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ABSTRACT

This paper studies distributed Q-learning for Linear Quadratic Regulator (LQR) in a multi-agent
network. The existing results often assume that agents can observe the global system state, which may
be infeasible in large-scale systems due to privacy concerns or communication constraints. In this
work, we consider a setting with unknown system models and no centralized coordinator. We devise
a state tracking (ST) based Q-learning algorithm to design optimal controllers for agents. Specifically,
we assume that agents maintain local estimates of the global state based on their local information and
communications with neighbors. At each step, every agent updates its local global state estimation,
based on which it solves an approximate Q-factor locally through policy iteration. Assuming decaying
injected excitation noise during the policy evaluation, we prove that the local estimation converges to
the true global state, and establish the convergence of the proposed distributed ST-based Q-learning
algorithm. The experimental studies corroborate our theoretical results by showing that our proposed
method achieves comparable performance with the centralized case.

1 Introduction

Distributed control of multi-agent systems (MASs) has garnered much attention in the past decade, due to its wide
applicability in real-world problems, e.g., firefighting unmanned aerial vehicles maneuver, distributed resource allocation
and robot swarms, etc. One main objective in this context is to learn local controllers for agents in a distributed manner
so as to minimize the global cost [1]. For example, in the Linear Quadratic Regulator (LQR) control problem, the global
objective is to minimize the sum of the local quadratic costs over all agents.

Nevertheless, the networked nature of MASs presents some unique challenges in designing distributed controllers.
Observe that the agents are physically coupled with certain interconnections [2], e.g., the buses in a microgrid are
interconnected through structural links such as the power transmission lines. Consequently, the controller synthesis at a
bus has to account for the impact of other buses. To deal with the sophisticated coupling in MASs, the model-based
distributed controller design has been studied in [3, 4, 5], where the interconnections among agents are modeled by a
directed interaction graph to model the system dynamics. However, these studies assume that the underlying system
model is known, which may be infeasible in large-scale systems.

To tackle the challenges in the MASs with unknown system models, data-driven approaches have emerged as a promising
direction in learning local controllers. Notably, data-driven Q-learning [6], which is a model-free Reinforcement
Learning (RL) approach [7], has been proposed to learn the optimal LQR controller online in the single agent case [8].
Motivated by this, some recent works (e.g., [9, 10]) apply the Q-learning in the multi-agent LQR control and show that
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good performance can be achieved assuming that the knowledge of global state information is shared by a centralized
coordinator [9, 10]. Nevertheless, such a centralized coordinator is often not available in many scenarios. It is therefore
of great interest to study the MASs where each agent can only learn state information from neighbors with limited
communication. Needless to say, this lacking of global state information inevitably makes the learning of the optimal
controller more challenging, calling for distributed control based on partial observations.

In this work, we address the above problem by revisiting the distributed LQR control problem with only partial
observations of the global state. Specifically, we consider a distributed MAS where each agent has a discrete Linear
Time Invariant (LTI) system with unknown dynamics. We assume that each agent can only share information with
its neighbors over a communication graph. In particular, we focus on a more practical setting where the physical
interconnection is different from the communication interconnection. This is often the case in the emerging cyber-
physical systems, e.g., microgrid systems with distributed generators (DGs), the DGs are physically interconnected by a
microgrid electric power network, and communicate in the cyberlayer [11].

Without careful design, the performance of distributed Q-learning can significantly degrade with only partial observa-
tions. To tackle this challenge, we propose a distributed Q-learning approach with a novel state tracking strategy to
facilitate the estimation of the global state through limited communication among neighboring agents. Intuitively, by
exchanging state estimations with neighboring agents, an individual agent would be able to improve its global state
estimator as the information continuously diffuses across the network. Based on such a global state estimation, each
agent then solves an approximate Q-factor locally; and this learning process is carried out in parallel by all agents.

The main contributions of this work can be summarized as follows:

• Considering distributed LQR control in MASs with only partial observations, we propose a novel distributed
Q-learning approach with state tracking (ST-Q), where each agent first constructs a global state estimator based
on local communication with its neighbors, and then solves an approximate Q-learning problem accordingly.

• The convergence of distributed Q-learning algorithms in multi-agent LQR control has been underexplored. In
this work, we fill this void and establish the convergence of the proposed distributed ST-Q algorithm.

• Compared with Q-learning under full observation [9] and Q-learning under partial observation only, our exper-
imental results show that the proposed distributed ST-Q learning method achieves comparable performance
with the full observation case.

2 Related Work

Distributed LQR Control. Distributed LQR control has recently garnered much attention. Notably, identical LTI
system models across agents have been considered which are coupled either in a global cost function [12] or in the state
space [13]. Since it is restrictive to assume identical systems for all agents, [5] explores distributed model predictive
control for heterogeneous LTI systems. Regarding the communication structure among agents, [14] requires all-to-all
communications for the optimal control, and [15] assumes that agents share information with all their physically coupled
neighbors. In this work, we consider a more challenging setting where (i) the system model parameters are unknown,
and (ii) the communication topology is different from the system interconnection topology (cf. [16]).

Multi-Agent Reinforcement Learning (MARL). Taking a distributed Q-learning approach, our focus is on MARL
with partial observations (see, e.g., Dec-POMDP [17]). Information exchange is often utilized to facilitate the
collaboration among agents. Notably, [18] proposes a fully decentralized MARL where each agent shares local value
function estimates with its neighbors to achieve a network-wide consensus. In [19], an approach is devised to enable
each agent to communicate its local estimation of global optimal policy parameters with its neighbors. Note that
both methods assume full observation of the global state and control information to compute the gradient estimations.
Assuming each agent solely has access to partial observations, a recent work [20] develops a policy gradient method
where each agent shares an estimate of the global cost based on the local information only; further all agents act
in parallel and have no control interaction with others. It is worth noting that the policy gradient method does not
necessarily achieve the global optimum control policy [21].

Along a different line, an LQR control method using Q-learning is proposed [8], which provides the first convergence
guarantee on Q-learning based optimal control for the single agent case. A recent work [22] presents a distributed
Q-learning algorithm for coupled LTI systems with identical dynamics. Assuming that the global state information is
available through a central coordinator, [9] establishes the convergence of distributed optimal controllers for coupled LTI
systems. [15] studies the decentralized Q-learning, where the Q-function is calculated based on the local observations
only and the system interconnection topology is assumed known. They use simulation studies to show that a near-
optimal policy can be obtained. To fill the void, we propose a state tracking strategy to estimate the global state
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Figure 1: An example of the communication graph (dashed lines) and the interconnection graph (solid lines). All the
agents are interconnected with physical connection, while the direct communication channel does not exist between
neither Agent 4 and Agent 2 nor Agent 4 and Agent 1.

information at each agent based on its local information aggregated from neighbors. In such a way, the Q-factor can be
solved more accurately at each agent by using the global state estimation.

3 Problem Formulation

3.1 Notation

Throughout the paper, the set {1, 2, · · · , L} ⊆ N is denoted as [L]. The block-diagonal matrix B with blocks {Bi}i∈[L]
is denoted as B = diag(B1, B2, · · · , BL). A column vector which stacks subvectors {xi}i∈[L] in a column is denoted
as X = col(x1, x2, · · · , xL). We use semicolon (;) to concatenate column vectors, hence [x>, u>]> = [x;u]. A graph
is defined as G = (V, E), where V is the set of nodes and E ⊆ V × V is the set of edges connecting agents. For a node
i ∈ V , we denote Ni = {j ∈ V|j 6= i, eij = (i, j) ∈ E} ∪ {i} as the set of neighbors of node i in the graph G. We use
0n×n to represent a n× n zero matrix.

