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Often casual Bayesian networks contain variables that we cannot observe or measure. If we

wish to find an optimal graphical representation, typical structure learning cannot account

for the existence of latent confounders. This results in possible bias and misleading results.

Here we consider structure learning for a class of mixed graphs, bow-free acyclic mixed

directed graphs, ADMGs, that offer a representation of directed acyclic graphs, DAGs, with

latent confounders. Our approach uses a hybrid of constraint-based MAG learning and

score-based optimization to find ADMGs with optimal BIC. We use constraint-based MAG

learning to restrict our search space and then find the optimal ADMG representation using

a score-based optimization algorithm. We also present a simulation and ADMG comparison

framework that shows the empirical effectiveness of our alogrithm.
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CHAPTER 1

Introduction

Structure learning is a sub-field of causal inference which focuses on learning the causal

structure among a set of variables from observational data. Typically this causal structure

can be represented by a structural equation model, an SEM, which expresses each observed

random variable as function of its direct causes and a noise term. Ultimately, the goal of

structure learning is to fully specify an SEM by learning its parameters. Typically, these

SEMs are paired with a directed acylic graph, DAG, that model condition independence

implied by the SEM. When all variables are observed we represent an SEM in a compact

fashion using a Directed Acyclic Graph (DAG). In this case, typical structure learning will

learn the support of the DAG by estimating the conditional independence structure using

criteria determined by the observed data ([RS02]). However, in many cases of interest, we

may suspect that a latent variable, or unobserved variable, may be part of the true SEM. In

this case, conditional independence of the variables cannot always be modeled by a DAG.

Our goal is to recover a SEM while accounting for possible effects of latent variables.

To do so, we will work within the frameworks of another type of graphical models. In

particular, we will work with acylic directed mixed graphs, ADMGs. ADMGs are graphs

that contain directed and bidirected edges, while containing no cycles among the directed

edges. In particular, an ADMG will contain a directed edge between two variables i and j if

one variable is a cause of another and a bidirected edge if i and j share a latent patent.

Our goal is to perform structure learning for ADMGs to find the ADMG that best ex-

plains some observational data. In the remainder of this paper we will propose a hybrid
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method that uses a combination of learning conditional independence constraints and score-

based optimization to uncover possible Verma Constraints. In particular, we will combine

conditional independence constraints obtained by first learning an equivalence class of maxi-

mal ancestral graphs, a special class of ADMGs, and then using score-optimization to select

an ADMG.
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CHAPTER 2

Related Works

There are some recent works on structure learning of ADMGs with linear SEMs with Gaus-

sian noises ([NME17], [BNM21], [FNM19]). These methods are all in the category of score-

based learning, using a defined score function to search a space of graphical models. There

are also some methods that search for a causal ordering under specific assumptions ([SGK20],

[LSP23], [ASP23]). Li et al.’s method relies on normality to infer the causal ordering, while

Agrawal et al’s method considers the non-linear, pervasive confounding setting. In practice

these methods are thereby limited to their areas of analysis where these assumptions almost

surely hold. Additionally, score-based learning is a tough optimization problem. The pos-

sible space of graphs is large and the nature of the optimization problem is combinatorial.

Searching this space can be extremely costly and often impossible. Nowzohour et al.’s method

proposes a significant improvement by considering connected components individually.

Besides score-based learning, another popular approach for graph learning is constraint-

based learning. There are effective methods for learning DAGS, such as the PC algorithm,

which work by learning conditional Independence constraints from data to construct the

Markov equivalence class of a DAG [SG91]. Unfortunately, there are no such algorithms

for learning the structure of ADMGs. The reason these algorithms are hard to develop is

the fact that ADMGs encode not only conditional independence constraints but also encode

generalized conditional known as Verma constraints ([RER23], [VP22]). As a generalized

conditional independence constraint is a function of multiple conditional distributions, it is

unknown how to uncover there constraints from data ([ZCP20]). Seeking a subset of ADMGs

3



where Verma constraints are not present, maximal ancestral graphs were defined ([RS02],

[Zha08b]). As a result of a MAG only capturing the conditional independence constraints

among the observed variables there are efficient algorithms to learn them. This allows us to

learn the conditional independence constraints in a similar manner. Of particular importance

to the rest of this paper is the FCI algorithm. The FCI algorithm learns a partial ancestral

graph, PAG, which represents the Markov equivalence class of a MAG from observed data

([SMR99], [CMK12], [CDS23]).
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CHAPTER 3

Methodology

3.1 Structural Equation Models and the Need for ADMGs

Consider a general framework such that we have a set of observed random variables X =

{X1, . . . , Xp} which have complex conditional independence relations among them. If we are

able to characterize relationships within this set of variables, one would define a structural

equation model, SEM. A SEM is a system of equations involving the set of variables X,

and error terms ϵ = {ϵ1, . . . , ϵp}. For our purposes, we will consider a Gaussian linear SEM,

which requires all equations to be linear and ϵ to follow a normal distribution:

X = BX + ϵ, ϵ ∼ N(0,Ω) (1)

where X ∈ Rp and Ω = diag(ω1, . . . , ωp). The model defines p linear equations of the form

Xj = f(X\{Xj}, ϵ, Bj) where f is linear over Bj and ϵ, where Bj is the jth row of the

beta matrix B. A SEM of this form defines each ϵi to be independent of all other epsilons

implying that there is no confounding and all residual variance is random noise. Of particular

importance, this equation defines a probabilistic model, P , over X, such that X ∼ N(0,Θ−1)

where Θ = (Ip −B)(Ω)−1(Ip −B)T [AZ15].

