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ABSTRACT  

The monochromatic photoemission from diamondoid monolayers provide a new strategy to 

create electron sources with low energy dispersion, and enables compact electron guns with high 

brightness and low beam emittance for aberration-free imaging, lithography and accelerators. 

However, these potential applications are hindered by degradation of diamondoid monolayers 

under photon irradiation and electron bombardment. Here we report a graphene-protected 

diamondoid monolayer photocathode with four-fold enhancement of stability compared to the 

bare diamondoid counterpart. The single-layer graphene overcoating preserves the 

monochromaticity of the photoelectrons, while effectively suppressing desorption of the 

diamondoid monolayer. Furthermore, we identify electron bombardment as the principle decay 

pathway for diamondoids under graphene protection. This provides a generic approach for 

stabilizing volatile species on photocathode surfaces, which could greatly improve performance 

of electron emitters. 

 

Photoemission from monolayer-diamondoid coated metal surfaces is characterized by high 

degree of monochromaticity, with up to 70% photoelectrons residing in a single peak with <200 

meV kinetic energy distribution
1
. This phenomenon arises from the negative electron affinity 

(NEA) and strong electron-phonon coupling in diamondoid molecules
2
. In this process, electrons 

in the metal substrate are excited above vacuum level and impinge upon the diamondoid 

monolayer with kinetic energies in the range of 0 to hυ-ϕ, where hυ and ϕ are the photon energy 

and work function of the metal respectively. These electrons then accumulate at the lowest 

unoccupied molecular orbital (LUMO) of the diamondoid through efficient phonon scattering.  
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 3

Since the energy of LUMO is higher than vacuum level, these electrons spontaneously emit from 

the LUMO level of diamondois, producing the sharp monochromatic peak. Electrons not 

scattered by the diamondoids, primarily from uncovered metal surfaces, contribute to the 

‘secondary electron tail’ outside the monochromatic peak. 

 Such a “molecular monochromator” can find wide variety of applications ranging from 

aberration-free electron imaging
3
 to low-emittance photoinjector for particle accelerators

4
. 

However, the lifetime of the diamondoid self-assembled monolayer (SAM) under photoemission 

conditions has been too short for many applications. Possible degradation mechanisms include 

physical desorption of the diamondoid molecules, and photo- or electron- induced molecular 

fragmentation.  

Various efforts have been made to enhance the stability. For example, diamondoids covalently 

anchored with stronger phosphor-oxygen bonds show improved stability over weaker Au-thiol 

attachment
5
. However, this results in the formation of submonolayers and consequently larger 

portion of the secondary electron tail in the photoemission spectrum (PES). On the other hand, 

overcoatings such as cesium bromide has proven effective in stabilizing the underlying 

diamondoid SAM
6
. This approach, however, suffers from inelastic electron scattering from the 

relatively thick overcoating layer, and compromised the monochromaticity. 

In this work we explore the protection of diamondoid SAMs with monolayer graphene. 

Graphene was shown to be impermeable to atomic/molecular species larger than helium
7
, and 

thus is expected to be a good diffusion barrier for diamondoids. At the same time, it is 

reasonably electron- and photon-transparent
8–10

. We hypothesize that under photoemission 

conditions, such a diffusion barrier would prevents the surface-dissociated diamondoid 
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 4

molecules from escaping into vacuum. These molecules would eventually re-bind to the 

underlying metal surface, enhancing stability. Meanwhile, the transparency of graphene provides 

low-loss passage for both photons and low-energy electrons, thus avoiding compromising the 

quantum yield or monochromaticity of photoelectrons.  

We fabricated the graphene-covered diamondoid photocathode by first forming a SAM of 

[121]tetramantane-6-thiol (6TT) on a gold surface
11
. Monolayer graphene synthesized by 

chemical vapor deposition (CVD) was then overlaid on top of the SAM by the standard polymer-

mediated transfer technique
12
 (Figure 1a, Supporting Information). Microscopic Raman 

spectroscopy (Figure S1) revealed an intact graphene film with dominantly monolayer thickness 

after the transfer
13
.  

