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Abstract

Attenuation correction (AC) is important for the quantitative merits of positron emission 

tomography (PET). However, attenuation coefficients cannot be derived from magnetic resonance 

(MR) images directly for PET/MR systems. In this work, we aimed to derive continuous AC maps 

from Dixon MR images without the requirement of MR and computed tomography (CT) image 

registration. To achieve this, a 3D generative adversarial network with both discriminative and 

cycle-consistency loss (Cycle-GAN) was developed. The modified 3D U-net was employed as the 

structure of the generative networks to generate the pseudo CT/MR images. The 3D patch-based 

discriminative networks were used to distinguish the generated pseudo CT/MR images from the 

true CT/MR images. To evaluate its performance, datasets from 32 patients were used in the 

experiment. The Dixon segmentation and atlas methods provided by the vendor and the 
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convolutional neural network (CNN) method which utilized registered MR and CT images were 

employed as the reference methods. Dice coefficients of the pseudo-CT image and the regional 

quantification in the reconstructed PET images were compared. Results show that the Cycle-GAN 

framework can generate better AC compared to the Dixon segmentation and atlas methods, and 

shows comparable performance compared to the CNN method.

Index Terms—

Positron emission tomography; attenuation correction; generative adversarial network; cycle-
consistency

I. Introduction

Positron emission tomography (PET) is a powerful functional imaging modality which can 

detect molecular-level activity in the tissue through the injection of specific tracers. 

Attenuation correction (AC) is essential for the accurate estimation of radiotracer 

distribution in PET. Without AC, there will be underestimation of tracer uptake inside the 

object, and over-estimation near peripheral regions. Because of MR’s excellent soft tissue 

contrast and the ability to perform functional imaging, along with its complementary roles in 

motion correction and partial volume correction for PET, PET/MR systems begin to be 

adopted in clinics. In PET/CT systems, the CT image can be used for AC as the HU unit can 

be transformed to the attenuation coefficients through a bi-linear transform [1]. However, as 

the MR signal is not directly related to the photon attenuation coefficients and there is no 

simple transform that can convert an MR image into the attenuation map, AC for PET/MR 

still needs further investigations to unleash the quantitative merits of PET. For the past 

decades, various methods have been proposed to generate pseudo CT images based on MR 

images, through segmentation [2]–[12], atlas [13]–[21], joint emission and transmission 

estimation [22]–[26], multi-tissue per pixel-based MR sequence developments [27], [28], 

and machine learning[29]–[31] approaches.

Due to its strong approximation ability, deep learning has shown promising results for 

synthetic data generation. As anatomical structures in CT images share similarities with MR 

images from the same patient, attenuation map generation based on MR images falls into the 

research category of synthetic data generation. Various methods based on convolutional 

neural networks (CNNs) have been proposed for pseudo-CT generation, and show better 

results than state-of-the-art methods for brain [32]–[43], pelvis [44], [45], and whole body 

[46] regions. All these CNN-based methods train the neural network using existing CT and 

MR image pairs with the MR images as the input and CT images as the label. However, one 

problem with the CNN methods is that the MR and CT images need to be paired. It requires 

a lot of efforts for the image registration process^^ef^^bc^^8c and is difficult for some 

organs due to non-rigid motions, e.g. lung and abdomen regions. Novel deep learning 

approaches that can utilize unpaired MR and CT images need further explorations.

Generative adversarial network (GAN) is a framework that contains both generative and 

discriminative networks, competing with each other to generate new data with the same 

distribution as the training data [47]–[49]. From the image synthesis point of view, the 
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generator aims to produce synthetic images that are close to the ground-truth images and the 

discriminator endeavors to distinguish the synthetic images from the true images. Compared 

to the explicitly L1- or L2-norm loss widely used in CNN methods, the discriminative loss is 

data-driven, and the role of the discriminative network is to learn a data-specific training 

item: the discriminative loss. One advantage of this learned discriminative loss is that the 

MR and CT images do not need to be paired. For image style transfer, the discriminative loss 

might be good enough as the overall visual property is important. However, for medical 

imaging, especially for PET AC, the pixel-to-pixel error between the synthetic image and the 

ground-truth image is crucial as the local quantitative accuracy is paramount. To stabilize the 

network training and generate better quantitative results, Dong et al [50] combined the pixel-

to-pixel difference with the discriminative loss to generate pseudo CT images for brain and 

pelvis regions. Arabi et al [41] included an additional segmentation-based loss to further 

improve the network performance. However, these approaches still need the paired CT and 

