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Abstract

Ontology is the basis of knowledge representation, and it is
necessary to translate ontologies that are normally expressed
in English into other languages in order to achieve exchange
across languages. Building a domain-specific translation sys-
tem is essential due to the extremely focused words used
and the inadequacy of contextual information. In this paper,
we introduce disentangled representations under cross-lingual
agreement to alleviate the aforementioned issues. We intro-
duce semantic and language representations and integrate ex-
tra losses to induce disentangled representations that capture
different information. To reduce the gap between the ontology
label and the hypothesis generated by the translation model,
we further integrate adversarial learning. In order to guide
the generation of translation candidates, the semantic matching
strategy is incorporated into the decoding phase. Experiments
on the four English-to-German ontologies of different domains
show that the proposed method achieves improvements over
the baselines.

Keywords: ontology translation; disentangled representation;
cross-lingual agreement, adversarial learning; fusion decoding

Introduction
Through a shared understanding of a conceptualization of a
domain, ontology underpin the underlying representation of
the knowledge (Gruber, 1995). Ontologies provide an in-
stitutional framework for the digital archive, with the con-
cepts ruled as bibliometrics of key terms that reflect domain-
specific notions. The utilization of ontologies has proved ad-
vantageous for numerous applications, such as in the areas
of information extraction (Buitelaar, Cimiano, Frank, Har-
tung, & Racioppa, 2008), semantic search (Fernandez et al.,
2008), and natural language generation (Bontcheva, 2005).
Despite this extensive usage, the majority of ontologies have
only been described in English. These monolingual resources
must be converted into multilingual equivalents in order to
make ontological information available beyond language bor-
ders and to benefit users of other languages.

Ontology labels often have a high degree of domain speci-
ficity, and parallel resources can not provide linguistic back-
ground for ontologies. Only 15% of the lexical items can
be detected in the general parallel resources, according to
our preliminary ontology localization attempt, while the other
85% are absent. Ontology labels are typically only short
text pieces that differ linguistically from free text, and it is
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Figure 1: A motivation example for disentangling the ontol-
ogy label to semantic and language variables.

challenging for labels composed of just a few words to pro-
vide adequate context to encourage neural machine transla-
tion (NMT) systems to translate the labels to a specific do-
main. Building a domain-specific translation system with re-
liable translation candidates is necessary for ontology transla-
tion due to the extremely specialized vocabulary and absence
of contextual information.

Some previous studies integrate the transfer learning
paradigm into the machine translation model to improve on-
tology translation. The basic model is initially trained on a
substantial general-domain parallel corpus, and it is then fine-
tuned on aligned parts from related domain datasets or on-
tologies. The majority of the approaches shift the domain to
a specific one by filtering sentences from generic corpora or
by incorporating domain-relevant external resources (Arcan,
Turchi, & Buitelaar, 2015; McCrae et al., 2016; Arcan, Tor-
regrosa, & Buitelaar, 2017). Although the inference of sub-
words may be somewhat alleviated in most circumstances
when particular terminologies in ontology labels rarely exist
in parallel corpora or fine-tuned data, the inference of trans-
lation candidates frequently cannot be learned effectively. At
the same time, when translating the short format text through
pre-trained models trained on long ones, translation errors
frequently happen as a consequence of the absence of con-
textual information support.

We introduce disentangled representations under cross-
lingual agreement, as shown in Fig. 1, to overcome the afore-
mentioned issues that occur when NMT translates ontology
labels. Firstly, the equivalent signals exhibited in the parallel
data enrich the bidirectional contextual information for the
words on both language sides and accelerate the word align-
ment procedure in NMT (Luong, Pham, & Manning, 2015a;
Hermann & Blunsom, 2014). Additionally, word embed-
dings are employed by NMT systems as latent features for
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representing parallel texts, even though it does not explicitly
model language discrimination information. To disentangle
various attributes of ontology labels, as shown in Fig. 1, two
distinct types of representation could be considered: the se-
mantic meaning and the language discrimination. The seman-
tic representation is designed to encapsulate the meaning of
ontology labels independent of languages. In contrast, the
language representations should represent categories of the
presented language (e.g., English, German). Partitive units
in disentangled representations are those that are responsive
to shifts in a particular component (Bengio, Courville, &
Vincent, 2013), and it has been demonstrated that adopting
such representations is favorable for generalization and inter-
pretability (Achille & Soatto, 2018).

