: labeled and label free, amino acid labeling 

(SILAC) or n/c terminus labeling (e.g. O16/O18 digestion), iTRAQ or other 

covalent reagents, using MS or MS/MS. From a computational perspective, 

there are too many possible set-ups to be reasonably encompassed into a 

single algorithm or software tool.  The result is software targeted towards a 

few (or even just one) experimental protocol. 

  

4.1 Helping the End User 

 The UCSD Computational Mass Spectrometry group, members of the 

Bafna and Pevzer lab, has created a large variety of tools and algorithms, 

each with a slightly different purpose.  Inspect is a general purpose database 

search engine [Tanner 2005]; PepNovo is a de novo interpretation tool that 

does not require a database.  SpectralNetworks utilizes the sequence 

redundancy to create a network of related spectra, which can then be 

interpreted; MSGenerationFunction finds the true pvalue of a spectrum by 

scoring all possible interpretations of the spectrum.  Each has a separate 

interface design.   
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 Even when tools are theoretically similar, their approach, design and 

code base are distinct.  For example, Inspect and PepNovo are both tools for 

peptide identification.   They take spectra as input and output a scored list of 

candidate peptides; they both score candidate peptides using a Bayesian 

network model of peptide fragmentation.  For the end user, the most important 

difference however, is the interface. The input format (e.g. command line 

parameters) and output format are distinct.  This specific example holds for 

each of the 5-10 software programs written in the lab.  Each is independently 

implemented, shares little code with other projects, and has unique I/O styles. 

Thus even though the desired output is often similar, and end user must learn 

the nuances of each program. 

 This problem is especially significant for bioinformatics, a field 

attempting to bridge the gap between experimental and computational 

biologists. The end user is often a biologist with little computer experience, 

who wants to test the software.   To emphasize the beginning level of the 

average user, I found that the task of locating a command prompt and 

navigating the directory structure of the user's own computer was difficult. In 

my personal experience, the lack of investment in a more familiar interface 

environment prohibits adoption of our software. 

 I developed a set of tutorials aimed to help the first time user learn how 

to use Inspect.  The four tutorials step through both basic and advanced 

applications: basic set up and use, advanced input options, blind searches, 
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and grid applications.  The first tutorial, as is evident by its name, is the most 

basic.  It walks users through installation of the software and their first run of 

Inspect.  I found that a purely text based explanation of the steps was not 

enough.  Highlighting the conceptual gaps, users often asked, “How do I open 

Inspect?” In response, I added a multitude of screen shots, appendices and a 

glossary.  The screen shots were essential in helping novice users understand 

the concept of command line interfaces.   The second tutorial, advanced 

Inspect use, introduced options and workflows that I routinely use: decoy 

database, post-translational modifications.  From my perspective as a 

developer, these are not necessarily an advanced concept, but they were 

confusing when included in the first tutorial. The same is true for the third and 

fourth tutorial. As I tested these tutorials with the BENG 208 students and 

each new collaborator, I noticed that even with the tutorials and demos, most 

biology users were unsure of themselves and anxious as to whether they were 

running the program correctly.  This uncertainty impacted their desire to adopt 

our tools as part of their standard platform, or experimental protocols.  Even 

after labs had seen an improvement in their results versus their current 

software they were prone to stick with the status quo. 

   

4.2 Center for Computational Mass Spectrometry 

Increased spectral acquisition rate in modern MS/MS instrumentation, 

and the ensuing deluge of data, have created a severe bottleneck in 
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proteomics workflows.  Quite simply, instruments can create spectra faster 

than traditional algorithms can interpret them.  With researchers producing 

more and larger datasets, this basic problem has become more significant. 

 Even for Inspect, which is orders of magnitude faster than algorithms like 

SEQUEST or X!Tandem, processing large amounts of data is only realistic 

with grid computing. A large computational resource available to the 

community would be truly beneficial. 

The emerging diversity of computational algorithms presents a different 

challenge.  There is no single data analysis pipeline. Simple database 

searches can be augmented with more targeted searches for post-

translational modifications, spectral networks, quantification, or searched de 

novo. Each algorithm, each viewpoint, adds unique and valuable information. 