MR images. Recently the Cycle-GAN method introduces another cycle-consistency loss to 

stabilize the training process [51] and show better results than using the discriminative loss 

alone for various applications. It has also been applied to synthetic CT image generation 

based on 2D networks [52], but not tested for PET AC. A recent work by Dong et al [53] 

proposed a Cycle-GAN framework to learn PET image with AC (PET-AC) from PET image 

reconstructed with no AC (PET-NAC). Here we focused on predicting pseudo CT image 

from MR images, and then applying the generated pseudo CT image for PET AC. In this 

approach, information from PET sinograms, e.g. time-of-flight information, can act as an 

additional constraint if the generated pseudo CT image is not good enough [54].

In this work, we used clinical brain PET/MR datasets to perform a clinical evaluation of the 

Cycle-GAN framework for PET AC. As PET data are all acquired in 3D mode clinically, we 

specifically proposed a 3D Cycle-GAN to fully exploit the axial information. Dixon MR 

images were employed for pseudo CT generation due to its wide availability in clinical 

PET/MR scanners. This paper is organized as follows. Section 2 introduces the Cycle-GAN 

framework and implementation details. Section 3 describes the real data used in the 

evaluation as well as quantification details. Experimental results are shown in section 4, 

followed by discussions in section 5. Finally, conclusions are drawn in Section 6.

II. Method

In the Cycle-GAN framework [51], there are four independent networks to train: (1) 

generative network F, which generates pseudo CT images based on the MR input; (2) 

generative network B, which generates pseudo MR images based on the CT input; (3) 

discriminative network DCT , which is used to access whether the generated pseudo CT 

images are similar to the true CT images or not; (4) discriminative network DMR, which is 

used to tell whether the generated pseudo MR images are similar to the true MR images or 

not. Instead of using the L1-norm loss to construct the training function as in CNN methods, 

the following loss is adopted as the training objective function,
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L = ∑
i = 1

M
βdDCT F MRi , CT i + βdDMR B CT i , MRi

+ βc MRi − B F MRi + βc CT − F B CT i ,
(1)

where the first two items are the discriminative loss and the last two items stand for the 

cycle-consistency loss. DCT(F(MRi), CTi) is used to test whether the generated pseudo CT 

image F(MRi), based on the MR input, is similar to the true CT image CTi. DMR(B(CTi), 

MRi) is used to test whether the generated pseudo MR image B(CTi), based on the CT input, 

is similar to the true MR image MRi. The discriminative loss DCT(F(MRi), CTi) and 

DMR(B(CTi), MRi) is constructed based on the least-square loss format as in LSGAN [55]. |

MRi − B(F(MRi))| is used to ensure that when the pseudo-CT image F(MRi) is used as the 

input to generative network B, the output can be similar to the original MR image MRi. |CTi 

− F(B(CTi))| is used to ensure that when the pseudo MR image B(CTi) is used as the input to 

generative network F, the output can be similar to the original CT image CTi. βc and βd are 

regularization parameters to control the strength of the discriminative loss and the cycle-

consistency loss. The whole flowchart of the Cycle-GAN framework is shown in Fig. 1. 

From the loss function, we can tell that there is no requirement of CT and MR images being 

registered or even from the same patient. Compared to natural images which are always 2D, 

the attenuation map used for PET AC is 3D. To better utilize the spatial information along 

the axial direction, all networks used in our work is 3D network. The generator is based on 

the 3D Unet structure, where the skip connections can enable better approximation power 

and the down- and up-sampling layers can reduce the memory requirements. The 

discriminative network is based on a 3D CNN, which contains several convolutional and 

down-sampling layers. Details of the generative and the discriminative network structures 

are shown in Fig. 2. The proposed method is labeled as the Cycle-GAN method in later 

analysis.

During training and testing, we used 3D patches as the network input due to the GPU 

memory limit. MR and CT images were scaled to have the same pixel size. The intensity of 

MR and CT images were scaled to be within the range of 0 to 5 before being used in 

network training. The patch size is 144 × 144 × 25. Sliding window is set to be 8 along the 

axial direction to generate the 3D patches. The training batch size was set to 1. The network 

structures were implemented in Pytorch using Adam algorithm as the optimizer. . 800 

epochs were run for the Cycle-GAN method as the training cost function becomes steady 

after 800 epochs.