We propose a method for disentangling semantic and lin-
guistic factors in order to improve their interpretability and
discriminative effects during translation processes. We in-
troduce two continuous latent variables to capture semantic
meaning and language discrimination, and we learn these
representations by optimizing the evidence lower bound
(ELBO) with a Variational Autoencoder (VAE)-like (Kingma
& Welling, 2014; Rezende, Mohamed, & Wierstra, 2014)
approach. In order to improve the disentanglement of the
learned representations, we integrate extra losses in our
method that are intended to induce the latent representations
to capture different information. At the same time, to reduce
the difference between the ontology label and the translation
generated by the NMT model, we integrate the semantic rep-
resentations with adversarial learning during the training of
the NMT. Additionally, the semantic matching strategy is in-
corporated into the log-likelihood during the decoding phase
to guide the generation of translation candidates. We evaluate
the proposed method for ontology translation from English to
German in four domains. Experimental results show that the
method achieves improvements over the baselines, demon-
strating the effectiveness of exploiting disentangled represen-
tations under cross-lingual agreement for NMT. Further anal-
ysis also shows that the disentangled representations transfer
learned knowledge to the NMT model.

Proposed Method
We describe our method for improving ontology translation
through disentangled representations. The overall framework
of our proposed method is shown in Fig. 2.

Disentangled Representations
Our method extends the vanilla VAE (Kingma & Welling,
2014) by adopting two distinct latent variables, zsem and zlang,
to capture semantic and language information, respectively
(shown in Fig. 3). We assume that the probability of an on-
tology label x could be computed as follows:

p(x) =
∫

p(zsem,zlang)p(x|zsem,zlang)dzsemdzsyn

=
∫

p(zsem)p(zlang)p(x|zsem,zlang)dzsemdzsyn

(1)

Figure 2: Diagram of proposed method.

where p(zsem) and p(zlang) are the priors; both are set to be
independent multivariate Gaussian N(0, I).

We optimize the ELBO for training:

log p(x)≥ E
q(zsem|x)q(zlang|x)

[log p(x|zsem,zlang)]

−β
sem
KL KL(q(zsem|x)||p(zsem))

−β
lang
KL KL(q(zlang|x)||p(zlang)) = ELBO

(2)

where q(zsem|x) and q(zlang|x) are posteriors for the semantic
and language latent variables, respectively. We assume these
two posteriors are independent, and taking the distribution of
N(µsem,σ

2
sem) and N(µlang,σ

2
lang).

In the inference phase, motivated by the research line
of phrase embeddings (Yazdani, Farahmand, & Henderson,
2015), we obtain the initial representation of the ontology
label in two ways: 1) by averaging word representations
(S. Wang & Zong, 2017), and 2) by using a recursive au-
toencoder (J. Zhang, Liu, Li, Zhou, & Zong, 2014), which
is representative in terms of whether it is aware of the word
orders while composing the phrase from component words.
The representation of the ontology label x is fed into a feed-
forward neural network, which produces mean and variance
of q(zsem|x) and q(zlang|x).

In the generation phrase, zsem and zlang are sampled
through the reparameterization trick (Kingma & Welling,
2014), Then, these latent variables are concatenated as z =
[zsem;zlang] and fed into the generative model p(x|zsem,zlang)
to generate the reconstruction of x. Finally, the reconstruction
of x is input to the feedforward neural network to predict the
bag of words of ontology labels.

Multi-Task Learning
In order to improve the quality of disentangled representa-
tions, we integrate the extra training objectives described be-
low.

Semantic Matching. It has been demonstrated in past
research (Luong, Pham, & Manning, 2015b; Kuang, Li,
Branco, Luo, & Xiong, 2018) that cross-lingual alignment is
beneficial for machine translation. Our goal is to propose a
measurement for cross-lingual agreement that is based on the
semantic meaning equivalence between translations. Firstly,
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Figure 3: Diagram showing the disentanglement with seman-
tic matching and language discrimination objectives.

we define the semantic distance of ontology label translation
pairs (x,y) on different sides as:

Ldist(x,y) =
1
2
∥zx

sem − zy
sem∥2 (3)

where zx
sem and zy

sem denote the disentangled semantic repre-
sentations of the ontology labels x and y.

Ideally, we want the ontology label semantic distance for
the positive examples to be much closer than that for the neg-
ative example. We enhance the semantic error with positive
and negative examples, and the corresponding max-margin
loss becomes:

Lmargin(x,y,y∗) = max{0,Ldist(x,y)

−Ldist(x,y∗)+1}
(4)

where y∗ denotes the negative sample sampled from the target
language side and (x,y∗) denotes the negative pairs of ontol-
ogy labels. We simply choose the most similar ontology la-
bels in a mini-batch (other than those in the given translation
pair) to generate negative samples for semantic matching.