In a causal setting, a SEM is typically associated with some graph G(V ) = (V,E) where

V = {1, . . . , p} represent nodes corresponding to each random variable in X, and E ⊂

V × V \{(i, i)|i ∈ V } is the set of edges between these nodes. If all variables in X are

observed, the graphical model for V can be represented by a directed acylic graph, DAG. In

a DAG, each edge, i → j in E denotes that Xi is a cause of Xj. Together the pair ⟨G,P ⟩,
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where P is the probabilistic model defined above, form a Causal Bayesian Network.

The DAG representation of these relationships is particularly useful because its structure

encodes the conditional independence relationships among the variables X. The markov

properties of DAGs imply that we can rewrite the above equation as

Xj = Σi∈paG(i)βijXi + ϵj, j ∈ {1, . . . , p}, (ϵ1, . . . , ϵp) ∼ N(0, σ2) (2)

where paG(i) = {i|i→ j ∈ E} and denotes the parents of node j.

The goal of structure learning is to learn a model of the form ⟨G, P ⟩ from observed

conditional independencies ([SGS93]). However, what if we don’t observe all variables in X.

Suppose we partition X into a set of observed variables, XO = {O1, . . . , Op}, and a set of

latent variables XL = {U1, . . . , Ud}. If a latent variable Ui is not a confounder, then the

distribution of X\Ui , after marginalizing out Ui, can still be modeled by a DAG. Thus we

assume all Ui ∈ L are latent confounders. In this case, a typical SEM cannot be learned.

Instead, we consider a new form of Gaussian linear SEM which is now parameterized by

both B and Ω:

XO = BXO + ϵ, ϵ ∼ N(0,Ω) (3)

such that B,Ω ∈ Rp×p. Again this SEM would define a probabilistic model, P , over XO.

We will discuss the meaning of these parameters further in the next chapter. Following the

latent projection of DAGs, the marginal model can be modeled instead by an acylic directed

mixed graph, ADMG ([TP02]). Thus we can form a model, ⟨G,P ⟩, where G is an ADMG.

3.2 ADMG Notations

An ADMG over a set of observed variables XO = {O1, . . . , Op} with latent confounders

XL = {U1, . . . , Ud} can be represent as G(O
⋃
L) = (O,ED, EB) where O = {1, . . . , p} is

the set of vertices corresponding to the observed random variables with latent confounders

L = {p + 1, . . . , p + d}. Here ED, EB are defined such that ED, EB ⊂ O × O\{(i, i)|i ∈ O}.

6



Since an ADMG is a mixed graph, it contains two types of edges: directed edges, denoted

as Ed, and bidirected edges, denoted as Eb. If (i, j) ∈ Ed, the ADMG contains a directed

edge from i to j. If (i, j) ∈ Eb, the ADMG contains a bidirected edge from i to j. In this

paper, we will consider only bow-free ADMGs, which are ADMGs such that satisfying the

condition that if a variable Xi occurs in the structural equation for Xj, then the errors for Xi

and Xj are uncorrelated. For this subset of ADMGs, parameter identifiability under linear

SEMs has been established ([BP02]).

To help work towards a working understanding of an ADMG, we will define some char-

acteristics. We define parents of a node i as paG(i) = {j|(j, i) ∈ Ed} and the siblings

as sbG(i) = {j|(j, i) ∈ Eb}. Each definition can easily be extended to a group of nodes,

H ⊂ O, as paG(H) = {j|(j, i) ∈ Ed i ∈ H} and sbG(H) = {j|(j, i) ∈ Eb i ∈ H}. Ad-

ditionally, a path of length l, π = (π1, . . . , πl), is a sequence of distinct nodes such that

πi ∈ O and each pair (πi, πi+1) has some edge between the nodes. We call a path a

directed path, or bidirected path if all edges along this path are of the specified type.

This notion of directed paths is used to define the ancestors of a node i as anG(i) =

{j|i = j or there exists a directed path j → · · · → i} and descendants of a node i as

deG(i) = {j|i = j or there exists a directed path i → · · · → j}. Additionally, if there is

a directed path such that pi1 = pi1, we call this path a directed cycle. There is a similar

definition for bidirected cycles. We can now provide a formal definition of the set of ADMGs

we wish to consider:

Definition 3.2.1 An bow-free ADMG is a directed mixed graph satisfying the following cri-

terion

1. Acylic : There are no directed cycles in the mixed graph. In other words for any i ∈ O,

i /∈ anG(i).

2. Bow-Free : If a variable Oi occurs in the structural equation for Oj, then the errors

for Oi and Oj are uncorrelated
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We also will need to define some properties about nodes themselves. We denote a vertex

i as a collider if along a path there is structure k◦→i←◦j or in other words (k, i) ∈ Eb

⋃
Ed

or (j, i) ∈ Eb

⋃
Ed. If such a structure exists and (k, j) /∈ Eb

⋃
Ed this structure is denoted

as a v-structure.