III. Experiments

A. Datasets

In total datasets from thirty-two patient (14 males, 18 females, 57.3 ± 10.6 years old [range 

29–74]) were included in this study. The study protocol was approved by the local 

Institutional Review Board (IRB). All patients had whole-body 18F-FDG PET/CT scanning, 

followed by additional PET/MRI scanning without a second 18F-FDG administration. This 

study only used the brain data acquired. No pathology in the brain was reported for any of 

the patients. The average injected dose of 18F-FDG was 307.6 ± 78.8 MBq (range 170.2–
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468.1 MBq). Four-fold cross validation was performed to make full use of all the datasets. 

For each dataset, the CT image was acquired from the GE Discovery PET/CT scanner or the 

Siemens Biograph HiRez 16 PET/CT scanner. The reconstructed CT image has an axial field 

of view (FOV) of 700 mm with voxel size 2.73×2.73×3.75 mm3 if acquired from the GE 

Discovery PET/CT scanner. It has an axial FOV of 500 mm with voxel size 1.95 × 1.95 × 

5.00 mm3 if acquired from the Siemens Biograph HiRez 16 PET/CT system. The PET/MR 

datasets were acquired from the GE SIGNA PET/MR system with the transaxial and axial 

FOV being 600 mm and 250 mm, respectively. The average PET/MR scan duration was 

236.1 ± 142.6 s (range 135–900 s). The PET images were reconstructed using the ordered 

subset expectation maximization (OSEM) algorithm (two iterations with sixteen subsets) 

with time-of-flight (TOF) information and point-spread-function (PSF) modeling included. 

The voxel size is 1 × 1 × 2.87 mm3 and the image size is 300×300×89. Dixon MR images 

(repetition time, ≈ 4 ms; first echo time/second echo time, 1.3/2.6 ms; flip angle, 5deg; 

acquisition time, 18 s) were acquired using the head and neck coil array and the image size 

is 256×256×120 with voxel size 1.93 × 1.93 × 2.6mm3.

B. Reference methods

Based on the Dixon MR image, water and fat tissues were segmented, and corresponding 

attenuation coefficients were assigned to generate the attenuation map. This method is 

denoted as the Segmentation method. The Dixon image can also be registered to the MR 

template enabled by prior patients’ MR and CT pairs through non-rigid registration. Air, soft 

tissue, sinus and bone can be generated to construct the pseudo CT image [13]. This method 

is labeled as the Atlas method. We have also added one CNN method [34] based on the U-

Net structure as a reference method. The CNN method utilized registered CT and MR 

images during network training, and the loss function is based on the L1-norm loss between 

the ground-truth CT and the generated pseudo CT images. Details about the training settings 

and pre-processing steps of the CNN method are the same as in [34]. For brain PET 

imaging, the CNN method based on the registered CT and MR images can represent 

currently the state-of-the-art performance based on supervised learning approaches. Through 

the comparison with the CNN method, we can better know the potentials and further 

research directions of the Cycle-GAN approach.

C. Data Analysis

To evaluate the prediction accuracy of the trained network, the relative validation loss based 

on the generated pseudo CT images was calculated as

 Relative validation error  = CTgenerated  − CTtruth 
CTtruth 

, (2)

where CTgenerated and CTtruth are the generated pseudo and ground-truth CT images, 

respectively. As bone regions are essential components for AC maps, Dice coefficients were 

calculated for the bone regions to compare the performance of different methods. As the 

final goal is to apply the generated pseudo CT images for PET AC, evaluation of the PET 

error caused by the imperfection of pseudo CT images is important. The relative PET error 

was used as the evaluation metric and calculated as
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Relative PET error  = PETpseudoCT − PETCT
PETCT

, (3)

where PETpseudoCT is the PET image using the pseudo CT images for AC, and PETCT is the 

PET image using the ground-truth CT images for AC. The relative PET error inside the 

whole brain and specific regions were quantified. The masks for the whole brain region and 

specific regions were defined as in [34] using the MNI-ICBM 152 nonlinear 2009 [56] and 

the automated anatomical labeling (AAL) templates [57]. Linear regression was performed 

to test the similarity between PETCT and PETCT. Based on the whole brain mask, the 

histograms of the error image inside the global brain mask were calculated to compare the 

global performance regarding, bias, standard deviation and distribution of the error image. 