Finally, the overall semantic matching objective becomes:

Lsem = Lmargin(x,y,y∗)+Lmargin(y,x,x∗). (5)

Language Discrimination. In the parallel dataset, each on-
tology label is presented in its own languages. We design a
language-oriented training objective that correctly discrimi-
nate the language category through the disentangled language
representations. Our language discriminator is parameterized
by a two-layer feedforward neural networks f (·) with input
from the disentangled language representation zlang. Specifi-
cally, the language discrimination objective is defined as fol-
lows:

Llang = E
q(zlang|x)

[−∑
i

logsoftmax( f (zi
lang))]. (6)

Adversarial Learning. We introduce an adversarial learn-
ing mechanism between the NMT and the disentanglement
module to enhance the translation effect. We view the NMT
as a generator in the adversarial learning framework, while
the disentanglement module is viewed as a discriminator. The
purpose of training the NMT in adversarial learning is to gen-
erate translation candidate ŷ that are closer to the source lan-
guage ontology label x than ground truth y. We view the

hypothesis, ŷ, as a positive example and the reference, y, as
a negative example, giving the hypothesis generated by the
NMT greater credibility than ground truth. The constructed
adversarial learning objective is

Ladv = max{0,Ldist(x, ŷ)−Ldist(x,y)+1} . (7)

Intuitively, updating the NMT parameters to minimize Ladv
can be seen as learning to generate a translation, ”cheating”
the disentanglement module into believing that this trans-
lation should have a higher score than the corresponding
ground-truth.

Training
The disentangled representations integrated into the machine
translations are divided into two phases. Firstly, we pre-train
the disentanglement module through

Ldis =Lvae +Laux

=−EBLO+βsemLsem +βlangLlang +
λ

2
∥θ∥2

(8)

where hyper-parameters βsem, βlang, and βsem
KL , β

lang
KL in Eq (2)

control the strengths of each loss for the objective. Also, the
regularization term λ

2 ∥θ∥2 is introduced to reduce overfitting
during the phase of pre-training the disentanglement module.

Then, the NMT module and the disentanglement module
are fine-tuned together with the following objective:

L = Lnmt +βdisLdis +βadvLadv +
λ

2
∥θ∥2 (9)

where the hyper-parameters βdis and βadv control the
strengths of disentanglement loss and adversarial loss for the
final objective. The parameters θ in our model can be divided
into three sets: 1) parameters of disentanglement of represen-
tations θvae; 2) parameters of language discrimination θlang;
and 3) parameters of the NMT model θnmt .

Decoding
Integrating a language model in the decoding phase of ma-
chine translation has been proven to increase adaptation per-
formance in previous studies (Stahlberg, Cross, & Stoyanov,
2018; Saunders, Stahlberg, & Byrne, 2019). In the decoding
phase of machine translation, we combine disentanglement
module and the NMT. When predicting the i-th position in
the decoding phase, the probability can be calculated as

P(yi|y<i,x) = so f tmax(Snmt(yi|y<i,x)

+βDSdis(x,y<i))
(10)

where Snmt(yi|y<i,x) denotes the output of the NMT projec-
tion layer without softmax. The hyper-parameter βD balances
the NMT output distribution and alignment score output by
the disentanglement module. Sdis(x,y<i) denotes the align-
ment score between x and y<i, and the score is calculated as:

Sdis(x,y<i) = log(zx
sem

⊤zy<i
sem). (11)

where zy<i
sem denotes the disentangled representation of words

preceding the i-th position.
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Table 1: Generic and ontology datasets statistics.

Dataset Lines En Words En Vocab. En Avg. Length De Words De Vocab. De Avg. Length
Generic 3,724,585 123,219,992 307,886 33.08 117,748,487 735,675 31.61
ICD 1,839 9,661 1,780 5.25 9,236 2,145 5.02
IFRS 2,757 24,871 998 9.02 26,197 1,621 9.5
STW 7,151 14,898 3,928 2.08 9,835 7,045 1.37
TheSoz 10,731 22,080 5,736 2.05 26,776 6,010 2.49

