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In model selection, we seek a balance between goodness-of-fit and 

generalizability, for which model complexity is key. Fitting Propensity (FP) has been 

suggested as an ideal measure of complexity that refers to a model’s inherent flexibility 

to fit diverse patterns of data, all else being equal. Assessing the FP of item response 

theory (IRT) models requires random and uniform sampling of all item response 

patterns for a set of items and fitting the sampled data to one or more models repeatedly 

many times. The model fit information across the replications is summarized for each 

model and examined. In the case of multiple models, comparisons between models are 

also made. Computational issues due to the high-dimensional discrete space involved in 

the generation of random datasets have rendered it infeasible to investigate FP for more 

than a handful of dichotomously scored items under the conventional full information 

(FI) approach of the multinomial framework. 
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This study turns to limited information (LI) methods as an alternative, capitalizing 

on the fact that IRT models can be realized as contingency tables using marginal 

probabilities. LI methods use information from only the lower-order, usually univariate 

and bivariate, margins of IRT models as opposed to full response patterns. Thus, they 

not only significantly reduce the number of response probabilities to be generated in 

the first place but can also make model estimation computationally simpler. The 

computational gain afforded by the proposed LI approach opens doors for investigating 

the FP of more complex IRT modeling schemes which traditionally require many more 

response patterns.  

A data-generating algorithm founded on classical literature on sampling 

contingency tables with fixed margins along with sequential importance sampling (SIS) 

of contingency tables is introduced for random and uniformly distributed sampling 

across all univariate and bivariate margins of items. To estimate the data consisting of 

solely the lower-order margins, a pairwise marginal maximum likelihood (PMML) 

estimator tailored to fit a wide variety of IRT models is introduced. Lastly, the feasibility 

of the proposed LI data generation algorithm and estimation approach to assess the FP 

of IRT models is tested under various combinations of data sampling and estimation 

methods.  
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CHAPTER I 

Introduction 

1.1 Research Background 

Models link theory to observed data and shed light on the processes of data 

generation that are simplified or approximated representations of reality. Box (1976) 

stated that "all models are wrong, but some are useful." While models being the "truth" 

have been a topic of debate, most can agree that all models are not equal, but some are 

better than others in capturing important aspects of various phenomena. In order to 

search for these more useful models, model parameters need to be estimated 

appropriately. Furthermore, after a model is fit, we require some measure with which to 

evaluate the usefulness or appropriateness of the model, often in comparison with 

competing models. Model estimation and model evaluation are interrelated to influence 

each other (Myung et al., 2003).  

Prevalent in the social and behavioral sciences are models relating observable 

phenomena to underlying and unobserved causes, termed latent variables (Cai et al., 

2016). Frequently, the observed data are categorical item-level responses such as 

questionnaire or test items with the intent of measuring and understanding continuous 

latent variables. These latent variables can represent educational achievement, attitudes, 

and personality. For example, PISA or NAEP routinely give out multiple-choice tests to 

gauge students’ latent academic profeciences in various school subjects (Cai et al., 2016). 

Item response theory (IRT) refers to the latent variable modeling of multivariate 

categorical response data. IRT resulted from expanding common factor analysis (FA) 

techniques for continuous observed variables to categorical data (Cai & Thissen, 2014; 
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Cai & Moustaki, 2018; Jöreskog & Moustaki, 2001). As such, the purpose is very much 

the same: summarize the dependence structure among a set of categorical variables as 

alternative, low-dimensional representations using a small number of latent factors, 

often called abilities.  

Over the years, a plethora of different IRT models has been conceived and applied. 

Technically, any kind of latent variable model can be constructed as long as it 

appropriately specifies the measurement and structural model (Cai, 2012). However, for 

IRT models, the difficulty is not with constructing the models per se but with model 

estimation (Wirth & Edward, 2007) and model fit (Maydeu-Olivares & Joe, 2014). The 

estimation and model fit of IRT models have been impeded by problems arising due to 

the variables’ categorical nature, such as high-dimensional numerical integration and 

sparseness (Cai & Moustaki, 2018; Cai & Hansen, 2013). Despite considerable strides 

made regarding both model estimation and evaluation, they are still active areas of 

research, especially in light of the continuous development of new and often 

complicated models coupled with the rise of large-scale datasets. 

 This study aims to contribute to the model estimation as well as model 

evaluation of IRT models based on limited-information (LI) methods (e.g., Bolt, 2005). LI 

methods differ from its counterpart, full information (FI) methods, in terms of the 

amount of information extracted from the item response matrix (i.e., item response 

patterns for all examinees). To elaborate, FI methods use all the information from the 

data, while LI methods use information from only the lower-order margins. Most LI 

methods are classified as bivariate information methods as they consist of only the first-

order (univariate) and second-order (bivariate) margins. Naturally, they are 

computationally simpler than FI methods (Bolt, 2005; Cai et al., 2006). The 
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computational feasibility afforded by LI methods is advantageous in more ways than 

one in the context of the motivation of this research. 

The motivation for a LI approach to model estimation and evaluation in this 

dissertation mainly stems from the desire to contribute to the study of fitting propensity 

(FP; Preacher, 2006) of IRT models. FP was proposed as a method of evaluating the utility 

of a model with an emphasis on different types of model complexity and not simply 

goodness-of-fit (GoF). The reasoning is that a model may fit a dataset better, not because 

it is a better data-generating model reflecting reality, but because of its tendency to fit 

any data better. This tendency is likely to increase as models become more complex. FP 

or model complexity refers to a model’s inherent flexibility to fit diverse data patterns 

relevant to a particular modeling domain. An intuitive method for studying FP entails a 

data-generating mechanism for generating randomly and uniformly sampled datasets 

from the complete data space. Random representative data are repeatedly generated and 

are fit using candidate theoretical model(s) many times and information on the 

unadjusted fit is recorded. The summary of this information across replications 

measures of how well each model fits such random data. If the model fits a large amount 

of the random data space, it is said to have high FP, and thus, we should be more careful 

in concluding good model fit of the particular model to a particular dataset. On the other 

hand, if the model fits only a small amount of the data space, we can be more confident 

about good model fit results. In addition, when multiple models are involved, the FP of 

models can also be compared, making it useful for relative model fit evaluation and in 

model selection (Bonifay & Cai, 2017; Falk & Muthukrishna, 2020; Preacher, 2006).   

Bonifay and Cai (2017) evaluated the FP of five dichotomous IRT models by fitting 

many random datasets of full response patterns generated by a simplex sampling 

method proposed by Rubin (1981) and summarizing the results using IRT model indices 
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(e.g., Y2/N). They found evidence that the conventional method of quantifying model 

complexity in terms of the number of freely estimated parameters can provide an 

inadequate and misleading picture regarding model fit. Thus, they advocated for the 

need to consider functional form complexity along with the number of free parameters 

in model evaluation. However, a key limitation of their approach is that the number of 

all possible response patterns to be randomly sampled grows exponentially with the 

number of items. The problem is only further exacerbated if the number of response 

categories increases (Figure 1. 1-(A)). More specifically, the total number of response 

patterns is equal to ∏ 𝐾𝐾𝑗𝑗
𝐽𝐽
1  where 𝐾𝐾𝑗𝑗 refers to the number of categories for an item 𝑗𝑗 (𝑗𝑗 =

1⋯𝐽𝐽) , which is in line with traditional FI methods grounded in the multinomial 

framework. Bonifay and Cai’s (2017) sampling method quickly becomes computationally 

infeasible to substantially limit the number and type of items examinable.  

A potential solution may lie in LI methods, capitalizing on the fact that response 

patterns over all individuals can be collapsed into lower-order margins with roots in the 

multivariate Bernoulli (MVB) framework. Instead of simulating datasets as full 

multinomial contingency tables where each cell denotes the frequency of a specific 

response pattern, we would simulate data for only the lower-order margins. Setting J to 

be the total number of items, only  𝐽𝐽 + 𝐽𝐽(𝐽𝐽−1)
2

 first and second-order margins need to be 

fitted when focusing on simply the lower-order margins. This equates to the total 

number of probabilities involved being ∑ 𝐾𝐾𝑗𝑗
𝐽𝐽
1 + ∑ ∑ 𝐾𝐾𝑗𝑗𝐾𝐾𝑗𝑗′

𝐽𝐽
𝑗𝑗′=𝑗𝑗+1

𝐽𝐽−1
𝑗𝑗=1 , which is a significant 

reduction of data elements or response probabilities to be generated, as clearly shown 

in Figure 1. 1-(B), when compared to sampling full multinomial probabilities. 

Furthermore, there is the added benefit to model estimation as using lower-order 

margins is computationally simpler than that using full multinomial cell probabilities. 
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Figure 1. 1: Number of Generated Data Patterns for Full Information versus Limited 

Information Approach 

The challenge is developing an algorithm capable of random and uniform data 

generation across such lower-order margins, for which the literature on contingency 

tables with fixed margins proves instrumental. Moreover, as the sampled datasets only 
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include information about the univariate and bivariate margins, they require LI 

estimation methods that only use information from these low-order margins to derive 

parameter estimates. While LI estimation methods are far from new in IRT, they have 

been restricted to a handful of IRT models that can be estimated with a normal 

distribution or a probit link function (e.g., 1- and 2-parameter IRT models) under the 

underlying variable (UV) approach to factor analysis (FA) with categorical variables. The 

investigation of FP for a wider range of IRT models necessitates a more generalizable LI 

estimation method based on the IRT approach. Theoretically, this is possible through 

composite maximum likelihood (CML) estimation (Lindsay, 1988; Varin et al., 2011), 

based on pseudo-likelihood functions made up of the marginal or conditional 

distributions of univariate and bivariate responses with a logit link function. 

1.2 Research Objectives 

Complications due to the categorical nature of item response data sparked much 

research on the estimation and evaluation of IRT models. FP is an alternative measure 

of model complexity or parsimony that has recently joined the conversation of model 

evaluation. Its unique contribution to the model evaluation of IRT models is that it 

considers the functional form of a model, termed structural complexity, as well as the 

number of parameters, called parametric complexity (Preacher, 2006). Motivated by the 

computational issues in generating and estimating many response patterns required to 

broaden the investigation of FP to a wider range of IRT models, the study proposes a 

different flavor of model estimation and evaluation using FP based on LI methods. In 

order to achieve this purpose, the specific research objectives of this study were: 
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1)  to develop a novel data generation method that can produce simulated data randomly 

and uniformly distributed over the complete categorical data space defined by the lower-

order margins.  

2) to derive a CML estimator tailored to the IRT approach capable of fitting IRT models 

using only data from the margins.  

3) to validate the proposed data generation algorithm and complementing estimation 

method to examine the FP of IRT models. 

1.3 Research Contributions 

This research focused on LI methods has clear advantages for both the model 

estimation and model evaluation of IRT models in terms of computational feasibility. 

The use of first- and second-order margins involve only probabilities up to pairs of 

items, as opposed to the full multinomial probabilities of FI methods. As seen in Figure 

1. 1, this leads to large differences in the data elements involved, which become 

increasingly larger as the number of items, response categories, and factors increase 

(Bolt, 2005). The significant reduction in computational burden to model estimation and 

model fitting by employing LI methods paves the way to easily generalize the 

quantification of FP to IRT models consisting of many items or factors as well as to those 

with more than two response categories. Considering the continuous rise in large-scale 

IRT problems where tests consist of many questions along with the likelihood of 

including polytomously scored items, the computational trackability of LI methods will 

likely become increasingly favorable.  

Furthermore, this study can provide insights into the trade-off relationship 

between statistical and computational efficiency. Although the loss of information on 

the higher-order margins hinders the statistical efficiency of LI methods, they can be 
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appropriate and even preferable if the gains in terms of computational efficiency 

significantly outweigh this loss. Like this, LI methods can provide insights into whether 

additional information obtained from higher-order margins such as those from FI leads 

to meaningful differences relative to LI methods and if so, how much, either for 

estimated parameters or the assessment of model fit. Through this process, it makes it 

also possible to study the relative contribution of information of each margin to 

parameter identification or model misfit because LI methods can easily be decomposed 

into simple additive pieces (Cai et al., 2006). Furthermore, because the data is generated 

to be random (i.e., data with no a priori underlying structure), there will be issues of 

model misfit or model misspecification by definition. Results on the effects of model 

misspecification have yet to be adequately answered for both FI and LI methods. 

Comparisons on the effects of model misfit between FI and LI methods are also 

insufficient. The results of this study may shed some light on the behavior of IRT models 

under both approaches when their assumptions may not hold. 

Lastly, this study adds to the literature on data generation mechanisms for binary 

and categorical variables with a focus on contingency tables, which can be useful for 

various simulation studies. It can easily generate many different data patterns ranging 

from plausible to possible (Preacher, 2006; Roberts & Pashler, 2000) based on factors 

such as model parametrization, estimators, and inferences of interest. Moreover, there 

is the added benefit of being able to investigate how different sampling schemes 

targeting different data spaces can influence model estimation and model fit results. In 

fact, comparison between methods plays an integral role in this study when validating 

the proposed data generation algorithm and estimation method.   
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CHAPTER II 

Model Evaluation and Fitting Propensity 

Model evaluation is essential as the parameters of any statistical model are 

interpretable only to the extent that the model fits the data and theory. Statisticians are 

usually interested in quantifiable measures of model evaluation. Bonifay (2015) 

identified three seemingly dissimilar schools of thought for model evaluation: 

frequentist statistics, Bayesian inference, and information theory. He sought to develop 

a theoretical framework that integrated all three perspectives. For this purpose, he 

focused on the information-theoretic approach of minimum description length (MDL) 

via the notion of FP (Preacher, 2006), which had been a void in considerations for IRT 

model fit. This chapter summarizes different aspects of model evaluation to describe 

the concept and motivation behind FP. 

2.1 Bias-Variance Trade-off 

Universal to all statistical models is the bias-variance trade-off (Rashidi et al., 

2019). Bias refers to the inability of a model to capture enough about the relationship 

between the variables that is being implied by the dataset. A model with high bias 

oversimplifies the model to miss the relevant systematic relations or signals. This is 

called underfitting. Conversely, variance measures a model’s tendency to learn too 

much about the relationship between variables by a certain dataset. A model with high 

variance may fit a particular dataset well but will not generalize to a different dataset 

because it is be modeling random noise in the data along with the signal. This is 

overfitting (Yu, Wang, & Lai, 2005). In an ideal world, one would be able to find a model 

that simultaneously captures all the regularities of a dataset and generalizes well to 
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other datasets. However, the reality is that we must seek an optimal balance by trading 

off between simplifying the modeled relationship (i.e., reducing variance but likely 

introducing bias) and trying to fit a model more closely to observed values (i.e., reducing 

bias but likely introducing variance). The goal is to minimize the model’s total error and 

find the most generalizable model (Rashidi et al., 2019; Yu et al., 2005). Total error 

consists of reducible and irreducible error. The difference between the two errors is 

whether they can be reduced by choosing a better model. Irreducible error arises from 

randomness or natural variability and thus is noise that can’t be reduced by modeling 

efforts. Reproducible error can be further decomposed as error due to bias and error 

due to variance. Reducing reproducible error is the goal. The trade-off relationship is 

depicted in Figure 2. 1. As seen by the figure, central to this is model complexity (Yu et 

al., 2005).  

 

Figure 2. 1:Bias-varianceTrade-Off 

Note. Adapted from “An integrated data preparation scheme for neural network data analysis”, by L. Yu, S. 
Wang, and K.K. Lai, 2005, IEEE Transactions on Knowledge and Data Engineering, 18(2), p 226.  
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2.2 Model Evaluation Criteria 

Myung et al. (2005) list four quantitative criteria of model evaluation—

falsifiability, goodness-of-fit (GoF), simplicity/complexity, and generalizability. The 

three criteria excluding falsifiability, which is that the model must be falsifiable, are 

closely related to the concepts introduced in Section 2.1.  

GoF represents a model’s ability to explain a particular dataset by quantifying the 

discrepancy between the fitted model and the observed data values (Maydeu-Olivares, 

2013). GoF indices are a common method of model evaluation in the social sciences. In 

fact, it is often the sole measure employed to gauge the fit of a model (Bonifay, 2015). 

This is based on the logic that the model providing the closest fit to the data is the one 

that best reflects the underlying regularity (Myung, 2000; Myung & Pitt, 2004). However, 

this overlooks the role of model complexity (Falk & Muthukrishna, 2020). Myung et al. 

(2005) define complexity as “a model’s inherent flexibility that enables it to fit a wide 

range of data patterns” (p. 12). Preacher (2006) describes it as the complement of 

parsimony. Highly complex models can provide good fit, especially in comparison to 

simpler models, not because it is a better representation of the data-generating process, 

but simply because of its inherent tendency to fit any data or random noise better 

(Bonifay & Cai, 2017; Falk & Muthukrishna, 2020; Myung, 2000; Preacher, 2006). GoF 

statistics include contributions of a model’s ability to absorb random error as well as its 

ability to approximate the underlying process or signal (Myung & Pitt, 2004). In sum, GoF 

is decomposed as follows: 

 Goodness-of-fit =  

Fit to regularity (generalizability) + Fit to noise (overfitting) 

(1) 



12 
 

This implies that model evaluation and selection based on only GoF statistics 

would be justifiable if the data were free of noise, which is highly unlikely. As such, GoF 

serves a necessary but not sufficient condition for model evaluation and selection 

(Preacher, 2006). Generalizability and the issue of overfitting should also be considered. 

As seen in equation (1), generalizability is a model’s ability to fit the underlying 

data-generating process. It is also a measure of a model’s predictive accuracy on future 

and unseen replication samples arising from the same data-generating process. As 

model complexity increases, so does generalizability at first. However, after a tipping 

point, the model begins to fit noise in addition to regularity so that generalizability 

decreases with higher complexity. This is the concept of overfitting in Section 2.1. The 

balance point is the same as the optimum in Figure 2. 1. From this, it is also possible to 

see that bias is related to GoF and variance to generalizability. In short, model selection 

requires a balance between GoF and generalizability to help ensure that the chosen 

model captures regularity without overfitting (Myung & Pitt, 2004; Preacher, 2006). 

Accordingly, the selected model should not only explain the data well enough but also 

obey Occam’s razor or principle of parsimony so that the model as minimally complex 

as possible. The optimum trade-off is realized when GoF statistics are adjusted for the 

contribution of model complexity (Myung, 2000; Myung et al., 2005).  

Many factors can influence complexity. A facet of complexity that has been 

considered far more than others is the number of parameters. Models with a greater 

number of free parameters tend to be more complex. Usually, this is what comes to mind 

when thinking about model complexity in psychological and educational research 

(Bonifay & Cai, 2017). For example, Akaike information criteria (AIC) and the Bayesian 

information criteria (BIC) are two well-known GoF indices for relative model fit that 

penalize more complex models in terms of the number of parameters. However, research 
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shows that this is only part of the picture on complexity. Another dimension of 

complexity increasingly being incorporated is a model’s functional form (Myung et al., 

2005). Defined as the way in which the parameters are combined in the equations, it 

shows that models with the same number of parameters can have different model fit 

due to their functional form (Myung, 2000). The number of free parameters falls into 

parametrization complexity, and the functional form of a model into structural 

complexity (Markon & Krueger, 2004). A minimum of four other factors, for which 

research is scant, have been known to also contribute to model complexity: parameter 

range, sample size, the shape of the probability distribution in the likelihood function 

and estimation method, and experimental design (Pitt et al., 2002; Preacher, 2003).  

2.3 Fitting Propensity (FP) 

One promising alternative to traditional fit indices skewed toward GoF, so that 

model complexity is included is FP (Preacher, 2006). FP is defined as a model’s inherent 

flexibility to fit diverse data patterns, all else being equal. The premise of FP is that some 

models will simply have the potential to fit a wider range of data patterns. Thus, FP can 

be described as the complement of parsimony as models. Thus, higher FP means a model 

is less parsimonious. Although FP can be examined for a single model, FP is especially 

beneficial as a relative fit index for comparing competing models in terms of how well 

each fit to representative data, as implied by the comparative adjectives. Figure 2. 2 

shows similar information to Figure 2. 1 but with a focus on the relationships among FP, 

GoF, parsimony, generalizability, and overfitting. Models with higher FP, meaning lower 

parsimony (i.e., Figure 2. 2-(c)), tend to exhibit better GoF unadjusted for FP relative to 

models with lower FP (i.e., Figure 2. 2- (a)). As FP increases, generalizability reaches a 
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maximum and then decreases, with overfitting occurring beyond the point of maximum 

generalizability (Myung & Pitt, 2004; Preacher, 2006). 

 

Figure 2. 2: Goodness-of-Fit, Generalizability, and Model Complexity 

Note. Adapted from “Model comparison methods”, by J. I. Myung and M. A. Pitt, 2004, Methods in 
enzymology, 383, p 355.  

 

FP is based on the MDL principle introduced to the information-theoretic 

literature for model evaluation (Bonifay & Cai, 2017; Myung & Pitt, 2004; Preacher, 2006), 

which offers a coherent, intuitive view of model selection. The MDL principle arises from 

viewing data as well as statistical models as codes or algorithms for compressing data 

into a sequence of bits (Grünwald, 2000; Myung, 2000; Stine, 2004). A model compresses 

the regularities in the data by extracting redundancy from it. The more data a model can 

compress, the more we can learn from and predict using that model. The resulting 

description length from data compression consists of two parts: 

 DL = L(data|model) + L(model) (2) 
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The description length is the length of the code for the data given the model (i.e., 

L(data|model)) plus the length of a description of the model itself (i.e., L(model)). 

L(data|model) represents the GoF of the model to the data while L(model) quantifies the 

model complexity (Myung, 2000). Therefore, the MDL principle straightforwardly 

addresses the trade-off between GoF and model complexity (Bonifay & Cai, 2017; 

Grünwald et al., 2005). The MDL principle selects the model with the smallest description 

length, balancing fit versus complexity. In this way, the MDL principle encapsulates 

Occam’s Razor (Grünwald, 2000; Stine, 2004).  

In MDL, this shortest total description length of equation (2) is considered over 

all possible data sequences. Thus, in an information-theoretic approach based on the 

MDL principle, a model is appraised relative to the complete data space in terms of its 

description. This reveals the model’s innate tendency to fit well with any possible data 

from the data space. Model complexity based on the MDL includes the multiple aspects 

of complexity, such as the number of parameters, fictional form, parameter range, 

sample size, and estimation method. By restricting one or the other, it becomes possible 

to see the contributions of others (Grünwald et al., 2005; Myung, 2000; Preacher, 2003).  

While analytic formulations for variants of MDLs exist, it is intractable for 

structural equation modeling (SEM) as well as IRT (Preacher, 2006; Bonifay & Cai, 2017). 

An alternative way to examine the MDL principle or FP is to follow the procedure outlined 

in Table 2. 1 (Falk & Muthukrishna, 2020). For investigating the FP of dichotomous IRT 

models, which is of interest in this study, Bonifay and Cai (2017) selected five IRT models 

that differed in functional form: exploratory factor analytic (EFA) model, bifactor model, 

two diagnostic classification models (DCMs) of the deterministic input noisy and-gate 

(DINA) model and the deterministic input noisy or-gate (DINO) model, and the 

unidimensional 3-parameter logistic (3PL) model. The four models excluding the 
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unidimensional 3PL model were specified to be equal in terms of the number of 

estimated parameters. The unidimensional 3PL model served as the model with more 

parameters but a less complex functional form. For dichotomous items, the data space 

of interest is the (2𝐽𝐽-1)-dimensional probability simplex where J is the number of items. 

Random datasets were generated from this space. All five models were fit the simulated 

datasets and then compared using unadjusted fit statistics designed for categorical data 

analysis such as the Y2/N (Bartholomew & Leung, 2002; Cai et al., 2006) and LD X2 (Chen 

& Thissen, 1997). The cumulative results of these statistics across replications were used 

to determine each model’s inherent propensity to fit any possible data.  

The results demonstrated the lowest FP for the unidimensional 3PL model despite 

an additional parameter. Furthermore, the EFA and bifactor models, which were models 

capable of handling more complex structures, showed higher FP. Such results suggested 

the importance of considering functional form or structural complexity, perhaps more 

so than the number of parameters or parametric complexity. They recommended that 

researchers de-emphasize good fit for models that are not parsimonious in form 

regardless of the number of parameters because it is impossible to discern whether 

regularities or noise is driving the seemingly good fit.  
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Table 2. 1: Procedure for Testing Fitting Propensity (FP) 

1. Define of the model(s) of interest 

2. Generate n random datasets representing the data space of interest 

3. Fit model(s) of interest to the n random datasets 

4. Record information regarding model fit for each model and dataset 

5. Summize model fit using text, graphical displays, and measures of effect size 
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CHAPTER III 

Contingency Tables and Data Generation  

The first objective of this study is to develop a novel data generation method that 

can produce synthetic data randomly and uniformly sampled from the complete 

categorical data space defined by the lower-order margins. The proposed algorithm 

exploits the fact that item response data are contingency tables that are collapsible to 

consecutive marginal moments and takes advantage of long-standing, classical literature 

on contingency tables with fixed margins. This chapter explains how a contingency table 

of item response patterns over all individuals can be collapsed into a series of two-way 

contingency tables (i.e., second-order margins) with fixed row and column margins (i.e., 

first-order margins). Then, focusing on a general two-way contingency table with fixed 

margins, of which all two-way contingency tables of item responses fall into, the chapter 

illustrates what it means to sample randomly and uniformly from a two-way table when 

univariate margins are fixed, culminating in how it can be built upon to handle all the 

univariate margins as well as large numbers of two-way contingency tables of item 

responses simultaneously.  

For explanation purposes, let us suppose that J items are measured 

for N individuals 𝑖𝑖 . Let 𝒚𝒚′ = �𝑦𝑦1,𝑦𝑦2,⋯ ,𝑦𝑦𝐽𝐽�  be the vector of j variables where each j 

variable has 𝐾𝐾𝑗𝑗  response alternatives that are ordered, 𝑗𝑗 = 1,⋯𝐽𝐽. Responses to the items 

belong to a J -way contingency table with a total of 𝑅𝑅 = ∏ 𝐾𝐾𝑗𝑗
𝐽𝐽
𝑗𝑗=1  cells that denote the 

possible response vectors 𝒚𝒚′𝑟𝑟 = (𝑐𝑐1, 𝑐𝑐2,⋯ , 𝑐𝑐𝐽𝐽) where 𝑟𝑟 = 1,⋯𝑅𝑅 and 𝑐𝑐𝑗𝑗 = 1,⋯𝐾𝐾𝑗𝑗. 
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3.1 Two Representations of Contingency Tables 

Item response probabilities can be realized as contingency tables. These 

contingency tables have two equivalent representations that extend to tables of any 

dimension: one based on cell probabilities and the other using moments (Maydeu-

Olivares & Joe, 2014). The former is based on the multinomial framework, while the 

latter has roots in the MVB framework (Cai et al., 2006).  

The characterization of IRT models based on the marginal moments of the MVB 

distribution (Teugels, 1990) is useful when describing LI methods. Let us further simplify 

things by considering only dichotomously scored items with 0 for incorrect responses 

and 1 indicating correct responses. Then 𝑅𝑅 = ∏ 𝐾𝐾𝑗𝑗
𝐽𝐽
𝑗𝑗=1  is equal to 2𝐽𝐽  with each cell 

representing one of the 2𝐽𝐽  item response patterns 𝝅𝝅 . Each of these item response 

patterns 𝑅𝑅 can be considered as a random J-vector 𝒚𝒚′ = (𝑦𝑦1, … ,𝑦𝑦𝐽𝐽) of Bernoulli random 

variables for which 𝒚𝒚 = �𝑦𝑦1, … ,𝑦𝑦𝐽𝐽�
′
,𝑦𝑦𝑗𝑗 ∈ {0,1} is a realization. It is important to note that 

small letters indicate both the variables and the values that these variables take in this 

study. The joint distribution of the MVB random vector (𝑦𝑦1, … ,𝑦𝑦𝐽𝐽) is then  

 𝜋𝜋𝒚𝒚 = 𝑃𝑃(𝑦𝑦1 = 𝑦𝑦1,𝑦𝑦2 = 𝑦𝑦2, … 𝑦𝑦𝐽𝐽 = 𝑦𝑦𝐽𝐽). (3) 

In the characterization based on marginal moments, the (2𝐽𝐽 − 1)-vector 𝝅̇𝝅 of joint 

moments of the MVB distribution can be written in the partitioned form 𝝅̇𝝅 =

�𝝅̇𝝅′𝟏𝟏,𝝅𝝅′̇ 𝟐𝟐, …𝝅𝝅′̇ 𝒌𝒌, … ,𝝅𝝅′̇ 𝑱𝑱�
′
, where the dimension of the vector 𝝅̇𝝅𝒌𝒌  is �𝐽𝐽𝑘𝑘

� . Accordingly, 𝝅̇𝝅𝟏𝟏 

indicates the set of all J univariate or first-order marginal moments, where 𝜋̇𝜋𝑗𝑗 = 𝐸𝐸�𝑦𝑦𝑗𝑗� =

𝑃𝑃�𝑦𝑦𝑗𝑗 = 1� =  𝜋𝜋𝑗𝑗 .  𝝅̇𝝅𝟐𝟐 denotes the set of 
𝐽𝐽(𝐽𝐽−1)

2
 bivariate or second-order marginal moments, 

𝜋̇𝜋𝑗𝑗𝑗𝑗′ = 𝐸𝐸�𝑦𝑦𝑗𝑗𝑦𝑦𝑗𝑗′� = 𝑃𝑃�𝑦𝑦𝑗𝑗 = 1,𝑦𝑦𝑗𝑗′ = 1 � =  𝜋𝜋𝑗𝑗𝑗𝑗′  for all distinct 𝑗𝑗  and 𝑗𝑗′  satisfying 1 ≤ 𝑗𝑗 ≤ 𝑗𝑗′ ≤ 𝐽𝐽 . 
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The joint moments are defined in the manner up to the last one, 𝝅̇𝝅𝑱𝑱 = 𝐸𝐸�𝑦𝑦𝑗𝑗 ⋯𝑦𝑦𝐽𝐽� =

𝑃𝑃�𝑦𝑦𝑗𝑗 = ⋯ = 𝑦𝑦𝐽𝐽 = 1 �  with a dimension of �𝐽𝐽𝐽𝐽� = 1 (Cai et al., 2006).  