3.2 Multi-Agent LTI System Model

Consider a multi-agent network consisting of L agents, where the LTI system dynamics at each agent i ∈ [L] is given
as follows:

xi(t+ 1) =
∑L
j=1Aijxj(t) +Biui(t) (1)

where xi(t) ∈ Rn is Agent i’s state vector and ui(t) ∈ Rm is its control input at time t. Aij ∈ Rn×n and Bi ∈ Rn×m
are unknown system parameters. Putting the system models across all agents in a more compact form, we have the
following global system model:

X(t+ 1) = AX(t) +BU(t) (2)

where X(t) = col(x1(t), x2(t), · · · , xL(t)) is the global state vector, and U(t) = col(u1(t), u2(t), · · · , uL(t)) is the
global control input vector. The global system matrix A ∈ RnL×nL is block-wise with entries Aij for each i, j ∈ [L]
and B = diag(B1, B2, · · · , BL).

We further define a graph Gd = ([L], Ed) to model the interconnection topology, i.e., the state coupling, of the global
system, where [L] is the node (agent) set. Specifically, there exists an edge edij ∈ Ed between Agent i and Agent j if and
only if they are interconnected, i.e., Aij 6= 0. Let N d

i denote as the set of neighbors of Agent i in the interconnection
graph Gd.

As is standard, we impose the following assumption on (A,B) in this study.

Assumption 1 (Stabilizability). The system parameters (A,B) in (2) are stabilizable.

Assumption 1 indicates that there exists a control policy π with U(t) = π(X(t)), such that the closed loop system
X(t+ 1) = AX(t) +Bπ(X(t)) is asymptotically stable.

3.3 Distributed LQR Control with Local Communication

Optimal distributed LQR control. For ease of expostion, we first present the optimal distributed LQR controller at
each agent i assuming model parameters are known. For the subsystem (1) at each agent i, the stage cost incurred by
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executing the control ui(t) in state xi(t) at time t is given by

gi(xi(t), ui(t)) = xi(t)
>Pixi(t) + ui(t)

>Riui(t)

where Pi ∈ Rn×n and Ri ∈ Rm×m are positive semi-definite matrices. Let Ji(xi(0)) =
∑∞
τ=0 gi(xi(τ), ui(τ))

denote the local cost function at Agent i. The primary goal of the distributed LQR control is to minimize the sum of the
local costs of all agents:

min
{ui(τ)}

L∑
i=1

Ji(xi(0)), s.t. (1). (3)

Let X(0) = col(x1(0), x2(0), · · · , xL(0)), P = diag(P1, P2, · · · , PL) and R = diag(R1, R2, · · · , RL). It is clear
that the distributed LQR control problem (3) is equivalent to the following LQR problem for the global system (2) with
the initial state X(0):

min
{U(τ)}

J(X(0)), s.t. (2), (4)

with

J(X(0)) =
∑∞

τ=0
X>(τ)PX(τ) + U>(τ)QU(τ).

When the model parameters A and B are known, the optimal policy for (4) is given by linear feedback control, i.e.,

U(t) = K∗X(t),

where K∗ = −(Q+BTSB)−1BTSA and S is the positive definite solution to the discrete Riccati equation:

S = ATSA−ATSB(Q+BTSB)−1BTSA+ P.

The optimal control policy for each agent thus can be obtained as

ui(t) = K∗iX(t), (5)

where the optimal controller K∗i is the i-th row of K∗. The LQR solution in this case can be efficiently computed
via dynamic programming. In the case when the model parameters A and B are unknown but each agent has a full
observation of the global state X(t), problem (3) can be solved efficiently by using reinforcement learning approaches
[23, 9].

Distributed LQR control with local communication. The primary focus of this paper is on distributed LQR control
for a multi-agent network with unknown system parameters. Specifically, we define an undirected communication
graph Gc = ([L], Ec) to model the information exchange in the multi-agent network. There exists an edge ecij ∈ Ec
between Agent i and Agent j if and only if they can communicate. Let N c

i denote the set of neighbors of Agent i in
the communication graph Gc. In particular, we consider a general setting where the interconnection graph Gd and the
communication graph Gc can be distinct, as illustrated in Figure 1. Since each agent does not have the full observation
of the global state, it can only make its control decisions based on the local information, giving rise to the distributed
LQR control that only relies on the partial observation (POD-LQR).

Let xNi
(t) ∈ XNi

denote the state information available for Agent i at time t, which contains partial entries of the
global state vectors. Agent i then selects the local control input ui(t) ∈ Ui, based on the information xNi

(t) and a
control policy π̃i with a linear feedback controller, i.e.,

π̃i : XNi
7→ Ui. (6)

We further assume thatKi is the feedback controller in the policy π̃i. The goal of POD-LQR control is to find controllers
that minimize the infinite horizon global cost function J(X(0)):

min
{Ki}

J(X(0)) =
∑L
i=1Ji(xi(0)), s.t. (1), (6). (7)

In this work, we aim to achieve the optimal controller K∗i for each agent i that is the same as in the case where the
model parameters are known, by solving Problem (7) based on only a partial observation of the global state.

4



4 Distributed Q-learning with State Tracking

In this section, we propose a distributed Q-learning approach with state tracking to solve Problem (7), where each agent
first constructs a global state estimator through communication with its neighbors, and then solves an approximate
Q-learning problem locally using the state estimation. We start by presenting the preliminary on Q-learning with a full
observation of the global state. Then, we present a state tracking scheme to facilitate the estimation of the global state
through limited information exchange among neighboring agents. Finally, the proposed state tracking based policy
iteration algorithm is presented in detail.

4.1 Global State based Q-Learning

As mentioned earlier, Q-learning can be utilized to solve the distributed LQR control problem (3) if each agent has a
full observation of the global state X(t). In what follows, we will briefly introduce the rationale behind Q-learning in
the ideal case when the global state information is available at each agent.

Specifically, given the global state X(t) and based on (5), we consider the local control policy πi : ui(t) = KiX(t)
for some state feedback controller Ki. Then, the Q-factor for each agent i can be defined as follows:

Qi(xi(t), ui(t)) = gi(xi(t), ui(t)) + Ji(xi(t+ 1)), (8)

which gives the cumulative cost when agent i starts from the state-control pair (xi(t), ui(t)) and follows the policy πi
afterwards. Note that

Ji(xi(t)) = Qi(xi(t),KiX(t)).

The Bellman equation associated with the policy πi for the Q-factor can be written as

Qi(xi(t),KiX(t))

=gi(xi(t),KiX(t)) +Qi(xi(t+ 1),KiX(t+ 1)), (9)

and the corresponding Bellman optimality equation is

Q∗i (xi(t),K
∗
iX(t))

=gi(xi(t),K
∗
iX(t)) +Q∗i (xi(t+ 1),K∗iX(t+ 1)). (10)

This implies that the optimal controller K∗i can be achieved as:

K∗i = arg min
Ki

Q∗i (xi(t),KiX(t)).

Therefore, to find the optimal controller K∗i , it suffices to estimate the optimal Q-factor Q∗i . And this can be achieved by
using policy iteration where a sequence of monotonically improved policies and Q-factors can be obtained, by running
a policy evaluation step and then a policy improvement step in a recursive manner. For a better understanding of the
Q-learning approach for LQR control, we start with the policy improvement step.