Experiment
Datasets and Settings
Considering that the majority of ontologies are represented in
English, under the existing conditions, we study the transla-
tion from English to German, and dataset statistics are shown
in Table 1.
Generic Datasets. We merged a number of parallel corpora
to create the general domain parallel corpus, including JRC-
Acquis (Steinberger et al., 2006), Europarl (Koehn, 2005),
DGT (Steinberger et al., 2014), MultiUN Corpus (Eisele &
Chen, 2010) and TED Talks (Cettolo, Girardi, & Federico,
2012).
Ontology Datasets. We verified the effectiveness of our
method in four ontologies from different domains: 1) The
International Classification of Diseases (ICD) ontology (The
World Health Organization, 2011); 2) The International fi-
nancial reporting standards (IFRS) ontology (Van Greuning,
Scott, & Terblanche, 2011); 3) The STW ontology for eco-
nomics (Borst & Neubert, 2009); 4) The Thesaurus for the
Social Sciences (TheSoz) (Zapilko, Schaible, Mayr, & Math-
iak, 2013).

We compare our method with the following baselines: 1)
RNN-based NMT (Bahdanau, Cho, & Bengio, 2015) which
extending the original encoder-decoder and adding an at-
tention mechanism; 2) Transformer (Vaswani et al., 2017)
which propose NMT based solely on attention mechanisms,
dispensing with recurrence and convolutions entirely; 3)
VNMT (B. Zhang, Xiong, Su, Duan, & Zhang, 2016a) which
propose a variational model to learn this conditional distribu-
tion for neural machine translation; and 4) AgreementNMT
(Yang et al., 2019) which propose a sentence-level agreement
to minimize the difference between translation sentences.

We adopt byte pair encoding (Sennrich, Haddow, &
Birch, 2016) with 32K merges to segment words into sub-
word units. Our experiments demonstrate five-fold cross-
validation. We evaluate the proposed approaches on our re-
implemented Transformer model, which following the setups
of the base model. Word embeddings are 512-dimensional
and initialized randomly. For the disentanglement module,
we apply an Adam (Kingma & Ba, 2015) optimizer with
b1 = 0.9 and b2 = 0.99 and a base learning rate of 10−4.
The mini-batch size is 256, and the dropout rate is set to
0.1. The initial representations of the ontology label are 256-
dimensional, and the dimension of each latent variables( zsem

Table 2: BLEU scores of English-German ontology transla-
tion.

Model ICD IFRS STW TheSoz
RNN 14.99 17.99 14.21 13.98
Transformer 15.85 21.36 16.88 16.13
VNMT 15.81 17.39 15.43 14.63
AgreementNMT 16.78 21.49 16.82 16.34
WordEmbedd+AVG 17.41 21.57 17.22 16.99
WordEmbedd+RAE 16.24 21.08 16.90 16.34
TransEmbedd+AVG 16.80 22.18 16.81 16.49
TransEmbedd+RAE 17.06 21.76 16.87 16.21

and zlang) is 128-dimensional. We set negative example size
k = 50 for semantic matching in disentanglement module.

We adopt the top-layer output of the Transformer’s en-
coder and decoder (TransEmbedd) and the word embed-
dings (WordEmbedd) as the original representation. NMT
learns the initial pre-training model on the generic datasets,
and the disentanglement module is pre-trained in the ontol-
ogy development set. In the phase of fine-tuning, the NMT
module and disentanglement module continue training on
the ontology evaluation set. Finally, both modules partici-
pated in the decoding on the test set. During the decoding
phase,we apply with the beam size of 10 for beam search. The
translation results are measured in case-insensitive BLEU
(Papineni, Roukos, Ward, & Zhu, 2002). We select the hy-
perparameter value with the lowest Ldis and L on the valida-
tion set, which the validation set sampled from all ontology
datasets. These values were tuned by grid search, but due
to the large hyperparameter space, we gradually varied the
hyper-parameters from 0.05 to 0.5 with an increment of 0.05
in each step. Our model achieved the best performance when
βsem

KL = 1.0, β
lang
KL = 1.0, βsem = 0.3, βlang = 0.35 and λ = 0.05

for pretraining disentanglement module. We obtain best per-
formance for finetuning disentanglement module and NMT
when βdis = 0.5, βadv = 0.15 and λ = 0.05. The best trans-
lation result is obtained when βD = 0.25 during the decoding
phase.

Translation Result

We report the experimental results on ontology translation in
this section. With the choice of representations of words, we
could adopt word embeddings(WordEmbedd) and the output
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Table 3: Ablation study by adding variational autoen-
coder, semantic matching, language discrimination, adversar-
ial learning and fusion decoding. Ldis indicates the integrat-
ing of Lvae, Lsem and Llang.