Take for example the smallest multivariate categorical data problem, which is a 2 

× 2 table constructed using two dichotomously scored items (Table 3. 1). The cell 

representation uses four cell probabilities which must sum to one as is necessary for 

both the multinomial and MVB distributions. The joint-moments representation uses 

three moments consisting of the two means, 𝜋𝜋1
(1) = 𝑃𝑃(𝑦𝑦1 = 1) and 𝜋𝜋2

(1) = 𝑃𝑃(𝑦𝑦2 = 1) and the 

cross product 𝜋𝜋12
(1)(1) = 𝑃𝑃(𝑦𝑦1 = 1,𝑦𝑦2 = 1) (Table 3. 1) to convey the same information. Like 

this, there is a one-to-one relationship between the two representations, which is 

invertible regardless of the number of categorical variables involved (Cai et al., 2006; 

Maydeu-Olivares & Joe, 2014).  

Table 3. 1: Two Representations for a 2 × 2 Contingency Table 

Cells Representation  Margins Representation  

 𝑦𝑦2 = 0 𝑦𝑦2 = 1   𝑦𝑦2 = 0 𝑦𝑦2 = 1  

𝑦𝑦1 = 0 𝜋𝜋00 𝜋𝜋01  𝑦𝑦1 = 0    

𝑦𝑦1 = 1 𝜋𝜋10 𝜋𝜋11  𝑦𝑦1 = 1  𝜋𝜋12
(1)(1) 𝜋𝜋1

(1) 

      𝜋𝜋2
(1)  

Note. Adapted from “Assessing approximate fit in categorical data analysis”, by A. Maydeu-Olivares and H. 
Joe, 2014, Multivariate Behavioral Research, 49(4), p 307.  
 

The example gives a sense of how the response patterns over individuals can be 

collapsed into consecutive lower-order margins. This study stipulates that it might 

suffice to generate random datasets for FP based on simply the lower-order moments 

where most of the information tends to lie and to disregard the higher-order moments. 
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The sampling of the first- and second-order margins involves probabilities up to pairs 

of items, as opposed to the full multinomial probabilities, which reduces to having to 

consider only J univariate and 𝐽𝐽(𝐽𝐽 − 1)/2  bivariate margins rather than 2J response 

patterns for dichotomous items.  

The logic above easily generalizes to non-dichotomous cases as well. Returning 

to the ordinal step up with 𝑅𝑅 = ∏ 𝐾𝐾𝑗𝑗
𝐽𝐽
𝑖𝑖=1  item response patterns, the number of univariate 

and bivariate margins do not change. That is, they are still equal to J and 𝐽𝐽(𝐽𝐽 − 1)/2, 

respectively. However, the number of first- and second-order marginal probabilities 

involved do change. For any item 𝑗𝑗, there are 𝐾𝐾𝑗𝑗 cells in the corresponding first-order 

marginal table and for each unique item pair 𝑗𝑗  and 𝑗𝑗′ , there are 𝐾𝐾𝑗𝑗𝐾𝐾𝑗𝑗′  cells in the 

respective second-order marginal table. Due to the constraint that all cell probabilities 

of a contingency table should sum to one, there are only 𝐾𝐾𝑗𝑗 − 1 linearly independent 

univariate probabilities per item and similarly, only (𝐾𝐾𝑗𝑗 − 1)(𝐾𝐾𝑗𝑗′ − 1) linearly independent 

bivariate probabilities per unique item pair (Cai & Hensen, 2013). This explains why a 2 

× 2 table can be characterized with two univariate margins and one bivariate margin as 

in Table 3. 1. 

Applying this fact to the problem at hand of wanting to randomly sample from 

the categorical data space defined by the univariate and bivariate margins, this translates 

to having to generate or sample only ∑ (𝐾𝐾𝑗𝑗 − 1)𝐽𝐽
1 + ∑ ∑ (𝐾𝐾𝑗𝑗 − 1)(𝐾𝐾𝑗𝑗′ − 1)𝐽𝐽

𝑗𝑗′=𝑗𝑗+1
𝐽𝐽−1
𝑗𝑗=1  cell 

probabilities (i.e., 𝐾𝐾𝑗𝑗 − 1 univariate probabilities per item and (𝐾𝐾𝑗𝑗 − 1)(𝐾𝐾𝑗𝑗′ − 1) bivariate 

probabilities per unique item pair) in order to get the total number of data elements 

involved of ∑ 𝐾𝐾𝑗𝑗
𝐽𝐽
1 + ∑ ∑ 𝐾𝐾𝑗𝑗𝐾𝐾𝑗𝑗′

𝐽𝐽
𝑗𝑗′=𝑗𝑗+1

𝐽𝐽−1
𝑗𝑗=1 . This is also given in Section 1.1. 
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3.2 Geometry of Two-Way Contingency Tables with Fixed Margins 

The issue of categorical data generation based on the lower-order margins is in 

essence not much different from the random sampling of two-way contingency tables 

with fixed margins. Geometric interpretations of contingency tables, with emphasis on 

tables with fixed margins, lie at the core of understanding the many random sampling 

methods used for such kinds of tables (Diaconis & Efron, 1985; Fienberg, 1970; Fienberg 

& Gilbert, 1970; Nguyen & Sampson, 1985; Slavković & Fienberg, 2009). This section 

provides an overview of related core concepts that are applicable to a generic two-way 

table with any number of rows or columns. Explanations focus on 2 × 2 tables, as explicit 

graphical representations are possible (Nguyen & Sampson, 1985).  

The generic table can be thought of as one subset of the univariate and bivariate 

margins made by any item pair. For any pair of items of binary responses, the joint 

probability mass function (PMF) for items 𝑦𝑦𝑗𝑗 and 𝑦𝑦𝑗𝑗′ can be realized as a 2 × 2 table of 

cell probabilities 𝑝𝑝𝑖𝑖𝑖𝑖 where 𝑖𝑖 = {0,1}  and 𝑗𝑗 = {0,1}  are from a bivariate Bernoulli 

distribution. Geometrically, one can identify the set 𝒫𝒫  of all 2 × 2 PMF matrices 𝑃𝑃 =

 �
𝑝𝑝00 𝑝𝑝01
𝑝𝑝10 𝑝𝑝11� in a 3-dimensional probability simplex (𝛥𝛥3), which is a regular tetrahedron like 

in Figure 3. 1, with vertices 𝐴𝐴1 = (1, 0, 0, 0),𝐴𝐴2 = (0, 1, 0, 0),𝐴𝐴3 = (0, 0, 1, 0),𝐴𝐴4 = (0, 0, 0, 1) 

when using barycentric coordinates (Slavković & Fienberg, 2009). There is then a one-to-

one correspondence between points 𝐴𝐴  of the simplex with coordinates 𝐴𝐴 =

(𝑝𝑝00,𝑝𝑝01,𝑝𝑝10,𝑝𝑝11) and the 2 × 2 PMF matrices 𝑃𝑃. 

Let 𝒫𝒫(𝑹𝑹,𝑪𝑪) be the set of all 2 × 2 PMF matrices with fixed row marginal probability 

vector 𝑹𝑹 = (𝑡𝑡, 1 - 𝑡𝑡) and column marginal probability vector 𝑪𝑪 = (𝑠𝑠, 1– 𝑠𝑠). By fixing one of 

the cell probabilities, for example, 𝑝𝑝00, a PMF matrix P of 𝒫𝒫(𝑹𝑹,𝑪𝑪) is completely defined 
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as 𝑃𝑃 =  �
𝑝𝑝00 𝑡𝑡 - 𝑝𝑝00

𝑠𝑠 - 𝑝𝑝00 1 - 𝑡𝑡 - 𝑠𝑠 - 𝑝𝑝00
� , which is represented by point 𝐴𝐴 = (𝑝𝑝00, 𝑡𝑡 - 𝑝𝑝00, 𝑠𝑠-𝑝𝑝00,  

1 - 𝑡𝑡 - 𝑠𝑠 - 𝑝𝑝00)  in subspaces of the simplex 𝛥𝛥3 , and vice versa. Consider two planes 

( 𝑝𝑝00+𝑝𝑝01) = 𝑡𝑡  and (𝑝𝑝00+𝑝𝑝10) = 𝑠𝑠  that intersect 𝛥𝛥3  such that 𝑠𝑠1 = (𝑠𝑠, 0,0,1 - 𝑠𝑠), 𝑠𝑠2 =

(𝑠𝑠, 1 - 𝑠𝑠, 0,0), 𝑠𝑠3 = (0, 𝑠𝑠, 1 - 𝑠𝑠, 0), 𝑠𝑠4 = (0,0, 𝑠𝑠, 1 - 𝑠𝑠) . 𝑡𝑡  is defined similarly, as illustrated in 

Figure 3. 1. Each plane geometrically describes the set of points defined by a single fixed 

marginal. The set 𝒫𝒫(𝑹𝑹,𝑪𝑪) is then the line segment given by the intersection of these 

planes. The two end or extreme points of the line segment are the upper Fréchet bound 

𝐴𝐴+ and lower Fréchet bound 𝐴𝐴− . The independence model for a 2 × 2 table is also a matrix 

of 𝒫𝒫(𝑹𝑹,𝑪𝑪)  denoted by 𝑃𝑃𝐼𝐼  =  �
𝑡𝑡𝑡𝑡 𝑡𝑡(1-𝑠𝑠)

𝑠𝑠(1-𝑡𝑡) (𝑡𝑡-1)(𝑠𝑠-1)� . This is equivalent to the point 𝐴𝐴𝐼𝐼 =

(𝑡𝑡𝑠𝑠, 𝑡𝑡(1-𝑠𝑠), 𝑠𝑠(1-𝑡𝑡), (𝑡𝑡-1)(𝑠𝑠-1)) shown in Figure 3. 1 (Fienberg & Gilbert, 1970; Nguyen & 

Sampson, 1985). 

As 𝑡𝑡 and 𝑠𝑠 take on different possible values between 0 and 1, the set 𝒫𝒫(𝑹𝑹,𝑪𝑪) varies 

accordingly along with points such as 𝐴𝐴𝐼𝐼  , 𝐴𝐴+ , and 𝐴𝐴− . This allows us to move from 

simply sampling from the line segment produced by the upper Fréchet bound A+and 

lower Fréchet bound A− or a point 𝐴𝐴𝐼𝐼 given a particular set of 𝑡𝑡 and 𝑠𝑠 and find the data 

points that result in various sets of 2 × 2 PMF matrices conforming to certain models 

and/or set constraints. Thus, we can explore all parts of the tetrahedron. Simply varying 

t and s and not applying additional constraints allows us to pick data points from any 

part of the 𝛥𝛥3. If additional constraints are added, such as that of the independence 

model, all relevant points 𝐴𝐴𝐼𝐼 generate a surface of independence, which is a hyperbolic 

paraboloid (Figure 3. 2). This surface divides the simplex into two subsets where the 

subset to the left is the set of positively quadrant dependent matrices, and the subset to 

the right is that of negatively quadrant dependent matrices. Related to this, if association 

is defined by the coefficient  𝛼𝛼 = 𝑝𝑝00𝑝𝑝11
𝑝𝑝01𝑝𝑝10

, 0 ≤ 𝛼𝛼 ≤ ∞ (Fienberg & Gilbert, 1970), then to 
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satisfy 𝑝𝑝00𝑝𝑝11 = 𝑝𝑝01𝑝𝑝10, the probability distributions of the independence model have 𝛼𝛼 =

1. Just as the surface of independence exists for 𝛼𝛼 = 1, surfaces of constant degree of 

association α can also be determined and will always form a hyperboloid of one sheet. 

The loci of points corresponding to different classes of 2 × 2 tables constitute discrepant 

subspaces of 𝛥𝛥3 depending on the constraints.  

 

Figure 3. 1: Tetrahedron depicting a 2 × 2 Contingency Table with Fixed Margins 

Note. Adapted from “The Geometry of Certain Fixed Marginal Probability Distributions”, by T. T. Nguyen 
and A. R. Sampson, 1985, Linear algebra and its applications, 70, p 77. 
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Figure 3. 2: Surface of Independence 

Note. Adapted from “The geometry of a two by two contingency table” by S.E. Fienberg and J.P. Gilbert, 
1970, Journal of the American Statistical Association, 65(330), p 697. 
 

Although direct visualization is not possible as dimensions get higher, the 

concepts above generalize to m × n contingency tables with a fixed row marginal 

probability vector 𝐑𝐑 =  (𝑟𝑟1, 𝑟𝑟2, . . . , 𝑟𝑟𝑚𝑚)  as well as a fixed column marginal probability 

vector 𝐂𝐂 =  (𝑐𝑐1, 𝑐𝑐2 , . . . , 𝑐𝑐𝑛𝑛) (Fienberg, 1968; Nguyen & Sampson, 1985; Slavković & Fienberg, 

2009).  To summarize key points with reference to the scenario listed at the beginning 

of the chapter, geometrically, the set 𝒫𝒫(𝑹𝑹,𝑪𝑪) of all m × n PMF matrices 𝑃𝑃 consisting of 

cell probabilities for an item pair reside in a (𝑚𝑚𝑚𝑚 − 1)-dimensional simplex (𝛥𝛥(𝑚𝑚𝑚𝑚−1)). 𝑚𝑚 

in the study’s context refers to the response frequencies (𝐾𝐾𝑗𝑗) of an item 𝑗𝑗 while 𝑛𝑛 refers 

to those (𝐾𝐾𝑗𝑗′) for an item 𝑗𝑗′. Every matrix P can be geometrically represented by a point 

𝐴𝐴  in the (𝑚𝑚𝑚𝑚− 1) -dimensional simplex with coordinates 𝐴𝐴 =

(𝑝𝑝00,𝑝𝑝01,𝑝𝑝10,𝑝𝑝11,⋯ ,𝑝𝑝(𝑚𝑚−1)(𝑛𝑛−1)) . The dimension of the simplex is (𝑚𝑚𝑚𝑚− 1)  because the 

probability simplex is constrained by ∑ ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 = 1 𝑛𝑛−1
𝑗𝑗=0

𝑚𝑚−1
𝑖𝑖=0 so that we lose one degree of 

freedom. 
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Let 𝒫𝒫(𝑹𝑹,𝑪𝑪) denote the set of all m × n PMF matrices conforming to the specific 

marginal constraints of a set of probability vectors 𝐑𝐑 and 𝐂𝐂. 𝒫𝒫(𝑹𝑹,𝑪𝑪) can be found as a 

subset of the Δ𝑚𝑚𝑚𝑚−1 satisfying a set of conditions laid out by the Fréchet bounds for each 

cell probability 𝑝𝑝𝑖𝑖𝑖𝑖 where 𝑖𝑖 = {0, (𝑚𝑚 − 1)} and𝑗𝑗 = {0, (𝑛𝑛 − 1)}. The bounds are 

 𝑚𝑚𝑚𝑚𝑚𝑚�0, 𝑟𝑟𝑖𝑖 + 𝑐𝑐𝑗𝑗 − 1� ≤  𝑝𝑝𝑖𝑖𝑖𝑖 ≤ 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑟𝑟𝑖𝑖 , 𝑐𝑐𝑗𝑗). (4) 

This results in hyperplanes that are bounded by the extreme matrixes 𝑃𝑃 created 

by the Fréchet bounds and thus, define the subspace of the (𝑚𝑚𝑚𝑚 − 1) -dimensional 

probability simplex where valid data points made be found. When (𝑚𝑚− 1)(𝑛𝑛 − 1) cell 

probabilities fall within the Fréchet bounds, determined by the given marginal 

constraints, a unique PMF matrix P of 𝒫𝒫(𝑹𝑹,𝑪𝑪) can be completely defined. As 𝑹𝑹 and 𝑪𝑪 

change, we can expect the 𝒫𝒫(𝑹𝑹,𝑪𝑪) to vary over the entirety of the simplex in question. If 

other constraints are added, valid points reside in even more constrained subspaces of 

the  Δ𝑚𝑚𝑚𝑚−1. The manifold of independence is one example if we consider only points 

pertaining to the independence model, which is a generalization of the surface of 

independence for 2 × 2 tables (Figure 3. 2) to 𝑚𝑚 × 𝑛𝑛 tables. 

3.3 Sequential importance Sampling (SIS) of Contingency Tables with Fixed 

Margins 

While the geometric representation of contingency tables with fixed margins in 

Section 3.2 provides the theory supporting an LI-based data-generating process, the 

issue remains how one can randomly sample from the data space with constraints 

outlined by the theory. Among many possible methods, this study utilizes the sequential 

importance sampling (SIS) approach. The SIS approach is gaining favor due to its 

efficiency in sampling multi-way tables of many rows and columns with given marginal 
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constraints (Chen, Diaconis, et al., 2005). Furthermore, the SIS procedure samples 

contingency tables independently and uniformly, which fits well with the need of this 

study to sample many tables simultaneously.  

As the name suggests, SIS randomly samples from a target contingency table in a 

sequential manner, with one cell probability being populated at a time. As the probability 

of each cell is a random variable, the resulting contingency table is also a random 

variable. Suppose Σ𝒓𝒓𝒓𝒓 denotes the set of all m × n contingency tables with row marginal 

probability vector 𝑹𝑹 =  (𝑟𝑟1, 𝑟𝑟2, . . . , 𝑟𝑟𝑚𝑚)  and column marginal probability vector  𝑪𝑪 =

 (𝑐𝑐1, 𝑐𝑐2, . . . , 𝑐𝑐𝑛𝑛).  Let 𝑝𝑝𝑖𝑖𝑖𝑖 be the element at the 𝑖𝑖th row and the 𝑗𝑗th column of a contingency 

table. Following the logic of SIS, cells are sampled one-by-one, from column to column, 

beginning with cell 𝑝𝑝11.  

Recall the necessary and sufficient condition for the existence of a contingency 

table of probabilities with 𝑹𝑹 and 𝑪𝑪 is 

 𝑟𝑟1 + 𝑟𝑟2 +⋯𝑟𝑟𝑚𝑚 = 𝑐𝑐1 + 𝑐𝑐2 +⋯+ 𝑐𝑐𝑛𝑛 ≡ 1 (5) 

Thus, 𝑝𝑝11 needs to satisfy the following conditions:  

 0 ≤ 𝑝𝑝11 ≤ 𝑟𝑟1, 

𝑐𝑐1 −�𝑟𝑟𝑖𝑖 = 𝑐𝑐1 + (𝑟𝑟1 − 1)
𝑚𝑚

𝑖𝑖=2

≤  𝑝𝑝11 ≤ 𝑐𝑐1  
(6) 

which can be combined as 

 𝑚𝑚𝑚𝑚𝑚𝑚(0, 𝑐𝑐1 + 𝑟𝑟1 − 1) ≤  𝑝𝑝11 ≤ 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑟𝑟1, 𝑐𝑐1) (7) 

Notice how this matches the Fréchet bounds for any cell probability 𝑝𝑝𝑖𝑖𝑖𝑖  defined in 

equation (4) (Chen, Dinwoodie, et al., 2005; Fienberg, 1999). Fréchet bounds determine 

the lower and upper limits of a bivariate probability based on the surrounding univariate 

margins and 𝑝𝑝11 is randomly sampled from the uniform distribution between the lower 

and upper Fréchet bounds (other distributions can be used to sample cells as well). 
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After sampling and thus fixing 𝑝𝑝11, a second cell probability 𝑝𝑝21 is sampled in the 

same manner but conditional on 𝑝𝑝11. This equates to the Fréchet bounds being updated 

to incorporate the information from the previously sampled cell probability 𝑝𝑝11. Based 

on the same logic, we can recursively sample the other cells in column 1 that are 1 ≤

𝑖𝑖 ≤ 𝑚𝑚− 1  by uniformly sampling from the range set by the repeatedly updated 

restriction 

 𝑚𝑚𝑚𝑚𝑚𝑚�0, 𝑐𝑐1 − ∑ 𝑝𝑝𝑘𝑘1𝑖𝑖−1
𝑘𝑘=1 − ∑ 𝑟𝑟𝑘𝑘𝑚𝑚

𝑘𝑘=𝑖𝑖+1  � ≤  𝑝𝑝𝑖𝑖1 ≤ 𝑚𝑚𝑚𝑚𝑚𝑚�𝑟𝑟𝑖𝑖 , 𝑐𝑐1 − ∑ 𝑝𝑝𝑘𝑘1𝑖𝑖−1
𝑘𝑘=1 �. (8) 

This results in all the cells that are free in column 1 being sampled. Then we proceed 

with a similar process of uniformly sampling the remaining free cell probabilities in 

the remaining columns (1 ≤ 𝑖𝑖 ≤ 𝑚𝑚 − 1  and 1 < 𝑗𝑗 ≤ 𝑛𝑛 − 1) within the bounds of  

𝑚𝑚𝑚𝑚𝑚𝑚�0, 𝑐𝑐𝑗𝑗 −�𝑝𝑝𝑘𝑘𝑘𝑘

𝑖𝑖−1

𝑘𝑘=1

− � 𝑟𝑟𝑘𝑘

𝑚𝑚

𝑘𝑘=𝑖𝑖+1

 + � � 𝑝𝑝𝑘𝑘𝑘𝑘′
𝑗𝑗−1

𝑘𝑘′=1

𝑚𝑚

𝑘𝑘=𝑖𝑖+1

� ≤  𝑝𝑝𝑖𝑖𝑖𝑖 ≤ 𝑚𝑚𝑚𝑚𝑚𝑚�𝑟𝑟𝑖𝑖 −�𝑝𝑝𝑖𝑖𝑖𝑖

𝑗𝑗−1

𝑘𝑘=1

, 𝑐𝑐𝑗𝑗 −�𝑝𝑝𝑘𝑘𝑘𝑘

𝑖𝑖−1

𝑘𝑘=1

�. (9) 

The number of free cells in a two-way contingency table with marginal constraints is 

equal to (𝑚𝑚 − 1)(𝑛𝑛 − 1). All other cell probabilities follow naturally. This is what is called 

the degrees of freedom. In short, the entire sampled contingency table is the result of 

sequentially fixing the free cell probabilities in the table (Fienberg, 1999). For example, 

for a 2 × 2 table of given row and column sums (i.e., 𝑟𝑟1 + 𝑟𝑟2 = 𝑐𝑐1 + 𝑐𝑐2 ≡ 1), the degrees of 

freedom is equal to 1. A cell probability (e.g., 𝑝𝑝11)  is the only variable that needs to be 

sampled from a uniform or hypergeometric distribution within the range of 

[𝑚𝑚𝑚𝑚𝑚𝑚 (r1, c1),𝑚𝑚𝑚𝑚𝑚𝑚(0, c1 + r1 − 1)].  Then all the other cells can be filled as  𝑝𝑝12 = 𝑟𝑟1 −

𝑎𝑎11,𝑝𝑝21 = 𝑐𝑐1 − 𝑝𝑝11 and 𝑝𝑝22 = 1 − 𝑝𝑝12 − 𝑝𝑝21 − 𝑝𝑝11.  
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3.4 Proposed Data Generation Algorithm 

For IRT models specified using the first- and second-order marginal moments, 

the complete data space of possible data patterns consists of all the bivariate margins 

simultaneously satisfying the bounds set by all the univariate margins (i.e., Fréchet 

bounds) for a certain number of items, 𝐽𝐽 in this case. We can propose an algorithm that 

should be able to randomly and uniformly sample data points from the target data space 

by answering the following questions: 

1) how to appropriately set the distribution to draw the univariate probabilities 

of an item from,  

2) how to randomly sample a bivariate probability arising from an item pair 

under the pre-generated univariate margin constraints for each item  

3) how to do 1) and 2) when the lower order margins of all possible unique item 

pairs must be considered together. The contingency tables for all item pairs 

are not entirely independent as they can share some univariate margins with 

other contingency tables depending on the item pair in question. 

For convenience, let’s constrain the previous scenario so that J items each have 

the same 𝑚𝑚  categories with each unique item pair 𝑦𝑦𝑗𝑗  and 𝑦𝑦𝑗𝑗′  making up a m × m 

contingency table where cells refer to bivariate probabilities. Let 𝑝𝑝𝑖𝑖𝑖𝑖  be the bivariate 

probability corresponding to the cell of the ith row and the jth column of a m × m 

contingency table. Each item of an item pair also has its respective marginal univariate 

probabilities that is set as a vector of row probabilities ( 𝐑𝐑 =  (𝑟𝑟1, 𝑟𝑟2, . . . , 𝑟𝑟𝑚𝑚)) for 𝑦𝑦𝑗𝑗 and as 

a vector of column probabilities ( 𝐂𝐂 =  (𝑐𝑐1, 𝑐𝑐2, . . . , 𝑐𝑐𝑚𝑚)) for 𝑦𝑦𝑗𝑗. Again,  𝑟𝑟1 + 𝑟𝑟2 +⋯𝑟𝑟𝑚𝑚 = 𝑐𝑐1 +

𝑐𝑐2 + ⋯+ 𝑐𝑐𝑚𝑚 = 1.  
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Starting with the univariate probabilities, the suitable univariate distribution can 

be found when considering the relationship between the simplex and the Dirichlet 

distribution. The probability density function (PDF) of the Dirichlet distribution for 

𝑘𝑘 random variables is a standard (k – 1) - dimensional probability simplex existing in a k 

dimensional space (Lin, 2016). This Dirichlet distribution, often denoted as 𝐷𝐷𝐷𝐷𝐷𝐷(𝜶𝜶),  has 

𝛼𝛼1,⋯𝛼𝛼𝑘𝑘  concentration parameters where 𝛼𝛼𝑘𝑘 > 0.   The marginal distributions of the 

Dirichlet distribution can be derived directly by applying the aggregation property. 

Suppose we have a 2 × 2 table of (𝑝𝑝00,𝑝𝑝01,𝑝𝑝10,𝑝𝑝11) ~𝐷𝐷𝐷𝐷𝐷𝐷(𝛼𝛼1,𝛼𝛼2,𝛼𝛼3,𝛼𝛼4) where 𝑝𝑝11 = 1− 𝑝𝑝00 −

𝑝𝑝01 − 𝑝𝑝10. The resulting distribution of the sums of random variables 𝑝𝑝00 + 𝑝𝑝01 and 𝑝𝑝10 +

𝑝𝑝11 are (𝑝𝑝00 + 𝑝𝑝01,𝑝𝑝10 + 𝑝𝑝11)~𝐷𝐷𝐷𝐷𝐷𝐷(𝛼𝛼1 + 𝛼𝛼2,𝛼𝛼3 + 𝛼𝛼4), which is the same as 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝛼𝛼1 + 𝛼𝛼2,𝛼𝛼3 +

𝛼𝛼4), and gives the univariate probabilities of the row variable. The column variable 

counterparts can be found as  (𝑝𝑝00 + 𝑝𝑝10,𝑝𝑝01 + 𝑝𝑝11)~𝐷𝐷𝐷𝐷𝐷𝐷(𝛼𝛼1 + 𝛼𝛼3,𝛼𝛼2 + 𝛼𝛼4). Considering that 

all 𝛼𝛼𝑘𝑘s for the 𝐷𝐷𝐷𝐷𝐷𝐷(𝜶𝜶) are set equal to one when uniformly sampling of a unit simplex, 

which the probability simplex is a part of, the 𝑚𝑚 univariate (category) probabilities for 

each item 𝑦𝑦𝑗𝑗 should be sampled from a 𝐷𝐷𝐷𝐷𝐷𝐷(𝛼𝛼1 = 𝑚𝑚, … ,𝛼𝛼𝑚𝑚 = 𝑚𝑚) summing relevant 𝛼𝛼𝑘𝑘s of 

the joint distribution 𝐷𝐷𝐷𝐷𝐷𝐷(𝛼𝛼1 = 1, … ,𝛼𝛼𝑚𝑚𝑚𝑚 = 1) of the (𝑚𝑚𝑚𝑚− 1)- dimensional simplex. These 

results are corroborated explicitly by research on the tetrahedron, the Dirichlet 

distribution, and sampling from contingency tables (Draconis & Efron, 1987; Letac & 

Scarsini, 1998).  