Policy improvement. A key step in policy iteration is the policy improvement. Suppose we have determined the
Q-factor Qi for a controller Ki in the policy evaluation step. The policy improvement step aims to find a better
controller:

Knew
i = arg min

Ki

(Qi(xi(t),KiX(t))). (11)

Note that the cost function Ji is quadratic in the LQR control problem with a linear state feedback controller [7]. Then,
it can be shown that

Qi(xi(t+ 1),KiX(t+ 1)) = xi(t+ 1)>Sixi(t+ 1).

Here, Si is the cost matrix for the current controller Ki, which can be obtained by solving the discrete-time algebraic
Riccati equation [24]. Thus, (8) can be rewritten as the following quadratic form:

Qi(xi(t), ui(t)) = [X(t);ui(t)]
>Hi[X(t);ui(t)], (12)

where Hi is a symmetric block matrix defined as

Hi =

[
Hi,11 Hi,12

Hi,21 Hi,22

]
=

[
Ai>SiAi + P̃i Ai>SiBi
Bi
>SiAi Bi

>SiBi +Ri

]
.

Here, Ai is a row vector which stacks subvectors {Aij}j∈[L] and P̃i = diag(0n×n, · · · , Pi, · · · , 0n×n) is a diagonal
block matrix with the (i, i)-th block to be Pi. Based on the samples of the state-control pair [X(t);ui(t)], (11) can be
solved by using the first-order optimality condition:

Knew
i = −H−1i,22Hi,21. (13)
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Summarizing, to obtain an improved controller Knew
i , it suffices to determine the Q-factor, in particular, the matrix Hi,

in the policy evaluation step.

Policy evaluation. To determine the matrix Hi in the policy evaluation step, along the same line as in [8], we
reformulate the quadratic form of Qi(xi(t), ui(t)) in (12) in a linear form parameterized by parameter θi:

Qi(xi(t), ui(t)) = yi(t)
>θi, (14)

where yi(t) = [x21(t), x1(t)x2(t), · · · , xL(t)ui(t), u
2
i (t)] is a vector containing all of the quadratic basis over the

elements in [X(t);ui(t)], and θi is a vector in R(Ln+m)(Ln+m+1)/2. Here, the parameter θi is obtained through some
manipulation after removing the redundant elements of the symmetric matrix Hi, i.e., the elements in the lower triangle
of Hi. It is clear that in order to determine Hi, it suffices to determine the parameter θi.

Based on the linear form (14), it is clear that the Bellman equation (9) is equivalent to the following:

gi(xi(t), ui(t)) = (yi(t)− yi(t+ 1))>θi , φi(t)
>θi, (15)

where φi(t) = yi(t)− yi(t+ 1). Note that φi(t) and the stage cost gi(xi(t), ui(t)) can be known given the global state
X(t) and the control input ui(t). With sufficient samples of (φi(t), gi(xi(t), ui(t))), θi can be obtained by solving a
least square estimation problem.

4.2 State Tracking

It can be seen from (15) that the global state X(t) is required to determine the parameter θi in the policy evaluation step,
which however is not available in the POD-LQR control problem. To address this issue, we propose a state tracking
scheme to facilitate the estimation of the global state X(t) through the information exchange among agents over the
communication graph Gc.
More specifically, at time t each agent i maintains a local estimation Zi(t) of the global state X(t):

Zi(t) = col(x̄i1(t), x̄i2(t), · · · , x̄iL(t)),

where x̄ij(t) is the estimation of Agent j’s state xj(t) at Agent i for time t. In particular, x̄ii(t) = xi(t). Next, each
agent communicates with and aggregates information from its neighbors in the communication graph Gc to update the
local estimation Zi(t+ 1) as follows.

Communication among neighboring agents. At time t + 1, the communication among agents includes two steps.
First, each agent i receives the state xj(t+ 1) from every neighbor j ∈ N c

i , and then updates the corresponding entries
in its estimation Zi(t), i.e.,

x̄ij(t)→ xj(t+ 1), ∀j ∈ N c
i .

Consequently, an updated estimation Ẑi(t+ 1) = col(x̂i1(t+ 1), x̂i2(t+ 1), · · · , x̂iL(t+ 1)) can be obtained with

x̂ij(t+ 1) =

{
x̄ij(t) ∀j /∈ N c

i ,

xj(t+ 1) ∀j ∈ N c
i .

Next, each agent i shares its updated global state estimation Ẑi(t+ 1) with its neighbors in Gc.

Update of global state estimation. After receiving the global state estimation Ẑi(t+ 1) from the neighboring agents,
Agent i reconstructs a new estimation Zi(t+ 1) by aggregating all available information. In particular, for j ∈ N c

i ,
Agent i has the accurate state information xj(t + 1) of Agent j; for j /∈ N c

i , Agent i computes the state estimation
x̄ij(t+ 1) by taking a weighted average of the corresponding estimations x̂kj(t+ 1) from its neighbors k ∈ N c

i . To
model this ‘weighting’ process, a doubly stochastic weight matrix, W = [wij ] ∈ RL×L, is used where wij > 0 if and
only if (i, j) ∈ Ec. Otherwise, wij = 0. The specific update rule is shown as following

x̄ij(t+ 1) =

{∑L
k=1 wikx̂kj(t+ 1) ∀j /∈ N c

i ,

xj(t+ 1) ∀j ∈ N c
i .

(16)

4.3 ST-based Policy Iteration for Q-learning

Based on the estimation Zi(t) of the global state X(t) achieved by state tracking, each agent i now is able to carry out
an approximate Q-learning locally by using policy iteration to solve the POD-LQR control problem (7). As mentioned
earlier in Section 4.1, the policy iteration includes two main steps, i.e., the policy evaluation and the policy improvement
step. We summarize the important steps below, and more details can be found in Algorithms (1a) and (1b).

Specifically, each agent i ∈ [L] first starts with a stabilizing initial controller Ki1, and iteratively runs the policy
evaluation and the policy improvement as shown in Fig. 2. At iteration q,
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Time tt = 0 ⋯ t = (q − 1)N t = qN
(tq+1)(tq)

N Steps Policy Evaluation

Policyp = 1 p = N

⋯
⋯

x (0) x(tq) x(tq+1) State x⋯ ⋯
Controller: Kq Kq+1

q -th Policy Iteration

Improvement
Policy

Improvement

Kq−1

⋯

⋯

Figure 2: Illustration of the time scales in Algorithms (1a) and (1b): t denotes the time steps, and tq denotes the time
instance for the q-th policy iteration. Policy evaluation is carried out N times within each policy iteration.

Algorithm 1a ST based Policy Evaluation (ST-E)

Require: Kiq: evaluation controller, ηi(t): excitation noise.
1: p = 1.
2: for p = 1, · · · , N do
3: Apply ui(t) = −KiqZi(t) + ηi(t).
4: Measure xi(t+ 1) and receive xj(t+ 1), j ∈ N c

i .
5: Receive Ẑj(t+ 1) from all j ∈ N c

i and update Zi(t+ 1) following (16).
6: Obtain ui(t+ 1) = −KiqZi(t+ 1).
7: Update θ̂iq(p) using (18).
8: Set p = p+ 1 and t = t+ 1.
9: end for

10: Return θ̂iq .