ICD IFRS STW TheSoz
Lnmt 15.85 21.36 16.88 16.13
Lnmt ,Lvae 14.57 18.02 13.17 14.09
Lnmt ,Lvae,Lsem 15.89 20.76 16.90 16.54
Lnmt ,Lvae,Llang 14.87 20.21 16.01 16.21
Lnmt ,Ldis 16.92 21.55 17.18 16.74
Lnmt ,Ldis,Ladv 17.04 21.48 16.99 16.76
ALL+Decoding 17.41 21.57 17.22 16.99

of the Transformer’s encoder and decoder (TransEmbedd).
Also, there are two candidates for the choice of learning ini-
tial representations of ontology labels: 1) averaging word rep-
resentations (AVG); and 2) recursive auto-encoder (RAE).
For the best performance, we explored every possible option,
and Table 2 shows the performances measured in terms of the
BLEU score on the baseline and our methods.

Among the baseline methods, Transformer has the best re-
sults on ICD and STW datasets, and Agreement NMT has
the best results on IFRS and TheSoz datasets. The WordEm-
bedd+AVG option in our proposed method yields the best re-
sults across three datasets, whereas the TransEmbedd+AVG
performs best on a single dataset. The WordEmbedd+AVG
option’s result exceeds baseline methods on all datasets. In
the choice of composition method for initial representations
for ontology labels, AVG has a better translation performance
than RAE, due to the prediction of the generation model in
the disentanglement module disregarding the word orders.
Finally, these results imply that NMT benefits from disen-
tangled representations during the translating and decoding
phases.

Ablation Study
We conducted an ablation study and show the results in Ta-
ble 3. We train our model from Transformer to WordEm-
bedd+AVG by gradually increasing training objectives in or-
der to investigate the component’s contributions. We can find
that the performance cannot be improved by adding the VAE
module alone (line 2); on the contrary, it will have the op-
posite effect. And the effect increases when the semantic
matching objective (line 3) is added to the VAE, because the
cross-lingual agreement constraint forces the VAE module to
learn the equivalent relation. A significant raise in translation
performance is observed by integrating the full disentangle-
ment module(line 5), which essentially disentangles the la-
tent variables into semantic and language spaces and transfers
the learned knowledge to the NMT in a multi-task learning
context. Additionally, the disentangled representations also
improve translation performance during the decoding phase
(line 7), which guides the generation of translation candi-
dates. Finally, by incorporating all these modules, we achieve
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Figure 4: t-SNE plots of the disentangled semantic and lan-
guage spaces on ICD dataset.

Table 4: Alignment scores of ontology translation pairs.

ICD IFRS STW TheSoz
Transformer 1.23 1.45 0.98 1.01
WordEmbedd+AVG 40.34 32.92 45.31 46.31
WordEmbedd+RAE 24.34 30.12 41.97 42.97
TransEmbedd+AVG 27.54 29.29 40.39 33.39
TransEmbedd+RAE 34.01 28.43 41.54 40.54

the best translation results.

Disentangled Representations
We examine the disentangling quality of learned semantic
and language of representations, primarily studying the la-
tent space of ICD ontology datasets. We select ontology
label translation pairs and visualize their latent representa-
tion in Fig. 4 via t-SNE plots (van der Maaten & Hinton,
2008). The red and blue points respectively represent the
English and German ontology labels. We adopt zsem and
languagezlang as semantic and language representations, and
these vectors are induced by the WordEmbedd+AVG option
in our method. The left side of the figure is the semantic
representation space, in which the distribution of latent vari-
ables is coincident across languages. The right side of the
figure shows the language representation space, which is well
separated into two parts with different colors. It supports the
claim that our method learns a discriminative language space.
These results indicate the disentangling effect of our method,
as the language space contains language discrimination in-
formation, whereas the semantic space maintains equivalence
across languages.

Additionally, as shown in Table 4, we calculate the ontol-
ogy label alignment score between translation ontology labels
in order to further investigate the behavior of the disentan-
gled semantic representations. The cosine similarity of the

Table 5: Changes in alignment score during pre-training and
fine-tuning.