We also define a notion of conditionally independence in ADMGs, m-separation. Consider

a path between two verticies i and j and a set of conditioning variables, H, such that i, j /∈ H.

A path between i and j is called m-connecting if every non-collider on the path is not in H,

and every collider on the path is either in H or an ancestor of H. Then, if there is no such

m-connecting path between i and j, we call them m-separated. This specifies that Oi ⊥⊥ Oj|S

by the Global Markov Property ([Zha08a]) where S corresponds to variables associated with

the verticies in H. As mentioned above, due to ADMG’s mixed nature, they not only encode

typical conditional independence constraints but also generalized conditional independence

constraints, known as Verma constraints. Verma constraints are equality constraints on

functions of multiple conditional distributions.

We will also need to formally define a MAG and a PAG for the remainder of the paper.

To start we need to formally define a few more characteristics of an ADMG quickly:

Definition 3.2.2 1. Inducing Path : A path is inducing if every node, except for the

endpoints, on the path is a collider and every collider is an ancestor of a path endpoint

2. Ancestral ADMG : An ADMG is ancestral if for all (i, j) ∈ Eb, j /∈ anG(i) (no almost

directed cycles) and there are no directed cycles.

3. Maximal ADMG : An ancestral ADMG is maximal if there is no inducing path between

any two non-adjacent nodes in G

Definition 3.2.3 A MAG is an ADMG that is both ancestral and maximal

A MAG encodes the CI constraints, in accordance with the definition of m-seperation, of

the observed variables, XO, in a DAG with latent variables, XL. To create a MAG from an
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existing ADMG, there are two key steps. First, for any bidirected edges i ↔ j, we change

it to a directed edge i → j if i ∈ anG(j) to remove almost directed cycles. Next, we need

to add an edge between all nonadjacent nodes i, j in G if there is an inducing path between

them. If there is an inducing path, if i is an ancestor of j, we orient the edge as a directed

edge i→ j or j → i if j is an ancestor of i. Otherwise, we orient it as a bidirected edge. This

maintains ancestral relations. We formalize this in algorithm 1.

Algorithm 1 ADMGtoMAG

1: Define empty graph M = (V,Ed, Eb)

2: Add all directed edges from ADMG G to M .

3: for all i ↔ j in G do

4: if i ∈ anG(j) then Update edge set as Ed = (i, j)
⋃

Ed

5: else if j ∈ anG(i) then Update edge set as Ed = (j, i)
⋃

Ed

6: else Update edge set Eb = (i, j)
⋃

Eb

7: end if

8: end for

9: for all non-adjacent (i, j) do

10: if there is an inducing path then Perform steps 4-7

11: end if

12: end for

We note that multiple MAGs may encode the same set of m-seperations. Naturally, this

defines an equivalence class, [M], for a MAGM. This equivalence class can be represented by

a partial ancestral graph, PAG. A PAG uses the notation of marks to define the equivalence

class. A mark is the figure at the end of each edge, of which there are three options:

arrowhead, arrowtail, and ◦. For example, a directed edge → contains an arrowtail on the

left and an arrowhead on the right. Meanwhile,↔ has an arrowhead on each end. A ◦ mark

is a bit different, as it is represent a variant mark, one that varies across the equivalence

class. We can now formally define a PAG:

Definition 3.2.4 For an equivalence class [M], the corresponding PAG, P

1. has the same skeleton asM

9



Figure 1: (A) DAG with a latent confounder U1 (B) ADMG Representation (C) MAG

Representation

2. a mark of an arrowhead or arrowtail iff it is shared by all MAGs in [M]

3. a mark ◦ if marks not shared by all MAGs in [M] are denoted with ◦

([Zha08a]).

For an example of the graphs we have introduced, please see Figure 1.

3.3 ADMG Model Estimation

Previously, we expressed our Gaussian Linear SEM as XO = BXO + ϵ, ϵ ∼ N(0,Ω). Rep-

resenting the marginal model of XO as an ADMG, G(O) = (O,Ed, EB), and applying the

properties discussed above and an ADMG’s Markov Conditions we can rewrite the above

equation as:

Oj = Σi∈paG(j)βijOi + ϵj, j ∈ {1, . . . , p},

(ϵ1, . . . , ϵp) ∼ N(0,Ω)

You will notice that our definition here is similar to equation (2) except there is the

possibility that the background variables, ϵj, have non-zero covariance. This mechanism

allows us to model variance exhibited by latent confounders. Here B = (βij)p×p defines

the strength of causal relationships among XO while Ω = (wij)p×p models the covariance

between the background variables, ϵi. Naturally, this expression of the SEM places natural
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constraints on these parameters:

B ∈ B(Ed) = {(βij)p×p : βij = 0 if (i, j) /∈ Ed}

Ω ∈ P(Eb) = {(ωij)p×p : ωij = 0 if (i, j) /∈ Eb}
(4)

Thus, non-zero components of B correspond to directed edges in G and non-zero components

of Ω correspond to bidirected edges in G.