The answer for 2) can be found by combining knowledge about Fréchet bounds 

that dictate the lower and upper bounds of a bivariate probability based on the 

surrounding univariate margins sampled from the Dirichlet distribution and adapting 

the SIS proposed by Chen, Diaconis, et al. (2005) accordingly. The previous sections 

provide relevant details.  
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Finally, having multiple sets of lower-order margins with overlapping constraints 

is not an issue when using the SIS method as it samples from each contingency table 

independently. As long as the respective univariate margins of each specific item pair 

are correctly specified, this reduces having to only consider one item pair or one 

contingency table at a time. We just simply repeat the process for all the contingency 

tables for all the unique item pairs. Weaving the pieces together, the proposed data 

generation mechanism follows the steps outlined in Table 3. 2. 

Table 3. 2: Data Generation Algorithm 

1. Randomly sample 𝑚𝑚 univariate (category) probabilities for each item 𝑦𝑦𝑗𝑗  from 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑙𝑙𝑙𝑙𝑙𝑙(𝑎𝑎1 = 𝑚𝑚, … ,𝑎𝑎𝑚𝑚 = 𝑚𝑚) 

2. Uniformly sample a bivariate probability cell 𝑝𝑝𝑖𝑖𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑚𝑚, 𝑗𝑗 = 1, … ,𝑚𝑚 from the 

following Frechet bounds: 

If 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚 − 1  and 𝑗𝑗 = 1 

𝑚𝑚𝑚𝑚𝑚𝑚(0, 𝑐𝑐1 + 𝑟𝑟1 − 1) ≤  𝑎𝑎11 ≤ min (𝑟𝑟1, 𝑐𝑐1)  

𝑚𝑚𝑚𝑚𝑚𝑚�0, 𝑐𝑐1 − ∑ 𝑎𝑎𝑘𝑘1𝑖𝑖−1
𝑘𝑘=1 − ∑ 𝑟𝑟𝑘𝑘𝑚𝑚

𝑘𝑘=𝑖𝑖+1  � ≤  𝑎𝑎𝑖𝑖1 ≤ 𝑚𝑚𝑚𝑚𝑚𝑚�𝑟𝑟𝑖𝑖, 𝑐𝑐1 − ∑ 𝑎𝑎𝑘𝑘1𝑖𝑖−1
𝑘𝑘=1 �  

If 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚 − 1  and 1 < 𝑗𝑗 ≤ 𝑚𝑚 − 1 

𝑚𝑚𝑚𝑚𝑚𝑚 �0, 𝑐𝑐𝑗𝑗 −�𝑎𝑎𝑘𝑘𝑘𝑘

𝑖𝑖−1

𝑘𝑘=1

− � 𝑟𝑟𝑘𝑘

𝑚𝑚

𝑘𝑘=𝑖𝑖+1

 + � � 𝑎𝑎𝑘𝑘𝑘𝑘′
𝑗𝑗−1

𝑘𝑘′=1

𝑚𝑚

𝑘𝑘=𝑖𝑖+1

� ≤  𝑎𝑎𝑖𝑖𝑖𝑖 ≤ 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑟𝑟𝑖𝑖 −�𝑎𝑎𝑖𝑖𝑖𝑖

𝑗𝑗−1

𝑘𝑘=1

, 𝑐𝑐𝑗𝑗 −�𝑎𝑎𝑘𝑘𝑘𝑘

𝑖𝑖−1

𝑘𝑘=1

� 

If 𝑖𝑖 = 𝑚𝑚 and 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚 − 1 

𝑎𝑎𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑗𝑗 −�𝑎𝑎𝑘𝑘𝑘𝑘

𝑖𝑖−1

𝑘𝑘=1

 

If 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚 − 1 and 𝑗𝑗 = 𝑚𝑚 
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𝑎𝑎𝑖𝑖𝑖𝑖 = 𝑟𝑟𝑖𝑖 −�𝑎𝑎𝑖𝑖𝑘𝑘

𝑗𝑗−1

𝑘𝑘=1

 

4. Repeat steps 2 for all 𝐽𝐽(𝐽𝐽 − 1)/2 item pairs 𝑦𝑦𝑗𝑗 and 𝑦𝑦𝑗𝑗′. 

5. Repeat steps 1-4 a very large number of times. 

The proposed data generation algorithm can readily generate dichotomous and 

polytomous item data of large quantities. The algorithm was tested using 10,000 

samples for up to 50 items and four categories, which required generating a total of 

50 × 4 + 50×49
2

× 4 × 4 = 19800 data elements. This number is within an easily manageable 

range for most computers. The same cannot be said if attempting to use the simplex 

sampling method, as it requires generating 450  item response probabilities, which is 

greater than 1030 . Theoretically, the proposed algorithm should be able to sample 

uniformly from the (𝑚𝑚𝑚𝑚− 1)-dimensional simplex, which is the desired categorical data 

space.  

An illustration of what this should look like is given in Figure 5. 2 in Chapter 5 

for a 2 × 2 table, resulting in a tetrahedron. It is to note that while random and uniform 

sampling across the complete simplex was the main goal, it is possible to limit the 

categorial data space to more plausible data patterns and sample from within it 

(Preacher, 2006). The criteria for plausible data can vary due to factors such as model 

parametrization, estimators, and inferences of interest. Geometric descriptions of 

classes, such as those of 2 × 2 tables as above can be used to identify the data space or 

subspaces from which one would need to sample, depending on the research aim. The 

proposed data generation method then can be modified to sample randomly and 

uniformly data ranging from any subspace to the entire space of the simplex 𝛥𝛥3. The 
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subspace or full space will then serve as the reference for evaluating the inherent 

complexity of a given categorical data model. 
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Chapter IV 

Limited Information Estimation Methods  

 

The second aim of this study is to derive an LI-based estimator, more generally 

known as CML estimators, capable of fitting a variety of IRT models using only data from 

the lower-order margins. This chapter is a review of existing IRT model estimation 

techniques with a focus on LI methods. We will again suppose the scenario in Chapter 3 

where J items are measured for N individuals 𝑖𝑖 = 1,⋯𝑁𝑁  and 𝑗𝑗 = 1,⋯𝐽𝐽 . 𝑦𝑦𝑖𝑖𝑖𝑖  is the 

response from an individual 𝑖𝑖  to item 𝑗𝑗  that can have one of 𝐾𝐾𝑗𝑗  categories that are 

assumed to be ordered. 𝒚𝒚 = (𝑦𝑦𝑖𝑖𝑖𝑖)𝑁𝑁×𝐽𝐽 is the data matrix as 𝑖𝑖 = 1,⋯𝑁𝑁 and 𝑗𝑗 = 1,⋯𝐽𝐽. 𝒚𝒚′ =

�𝑦𝑦1,𝑦𝑦2,⋯ ,𝑦𝑦𝐽𝐽� denotes the vector of J variables where each variable j has 𝐾𝐾𝑗𝑗  response 

alternatives. Responses to the items belong to a J -way contingency table with a total of 

𝑅𝑅 = ∏ 𝐾𝐾𝑗𝑗
𝐽𝐽
𝑗𝑗=1  cells that denote the possible response vectors 𝒚𝒚′𝒓𝒓 = (𝑐𝑐1, 𝑐𝑐2,⋯ , 𝑐𝑐𝐽𝐽) where 𝑟𝑟 =

1,⋯𝑅𝑅 and 𝑐𝑐𝑗𝑗 = 1,⋯𝐾𝐾𝑗𝑗. Let us also denote a latent trait vector 𝝃𝝃 = �𝜉𝜉1, 𝜉𝜉2 , … , 𝜉𝜉𝑞𝑞� of 1 through 

q latent factors, using which we specify the probability of each 𝑟𝑟 as 

 Pr�𝑦𝑦1 = 𝑐𝑐1,𝑦𝑦2 = 𝑐𝑐2, … ,𝑦𝑦𝐽𝐽 = 𝑐𝑐𝐽𝐽�𝝃𝝃�=f(𝝃𝝃) (10) 

where 𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝐽𝐽  represent the response categories of 𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝐽𝐽 , respectively (Cai & 

Moustaki, 2018). 

4.1 Classification of Item Response Theory (IRT) Estimation Methods  

IRT models were developed for the latent variable modeling of categorical 

observed variables and continuous underlying variables where traditional linear factor 

models are no longer suitable. IRT estimation methods fall into two main categories of 

the underlying variable (UV) approach and the IRT approach. In the former, IRT models 
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are often called item factor models from the term item factor analysis (IFA). The 

fundamental distinction between the two approaches lies in how they perceive the 

categorical outcome variables (Bolt, 2005; Cai & Moustaki, 2018; Jöreskog & Moustaki, 

2001; Wirth & Edwards, 2007). The former approach considers ordinal variables as 

discrete manifestations of underlying continuous variables to meet the assumptions of 

classical FA for its implementation. The latter approach makes no such assumptions so 

that ordinal indicators are left as they are. As opposed to using latent variable methods 

for continuous outcomes, it is modeled by way of distributional assumptions for the 

observed items conditional on the latent variables that capitalize on the notion of 

conditional independence (Cai & Moustaki, 2018; Katsikatsou et al., 2012).  

Alternatively, latent trait model estimation methods can also be categorized as 

either FI or LI methods (Bolt, 2005; Maydue-Olivares & Joe, 2005). As repeatedly 

mentioned, the whole contingency table of the full multinomial probabilities is the unit 

of analysis in FI estimation methods. LI methods instead make use of lower-order tables, 

mainly up to two-way tables, and perform the estimation on those tables (Cai & Moustaki, 

2018; Maydeu-Olivares & Joe, 2006). To reiterate, the clearest distinction between FI and 

LI estimation is the difference in the number of data elements fitted, which exponentially 

increases as items and factors do. The research overall suggests that the performances 

of FI and LI methods for categorical outcomes are comparable (Bolt, 2005). 

4.2 Limited Information (LI) Estimation Methods 

LI is the terminology used in psychometrics referring to estimation and inference 

procedures based on low-dimensional margins. LI methods are much more prevalent in 

the UV approach as opposed to the IRT approach. In the UV approach, the observed 

ordinal variable vector  𝒚𝒚′ = (𝑦𝑦𝑗𝑗, … ,𝑦𝑦𝐽𝐽) is connected to an underlying continuous variable 
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vector 𝒚𝒚∗′ = (𝑦𝑦𝑗𝑗∗, … ,𝑦𝑦𝐽𝐽∗)  usually assumed to be multivariate normal (MVN) with 𝐾𝐾𝑗𝑗 − 1 

thresholds for each 𝑦𝑦𝑗𝑗 that discretize the MVN distribution. Elaborating, an observed 

ordinal variable 𝑦𝑦𝑗𝑗 is connected to an underlying continuous variable 𝑦𝑦𝑗𝑗∗ by 

 𝑦𝑦𝑗𝑗 = 𝑐𝑐𝑗𝑗  ⟺  𝜏𝜏𝑐𝑐𝑗𝑗−1
(𝑦𝑦𝑗𝑗) <  𝑦𝑦𝑗𝑗∗ < 𝜏𝜏𝑐𝑐𝑗𝑗

(𝑦𝑦𝑗𝑗), 𝑐𝑐𝑗𝑗 = 1,⋯𝐾𝐾𝑗𝑗 (11) 

where  

 −∞ = 𝜏𝜏0
(𝑦𝑦𝑗𝑗) < 𝜏𝜏1

(𝑦𝑦𝑗𝑗) <  ⋯ < 𝜏𝜏𝐾𝐾𝑗𝑗−1
(𝑦𝑦𝑗𝑗) < 𝜏𝜏𝐾𝐾𝑗𝑗

(𝑦𝑦𝑗𝑗) = +∞. (12) 

The 𝜏𝜏𝑐𝑐𝑗𝑗
(𝑦𝑦𝑗𝑗)

 is the 𝑐𝑐𝑗𝑗th threshold of variable 𝑦𝑦𝑗𝑗 and together these thresholds define the 𝐾𝐾𝑗𝑗 

categories. Because only ordinal information is available, the scale of the latent response 

variable is indeterminate and most often we set each 𝑦𝑦𝑗𝑗∗  as a standard normal 

distribution.  The observed ordinal variable vector  𝒚𝒚′ = (𝑦𝑦𝑗𝑗, … ,𝑦𝑦𝐽𝐽 ) has now been 

transformed into a J-dimensional vector of latent continuous variables  𝒚𝒚∗′ = �𝑦𝑦𝑗𝑗∗, … ,𝑦𝑦𝐽𝐽∗� 

to which usual FA methods can be applied.  

However, it becomes evident that this is not feasible when considering the (log-) 

likelihood function to be maximized where the data is assumed to have been generated 

by a multinomial distribution. As 𝑦𝑦𝑖𝑖𝑖𝑖 is the response from an individual 𝑖𝑖 to item 𝑗𝑗 with 

data matrix 𝒚𝒚, the likelihood function can be written as  

 
𝐿𝐿( 𝜽𝜽;𝒚𝒚) = �𝜋𝜋𝑖𝑖(𝜽𝜽)

𝑁𝑁

𝑖𝑖=1

 (13) 

where 𝜽𝜽 is a parameter vector,  and 𝜋𝜋𝑖𝑖(𝜽𝜽) is the probability under the model for the 

response vector from person 𝑖𝑖, Pr�𝑦𝑦𝑖𝑖1 = 𝑦𝑦𝑖𝑖1,⋯𝑦𝑦𝑖𝑖𝑖𝑖�. This is the likelihood contribution of 

a single observation 𝑖𝑖. The log-likelihood function, which is what is actually maximized 

is then 
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𝑙𝑙( 𝜽𝜽;𝒚𝒚) = 𝑙𝑙𝑙𝑙𝑙𝑙( 𝜽𝜽;𝒚𝒚) = �𝑙𝑙𝑙𝑙𝜋𝜋𝑖𝑖(𝜽𝜽)

𝑁𝑁

𝑖𝑖=1

 (14) 

Since every response pattern, denoted 𝑟𝑟 , given the latent ability factors, have equal 

contributions to the log-likelihood, equation (14) can be rewritten as  

 
𝑙𝑙(𝜽𝜽;𝒚𝒚) = 𝑙𝑙𝑙𝑙 𝐿𝐿(𝜽𝜽;𝒚𝒚) = �𝑛𝑛𝑟𝑟𝑙𝑙𝑙𝑙𝜋𝜋𝑟𝑟(𝜽𝜽)

𝑅𝑅

𝑟𝑟=1

= 𝑁𝑁�𝑝𝑝𝑟𝑟𝑙𝑙𝑙𝑙𝜋𝜋𝑟𝑟(𝜽𝜽)
𝑅𝑅

𝑟𝑟=1

 (15) 

where 𝑛𝑛𝑟𝑟 and 𝜋𝜋𝑟𝑟(𝜽𝜽) are each the observed frequency and the probability under the model 

for the response pattern r with 𝜋𝜋𝑟𝑟(𝜽𝜽) > 0 and ∑ 𝜋𝜋𝑟𝑟(𝜽𝜽) = 1𝑅𝑅
𝑟𝑟=1 . 𝑁𝑁 = ∑ 𝑛𝑛𝑟𝑟𝑅𝑅

𝑟𝑟=1  and 𝑝𝑝𝑟𝑟 = 𝑛𝑛𝑟𝑟/𝑁𝑁 is 

the sample proportion of r. In short, 𝑛𝑛𝑟𝑟  serve as frequency weights for each pattern 

instead of multiplying over all individuals one-by-one. 

In the UV approach, the maximization of this log-likelihood function over the 

parameter vector 𝜽𝜽 requires the evaluation of the J-dimensional integral with no closed 

form of 

 

𝜋𝜋𝑟𝑟(𝜽𝜽) = 𝜋𝜋(𝑦𝑦1 = 𝑐𝑐1,𝑦𝑦2 = 𝑐𝑐2 , … ,𝑦𝑦𝐽𝐽 = 𝑐𝑐𝐽𝐽; 𝜽𝜽)  = � ⋯� 𝜙𝜙𝐽𝐽(𝒚𝒚∗|𝚺𝚺𝐲𝐲∗ )
𝜏𝜏𝑐𝑐𝐽𝐽
�𝑦𝑦𝐽𝐽�

𝜏𝜏𝑐𝑐𝐽𝐽−1
�𝑦𝑦𝐽𝐽�

𝑑𝑑𝒚𝒚∗
𝜏𝜏𝑐𝑐1

(𝑦𝑦1)

𝜏𝜏𝑐𝑐1−1
(𝑦𝑦1)

 (16) 

where 𝜙𝜙𝐽𝐽(𝒚𝒚∗|𝚺𝚺𝐲𝐲∗ ) is a J-dimensional normal density with zero mean and correlation 

matrix 𝚺𝚺𝐲𝐲∗. Due to this, LI methods are often used under the UV approach which falls 

into either the class of multiple-stage (Jöreskog, 1990; Muthén 1984) or CML (Lindsay, 

1988) estimators.  

At the heart of multiple-stage estimators are the correlations between each pair 

of variables (𝑦𝑦𝑗𝑗∗,𝑦𝑦𝑗𝑗′
∗ ), which are tetrachoric or polychoric correlations depending on the 

variables being binary or ordinal (Jöreskog, 1990; Muthen, 1984). They are called 

multiple-stage estimators because estimation is carried out in multiple stages.  In the 

case of three-stage estimation methods, first-order statistics (i.e., 𝐾𝐾𝑗𝑗 − 1 thresholds per 
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item) are estimated using the univariate margins of each item. Then, given such first-

stage estimates, second-order statistics (i.e., 𝐽𝐽(𝐽𝐽 − 1)/2  tetrachoric/polychoric 

correlations) are estimated by maximizing the bivariate marginal likelihoods for each 

observed data of item pairs (𝑦𝑦𝑗𝑗,𝑦𝑦𝑗𝑗′) separately, given the first-stage estimates. In the 

third and last stage, the structural model is estimated using conventional FA given the 

estimated correlation matrix from stage two based on 𝒚𝒚∗′ = (𝑦𝑦𝑖𝑖𝑖𝑖∗ , … ,𝑦𝑦𝑖𝑖𝑖𝑖∗ ) (Cai & Moustaki, 

2018). Three-stage methods differ in this step depending on the version of generalized 

least squares (GLS) used such as unweighted least squares (ULS), diagonally weighted 

least squares (DWLS), and weighted least squares (WLS). Their main advantage is that 

they are computationally less demanding than FIML. The limitations are that they require 

multiple stages of estimation and tend to have issues estimating the weight matrix, 

especially in small sample sizes with zero or small frequencies in the bivariate margins 

(Cai & Moustaki, 2012; Katsikatsou et al., 2012, Xi, 2011). 

CML estimation is the other branch of LI methods in psychometrics. Among 

various CML estimation methods, the use of composite marginal maximum likelihoods 

composed by low-dimensional marginal distributions has received at lot of attention. 

The advantage of the CML approach when compared with the multi-stage estimation 

methods is that all the model parameters are estimated simultaneously so that there is 

less room for error. Moreover, the standard errors of the estimates are straightforward 

to calculate without the need for any weight matrix.  

Let us again consider the log-likelihood in equation (14). CML methods developed 

under the UV approach include pseudo-likelihood functions where the sum of both the 

univariate and bivariate marginal distributions are maximized, coined the underlying 

bivariate normal (UBN) method, as well as functions where simply the bivariate marginal 
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distribution or pairwise marginal likelihoods are maximized (Jöreskog & Moustaki, 2001, 

2018; Katsikatsou et al., 2011; Nuo & Browne, 2014). The latter is called the pairwise 

maximum likelihood (PML). The UBN fit function can be written as  

 
�𝑙𝑙𝑙𝑙𝑙𝑙�𝜽𝜽;𝑦𝑦𝑗𝑗� +
𝐽𝐽

𝑗𝑗=1

� � 𝑙𝑙𝑙𝑙𝑙𝑙�𝜽𝜽;𝑦𝑦𝑗𝑗,𝑦𝑦𝑗𝑗′�
𝐽𝐽

𝑗𝑗′=𝑗𝑗+1

=
𝐽𝐽−1

𝑗𝑗=2

 

� � 𝑛𝑛𝑐𝑐𝑗𝑗
�𝑦𝑦𝑗𝑗� 𝑙𝑙𝑙𝑙 �𝜋𝜋𝑐𝑐𝑗𝑗

(𝑦𝑦𝑖𝑖)(𝜽𝜽)�+� � � � 𝑛𝑛𝑐𝑐𝑗𝑗𝑐𝑐𝑗𝑗′
�𝑦𝑦𝑗𝑗𝑦𝑦𝑗𝑗′� 𝑙𝑙𝑙𝑙 �𝜋𝜋𝑐𝑐𝑗𝑗𝑐𝑐𝑗𝑗′

�𝑦𝑦𝑗𝑗𝑦𝑦𝑗𝑗′�(𝜽𝜽)�

𝐾𝐾𝑗𝑗′

𝑐𝑐𝑗𝑗′=1

𝐾𝐾𝑗𝑗

𝑐𝑐𝑗𝑗=1

𝐽𝐽

𝑗𝑗′=𝑗𝑗+1

𝐽𝐽−1

𝑗𝑗=1

𝐾𝐾𝑗𝑗

𝑐𝑐𝑗𝑗=1

.
𝐽𝐽

𝑗𝑗=1

 

(17) 

The PML method involves only the latter part of equation (17) with the bivariate 

likelihoods. 𝑛𝑛𝑐𝑐𝑗𝑗
�𝑦𝑦𝑗𝑗� and 𝑛𝑛𝑐𝑐𝑗𝑗𝑐𝑐𝑗𝑗′

�𝑦𝑦𝑗𝑗𝑦𝑦𝑗𝑗′� are the univariate and bivariate frequency of a response in 

category 𝑐𝑐𝑗𝑗  and 𝑐𝑐𝑗𝑗′  for variables 𝑦𝑦𝑗𝑗 and 𝑦𝑦𝑗𝑗′ , respectively, and 𝜋𝜋𝑐𝑐𝑗𝑗
(𝑦𝑦𝑖𝑖)(𝜽𝜽) and  and 𝜋𝜋𝑐𝑐𝑗𝑗𝑐𝑐𝑗𝑗′

�𝑦𝑦𝑗𝑗𝑦𝑦𝑗𝑗′�(𝜽𝜽) 

are the corresponding univariate and bivariate marginal probabilities under the model. 

Elaborating, univariate marginal probabilities are 

 
𝜋𝜋𝑐𝑐𝑗𝑗
�𝑦𝑦𝑗𝑗�(𝜽𝜽)= Pr�𝑦𝑦𝑗𝑗 = 𝑐𝑐𝑗𝑗� = ∫ 𝜙𝜙1(𝑦𝑦𝑗𝑗∗)𝑑𝑑𝑦𝑦𝑗𝑗∗

𝜏𝜏𝑐𝑐𝑗𝑗
�𝑦𝑦𝑗𝑗�

𝜏𝜏𝑐𝑐𝑗𝑗−1
�𝑦𝑦𝑗𝑗�

 (18) 

where 𝜙𝜙1(∙)  is the standard normal density function while bivariate marginal 

probabilities are 

𝜋𝜋𝑐𝑐𝑗𝑗𝑐𝑐𝑗𝑗′
�𝑦𝑦𝑗𝑗𝑦𝑦𝑗𝑗′�(𝜽𝜽) =  Pr�𝑦𝑦𝑗𝑗 = 𝑐𝑐𝑗𝑗, 𝑦𝑦𝑗𝑗′ = 𝑐𝑐𝑗𝑗′� = � � 𝜙𝜙2(𝑦𝑦𝑗𝑗∗,𝑦𝑦𝑗𝑗′

∗ |𝜌𝜌𝑗𝑗𝑗𝑗′)
𝜏𝜏𝑐𝑐𝑗𝑗′
�𝑦𝑦𝑗𝑗′�

𝜏𝜏𝑐𝑐𝑗𝑗′−1
�𝑦𝑦𝑗𝑗′�

𝑑𝑑𝑦𝑦𝑗𝑗∗𝑑𝑑𝑦𝑦𝑗𝑗′
∗

𝜏𝜏𝑐𝑐𝑗𝑗
�𝑦𝑦𝑗𝑗�

𝜏𝜏𝑐𝑐𝑗𝑗−1
�𝑦𝑦𝑗𝑗�

 (19) 

where 𝜙𝜙2�∙,∙,𝜌𝜌𝑖𝑖𝑖𝑖� is the standardized bivariate normal distribution density function with 

correlation 𝜌𝜌𝑗𝑗𝑗𝑗′. 

Like this, the above CML methods only require one- and two-dimensional 

integrations, instead of the general J-dimensional integration, one for each item 𝑗𝑗 ,  
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needed for a conventional UV approach as in equation (16). Thus, it is always 

computationally feasible (Katsikatsou et al., 2012) and a larger number of item variables 

as well as a larger number of factors are estimable (Joreskong & Moustaki, 2001; Xi, 

2011). From this, it is possible to see why the UV approach frequently favors LI 

estimation. As dimensionality requiring integration is the same as the number of 

observed variables, the integration becomes computationally infeasible even for a 

handful of items. This is less so in an IRT context, where the dimensionality increases 

as a function of the number of latent factors (Cai, 2010). 

4.3 Composite Maximum Likelihood (CML) Estimation  

CML methods expand upon Fisherian likelihood theory driven by the need to 

reduce computational burden in likelihood estimation of high-dimensional data. For this 

purpose, they replace high-dimensional complicated likelihood functions with any 

product of conditional or marginal lower-dimensional densities that are more 

computationally feasible (Joe et al., 2012; Lindsay, 1988; Varin, 2008; Varin et al., 2011). 

Modeling of lower-order dimensional distributions is frequently easier and more 

straightforward as modeling uncertainty tends to increase with dimensionality. As such, 

possible model misspecification in higher-order dimensional distributions can be 

avoided so that CML is a robust modeling alternative. To add, a model of lower order 

distributions is likely to be compatible with multiple modeling options designed for 

higher dimensional distributions. 

Composite likelihood methods achieve this by piecing together individual 

component likelihoods, each of which corresponds to a marginal or conditional event 

(Lindsay, 1988). Let 𝑌𝑌 be a 𝑗𝑗-dimensional vector with probability density function 𝑓𝑓(𝑦𝑦; 𝜃𝜃) 

for some unknown 𝑞𝑞-dimensional parameter vector 𝜽𝜽 ∈ 𝜣𝜣 Suppose (𝐴𝐴1, … ,𝐴𝐴𝐷𝐷) are a set of 
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marginal or conditional events with associated likelihoods 𝐿𝐿𝑑𝑑 = 𝑓𝑓(𝒚𝒚 ∈ 𝐴𝐴𝑑𝑑;  𝜽𝜽) = 𝑃𝑃𝑃𝑃(𝒚𝒚 ∈

𝑨𝑨𝑑𝑑),𝑑𝑑 = 1, … ,𝐷𝐷. A composite likelihood is the weighted product of each of the individual 

likelihoods, 

 
𝐶𝐶𝐶𝐶(𝒚𝒚;𝜽𝜽) = �𝑓𝑓(𝒚𝒚 ∈ 𝐴𝐴𝑑𝑑;  𝜽𝜽)𝑤𝑤𝑑𝑑

𝐷𝐷

𝑑𝑑=1

  (20) 

where {𝑤𝑤𝑑𝑑}  are a set of a non-negative weights associated with event 𝐴𝐴𝑑𝑑 . The log-

likelihood is  

 
𝑐𝑐𝑐𝑐(𝒚𝒚;𝜽𝜽) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝒚𝒚;𝜽𝜽) =  �𝑤𝑤𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙(𝒚𝒚 ∈ 𝐴𝐴𝑑𝑑;  𝜽𝜽)

𝐷𝐷

𝑑𝑑=1

  (21) 

If its maximizer 𝜽𝜽�𝐶𝐶𝐶𝐶 if unique, it is the maximum composite likelihood estimator (MCLE; 

Xu & Reid, 2011; Varin, 2008). That is, 

 𝜽𝜽�𝐶𝐶𝐶𝐶 = argmax𝜽𝜽𝑐𝑐𝑐𝑐(𝒚𝒚;𝜽𝜽)  (22) 

CML estimation can also to divided into two categories (Varin et al., 2011). One 

category consists of “subsetting methods,” (Cox & Reid, 2004) where the joint likelihood 

is replaced with any product of conditional or marginal densities that is easier to 

evaluate, and hence to maximize (Varin, 2008; Varin et al., 2011). The other category is 

“omission methods,” which remove elements of the likelihood that are likely to 

complicate the full likelihood but provide little information about model parameters 

(Varin, 2005). From this, it is evident that information will be lost when using CML. A 

CML estimator needs to provide significant computational savings while at the same 

time keeping the loss of efficiency tolerable. 