Algorithm 1b ST based Q-learning (ST-Q)

Require: Ki1: initial stable controller, θi1(0) = 0: initial estimation, q = 1: policy improvement index, t = 0: time
index, εK : tolerance error, xi(0): initial state, Zi(0): initial global state estimation.

1: repeat
2: for Agent i = 1, · · · , L do
3: Estimate θiq through Algorithm (1a).
4: end for
5: for Agent i = 1, · · · , L do
6: Obtain Hiq from θ̂iq(N).
7: Update policy Ki(q+1) = −H−1iq,22Hiq,21.
8: Set θ̂i(q+1)(0) = θ̂iq(N).
9: end for

10: Set q = q + 1.
11: until ‖θ̂i(q+1) − θ̂iq‖ < εK , ∀i ∈ [L]

• Policy Evaluation. In this step, each agent i aims to determine the Q-factor Qiq for a given controller Kiq.
As shown in (14), it suffices to determine the parameter θiq. To this end, we resort to least square estimation
based on (15) with N samples per policy evaluation step:

min
θiq

∑tq+N−1

t=tq
‖φ̄i(t)T θiq − gi(xi(t), ui(t))‖2, (17)

where φ̄i(t) = ȳi(t) − ȳi(t + 1) and ȳi(t) = [x̄2i1(t), x̄i1(t)x̄i2(t), · · · , x̄iL(t)ui(t), u
2
i (t)] is the vector

containing all the quadratic basis over the elements in the estimated global information vector [Zi(t);ui(t)].
Here, ui(t) = −KiqZi(t) + ηi(t) where ηi(t) is the input noise to ensure that the system at each agent is
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persistently excited. For ease of exposition, we denote gi(xi(t), ui(t)) as gi(t), and consider (φ̄i(t), gi(t)) as
a sample for the least square estimator.
To solve the least square estimation problem (17), an online gradient descent method is run for N iterations:
At each iteration p ∈ [1, N ], each agent (i) constructs the global state estimation Zi(t) and Zi(t + 1) so as
to obtain a sample (φ̄i(t), gi(t)) as shown in Algorithm (1a), and (ii) updates the estimation of θiq by using
gradient descent with a learning rate α:

θ̂iq(p+ 1) = θ̂iq(p)− αφ̄i(t)
(
θ̂iq(p)

>φ̄i(t)− gi(t)
)
, (18)

where θ̂iq(p) is the estimation of θiq at policy evaluation step p.

• Policy Improvement. Given θ̂iq = θ̂iq(N) obtained in the policy evaluation step, each agent is able to
reconstruct the matrix Ĥiq , so that the controller can be updated as follows:

Ki(q+1) = −Ĥ−1iq,22Ĥiq,21.

This policy iteration procedure stops if the following condition is satisfied:

‖θ̂i(q+1) − θ̂iq‖ < εK ,∀i ∈ [L]

where εK is a predefined threshold for the estimation error.

5 Convergence Analysis

In this section, we establish the convergence of the proposed ST-Q learning algorithm. To this end, we first make a few
standard assumptions for multi-agent reinforcement learning [25, 26].
Assumption 2 (Communication Connectivity). The communication graph Gc is connected and static.

Assumption 3 (Weight Matrix). There exists a positive constant η such that the weight matrix W = [wij ] ∈ RL×L is
doubly stochastic and wij ≥ η if j ∈ N c

i . In particular, wii ≥ η, ∀i ∈ [L].

Assumption 4 (Decaying Excitation Noise). The input noise η(t) is with the decaying factor υ(p),
υ(p) = cp, 0 < c < 1,

η(t) = υ(p)β(t), tq ≤ t < tq+1.

The input noise for the global system is E(t) = Υ(p)β(t). The system is further persistently excited with the input
noise, i.e., ∀i ∈ [L], ∀q:

mI ≤
∑tq+N−1
t=tq

φi(t)φ
>
i (t) ≤MI,

where 0 < m ≤M <∞.

Assumption 5 (Step Size of Gradient Descent). The step size in (18) is fixed and satisfies: 0 < α < 1/M .

Assumptions 2 and 3 are imposed to facilitate the information diffusion across the network. The excitation condition in
Assumption 4 is to guarantee the convergence of policy evaluation. Along the same line as in [27, 8], this condition can
be met by adding sinusoidal noise of various frequencies to ui(t). Moreover, we further assume that the input noise
ηi(t) is decaying for a more accurate system state estimation as the algorithm gradually converges.

For convenience, we restate in the following lemma the convergence result on distributed Q-learning with full global
state observations [8, 9].
Lemma 1 (Convergence of Distributed Q-learning with Full Observation). Suppose that Assumptions 1, 4, 5 are
satisfied, and Ki1 is a stabilizing controller. There exists N < ∞ such that the sequence of stabilizing controllers
{Kiq}∞q=1 generated by the Q-learning Policy Iteration mechanism with global state information converges, i.e.,
∀i ∈ [L]:

lim
q→∞

‖Kiq −K∗i ‖ = 0,

where K∗i is the optimal feedback controller.

Proof Sketch. First, we show that by replacing recursive least squares (RLS) with stochastic gradient descent (SGD)
in the adaptive policy iteration algorithm proposed in [8], the policy iteration algorithm also generates a sequence
of stabilizing controls converging to the optimal in the single agent case. Under the setting when agents have full
observation of the global state, [9] considers a policy iteration algorithm with the RLS estimation method and provides
the convergence proof by utilizing the result in [8]. Following the same line in [9] and the result obtained in the
preceding step, this lemma can be proved. The full proof is in Appendix B.
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To establish the convergence of the proposed ST-Q learning approach, we first evaluate the estimation error of θ̂iq
in Algorithm (1a) with respect to θiq by characterizing the convergence performance of the global state estimation
obtained by state tracking.
Lemma 2 (Convergence of Parameter Estimation). Under Assumptions 1-5, there exists N <∞, such that

(a) the global state estimation error is bounded above by some arbitrarily small δ > 0, i.e., ∀i ∈ [L], ∀q:

‖Zi(tq +N)−X(tq +N)‖ ≤ δ,

(b) the estimation error of θi in (15) is bounded above by some arbitrarily small ξ > 0 when q is large enough,
i.e., ∀i ∈ [L]:

‖θiq − θ̂iq‖ ≤ ξ,

where θ̂iq is an estimate obtained by the ST-based approach and θiq is obtained with full observations. Note
that θ̂iq = θ̂iq(N), θiq = θiq(N).

Proof Sketch. (a) First define εik(t) =
∑
j∈Nk

wij(xk(t) − xk(t − 1)) and x̄av,k(t) = 1
L

∑L
j=1 x̄jk(t). The global

state estimation error can be shown as

‖Zi(t)−X(t)‖ =

√√√√ L∑
k=1

‖xk(t)− x̄ik(t)‖22

≤
L∑
k=1

‖xk(t)− x̄ik(t)‖

≤
L∑
k=1

‖xk(t)− x̄av,k(t)‖+

L∑
k=1

‖x̄av,k(t)− x̄ik(t)‖,

where the first term can be analyzed by bringing in the definition of x̄av,k and using the stability property of the
controller. The second term is analyzed by formulating a perturbed consensus problem following the same line as in
[25, Lemma 3]:

xik(t) =
∑
j wij x̄jk(t− 1) + εik(t),

εik(t) =
∑
j∈Nk

wij(xk(t)− xk(t− 1)).