Learning the structure of G(O) is equivalent to recovering the supports of B and Ω. In

doing so, we fully specify the probabilistic model, P, as a multivariate Gaussian distributions

such that XO ∼ Np(0,Σ) where Σ = ΣG(B,Ω) = (I − B)−TΩ(I − B)−1. Therefore, by

learning the structure of G(O) we can specify a a model ⟨Ĝ, P̂ ⟩ ([AZ15]).

Due to structural constraints on B and Ω it is not straightforward to maximize the

likelihood over the parameter space. However, it has been show that these estimates can

be obtained iteratively. Residual iteration conditional fitting, RICF, is a method that uses

an iterative approach that provides accurate approximations of the maximum likelihood

estimates for Gaussian linear SEMs of bow-free ADMGs ([Drt08]). We made two small

changes to the source code of this algorithm. First, we add a maximum number of iterations

to prevent infinite computations. Second, we add hot start capability to limit the number

of iterations required by convergence when making small changes to the adjacency matrix.

This algorithm allows us to fit proposal ADMGs within our algorithm.

3.4 Constraint-Score Hybrid Structure Learning

Suppose we are a given a dataset X = {Xij : i ∈ {1, . . . , n}, j ∈ O} where n is the number

of samples and O = {1, . . . , p} is the set of observed variables. Our goal is to obtain the

most likely ADMG, Ĝ. To do so, we propose a hybrid method that forms a equivalence class

using constraint based methods, followed by a score based optimization algorithm.

The basis of the constraint-score hybrid stucture learning algorithm is to first learn a

PAG, P̂ , from our data. Given the estimated PAG, we can form a candidate set of ADMGs,

11



C(P̂ ). This is the set of ADMGs such that their corresponding MAG is within the MAG

equivalence class represented by the estimated PAG, P̂ :

C(P̂ ) = {ADMGtoMAG(G) ∈ P̂}

Once we have obtained the equivalence class, we use it to restrict the search-space of our

score-based search.

3.4.1 Constraint-Based MAG Learning

We will now describe the details of the constraint-based mag learning in greater details.

Constraint-based algorithms typically learn conditional independence constraints from the

data. Recall that ADMGs not only encode conditional independence constraints among

XO but also encode Verma constraints ([RER23], [VP22]). Currently, it is unknown how

to find such constraints from data or how to use them to perform constraint-based learning

([ZCP20]). However, there are efficient algorithms to uncover MAGs from observational data,

since MAGs only encode conditional independence constraints among observed variables

([RS02], [Zha08b]).

Within our algorithm, we will employ the fast causal inference algorithm, FCI, to fit an

estimated PAG, P̂ , from observational data. The algorithm consists of a skeleton learning

via CI tests followed by a set of edge orientation rules ([Zha08b], [SMR99], [CMK12]).

For our Gaussian linear setting, we use a typical Gaussian conditional independence test.

In other words, using our observed data, we test the hypothesis that X ⊥⊥ Y |S for each

(X, Y ) ∈ XO × XO and consider all subsets S ⊂ XO as conditioning sets. There are two

hyperparameters of note that our algorithm takes as a result of the FCI algorithm. The first

is the significance level, α, of the hypothesis tests and the second is the maximum size of a

conditioning set S we wish to consider. We recommend a maximum size of conditioning set

S between 4 and 7, and an α between 0.01 and 0.1.

After obtaining the PAG, we wish to establish the equivalence class of ADMGs implied
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by P̂ , C(P̂ ). We know that each M represented by P̂ is a member of the equivalence class,

M ∈ C(P̂ ). This gives us a natural subset of C(P̂ ) to use as a starting point for score-based

learning. We call this subset CM(P̂ ) where CM(P̂ ) = {M : M ∈ P̂} and CM(P̂ ) ⊆ C(P̂ ).

We then populate CM(P̂ ) following the Arrowhead Augmentation rules set out in [Zha06].

Starting with P̂ , we orient any edge ◦→ into→. Following this step, we choose a fixed node,

i, and orient each chordal component of the graph into a valid DAG without orienting any

additional edges into i. To build CM(P̂ ), we perform this algorithm for each i ∈ {1, . . . , p}.

In the best case scenario we would obtain one MAG per node; however, usually many of the

resulting MAGs are identical.

For a summary of constraint-based MAG Learning see algorithm 2.

Algorithm 2 Constraint-Based MAG Learning

Input: {Xij}n×p, αf , m.max

Output: CM (P̂ )

1: Perform FCI using gaussain CI tests P̂ = FCI(data = X, significance level = αf , max conditioning set size = m.max)

2: for i ∈ {1, . . . , p} do

3: Mi = P̂

4: Perform Arrowhead Augmentation from [Zha06]

5: Orient all ◦→ in Mi to →

6: Orient each chordal component in Mi of our graph into a valid DAG without orienting any additional edges into i

7: Store Mi

8: end for

3.4.2 Score-based ADMG Learning

To perform score-based learning, at a conceptual level, we define a score S(G|X) for any

candidate ADMG G and observed data X. The goal of the search algorithm is to find

Ĝ ∈ C(P̂ ) to minimize the score S(Ĝ|X). This process will uncover generalized CI constaints

which cannot be detected by ordinary MAG learning. In other words, we start with a MAG

and perform a set of steps to uncover generalized CI constraints that may decrease our score.