We first show that the graphene coating preserves the monochromaticity of the diamondoid 

photocathode. PES measured from graphene-covered 6TT SAMs (inset, Figure 1b) shows a 

single NEA peak near zero kinetic energy, containing 35% of all the photoelectrons. High-

resolution scans (Figure 1b) reveal that the full width at half maximum (FWHM) of the NEA 

peak is 19.5 and 12.5 meV for bare and graphene-coated 6TT respectively. The peak widths are 

one order of magnitude smaller than previously reported values
1
 (~200 meV), likely due to the 

higher resolution of the energy analyzer used in this study (5 meV, see Supporting Information). 

In contrast, the PES of graphene on bare gold shows broad distribution of electron kinetic energy 

(Fig. S2). The photoemission results indicate that the monolayer graphene introduces little 

inelastic scattering, preserving photoelectron monochromaticity. This is in contrast to other 

surface coatings, such as cesium bromide, where inelastic scattering of the relatively thick layer 

causes broadening of the NEA peak
6
. Moreover, the shape and relative intensities of the NEA 
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 5

peak does not change with the photon flux, thus excluding the possibility that such a sharp peak 

is a nonlinear artefact of the energy analyzer (Figure S3). 

The monolayer graphene shows high transparency of low-energy photoelectrons. We measured 

the photoemission current as a function of photon flux at 55 eV photon energy (Figure 1c). The 

quantum yield for bare and graphene-covered diamondoids, is 3.2×10
-2
 and 2.5×10

-2
 

respectively. These values correspond to 64% and 50% of the quantum yield of bare gold surface 

at the same photon energy
14
. The c.a. 30% drop of the quantum yield from graphene coverage is 

likely due to back-scattering or absorption of the photoelectrons by the graphene and defects 

within.  

Next, we show that the graphene coating effectively prevents desorption of the underlying 

diamondoid SAM. Since the dissociation energy of gold-thiol bond (c.a. 100 kJ/mol) is smaller 

than the carbon-carbon, carbon-hydrogen and carbon-sulfur bonds (c.a. 300 kJ/mol), it is most 

likely to break, leading to dissociation of the molecule from the metal surface. In bare 

diamondoid SAMs, the dissociated molecules will diffuse into vacuum; with the graphene 

coating, however, the molecules are confined between graphene and the substrate, and may 

eventually re-bind with the metal. The graphene thus serves as a diffusion barrier for the 

diamondoids, improving the stability of the SAM. Literature shows that intact monolayer 

graphene is impermeable to molecules larger than helium
7
, supporting our hypothesis. 

We test the hypothesis by monitoring diamondoid coverage on gold during heating in vacuum. In 

the bare 6TT SAM, the x-ray photoelectron spectroscopic (XPS) signal of sulfur decreased to 

45% of its initial value upon heating to 450 K in vacuum, indicating substantial desorption of the 

6TT SAM at this temperature
15
. In contrast, the intensity of the sulfur XPS signal slightly 
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 6

increases in the graphene-covered 6TT sample up to 550 K, showing that the graphene protection 

enhanced the thermal stability of 6TT SAM by at least 100 K. The increase of the S XPS signal 

is attributed to removal of polymer residues on the graphene surface. Heating the sample above 

550 K led to the disruption of the Au film. These results show that the graphene coating strongly 

suppresses desorption of the diamondoid SAM. 

This stabilization of the 6TT SAM improves lifetime of the monochromatic emitter by four fold.  

We measured the photoelectron spectra of bare (red) and graphene-protected (blue) 6TT SAMs 

as a function of photon dosage (Figure 3a-c). While both types of samples initially show a 

prominent NEA peak, the peak to background ratio decreases with photon dosage, indicating 

diamondoid degradation. Notably, the rate of peak intensity decrease is substantially faster in the 

bare 6TT than the graphene-protected sample. By a photon dosage of ~4×10
11
·µm

-2
 (Figure 3c), 

the NEA peak of the bare 6TT sample completely disappears, indicating a full degradation of the 

6TT SAM, while the graphene-protected 6TT still has an NEA peak with twice the intensity of 

the background.  