As mentioned above, composite marginal likelihood methods for up to bivariate 

likelihoods are common in psychometrics (and research in general). Thus, CML methods 
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in psychometric fall under “subsetting methods.” The simplest composite marginal 

likelihood is constructed under working independence assumptions resulting in 

 
𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖(𝒚𝒚;𝜽𝜽) = �𝑓𝑓(𝑦𝑦𝑗𝑗;𝜽𝜽)𝑤𝑤𝑗𝑗

𝐽𝐽

𝑗𝑗=1

  (23) 

𝑓𝑓(𝑦𝑦𝑖𝑖;𝜽𝜽) refers to the probability of observing each individual variable 𝑦𝑦𝑖𝑖 . Equation (23) is 

coined the independence marginal likelihood function because it only considers 

univariate marginal events (Xi, 2011; Xu & Reid, 2011). 𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖(𝒚𝒚;𝜽𝜽) is equal to the true 

likelihood if independence among all variables holds. If this is violated, it is no longer 

the true likelihood because the dependency among variables has not been factored in. 

Inferences on marginal parameters, mainly thresholds, are possible with 𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖(𝒚𝒚;𝜽𝜽) . 

However, often parameters regarding the dependence between variables are also of 

interest as real data are usually correlated. Thus, composite likelihood modeling pairs 

of observations, such as the pairwise likelihood (PL) or those constituted of larger 

subsets like triplets are used (Cox & Reid, 2004; Varin, 2008). PLs can be written as 

 
𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝒚𝒚;𝜽𝜽) = � � 𝑓𝑓(𝑦𝑦𝑗𝑗; 𝑦𝑦𝑗𝑗′;𝜽𝜽)𝑤𝑤𝑗𝑗,𝑗𝑗′

𝐽𝐽

𝑗𝑗′=𝑗𝑗+1

𝐽𝐽−1

𝑗𝑗=1

  (24) 

Like this, the PL 𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝒚𝒚;𝜽𝜽) calculates the probability of every possible variable pair. The 

most widespread form of composite marginal or conditional likelihood in CML 

applications is the pairwise likelihood (PL). 

Despite being pseudo-likelihoods, CML estimators inherit many of the desirable 

properties of inference based on the full likelihood function. For one, they have the 

properties of being consistent, and asymptotically normally distributed (Lindsay, 1988; 

Varin, 2008; Varin et al., 2011) under regularity conditions. That is,  

 √𝑛𝑛(𝜽𝜽�𝐶𝐶𝐶𝐶 − 𝜽𝜽) → 𝑵𝑵𝒒𝒒(0, G−1(𝜽𝜽)) (25) 
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where 𝑞𝑞 is the dimension of 𝜽𝜽, and G(𝜽𝜽) is the Godambe (Godambe, 1960) or “sandwich” 

information matrix of a single observation (Varin, 2008; Varin et al., 2011). The Godambe 

information matrix is used in the CML method for the calculation of standard errors. 

When employing CML methods, the asymptotic covariance matrices of the CML 

estimators are different from the Fisher information matrix I(θ) as they are not from full 

likelihoods and thus not fully efficient. The Godambe information matrix is defined as 

 𝐺𝐺(𝜽𝜽) = 𝐻𝐻(𝜽𝜽)𝐽𝐽(𝜽𝜽)−1𝐻𝐻(𝜽𝜽)  (26) 

where 𝐻𝐻(𝜽𝜽)is the sensitivity matrix and equal to the negative Hessian matrix of 

composite log-likelihood or  

 
𝐻𝐻(𝜽𝜽) = −𝐸𝐸𝜽𝜽 �

𝜕𝜕
𝜕𝜕𝜽𝜽

𝑠𝑠(𝜽𝜽;𝒚𝒚)� = −𝐸𝐸𝜽𝜽 �
𝜕𝜕2

𝜕𝜕𝜽𝜽𝜕𝜕𝜽𝜽𝑇𝑇
𝑐𝑐(𝜽𝜽;𝒚𝒚)�, (27) 

𝑠𝑠(𝜽𝜽,𝒚𝒚) is the composite score function and 𝑐𝑐(𝜽𝜽,𝒚𝒚) is a composite log-likelihood 

function. As the composite score is a linear combination of valid likelihood score 

functions, its unbiasedness follows under the regularity conditions.  𝐽𝐽(𝜽𝜽) is the 

variability matrix calculated as  

𝐽𝐽(𝜽𝜽) = 𝑉𝑉𝑉𝑉𝑉𝑉�𝑠𝑠(𝜽𝜽;𝒚𝒚)� = 𝐸𝐸𝜽𝜽[𝑠𝑠(𝜽𝜽;𝒚𝒚)𝑠𝑠(𝜽𝜽;𝒚𝒚)′] = 𝐸𝐸𝜽𝜽 ��
𝜕𝜕
𝜕𝜕𝜽𝜽

𝑐𝑐(𝜽𝜽;𝒚𝒚)��
𝜕𝜕
𝜕𝜕𝜽𝜽

𝑐𝑐(𝜽𝜽;𝒚𝒚)�
′

�,  (28) 

which is the expected outer product of the composite score function. For true 

likelihoods, the 𝐻𝐻(𝜽𝜽) =  𝐽𝐽(𝜽𝜽) so that 𝐺𝐺(𝜽𝜽)  =  𝐼𝐼(𝜽𝜽). In general,  𝐻𝐻(𝜽𝜽) ≠  𝐽𝐽(𝜽𝜽) because the 

likelihood terms forming the composite score function are likely to be correlated. The 

fact that 𝐻𝐻(𝜽𝜽) ≠ 𝐽𝐽(𝜽𝜽) in composite likelihood is indicative of the loss of efficiency of 

CML estimators compared to MLE (Martin et al., 2019; Varin, 2008). 

Analytical forms of particularly 𝐽𝐽(𝜽𝜽) are difficult to derive so that sample or 

empirical estimates need to be used instead for which a consistent estimate is available 
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by the Law of Large Numbers (Xi & Browne, 2014). The sample estimates of 𝐻𝐻(𝜽𝜽) and 𝐽𝐽(𝜽𝜽) 

are  

 
𝐻𝐻��𝜽𝜽 � 𝑃𝑃𝑃𝑃𝑃𝑃� = −

1
𝑁𝑁
�

𝜕𝜕
𝜕𝜕𝜽𝜽

𝑠𝑠(𝜽𝜽;𝒚𝒚𝑛𝑛)
𝑁𝑁

𝑛𝑛=1

𝜕𝜕
𝜕𝜕𝜽𝜽

𝑠𝑠(𝒚𝒚𝑛𝑛,𝜽𝜽) = −
1
𝑁𝑁
�

𝜕𝜕2

𝜕𝜕𝜽𝜽𝜕𝜕𝜽𝜽𝑇𝑇
𝑐𝑐(𝜽𝜽;𝒚𝒚𝑛𝑛),

𝑁𝑁

𝑛𝑛=1

 (29) 

and 

 
𝐽𝐽�𝜽𝜽 � 𝑃𝑃𝑃𝑃𝑃𝑃� =

1
𝑁𝑁
� 𝑠𝑠(𝜽𝜽;𝒚𝒚𝑛𝑛)𝑠𝑠(𝜽𝜽;𝒚𝒚𝑛𝑛)′

𝑁𝑁

𝑛𝑛=1
=

1
𝑁𝑁
� �

𝜕𝜕
𝜕𝜕𝜽𝜽

𝑐𝑐(𝜽𝜽;𝒚𝒚𝑛𝑛)��
𝜕𝜕
𝜕𝜕𝜽𝜽

𝑐𝑐(𝜽𝜽;𝒚𝒚𝑛𝑛)�
′

𝑁𝑁

𝑛𝑛=1
  (30) 

Standard errors (SE) of the CML estimates are then obtained as 

 𝑆𝑆𝑆𝑆�𝜽𝜽 � 𝑃𝑃𝑃𝑃𝑃𝑃� =
1

�𝐺𝐺�(𝜽𝜽 �𝑃𝑃𝑃𝑃𝑃𝑃)
  

(31) 

which is similar to how standard errors are derived using the Fisher information matrix.  

Test statistics for inference and model selection criteria are also available for CML 

estimation, which requires the calculation of 𝐽𝐽(𝜽𝜽)  and 𝐻𝐻(𝜽𝜽) . Possible test statistics 

include LI goodness-of-fit statistics (Maydeu-Olivares & Joe, 2006) and composite 

likelihood information criterion introduced by Varin and Vidoni (2005) through which 

indices similar to AIC and BIC (Gao & Song, 2010) can be found. 

4.3 Proposed CML Estimation and the IRT Approach 

4.3.1 Pairwise Estimation and the IRT Approach 

Recall the likelihood to be maximized for estimating categorical item responses 

given in equation (13), 𝐿𝐿( 𝜽𝜽;𝒚𝒚) = ∑ 𝜋𝜋𝑖𝑖(𝜽𝜽)𝑁𝑁
𝑖𝑖=1 . In the IRT approach with the assumption of 

local or conditional independence, the probability of response pattern 𝒚𝒚𝒊𝒊 = (𝑦𝑦𝑖𝑖1, … ,𝑦𝑦𝑖𝑖𝑖𝑖) 

(i.e, 𝜋𝜋𝑖𝑖(𝜽𝜽)) factors into a product over the individual item response category probabilities 

of 
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 𝑃𝑃�𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑦𝑦𝑖𝑖𝑖𝑖| 𝝃𝝃𝑖𝑖;𝜽𝜽𝑗𝑗� = 𝑓𝑓𝑗𝑗�𝑦𝑦𝑖𝑖𝑖𝑖�𝝃𝝃𝑖𝑖;𝜽𝜽𝑗𝑗�, (32) 

where 𝜽𝜽𝒋𝒋 is a vector of item-specific parameters and 𝑓𝑓𝑗𝑗  is an item response function, 

which gives us 

 
𝑃𝑃(𝒚𝒚𝑖𝑖| 𝝃𝝃𝑖𝑖;𝜽𝜽) = �𝑃𝑃�𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑦𝑦𝑖𝑖𝑖𝑖| 𝝃𝝃𝑖𝑖;𝜽𝜽�

𝐽𝐽

𝑗𝑗=1

= �𝑓𝑓𝑗𝑗(𝑦𝑦𝑖𝑖𝑖𝑖|𝝃𝝃𝑖𝑖;𝜽𝜽)
𝐽𝐽

𝑗𝑗=1

. (33) 

From this, one can determine the joint distribution of y, which leads to the joint 

likelihood function 

 
𝐿𝐿( 𝝃𝝃;𝜽𝜽|𝒚𝒚) = ��𝑓𝑓𝑗𝑗(𝑦𝑦𝑖𝑖𝑖𝑖|𝝃𝝃𝑖𝑖;𝜽𝜽𝑗𝑗)

𝐽𝐽

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

. (34) 

Further assuming that the entries in 𝝃𝝃𝒊𝒊 are independent and identically distributed and 

follow a cumulative distribution function F, the full marginal likelihood is 

 
𝐿𝐿( 𝜽𝜽|𝒚𝒚) = ����𝑓𝑓𝑗𝑗�𝑦𝑦𝑖𝑖𝑖𝑖�𝝃𝝃𝑖𝑖;𝜽𝜽𝑗𝑗�

𝐽𝐽

𝑗𝑗=1

�𝜙𝜙(𝝃𝝃𝑖𝑖)𝑑𝑑𝝃𝝃𝑖𝑖

𝑁𝑁

𝑖𝑖=1

, (35) 

where 𝜙𝜙(𝝃𝝃𝑖𝑖) refers to the density function of F that is usually set to standard normal.  

In place of maximizing this full marginal likelihood, the proposed estimator will 

maximize the following composite likelihood function:  

 
𝐿𝐿𝑐𝑐� 𝜽𝜽|(𝒚𝒚𝒋𝒋,𝒚𝒚𝒋𝒋′)� = �����𝑓𝑓𝑗𝑗�𝑦𝑦𝑖𝑖𝑖𝑖�𝝃𝝃𝑖𝑖;𝜽𝜽𝑗𝑗�𝜙𝜙(𝝃𝝃𝑖𝑖)𝑑𝑑𝝃𝝃𝑖𝑖

𝐽𝐽

𝑗𝑗=1

�
𝑁𝑁

𝑖𝑖=1

 

                       × �� � �𝑓𝑓𝑗𝑗�𝑦𝑦𝑖𝑖𝑖𝑖�𝝃𝝃𝑖𝑖;𝜽𝜽𝑗𝑗�𝑓𝑓𝑗𝑗′�𝑦𝑦𝑖𝑖𝑗𝑗′ �𝝃𝝃𝑖𝑖;𝜽𝜽𝑗𝑗′�𝜙𝜙(𝝃𝝃𝑖𝑖)𝑑𝑑𝝃𝝃𝑖𝑖

𝐽𝐽

𝑗𝑗′=𝑗𝑗+1

𝐽𝐽−1

𝑗𝑗=1

��   

(36) 

This function is the product of all of the univariate and bivariate or pairwise marginal 

likelihoods that each correspond to 𝑃𝑃�𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑦𝑦𝑖𝑖𝑖𝑖| 𝜽𝜽𝒋𝒋�  and 𝑃𝑃�𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑦𝑦𝑖𝑖𝑖𝑖,𝑦𝑦𝑖𝑖𝑗𝑗′ = 𝑦𝑦𝑖𝑖𝑗𝑗′| 𝜽𝜽𝒋𝒋;𝜽𝜽𝒋𝒋′� , 

respectively. The log-likelihood then becomes  



46 
 

 
𝑙𝑙𝑐𝑐� 𝜽𝜽|(𝒚𝒚𝒋𝒋,𝒚𝒚𝒋𝒋′)� = ��𝑙𝑙𝑙𝑙 ��𝑃𝑃�𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑦𝑦𝑖𝑖𝑖𝑖|𝜽𝜽𝑗𝑗,  𝝃𝝃𝑖𝑖�𝜙𝜙(𝝃𝝃𝑖𝑖)𝑑𝑑𝝃𝝃𝑖𝑖�

𝐽𝐽

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

 

+�� � 𝑙𝑙𝑙𝑙 ��𝑃𝑃�𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑦𝑦𝑖𝑖𝑖𝑖,𝑦𝑦𝑖𝑖𝑗𝑗′ = 𝑦𝑦𝑖𝑖𝑖𝑖′|𝜽𝜽𝑗𝑗;𝜽𝜽𝑗𝑗′ ,  𝝃𝝃𝑖𝑖�𝜙𝜙(𝝃𝝃𝑖𝑖)𝑑𝑑𝝃𝝃𝑖𝑖�
𝐽𝐽

𝑗𝑗′=𝑗𝑗+1

𝐽𝐽−1

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

 

 

(37) 

Again, as 𝒚𝒚𝑟𝑟 ,  𝑟𝑟 = 1, … ,𝑅𝑅 = ∏ 𝐾𝐾𝑗𝑗
𝐽𝐽
𝑗𝑗=1 , denotes the 𝑟𝑟th possible item response vector for 𝐽𝐽, 

equation (35) is equal to 

 
𝐿𝐿( 𝜽𝜽|𝒚𝒚) = �� ��𝑓𝑓𝑗𝑗�𝑦𝑦𝑗𝑗�𝝃𝝃;𝜽𝜽𝒋𝒋�

𝐽𝐽

𝑗𝑗=1

�𝜙𝜙(𝝃𝝃)𝑑𝑑𝝃𝝃
𝝃𝝃

𝑅𝑅

𝑟𝑟=1

, (38) 

And equation (37) becomes 

 
𝑙𝑙𝑐𝑐� 𝜽𝜽|(𝒚𝒚𝒋𝒋,𝒚𝒚𝒋𝒋′)� = �� 𝑛𝑛𝑐𝑐𝑗𝑗

�𝑦𝑦𝑗𝑗� 𝑙𝑙𝑙𝑙 �� 𝑃𝑃�𝑦𝑦𝑗𝑗 = 𝑐𝑐𝑗𝑗|𝜽𝜽𝒋𝒋,  𝝃𝝃�𝜙𝜙(𝝃𝝃)𝑑𝑑𝝃𝝃
𝝃𝝃

�

𝐾𝐾𝑗𝑗

𝑐𝑐𝑗𝑗=1

𝐽𝐽

𝑗𝑗=1

 

+� � � � 𝑛𝑛𝑐𝑐𝑗𝑗𝑐𝑐𝑗𝑗′
�𝑦𝑦𝑗𝑗𝑦𝑦𝑗𝑗′� 𝑙𝑙𝑙𝑙 �� 𝑃𝑃�𝑌𝑌𝑗𝑗 = 𝑐𝑐𝑗𝑗,𝑌𝑌𝑗𝑗′ = 𝑐𝑐𝑗𝑗′|𝜽𝜽𝒋𝒋;𝜽𝜽𝒋𝒋′ ,  𝝃𝝃�𝜙𝜙(𝝃𝝃)𝑑𝑑𝝃𝝃

𝝃𝝃
�

𝐾𝐾𝑗𝑗′

𝑐𝑐𝑗𝑗′=1

𝐾𝐾𝑗𝑗

𝑐𝑐𝑗𝑗=1

𝐽𝐽

𝑗𝑗′=𝑗𝑗+1

𝐽𝐽−1

𝑗𝑗=1

. 

 

 

(39) 

Equations (37) and (39) are obviously similar to equation (17) as they both intend 

to maximize the univariate and bivariate marginal likelihoods of item responses. 

However, it is important to remember that equation (17) is based on the UV approach 

and thus, integrates over the items. On the other hand, the pairwise log-likelihoods of 

Equations (37) and (39) are built upon the IRT approach where integration is over the 

latent ability vector. Notice that this difference results in differences regarding the 

integrals. In the UV approach, the high-dimensional integrals are replaced to require 

evaluation of up to only two-dimensional integrals, one-dimensional for univariate 

likelihoods and two-dimensional for bivariate or pairwise likelihoods, regardless of the 

number of observed or latent variables. However, in the IRT approach, the integrals are 
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not affected in any way by using the CML estimator. This may explain why LI methods 

are not as favored in the IRT approach as the UV approach. We want to avoid dealing 

with high-dimensional integrals, especially in cases where no closed-form solutions 

exist. Using CML estimation based on the UV approach enables this. While this particular 

benefit does not apply to CML estimation under the IRT approach as defined above, it 

can help to significantly reduce the number of response patterns to account for in 

parameter estimation. Furthermore, it may be possible to extend CML estimation to 

reduce the dimensionality under the IRT as well. 

One thing that CML estimation using both approaches as above have in common 

is that they are both composite marginal maximum likelihood estimation methods. 

Marginal maximum likelihood (MML) methods make assumptions about the latent 

distributions (i.e., items for the UV approach and latent abilities for the IRT approach) 

and integrate them out to maximize marginal likelihoods. 

4.3.2 Classification of IRT Models and Applications of Pairwise Estimation  

For this dissertation, the data generation method only produces the univariate 

and bivariate probabilities for a set of items. Such data is fit to IRT models using only 

the bivariate (log-)likelihoods in equations (37) and (39). The univariate likelihoods were 

dropped following general consensus that they add little to estimation (e.g., Katsikatsou 

et al., 2012). In short, the proposed CML method is the pairwise marginal maximum 

likelihood (PMML) estimation. Equations (37) or (39) is a generalized version of the (log-

) likelihood function that serves as the basis for many IRT models that may be of interest.  

IRT models are classified according to the type of items they model. Dichotomous 

IRT models are used for binary scored items or responses. Polytomous models are used 

for nominal or ordered categorical items. IRT models can also be divided as 
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unidimensional or multidimensional. Unidimensional IRT models assume a single latent 

trait while multidimensional models assume multiple latent traits underlying the item 

response data. Also, models can be categorized depending on whether the latent variable 

distribution is continuous or categorical. Although the models that have been reviewed 

so far all assume a continuous latent factor, diagnostic classification models (DCMs; 

Rupp, Templin, & Henson, 2010) assume multiple categorical latent factors coined 

attributes. DCMs are special types of IRT models modified to handle latent abilities that 

are categorical in nature (i.e., mastery or non-mastery of particular sets of attributes).  

Specifically, this dissertation focused on the five IRT models found in Bonifay and 

Cai (2017). The five models were the exploratory factor analytic (EFA) two-parameter 

logistic (2PL) model; bifactor 2PL model; deterministic input, noisy and-gate (DINA) 

model; deterministic input, noisy or-gate (DINO) model; and the unidimensional three-

parameter logistic (3PL) model. As mentioned in Bonifay (2015), while the models involve 

different multidimensional factor structures, they are all dichotomous IRT models with 

four out of five of them being 2PL models. Thus, let us consider a multidimensional 

version of the 2PL model under the same usual scenario with 𝑖𝑖 = 1,⋯ ,𝑁𝑁 respondents and 

𝑗𝑗 = 1,⋯ , 𝐽𝐽 items. Let 𝑦𝑦𝑖𝑖𝑖𝑖 ∈ {0,1}  denote the item score for respondent i to item j. 

Furthermore, let’s change the notation slightly so that 𝜽𝜽 now denotes the vector of  𝑞𝑞 

latent abilities. The item response function denoting the conditional probability of a 

correct or positive response by an individual with ability vector 𝜽𝜽 to item j is 

 𝑃𝑃𝑗𝑗(𝜽𝜽) = 𝑃𝑃�𝑦𝑦𝑗𝑗 = 1|𝜽𝜽;𝜸𝜸� =
1

1 + exp (−�𝒂𝒂𝑗𝑗′𝜽𝜽 + 𝑐𝑐𝑗𝑗�)
 (40) 

𝒂𝒂𝑗𝑗′ and 𝑐𝑐𝑗𝑗 are the item discrimination and intercept parameters in an item and 𝜸𝜸 is the 

vector of all freely estimated item parameters. The probability of an individual 

incorrectly answering an item is then simply 𝑄𝑄𝑗𝑗(𝜽𝜽) = 1 − 𝑃𝑃𝑗𝑗(𝜽𝜽) . The slope-intercept 
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parameterization is used as it is simpler to differentiate (Baker & Kim, 2004) and more 

readily interpretable for multidimensional models (Bonifay, 2019). Let 𝒖𝒖𝑘𝑘 ,𝑘𝑘 = 1, … , 2𝐽𝐽 

denote the 𝑘𝑘th possible item response vector where 2𝐽𝐽 = ∏ 𝐾𝐾𝑗𝑗
𝐽𝐽
𝑗𝑗=1  is the total number of 

possible response patterns 𝒖𝒖𝑘𝑘 . Under the assumption of local independence, the 

probability of score pattern 𝒖𝒖𝑘𝑘 for an individual of ability  𝜽𝜽 is  

 
𝑃𝑃(𝒖𝒖𝑘𝑘 | 𝜽𝜽) = �𝑃𝑃�𝑦𝑦𝑗𝑗 = 𝑦𝑦𝑗𝑗|𝜽𝜽;𝜸𝜸�

𝐽𝐽

𝑗𝑗=1

=  �𝑃𝑃𝑗𝑗(𝜽𝜽)𝑢𝑢𝑘𝑘𝑘𝑘
𝐽𝐽

𝑗𝑗=1

𝑄𝑄𝑗𝑗(𝜽𝜽)1−𝑢𝑢𝑘𝑘𝑘𝑘 . (41) 

The unconditional probability of observing pattern k is 

 
𝑃𝑃(𝒖𝒖𝑘𝑘) = � [𝑃𝑃(𝒖𝒖𝑘𝑘 | 𝜽𝜽)]𝜙𝜙(𝜽𝜽)𝑑𝑑𝜽𝜽

𝜽𝜽
=  𝑃𝑃𝑘𝑘 (42) 

An individual score pattern assigns him or her to one of the 2𝐽𝐽 mutually exclusive item 

response vectors. Under the assumption that they are independent, the marginal 

likelihood function is  

 

𝐿𝐿 =  �𝑃𝑃𝑘𝑘
𝑛𝑛𝑘𝑘 = ��� �𝑃𝑃𝑗𝑗(𝜽𝜽)𝑢𝑢𝑘𝑘𝑘𝑘𝑄𝑄𝑗𝑗(𝜽𝜽)1−𝑢𝑢𝑘𝑘𝑘𝑘𝜙𝜙(𝜽𝜽)𝑑𝑑𝜽𝜽

𝐽𝐽

𝑗𝑗=1𝜽𝜽
�

2𝐽𝐽

𝑘𝑘=1

2𝐽𝐽

𝑘𝑘=1

𝑛𝑛𝑘𝑘

 (43) 

Thus, the log-likelihood function becomes 

 
𝑙𝑙 =  �𝑛𝑛𝑘𝑘𝑃𝑃𝑘𝑘 = �𝑛𝑛𝑘𝑘

2𝐽𝐽

𝑘𝑘=1

2𝐽𝐽

𝑘𝑘=1

ln �� �𝑃𝑃𝑗𝑗(𝜽𝜽)𝑢𝑢𝑘𝑘𝑘𝑘𝑄𝑄𝑗𝑗(𝜽𝜽)1−𝑢𝑢𝑘𝑘𝑘𝑘𝜙𝜙(𝜽𝜽)𝑑𝑑𝜽𝜽
𝐽𝐽

𝑗𝑗=1𝜽𝜽
� (44) 

where 𝑛𝑛𝑘𝑘 and 𝑃𝑃𝑘𝑘 are respectively the observed frequency and probability under the 

model for the response pattern k with ∑ 𝑛𝑛𝑘𝑘 = 𝑁𝑁,2𝐽𝐽
𝑘𝑘=1  and ∑ 𝑃𝑃𝑘𝑘 = 12𝐽𝐽

𝑘𝑘 .  

In PML estimation, we are not interested in the full 2𝐽𝐽 item response vectors but 

only item response vectors for item pairs �𝑦𝑦𝑗𝑗,𝑦𝑦𝑗𝑗′�, 𝑗𝑗 ≠ 𝑗𝑗. In other words, only the bivariate 

observed frequencies and probabilities under the model for every item pair need to be 

considered. The pairwise marginal log-likelihood function to be maximized is  
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𝑝𝑝𝑝𝑝 =  � � ln 𝐿𝐿�𝑦𝑦𝑗𝑗,𝑦𝑦𝑗𝑗′�
𝐽𝐽

𝑗𝑗′=𝑗𝑗+1

= � � � � 𝑛𝑛𝑐𝑐𝑗𝑗𝑐𝑐𝑗𝑗′
(𝑦𝑦𝑗𝑗𝑦𝑦𝑗𝑗′)

ln𝑃𝑃𝑐𝑐𝑗𝑗𝑐𝑐𝑗𝑗′
(𝑦𝑦𝑗𝑗𝑦𝑦𝑗𝑗′)

𝑚𝑚𝑗𝑗′

𝑐𝑐𝑗𝑗′=1

𝑚𝑚𝑗𝑗

𝑐𝑐𝑗𝑗=1

𝐽𝐽

𝑗𝑗′=𝑗𝑗+1

𝐽𝐽−1

𝑗𝑗=1

𝐽𝐽−1

𝑗𝑗=1

= � � �𝑛𝑛𝑐𝑐𝑗𝑗𝑐𝑐𝑗𝑗′
(𝑦𝑦𝑗𝑗𝑦𝑦𝑗𝑗′)

ln𝑃𝑃𝑐𝑐𝑗𝑗𝑐𝑐𝑗𝑗′
(𝑦𝑦𝑗𝑗𝑦𝑦𝑗𝑗′)

22

𝑘𝑘=1

𝐽𝐽

𝑗𝑗′=𝑗𝑗+1

𝐽𝐽−1

𝑗𝑗=1

= � � �𝑛𝑛𝑐𝑐𝑗𝑗𝑐𝑐𝑗𝑗′
(𝑦𝑦𝑗𝑗𝑦𝑦𝑗𝑗′)

ln �� 𝑃𝑃𝑗𝑗(𝜽𝜽)𝑢𝑢𝑘𝑘𝑘𝑘𝑄𝑄𝑗𝑗(𝜽𝜽)1−𝑢𝑢𝑘𝑘𝑘𝑘𝑃𝑃𝑗𝑗′(𝜽𝜽)𝑢𝑢𝑘𝑘𝑗𝑗′𝑄𝑄𝑗𝑗′(𝜽𝜽)1−𝑢𝑢𝑘𝑘𝑗𝑗′
𝜽𝜽

�
22

𝑘𝑘=1

𝐽𝐽

𝑗𝑗′=𝑗𝑗+1

𝐽𝐽−1

𝑗𝑗=1

 

(45) 

which reduces having to multiply over 2𝐽𝐽 probabilities to only 
(𝐽𝐽−1)×𝐽𝐽

2
× 22 for 

dichotomous models. 
(𝐽𝐽−1)×𝐽𝐽

2
 refers to the number of possible unique item pairs so that 

in essence, we only have to account for four marginal pairs of probabilities involved 

given by  

 𝑃𝑃�𝑌𝑌𝑗𝑗 = 1, 𝑌𝑌𝑗𝑗′ = 1� = 𝑃𝑃𝑗𝑗( 𝜽𝜽)𝑃𝑃𝑗𝑗′( 𝜽𝜽) 

𝑃𝑃�𝑌𝑌𝑗𝑗 = 1,𝑌𝑌𝑗𝑗′ = 0� = 𝑃𝑃𝑗𝑗( 𝜽𝜽)𝑄𝑄𝑗𝑗′( 𝜽𝜽) 

𝑃𝑃�𝑌𝑌𝑗𝑗 = 0,𝑌𝑌𝑗𝑗′ = 1� = 𝑄𝑄𝑗𝑗( 𝜽𝜽)𝑃𝑃𝑗𝑗′( 𝜽𝜽) 

𝑃𝑃�𝑌𝑌𝑗𝑗 = 0,𝑌𝑌𝑗𝑗′ = 0� = 𝑄𝑄𝑗𝑗( 𝜽𝜽)𝑄𝑄𝑗𝑗′( 𝜽𝜽). 