For each Mi ∈ CM(P̂ ); i ∈ {1, . . . , |CM(P̂ )|} we repeatedly perform four steps to find the
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optimal ADMG. These four steps are preceded and followed by an additional greedy step.

Due to the parameterization of the gaussian linear SEM, we choose BIC as our score, which

we express as:

S(G|X) = BIC(G) = −2ℓ(Σ = (I −B)−TΩ(I −B)−1) + log(n) ∗ np

= −2(−n
2

log(|Σ|) + tr(Σ−1S))− constant + log(n) ∗ np

where S is the sample covariance matrix and np is the number of parameters implied by the

current model

Performing these six steps, we hope to uncover the optimal ADMG from the start-

ing MAG, Mi. We call the result of this process Ai. After we have performed this pro-

cess for all Mi, we select the optimal ADMG, A∗, using a simple argmin operation: A∗ =

argminA′∈{A1,...,A|CM (P̂ )|}S(A
′|X)

The six steps fit into two categories, greedy steps, more specifically a greedy add and

greedy remove step, and ADMG search steps. First, we perform a greedy add step to increase

the density of the starting graph. Then, we perform the ADMG search steps. These steps

are informed by the steps taken to convert an ADMG to a MAG. Finally, we perform a

greedy remove step to remove unnecessary edges. In the rest of this chapter, we will discuss

the details of each step.

This process is formalized in algorithm 3.

Greedy Steps Given an initial MAG Mi, we perform a greedy add step to obtain, G0, the

initial graph for the ADMG search steps. The main goal of this step is to combat potential

sparsity in the PAG P̂ .

The greedy add step considers all possible additions of bidirected and directed edges to

Gadd(O) = (O,Eb, Ed). Following the definition of a bow-free ADMG, we can only add edges
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Algorithm 3 Score-Based ADMG Learning

Input: CM (P̂ ), max.iter

Output: A∗

1: for Mi ∈ CM (P̂ ) do

2: G0 = greedyBICAdd(Mi)

3: Find pid(G0)

4: Find pbi(G0)

5: while i < max.iter do

6: Gt+1 = argminG∈{G′=DirectedToBidirected(Gt,Gt}BIC(G)

7: Gt+1 = argminG∈{G′=RemoveInducingEdge(Gt+1,Gt+1}BIC(G)

8: Gt+1 = argminG∈{G′=ReverseStep3(Gt+1,Gt+1}BIC(G)

9: Gt = argminG∈{G′=ReverseStep4(Gt+1,Gt+1}BIC(G)

10: Break if no changes were made during this step

11: end while

12: Ai = greedyBICRemove(Gres)

13: Store Ai

14: end for

15: A∗ = argminA′∈{A1,...,A|CM (P̂ )|}
BIC(A′)

that do not create a bow nor create a cycle. Suppose we have the following set of edges

R = {(i, j)|(i, j) ∈ O ×O and (i, j) /∈ Ed

⋃
Eb

and Adding (i,j) does not make a cycle or bow in Gadd}

At each step we attempt we form a set of proposal graphs, G(R) = {GE1 , . . . , GE|R|} where

each graph has one more edge than Gadd, Ei ∈ R. We score each of the graphs in G(R)

using our score function S(G|X). Then, we select the graph with the minimal score, G′

from amongst G(R). If S(G′|X) < S(Gadd), we accept G′, i.e. Gadd = G′ and this process

continues with R = R\E. We do this until there are no more edges that decrease the score

or we have hit a max number of edge additions.

There may be concerns that such an approach would lead to over-parametrization,

however, step two of the ADMG search steps in combination with the greedy remove

step address this well. Greedy remove considers removing all edges in the final graph

Gres(O) = (O,Ed, Eb) for removal. Again consider the edge set R = Eb

⋃
Ed. For each
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Ei ∈ R, we will form a proposal graph, GEi
with one less edge than Gres. Again we call this

set of proposal graphs G(R) = {GE1 , . . . , GE|R|}. From amongst G(R), we select the graph

with the minimal score, G′, and its associated edge removal, E ∈ R. If S(G′|X) < S(Gres|X),

we remove this edge from Gres, i.e. Gres = G′, and continue the process with the edge set

R = R\E. We continue this process until there are no more edges that decrease the score.

ADMG search steps Now we will discuss the four ADMG search steps. Each step is

characterized by the same process. Given the current graph Gt, we make a local change to

propose a new G′ and then follow an acceptance-rejection rule to obtain Gt+1.