(b) Recall the p-th gradient descent step:

θiq(p+ 1) = θiq(p)− αφi(t) ·
(
θiq(p)

>φi(t)− gi(t)
)
,

θ̂iq(p+ 1) = θ̂iq(p)− αφ̂i(t) ·
(
θ̂iq(p)

>φ̂i(t)− ĝi(t)
)
.

For convenience, define
Φi(tq +N − τ) , I − αφi(tq +N − τ)φ>i (tq +N − τ),

Πi(N) ,
∏N
τ=1 Φi(tq +N − τ),

Gi(tq +N − τ) , αφi(tq +N − τ)gi(tq +N − τ).

By using the deduction of θiq(p), we obtain the relationship between θiq = θiq(N) and θi(q−1) = θiq(0), as follows:

θiq = Πi(N)θi(q−1) +

N∑
τ=2

Πi(τ − 1)Gi(tq +N − τ) +Gi(tq +N − 1),

θ̂iq = Π̂i(N)θ̂i(q−1) +

N∑
τ=2

Π̂i(τ − 1)Ĝi(tq +N − τ) + Ĝi(tq +N − 1).

It follows that the estimation error of ‖θ̂iq − θiq‖ can be obtained by analyzing ‖Φi − Φ̂i‖, ‖Πi − Π̂i‖ and ‖Gi − Ĝi‖
using the result from Lemma 2 (a).

The full proof of statements (a) and (b) is relegated to Appendices C and D, respectively.
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(a) Global controllers.

5 10 15 20 25

Iteration(q)

0

2

4

6
Full Observation

State Tracking

Partial Observation without ST

(b) Local controllers.
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Figure 3: Convergence comparisons among three cases: ST based Q-learning, partial observation with no ST and full
observation Q-learning. The controller obtained in three cases are denoted as K̂, Kpartial and K, respectively. The
optimal controller is denoted as K∗. The upper figure in Figure (3b) is the local controllers convergence behavior with
full observation while the lower one is the result with ST strategy.

Based on Lemma 2, we are now able to characterize the convergence performance of the ST based learning.
Theorem 1 (Convergence of the ST-Q learning). Suppose Assumption 1-5 are satisfied and Ki1 is a stabilizing
controller. Then, for any εK > 0, there exist N < ∞ and q < ∞, such that the ST-based Q-learning mechanism
described in Algorithms (1a) and (1b) generates a sequence of stabilizing controllers {K̂iq}∞q=1 that converge to the
optimal controller, i.e., ∀i ∈ [L]:

‖K̂iq −K∗i ‖ ≤ εK .

Proof. By Lemma 2, there exist N <∞ and q <∞ such that,

‖θ̂i(q−1) − θi(q−1)‖ ≤ ξ.

Following [8], there exists a constant k0 > 0, such that,

‖K̂i(q) −Ki(q)‖ ≤ k0‖θ̂i(q−1) − θi(q−1)‖.

Hence, we obtain that
‖K̂iq −Kiq‖ ≤ k0ξ.

Besides, from Lemma 1, there exists q <∞, such that
‖Kiq −K∗i ‖ ≤ ξk.

By using the triangle inequality, we obtain that

‖K̂iq −K∗i ‖ = ‖K̂iq −Kiq +Kiq −K∗i ‖ ≤ k0ξ + ξk , εK .

6 Experiments

In this section, we first introduce the experimental setup, and then evaluate the performance of the proposed ST-Q
learning method. In particular, we compare our approach with two baselines: (i) distributed Q-learning with global
state (DQG), and (ii) distributed Q-learning with partial observation of the global state (DQP) where the absent state
information is set as 0, i.e., xj(t) = 0,∀j /∈ N c

i . We further examine the impact of the hyper-parameters, including the
step size α, interval N and the excitation noise η, on the performance of our approach to verify the assumptions made
in Section 5.
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(a) SGD with large step size.
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(b) SGD with small step size.
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Figure 4: Comparison of different SGD step size in the ST based Q-learning. The upper figures in Figures (4a) and (4b)
show the convergence behavior of the global controller while the lower figures are of the local controllers.

6.1 Experimental Setup

We consider the following global system with four agents, and the communication topology and interconnection
topology as demonstrated in Fig. 1: x1(t+ 1)

x2(t+ 1)
x3(t+ 1)
x4(t+ 1)

 = A

x1(t)
x2(t)
x3(t)
x4(t)

+B

u1(t)
u2(t)
u3(t)
u4(t)

 ,
where the initial state for each agent is given as follows

xi(0) = 0.01, i = 1, 2, 3, 4.

Note that the parameters can be chosen arbitrarily as long as they meet the assumptions in Section 5. The system
parameters A and B are stabilizable and are set as

A =

 0.2 0.4 0.1 0.01
0.4 0.2 0.3 0.1
0.1 0.3 0.3 0.4
0.2 0.1 0.5 0.3

 , B =

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
The weighting matrices for the LQR problem are selected as Pi = Ri = 1, for i = 1, 2, 3, 4. By solving the discrete
Riccati equation, the optimal controller is obtained as,

K∗ =

0.1223 0.2279 0.0779 0.0251
0.2267 0.1279 0.1823 0.0714
0.0796 0.1869 0.1944 0.2341
0.1212 0.0742 0.2838 0.1756

 .
Initial stable controller for Algorithms (1a) and (1b) is chosen to be:

K1 =

 1 1 0.0004 2
1 0.2 1 0.1
4 0.1 1 3

0.2 0.1 0.3 0.2

 .
The weight matrix for the communication graph N c

i is:

W =

0.5 0.5 0 0
0.5 0.3 0.2 0
0 0.2 0.2 0.6
0 0 0.6 0.4

 .
The experiments are carried out with N = 1000 and step size α = 0.01. Follow the approach in [27], the excitation
noise ηi(t) for Agent i is designed as

(
bi · rand(−1, 1) + ai ·

∑15
ω=1 sin(ωt)3 cos(ωt)

)
·υ(p), where the decaying factor

υ(p) = 0.9999p and ai, bi ≥ 0 are constants.
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(a) Decaying excitation noise.
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(b) Convergence of K̂ −K.
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Figure 5: Comparison between two types of excitation noise in the ST based Q-learning. K̂decay is the controller
obtained with decaying factor and K̂no is with no decaying factor.

(a) ST-Q with N = 50.
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(b) ST-Q with different N .
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Figure 6: Comparisons of different N in the ST-Q learning algorithms.

6.2 Convergence of the ST-Q learning

We first characterize the convergence performance of the proposed ST-Q learning approach. As shown in Fig. 3a,
the controller obtained by the ST-Q learning approach eventually converges to the optimal controller obtained by
DQG, which clearly outperforms DQP. Note that all three approaches converge quickly. Moreover, Fig. 3b further
demonstrates the convergence performance of the local controller K̂i at each agent i compared with DQG, i.e., each
agent in the ST-Q learning almost has the same convergence behaviour as in DQG. We also evaluate the gap between
the controller K̂ obtained by the ST-Q learning and the controller K obtained by DQG in the policy iteration, compared
with that for the controllerKpartial obtained by DQP. It can be seen from Fig. 6b that the gap ‖K̂−K‖ quickly converges
to 0, while there exists a significant gap between Kpartial and K (dashed line). These results together indicate that the
proposed ST-Q learning approach can achieve comparable performance with DQG, corroborating the benefits by using
state tracking to facilitate an accurate global state estimation in distributed Q-learning.
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6.3 Impact of Hyper-Parameters

We first evaluate the impact of the step size α on the convergence of the controller K̂i obtained by the ST-Q learning. In
contrast to the step size 0.01 used in Fig 3, the divergence of the local controller obtained by the ST-Q learning may
occur with a larger step size (Fig. 4a), while a smaller step size may result in slower convergence rate (Fig. 4b).