(46) 

Item parameters are estimated by finding the sets of item parameters 𝒄𝒄 and 𝒂𝒂 that 

maximize equation (45). The integral(s) has no closed form but can be approximated by 

numerical methods such as the Gauss-Hermite quadrature (Baker & Kim, 2004). Also, the 

usual dimension reduction can be employed for models such as the bifactor model (Cai, 

Yang, & Hansen, 2011).  

The likelihood function of the equation does not change for different 

dichotomous IRT models such as the unidimensional 3PL. For polytomous IRT models, 

only the number of marginal pairs of probabilities would increase. For example, if there 

were 3 categories per item j, we would need to consider 32 = 9 for every item pair.  
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For DCMs, the likelihood function differs in relation to the latent ability vector 𝜽𝜽. 

In DCMs, 𝜽𝜽 is not continuous but a vector of categorical latent factors called attributes. 

Let 𝜽𝜽 be a collection of binary attributes so that they become a total of 𝐶𝐶 =  2𝑞𝑞 classes 

consisting of combinations of attribute mastery levels. Let us consider 𝜽𝜽 as synonymous 

with 𝜶𝜶𝑐𝑐  = (𝛼𝛼1, … ,𝛼𝛼𝑞𝑞) where 𝛼𝛼𝑞𝑞 ∈ {0,1} that denotes a specific attribute profile 𝑐𝑐. Then, the 

interpretation of 𝑃𝑃𝑗𝑗(𝜽𝜽) of equation (40) changes to be the probability of correct response 

to item 𝑗𝑗 by a respondent in latent class c, 𝑐𝑐 = 1,⋯𝐶𝐶 or or 𝑃𝑃𝑗𝑗(𝜶𝜶𝑐𝑐  ). Also, the conditional 

probability of observing a particular response pattern is given 𝜶𝜶𝑐𝑐 as 

 
𝑃𝑃(𝒖𝒖𝑘𝑘 | 𝜶𝜶𝑐𝑐) =  �𝑃𝑃𝑗𝑗�𝑦𝑦𝑗𝑗 = 𝑦𝑦𝑗𝑗|𝜶𝜶𝑐𝑐�

𝐽𝐽

𝑗𝑗=1

= �𝑃𝑃𝑗𝑗(𝜶𝜶𝑐𝑐)𝑢𝑢𝑘𝑘𝑘𝑘
𝐽𝐽

𝑗𝑗=1

𝑄𝑄𝑗𝑗(𝜶𝜶𝑐𝑐)1−𝑢𝑢𝑘𝑘𝑘𝑘  (47) 

The unconditional probability is  

 
𝑃𝑃(𝒖𝒖𝑘𝑘) = �𝜐𝜐𝑐𝑐[𝑃𝑃(𝒖𝒖𝑘𝑘 | 𝜶𝜶𝑐𝑐)]

𝐶𝐶

𝑐𝑐=1

=  𝑃𝑃𝑘𝑘 (48) 

with 𝜈𝜈𝑐𝑐 being a mixing probability �∑ 𝑣𝑣𝑐𝑐 = 1.0𝐶𝐶
𝑐𝑐=1 � and denotes the probability of 

membership in latent class or profile c. Then the full marginal likelihood function 

becomes 

 

𝐿𝐿 =  �𝑃𝑃𝑘𝑘
𝑛𝑛𝑘𝑘 = ���𝜐𝜐𝑐𝑐�𝑃𝑃𝑗𝑗(𝜶𝜶𝑐𝑐)𝑢𝑢𝑘𝑘𝑘𝑘𝑄𝑄𝑗𝑗(𝜶𝜶𝑐𝑐)1−𝑢𝑢𝑘𝑘𝑘𝑘

𝐽𝐽

𝑗𝑗=1

𝐶𝐶

𝑐𝑐=1

�
2𝐽𝐽

𝑘𝑘=1

2𝐽𝐽

𝑘𝑘=1

𝑛𝑛𝑘𝑘

 (49) 

which makes the log-likelihood function to be maximized  

 
𝑙𝑙 = �𝑛𝑛𝑘𝑘 ln𝑃𝑃𝑘𝑘

2𝐽𝐽

𝑘𝑘=1

= �𝑛𝑛𝑘𝑘

2𝐽𝐽

𝑘𝑘=1

ln ��𝜐𝜐𝑐𝑐�𝑃𝑃𝑗𝑗(𝜶𝜶𝑐𝑐)𝑢𝑢𝑘𝑘𝑘𝑘𝑄𝑄𝑗𝑗(𝜶𝜶𝑐𝑐)1−𝑢𝑢𝑘𝑘𝑘𝑘
𝐽𝐽

𝑗𝑗=1

𝐶𝐶

𝑐𝑐=1

�  (50) 

and the pairwise counterpart is 

𝑝𝑝𝑝𝑝 = � � �𝑛𝑛𝑘𝑘
(𝑦𝑦𝑗𝑗𝑦𝑦𝑗𝑗′)

ln ��𝜐𝜐𝑐𝑐�𝑃𝑃𝑗𝑗(𝜶𝜶𝑐𝑐)𝑢𝑢𝑘𝑘𝑘𝑘𝑄𝑄𝑗𝑗(𝜶𝜶𝑐𝑐)1−𝑢𝑢𝑘𝑘𝑘𝑘𝑃𝑃𝑗𝑗′(𝜶𝜶𝑐𝑐)𝑢𝑢𝑘𝑘𝑗𝑗′𝑄𝑄𝑗𝑗′(𝜶𝜶𝑐𝑐)1−𝑢𝑢𝑘𝑘𝑗𝑗′�
𝐶𝐶

𝑐𝑐=1

�
22

𝑘𝑘=1

𝐽𝐽

𝑗𝑗′=𝑗𝑗+1

𝐽𝐽−1

𝑗𝑗=1

 (51) 
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𝜐𝜐𝑐𝑐  refers to parameters of the structural model of a DCM (as opposed to the 

measurement model relating attributes and observed item responses). While various 

structural models are present in the literature (Rupp et al., 2010; Thompson, 2018), 

Bonifay and Cai’s (2017) study chose to impose a higher-order structure on 𝜐𝜐𝑐𝑐 where we 

regress the attributes on a higher-order, continuous latent trait 𝜃𝜃 (multiple traits are also 

possible). The probability of mastering each attribute is assumed to depend on a 

respondent’s place in this higher-order dimension. Assuming that the mastery of a set 

of skills for a respondent is related to a unidimensional trait 𝜃𝜃, and assuming conditional 

independence of the latent attributes given  𝜃𝜃, the probability model of 𝜶𝜶𝑐𝑐 conditional on 

𝜃𝜃 is 

 
 𝑃𝑃(𝜶𝜶𝑐𝑐  | 𝜃𝜃) = �𝑃𝑃(𝛼𝛼𝑘𝑘 | 𝜃𝜃)

𝑞𝑞

𝑘𝑘=1

 (52) 

where 𝑞𝑞 is the number of attributes. Because the attributes are binary variables, they can 

be treated as if they were items and technically any IRT model may be used for 𝑃𝑃(𝛼𝛼𝑘𝑘 =

1 | 𝜃𝜃) (Hansen, 2013). Bonifay and Cai (2017) impose a 2PL model for all attributes so 

that 

  𝑃𝑃(𝛼𝛼𝑘𝑘 = 1 | 𝜃𝜃) =
1

1 + exp (−(𝑐𝑐𝑘𝑘 + 𝑎𝑎𝑘𝑘𝜃𝜃))
 (53) 

where 𝑐𝑐𝑘𝑘 and 𝑎𝑎𝑘𝑘 are the intercept and slope parameters, respectively, that resemble item 

easiness and discrimination parameters in IRT. However, we should keep in mind that 

these are higher-order structural parameters and that the higher-order model is being 

fit to attribute profile probabilities and not the item response patterns (Hansen, 2013). 

The marginal probability of an observed response pattern of 𝒖𝒖𝑘𝑘 then can be represented 

as 
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𝑃𝑃(𝒖𝒖𝑘𝑘) = � ��𝑃𝑃(𝛼𝛼𝑘𝑘 | 𝜃𝜃)

𝑞𝑞

𝑘𝑘=1

�𝑃𝑃𝑗𝑗(𝜶𝜶𝑐𝑐)𝑢𝑢𝑘𝑘𝑘𝑘𝑄𝑄𝑗𝑗(𝜶𝜶𝑐𝑐)1−𝑢𝑢𝑘𝑘𝑘𝑘
𝐽𝐽

𝑗𝑗=1

�
𝜃𝜃

𝑔𝑔(𝜃𝜃)𝑑𝑑𝑑𝑑 (54) 

In many applications, 𝜃𝜃 is assumed to be normally distributed with mean 0 and 

variance 1. Then the full marginal log-likelihood function becomes 

 
𝑙𝑙 =  �𝑛𝑛𝑘𝑘

2𝐽𝐽

𝑘𝑘=1

�� ��𝑃𝑃(𝛼𝛼𝑘𝑘 | 𝜃𝜃)
𝑞𝑞

𝑘𝑘=1

�𝑃𝑃𝑗𝑗(𝜶𝜶𝑐𝑐)𝑢𝑢𝑘𝑘𝑘𝑘𝑄𝑄𝑗𝑗(𝜶𝜶𝑐𝑐)1−𝑢𝑢𝑘𝑘𝑘𝑘
𝐽𝐽

𝑗𝑗=1

�
𝜃𝜃

𝑔𝑔(𝜃𝜃)𝑑𝑑𝑑𝑑� (55) 

and the pairwise counterpart is 

𝑝𝑝𝑝𝑝

= � � �𝑛𝑛𝑘𝑘
(𝑦𝑦𝑗𝑗𝑦𝑦𝑗𝑗′)

ln �� ��𝑃𝑃(𝛼𝛼𝑘𝑘 | 𝜃𝜃)
𝑞𝑞

𝑘𝑘=1

�𝑃𝑃𝑗𝑗(𝜶𝜶𝑐𝑐)𝑢𝑢𝑘𝑘𝑘𝑘𝑄𝑄𝑗𝑗(𝜶𝜶𝑐𝑐)1−𝑢𝑢𝑘𝑘𝑘𝑘(𝜶𝜶𝑐𝑐)1−𝑢𝑢𝑘𝑘𝑗𝑗′��
𝜃𝜃

𝑔𝑔(𝜃𝜃)𝑑𝑑𝑑𝑑�
22

𝑘𝑘=1

𝐽𝐽

𝑗𝑗′=𝑗𝑗+1

𝐽𝐽−1

𝑗𝑗=1

 
(56) 

The resulting pairwise likelihoods for each model in question can then be 

maximized using their logarithms and standard numerical procedures such as the 

Newton-Raphson (NR) algorithm (Bock & Lieberman, 1970) or the Expectation-

Maximization (EM) algorithm (Bock & Akin, 1981; Dempster, Laird, Rubin, 1977).  

Although the results are not reported, both the MML method in Bock and 

Lieberman (1970) and the EM algorithm performed well for the Bifactor and EFA models 

but only the latter worked well for DCMs. In EM algorithms, each response pattern for 

item pairs is evaluated over the grid of 𝜽𝜽 values using initial parameter estimates. Then, 

given the marginal evaluated pairwise response patterns, we generate an “expected” 

table of response patterns across the grid of 𝜽𝜽 values. This is the expectation step of the 

EM algorithm. Then, the item parameters are maximized as if the expectation table was 

what was really observed, using the 𝜽𝜽  grid as the predictor variable. This is the 

maximization step of the EM algorithm. The item parameters are updated from the 

maximization step, which in turn are used to calculate new expected tables. Like this, 



54 
 

the EM algorithm is an iterative approach that toggles between the two modes of the E-

step and M-step. The algorithm is terminated or said to have converged if change in 

some convergence criteria between successive iterations is smaller than a designated 

convergence tolerance value. A relative error criterion  
|𝑙𝑙𝑛𝑛−1 −𝑙𝑙𝑛𝑛 |

|𝑙𝑙𝑛𝑛−1 |
< 10−6 where 𝑙𝑙𝑛𝑛 refers to 

the log-likelihood value at the 𝑛𝑛th iteration and an absolute error criterion maximum 

parameter change < 10−6 were mainly used. 

After obtaining the parameters using the PML approach, we can compute SE using 

the Godambe information matrix (Godambe, 1960) constructed from the sample 

estimates of the variability matrix (𝐽𝐽�𝜽𝜽�𝑃𝑃𝑃𝑃𝑃𝑃�) and the sensitivity matrix (𝐻𝐻��𝜽𝜽�𝑃𝑃𝑃𝑃𝑃𝑃�). The 

former was calculated as 

𝐽𝐽�𝜽𝜽�𝑃𝑃𝑃𝑃𝑃𝑃� =
1
𝑛𝑛
� �𝛻𝛻𝛻𝛻𝛻𝛻�𝜽𝜽�𝑃𝑃𝑃𝑃𝑃𝑃;   𝒚𝒚𝒊𝒊�� �𝛻𝛻𝛻𝛻𝛻𝛻�𝜽𝜽�𝑃𝑃𝑃𝑃𝑃𝑃;   𝒚𝒚𝒊𝒊��

′𝑛𝑛

𝑖𝑖=1

=
1
𝑛𝑛
� �� � 𝛻𝛻𝛻𝛻𝛻𝛻�𝜽𝜽�𝑃𝑃𝑃𝑃𝑃𝑃;   𝑦𝑦𝑖𝑖𝑖𝑖,𝑦𝑦𝑖𝑖𝑗𝑗′�

𝐽𝐽

𝑗𝑗′=𝑗𝑗+1

𝐽𝐽−1 

𝑗𝑗=1
��� � 𝛻𝛻𝛻𝛻𝛻𝛻�𝜽𝜽�𝑃𝑃𝑃𝑃𝑃𝑃 ;   𝑦𝑦𝑖𝑖𝑖𝑖,𝑦𝑦𝑖𝑖𝑖𝑖�

𝐽𝐽

𝑗𝑗′=𝑗𝑗+1

𝐽𝐽−1 

𝑗𝑗=1
�
′𝑛𝑛

𝑖𝑖=1
 

(57) 

The latter can be consistently estimated with the observed pairwise likelihood 

information as 

𝐻𝐻��𝜽𝜽�𝑃𝑃𝑃𝑃𝑃𝑃� = −
1
𝑛𝑛
� �𝛻𝛻2𝑝𝑝𝑝𝑝�𝜽𝜽�𝑃𝑃𝑃𝑃𝑃𝑃;   𝒚𝒚𝒊𝒊��

𝑛𝑛

𝑖𝑖=1
 (58) 

which is equal to minus of the Hessian matrix. The square root of the inverse of 

the resulting Godambe information matrix gives the SEs as shown in equation (31). 

The calculation of the sensitivity matrix is not an issue as the Hessian matrix can 

be easily calculated as a byproduct of the item parameter estimation process. However, 

the variability matrix is tricky as it requires the calculation of the variance of the 

composite score vector across individuals. Furthermore, by definition, it is possible to 

calculate the variability matrix only when the full response or data pattern is available. 
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Therefore, while the proposed PML estimation approach provides the equations to 

calculate the SEs, if the data fed into the estimator has information up to only bivariate 

margins (as opposed to being higher-dimensional data being collapsed into the margins), 

they cannot be calculated. We might consider using other alternative methods such as 

bootstrapping (Lui et al., 2015) for the calculation of variance in the estimation. 

Nonetheless, although it is favorable to have the option to compute SEs, it does not 

necessary deter us from investigating FP using the proposed LI-based data generation 

and estimation method, which is the main motivation of this study.    
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Chapter V 

Simulation Study 

 

This chapter summarizes a series of simulation studies conducted to achieve the 

three main objectives of this study in the order of data generation, model estimation, 

and evaluation of FP using the proposed LI approach. Although the proposed LI method 

to IRT data generation and model estimation described in Chapters 3 and 4 apply in 

theory to a myriad of different IRT models, there is yet to validate their appropriateness 

empirically. Bonifay and Cai’s (2017) study was set as the reference point in these first 

steps to exploring the utility of the proposed LI methods, particularly in terms of FP 

investigation. The goal was to see if the same results could be derived using the FI 

approach under the well-defined multinomial framework that Bonifay and Cai (2017) 

employed.  Replications of the results of Bonifay and Cai (2017) using the newly 

proposed methods will imply the suitability of the approach for appraising the FP of IRT 

models. Through this, the effects of complexity due to the estimation method and data 

generation method may also be realized.  

5.1 Overview of Common Simulation Conditions 

All simulation studies in this chapter are centered around the data and model 

conditions found in Bonifay and Cai (2017). Thus, the number of items was set to seven 

dichotomously scored or binary items. Also, four out of the five IRT models of Bonifay 

and Cai (2017) were chosen as the IRT models of interest. The 3PL unidimensional model 

was excluded due to two main reasons. First of all, the initial results of fitting the 

unidimensional 3PL model using the PML estimation failed to provide any explainable 
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results. This was regardless of placing priors on the pseudo-guessing parameters as 

commonly done.  Furthermore, and more importantly, recent research has highlighted 

the impact that the choice of priors for item parameters can have on FP. The 3PL model 

in Bonifay and Cai (2017) also used priors on the pseudo-guessing parameters to 

promote estimation stability, whose influence was not intended nor investigated. The 

remaining four IRT models were all essentially 2PL models and equal in the number of 

parameters. Bonifay and Cai (2017) set the number of item parameters to the arbitrary 

number of 20 and configured the four models to all match in the number of parameters. 

Path diagrams depicting the four models and their specifications are in Figure 5. 1.  

 

Figure 5. 1: Path diagrams of Models in Bonifay and Cai (2017) 

Note. (a) exploratory factor analysis (EFA) 2PL model; (b) bifactor 2PL model; (c) deterministic input, noisy 
and-gate (DINA) model; and (d) deterministic input, noisy or-gate (DINO) model. 
Adapted from “On the Complexity of Item Response Theory Models”, by W. Bonifay, and L. Cai, 2017, 
Multivariate Behavioral Research, p 4.  
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To elaborate on each of the four models, the EFA model was specified so that two 

factors represented the seven items. This model was considered the baseline model 

because, being an exploratory model, it is by definition a flexible model that can 

accommodate a variety of data structures as the particular paths among items and latent 

factors are not fixed a priori (Aytürk Ergin, 2020). In this model, items loaded freely on 

both factors but the loading for the first item on the second factor being constrained to 

0 for identification purposes. The factor loading matrix for the EFA model was 

⎝

⎜
⎜
⎜
⎛

𝑎𝑎11 0
𝑎𝑎12 𝑎𝑎22
𝑎𝑎13
𝑎𝑎14
𝑎𝑎15
𝑎𝑎16
𝑎𝑎17

𝑎𝑎23
𝑎𝑎24
𝑎𝑎25
𝑎𝑎26
𝑎𝑎27⎠

⎟
⎟
⎟
⎞

. (59) 

The bifactor model had two specific factors in addition to one general factor. All 

seven items loaded on the general factor. The first five items loaded on the first specific 

factor, and the remaining two items loaded on the second specific factor. The loadings 

for the second specific factor were set to be equal for model identification purposes. 

The factor-loading matrix of the bifactor model was 

⎝

⎜
⎜
⎜
⎛

𝑎𝑎11 𝑎𝑎12 0
𝑎𝑎21 𝑎𝑎22 0
𝑎𝑎31
𝑎𝑎41
𝑎𝑎51
𝑎𝑎61
𝑎𝑎71

𝑎𝑎32
𝑎𝑎42
𝑎𝑎52

0
0

0
0
0
𝑎𝑎62
𝑎𝑎62⎠

⎟
⎟
⎟
⎞

. (60) 

The first column represents the general factor, the second column represents the first 

specific factor, and the third column represents the second specific factor. 

In the DINA and DINO models, three attributes were chosen. The Q-matrix for 

these two models is presented in Table 5. 1.  
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Table 5. 1: Q-matrix for DCMs 

Items  Attributes 
  𝑎𝑎1 𝑎𝑎2 𝑎𝑎3 

Item 1  1 0 0 
Item 2  1 0 0 
Item 3  1 1 0 
Item 4  0 1 0 
Item 5  0 1 1 
Item 6  0 0 1 
Item 7  0 0 1 

 

As can be seen in Table 5. 1, the Q-matrix consisted of five simple structure items, 

meaning one attribute was measured per item, and two complex structure items having 

two out of three attributes load on an item. That is, the probability of responding to 

items three and five required an interaction of two attributes: Item three required 

attributes one and two, and Item five required attributes two and three. DINA and DINO 

models differ in how these interactions are modeled. Because the DINA model is non-

compensatory, mastery in both attributes is required for an increase in response 

probability on these items. On the other hand, the DINO model is a extreme 

compensatory model that assumes mastery in either of the attributes can result in 

maximal probability of item response. 

Bonifay (2015) provides multiple model indices including test-level indices such 

as Y2/N and item-level fit indices such as LD-X2 (Chen & Thissen, 1997) for use in 

qualifying FP. Aytürk Ergin (2020) added a slew of others. Among the model fit indices, 

the Y2/N statistic (Bartholomew & Leung, 2002; Cai et al., 2006) was selected to measure 

test-level fit in the simulations. The Y2/N was chosen not only because it best represents 

the best of Bonifay and Cai’s (2017) study but also because it is a limited-information 

index that requires only information about the univariate and bivariate margins 
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themselves, which is all the combination of the proposed SIS data generation and PML 

estimation methods can provide. The Y2 statistic is traditionally calculated as 

 𝑌𝑌2 = 𝑁𝑁 ��
�𝑜𝑜𝑗𝑗 − 𝑒𝑒𝑗𝑗�

2

𝑒𝑒𝑗𝑗�1− 𝑒𝑒𝑗𝑗�

𝐽𝐽

𝑗𝑗=1

+ � �
�𝑜𝑜𝑗𝑗𝑗𝑗′ − 𝑒𝑒𝑗𝑗𝑗𝑗′�

2

𝑒𝑒𝑗𝑗𝑗𝑗′�1− 𝑒𝑒𝑗𝑗𝑗𝑗′�

𝐽𝐽

𝑗𝑗′=𝑗𝑗+1

𝐽𝐽−1

𝑗𝑗=1

�. (61) 

N is the sample size, J is the number of items, 𝑜𝑜𝑗𝑗and 𝑒𝑒𝑗𝑗 are the observed and expected 

positive or correct response frequencies for item j, and 𝑜𝑜𝑗𝑗𝑗𝑗′ and 𝑒𝑒𝑗𝑗𝑗𝑗′are the observed and 

expected positive or correct response frequencies for item pair 𝑗𝑗𝑗𝑗′ . Bonifay and Cai 

(2017) actually calculated Y2/N based on equation (61) but using information from all 

the cells in the univariate and bivariate margins. Their method was employed in this 

study.  As an index of the magnitude of the discrepancy between the data and model, it 

is a “badness-of-fit” index so that higher values indicate worse fit. Y2 was divided by the 

sample size N to produce the Y2/N statistic to make it independent of sample size 

(Bonifay & Cai, 2017). 

𝑌𝑌2 and 𝑌𝑌2/𝑁𝑁 are distinguished from all other indices described here because they 

do not depend on the number of parameters in the model. In other words, the Y2 statistic 

does not penalize for number of free parameters in the model. Thus, it is considered the 

closest analog to root mean squared residual (RMSR; Jöreskog & Sörbom, 1996) that 

currently exists for discrete data. RMSR is what Preacher (2006) used as the metric of 

model fit in his study of FP of SEMs because he considered it a “pure” measure of fit 

unadjusted for the number of parameters or function form of a model and thus, 

appropriate to compare FPs across competing models. 
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5.2 Proposed Data Generation Algorithm and 𝟐𝟐 × 𝟐𝟐 Tables 

For dichotomously scored items, which is the focus of this study, generating data 

on the lower-order margins reduces to simply sampling 2 × 2 tables. Then the proposed 

data generation algorithm is simplified to that of Table 5. 2. 

Table 5. 2: Proposed Data Generation Algorithm for 2 × 2 Tables 

1. Randomly sample j univariate probabilities from a 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(2,2) distribution 

2. Uniformly sample 𝑝𝑝00 = 𝑃𝑃�𝑦𝑦𝑗𝑗 = 0,𝑦𝑦𝑗𝑗′ = 0� from the range of the lower and upper Fréchet 

bounds 

3. Calculate 𝑝𝑝01 = 𝑝𝑝0+ − 𝑝𝑝00, 𝑝𝑝10 = 𝑝𝑝+0 − 𝑝𝑝00 and 𝑝𝑝11 = 1 − 𝑝𝑝01 − 𝑝𝑝10 − 𝑝𝑝00 

 

In the case of 2 × 2 tables, we can plot the results of sampling an arbitrarily large 

number of points based on one data generation scheme or another and graphically verify 

whether it fits with theory as well as make comparisons. 10,000 points were sampled 

following the algorithm in Table 5. 2. Results of the bivariate points, which reside in the 

tetrahedron, are presented in the left panel of Figure 5. 2 (i.e., Figure 5. 2-(A)). The right 

panel of Figure 5.2 (Figure 5.2-(B)) shows the sampled bivariate points when using the 

conventional simplex sampling method with just two binary items used in Bonifay and 

Cai (2017). In the case of two variables, the two methods should provide identical results. 

The results of both seemed well-matched with theory in that they gave the impression 

of more or less uniformly distributed points across the 3-dimensional simplex, which 

was the categorical data space of interest.  

A set of corresponding univariate margins for both data generation methods are 

given in Figure 5. 3. The plots of univariate margins for the proposed SIS approach 

(depicted in Figure 5.3 in red) are from applying Step 1 of Table 5. 2. Thus, the univariate 
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margins were sampled from a 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(2,2) distribution. On the other hand, the plots for the 

simplex sampling method (blue in Figure 5. 3) are from collapsing the bivariate margins. 

The results of the two sets of plots were more or less identical indicating that the 

distribution from which to sample univariate probabilities was appropriate and 

functioned as expected. Such results provided evidence of the appropriateness and 

feasibility of the proposed SIS method. 

 

 

Figure 5. 2: Plot of Bivariate Margins by Sampling Method  
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Figure 5. 3: Plot of Univariate Margins by Sampling Method 

5.3 Simulation Study 1: Performance of Proposed PML Estimators  

The purpose of this simulation study was to examine the performance of 

proposed PML estimators for the five IRT models in Bonifay and Cai (2017) in terms of 

item parameter recovery, standard error estimation, and model fit. The focus was not 

only on whether the proposed PML estimators provided reasonable results when 

compared to simulated “true” parameters, but also on comparing the performance of 

the PML method to the full-information maximum likelihood (FIML) method via the 

widely used expectation-maximization (EM) algorithm (Bock & Akin, 1981).  

5.3.1 Simulation Study Setup 

Data Generating Models  

The data-generating models were set to those of Figure 5. 1. Item parameters 

needed for data generation were intentionally chosen to be simple but still referencing 

existing literature and being reflective of realistic settings. For the EFA model, the 

parameters of interest were standardized factor loadings instead of item parameter 

estimates. The loadings were drawn from a uniform distribution 𝑈𝑈(0.3;  1)  with a 

diagonal residual covariance matrix with variances set to 1 (Haslbeck & van Bork, 2022). 

These values were rounded to the nearest first decimal point. One cross-loading of size 

0.1 was included (Li et al., 2020). Furthermore, we allowed the two factors to correlate, 

which was set to 0.4, which is a moderate correlation (Haslbeck & van Bork, 2022). These 

served as the parameters for the underlying factor model assuming continuous 

variables. Thresholds were used to connect these underlying variables with the binary 
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observed ones. Threshold parameters were set to 0 for all items which split the 

underlying normal distribution per item roughly in half.  

The general consensus on bifactor models is that they are well-suited when the 

general factor has dominance over the specific factors (Reise et al., 2007; Seo & Weiss, 

2015). Data were simulated under such a structure by setting all general factor loadings 

to 1 and specific factor loadings to 0.6 for the first specific factor and 0.4 for the second 

one. The item intercept parameters were set at random 0.5 intervals between -1.5 and 

1.5. For both the EFA and bifactor, the latent ability vector for respondents was drawn 

from standard multivariate normal distributions that matched the number of latent 

factors of each model.  