In addition to spectrum annotation, data pre-processing and results post-

processing is a fruitful area of algorithmic research. Given the variety of 

options at each step, there are myriads of possible workflows.  Routing data 

from program to program is a major time loss for research. A computational 

architecture built to facilitate this interconnection is a pressing need for the 

community.  

 The Bafna and Pevzer lab had attempted two previous occasions to 

make their tools available online.  But still the tools remained under utilized. 

 Ingolf Krueger was brought in for his expertise in service oriented software 

and another attempt was made to bring the tools to the end user.  The new 
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web tool had two major goals: to provide a simple and unified interface to all 

lab software, to port the computation to a super computer or grid system. 

Although I was not involved in the initial stage of the tool development, I soon 

became an integral part of the team, working extensively with both of these 

two goals. 

Creating computational resources to process large data and to connect 

new tools in new ways creates two distinct problems.  First, the architecture 

must be agile and flexible to allow the addition of new algorithms and new 

workflows.  Secondly, it must be accessible to new users.  As the lab 

continues its research, many new tools will be developed.  The task of 

integrating them into a single web service is being addressed by members of 

the Krueger lab.  This work encompasses large data transfer, grid interfacing, 

process control, intuitive interface design, and running a very heterogeneous 

set of tools. To promote accessibility, all tools need a common interface, which 

is provided by the web service.  Moreover, algorithms cannot be an entirely 

black box.  Proper use of the algorithm requires knowing the meaning and 

impact of search options, and is essential for users to make coherent 

workflows.  We attempt to address all of these problems: providing the 

computational resources necessary to perform large proteomics searches, 

providing workflow tools to promote repeated analysis of the data with a 

variety of algorithms, educate the user through open source software, and 

finally to make the interface simple and intuitive.  
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Another input that I performed was extending our set of collaborators.  

Having a set of users was essential for good interface design.  Members of the 

Bafna and Pevzner lab are developers, not end users.  Although they set out 

the initial use cases and design, it was imperative to include others in the 

process. I worked with our collaborators at UCSD to organize a demo and 

interface feedback session. This was the first time that our target audience 

was able to talk directly with the developers (members of the Krueger lab).  

We had members of 3 mass spectrometry labs attend, and the feedback was 

very useful in determining the basic usability features that they expected.  

Specific examples like searching and sorting the output, and group data 

sharing came out of this discussion. 

 

4.3 Hardware Acceleration of MS-Alignment 

Another key focus for increasing the use of Inspect is to improve the 

speed of MS-Alignment, the unrestrictive search algorithm within Inspect. 

Many biologists are keen to discover post-translational modifications (PTMs) in 

an unrestricted format.  Most algorithms search for PTMs only when requested 

by the user.  Even at this point, they search only the list of modifications that 

the user inputs. Typically this list includes phosphorylation, methionine 

oxidation, lysine or arginine methylation, etc.  This paradigm, the enumerated 

PTM search, requires the user to know beforehand the modifications of 

interest.  This search paradigm is very useful in targeted research, for example 
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phospho-proteome studies where the sample has been purified for phospho-

peptides.  However, more and more researchers want to look for any and all 

modifications. 

Proteins undergo significant post-translational modification in order to 

modulate their structure, regulate their function, and as part of signaling 

networks. The functions of many post-translational modifications are well 

characterized.  Phosphorylation is used to signal or activate proteins.  

Methylation and acetylation are used to modify the state of chromatin and 

influence gene regulation. These are fairly common modifications that can be 

found in any proteomics sample.  However, there are also several well-

characterized rare modifications, e.g. actin arginylation and dipthamide 

[Karakozova 2006, Van Ness 1980]. Hundreds of other modifications are 

known; recent research points to newly discovered in vivo modifications, as 

well as many unknown chemical adducts [Tanner 2008, Chen 2007]. In light of 

these and future discoveries, the ability to identify all modifications in a sample 

is particularly attractive. An unrestrictive search can confidently identify rare 

and uncharacterized modifications. 

The central challenge of unrestrictive search is speed.  In the 

unmodified search, database search programs filter the database to only 

consider a subset of the potential peptides as candidates for scoring. Inspect 

uses sequence tags to filter the database; other programs use a parent mass 

filter.  Regardless, each of these relies on a limited alphabet composing the 
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peptide sequences.  There are 20 amino acids used in protein sequences. 