To propose a local change we define two subsets of edges from the initial graph, G0. G0

is the initial MAG, Mi, after the greedy add step. These two subsets are related to the

process of converting an ADMG to a MAG. Lines 3-8 in algorithm 1 imply that a directed

edge in our MAG G0 could be a bidirected edge in an ADMG if there is an ancestral relation

between the two nodes. Accordingly we define the set of possible bidirected edges, pbi(G0):

pbi(G0) = {(i, j)|(i, j) ∈ Ed and i ∈ anGrem(j)}

where Grem is the graph G0 where the edge (i,j) has been removed

Similarly, due to the operations performed in lines 9-12 in the same algorithm, any edge in

G0 may have been added to an ADMG due to there being an inducing path between the

nodes. We define the set of possible inducing edges as pid(G0) or more formally:

pid(G0) = {(i, j)|(i, j) ∈ Ed

⋃
Eb and there is an inducing path between i and j}

Each admg search step iterates over some subset of the edges of Gt = (O,Ed, Eb), R ⊂

Ed

⋃
Eb. A proposal graph, GE, is created and scored for each edge E ∈ R. We call the set

of these proposal graphs G(R) = {GE1 , . . . , GE|D|}. We consider this set of graphs and may
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accept a change based off one of two acceptance rules. The two currently implemented rules

are a greedy rule and a simulated annealing rule. The greedy rule implements an exhaustive

search algorithm in which each graph GE ∈ G(R) is considered the graph with the minimal

score S(G|X) is denoted as G′. We then accept the change if S(G′|X) < S(Gt|X). On the

other hand, when using the simulated annealing rule, while iterating through the graphs

in G(R) we may accept a graph that increases our score based on a bernoulli draw. This

rule requires two parameters, a temperature, T , that denotes the probability of accepting a

change regardless of its effect on the score and a cooldown degree, C, that is the shrinkage

factor of T after each iteration. Whenever a proposal graph GE ∈ G(R) is scored, we perform

one bernoulli draw, B ∼ Bern(T ), to determine whether or not we should accept the edge

change. If we accept an edge in this manner it is added directly to to the current graph Gt

and we skip all other edges in R. Otherwise, if an edge change is not accepted by this draw,

it will be accepted or rejected based on the greedy rule.

Following this framework, we define the four steps in terms of the edges we iterate over.

Each of these define a different edge set R in which we perform the above process. In the

first step, we propose to convert a directed edge in (i, j) ∈ Ed

⋂
pbi(G0) to a bidirected edge.

This is the set of all edges in pbi(G0) that are still directed edges in Gt. In the second step,

we consider all edges in (i, j) ∈ (Eb

⋃
Ed)

⋂
pid(G0) for removal. These are all the edges

in pid(G0) that are still in Gt. To ensure reversibility, we also consider the reverse of these

steps. We consider converting an edge (i, j) ∈ Eb

⋂
pbi(G0) back to a directed edge and add

an edge (i, j) ∈ pid(G0)\E to Gt. These reverse steps consider the sets of edges that we have

changed in a previous step of our algorithm.

3.5 Implementation

To clarify the implementation of pbi and pdi, we will dicuss the process of building both here
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3.5.1 Building pbi

Consider an ADMG G(O) = (O,Ed, Eb). We define edges that are possible bidirected edges

as directed edges in the current ADMG that may have been converted from directed edges

in the process of forming a MAG. To maintain ancestral properties this set is defined as

pbi(G) = {(i, j) : i− > j & i− > ...− > j}.

To build pbi, we need to identify pairs of verticies, (i, j) such that (i, j) ∈ Ed and there is a

directed path between i and j of length 2 or longer. We first form a new graph GD = (O,Ed),

where Ed is equivalent to the set of directed edges in G. To identify paths of length l, we

consider Al where A is the adjacency matrix of GD. In a directed graph, if Al
ij = 1 there

is a path of length l (l ≥ 2) from i to j. Therefore an edge is added to pbi, if for any

l ∈ {1, . . . , p}, Al
ij = 1 and (i, j) ∈ Ed. We do this via an iterative approach in which we

iterate through l ∈ {2, . . . , p} adding pairs of vertices (i, j) such that Al
ij = 1 and (i, j) ∈ Ed.

3.5.2 Building pid

Consider an ADMG G(O) = (O,Ed, Eb). We define edges as possible inducing edges, pid(G),

if there is an inducing path (of length ≥ 2) between i and j. To decrease the complexity of

this problem, we form a superset of pid(G), which we denote as pidS(G). pidS(G) drops the

assumption that each intermediate node must be an ancestor of a path endpoint. In this

form, we only need to find pairs of nodes (z, w) ∈ Eb

⋃
Ed such that there is a path of the

form w◦→i ←→ . . . ←→ j←◦z where i and j are any two nodes i, j ∈ O. Thus we break this

problem down into two parts: find the endpoints of bidirected paths of a length l(l ≥ 2) and

finding nodes with an edge into these endpoints.

We consider this problem in the same way we considered building pbi. First we form an

undirected graph, GU(0) = (O,E), where each bidirected edge (i, j) ∈ Eb is added as an

undirected edge to E. We will use the adjacency matrix of GU , A, to find paths of length l in

GU and in turn find bidirected paths of length l in G. To find paths of length l, we consider

18



Al where A is the adjacency matrix of G. As we do this, we ignore the diagonal of the power

matrix as we don’t care about paths back to a start node on the undirected graph. Thus,

if Al
ij ≥ 1 where i ̸= j there is a bidrected path of length l between i and j. However, we

actually care about all the nodes that are adjacent to i and j rather than the endpoints of

this path. Thus for any pair of nodes (z, w) ∈ Eb

⋃
Ed such that (z, x), (w, y) ∈ Eb

⋃
Ed and

Al
xy ≥ 1;x ̸= y for any length l ∈ {2, . . . , p}, we add (z, w) to pbiS. Again, we can employ an

iterative approach in which we iterate through l ∈ {2, . . . , p} adding pairs of vertices (i, j)

to pbiS that satisfy these conditions.
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CHAPTER 4

Results

In this chapter, we summarise empirical results showing our methods performance across

various dimensional and sample size settings. For each setting, we run ns = 50 simulations.