The relative intensity of the NEA peak shows a mono-exponential decay as a function of photon 

dosage for both bare and graphene-covered 6TT samples (Figure 1d). Because the NEA electrons 

originate from 6TT-coverd portions of the emitter surface, we assume that the relative intensity 

of the NEA peak is proportional to the coverage of 6TT on the emitter surface. Under this 

assumption, the decay of the 6TT SAM shows the behavior of a first-order reaction under 

constant photon flux: 

� = ��exp	(−
�) 
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 7

where x, n and σ are the coverage of 6TT on the surface, photon dosage per unit area and the 

decay rate constant, respectively. Fitting of the decay curves (solid lines, Figure 3d) reveals 

decay rates, σ, of 3×10
-12
 and 8×10

-13
 µm

2
 per photon for bare and graphene-protected 6TT, 

respectively. These results indeed show that the graphene coverage is effective in slowing down 

the degradation of the diamondoid-based monochromatic emitters.  

We examined which mechanism the diamondoids decay through by measuring the decay rate as 

a function of photon energy. The graphene overcoating substantially suppresses physical 

desorption of the 6TT from the metal surface, as revealed by the thermal annealing experiments 

(Figure 2). This suggests that the decay in the graphene-protected photocathode is a result of 

diamondoid molecule breakdown rather than desorption. There are two likely mechanisms for 

diamondoid fragmentation. During photoemission, thermalized electrons from the metal 

substrate impinge upon the 6TT SAM, transferring their kinetic energies to the diamondoid 

molecules through electron-phonon coupling. This process can lead to impact ionization or direct 

bond cleavage in the 6TT molecules. On the other hand, the photons (30-90 eV) can also ionize 

the 6TT molecule. In both cases, radical species can be formed which then undergo 

fragmentation or reaction with the graphene coating (Figure 4a). As supporting evidence, the 

graphene coated on 6TT shows substantially increased defect peak in its Raman spectrum after 

the photoemission (Figure S4), consistent with radical-induced defect formation reported in 

literature
16
. 

To distinguish electron versus photon as the major cause of diamondoid breakdown, we 

investigated the decay rates dependence on photon energy. For photon-induced degradation, we 

would expect the photoionization cross section decreases as the photon energy increases in the 

rage of 30-100 eV
17
 (blue, Figure 4b). On the other hand, the electron impact cross section of 
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 8

hydrocarbon molecules
18
, as well as the electron-phonon coupling intensity in diamondoids

2
 

increases in the same energy range (red, Figure 4b). We thus expect that the per-electron decay 

rate increases, while the per-photon decay rate decreases, as a function of impinging photon 

energy. We compared the measured per-electron and per-photon decay rate of graphene-

protected 6TT photocathode for two photon energies, 55 and 90 eV. The per-electron decay rate 

increased by a factor of 1.6 at 90 eV versus 55 eV photon energy (Figure 4c), agreeing with 

electron-induced degradation of the 6TT molecule. The per-photon decay rate also increased, 

contradicting the photoionization-induced degradation model. We thus conclude that the electron 

bombardment of the 6TT SAM during photoemission is the main pathway responsible for the 

degradation of the 6TT SAM and monochromaticity. These results also suggest that further 

lowering the photon energy is an effective way of reducing degradation. Since the photon energy 

only needs to be sufficient to excite electrons from the Fermi level of the metal to the lowest 

unoccupied molecular orbital of the diamondoid (i.e. the NEA level), this could be reduced to ~5 

eV, which should greatly diminish degradation. 

In summary, we have found that monolayer graphene coating can stabilize diamondoid SAMs 

for monochromatic photocathodes. Compared to other surface protection coatings for 

photocathodes, graphene offers high electron transparency as well as robust desorption barrier. 

This approach is generic and independent of surface chemistry. As a result, this stabilization 

approach can be applied to a large variety of photocathodes and photoelectrochemical electrodes 

with sensitive/volatile surfaces, such as hydrogen-terminated diamond
19
 and cesiated 

semiconductors
20
. Broadly speaking, the gap between graphene and the underlying substrate 

forms a unique two-dimensional confinement that enables entrapment of various surface-bound 
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 9

species, which, in combination with the optical and electron transparency of graphene, may open 

up new opportunities to study unconventional surface chemistries in a vertically confined space. 
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Figure 1. Structure and photoemission properties of the graphene-protected 6TT photocathode. 