To examine the impact of the excitation noise, we compare the controller convergence performance under two different
cases: (i) the noise is decaying as in Assumption 4, and (ii) the noise is not decaying. As demonstrated in Fig. 5a and
Fig. 5b, the controller K̂ obtained by the ST-Q learning may not converge when the excitation noise is not decaying,
verifying the necessity of Assumption 4 to guarantee the convergence of the proposed ST-Q learning approach.

Clearly, the performance of the ST-Q learning depends on the estimation accuracy of θ̂iq in the policy evaluation step,
which is directly affected by the value of N . Intuitively, as N increases, the estimation accuracy of θ̂iq improves
accordingly, leading to a better performance of the ST-Q learning. Fig. 6 illustrates the impact of N on the performance
of the ST-Q learning. As expected, when N is not large enough, the estimated controller may destabilize the system
as shown in Fig. 6a due to the lack of adequate samples needed for achieving a better θ̂iq. And Fig. 6b indicates that
the larger N is, the better the performance of the ST-Q learning is. When N is large enough, the statement in Lemma
2 where the difference of the estimate θ̂iq obtained by the ST-based method and the estimate θiq obtained by the full
observation method is decreasing along with the policy update, is verified in Fig. 6b.

7 Conclusions and Future Work

This work investigates a distributed multi-agent LQR control setup in a networked environment, in which the system
dynamics, including the dynamics coupling graph is unknown. Each agent makes individual decisions based on its
local observation and messages passed by its neighbors over the communication graph. Within this setting, we propose
a multi-agent State Tracking based Q-learning method. Further, the asymptotic analysis on the convergence of the
proposed algorithm is provided under mild assumptions. Empirically, in evaluation on an interconnected system,
we demonstrate that the proposed ST-Q learning method outperforms the classic Q-learning with only the partial
observation and yields the same optimal controller as the full observation setting. In future work, we shall consider more
complicated communication settings, e.g., (i) communication delay in the network; (ii) time-varying graph. Moreover,
it is also of interest to quantify the sampling complexity and the convergence rate of the proposed algorithm.
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Appendix
Assumption 1 (Stabilizability). The system parameters (A,B) in (2) are stabilizable.
Assumption 2 (Communication Connectivity). The communication graph Gc is connected and static.
Assumption 3 (Weight Matrix). There exists a positive constant η such that the weight matrix W = [wij ] ∈ RL×L is
doubly stochastic and wij ≥ η if j ∈ N c

i . In particular, wii ≥ η, ∀i ∈ [L].
Assumption 4 (Decaying Excitation Noise). The input noise η(t) is with the decaying factor υ(p),

υ(p) = cp, 0 < c < 1,

η(t) = υ(p)β(t), tq ≤ t < tq+1.

The input noise for the global system is E(t) = Υ(p)β(t). The system is further persistently excited with the input
noise, i.e., ∀i ∈ [L], ∀q:

mI ≤
∑tq+N−1
t=tq

φi(t)φ
>
i (t) ≤MI,

where 0 < m ≤M <∞.
Assumption 5 (Step Size of Gradient Descent). The step size in (18) is fixed and satisfies: 0 < α < 1/M .

A Quadratic Structure of the Q-function

Substituting the system dynamics (1) into the definition of the Q-factor (8), we can obtain the quadratic structure of the
Q-factor. Given a full observation of the global state, we have that

Qi(xi(t), ui(t)) = gi(xi(t), ui(t)) +Qi(xi(t), ui(t+ 1))

= xi(t)
>Pixi(t) + ui(t)

>Riui(t) + xi(t+ 1)>Sixi(t+ 1)

=

(
X(t)
ui(t)

)>( Ai>SiAi + P̃i Ai>SiBi
Bi
>SiAi Bi

>SiBi +Ri

)(
X(t)
ui(t)

)
=

(
X(t)
ui(t)

)>(
H11,i H12,i

H21,i H22,i

)(
X(t)
ui(t)

)
=

(
X(t)
ui(t)

)>
Hi

(
X(t)
ui(t)

)
, yi(t)

>θi,

P̃i =

0n×n . . . 0
... Pi

...
0 . . . 0

 ∈ RLn×Ln,

where P̃i is a diagonal matrix with the (i, i)-th block set to be Pi. yi(t) = [x21(t), x1(t)x2(t), · · · , xL(t)ui(t), u
2
i (t)] is

a vector consisting of all the quadratic basis over the elements in [X(t);ui(t)]. Since Hi is symmetric, it suffices to use
θi ∈ R(Ln+m)(Ln+m+1)/2 to represent the unknown parameters, i.e., the elements of θi are the upper right triangle of
H in the correct order. Moreover, Ai is a row vector which stacks subvectors {Aij}j∈[L].

B Proof of Lemma 1

Lemma 1 (Convergence of Distributed Q-learning with Full Observation). Suppose that Assumptions 1, 4, 5 are
satisfied, and Ki1 is a stabilizing controller. There exists N < ∞ such that the sequence of stabilizing controllers
{Kiq}∞q=1 generated by the Q-learning Policy Iteration mechanism with global state information converges, i.e.,
∀i ∈ [L]:

lim
q→∞

‖Kiq −K∗i ‖ = 0,

where K∗i is the optimal feedback controller.

Proof. The proof of this lemma includes two steps. First, we demonstrate that by replacing recursive least squares
(RLS) with stochastic gradient descent (SGD) in the adaptive policy iteration algorithm proposed in [8], the policy
iteration algorithm also generates a sequence of stabilizing controls converging to the optimal in the single agent case.
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Observe that in [8], only the intermediate result Lemma 2 requires the property of the RLS estimation. Thus we need to
prove that the SGD estimation also has the same property. Recall Lemma 2 in [8],

Lemma (Lemma 2 [8]). If φi(t) is persistently excited and N > N0, then we have

‖θ̂iq − θiq‖ ≤ εN
(
‖θ̂i(q−1) − θi(q−1)‖+ ‖θi(q−1) − θiq)‖

)
,

where limN→∞ εN = 0.

This lemma still holds when replacing RLS with SGD. Consider the q-th policy iteration where θiq is the true parameter
vector for the Q-factor with control policy Ki. θ̂iq = θ̂iq(N) is the estimate of θiq at the end of the q-th policy iteration.
The initial estimate is the final value from the previous policy iteration, i.e., θ̂iq(0) = θ̂i(q−1)(N). Recall the SGD
algorithm,

θ̂iq(N) = θ̂iq(N − 1)− αφi(tq +N) ·
(
θ̂iq(N − 1)>φi(tq +N)− gi(tq +N)

)
,

θ̂iq(N)− θiq =
(
I − αφi(tq +N)φ>i (tq +N)

)
(θ̂iq(N − 1)− θiq)− αφi(tq +N) ·

(
φ>i (tq +N)θiq − gi(tq +N)

)
︸ ︷︷ ︸

=0

=
(
I − αφi(tq +N)φ>i (tq +N)

)
(θ̂iq(N − 1)− θiq)

= · · ·

=

tq+N∏
τ=tq+1

(
I − αφi(τ)φ>i (τ)

)
(θ̂i(q−1) − θiq)

=

tq+N∏
τ=tq+1

(
I − αφi(τ)φ>i (τ)

)
(θ̂i(q−1) − θi(q−1) + θi(q−1) − θiq),

‖θ̂iq(N)− θiq‖ ≤ ‖
tq+N∏
τ=tq+1

(
I − αφi(τ)φ>i (τ)

)
‖ ·
(
‖θ̂i(q−1) − θi(q−1)‖+ ‖θi(q−1) − θiq)‖

)
, εN

(
‖θ̂i(q−1) − θi(q−1)‖+ ‖θi(q−1) − θiq)‖

)
,

where step size α satisfies Assumption 5 and φi(t) satisfies Assumption 4. Hence we obtain that

lim
N→∞

εN = 0.