Finally, the mean and standard deviation of the relative PET error across all patients for each 

of the methods were calculated for all the regions and the whole brain.

IV. Results

Table 1 shows quantitative comparisons of the pseudo CT images generated by different 

methods, regarding the relative validation loss and Dice coefficients in the bone regions. The 

CNN method has the lowest validation loss and the highest Dice coefficients for the bone 

regions. The Cycle-GAN method has a better performance regarding the validation loss and 

Dice coefficients than the Atlas and Segmentation methods. Compared to the CNN method, 

the Cycle-GAN method has a similar Dice coefficient of bone regions above the eye, but a 

worse Dice coefficient of bone regions below the eye. This means that the Cycle-GAN 

method is good at recovering the cortical bone regions, but still need improvements for bone 

regions below the eye, e.g., bone regions near the sinuses and the mastoid part of the 

temporal bone. Fig. 3 shows the generated pseudo CT images along with the ground-truth 

CT image for one subject. Compared with the Segmentation and the Atlas methods, both the 

CNN and the Cycle-GAN method can better recover the details for the bone and air regions. 

Based on the same subject as shown in Fig. 3, Fig. 4 shows the standardized uptake value 

(SUV) images and the SUV error images between the image generated using the ground-

truth CT and the PET images generated using the pseudo CT images. The CNN and Cycle-

GAN methods can generate smaller PET errors compared to the Segmentation and the Atlas 

methods. It can be noted from the sagittal view that the Cycle-GAN method has a larger 

error than the CNN method near the sinus region.

As for quantitative comparisons from all the PET datasets, Fig. 5 shows the Bland-Altman 

plots for different methods. The mean values of PET error images for the Segmentation, 

Atlas, CNN and Cycle-GAN methods were 0.219, 0.035, 0.009 and −0.010, respectively. As 

for the standard deviation of the PET error images, similar standard deviations were 

observed for the CNN method (0.128) and the Cycle-GAN method (0.134), which were 

smaller than the Segmentation method (0.242) and the Atlas method (0.208). Fig. 6 presents 

boxplots of the relative error values for the whole brain and the four lobes as well as 

cerebellum, putamen and caudate regions. The Cycle-GAN method can generate smaller 

errors compared with the Segmentation and the Atlas methods. It also has comparable whole 

and regional brain quantification compared to the CNN method. For the Cycle-GAN 

Gong et al. Page 6

IEEE Trans Radiat Plasma Med Sci. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



method, we noticed that there were two outliers which had larger relative errors (4.8% and 

5.2%) regarding the whole-brain quantification. We further checked those two cases and 

found that air regions in the mastoid process were mis-classified as bones, which caused 

larger PET quantification errors.

V. Discussions

In this work, we have generated pseudo CT images based on the 3D Cycle-GAN framework. 

Unlike CNN methods, the pixel-to-pixel difference between the ground-truth CT and the 

generated pseudo CT image is not included in the training function for the Cycle-GAN 

framework. One advantage of the Cycle-GAN framework compared to the CNN framework 

is that spatial registration or alignment is not needed, which can relax the registration 

requirements between CT and MR images and has a potential for cases where registration is 

difficult. Furthermore, based on the loss function of the Cycle-GAN framework, the CT and 

MR image can come from different patients, which can make the training much easier as the 

subject does not need to go through both CT and MR scans. In our study, we have tested the 

cases where the CT and MR images come from different subjects. However, our generated 

results are not robust enough as compared to using CT and MR images from the same 

patient. Our thought is that the number of datasets used in the training is not enough to train 

a Cycle-GAN where MR and CT images come from different patients. The requirement for 

the scenarios where MR and CT images come from different subjects, regarding the number 

of training datasets needed, needs further investigations.

Some pre-processing steps were performed on the CT and MR images. The intensity of the 

input CT or MR images was normalized to 0 to 5 so that better information flow can be 

enabled during network training. In addition, CT and MR images were resampled to have 

the same pixel size. For our datasets, no pathology in the brain was reported for any of the 

patients. As a result, our current study cannot evaluate the prediction accuracy of the Cycle-

GAN method for MR images with abnormal regions. We hypothesize that the performance 

of the Cycle-GAN method cannot be as good as normal brain datasets when the test brain 

data has pathologies, if the training data do not contain datasets with pathologies.