When users enumerate a modification (e.g. oxidized methionine), a new mass 

can be added to the 20 standard amino acids.  This slightly expanded 

alphabet can be easily incorporated into filtering techniques. Unrestricted 

search, however, have a massively expanded alphabet, and cannot readily 

adopt standard filtering algorithms.  Instead of a 20 character alphabet, the 

unrestricted search considers 20 amino acids, and up to 500 modified versions 

of each (up to 250 Daltons addition or subtraction to the mass of the amino 

acid).  By considering all possible modifications, and without any filtering MS-

Alignment is at least two orders of magnitude slower than Inspect. 

A slower run time for MS-Alignment is at odds with the trend for 

increasingly large data sets in proteomics.  Large data sets, containing millions 

or tens of millions of spectra, are now routine. Attempting to perform an 

unrestrictive search on such datasets is a major time investment, and cannot 

be undertaken without significant computational resources.  However, these 

large datasets are very valuable for the unrestrictive search.  Work by Tanner 

and colleagues have utilized the redundant information in large datasets to 

accurately provide probability values to sites of post-translational modifications 

[Tanner 2008]. 

To make MS-alignment more practical, and extend the benefit of 

unrestricted modification search to the general proteomics community, the 

software must be accelerated.  Some algorithmic work has pursued novel 
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filtering techniques.  Here, however, we have chosen to accelerate the 

program in hardware.  In collaboration with Convey Computers, we are 

implementing MS-Alignment on a FPGA-based computation engine. Initial 

profiling of the code revealed that 99.4% of run time was spent inside a single 

function, making MS-Alignment an ideal candidate for hardware based 

acceleration.  The function, FreeMod.c::SeekMatch1PTM, utilizes a dynamic 

programming table to place post-translational modifications within a candidate 

peptide. This is essentially the search function for MS-Alignment, although it is 

a complete search of the database, unaided by filtering. 

To make the function amenable to FPGA hardware specifications, a 

rewrite was required.  In collaboration with Mark Kelly and Glen Edwards at 

Convey, this function has been transformed.  Based on their analysis they 

estimate a 300-1000 fold speed up in the function when run on the Convey 

FPGA platform.  Overall, this translates to a 100 – 150 fold speed up for the 

program as a whole. This is a significant milestone, not only for the dramatic 

speed up, but also because this amount of acceleration obviates the need for 

grid computing.  The current pipeline for MS-Alignment is to distribute jobs on 

to the FWGrid (fwgrid.ucsd.edu).  This large computing resource has allocated 

users up to 128 nodes at a time. Typically I run MS-Alignment at full capacity 

on my account.  Thus, if Convey is able to achieve the projected speed up, 

they will have equaled the resources of the grid.  This is a substantial savings.  
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By using a single processor with FPGAs, we save the electricity and system 

administration overhead of using a supercomputer. 
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Chapter 5: Retention and Loss of Amino Acid Biosynthetic Pathways 
based on Analysis of Whole Genome Sequences 

  

 Plants and fungi can synthesize each of the 20 amino acids by using 

biosynthetic pathways inherited from their bacterial ancestors. However, the 

ability to synthesize nine amino acids (Phe, Trp, Ile, Leu, Val, Lys, His, Thr, 

and Met) was lost in a wide variety of eukaryotes that evolved the ability to 

feed on other organisms. Since the biosynthetic pathways and their respective 

enzymes are well characterized, orthologs can be recognized in whole 

genomes to understand when in evolution pathways were lost. The pattern of 

pathway loss and retention was analyzed in the complete genomes of three 

early-diverging protist parasites, the amoeba Dictyostelium, and six animals. 

The nine pathways were lost independently in animals, Dictyostelium, 

Leishmania, Plasmodium, and Cryptosporidium. Seven additional pathways 

appear to have been lost in one or another parasite, demonstrating that they 

are dispensable in a nutrition-rich environment. Our predictions of pathways 

retained and pathways lost based on computational analyses of whole 

genomes are validated by minimal-medium studies with mammals, fish, 

worms, and Dictyostelium. The apparent selective advantages of retaining 

biosynthetic capabilities for amino acids available in the diet are considered. 