Second, we demonstrate that Lemma 1 holds when agents have full observation of the global state. Under this setting,
[9] considers a policy iteration algorithm with the RLS estimation method and further provides the convergence proof by
utilizing the single agent result in [8]. By following the same approach in [9] and the results obtained in the preceding
step, we are able to obtain the desired result in Lemma 1. See [9, Theorem 1] for detailed proof.

C Proof of Lemma 2 (a)

Lemma 2 (Convergence of Parameter Estimation). Under Assumptions 1-5, there exists N <∞, such that

(a) the global state estimation error is bounded above by some arbitrarily small δ > 0, i.e., ∀i ∈ [L], ∀q:

‖Zi(tq +N)−X(tq +N)‖ ≤ δ,

(b) the estimation error of θi in (15) is bounded above by some arbitrarily small ξ > 0 when q is large enough,
i.e., ∀i ∈ [L]:

‖θiq − θ̂iq‖ ≤ ξ,
where θ̂iq is an estimate obtained by the ST-based approach and θiq is obtained with full observations. Note
that θ̂iq = θ̂iq(N), θiq = θiq(N).
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Proof. Before proceeding to the proof of Lemma 2, we first characterize the change of the agents’ state (i.e., xi(t+
1) − xi(t)) during the policy iteration. Consider Agent i’s state in the q-th policy iteration. Notice that t = tq + p,
where tq is the time index at the start of the q-th policy iteration and p counts the number of time steps from the start of
the q-th policy iteration, such that p ∈ [1, N ] and t ∈ [tq, tq +N ]. Assume that Xq = X(tq) is the initial global state
for the q-th policy iteration. Following the system dynamics defined in (2), we obtain the global state after p steps of
policy evaluation as,

X(tq) = Xq,

X(tq + 1) = AXq +B(KqXq + E(1)) = (A+BKq)Xq +BE(1),

X(tq + p) = (A+BKq)
pXq +

p∑
τ=1

(A+BKq)
p−τBE(τ).

Suppose Assumption 4 holds and correspondingly we have

Xq = X(tq−1 +N)

= (A+BKq−1)NXq−1 +

N∑
τ=1

(A+BKq−1)N−τBE(τ)

= (A+BKq−1)NXq−1 +

N∑
τ=1

(A+BKq−1)N−τBΥ(τ)β(τ)

= (A+BKq−1)NXq−1 +

N∑
τ=1

(A+BKq−1)N−τ cτBβ(τ),

which indicates that ‖Xq‖ → 0 as N →∞.

Hence, we can obtain that

X(tq + p+ 1)−X(tq + p) =((A+BKq)
p+1 − (A+BKq)

p)Xq

+ (A+BKq)
pBE(1) +

p∑
τ=1

(A+BKq)
p−τB(E(τ + 1)− E(τ)).

We further define
r , rank(X(tq + p+ 1)−X(tq + p)),

‖(A+BKq)
k‖2 = σkmax(A+BKq) < 1.

Let ‖C‖F denote the Frobenius norm of a matrix C ∈ Rm×n, i.e., ‖C‖F =
√∑m

i=1

∑n
j=1 c

2
ij . Now, we have,

‖X(tq + p+ 1)−X(tq + p)‖F ≤
√
r‖X(tq + p+ 1)−X(tq + p)‖2

≤
√
r‖(A+BKq)

p+1 − (A+BKq)
p‖2‖Xq‖2

+
√
r‖(A+BKq)

p‖2‖E(1)‖2 +
√
r‖

p∑
τ=1

(A+BKq)
p−τB(E(τ + 1)− E(τ))‖2

≤
√
r‖(A+BKq)

p+1 − (A+BKq)
p‖2‖Xq‖2 +

√
r‖(A+BKq)

p‖2‖E(1)‖2

+
√
r

p∑
τ=1

(
‖(A+BKq)

p−τ‖2‖B(E(τ + 1)− E(τ))‖2
)

≤
√
r‖(A+BKq)

p+1 − (A+BKq)
p‖2‖Xq‖2 +

√
rσtmaxΥ(1)‖β(1)‖2

+
√
r

p∑
τ=1

(σp−τmax‖B(cτ+1β(τ + 1)− cτβ(τ))‖2)

≤
√
r‖(A+BKq)

p+1 − (A+BKq)
p‖2‖Xq‖2 +

√
rσpmaxΥ(1)‖β(1)‖2

+ cβ
√
rp ·max{c, σmax}p

,δx,
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where cβ = maxτ‖B(cβ(τ + 1)−β(τ))‖. cβ is finite since the injected noise satisfies the PE condition in Assumption
4. Notice that with a fixed q, when p→∞, δx → 0. Note that Kq is a stable controller, such that σmax < 1.

Therefore, there exists N <∞ and we can choose N0 ∈ (0, N) such that when t ∈ [tq +N0, tq+1] (p is large enough),
the difference between two adjacent states of Agent i is bounded from above by some arbitrary small δx > 0, i.e.,
∀i ∈ [L]:

‖xi(t)− xi(t− 1)‖ ≤ δx. (19)

Now we are ready to prove Lemma 2 (a).

Define εik(t) =
∑
j∈Nk

wij(xk(t)−xk(t− 1)) and x̄av,k(t) = 1
L

∑L
j=1 x̄jk(t) (the average estimation towards Agent

k at time instance t ). Further, let dk = |Nk| denote the amount of communication neighbors of Agent k in the
communication network. The norm of the difference between the ST-based global state estimates Zi(t) and the true
global state X(t) can be shown as

‖Zi(t)−X(t)‖F =

√√√√ L∑
k=1

‖xk(t)− x̄ik(t)‖22

≤
L∑
k=1

√
‖xk(t)− x̄ik(t)‖2

=

L∑
k=1

‖xk(t)− x̄av,k(t) + x̄av,k(t)− x̄ik(t)‖

≤
( L∑
k=1

‖xk(t)− x̄av,k(t)‖︸ ︷︷ ︸
1

+

L∑
k=1

‖x̄av,k(t)− x̄ik(t)‖︸ ︷︷ ︸
2

)
.

(20)

First we consider term 1 in (20),

L∑
k=1

‖xk(t)− x̄av,k(t)‖ =

L∑
k=1

‖xk(t)− 1

L

L∑
j=1

x̄jk(t)‖

=

L∑
k=1

‖xk(t)−
(
x̄av,k(0) +

dk
L
xk(t)− dk

L
xk(0)

)
‖

≤ Lmax
k
{‖xk(t)‖} , w(t),

(21)

where we use the deduction of x̄av,k(t):

x̄av,k(t) =
1

L

L∑
j=1

x̄jk(t)

=
1

L

L∑
j=1

L∑
u=1

wjux̂uk(t)

=
1

L

L∑
u=1

x̂uk(t)

=
1

L
(
∑
u∈Nk

xk(t) +
∑
u/∈Nk

x̄uk(t− 1))

= x̄av,k(t− 1) +
dk
L
xk(t)− dk

L
xk(t− 1)

= x̄av,k(0) +
dk
L

(xk(t)− xk(0)).