For comparison purposes, we compare our method to the greedySearch method proposed

by Nowzohour et al. and LRpS (Low-rank plus Sparse) estimator proposed by Frot et

al([NME17], [FNM19]). The greedySearch method follows a score-based approach in which

they score connected components individually to get around computation limitations. The

result of greedySearch is the optimal ADMG based on their connected component criterion.

The LRpS + GES algorithm considers a convex optimization problem that accounts for

latent variables. The results of LRpS + GES is a CPDAG and is used as a non-ADMG

proxy for performance on data with latent variables.

4.1 Generated Data Simulations

This set of simulations heavily derives from the simulation framework formulated by Nowzo-

hour et al., who borrow from Kuipers et al. ([NME17], [KM13]). Here we randomly generated

N = 50 ADMGs, sample a specified number of data points from the implied distribution,

and compare the estimators. We will begin by discussing the simulation framework and then

proceed to discuss the results.
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4.1.1 ADMG Generation Framework

We wish to sample bow-free ADMGs uniformly at random from the space the possible

ADMGs. However, this is not a straightforward problem and simple generation procedures

exhibit highly bias results. Following Kuipers et al., and Nowzohour et al. we can use

a random process with graphs as states and a uniform limiting distribution. To do so

Nowzohour et al. developed the following MCMC algorithm for ADMGs and proved that

the following algorithm results in a transition matrix that is irreducible and symmetric and

therefore exhibits a unique uniform stationary distribution.

Let Gk(O) = (O,Ed, EB) be the ADMG at the current step of the MCMC iteration. At

each step of the iteration, we sample a position (i, j) ∈ V × V \{(i, j)|i ∈ V } uniformly at

random and perform a single bernoulli draw σ ∼ Bernoulli(0.5). Using these two sampled

values, we will formulate proposal edge sets E ′
D and E ′

B. If there is an edge present between

i and j and σ = 0, we remove the edge (E ′
D = ED\{(i, j), (j, i))}, E ′

B = EB\{(i, j), (j, i))}).

Otherwise if σ = 1, we do nothing. On the other hand, if there is not an edge present

between i and j and σ = 0 we add a directed edge i → j(E ′
D = ED

⋃
{(i, j)}, E ′

B = EB).

If σ = 1, we add a bidirected edge i ↔ j(E ′
D = ED, E

′
B = EB

⋃
{(i, j), (j, i)}). Finally, we

update the current graph Gk+1(O) = (O,E ′
D, E

′
B) ([NME17], [KM13]).

Due to its properties, after an initial burn-in period, the distribution of across all pos-

sible ADMGs has a unique uniform stationary distribution. Starting with an empty graph,

Nowzohour et al. suggests sampling ADMGs after a burn in period of O(d4).

In the following simulations, we follow this process and sample 50 ADMGs, ns = 50, for

each setting. Additionally, following Nowzohour et al. we only take ADMGs such that the

maximum in degree of a node is 0.3 ∗ p. However, varying the in degree does not effect the

performance of any algorithm. After sampling an ADMG, we generate the parameters, B

and Ω, following the same process as Nowzohour et al.. For all (i, j) ∈ Ed, we generated

Bij ∼ N(0, 1). Ω is a bit more tricky due to the constraint that it must be positive definite.
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Nowzohour et al. follows Gershgorin’s circle theorem, to satisfy this constraint. For all

(i, j) ∈ Eb we generate Ωij ∼ N(0, 1) and set the diagonal as the row sums of the absolute

values plus an independently sampled χ2(1). This provides us with a positive definite Ω

[NME17].

Now that we have the parameters, we simply sample N data points from the implied

normal distribution. To be clear for each setting, we take X = {x1, . . . , xN}
iid∼ N(0, (I −

B)−TΩ(I −B)−1) where xi ∈ Rp.

To compare the three methods discussed above, we will use the following metrics:

1. Expected Bayesian Information Criterion(BIC) Difference : We define the Expected

BIC Difference as the mean difference between the BIC of an estimated ADMG and

the true ADMG. This can be estimated as:

ˆEBIC((GTruei)i∈{1,...,ns}, (Gmethodi)i∈{1,...,ns}) =
1

ns

Σns
i=1BIC(Gmethodi)−BIC(GTruei)

We interpret a value of 0 as, on average, the method perfectly predicting the true

ADMG.

2. Test Likelihood : We sample an additional 10,000 datapointsXtest = {x1, . . . , x10,000}
iid∼

N(0, (I − B)−TΩ(I − B)−1) and use this data to calculate the test likelihood of each

method. This characterizes how well the models do on new data.