 

5.1 Introduction 
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 Before the genomic era, minimal-medium studies offered essential 

information about the metabolic potential of an organism. Comparative 

genomics can now discover the same information about an organism even 

when the life cycle or environment is so complex as to preclude the defining of 

a minimal medium. The amino acid requirements of a variety of organisms 

were the subject of considerable interest in the last century. The first 

successful synthetic diet using purified amino acids was reported in 1935 for 

rats from the laboratory of W. C. Rose (McCoy 1935). Subsequent work 

showed that rats, mice, or salmon fed on diets lacking any one of nine amino 

acids (Phe, Trp, Ile, Leu, Val, Lys, His, Thr, or Met) would waste away and die 

(Greenstein 1961, Rose 1948). These are known as the essential amino acids. 

The other 11 amino acids found in proteins could be omitted from the diet with 

no deleterious effects and so were considered nonessential. Yeasts such as 

Saccharomyces cerevisiae, as well as plants such as Arabidopsis thaliana, are 

able to grow in media devoid of amino acids, demonstrating that they can 

synthesize all of the amino acids from sugars and fats in the media or 

generated photosynthetically. Clearly, the common progenitor of plants, fungi, 

and animals carried genes for all of the enzymes in the 20 amino acid 

biosynthetic pathways, but almost half of them have been lost in consumers. 

Now that the sequences of a considerable number of eukaryotic genomes 

have been completed, we can inspect them to determine when in evolution the 

pertinent genes were lost.  
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 Since the biosynthetic pathways and their respective enzymes are well 

characterized in mammals and fungi, orthologs can be recognized in whole 

genomes. When key enzymes in a pathway are missing, it can be concluded 

that the respective amino acid is not synthesized. We analyzed the genomes 

of two alveolates, Cryptosporidium hominis and Plasmodium falciparum; one 

euglenozoid, Leishmania major; and six animals, Homo sapiens, Tetraodon 

nigroviridis, Ciona intestinalis, Drosophila melanogaster, Anopheles gambiae, 

and Caenorhabditis elegans. Previously, we used this approach to predict the 

metabolic capabilities of a free-living soil amoeba, Dictyostelium discoideum, 

for which a defined medium had been developed (Franke 1977). We 

confirmed that the pathways leading to the five amino acids not added to the 

medium were intact but also found genes for the pathways leading to four 

other amino acids that were included in the medium (Payne 2005). We verified 

that Dictyostelium cells could synthesize these four amino acids by 

successfully growing cells in media lacking all of them. Omission of any of the 

11 remaining amino acids in the new minimal medium precluded growth of the 

cells, confirming the bioinformatic analyses which showed that genes for the 

pathways to these 11 amino acids were missing in the genome (Payne 2005). 

This approach seems sufficiently robust to apply to other organisms with fully 

sequenced genomes so as to follow the pattern of gene retention and loss 

during evolution.  
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5.2 Materials and Methods 

Databases. Complete genome sequences for humans (H. sapiens), the 

fly D. melanogaster, the mosquito A. gambiae, the worm C. elegans, the yeast 

S. cerevisiae, and the plant A. thaliana were downloaded from the National 

Center for Biotechnology Information. The genome for the fish T. nigroviridis 

was downloaded from Genoscope (genoscope.cns.fr), and that for the 

chordate C. intestinalis was downloaded from the Department of Energy Joint 

Genome Institute. The genomes for D. discoideum, P. falciparum, L. major, 

and C. hominis were recovered from their respective websites: dictybase.org, 

plasmodb.org, sanger.ac.uk/Projects/L_major/, and hominis.mic.vcu.edu.  