(a) Schematic of the graphene-protected 6TT SAM photocathode. (b) Photoemission spectra of 

bare (red) and graphene-protected 6TT (blue) measured at 55 eV photon energy. The spectra are 

shifted such that the NEA peak is at zero relative kinetic energy. Inset, wide-range 

photoemission spectrum of graphene-protected 6TT. (c) Emission current as a function of photon 

flux for bare (red) and graphene-protected 6TT (blue). Discrete markers and solid lines represent 

experimental data and linear fitting, respectively. 
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Figure 2. Dependence of diamondoid coverage on annealing temperature. (a) XPS spectra of 

sulfur 2p level at 300 K (red) and after annealing at 450 K (cyan) from bare 6TT SAM. (b) XPS 

spectra of sulfur 2p level at 300 K (blue) and after annealing at 550 K (black) from graphene-

protected 6TT SAM. Discrete markers and solid lines represent experimental data and fitting, 

respectively. (c) relative intensity of the sulfur 2p XPS signal as a function of annealing 

temperature for bare (red) and graphene-protected (blue) 6TT SAMs. 
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Figure 3. Photoemission spectra at different integrated photon fluxes. (a-c) Photoemission 

spectra of bare (red) and graphene-protected (blue) 6TT SAMs at photon dosages of zero (a), 

2×10
11
 photons/µm

2
 (b) and 4×10

11
 photons/µm

2
 (c). The spectra are shifted such that the NEA 

peak is at zero relative kinetic energy. The intensities are scaled such that the background 

measured at 200 meV is set to one. (d) Semi-logarithmic plot of the relative peak intensity as a 

function of photon dosage for bare (red) and graphene-protected (blue) diamondoids. Discrete 

markers and solid lines represent experimental data and fitting, respectively. 
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Figure 4. Mechanism of diamondoid breakdown. (a) Schematic showing the two possible decay 

pathyways, i.e. photoionization and electron bombardment. (b) Expected decay cross section as a 

function of photon energy in the range of 30-100 eV. (c-d) Per-electron (c) and per-photon (d) 

decay rate of graphene-protected 6TT sample, measured at 55 eV and 90 eV. 
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Figure 1. Structure and photoemission properties of the graphene-protected 6TT photocathode. (a) 
Schematic of the graphene-protected 6TT SAM photocathode. (b) Photoemission spectra of bare (red) and 
graphene-protected 6TT (blue) measured at 55 eV photon energy. The spectra are shifted such that the NEA 

peak is at zero relative kinetic energy. Inset, wide-range photoemission spectrum of graphene-protected 
6TT. (c) Emission current as a function of photon flux for bare (red) and graphene-protected 6TT (blue). 

Discrete markers and solid lines represent experimental data and linear fitting, respectively.  
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Figure 2. Dependence of diamondoid coverage on annealing temperature. (a) XPS spectra of sulfur 2p level 
at 300 K (red) and after annealing at 450 K (cyan) from bare 6TT SAM. (b) XPS spectra of sulfur 2p level at 
300 K (blue) and after annealing at 550 K (black) from graphene-protected 6TT SAM. Discrete markers and 
solid lines represent experimental data and fitting, respectively. (c) relative intensity of the sulfur 2p XPS 
signal as a function of annealing temperature for bare (red) and graphene-protected (blue) 6TT SAMs.  
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Figure 3. Photoemission spectra at different integrated photon fluxes. (a-c) Photoemission spectra of bare 
(red) and graphene-protected (blue) 6TT SAMs at photon dosages of zero (a), 2×1011 photons/µm2 (b) and 

4×1011 photons/µm2 (c). The spectra are shifted such that the NEA peak is at zero relative kinetic energy. 

The intensities are scaled such that the background measured at 200 meV is set to one. (d) Semi-
logarithmic plot of the relative peak intensity as a function of photon dosage for bare (red) and graphene-
protected (blue) diamondoids. Discrete markers and solid lines represent experimental data and fitting, 

respectively.  
 

129x88mm (300 x 300 DPI)  

 

 

Page 20 of 21

ACS Paragon Plus Environment

Nano Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



  

 

 

Figure 4. Mechanism of diamondoid breakdown. (a) Schematic showing the two possible decay pathyways, 
i.e. photoionization and electron bombardment. (b) Expected decay cross section as a function of photon 
energy in the range of 30-100 eV. (c-d) Per-electron (c) and per-photon (d) decay rate of graphene-

protected 6TT sample, measured at 55 eV and 90 eV.  
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