The item parameters for both the DINO and DINA models were generated using 

response success probabilities where non-masters had relatively low probabilities of 

correctly responding while masters had relatively high probabilities. The response 

probabilities for non-masters were drawn from a uniform distribution of U(0.1,0.3), 

while those for masters were drawn from a uniform distribution U(0.7,0.9) so that the 

items could be considered as highly discriminating items. In other words, the guessing 

(𝑔𝑔 ) and slipping ( 𝑠𝑠 ) parameters were each drawn from a uniform distribution of 

U(0.1,0.3). These parameters were again rounded. These parameters were then converted 

to intercept (c in flexMIRT), main and interaction effect (a in flexMIRT) parameters under 

the log-linear diagnostic classification model (LDCM) parameterization (Rupp et al., 2010) 

where 𝑔𝑔 =  𝑒𝑒𝑒𝑒𝑒𝑒(𝑐𝑐)/(1 +  𝑒𝑒𝑒𝑒𝑒𝑒(𝑐𝑐)) and 𝑠𝑠 = 1 − ( 𝑒𝑒𝑒𝑒𝑒𝑒(𝑐𝑐 + 𝑎𝑎)
1 + 𝑒𝑒𝑒𝑒𝑒𝑒(𝑐𝑐 + 𝑎𝑎)). The base-rate of mastery, also 

called the marginal attribute difficulty, for each attribute was set equal to 0.5. The 

tetrachoric correlations reflecting the relationship between factors were also set to an 

equal value of 0.7 (Kunina-Habenicht et al., 2012).  
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Data Generation 

“True” or “population” parameters drawn according to the settings above were used 

to generate random response datasets with 𝑁𝑁 = 10000  based on a multinomial 

framework. This resulted in full item response pattern probabilities, which was a 

conscious choice as we were interested in comparing the proposed PML approach to the 

conventional FIML approach that requires them for model estimation. There is also the 

advantage that SEs can be generated for the PML approach as well. For use with the PML 

approach, the data were collapsed down to their bivariate margins, which is the only 

data utilized in model estimation.  

Analysis Setup  

The response datasets were calibrated using the models that matched the respective 

data generation models for both the LI and FI estimation methods. Bias and RMSE were 

set as the evaluation criteria for item parameter recovery to gauge the performance of 

the PML approach of each model (as well as for the FIML approach). Both the 

performance of the PML approach itself compared with the “true” or population 

parameters and its relative performance compared to the FIML method were examined. 

Each model and each estimation method was repeated 50 times. Thus, the total number 

of conditions was 4 models × 2 estimation methods, which resulted in a total number of 

iterations of 50 × 8 = 400 . Data generation, estimation using the PML approach, and 

calculations used R version 4.1.2. Estimation based on the FIML approach used flexMIRT 

3.6.4 (Cai, 2021). 
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Evaluation Criteria 

The accuracy of item parameter recovery was evaluated using bias and root mean 

square error (RMSE) calculated as follows: 

 
Bias�𝜃𝜃�� =

1
𝑅𝑅
�(𝜃𝜃�𝑟𝑟 − 𝜃𝜃)
𝑅𝑅

𝑟𝑟=1

 (62) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝜃𝜃�� = �
1
𝑅𝑅
��𝜃𝜃�𝑟𝑟 − 𝜃𝜃�

2
𝑅𝑅

𝑟𝑟=1

 (63) 

𝑅𝑅 is the number of replications. 𝜃𝜃� is the estimate of a parameter or its asymptotic SE at 

the 𝑟𝑟th replication. 𝜃𝜃 is the corresponding true value. In the case of SEs, true values (i.e., 

𝜃𝜃s) do not exist, so that the empirical SE was used as a surrogate. The empirical SE for a 

parameter is the standard deviation of each parameter estimate across replications R or 

 

𝑆𝑆𝐸𝐸𝐸𝐸 = �∑ (𝜃𝜃𝑟𝑟 − 𝜃𝜃𝑟𝑟���)2𝑅𝑅
𝑟𝑟=1

𝑅𝑅 − 1
 (64) 

(Katsikatsou et al., 2012; Xi & Browne, 2014).  

5.3.2 Results 

All results are organized by models following the order in Figure 5. 1. To facilitate 

comparisons between the “true” values for each model as well as methods, results over 

replications as well as specific parameter types are provided in a series of tables and 

graphs. A table for each model is presented with results for each item parameter in the 

order of the “true” value, the average parameter estimate across replications and 

corresponding bias and the RMSE for the PML method, and then the average parameter 

estimate across replications, the bias, and the RMSE for the FIML method. Graphical 

representations of the bias and RMSE of both methods overlaid are also presented. If 
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applicable, similar tables and graphs are given for the SE for both methods, starting with 

PML estimation and following the order of the standard deviation of the parameter 

estimate across replications, the average SE of a parameter across replications, and the 

respective bias and RMSE within an estimation method. Lastly, a table with the average 

bias and RMSE values across replications and all parameters of the same type, including 

those for SE, and average model fit value (i.e., Y2/N) are also provided.   

Model recovery results of individuals parameters for the EFA model are provided 

in Table 5. 3. For EFA models, recovery of the standardized rotated factor loadings (𝜆𝜆s) 

and the correlation parameter between the two factors (i.e., 𝜙𝜙) were the parameters of 

interest as opposed to the slope and intercept parameters. For rotated factors, SEs are 

usually not estimated, and thus results are only given for the loadings and correlation 

parameters themselves. Figure 5. 4 is a plot of the columns for bias and RMSE for each 

item parameter in Table 5. 3 for both estimation methods. Averages of bias and RMSE 

for the same parameter type across replications as well as model fit are summarized in 

Table 5. 4. The results from the tables and the figures showed that PML estimated 

loadings and correlation parameters were close to their “true” counterparts. In addition, 

they were nearly identical to those from the FIML estimation. The parameter that 

deviated the most from the “true” value for both the PML and FIML methods was the 𝜆𝜆14, 

which was the only parameter with a cross-loading. This is in line with past literature. 

The average model fit based on the Y2/N was the same for both methods. 
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Table 5. 3: Recovery Results of Estimates of the EFA Model 

Par. True 
PML FIML 

Est. Bias RMSE Est. Bias RMSE 

𝜆𝜆11 0.6 0.595 -0.005 0.014 0.594 -0.006 0.014 

𝜆𝜆12 0.5 0.500 0.000 0.019 0.500 0.000 0.019 

𝜆𝜆13 0.7 0.700 0.000 0.015 0.701 0.001 0.015 

𝜆𝜆14 0.4 0.389 -0.011 0.020 0.389 -0.011 0.020 

𝜆𝜆15 0.0 -0.002 -0.002 0.011 -0.003 -0.003 0.011 

𝜆𝜆16 0.0 0.004 0.004 0.012 0.004 0.004 0.012 

𝜆𝜆17 0.0 0.000 0.000 0.008 0.000 0.000 0.008 

𝜆𝜆21 0.0 -0.004 -0.004 0.013 -0.004 -0.004 0.013 

𝜆𝜆22 0.0 -0.009 -0.009 0.016 -0.009 -0.009 0.017 

𝜆𝜆23 0.0 -0.006 -0.006 0.011 -0.006 -0.006 0.011 

𝜆𝜆24 0.1 0.094 -0.006 0.014 0.093 -0.007 0.013 

𝜆𝜆25 0.7 0.695 -0.005 0.013 0.695 -0.005 0.013 

𝜆𝜆26 0.8 0.802 0.002 0.012 0.802 0.002 0.012 

𝜆𝜆27 0.9 0.907 0.007 0.011 0.906 0.006 0.011 

𝜙𝜙 0.4 0.407 0.007 0.014 0.408 0.008 0.014 
Note. 𝜆𝜆1 refers to the first, 𝜆𝜆2 refers to the second factor, and 𝜙𝜙 refers to the correlation parameters. 
Est.=Estimate. 
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Figure 5. 4: Bias and RMSE of Estimates of the EFA Model 
Note. 𝑙𝑙 = 𝜆𝜆 and 𝑝𝑝ℎ𝑖𝑖 = 𝜙𝜙. 

 

Table 5. 4: Average Bias, RMSE of Estimates, and Y2/N values of the EFA Model 

 
Item Parameters Model Fit 

𝜆𝜆 𝜙𝜙 
Y2/N 

Bias RMSE Bias RMSE 
PML -0.003 0.017 0.007 0.014 0.00062 
FIML -0.003 0.017 -0.003 0.016 0.00065 

Note. 𝜆𝜆 refers to factor loading and 𝜙𝜙 refers to the correlation parameters. Average bias and RMSE was 

calculated as 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵�𝜃𝜃�� =
∑ (𝜃𝜃�𝑗𝑗−𝜃𝜃𝑗𝑗)𝐽𝐽
𝑗𝑗=1

𝐽𝐽
 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝜃𝜃�� = �∑ �𝜃𝜃�𝑗𝑗−𝜃𝜃𝑗𝑗�

2𝐽𝐽
𝑗𝑗=1

𝐽𝐽
 averaged over replications. 𝐽𝐽 is the number of 

parameters of type 𝜃𝜃. That is, they were calculated as the average difference between the estimated and 
“true” parameters across items of parameter types and replications. 
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In the bifactor model, the parameters of concern were the slopes and intercepts. 

Model recovery results for average estimates of each of these parameters over 

replications are provided in Table 5. 5 and Figure 5. 5. The same results for 

corresponding standard errors are in Table 5. 6 and Figure 5. 6. The overall summary of 

estimates and standard errors for a parameter type across replications along with model 

fit is organized in Table 5. 7. The PML method was able to well recover the “true” 

parameters. Furthermore, its performance was comparable to that of the FIML estimator 

as well. The results between the FIML and PML estimation were closer to each other than 

their respective recovery of the population parameters. They also exhibited similar 

patterns where slope parameters were more difficult to estimate than intercept 

parameters. This is generally the case and likely there is also the influence of how the 

factor loading matrix was structured. While results are not presented here, different 

loading matrices lead to different recovery rates, even when the overall structure and 

number of parameters were kept the same. For example, when three loadings per specific 

factor were assumed and the same setting of one general and two specific factors was 

assumed, the model recovery results for the PML and FIML were hardly distinguishable. 

In terms of average model fit for the estimator, PML estimation tended to produce 

smaller Y2/N values.  
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Table 5. 5: Recovery Results of Estimates of the Bifactor Model 

Par. True 
PML FIML 

Est. Bias RMSE Est. Bias RMSE 

𝑎𝑎𝐺𝐺1 1.0 0.915 -0.085 0.085 0.895 -0.104 0.104 

𝑎𝑎𝐺𝐺2 1.0 0.883 -0.117 0.117 0.877 -0.123 0.132 

𝑎𝑎𝐺𝐺3 1.0 0.919 -0.081 0.081 0.884 -0.116 0.116 

𝑎𝑎𝐺𝐺4 1.0 0.912 -0.088 0.088 0.905 -0.095 0.095 

𝑎𝑎𝐺𝐺5 1.0 0.906 -0.094 0.094 0.861 -0.139 0.139 

𝑎𝑎𝐺𝐺6 1.0 1.096 0.096 0.096 1.034 0.034 0.047 

𝑎𝑎𝐺𝐺7 1.0 1.086 0.086 0.086 1.049 0.049 0.049 

𝑎𝑎𝑆𝑆11 0.6 0.579 -0.021 0.082 0.559 -0.041 0.094 

𝑎𝑎𝑆𝑆12 0.6 0.600 0.000 0.082 0.561 -0.039 0.115 

𝑎𝑎𝑆𝑆13 0.6 0.661 0.061 0.070 0.674 0.074 0.097 

𝑎𝑎𝑆𝑆14 0.6 0.535 -0.065 0.071 0.504 -0.096 0.096 

𝑎𝑎𝑆𝑆15 0.6 0.596 -0.004 0.026 0.601 0.001 0.012 

𝑎𝑎𝑆𝑆21 0.4 0.379 -0.021 0.071 0.439 0.039 0.069 

𝑐𝑐1 -1.0 -0.983 0.017 0.017 -0.985 0.015 0.016 

𝑐𝑐2 -1.5 -1.496 0.004 0.015 -1.501 -0.001 0.015 

𝑐𝑐3 1.5 1.560 0.060 0.060 1.566 0.066 0.066 

𝑐𝑐4 -1.5 -1.482 0.018 0.025 -1.487 0.013 0.025 

𝑐𝑐5 0.5 0.550 0.050 0.050 0.551 0.051 0.051 

𝑐𝑐6 -1.0 -0.982 0.018 0.021 -0.987 0.013 0.019 

𝑐𝑐7 -1.5 -1.459 0.041 0.051 -1.473 0.027 0.042 
Note. 𝑎𝑎𝐺𝐺 stands for the general factor, 𝑎𝑎𝑆𝑆 to specific factor and 𝑐𝑐 refers to intercept parameters. 
Est.=Estimate. 
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Figure 5. 5: Bias and RMSE of Estimates of the Bifactor Model 
Note. 𝑎𝑎𝐺𝐺 stands for the general factor, 𝑎𝑎𝑆𝑆 to specific factor and 𝑐𝑐 refers to intercept parameters. 

 
Table 5. 6: Recovery Results of Standard Errors of the Bifactor Model 

Par. 
PML FIML 

“True” Est. Bias RMSE “True” Est. Bias RMSE 

𝑎𝑎𝐺𝐺1 0.050 0.073 0.023 0.023 0.031 0.079 0.049 0.049 

𝑎𝑎𝐺𝐺2 0.065 0.077 0.011 0.011 0.101 0.083 -0.018 0.018 

𝑎𝑎𝐺𝐺3 0.037 0.079 0.042 0.042 0.032 0.084 0.052 0.052 

𝑎𝑎𝐺𝐺4 0.017 0.078 0.061 0.061 0.036 0.085 0.049 0.049 

𝑎𝑎𝐺𝐺5 0.053 0.067 0.014 0.014 0.054 0.071 0.016 0.016 

𝑎𝑎𝐺𝐺6 0.030 0.082 0.052 0.052 0.051 0.088 0.038 0.038 

𝑎𝑎𝐺𝐺7 0.031 0.089 0.058 0.058 0.027 0.097 0.070 0.070 

𝑎𝑎𝑆𝑆11 0.106 0.122 0.016 0.016 0.099 0.134 0.035 0.035 

𝑎𝑎𝑆𝑆12 0.100 0.122 0.022 0.022 0.141 0.132 -0.009 0.018 
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Par. 
PML FIML 

“True” Est. Bias RMSE “True” Est. Bias RMSE 

𝑎𝑎𝑆𝑆13 0.076 0.129 0.054 0.054 0.096 0.138 0.042 0.042 

𝑎𝑎𝑆𝑆14 0.058 0.126 0.068 0.068 0.070 0.138 0.068 0.068 

𝑎𝑎𝑆𝑆15 0.035 0.119 0.085 0.085 0.017 0.125 0.108 0.108 

𝑎𝑎𝑆𝑆21 0.094 0.208 0.114 0.114 0.104 0.193 0.089 0.089 

𝑐𝑐1 0.010 0.031 0.021 0.021 0.012 0.031 0.019 0.019 

𝑐𝑐2 0.021 0.039 0.018 0.018 0.026 0.039 0.013 0.013 

𝑐𝑐3 0.026 0.042 0.016 0.016 0.027 0.044 0.017 0.017 

𝑐𝑐4 0.028 0.037 0.008 0.008 0.030 0.036 0.006 0.006 

𝑐𝑐5 0.023 0.027 0.004 0.004 0.025 0.027 0.002 0.002 

𝑐𝑐6 0.020 0.033 0.013 0.013 0.019 0.033 0.013 0.013 

𝑐𝑐7 0.038 0.040 0.001 0.001 0.038 0.040 0.002 0.002 
Note. 𝑎𝑎𝐺𝐺 stands for the general factor, 𝑎𝑎𝑆𝑆 to specific factor and 𝑐𝑐 refers to intercept parameters. 
Est.=Estimate.  
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Figure 5. 6: Bias and RMSE of Standard Errors of the Bifactor Model 
Note. 𝑎𝑎𝐺𝐺 stands for the general factor, 𝑎𝑎𝑆𝑆 to specific factor and 𝑐𝑐 refers to intercept parameters. 
 

Table 5. 7: Average Bias, RMSE of Estimates and Standard Errors, and Y2/N Values of 

the Bifactor Model 

 Item Parameters Model Fit 

 
𝑐𝑐 𝑎𝑎𝐺𝐺  𝑎𝑎𝑆𝑆 

Y2/N 
Bias RMSE Bias RMSE Bias RMSE 

PML 0.030 0.041 -0.041 0.100 -0.014 0.077 0.00082 

FIML 0.026 0.041 -0.070 0.109 -0.010 0.082 0.00112 

 Standard Errors 

 
 

𝑐𝑐 𝑎𝑎𝐺𝐺  𝑎𝑎𝑆𝑆 
Bias RMSE Bias RMSE Bias RMSE 

PML 0.012 0.013 0.037 0.042 0.081 0.085 

FIML 0.010 0.013 0.037 0.045 0.069 0.076 
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Note. 𝑎𝑎𝐺𝐺 stands for the general factor, 𝑎𝑎𝑆𝑆 to specific factor and 𝑐𝑐 refers to intercept parameters. . Average 

bias and RMSE was calculated as 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵�𝜃𝜃�� =
∑ (𝜃𝜃�𝑗𝑗−𝜃𝜃𝑗𝑗)𝐽𝐽
𝑗𝑗=1

𝐽𝐽
 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝜃𝜃�� = �∑ �𝜃𝜃�𝑗𝑗−𝜃𝜃𝑗𝑗�

2𝐽𝐽
𝑗𝑗=1

𝐽𝐽
 , which was averaged over 

replications. 𝐽𝐽 is the number of parameters of type 𝜃𝜃. 

 

The model recovery results of the DINA model are organized in Table 5. 8  and 

Figure 5. 7 for individual parameter estimates and in Table 5. 9 and Figure 5. 8 for the 

corresponding standard errors. Overall summary results for parameters across 

replications are in Table 5. 10. The same information for the DINO model is presented 

in Table 5. 11 and Figure 5. 9 for the estimates, Table 5. 12 and Figure 5. 10 for the 

standard errors, and Table 5. 13 for overall summaries. As mentioned above, both the 

DINA and DINO can be formulated as a log-linear cognitive diagnosis model (LCDM). The 

item parameters were kept in this format of intercept, main, and interaction effects 

noted using 𝜆𝜆 s. The item parameter recovery results compared with the “true” 

parameters showed good fit. These results were consistent when the item parameters of 

both DCMs estimated using the PML approach were compared to their FIML 

counterparts. As expected, both DCMs exhibited increased difficulty in estimating the 

main effect and interaction effect parameters than intercept parameters. In addition, the 

main effect parameter for Item 4, which according to the Q-matrix in Table 5. 1 was the 

only simple structure item for Attribute 2, deviated the most from the “true” estimate 

for both DCMs. The two models also showed the same conclusions regarding model fit 

where both the DINA and DINO model had smaller Y2/N values across all replications 

using the PML method when compared to their FIML-based counterparts. In fact, there 

was evidence from other simulation attempts that the differences in the Y2/N values 

seemed to grow larger as model misfit grew. The ramifications of this discrepancy will 

show up in the subsequent simulation studies and will be further discussed then. 
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Table 5. 8: Recovery Results of Estimates of the DINA Model 

Par. True 
PML FIML 

Est. Bias RMSE Est. Bias RMSE 

𝜆𝜆1,(1)1   2.394 2.404 0.010 0.087 2.402 0.008 0.087 

𝜆𝜆1,(1)2 2.203 2.222 0.019 0.087 2.217 0.014 0.085 

𝜆𝜆2,(1,2)1 2.591 2.599 0.008 0.102 2.584 -0.006 0.088 

𝜆𝜆1,(2)1 1.840 1.823 -0.017 0.131 1.806 -0.033 0.123 

𝜆𝜆2(2,3)1 2.161 2.156 -0.005 0.083 2.149 -0.012 0.081 

𝜆𝜆1,(3)1 2.485 2.518 0.033 0.088 2.508 0.023 0.084 

𝜆𝜆1,(3)2 2.361 2.385 0.024 0.087 2.382 0.021 0.083 

𝜆𝜆01 -0.944 -0.953 -0.008 0.083 -0.950 -0.006 0.064 

𝜆𝜆02 -1.208 -1.221 -0.013 0.085 -1.217 -0.009 0.067 

𝜆𝜆03 -1.266 -1.260 0.005 0.052 -1.263 0.003 0.048 

𝜆𝜆04 -0.895 -0.882 0.014 0.112 -0.877 0.018 0.108 

𝜆𝜆05 -1.266 -1.244 0.022 0.063 -1.262 0.004 0.052 

𝜆𝜆06 -1.099 -1.075 0.023 0.086 -1.109 -0.010 0.060 

𝜆𝜆07 -1.153 -1.126 0.026 0.079 -1.161 -0.009 0.058 
Note. 𝜆𝜆0 refers to the intercept, 𝜆𝜆1 main effect, and 𝜆𝜆2 interaction parameters. Est.=Estimate. 
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Figure 5. 7: Bias and RMSE of Estimates of the DINA Model 
Note. 𝑙𝑙 = 𝜆𝜆. The parameters are indexed in the order of intercept, main effect, and interaction parameters. 

 

Table 5. 9: Recovery Results of Standard Errors of the DINA Model 

Par. 

PML FIML 

“True” Est. Bias RMSE “True” Est. Bias RMSE 

𝜆𝜆1,(1)1 0.088 0.086 -0.002 0.004 0.087 0.094 0.006 0.026 

𝜆𝜆1,(1)2 0.086 0.080 -0.006 0.006 0.085 0.097 0.012 0.043 

𝜆𝜆2,(1,2)1 0.102 0.089 -0.013 0.014 0.089 0.119 0.031 0.069 

𝜆𝜆1,(2)1 0.131 0.083 -0.048 0.049 0.120 0.155 0.036 0.127 

𝜆𝜆2(2,3)1 0.084 0.076 -0.008 0.008 0.081 0.084 0.003 0.015 

𝜆𝜆1,(3)1 0.082 0.088 0.006 0.007 0.081 0.088 0.006 0.015 

𝜆𝜆1,(3)2 0.085 0.084 -0.001 0.003 0.081 0.085 0.004 0.016 

𝜆𝜆01 0.083 0.046 -0.037 0.037 0.065 0.065 0.001 0.031 
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Par. 

PML FIML 

“True” Est. Bias RMSE “True” Est. Bias RMSE 

𝜆𝜆02 0.085 0.050 -0.034 0.034 0.067 0.075 0.008 0.042 

𝜆𝜆03 0.052 0.041 -0.011 0.011 0.049 0.050 0.001 0.019 

𝜆𝜆04 0.112 0.048 -0.064 0.064 0.107 0.110 0.003 0.090 

𝜆𝜆05 0.059 0.039 -0.020 0.020 0.052 0.058 0.005 0.024 

𝜆𝜆06 0.084 0.048 -0.036 0.036 0.059 0.061 0.002 0.025 

𝜆𝜆07 0.076 0.048 -0.027 0.028 0.058 0.061 0.003 0.025 
Note. 𝜆𝜆0 refers to the intercept, 𝜆𝜆1 main effect, and 𝜆𝜆2 interaction parameters. Est.=Estimate. 

 

 

Figure 5. 8: Bias and RMSE of Standard Errors of the DINA Model 
Note. 𝑙𝑙 = 𝜆𝜆. The parameters are indexed in the order of intercept, main effect, and interaction parameters. 

  



79 
 

Table 5. 10: Average Bias, RMSE of Estimates and Standard Errors, and Y2/N Values of 

the DINA Model 

 Item Parameters Model Fit 

 
𝜆𝜆0 𝜆𝜆1 𝜆𝜆2 

Y2/N 
Bias RMSE Bias RMSE Bias RMSE 

PML 0.010 0.077 0.014 0.093 0.002 0.010 0.00078 

FIML -0.001 0.065 0.006 0.088 -0.009 0.072 0.00105 

 Standard Errors 

 
 

𝜆𝜆0 𝜆𝜆1 𝜆𝜆2 
Bias RMSE Bias RMSE Bias RMSE 

PML -0.097 0.051 -0.028 0.041 -0.130 0.135 
FIML -0.062 0.247 -0.028 0.214 -0.071 0.233 

Note. 𝜆𝜆0 refers to the intercept, 𝜆𝜆1 main effect, and 𝜆𝜆2 interaction parameters. . Average bias and RMSE was 

calculated as 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵�𝜃𝜃�� =
∑ (𝜃𝜃�𝑗𝑗−𝜃𝜃𝑗𝑗)𝐽𝐽
𝑗𝑗=1

𝐽𝐽
 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝜃𝜃�� = �∑ �𝜃𝜃�𝑗𝑗−𝜃𝜃𝑗𝑗�

2𝐽𝐽
𝑗𝑗=1

𝐽𝐽
 , which was averaged over replications. 𝐽𝐽 is the 

number of parameters of type 𝜃𝜃. 

 

Table 5. 11: Recovery Results of Estimates of the DINO Model 

Par. True 
PML FIML 

Est. Bias RMSE Est. Bias RMSE 

𝜆𝜆1,(1)1   2.234 2.251 0.017 0.059 2.258 0.025 0.064 

𝜆𝜆1,(1)2 2.773 2.778 0.005 0.088 2.767 -0.006 0.085 

𝜆𝜆2,(1,2)1 2.234 2.227 -0.007 0.091 2.216 -0.018 0.083 

𝜆𝜆1,(2)1 3.584 3.694 0.110 0.298 3.651 0.068 0.236 

𝜆𝜆2(2,3)1 2.234 2.225 -0.009 0.074 2.222 -0.012 0.066 

𝜆𝜆1,(3)1 3.045 3.061 0.016 0.123 3.038 -0.007 0.112 

𝜆𝜆1,(3)2 1.695 1.691 -0.004 0.064 1.692 -0.003 0.064 

𝜆𝜆01 -0.847 -0.862 -0.015 0.062 -0.859 -0.011 0.047 

𝜆𝜆02 -1.386 -1.399 -0.013 0.078 -1.385 0.001 0.060 
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Par. True 
PML FIML 

Est. Bias RMSE Est. Bias RMSE 

𝜆𝜆03 -1.386 -1.382 0.004 0.085 -1.368 0.018 0.071 

𝜆𝜆04 -2.197 -2.217 -0.020 0.134 -2.191 0.006 0.102 

𝜆𝜆05 -0.847 -0.847 0.000 0.060 -0.834 0.013 0.059 

𝜆𝜆06 -2.197 -2.235 -0.038 0.146 -2.193 0.004 0.107 

𝜆𝜆07 -0.847 -0.854 -0.007 0.055 -0.842 0.005 0.047 
Note. 𝜆𝜆0 refers to the intercept, 𝜆𝜆1 main effect, and 𝜆𝜆2 interaction parameters. Est.=Estimate. 

 

 

Figure 5. 9: Bias and RMSE of Estimates of the DINO Model 
Note. 𝑙𝑙 = 𝜆𝜆. The parameters are indexed in the order of intercept, main effect, and interaction parameters. 
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Table 5. 12: Recovery Results of Standard Errors of the DINO Model 

Par. 

PML FIML 

“True” Est. Bias RMSE “True” Est. Bias RMSE 

𝜆𝜆1,(1)1 0.057 0.084 0.027 0.034 0.060 0.075 0.015 0.015 

𝜆𝜆1,(1)2 0.089 0.102 0.013 0.048 0.086 0.081 -0.005 0.014 

𝜆𝜆2,(1,2)1 0.092 0.083 -0.010 0.023 0.082 0.097 0.016 0.030 

𝜆𝜆1,(2)1 0.279 0.168 -0.112 0.142 0.228 0.079 -0.150 0.150 

𝜆𝜆2(2,3)1 0.074 0.075 0.001 0.011 0.066 0.076 0.011 0.011 

𝜆𝜆1,(3)1 0.123 0.162 0.039 0.151 0.113 0.072 -0.041 0.042 

𝜆𝜆1,(3)2 0.065 0.074 0.009 0.021 0.065 0.064 0.000 0.001 

𝜆𝜆01 0.061 0.045 -0.016 0.018 0.046 0.042 -0.004 0.004 

𝜆𝜆02 0.078 0.060 -0.018 0.026 0.061 0.050 -0.011 0.019 

𝜆𝜆03 0.086 0.067 -0.019 0.032 0.069 0.086 0.017 0.031 

𝜆𝜆04 0.134 0.118 -0.016 0.074 0.102 0.054 -0.049 0.050 

𝜆𝜆05 0.061 0.052 -0.008 0.012 0.059 0.058 0.000 0.002 

𝜆𝜆06 0.142 0.126 -0.017 0.115 0.108 0.054 -0.053 0.054 

𝜆𝜆07 0.055 0.044 -0.011 0.014 0.047 0.041 -0.006 0.006 
Note. 𝜆𝜆0 refers to the intercept, 𝜆𝜆1 main effect, and 𝜆𝜆2 interaction parameters. Est.=Estimate. 
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Figure 5. 10: Bias and RMSE of Standard Errors of the DINO Model 

Note. 𝑙𝑙 = 𝜆𝜆. The parameters are indexed in the order of intercept, main effect, and interaction parameters. 
 