 Orthology. The amino acid sequences of enzymes in the amino acid 

biosynthetic pathways of S. cerevisiae and H. sapiens were downloaded from 

the KEGG website (www.kegg.com; Kanehisa 1997, Kanehisa 2000). Pfam 

domains in these enzymes were used to collect potential orthologs from other 

organisms [http://hmmer.wustl.edu/; Bateman 2004]. The yeast and human 

enzymes were also compared to gene products in the other complete 

genomes by using the BlastP program. Genes with the pertinent Pfam 

domain(s) and a BLAST score of e-80 or better were considered functional 

orthologs. Genes below this BLAST threshold that still had the pertinent Pfam 

domains were checked by mutual best BLAST hit. A BlastP cutoff of e-20 was 

used for the early-diverging eukaryotes. Genes were considered missing if 

there were no hits at better than e-1. The smallest of the enzymes used to 



96 

  

BLAST was 221 amino acids and so should be easily recognized. In addition 

to the yeast and human enzymes, bacterial enzymes from KEGG were also 

used to query the genomes of the early-diverging eukaryotes. No additional 

putative amino acid biosynthetic genes were found.  

Pathways. After orthologous genes were collected, the biosynthetic 

pathway to each amino acid in each organism was analyzed. If every enzyme 

in the pathway had an ortholog in a genome, the pathway was considered 

functional in that organism. If one or more enzymes in a pathway were missing 

in a genome, the pathway was considered nonfunctional in that organism. 

When a biosynthetic pathway appeared to be nonfunctional in an organism 

that was phylogenetically close to organisms with an intact pathway, we 

manually inspected the genome.  

  

5.3 Results 

 By searching the genomes of the 10 eukaryotic organisms for protein 

sequences and Pfam domain structures, we were able to find probable 

functional orthologs to amino acid metabolic enzymes. These orthologs were 

organized into the biosynthesis pathways, which were then predicted to be 

either functional or nonfunctional. Almost always, nonfunctional pathways 

lacked pertinent genes even when the BLAST threshold was set at e-1. When 

a biosynthetic gene was present, the BLAST hit score was always better than 

e-60 (the great majority better than e-80). This resulted in a very clear 
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distinction between present and missing genes. There were a few cases 

where genes with intermediate BLAST scores were found but were clearly not 

functional orthologs. For example, yeast isopropylmalate dehydrogenase, 

which is encoded by a leucine biosynthesis gene, recognized a human gene 

(IDH3A) with a BLAST score of e-17. This gene, however, encodes isocitrate 

dehydrogenase (National Center for Biotechnology Information gi,18314368).  

 Multistep biosynthetic pathways in which an essential gene is missing 

were almost always found to have lost all of the genes dedicated to that 

pathway (Table 1). In only two cases was a single gene missing from the 

pathway. The Dictyostelium serine pathway lacks a functional phosphoserine 

phosphatase. As expected, Dictyostelium requires serine for growth (Payne 

2005). The Leishmania methionine pathway lacks cystathionine gamma-

synthase. Although it is possible that a gene unrelated to the traditional 

cystathionine gamma-synthase could have acquired this function and 

remained unrecognized, such cases are rare. Alternative pathways not 

including the missing genes would have been considered in Dictyostelium, 

worms, fish, or mammals when their minimal media were defined. However, all 

of the amino acids expected to be required were directly observed to be 

essential.  

 The parasites Leishmania, Cryptosporidium, and Plasmodium grow 

within mammalian cells, an environment rich in amino acids. They diverged 

before the separation of plants and animals and must have inherited genes for 
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the biosynthesis of all amino acids (Fig. 1). However, they subsequently lost 

the ability to make most amino acids (Tables 2 and 3). Cryptosporidium, 

whose metabolic capabilities are sparse (Xu 2004), has retained the 

biosynthetic pathways for only four amino acids: asparagine, glutamine, 

glycine, and proline. Plasmodium has retained the ability to synthesize these 

four plus aspartate and glutamate. The euglenozoid Leishmania diverged 

separately from Cryptosporidium and Plasmodium. Although they are all 

intracellular parasites, Leishmania has a more expansive set of amino acid 

biosynthetic pathways: alanine, asparagine, aspartate, cysteine, glutamate, 

glutamine, glycine, proline, and tyrosine.  

 Dictyostelium, a phagocytic amoeba, possesses amino acid 

biosynthetic capabilities very similar to those of metazoans (Tables 2 and 3). 