ICD IFRS STW TheSoz
pre-train dis 59.22 40.43 63.36 53.33
Transformer 1.23 1.45 0.98 1.01
w/ dis(Frozen) 25.29 15.82 30.21 27.68
w/ dis(Fine-tuning) 40.34 32.92 45.31 46.31
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Figure 5: Ontology labels length distribution, and translation
performances (BLEU) on each length.

semantic representation zsem is used to determine the align-
ment scores. Our method produces a significant increase in
alignment scores compared to the Transformers due to the
disentangled semantic representations and semantic-specific
training objectives. Since the Transformer does not explicitly
model the alignment relation, its scores are incredibly low.

Further, as shown in Table 5, we investigate the align-
ment score changes that took place during pre-training and
fine-tuning. We adopt the alignment scores based on the
WordEmbedd+AVG option, and the result show that the
strongest alignment ability is possessed by the pre-trained
disentanglement module. It’s interesting to note that when
the NMT is fine-tuned, the alignment ability of the disentan-
gled representation declines while the settings of the disen-
tanglement modules are frozen(w/ dis(Frozen)). These de-
creases are mostly the result of the training of NMT dam-
aging the disentanglement-specific latent representation. To
prevent alignment ability decline, the disentanglement mod-
ule should continue to train during the NMT fine-tuning step
(Sun et al., 2019).

Label Lengths
Translating short texts is well-known challenge for NMT. The
bar charts in Fig. 5 show the length distribution of English
ontology labels, and we can see that, with the exception of
IFRS, these lengths are typically less than 7. Additionally, we
computed the translation performance of the Transformer
and WordEmbedd+AVG at each length. According to the
BLEU score, as shown by the line charts in Fig. 5, our method
performs better than Transformer for shorter ontology labels,
while Transformer works better for longer labels. Despite
having a little BLEU point advantage on shorter labels, our
method is able to achieve superior results overall due to the
high percentage of short labels. Moreover, the curve of our
method is smoother than that of Transformer, and the transla-

tion performance over short texts is more stable.

Related Work
In this section, we briefly review previous studies that are re-
lated to our work. Arcan and Buitelaar (2013) employ statis-
tical machine translation to translate ontology labels based on
parallel sentences related to the ontology contents. Arcan et
al. (2015); Moussallem, Soru, and Ngonga Ngomo (2019);
McCrae et al. (2016) filter parallel sentences from general
corpora and use them to train an ontology-specific SMT sys-
tem while injecting external knowledge to switch specific do-
main. In contrast to earlier studies, Arcan et al. (2017) em-
ploy NMT to translate ontology.

A genre of domain adaptation method typically adds a
trainable subnetwork to the NMT model. The goal is typi-
cally to improve model performance over a specific new do-
main. Britz, Le, and Pryzant (2017); Y. Wang, Wang, Shi,
Li, and Tu (2020); Gu, Feng, and Liu (2019) add a domain
classifier to identify a domain label corresponding to one of
the training samples. Wu, Zhang, and Zhou (2019); Jiang,
Liang, Wang, and Zhao (2020) employed an explicit multi-
dimensional domain embedding instead of a classifier. Yang
et al. (2019); Shi, Huang, Wang, Jian, and Tang (2019) con-
centrate on modeling sub-networks to represent in-domain
data.

Our work is also related to research on disentangled rep-
resentations. Hu, Yang, Liang, Salakhutdinov, and Xing
(2017); John, Mou, Bahuleyan, and Vechtomova (2019);
Cheng et al. (2020); Pergola, Gui, and He (2021) disentan-
gle the text to the style(or sentiment) and content representa-
tions for style prediction or sentimental text generation. Bao
et al. (2019); Chen, Tang, Wiseman, and Gimpel (2019) dis-
entangle the text to the syntactic and semantic space for para-
phrase generation, syntax transfer. Unlike these studies that
conducted monolingual NLP research, our method focuses on
multilingual settings. Additionally, some studies((B. Zhang,
Xiong, Su, Duan, & Zhang, 2016b; Su et al., 2018; Sheng
et al., 2020; McCarthy, Li, Gu, & Dong, 2020)) introduce
variational model to enhance the translation performances.
Different from these methods, we explicitly model the latent
variables through variational model to enhance the translation
performance.

Conclusion
We proposed architecture and multi objectives for disentan-
gling semantic and language to improving ontology transla-
tion. The disentangled representations under cross-lingual
agreement are integrated into the training and decoding
phases of machine translation and induce the latent repre-
sentations to capture different aspects of information through
semantic matching, language discrimination, and adversarial
learning. We also investigate how the disentanglement mod-
ule affects translation performance. Our study demonstrates
the importance of disentangled representations for addressing
challenges in ontology translation.
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