3. F1 Score: Following Nowzohour et al., we estimate the equivalence classes of the True

ADMG G and each estimated bow-free ADMG. The equivalence class EC(G) is defined

as all bow-free ADMGs G′ such that their score is within ϵ, a small number, of the score

of G. Nowzohour et al. proposes an algorithm to emprically estimate an equivalence

class, ÊC(G), that initially populates ÊC(G) with bow-free ADMGs that have the

same skeleton and collider triples as G. This first step follows Nowzohour et al.’s

derived sufficient conditions for equivalence of two ADMGs. Then starting from each

of these ADMGs, a recursive search is performed by checking all possible edge-changes.
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Each ADMG found during this search that is within ϵ of the score of G is added to

ÊC(G) [NME17]. For each iteration in our simulation, we generate ÊC(G) for the

true ADMG and ÊC(Ĝ) with an ϵ = 1× 10−9.

Edge Epossible(ÊC(G), i, j) Epossible(ÊC(Ĝ), i, j)

(1,3) ←→ ←→

(1,4) {←→,←} {←→,←}

(1,4) {←→,←} {←→,←}

(2,3) ← ←

(3,5) ←→ ←→

(4,5) {←→,→} {←→,→}

Table 4.1: Edge Sets resulting from equivalence class comparison of a toy p = 5 example

Suppose we have the true ADMGG(O) = (O,Ed, Eb) and its corresponding equivalence

class ÊC(G) along with the estimated ADMG Ĝ(O) = (O,Ed, Eb) and its correspond-

ing equivalence class ÊC(Ĝ). For all (i, j) ∈ O × O where i ̸= j, we will consider the

set of edges that are between these nodes throughout the equivalence class. For clarity,

we denote this set of edges Epossible(ÊC(G), i, j) ⊆ {→,←,←→}. There are three types

of possible errors: incorrectly oriented edges(R), false positive(FP) and false negatives

(FN). In our case these notions need to be extended across Epossible(ÊC(G), i, j):

TP : Epossible(ÊC(G), i, j) = Epossible(ÊC(Ĝ), i, j)

FP : Epossible(ÊC(Ĝ), i, j) ̸= ∅ but Epossible(ÊC(G), i, j) = ∅

FN : Epossible(ÊC(Ĝ), i, j) = ∅ but Epossible(ÊC(G), i, j) ̸= ∅

R : Epossible(ÊC(Ĝ), i, j) ̸= Epossible(ÊC(G), i, j) and

Epossible(ÊC(G), i, j) ̸= ∅, Epossible(ÊC(Ĝ), i, j) ̸= ∅
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(a)

(b)

Figure 1: (a) : Equivalence Class for true ADMG (b) : Equivalence class for estimated

ADMG
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To define precision and recall we know that the number of true edges can be expressed

as |E| = TP + FN + R and the number of predicted edges |Ê| = TP + FP + R.

Therefore we get the following definitions:

Precision =
TP

TP + FP +R

Recall =
TP

TP + FN +R

F1 =
2 ∗ TP

2TP + FP + FN + 2R

We will use the F1 score to evaluate each estimation method in this fashion.

As an example, we will display one simulation with p = 5 in Figure 1. The resulting

edge sets are summarized in table 4.1. This would result in an F1 Score of 1, as for

each edge the possible edges are equivalent.

4.1.2 Simulation over Data Dimension

Following the above framework, we perform this simulation for p ∈ {5, 10, 15, 20, 30}. The

result of these simulations are summarised in Figure 2. We fix the training sample size as

N = 10, 000 to make sample size effects negligible. We see that our model produces, on

average, an ADMG with a higher F1 score and an expected BIC difference closer to 0 while

producing comparable test log-likleihood and times.

4.1.3 Simulation over Training Sample Size

Following the above framework, we perform this simulation forN ∈ {50, 100, 1000, 5000, 10000}.

Here we fix p = 10, and vary the value of N . The results of these simulations are summarized

in Figure 3. As N increases, we see that Hybrid Learning provides an estimated ADMG

with a higher F1 Score and an expected BIC difference closer to 0 when compared to the
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(a) (b)

(c) (d)

Figure 2: (a) : Estimated Expected BIC Difference across p (b) : Test Log Likelihood for

10, 000 iid data points across p (c): F1 Score for each method’s estimated ADMG across

p(d) : Time (in log seconds) required to estimate an ADMG across p
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(a) (b)

(c) (d)

Figure 3: (a) : Estimated Expected BIC Difference across log(n) (b) : Test Log Likelihood

for 10, 000 iid data points (c): F1 Score for each method’s estimated ADMG across n (d) :

Time (in log seconds) required to estimate an ADMG

other two methods. Additionally, time is not effected by the number of sample in any of the

three algorithms.
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CHAPTER 5

Conclusions

Here we have developed and presented structure learning of bow-free Gaussian Linear AD-

MGs. Our method utilizes constraint based learning in to initialize our search and provide

possible local changes that we consider throughout our algorithm. Through the use of these

methods, we limit the search space and are able to decrease the computational complexity

of the search. Following the simulation framework set out by Nowzohour et al. we have seen

that in practice our algorithm optimizes BIC well without overfitting and shows promise in

estimating true causal effects. As noted by Nowzohour et al., uncovering causal effects is a

tough problem in general and we believe these results are promising.
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