In addition to losing all of the genes in pathways for the human-essential 

amino acids, they have lost genes required for serine and arginine 

biosynthesis. These bioinformatic predictions have been experimentally 

verified by testing the ability of Dictyostelium to grow in media lacking these 

amino acids (Payne 2005). Since the yeast S. cerevisiae diverged from the 

line leading to vertebrates after Dictyostelium and has retained the ability to 

synthesize the 20 amino acids, loss of these pathways in the amoebae must 

have occurred independently of the subsequent loss in the animal branch 

[Bapteste 2002].  
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 All of the enzymes for the biosynthesis of the 11 amino acids known to 

be nonessential for rodents can be easily recognized in the human and fish 

genomes (Table 2). Ten of the 11 pathways are complete in the genomes of 

all metazoans, but enzymes for the synthesis of arginine are missing in C. 

intestinalis, D. melanogaster, A. gambiae, and C. elegans. Arginine has 

previously been shown to be an essential amino acid for C. elegans 

(Vanfleteren 1980). The loss of the arginine biosynthetic enzymes appears to 

have occurred independently in these organisms, after each diverged from the 

line leading to vertebrates, which can still make arginine. All animals lack the 

biosynthetic pathways for isoleucine, leucine, valine, phenylalanine, 

tryptophan, lysine, methionine, threonine, and histidine (Table 3). For genes 

dedicated to these pathways, no putative homolog could be found in any 

animal genome.  

 Only four pathways are universally conserved in the 12 eukaryotes 

examined: those leading to asparagine, glutamine, glycine, and proline. The 

enzymes for glycine and glutamine synthesis, serine 

hydroxymethyltransferase and glutamine synthase, are highly conserved in all 

organisms. Although the ability to synthesize asparagine and proline is 

universally conserved, analysis of the enzymes in the pathways suggests that 

the means for their synthesis is not. Asparagine synthase (glutamine 

hydrolyzing) transaminates aspartate from glutamine and is present in 

animals, Dictyostelium, and Plasmodium. Alternately, aspartate can be 
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amidated with free ammonia by the aspartate ammonia-ligase present in 

Cryptosporidium and Leishmania. Likewise, proline is synthesized in 

Dictyostelium and Plasmodium from arginine via ornithine and glutamate 

semialdehyde, while animals, Leishmania, and Cryptosporidium encode 

enzymes to convert glutamate to proline via phospho-glutamate and glutamate 

semialdehyde. The final steps in these pathways to proline are both catalyzed 

by pyrroline-5-carboxylate reductase.  

 

5.3 Discussion 

 When an organism becomes a consumer by eating other organisms, all 

of the amino acids are available in the diet and no longer need to be 

synthesized. Unless amino acid biosynthetic pathways serve other essential 

functions besides providing an amino acid, they are unnecessary and 

dispensable. Genes in the dispensable pathways accumulate deleterious 

mutations, lose the ability to encode functional enzymes, and are eventually 

deleted from the genome. Deletion was the fate for almost all of the genes 

specific to the pathways that were lost (Table 1). It is important to note that this 

common set of pathways was lost in at least four independent evolutionary 

instances (Fig. 1). This process of complete purging of genes in a pathway is 

not without precedent (Hittinger 2004). Our predictions of pathways retained 

and pathways lost based on computational analyses of whole genomes are 

validated by the observed minimal requirements of mammals, fish, worms, and 
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Dictyostelium (Greenstein 1961, Payne 2005, Vanfleteren 1980). Therefore, 

our predictions for insects, Ciona, and the parasites are likely to be 

substantiated when minimal media are defined for these organisms.  

 Selective conservation of a pathway over time indicates that it is 

indispensable for the metabolic needs of the organism. An example of this is 

the arginine synthesis pathway, which is part of the urea cycle used in 

mammals and embryonic fish to remove excess nitrogen (Walsh 1998, Wright 

1995). Dictyostelium and invertebrates utilize alternate nitrogen excretion 

metabolites (Craig 1960, Payne 2005, Wright 1998). Therefore, the urea cycle 

and arginine synthesis are not essential and were lost in these organisms.  

 Only four pathways (Asn, Gln, Gly, and Pro) are universally conserved. 

The importance of these pathways is emphasized by their retention in 

Cryptosporidium. Its tiny genome lacks genes for the tricarboxylic acid cycle 

and the biosynthetic pathways to sugars and nucleotides (Xu 2004), yet it has 

retained these capabilities. The synthesis of glycine also produces 5,10-

methylenetetrahydrofolate. This is the major source of one-carbon units used 

in dTMP and purine ring biosynthesis, making this pathway indispensable. 