Regarding CT prediction, based on the experimental results, we noticed that compared to the 

CNN method, the Dice coefficient of the bone region below the eye in the Cycle-GAN 

method is a little lower. Through checking the datasets with larger CT errors, we found that 

for the Cycle-GAN method one challenging part is bone prediction near the sinuses and the 

mastoid part of the temporal bone. Further improvements are still needed specifically for 

these regions. Regarding PET quantification, the overall whole and regional quantification 

performance of the Cycle-GAN method is comparable to that of the CNN method, as shown 

in Fig. 5 and Fig. 6. As the pixel-to-pixel difference used in the CNN method is a much 

strong training constraint compared to the cycle-consistency loss and the discriminative loss, 

current performance achievement of the Cycle-GAN method demonstrates its feasibility for 

PET attenuation correction. Considering the great potentials of training without paired data, 

further investigations of using unpaired data for PET AC is worthwhile and in great need. In 

the future, we will further modify the network structures and explore novel loss items to 

improve its performance.
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The MR sequence used in this work is Dixon MR image, which has wide availability in 

clinical PET/MR scanners. The Cycle-GAN method can be applied to other MR sequences 

as well, e.g., T1-weighted, ultrashort echo-time (UTE) and zero echo-time (ZTE) sequences. 

The Cycle-GAN method can work better if there are better contrast among bone, air and soft 

tissues in the MR images. Brain study performed in this work is a feasibility test of the 

Cycle-GAN method. Our results indicate that it has a comparable performance regarding the 

brain region quantification. Another application of the Cycle-GAN method is whole-body 

PET AC, where the registration between CT and MR images is much more difficult, and 

accordingly the Cycle-GAN method can have a larger impact. Extending the Cycle-GAN 

method to whole-body PET AC is one of our future research directions.

VI. Conclusion

In this work, we proposed and evaluated a 3D Cycle-GAN method for PET/MR AC, where 

the MR and CT images do not need to be paired. Evaluations based on 32 brain PET/MR 

datasets demonstrate that the Cycle-GAN approach can generate better pseudo CT images 

compared to the segmentation and the atlas methods, and has comparable performance 

compared to the CNN method regarding whole and regional brain quantification.
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Fig. 1: 
The diagram of the Cycle-GAN framework used in this work. It consists of two generators: 

F and B, and two discriminators: DMR and DCT. (A) the path where the generator input is 

MR image and the discriminator input are CT and the generated pseudo CT images. (B) the 

path where the generator input is CT image and the discriminator input are MR and the 

generated pseudo MR images. Detailed network structures for the generators and the 

discriminators are shown in Fig. 2.
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Fig. 2: 
The diagrams of network structures used in this work. The left diagram is the 3D U-net 

structure employed as the generator network. The right diagram is the 3D CNN used for the 

patch-based discriminator. For both networks, the number on each layer indicates the 3D 

patch size.
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Fig. 3: 
Three views of the MR and the attenuation maps based on ground-truth CT and generated 

pseudo CT images. From left to right, each column represents the MR images, the 

attenuation map based on ground-truth CT images, and the attenuation maps generated 

through the Segmentation method, the Atlas method, the CNN method, and the Cycle-GAN 

method, respectively.
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Fig. 4: 
Three views of the SUV images reconstructed using different methods along with the 

corresponding SUV error images (PETCT − PETpseudoCT). The first column represents the 

SUV images generated by the ground-truth CT image. Starting from the second column, 

each column represents the SUV images and the corresponding SUV error images (PETCT − 

PETpseudoCT) using pseudo CT images generated by the Segmentation method, the Atlas 

method, the CNN method, and the Cycle-GAN method, respectively.
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Fig. 5: 
Bland-Altman plots for (a) Segmentation, (b) Atlas, (c) CNN, and (d) Cycle-GAN methods. 

The x-axis stands for the mean SUV value between the PET images reconstructed using the 

ground-truth CT and generated pseudo-CT images. The y-axis stands for the SUV difference 

between the PET images reconstructed using the ground-truth CT and generated pseudo-CT 

images.
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Fig. 6: 
Global and regional relative errors for the Segmentation, Atlas, CNN and Cycle-GAN 

methods. The postfix of ‘L’ and ‘R’ of the regions stand for the left and right hemispheres, 

respectively.
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