 
Table 5. 13: Average Bias, RMSE of Estimates and Standard Errors, and Y2/N Values of 

the DINO Model 

 Item Parameters Model Fit 

 
𝜆𝜆0 𝜆𝜆1 𝜆𝜆2 

Y2/N 
Bias RMSE Bias RMSE Bias RMSE 

PML -0.012 0.090 0.029 0.137 -0.008 0.071 0.00079 

FIML 0.005 0.070 0.015 0.114 -0.015 0.066 0.00109 

 Standard Errors 

 
 

𝜆𝜆0 𝜆𝜆1 𝜆𝜆2 
Bias RMSE Bias RMSE Bias RMSE 

PML -0.015 0.041 -0.005 0.078 -0.004 0.041 
FIML -0.015 0.030 -0.036 0.070 0.013 0.014 

Note. 𝜆𝜆0 refers to the intercept, 𝜆𝜆1 main effect, and 𝜆𝜆2 interaction parameters. . Average bias and RMSE was 

calculated as 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵�𝜃𝜃�� =
∑ (𝜃𝜃�𝑗𝑗−𝜃𝜃𝑗𝑗)𝐽𝐽
𝑗𝑗=1

𝐽𝐽
 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝜃𝜃�� = �∑ �𝜃𝜃�𝑗𝑗−𝜃𝜃𝑗𝑗�

2𝐽𝐽
𝑗𝑗=1

𝐽𝐽
 , which was averaged over replications. 𝐽𝐽 is the 

number of parameters of type 𝜃𝜃. 
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5.3.3. Summary  

The results of Simulation Study 1 for item parameter recovery indicated adequate 

parameter recovery for four out of the five models in Bonifay and Cai (2017) under PML 

estimation. The exception was the unidimensional 3PL model. Moreover, the parameter 

recovery results were comparable with those from a conventionally used FIML method; 

albeit FIML showed slightly superior results in terms of item parameter recovery. This is 

as expected as FIML methods use all the available information from the data while PML 

uses only bivariate information. SE estimates were also similar across the two methods 

of FIML and PML estimation even though PML required the Godambe information matrix 

for SE calculation. Contrarily, the results showed differences in model fit that was 

evaluated using Y2/N statistic. There was a tendency of smaller Y2/N values in PML 

estimation than FIML estimation for particularly the DCMs.  

 

5.4 Simulation Study 2: Replication of Bonifay and Cai’s (2017) Study using 

the Simplex Sampling Method 

Bonifay and Cai (2017) used flexMIRT (Cai, 2021) to fit the IRT models in Figure 

5. 1 using a FIML method via the EM algorithm. In this dissertation, PML estimation is 

the target estimation method. The goal of this simulation study was to determine 

whether Bonifay and Cai’s (2017) major findings are replicable with the PML approach 

to be used throughout the subsequent studies so that any comparisons of results are 

meaningful.  
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5.4.1 Simulation Study Setup 

Data Generation 

To compare the results of Bonifay and Cai’s (2017) study with those based on a 

PML approach, datasets for seven dichotomous items were sampled using the simplex 

sampling method presented in Bonifay and Cai (2017). This generated full item response 

patterns, which flexMIRT expects. Following Bonifay and Cai (2017), a total of 1000 

random datasets for seven dichotomously scored items were generated with 𝑁𝑁 = 10000. 

Similar to the previous simulation study on the performance of the proposed PML 

approach, the data were collapsed to the corresponding bivariate margins for use with 

PML estimation.  

Analysis Setup 

The EFA, bifactor, DINA, and DINO models were each fit to the 1,000 random 

datasets using both flexMIRT and the PML estimation method. For flexMIRT, estimation 

specifications were identical to that of Bonifay and Cai (2017). They used a more relaxed 

convergence tolerance of 0.001 for maximum parameter change in consecutive EM cycles 

as well as an increase in the maximum number of EM cycles (i.e., 20,000) to increase the 

convergence rate. However, Bonifay and Cai (2017) concluded that Preacher’s (2016) 

argument that even non-converged estimates after many E-step iterations (e.g., 10,000, 

20,000) can be considered acceptable estimates was valid following indistinguishability 

of the converged and non-converged results in their study. Also, Aytürk Ergin (2020) 

echoed this sentiment in that convergence did not affect their results in FP investigation 

either. Therefore, for PML estimation, considering that it generally takes more iterations 

and a lower tolerance to get the same results as the FIML method, we kept to the initial 

setting of tolerance of 10−6 but increased the number of iterations to 25,000.  
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 The Y2/N index resulting from fitting each model was recorded and analyzed for 

all 1,000 replications for both estimation methods, regardless of non-convergence. The 

results were organized using cumulative percentage curves of Y/N for each model. Also, 

euler diagrams using the eulerr package (Larsson, 2021) in R were utilized to examine 

the approximate degree of overlap among models with respect to the area in the data 

space they covered based on Y/N. 

5.4.2 Results: Generated Data and 𝟐𝟐 × 𝟐𝟐 Tables 

The simplex sampling method for 𝐽𝐽 binary items used in this simulation gives us 

2𝐽𝐽 multinomial probabilities, which can be collapsed down to their bivariate margins for 

PML estimation. However, it is both theoretically and empirically evident that the data 

from these 2 × 2 tables do not match that of generating 2 × 2 tables directly using the 

SIS approach.  

The simplex sampling method for 𝐽𝐽 binary items is the same as sampling from a  

(2𝐽𝐽 − 1) probability simplex (Rubin, 1981). Same as before, the minus one comes from 

the constraint that the sum of all probabilities must be one. We already know that 

sampling from a  (2𝐽𝐽 − 1) probability simplex is also the same as sampling from a 

Dirichlet distribution with 2𝐽𝐽  variables where all the alphas are set to 1 or 𝐷𝐷𝐷𝐷𝐷𝐷(𝛼𝛼1 =

1,⋯ ,𝛼𝛼2𝐽𝐽 = 1). Applied to the case of Simulation Study 2 with seven items, this means the 

values of the simulated datasets were essentially drawn from a 𝐷𝐷𝐷𝐷𝐷𝐷(𝛼𝛼1 = 1,⋯ ,𝛼𝛼128 = 1). 

Let’s apply the aggregation property repeatedly until we arrive at the bivariate margins 

(i.e., the cells of a 2 × 2 table). It becomes that the 2 × 2 tables obtained from collapsing 

the multinomial probabilities follow a 𝐷𝐷𝐷𝐷𝐷𝐷(𝛼𝛼00 = 32,𝛼𝛼01 = 32,𝛼𝛼10 = 32,𝛼𝛼11 = 32 ), which 

differs significantly from a 𝐷𝐷𝐷𝐷𝐷𝐷(𝛼𝛼00 = 1,𝛼𝛼01 = 1,𝛼𝛼10 = 1,𝛼𝛼11 = 1) that the 2 × 2 tables using 

the SIS approach follow.  
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The 𝛼𝛼 parameters of a Dirichlet distribution determine both the concentration 

and distribution of the distribution. The higher the value of 𝛼𝛼, the greater the weight 

and amount of the total mass assigned to that parameter given to the corresponding 

outcome. Equal 𝛼𝛼s give a symmetric or even distribution regardless of their size. 𝛼𝛼 less 

than one (i.e., 𝛼𝛼 < 1) push the outcomes toward the extremes and 𝛼𝛼s greater than one 

(i.e, 𝛼𝛼 > 1) pull the outcome toward some central value, the force of which increases 

depending on 𝛼𝛼.  If 𝛼𝛼1 = ⋯ = 𝛼𝛼𝑘𝑘 = 1 for k variables in a Dirichlet distribution, then the 

points are uniformly distributed (Lin, 2016). A 𝐷𝐷𝐷𝐷𝐷𝐷(𝛼𝛼00 = 32,𝛼𝛼01 = 32,𝛼𝛼10 = 32,𝛼𝛼11 = 32) 

should generate values that are very concentrated at the center of a (4 − 1)- dimensional 

simplex, just like Figure 5. 11.  

In short, when 𝐽𝐽 > 2,  the simplex sampling method will not lead to bivariate 

margins that are uniformly distributed. Instead, they will be concentrated toward the 

center of the (2𝐽𝐽 − 1)- dimensional simplex. In turn, this means that the data generated 

using the SIS method is more random than when using a simplex sampling approach. 

The values from the latter may be classified to what Preacher (2006) and Roberts and 

Pashler (2000) call “plausible” values of a target data space rather than “possible” data.   
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Figure 5. 11: Plot of Bivariate Margins from doing Simplex Sampling with Seven Items 

5.4.3 FP Results for FIML Estimation 

Table 5. 14 displays the descriptive statistics of the Y2/N statistic for the four 

models. Comparing means shows that on average, the EFA and bifactor models produced 

Y2/N values of 0.05 or lower. The DINA and DINO models tended to have Y2/N values 

of 0.10. The results also show The EFA and bifactor model generally had lower Y2/N  

values compared to the DINA and DINO models.   
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Table 5. 14: Descriptive Statistics of Y2/N for Simplex Method × FIML Estimation 

Model M SD Min Max 

EFA 0.037 0.018 0.003 0.127 

Bifactor 0.047 0.022 0.005 0.148 

DINA 0.103 0.039 0.024 0.261 

DINO 0.103 0.039 0.033 0.264 
Note. M= mean, SD=standard deviation.  

 

Figure 5. 12 shows the empirical cumulative distribution function (CDF) plot of 

the Y2/N statistic for the four models. The cumulative percentages of datasets across 

replications that achieve a particular value of Y2/N for each model were depicted in the 

plot. The percentage of data that each model fit according to a reference Y2/N value can 

be found by investigating the vertical distance between models in the plot. For example, 

using the cutoff in Bonifay and Cai (2017) of 𝑌𝑌2/𝑁𝑁 ≤  0.05, 77.9% of the datasets were 

found to fit under the EFA model, followed by 60.1% for the bifactor model. Less than 

5% of datasets showed good fit to the DINA and DINO model when 𝑌𝑌2/𝑁𝑁 ≤  0.05. Looking 

vertically across the values of Y2/N shows that the EFA model had the highest 

percentage of fitting datasets followed by the bifactor model and, lastly, DINA and DINO 

models.  

One can also find the corresponding Y2/N value to a benchmark percentage based 

on the horizontal discrepancy of the CDF plot. Looking horizontally across percentages, 

we can see that the EFA model had the lowest Y2/N value for any benchmark percentage 

with increasing values in the order of the bifactor and then DINA and DINO models. The 

large gap in the CDF curves between the EFA and bifactor models and the DINA and 

DINO models points to significant differences in Y2/Ns values between of EFA and 
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bifactor models compared to their DCM counterparts to fit the same amount of data. 

There is also a distinction between the EFA and bifactor to a lesser extent. On the other 

hand, the two DCMs had nearly identical curves. 

 

Figure 5. 12: Cumulative Percentage Distributions of the Y2/N statistic Simplex Method 

× FIML Estimation 

Euler diagrams can be used to approximately examine the overlap among models 

in addition to the areas of the data space that models show fit at specific cut-points. The 

overlap in areas between models indicates datasets for which the overlapping models 

all satisfy a cut-point. Figure 5. 13, Figure 5. 14, and  Figure 5. 15 depict the regions in 

the data space captured by the models at increasingly large cutoffs for the Y2/N statistic 

of 0.01, 0.03, and 0.05 (Bonifay & Cai, 2017).  
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Under the most conservative cutoff of 𝑌𝑌2/𝑁𝑁 ≤ 0.01 (Figure 5. 13), only the EFA and 

bifactor model were present with EFA occupying a larger area among the two. Also, even 

though the larger portion of the bifactor model area overlapped with the EFA model 

(71.4% of bifactor models overlapped with EFA model), there was still a region where 

only the bifactor model fit (2% of the complete data space and 7.4% of all the fitted 

region). 

 
Figure 5. 13: Hypothetical Approximate Regions of the Captured Data Space at 𝑌𝑌2/𝑁𝑁 ≤

0.01 Simplex Sampling Method × FIML Estimation 

Figure 5. 14 shows that with 𝑌𝑌2/𝑁𝑁 ≤  0.03, although the EFA and bifactor still 

dominated the regions of good fit, the DINA model was also introduced. No DINO models 

were included. The degree of overlap between the EFA and bifactor models increased as 

well, from 18.5% to 35.7%, but the region where only the bifactor model showed good fit 
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also increased (5.5% of total datasets and 12.4% of fitted datasets). The DINA datasets 

were subsumed completely with the bifactor model, among which one did not overlap 

with the EFA model. 

 

 Figure 5. 14: Hypothetical Approximate Regions of the Captured Data Space at 𝑌𝑌2/𝑁𝑁 ≤

0.03 Simplex Sampling Method × FIML Estimation 

Using the most liberal cutoff of the three (i.e., 𝑌𝑌2/𝑁𝑁 <  0.05; Figure 5. 15), all 

models were introduced. The areas occupied by the DCMs were 5.9% of the complete 

data space and 9.8% of the fitted data space. The EFA model subsumed most of the area 

covered by the bifactor model with their degree of overlap 90.2%. The most notable 

difference was the disentanglement in fit for the DCMs. Not only did the DINA model 

seem to fit more datasets than the DINO, but they also did not overlap perfectly with 
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each other (degree of overlap was only 20%). To add, not all DCMs could be subsumed 

by just one of the bifactor or EFA models.  

 

Figure 5. 15: Hypothetical Approximate Regions of the Captured Data Space at 𝑌𝑌2/𝑁𝑁 ≤

0.05 Simplex Sampling Method × FIML Estimation 

Summary 

Overall, the Y2/N results discussed above indicated that the EFA and bifactor 

models possess high propensities to fit any possible data. Thus, these models displayed 

high FPs, especially in comparison to the two DCMs with far lower FPs. While the DCMs 

were indeed comparable to each other, they could occupy different regions of fit, with 

DINA having slightly better fit than the DINO models overall. As expected, the results 

conform to those of Bonifay and Cai (2017) and Aytürk Egrin (2020) who replicated the 

former’s results using different statistical packages in R and other fit indices.  
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5.4.4 FP Results for PML Estimation 

The goal of Simulation Study 2 was to test whether Bonifay and Cai’s (2017) 

findings can be replicated for the proposed PML estimation using the same data. The 

same types of tables and figures used for FIML-based FP results were used.  

The descriptive statistics are summarized in Table 5. 15, for which differences in 

the magnitudes of Y2/N values are the most noticeable. Overall, the values were 

magnified by over ten-told. Nonetheless, the results showed the same pattern as FIML 

results in Table 5. 14 where the EFA and bifactor model generally had lower Y2/N values 

compared to the DINA and DINO models. On average, the EFA and bifactor models 

produced Y2/N values of 0.6 or lower. The DINA and DINO models tended to have Y2/N 

values of 0.7. 

Table 5. 15: Descriptive Statistics of Y2/N for Simplex Sampling Method × PML 

Estimation 

Model M SD Min Max 

EFA 0.562 0.342 0.055 3.625 

Bifactor 0.596 0.342 0.055 2.234 

DINA 0.714 0.398 0.085 3.229 

DINO 0.714 0.397 0.085 3.228 
Note. M= mean, SD=standard deviation.  

 

The CDF plot for the models (Figure 5. 16) displays similar patterns to FIML 

results (Figure 5. 12) as well. The EFA model had the highest percentage of fitting 

datasets for any Y2/N statistic followed by the bifactor model and, at last the DINA and 

DINO models (which were identical). In sum, the general patterns of FP were not affected 
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despite the change in magnitude of Y2/N values. However, a discernable difference is 

that the separation between EFA and bifactor models with the DCMs is not nearly as 

prominent, although we still observed larger differences between the two sets of models 

(i.e., EFA and bifactor versus DINA and DINO models) than within. When considering the 

vertical discrepancy between the curves, the differences in the cumulative percentage of 

datasets at or below a cutoff Y2/N value are not as stark as before. Or from the 

perspective of looking at the horizontal discrepancy between the curves, the differences 

in Y2/N values to reach a certain percentage of fitting models becomes smaller. The gap 

between the EFA and bifactor model was smaller as well, implying that they were likely 

to fit more similarly than before. Such results indicate larger regions of coverage for 

greater overlap between all models but especially for DINA and DINO models than in 

FIML estimation. The CDF curves for the DINO and DINA models were still 

indistinguishable, which might be natural given the decrease in the space between them 

and the EFA and bifactor models. Another characteristic of the CDF plot was the increase 

in the space between the CDF curves of the EFA and bifactor models with the DCMs as 

Y2/N values grew larger. This implied larger discrepancies in the Y2/N values for as 

cumulative percentages increased. 
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Figure 5. 16: Cumulative Percentage Distributions of the Y2/N statistic for Simplex 

Sampling Method × PML Estimation  

The suspected increase in overlap along with regions of fit was corroborated in 

Figure 5. 17, Figure 5. 18, and Figure 5. 19 using Euler diagrams. Scale differences with 

the FIML results meant that the same cutoffs of Y2/N could not be applied. Instead, 

arbitrary cut points were chosen that best-provided insight about (which provided the 

best insights into) the four models. The specific cut-points were 𝑌𝑌2/𝑁𝑁 ≤ 0.1, 𝑌𝑌2/𝑁𝑁 ≤ 0.3 

and 𝑌𝑌2/𝑁𝑁 ≤ 0.5. 

Even under the most stringent cutoff of 𝑌𝑌2/𝑁𝑁 ≤ 0.1 (Figure 5. 17), the bifactor 

model covered much of the area for the EFA. Also, areas where the DINA and DINO 

models fit were not neglectable in comparison to their EFA and bifactor counterparts. 

While the DCMs consisted of 0.2% of the complete data space, the DCMs accounted for 

13.3% of the datasets that fit. The EFA model entirely subsumed the bifactor model, 
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which was equal to 73.3% of the fitted data space (1.1 of the total data space), meaning 

that they would give the same result about fit 73.3% of the time. In turn, the bifactor 

model entirely subsumed both DCMs. No differences in fit were detected between the 

DINA and DINO model.  

 

Figure 5. 17: Hypothetical Approximate Regions of the Captured Data Space at 𝑌𝑌2/𝑁𝑁 ≤

0.1 for Simplex Sampling Method × PML Estimation 

The Euler diagram for 𝑌𝑌2/𝑁𝑁 ≤ 0.3 is given in Figure 5. 18 and showed a relative 

increase in growth that was larger for the DINA and DINO models than the EFA and 

bifactor models. The area covered by both the EFA and bifactor models accounted for 

17.3% of the total data space and 76.5% of the fitted data space, similar to Figure 5.10. 

On the other hand, DCMs accounted for 11.5% of the complete data space and 50.8% of 

all fitted datasets. Also, while the EFA still completely subsumed the bifactor and both 
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DCMs the bifactor model only subsumed the DINA model and not the DINO model (the 

percentage of non-overlap between bifactor and DINA model was 6.1%). The difference 

between the two, although minor at 2.6%, provides support that their fit to specific 

datasets may give different conclusions even though the overall percentages of fitted 

datasets are roughly the same.  

 

Figure 5. 18: Hypothetical Approximate Regions of the Captured Data Space at 𝑌𝑌2/𝑁𝑁 ≤

0.3 for Simplex Sampling Method × PML Estimation 

Figure 5. 19 based on 𝑌𝑌2/𝑁𝑁 ≤ 0.5 shows divergence between the EFA and bifactor 

model regions of fit. 0.6% of the complete data space or 1.1% of the fitted space showed 

that the bifactor model fit but the EFA did not. The rate of growth in areas of fit for the 

DINA and DINO models did not seem to be as large as Figure 5. 18, mirroring the 
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widening gap between the CDF curves for the EFA and bifactor versus DCMs depicted in 

Figure 5. 16. In this case, The DINA and DINO regions completely overlapped with each 

other. The EFA again completely subsumed the DCMs, but some DCMs models showed 

fit when the bifactor did not (the percentage of non-overlap between bifactor and DCMs 

was 10.2). All four models fit 30.9% of the complete data space according to 𝑌𝑌2/𝑁𝑁 ≤ 0.5, 

consisting of 59.2% of the total number of datasets that showed adequate fit.  

 

Figure 5. 19: Hypothetical Approximate Regions of the Captured Data Space at 𝑌𝑌2/𝑁𝑁 ≤

0.5 for Simplex Sampling Method × PML Estimation 

Summary 

Compared with the FIML estimation, a pronounced characteristic of PML 

estimation was the decrease in model fit (meaning larger Y2/N values). Another notable 

difference, clearly apparent in the CDF plot, was the decline in distinguishability between 
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models when using the PML estimation. This led to higher proportions of all three 

models being captured in addition to the EFA at various cut points of Y2/N. Using Euler 

diagrams to further investigate areas of overlap showed that EFA often subsumed the 

bifactor model area in addition to the ratio of fitted areas between the models being 

consistently larger than with FIML estimation. In addition, the area in the data space 

which are fit well by the DINA and DINO models when sliced by Y2/N cutoffs was 

substantially larger and less distinguishable for the PML approach than the FIML 

approach. Simulation Study 1 on model recovery of the four models under PML 

estimation showed that Y2/N values could be considerably smaller for DCMs. Initial 

investigation implied that Y2/N statistic for DCMs using PML estimation was less 

sensitive to changes within the model, which could explain the results of Simulation 

Study 2. Nonetheless, lower Y2/N values were produced with the EFA, followed by the 

bifactor, and lastly, DCMs across the range of Y2/N as seen by the descriptive statistics 

and the CDF plot. Also, the EFA and bifactor models (more so for the former) occupied 

larger areas than the DCMs.  

The key findings agreed with that of Bonifay and Cai (2017) and Aytürk Ergin 

(2020) regarding the difference in FP of models due to the functional form of a model. 

The EFA and the bifactor model were highly flexible models in general and as well as in 

comparison to their DCM counterparts, not only above and beyond what can be 

attributed to its number of parameters (parametric complexity) but also given the model 

complexity due to the estimation method. This suggested the suitability of the PML 

estimation approach as a method for investigating FP.  
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5.5 Simulation Study 3: Investigation of FP in IRT Models using SIS Method 

and PML Estimation 

As verified in Figure 5. 11 of Section 5.4.2, the simplex sampling method does not 

generate uniformly distributed points over the complete data space defined by the 

bivariate margins. Rather, it covers only a subspace determined by the highest-order 

margin (i.e., the full multinomial). Some might argue that trying to capture all areas of 

the data space (i.e., every possible response pattern) is not worthwhile or relevant if 

these possible response patterns cannot be plausibly observed in real settings. 

Nevertheless, there may be consequences in cases where the data comes from outside 

the subspace (i.e., possible data) and restrict the generalizability of results (Preacher, 

2003). Furthermore, investigating the behavior of models under extreme random data 

can provide more insight into their inherent propensity to fit any possible data (not just 

plausible). 

Therefore, this simulation study examined the FP of models using random data 

from the complete categorical subspace enabled by the SIS method and PML estimation. 

The aim was to investigate the fitting behaviors of the four models of Bonifay and Cai 

(2017) when the data were comprised of more random responses, plausible and non-

plausible. In addition, the extent to which Bonifay and Cai’s (2017) findings and those 

from Simulation Study 2 were replicable were also examined. 
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5.5.1 Simulation Study Setup 

Data Generation 

A total of 1000 random datasets for seven dichotomously scored items were 

generated following Table 5. 2. Each dataset consisted of 7 univariate margins and 
7×6
2

=

21 bivariate margins. As probabilities were given, each margin was multiplied by 𝑁𝑁 =

10000 to get the number of sample responses in each margin.  

Analysis Setup  

The four models of the EFA 2PL, bifactor 2PL, DINA, and DINO models were fit to 

the 1000 random datasets generated via the SIS method using PML estimation. The 

estimation specifications were kept the same to convergence tolerance of 10−6  and 

25,000 cycles. The Y2/N indices resulting from fitting each model were recorded and 

analyzed for all possible replications using CDF plots and Euler diagrams. In addition to 

comparing the results by model, comparisons across data generation mechanisms were 

made as well.  

5.5.2 Results 

Descriptive statistics of Y2/N across replications for the SIS method and PML 

estimation combination are provided in Table 5. 16. Compared to the descriptive 

statistics of Table 5. 15, the Y2/N increased significantly. The use of random possible 

data obtained by uniform sampling over the entire univariate and bivariate margins 

seemed to have exacerbated problems in using a PML estimation to data that did not fit 

the model, which is to be expected. Notwithstanding the extremely large sizes of the 

Y2/N, relative use of Y2/N values in comparing models still showed that EFA on average 



102 
 

and across the quantiles had the lowest values (M=11.41), followed by the bifactor model 

(M=11.63) and DCMs (M=12.28 for both DINA and DINO) across the range of Y2/N values.  

Table 5. 16: Descriptive Statistics of Y2/N for SIS Method × PML Estimation 

Model M SD Min Max 

EFA 11.408 4.751 2.336 31.291 

Bifactor 11.633 4.781 2.346 33.532 

DINA 12.282 4.868 2.428 33.245 

DINO 12.284 4.854 2.495 32.966 
Note. M= mean, SD=standard deviation.  

 

The trends of lower Y2/N for the EFA, then bifactor, and, lastly the DCMs were 

also evident in the CDF plot (Figure 5. 20). However, the CDF curves became even less 

distinguishable from each other than in Figure 5. 16 where data came from the simplex 

sampling method. Not only were the EFA and bifactor model CDF curves pushed closer 

together as were the DINO and DINA model CDF curves (which were nearly identical), 

but the two sets of model CDF curves (i.e., EFA and bifactor versus DCMs) themselves 

were closer together than before. This meant the overlap among the four models grew 

exponentially across a short range of the Y2/N values. For example, Euler diagrams 

drawn at 𝑌𝑌2/𝑁𝑁 ≤ 12 (results not provided here), showed that the EFA and bifactor had 

equivalent size regions with near 100% overlap and the area for each DCM model was 

over 90% of the entire fitted data space.  
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Figure 5. 20: Cumulative Percentage Distributions of the Y2/N statistic for SIS Method 

× PML Estimation  

Figure 5. 20 suggests extreme overlap among the EFA, bifactor, DINA, and DINO 

models starting from even the lower ends of the Y2/N values. Contrarily, Euler diagrams 

at smaller cutoffs showed separation between models that could be meaningful. Cutoff 

values of Y2/N for the diagrams were chosen to be 4, 6, and 8, respectively. For 𝑌𝑌2/𝑁𝑁 ≤ 

4 (Figure 5. 21), the EFA, followed by the bifactor model captured the largest amounts 

of the data space but the DINA and DINO model also fit a sizable portion of the data 

space. The EFA model entirely subsumed the bifactor model (with the bifactor model 

consisting of 68.4% of the data space that fit), which in turn entirely subsumed both 

DCMs. All four models fit 0.5% of all 1000 datasets which was equal to 26.3% of the fitted 

area. That is, DINO and DINA fit 26.3% of the fitted area. No differences in fit were 
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detected between DINA and DINO models as they completely overlapped with each 

other.  

 

Figure 5. 21: Hypothetical Approximate Regions of the Captured Data Space at 𝑌𝑌2/𝑁𝑁 ≤

4 for SIS Method × PML Estimation 

The Euler diagram for 𝑌𝑌2/𝑁𝑁 ≤ 6 was analyzed next (Figure 5. 22). The order of 

areas of fit was again EFA model > bifactor model > DINA model > DINO model. Bifactor 

models did not completely overlap, with 3% of the complete and 2.6% of the fitted data 

space consisting of datasets where the bifactor model fit but the EFA model did not. 

Both the DINA and DINO models were still subsumed by both the EFA and bifactor 

models. They in total fit 6.1% of the complete and 53.3% of the fitted data space. 

However, there was no complete overlap among the DCMs. 4% of the fitted data space 
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included datasets where the DINA fit but the DINO did not and 2% of the fitted data 

space showed the opposite results. 

 

Figure 5. 22: Hypothetical Approximate Regions of the Captured Data Space at 𝑌𝑌2/𝑁𝑁 ≤

6 for SIS Method × PML Estimation 

Figure 5. 23 of the Euler diagram using 𝑌𝑌2/𝑁𝑁 ≤ 8 gave similar results as Figure 5. 

22 but with an increase in overlap for all models. Conversely, unique regions of fit 

decreased for all models but were still present. For example, 0.6% of the complete data 

space or 1.1% of the fitted data space fit the bifactor but not the EFA model. DINA and 

DINO regions of fit also showed considerable overlap: each of these models occupied 

34.4% of the data space. The EFA again completely subsumed the DCMs, but some DCMs 

models did not always show fit that aligned with the bifactor model (the percentage of 
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non-overlap between bifactor and DCMs was 10.2%). All four models fit 30.9% of the 

complete data space according to 𝑌𝑌2/𝑁𝑁 ≤ 8, which consisted of 59.2% of the total number 

of datasets that showed adequate fit.  