Glutamine synthesis is essential for nitrogen assimilation, detoxification, and 

general nitrogen metabolism (e.g., transamination), and the same may be true 

for asparagine. The utility of the pathway to proline is not immediately obvious. 

However, yeast strains in which the gene encoding pyrroline-5-carboxylate 
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reductase is deleted have been found to grow slowly even in rich media with a 

plentiful supply of proline (Barbara Dunn, personal communications).  

 Dictyostelium feeds on bacteria and yeast. They have lost the pathways 

to all of the amino acids essential for humans. Surprisingly, they have retained 

all of the biosynthetic pathways found in metazoans, except that for serine. 

Loss of the ability to synthesize serine appears to result from the fairly recent 

inactivation of phosphoserine phosphatase, since a pseudogene can be 

recognized in the genome. Our bioinformatically predicted pathway loss and 

retention are validated by minimal-medium studies (Payne 2005).  

 Ten pathways (Ala, Asp, Asn, Gly, Ser, Cys, Tyr, Pro, Glu, and Gln) 

were uniformly conserved in the animal lineage. Discerning the selective 

advantage they might provide is aided in some cases by symptoms of human 

metabolic disorders. The tyrosine synthesis pathway is also part of the 

phenylalanine catabolic pathway. Mutations in phenylalanine hydroxylase, 

which makes tyrosine, are the cause of phenylketonuria. The resulting buildup 

of phenylalanine and relative depletion of tyrosine cause clinical symptoms of 

seizures and mental retardation (Kahler  2003). Likewise, loss of cystathionine 

beta-synthase, a component of the cysteine pathway, causes a buildup of 

homocysteine, which contributes to ocular, skeletal, nervous system, and 

vascular problems (Townsend 2004). Defects in enzymes of the serine 

biosynthesis pathway lead to congenital microcephaly, severe psychomotor 

retardation, and intractable seizures [de Koning 2004]. When any of these 
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three pathways fails, the resulting metabolic imbalance has severe 

consequences.  

 The importance of the glycine, asparagine, and glutamine pathways 

has been previously discussed. The alanine pathway, like proline, does not 

have an obvious reason for conservation. In the same yeast experiment, 

knocking out alanine transaminase was detrimental to cells, even in rich media 

with a plentiful supply of alanine (Barbara Dunn, personal communications). 

The importance of aspartate and glutamate is likely to result from their 

nitrogen handling. It is likely that free-living organisms require a more 

responsive nitrogen-handling capability than parasites and therefore require 

the ability to synthesize glutamate and aspartate, so as not to rely only on the 

simple transaminase reactions involving glutamine and asparagine.  

 The metabolic capabilities of parasites living within other cells offer 

unique insights into the loss and retention of pathways. Parasites lack several 

pathways that are conserved in all of the free-living organisms we studied. The 

ability to thrive without these pathways may be confined to the obligate 

intracellular parasites that rely on their host for additional metabolic functions. 

For instance, the lack of phenylalanine hydroxylase in Cryptosporidium may 

not result in a phenylalanine-tyrosine imbalance if these amino acids are 

rapidly exchanged with the host where excess phenylalanine can be 

metabolized. Thus, by identifying conspicuous voids in metabolic capabilities, 
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we can learn what critical functions the host provides for its parasite with the 

potential of intervention.  
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Figure 5.1 - Evolutionary tree depicting the branching order of the organisms studied 
(adapted from reference 15). The tree is rooted on seven archaebacterial genomes. 
Abbreviations: Ch, C. hominis; Pf, P. falciparum; At, A. thaliana; Dd, D. discoideum; 
Sc, S. cerevisiae; Hs, H. sapiens; Tn, T. nigroviridis; Ci, C. intestinalis; Ag, A. 
gambiae; Dm, D. melanogaster; Ce, C. elegans; Lm, L. major. 
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Table 5.1 - The biosynthetic pathways leading to these 11 amino acids involve 
multiple steps. The number of genes in each pathway in S. cerevisiae was taken from 
KEGG. The number of genes for each pathway that are missing in the other 
organisms was determined from their complete genomes. The amino acids are given 
in the single-letter code. (a) C. elegans is missing all three genes of the arginine (R) 
biosynthetic pathway, but vertebrates have maintained them for use in the urea cycle 
(see text). 

No. of enzymes missing in: 

Pathway 

No. of 

dedicated 

genes 
Animals D.d P.f C.h  L.m 

ILV 5 5 5 5 5 5 

H 7 7 7 7 7 7 

K 3 3 3 3 3 3 

FW 11 11 11 10 10 11 

R 3 3a 3 3 3 2 

T 5 5 5 5 5 5 

M 2 2 2 2 2 1 

S 3 0 1 3 3 2 
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Table 5.2 - The synthesis capabilities of the following eukaryotic organisms are 
shown: H. sapiens (H.s.), T. nigroviridis (T.n.), C. intestinalis (C.i.), D. melanogaster 
(D.m.), A. gambiae (A.g.), C. elegans (C.e.), S. cerevisiae (S.c.), D. discoideum (D.d.), 
A. thaliana (A.t.), C. hominis (C.h.), L. major (L.m.), and P. falciparum (P.f.). A plus 
sign indicates that the genes for all of the enzymes of the biosynthetic pathway are 
present in the genome. A minus sign indicates that one or more of the genes 
encoding an enzyme in the pathway are missing in the genome. (a) L. major and C. 
hominis amidate aspartate with ammonia. 

Amino 

acid  Vertebrates Chordate Invertebrates 

Unicellular 

organisms Plant 

Intracellular 

parasites 

 H.s.  T.n.   C.i.  D.m.  A.g.  C.e.  S.c.  D.d.  A.t. L.m.  P.f.  C.h. 

Alanine  +  +  +  +  +  +  +  +  +  +  –  – 

Asparagine  +  +  +  +  +  +  +  +  +  + a +  + a 

Aspartate  +  +  +  +  +  +  +  +  +  +  +  – 

Arginine  +  +  –  –  –  –  +  –  +  –  –  – 

Cysteine  +  +  +  +  +  +  +  +  +  +  –  – 

Glutamate  +  +  +  +  +  +  +  +  +  +  +  – 

Glutamine  +  +  +  +  +  +  +  +  +  +  +  + 

Glycine  +  +  +  +  +  +  +  +  +  +  +  + 

Proline  +  +  +  +  +  +  +  +  +  +  +  + 

Serine  +  +  +  +  +  +  +  –  +  –  –  – 

Tyrosine  +  +  +  +  +  +  +  +  +  +  –  – 
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Table 5.3 - The synthesis capabilities of the following eukaryotic organisms are 
shown: H. sapiens (H.s.), T. nigroviridis (T.n.), C. intestinalis (C.i.), D. melanogaster 
(D.m.), A. gambiae (A.g.), C. elegans (C.e.), S. cerevisiae (S.c.), D. discoideum (D.d.), 
A. thaliana (A.t.), C. hominis (C.h.), L. major (L.m.), and P. falciparum (P.f.). A plus 
sign indicates that the genes for all of the enzymes of the biosynthetic pathway are 
present in the genome. A minus sign indicates that one or more of the genes 
encoding an enzyme in the pathway are missing in the genome. 

 

Amino acid  Vertebrates Chordate Invertebrates 
Unicellular 

organisms Plant 
Intracellular 

parasites 
 H.s.  T.n.   C.i.  D.m. A.g. C.e. S.c.  D.d.  A.t. L.m.  P.f.  C.h. 
Histidine  –  –  –  –  –  –  +  –  +  –  –  – 
Isoleucine  –  –  –  –  –  –  +  –  +  –  –  – 
Leucine  –  –  –  –  –  –  +  –  +  –  –  – 
Lysine  –  –  –  –  –  –  +  –  +  –  –  – 
Methionine  –  –  –  –  –  –  +  –  +  –  –  – 
Phenylalanine –  –  –  –  –  –  +  –  +  –  –  – 
Threonine  –  –  –  –  –  –  +  –  +  –  –  – 
Tryptophan  –  –  –  –  –  –  +  –  +  –  –  – 
Valine  –  –  –  –  –  –  +  –  +  –  –  – 
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