 

Figure 5. 23: Hypothetical Approximate Regions of the Captured Data Space at 𝑌𝑌2/𝑁𝑁 ≤

8 for SIS Method × PML Estimation 

5.5.3 Summary 

The goal of Simulation Study 3 was to investigate the effects of the data 

generation method targeting different spaces of data on the FP of the four models. The 

focus was on how FP might change when we sampled from more random data versus a 

subspace of more plausible data.  
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The most notable difference using PML estimation with data sampled from the 

entire space of the lower-order margins (using the SIS method), compared to more 

plausible values (under the simplex sampling method), was the exponential decrease in 

model fit. In other words, the size of the Y2/N values for all models not only increased 

but to an extent larger than when going from the FIML estimation method to the PML 

estimation method.  Notwithstanding, the comparison of models based on descriptive 

statistics and the CDF plot still showed that the EFA and bifactor model tended to have 

lower Y2/N values than DCMs across the board. 

There was even more decreased distinguishability between the models’ CDF 

curves, even though they still indicated more similarity between the EFA and bifactor 

models than the DCMs (whose curves were again indistinguishable). This led to almost 

complete overlap between all four models at much earlier ranges of Y2/N compared to 

using the simplex sampling method. This suggested that the Y2/N cutoff values had to 

be small and differences in model fitting patterns would show up at smaller intervals. 

Applying cutoffs of Y2/N values fitting the criteria and examining the 

corresponding slices using Euler diagrams showed that the bifactor model tended to 

dominate more of the space of EFA models than before. Furthermore, a noticeable 

difference between the Simplex Sampling × PML combination was that there seemed to 

be distinct regions of fit between the two models, which is more in line with the Simplex 

Sampling × FIML combination results. This showed that the bifactor fit better than the 

EFA for a certain number of datasets. It seemed there were higher regions of separation 

for the SIS ×  PML combination than the Simplex sampling × FIML, which was 

corroborated by the Euler diagrams for each (i.e., the former consistently showed regions 

where only the bifactor model fit, whereas, in the latter, the bifactor model was 

subsumed by the EFA model).  
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The data captured by the DCMs was also bigger than the Simplex Sampling × PML 

combination (and of course, Simplex Sampling × FIML combination). Still, the results 

were similar in that the areas occupied by the EFA and bifactor models were larger. To 

add, there was some distinction between the regions of fit between the DINA and DINO 

models; albeit very sparse.   

In general, the results of this study replicated the major findings of Bonifay and 

Cai (2017) and Aytürk Ergin (2020), as in the case of PML estimation using the simplex 

sampling method. In fact, the robustness of results in the face of more random data in 

addition to an estimator prone to fit data worse than FIML only adds to the need to 

consider the effects of functional form in evaluating model fit. 

5.6 Simulation Study 4: Investigation of FP in IRT Models using SIS Method 

and Iterative Proportional Fitting (IPF) 

Simulation Study 2 of Section 5.4.4 displayed that model fit was negatively 

impacted when using the PML estimation method. Furthermore, Simulation Study 3 in 

Section 5.5 noted that this was exacerbated as data became more random. Fortunately, 

the examination of FP does not rely on any one absolute cutoff but on relative 

comparisons between model fit statistics, whether it be one model or multiple. Results 

of both simulation studies (i.e., Simulation Studies 2 and 3) showed that the general 

conclusions about the FP of the four models in question still held. Still, the setup of the 

simulation study does not allow us to tease apart the combined effects of the SIS × PML 

estimation.  

Accordingly, this study suggested and applied a method for fitting random 

possible datasets arising from SIS data generation using FIML estimation. The idea was 

to use the bivariate marginal probabilities produced by the SIS method to reconstruct a 
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joint distribution that has these probabilities as its bivariate marginals using the 

iterative proportional fitting procedure (IPFP). The goal was to replicate the results of 

Simulation Study 2 and 3 to further validate the suitability of the PML estimation method 

in FP investigation. 

5.6.1 Simulation Study Setup 

Iterative Proportional Fitting Procedure (IPFP) 

The IPFP was first proposed by Deming and Stephan (1940) to estimate cell 

probabilities in a contingency table subject to certain marginal constraints. Since its 

conception, the IPFP has been applied to a variety of statistical problems by an equally 

diverse number of sources (Fienberg, 1970). Among others (and typically employed for 

fitting log-linear models (Fienberg & Larntz, 1976)), it has been repeatedly suggested for 

use in simulating multivariate binary data subject to constraints of mainly fixed 

marginal distributions with specified degrees of association (Lee, 1993; Gange, 1995).  

Let there be k binary variables 𝑦𝑦1,⋯ ,𝑦𝑦𝑘𝑘 with success probabilities 𝜋𝜋𝑗𝑗 = 𝑦𝑦 = (𝑃𝑃(𝑦𝑦𝑗𝑗 = 1) for 

𝑗𝑗 = 1,⋯𝑘𝑘). As k grows larger, it becomes increasingly infeasible to specify and determine 

2𝑘𝑘  probabilities. An alternative is to specify k probabilities 𝜋𝜋1 ,⋯𝜋𝜋𝑘𝑘  and the 
(𝐾𝐾 − 1) × 𝐾𝐾 

2
 

pairwise-probabilities 𝜋𝜋𝑗𝑗𝑗𝑗′  =  𝑃𝑃�𝑌𝑌𝑗𝑗  =  1, 𝑌𝑌𝑗𝑗′  =  1�, 𝑗𝑗 ≠ 𝑗𝑗′) and use the IPFP to find a solution 

of 2𝑘𝑘 probabilities where the marginal one- and two-dimensional probabilities satisfy {𝜋𝜋𝑗𝑗} 

and {𝜋𝜋𝑗𝑗𝑗𝑗′}. There are often many higher-order tables that have the same univariate and 

bivariate margins, so many solutions are possible. The IPFP ideally converges to one of 

which of these valid solutions. In comparison to other approaches toward the same goal, 

the IPFP has the advantage that it produces strictly positive joint probabilities, meaning 

that none of the theoretically 2𝑘𝑘 sequences can be excluded. Furthermore, it can simulate 
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MVB distributions without assuming an underlying continuous (normal) model so that 

their restrictions to data, such as positive definite correlation matrices need not be met. 

This makes the IPFP approach especially attractive in that this study aims to randomly 

sample from the complete data space to examine FP. Furthermore, we have direct 

pairwise probabilities to refer to as opposed to having to use correlations or odds ratios 

as alternatives (Barthelemy & Suesse, 2018).  

Data Generation 

The univariate and bivariate margins of the datasets used for Simulation Study 3 

in Section 5.5 were set as the marginal constraints for the joint distribution of 2𝑘𝑘 

variables. We start from an array of size (𝐶𝐶1   ×  𝐶𝐶2  × . . .× 𝐶𝐶𝑘𝑘 ) whose cells are all equal to 

1. This is the simplest and most uninformative case and starting from a different array 

would mean adding information that is not available (Ranalli & Rocci, 2016). Then, 

multiplying by appropriate factors, we adjust the cell probabilities of the joint 

distribution successively to match the probabilities for each bivariate table. The process 

is continued until convergence is reached. Convergence is defined as the difference in 

fitted probabilities between two consecutive iterations being less than an arbitrary  𝜖𝜖 >

0. 

Analysis Setup  

The 1,000 IPF generated datasets of multinomial probabilities were fit to the EFA, 

bifactor, DINA, and DINO models using flexMIRT with the same specifications as 

Simulation Study 2 in Section 5.3. The Y2/N index after each model fit was recorded and 

analyzed for all replications using CDF plots and Euler diagrams. Using IPF along with 

FIML allowed for examining differences and similarities due to data generation in 

addition to data estimation methods.  
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5.6.2 Results 

Table 5. 17 displays the descriptive statistics of the Y2/N statistic for the four 

models in question. Once more, the difference in Y2/N values was the most perceptible. 

The descriptive statistics are similar to the results produced by the Simplex Sampling × 

PML estimation combination; although somewhat higher. They are much smaller in 

magnitude compared to the SIS  ×  PML estimation combination. Comparing means 

showed that on average, the EFA and bifactor models produced Y2/N values of 0.7 or 

lower. The DINA and DINO models tended to have Y2/N values of 1. The results suggest 

yet again that the EFA and bifactor model generally had lower Y2/N values compared to 

the DINA and DINO models.   

Table 5. 17: Descriptive Statistics of Y2/N for SIS Method × FIML Estimation 

Model M SD Min Max 

EFA 0.569 0.268 0.087 2.528 

Bifactor 0.663 0.289 0.112 1.996 

DINA 1.141 0.444 0.190 3.400 

DINO 1.126 0.467 0.253 4.090 
Note. M= mean, SD=standard deviation.  

 

On the other hand, Figure 5. 24 describing the CDF curves of the Y2/N for the 

models gives results akin to that from FIML estimation using the simplex sampling 

method. The common factor across all other comparisons (i.e., Simplex sampling × FIML 

estimation, Simplex sampling × PML, and SIS × PML estimation combinations) is that the 

EFA model had the lowest Y2/N value for any benchmark percentage with increasing 

values in the order of the bifactor and then DINA and DINO models. The DCMs 



112 
 

consistently had nearly identical curves. However, Figure 5. 24 is much more comparable 

to FIML estimation concerning the spacing between the three curves for the EFA, bifactor, 

and DCMs. Despite not being as pronounced as under FIML estimation (i.e., Figure 5. 12), 

they were still wide enough to gauge sizable differences in Y2/Ns values between EFA 

and bifactor models compared to their DCM counterparts in their fit the same amount 

of data (i.e., less overlap between the former two and latter two models). 

 

 

Figure 5. 24: Cumulative Percentage Distributions of the Y2/N statistic for SIS Method 

× FIML Estimation 

Euler diagrams from different cut-points of Y2/N values were utilized to provide 

a summary of the growth in the space occupied by models as Y2/N increased. The 

chosen cut-points were 𝑌𝑌2/𝑁𝑁 ≤ 0.2, 𝑌𝑌2/𝑁𝑁 ≤ 0.4, and 𝑌𝑌2/𝑁𝑁 ≤ 0.7. At the 𝑌𝑌2/𝑁𝑁 ≤ 0.2 (Figure 
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5. 25), EFA, bifactor models, and a single DINA model were captured. The size of the 

areas for the EFA and bifactor model rivaled each other with the former fitting 1.5% of 

the datasets and the latter fitting 1.4% of datasets. The overlap between the two models 

was 20.8%, meaning that they disagreed with regard to fit more than they agreed. The 

regions where only EFA fit was 1% of the complete dataset and 40% of the fitted data 

space and the region where only the bifactor model fit was 0.9% of the complete data 

space and 36% of the fitted data space. Like this, they had nearly the same number of 

datasets for which they each fit discrepant regions of data. Most notable was that the 

single dataset that the DINA model fit was also located in a region not overlapping with 

either the EFA or bifactor model at even this relatively stringent cutoff. For this dataset, 

no DINO models fit the criterion 𝑌𝑌2/𝑁𝑁 ≤ 0.2. 
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Figure 5. 25: Hypothetical Approximate Regions of the Captured Data Space at 𝑌𝑌2/𝑁𝑁 ≤

0.2 for SIS Method × FIML Estimation 

When the cutoff is 𝑌𝑌2/𝑁𝑁 ≤ 0.4 (Figure 5. 26), all four models showed areas with 

fit but the regions of fit for the EFA and bifactor model were significantly more 

prominent. The EFA model fit 27% of the complete data space and 80.3% of the fitted 

space and the bifactor fit 16.9% of the complete data space and 50.3% of the fitted space, 

which shows growth for the EFA compared to the bifactor. The two models had more 

overlap with each other (10.9% of the complete data space and 50.5% of their combined 

fitted data space), but also had areas where only one of them had 𝑌𝑌2/𝑁𝑁 below 0.4. The 

DCMs consisted of 2.3% of the complete data space, which was 6.8% of the fitted data 

space. Although smaller compared to the fitted areas for the EFA and the bifactor model, 

not only were the two DCMs distinguished in terms of regions of fit, but they both 

included data spaces where each solely satisfied  𝑌𝑌2/𝑁𝑁 ≤ 0.4. The degree of overlap 

between the two was 26.1% (i.e., 6 among 23 datasets). The area where only the DINA 

model fit was 0.6% of the entire data space and 1.8% of the fitted data space, while the 

region where only the DINO model fit was half of that. 14 datasets or 60.9% of the fitted 

datasets that fit the DINA or DINO model fell into the region of fit for either the bifactor 

or EFA models. The DINA model also fit one more dataset than the DINO model. 
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Figure 5. 26: Hypothetical Approximate Regions of the Captured Data Space at 𝑌𝑌2/𝑁𝑁 ≤

0.4 for SIS Method × FIML Estimation 

The pattern of results for 𝑌𝑌2/𝑁𝑁 ≤ 0.7, described in Figure 5. 27, was more or less 

like Figure 5. 26 with 𝑌𝑌2/𝑁𝑁 ≤ 0.4. When 𝑌𝑌2/𝑁𝑁 ≤ 0.7, over 75% of the complete datasets are 

fit by the EFA model and 60.9% are fit by the bifactor model. The two models still show 

separation, although the area of distinct fit for the bifactor model decreased. Including 

the areas of discrepant fit between the two, they fit 83.3% of the complete data space, 

which was 96.9% of the fitted data space. Conversely, this meant that there was still 3.1% 

of the fitted data space where only the DCMs fit. The two DCMs combined made up 

16.1% of the complete data space and 19.1% of the fitted data space. The degree of 

overlap between the two models was 37.2%, which was larger than before, and 90.9% of 

their datasets that fit (which was equal to 149 datasets) also fit either the EFA or bifactor. 
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However, there were still regions of fit where only the DINA or DINO fit. The DINA had 

larger areas of fit compared to the DINO (13.4% of the complete data space for DINA 

versus 8.4% of the complete data space for DINO).  

 

Figure 5. 27: Hypothetical Approximate Regions of the Captured Data Space at 𝑌𝑌2/𝑁𝑁 ≤

0.4 for SIS Method × FIML Estimation 

5.6.3 Summary 

The results of a SIS method with FIML estimation to investigate FP had overlap 

with all other possible conditions used to examine the FP of four IRT models (i.e., 

Simplex Sampling × FIML estimation combination, Simplex Sampling × PML estimation 

combination, and SIS × PML estimation combination). Among the three, the magnitude 

of increase in the overall Y2/N values was a little larger than that of the Simplex 
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Sampling × PML estimation combination. The increase in magnitude when compared 

with Simplex Sampling ×  FIML estimation was expected as the datasets were more 

random. The much larger values of Y2/N values from the SIS ×  PML estimation 

combination compared to both the Simplex Sampling × PML estimation and SIS × FIML 

estimation combination implied an interaction effect between the more random data 

and the LI-based method pushing Y2/N values to more extremes. Nonetheless, the 

finding across all conditions was still that the EFA, followed by the bifactor had lower 

Y2/N values when compared to the DCMs based on descriptive statistics. 

The CDF plots and the Euler diagrams also gave a consistent result with all other 

conditions that there seemed to be two sets of models at play: the EFA and bifactor 

models versus the DCMs. The EFA and bifactor models were always more in sync with 

each other than their DCM counterparts, although still distinguishable from each other. 

The overlap between the DCMs was often so great that differences rarely seemed 

detectable in the CDF plots. Regarding the CDF plots, the results for the SIS × FIML 

estimation combination were most comparable to those using simplex sampling and 

FIML estimation with substantial distances in the Y2/N values among the EFA and 

bifactor models with the DCMs. This led to disproportionate regions of fit among the 

two model types in the Euler diagrams that extended well on to higher ranges of Y2/N. 

Regions of fit of the DCMs did not increase much for the SIS  ×  FML estimation 

combination. Regions of fit increased more rapidly for the DCMs in the Simplex Sampling 

× PML estimation combination and even more so than their SIS method counterparts, 

although they both were more skewed towards greater regions of fit for the EFA and 

bifactor models.  

Nevertheless, the results of the SIS × FIML estimation combination were also 

unique in their heightened ability for DCMs to fit datasets where both the EFA and 
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bifactor did not fit based on Y2/N cutoffs. Bonifay and Cai (2017) also show that this 

can occur but, that it only occurred only at very high Y2/N cutoffs (although not shown, 

the results of Simplex Sampling × FIML estimation in this study echoed Bonifay and Cai’s 

(2017) finding). Contrarily, such unique regions of fit for the DCMs appeared early on 

(i.e., at low Y2/N cutoffs). The areas of fit were also larger for the DCMs but not to the 

extent of either simplex sampling ×  PML estimation or SIS ×  PML estimation 

combination.  

Differences aside, the results for the SIS method × FIML estimation were in 

harmony with those of Bonifay and Cai (2017) and Aytürk Ergin (2020) about differences 

in FPs of models due to their functional form. For the four models in question, we 

repeatedly saw the undesirably high fitting propensity of the EFA and especially the 

bifactor model. The impact of functional form was still salient even when sampling from 

the entire data space of the lower-order margins. That is, the EFA and bifactor had the 

flexibility to fit even extreme random data, especially when compared to the DCMs. Also, 

these findings provide support for the LI-based data sampling method and provide 

further evidence for the PML estimation as well functioning and suitable alternative to 

the method suggested by Bonifay and Cai (2017). 
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Chapter VI 

Discussion 

 

6.1 Summary of Results 

Model fit evaluation requires a balance between a model’s GoF to observed data 

and their generalizability to fit future unseen data. Following Occam’s razor, a model 

should not only fit the data well, but should do so in the simplest manner possible 

(Myung et al., 2005). However, in the social sciences, and especially IRT, there is an over-

reliance on GoF statistics and hence, a tendency to choose more complex models, of 

which we consistently find the bifactor model to be part of (Bonifay & Cai, 2017). This 

can be problematic because such models may not necessarily be the data generating 

model but simply be highly flexible. Thus, it may produce a false sense of good model 

fit. In other words, model complexity due to the functional form of models has not been 

adequately accounted for.  

Preacher (2006) suggested fitting propensity (FP) as an alternative measure of 

model complexity or parsimony that can take into account multiple complexities. FP 

refers to a model’s inherent flexibility to fit diverse patterns of data, all else being equal. 

However, the requirement of generating all possible item response patterns for IRT 

models when using a multinomial framework impedes the study of FP of IRT models.  

Focusing on LI methods (Bolt, 2005), this study proposed a novel data generation 

algorithm that generates random datasets for IRT models using solely the lower-order 

moments. Accompanying estimation methods capable of fitting such data with only 

lower moments were also derived based on PML estimation. If successful, the LI-based 
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approach may alleviate the computational burden of the exponential increase in data 

responses to generate and to fit using models. In turn, this would expand the utility of 

model complexity metrics as a means for model evaluation. The goal of this dissertation 

was to explore the relative flexibilities of the functional forms of the IRT models in 

Bonifay and Cai (2017) when the suggested methodology was applied. 

This dissertation first proposed a data generation algorithm using solely the 

lower-order margins to promote computational efficiency, capitalizing on the fact that 

IRT models can be formulated using the marginal moments of the MVB distribution 

(Maydeu-Olivares & Joe, 2014). The sampling of the first- and second-order margins 

involves probabilities up to only pairs of items, as opposed to the full multinomial 

probabilities. Therefore, there is a significant decrease in the number of data patterns 

to be generated.  

Inspired by classical works of sampling of m × n contingency tables with fixed 

margins (e.g., Fienberg, 1999) and adapting a sequential importance sampling (SIS) 

approach capable of sampling both two-way and multi-way tables with many rows and 

columns (Chen, Diaconis, et al., 2005), their fundamental principles were applied to the 

IRT framework. The algorithm could readily generate random dichotomous and/or 

polytomous item data of large quantities. The SIS algorithm was theoretically-sound and 

, when empirically compared with the conventional simplex method of data generation 

(Bonifay & Cai, 2017) in the case of binary data, showed adequate and comparable 

coverage of the desired complete categorical data space. Such results indicated that the 

data generation algorithm was promising.  

The generated datasets using the proposed SIS algorithm contain only 

information regarding the univariate and bivariate margins. Accordingly, item 
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parameters must be calibrated using only such data, which can be done using LI or CML 

estimation methods that do not rely on the full multinomial item response patterns (e.g., 

Joreskog & Moustaki, 2001). The motivation behind CML estimation is to replace the 

original full likelihood, which is often complex and intractable, with a function that is 

easier to evaluate, and hence to maximize (Cox & Reid, 2004). Among different flavors 

of CML estimation, PMML estimation that uses bivariate marginal information from pairs 

of observations in estimation and factors in possible dependence between variables (Cox 

& Reid, 2004) is especially popular.  The LI-estimation approach has been applied to IRT 

models under the UV framework assuming continuous variables, which limits their 

applicability to a small subset of IRT models.  

The goal of this dissertation was to provide a general form for PML estimation 

that can be employed in theory to any IRT model. The general form was used to construct 

pairwise log-likelihoods  for each of the five dichotomous models of Bonifay and Cai 

(2017) Bonifay and Cai (2017)—the EFA, bifactor, DINA, DINO, and unidimensional 3PL 

models—which were maximized using conventional algorithms such as the EM 

algorithm.  

While all binary, they reflected various types of IRT models. Except for the 

unidimensional 3PL models, a small simulation study on the remaining four models 

showed adequate item parameter recovery for all four of the remaining models. 

Furthermore, the results of PML were comparable to a corresponding FIML method. 

Standard error estimates were also similar across the two methods with PML estimation 

requiring the use of the Godambe information matrix for standard error calculation.  

Lastly, the suitability of the proposed LI-methods for quantifying FP was tested 

under different estimation and data generation conditions. Four conditions of the 
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Simplex Sampling Method × FIML estimation combination, Simplex Sampling Method × 

PML estimation combination, SIS Method × PML estimation combination, and SIS Method 

× FIML estimation combination were investigated. The aim was to determine the extent 

to which the conditions replicated the general findings of Bonifay & Cai (which used the 

Simplex Sampling Method ×  FIML estimation combination) so that comparisons of 

results when applied to new models would be meaningful. The main goal was to take 

advantage of the proposed approach to investigate the FP of models too complex under 

the traditional approach.  

All in all, the results of this study corroborated the primary findings of previous 

studies (and the FIML-based FP results of this dissertation) that the four models are not 

equal in their propensities to fit, even when controlling for the number of parameters. 

The EFA and the bifactor can be considered highly flexible models, above and beyond 

what can be attributed to its number of parameters (parametric complexity). These 

general conclusions did not change even in the face of added model complexity due to 

the model estimation method or data generation method (Pitt et al., 2002; Preacher, 

2003). The results suggested that both the data generation and PML estimation can be a 

suitable alternatives to FIML estimation for FP analysis. In addition, this study also 

presented a method used on the IPFP that can recover the joint probabilities satisfying 

the marginal probabilities from the SIS method. Then, traditional FIML methods could 

be readily applied to examine FP as well. 

Furthermore, in validating the LI-based approaches, this dissertation also added 

to the discussion of the impact of model complexity due to data generation and 

estimation method (Pitt et al., 2002) on model fit. In terms of FP, the results alluded to 

the importance of functional form over other aspects of complexity as well as parametric 

complexity. In fact, the robustness of results against estimation methods and data 
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generation methods in favoring more complex models to a high degree consolidates the 

importance of accounting for structural complexity in model evaluation.  

6.2 Implications 

Recall Box (1976) and his statement that "all models are wrong, but some are 

useful." Models are used to approximate or explain reality so that they cannot perfectly 

capture every aspect of it.  “But some are useful" implies that simplifications of reality 

can nonetheless be quite useful as they can help us explain, predict, and understand 

various phenomena. It is the role of researchers to find these useful models. GoF, 

generalizability, and model complexity define the usefulness of models from a model-

fitting perspective.  

All models should be able to fit the data at hand. Nonetheless, the consistent 

conclusion across the studies of FP in this dissertation as well as other previous studies 

of FP is that models are not equal in their ability to fit data sets. That is, solely relying 

on GoF indices can result in models that appear to fit well to any potential dataset. A 

model producing good GoF is not necessarily the one that reflects the true processes 

underlying the observed data but could be due to the fact that the model’s functional 

form is too flexible so that it can accommodate any given dataset (Preacher, 2006). This 

is not to say that complex IRT models should be thrown out completely. Instead, it 

stresses the importance of the justifiability of a model on theoretical grounds. In 

addition, it argues that even when the model is theoretically driven, researchers should 

be aware that various aspects of complexity (structural and parameter complexity alike) 

of statistical models can hinder falsifiability. 
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6.3 Future Directions 

The proposed data generation algorithm and complementing PML estimation 

method allow the sampling and estimation of many dichotomous and polytomous items. 

The next step is to extend the approach for investigating the FP of polytomous IRT 

models, where not only do the data patterns quickly exceed manageable levels but there 

is, as far as we know, no confirmed valid random data generation mechanism that exists 

for sampling from the complete data space. Among polytomous models, the FP of the 

graded response model (GRM) and the generalized partial credit model (GPCM) are at the 

center of interest. These two models provide the same parameterization with a 

discrimination parameter and k-1 boundary parameters (k = the number of response 

categories) per item so that the number of parameters is the same for both models. 

Nonetheless, they fall into different model classes to have different functional forms 

(“difference” model for the GRM versus a “divide-by-total” model (Thissen & Steinberg, 

1986)). In addition, the scoring process underlying the GRM (grade response scoring) is 

conceptually different from that of the GPCM (partial credit scoring).   

The issue of model fit comparison of the GRM and GPCM has been an ongoing 

research topic (e.g., Kang et al., 2009; Ostini et al., 2014), to which FP can contribute with 

its focus on the effects of the functional form of models. Initial results of the item 

parameter recovery of PMM estimation to the GRM, GPCM, as well as the nominal 

response model (NRM), showed promising results. Preliminary results based on the 

unidimensional GRM and GPCM suggest a tendency of higher FP for the former 

compared to the latter. These results align with previous research such as Aytürk Ergin 

(2020). The aim is to explore further whether such findings generalize to 

multidimensional cases of the GRM and GPCM, such as the bifactor and EFA models.  
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In addition, the proposed LI-based method can be useful in investigating in more 

detail the effect of other facets of model complexity. Other than parametric complexity 

and structural complexity, Pitt et al. (2002) and Preacher (2006) also identified plausible 

versus possible data space, range of parameter space, sample size, estimation method 

(specifically in the shape of the probability distribution specified in the likelihood 

function), and research design, as potential factors contributing to a model’s flexibility 

to fit a wider range of data. As the byproduct of applying the SIS data generation method 

and/or PML estimation, factors of model complexities regarding data space and 

estimation method were introduced, and comparisons were made. While the salience of 

the FP functional form has been detected, it was still possible to see the impact of using 

these methods in FP investigation. More in-depth investigation regarding the effect of 

multiple model complexities, both separate and combined, will contribute to a more 

comprehensive, multi-faceted approach for selecting the most appropriate model in 

various practical application settings.  

Furthermore, the methods and results of this dissertation need not be limited to 

quantifying FP. For example, the data generation method may help examine the 

performance of not only the proposed PML estimation but of CML estimation overall in 

light of model misspecification. The results are divided, with some suggesting 

robustness compared to FIML methods (Varin et al., 2011; Xu & Reid, 2011), while others 

show evidence of the opposite situation (Ogden, 2016). The results of this dissertation 

found a significant decline in fit, ascertained using the Y2/N statistic, when using PML 

estimation compared to FIML. In addition, this was exacerbated as data became more 

random. One possible explanation may be the assumptions of the marginal distributions 

being violated (Ogden, 2016).  
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Moreover, the DCMs estimated using the PML method seemed to be less impacted 

in terms of model fit, as indicated by their higher propensity to fit under PML estimation. 

The EFA and bifactor model and DCMs differ mainly in their assumptions of the latent 

variable distribution. Thus, this may be the effect of the shape of the probability 

distribution mentioned by Pitt et al. (2002). Simulation Study 1 on model recovery under 

PML estimation revealed that for DCMs, the Y2/N statistic could be much smaller in PML 

estimation compared to FIML estimation. Initial investigation showed that the difference 

in the Y2/N statistic for the two estimation methods grew smaller as the data fit became 

closer to the assumed model, implying that DCMs using PML estimation were less 

sensitive to changes within the model. 

The random data generation method itself has the potential for use in many other 

simulation studies. Most simulated datasets require a model to get the simulated 

responses. Depending on the choice of the model, we can unfairly favor some results or 

models over other contenders. The SIS data generation method can be used to generate 

random or more realistic data that is not as influenced by a particular model. In addition, 

the range of applications further increases when the presented SIS method is coupled 

with the IPFP to generate higher-dimensional data, as shown in this study (i.e., Simulation 

Study 4). Univariate and bivariate margins are much easier to set or obtain for use in 

generating data when compared to having to set and generate data using full 

multinominal probabilities. Furthermore, the bivariate margins can be easily converted 

into correlations or odds ratios and vice versa, which can be used in the process if 

needed. Examples of applications include the generation of random data for longitudinal 

studies and the generation of random correlation matrices. 
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