(22)
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Now, consider term 2 : Let Assumptions 2, 3 hold and rewrite x̄ik(t) into the following format,

x̄ik(t) =

L∑
j=1

wij x̂jk(t)

=
∑
j /∈Nk

wij x̂jk(t) +
∑
j∈Nk

wij x̂jk(t)

=
∑
j /∈Nk

wij x̄jk(t− 1)

︸ ︷︷ ︸
Weighted Estimation

+
∑
j∈Nk

wijxk(t)︸ ︷︷ ︸
Weighted True State

=
∑
j

wij x̄jk(t− 1) +
∑
j∈Nk

wij(xk(t)− xk(t− 1))︸ ︷︷ ︸
Perturbation ,εik(t)

.

(23)

Following the same line as in [25], we reformulate (23) as a perturbed consensus problem:

xik(t) =
∑
j

wij x̄jk(t− 1) + εik(t),

εik(t) =
∑
j∈Nk

wij(xk(t)− xk(t− 1)).
(24)

For ease of exposition, we rewrite the evolution of the iterates xik(t) in a matrix form. For any coordinate index l ∈ [n]
(n is the dimension of the state vector), we can have the following for the l−th coordinate(denoted by a superscripts):

xlik(t) =
∑
j

wij x̄
l
jk(t− 1) + εlik(t), ∀l ∈ [n].

Define x̄k(t− 1) =

x̄1k(t− 1)
...

x̄Lk(t− 1)

, εp(t) =

ε1k(t)
...

εLk(t)

.

Next, we stack all of the l−th coordinates in a column vector, denoted by xlk(t), i.e.,

xlk(t) =


xl1k(t)
xl2k(t)

...
xlLk(t)

 = Wx̄lk(t− 1) + εlk(t).

Moreover, by stacking the column vectors xlk(t), l ∈ [n] into a matrix xk(t), we further build up the perturbation
matrix ek(t) from εlk(t), l ∈ [n]

xk(t) =
[
x1k(t) x2k(t) · · · xnk (t)

]
= Wxk(t− 1) + ek(t) ∀t ≥ 0. (25)

Using the recursion, from Eqn. (25) we see that, for all tq ≤ t ≤ tq+1,

xk(t) = Wxk(t− 1) + ek(t)

= W (Wxk(t− 2) + ek(t− 1)) + ek(t)

= (W )2xk(t− 2) + (W )1ek(t− 1) + ek(t)

= · · ·

= (W )pxk(tq) +

p−1∑
τ=1

(W )τek(t− τ) + ek(t).

(26)
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By multiplying both sides of (26) with matrix 1
L11

>, we have

1

L
11>xk(t) =

1

L
11>(W )pxk(tq) +

( p−1∑
τ=1

1

L
11>(W )τek(t− τ))

)
+

1

L
11>ek(t)

=
1

L
11>xk(tq) +

p−1∑
τ=1

1

L
11>ek(t− τ) +

1

L
11>ek(t).

Now, consider xk(t)− 1
L11

>xk(t)

xk(t)− 1

L
11>xk(t) =

(
(W )p − 1

L
11>

)
xk(tq) +

p−1∑
τ=1

(
(W )τ − 1

L
11>

)
ek(t− τ)

+
(
I − 1

L
11>

)
ek(t).

(27)

By taking the F-norm of the both sides of (27), we obtain,

‖xk(t)− 1

L
11>xk(t)‖F ≤‖

(
(W )p − 11>

)
xk(tq)‖F +

p−1∑
τ=1

‖
(
(W )τ − 1

L
11>

)
ek(t− τ)‖F

+ ‖
(
I − 1

L
11>

)
ek(t)‖F

≤‖
(
(W )p − 11>

)
‖F ‖xk(tq)‖F +

p−1∑
τ=1

(
‖(W )τ − 1

L
11>‖F ‖ek(t− τ)‖F

)
+ ‖
(
I − 1

L
11>

)
‖F ‖ek(t)‖F .

(28)

The following lemma (Lemma 5 [25]) is required here.

Lemma 3. Let the graph Gc satisfy Assumption 2 and let the weight matrix W satisfy Assumption 3. Then, for all
s ≥ 0, (

[W s]ij −
1

L

)2
≤
(

1− η

2L2

)s−1
, ∀i, j ∈ [L].

Based Lemma 3, we have

‖(W )τ − 1

L
11>‖F =

√√√√ L∑
i=1

L∑
j=1

(
[W τ ]ij −

1

L

)2
≤ L

√(
1− η

2L2

)τ−1
.

Following the fact that
√

1− µ ≤ 1− µ
2 ,∀µ ∈ (0, 1), we further have,

‖(W )τ − 1

L
11>‖F ≤ Lcτ−1w , cw = 1− η

4L2
.

For the norm ‖I − 1
L11

>‖F , we have

‖I − 1

L
11>‖F =

√
L
(

1− 1

L

)2
+ (L− 1)L

1

L2
=
√
L− 1. (29)

Now, we obtain that

‖xk(t)− 1

L
11>xk(t)‖F ≤ Lcp−1w ‖xk(tq)‖F + L

( p−1∑
τ=1

cτ−1w ‖ek(t− τ)‖F
)

+
√
L− 1‖ek(t)‖F . (30)

20



This equation is equivalent to√√√√ L∑
i=1

‖x̄ik(t)− x̄av,k(t)‖2 ≤ Lcp−1w

√√√√ L∑
i=1

‖x̄ik(tq)‖2 + L
(∑t−1

τ=t−p+1 c
t−τ−1
w

√∑L
i=1 ‖εik(τ)‖2

)

+
√
L− 1

√√√√ L∑
i=1

‖εik(t)‖2.

(31)

Recall that εik(t) =
∑
j∈Nk

wij(xk(t)−xk(t−1)), x̄av,k(t) = 1
L

∑L
j=1 x̄jk(t) (the average estimation towards Agent

k at time instance t ). Now, we are ready to obtain the upper bound on
∑L
k=1 ‖x̄av,k(t)− x̄ik(t)‖:

L∑
k=1

‖x̄av,k(t)− x̄ik(t)‖ =
∑
k/∈Ni

‖x̄av,k(t)− x̄ik(t)‖+
∑
k∈Ni

‖x̄av,k(t)− xk(t)‖

≤L 1
2

√√√√ L∑
i=1

‖x̄ik(t)− x̄av,k(t)‖2 + w(t)

≤L 3
2 cp−1w

√√√√ L∑
i=1

‖x̄ik(tq)‖2 + L
3
2

(∑t−1
τ=t−p+1 c

t−τ−1
w

√∑L
i=1 ‖εik(τ)‖2

)

+ L
1
2

√
L− 1

√√√√ L∑
i=1

‖εik(t)‖2 + (L− dk)‖xk(t)‖

,v(t),

(32)

where the first inequality is based on the Hölder’s inequality. Note that t denotes the time instance from the start of the
algorithm, i.e., t = tq + p. Thus, we can obtain the following result from (19)

lim
p→∞

‖εik(t)‖ = lim
p→∞

‖ε(p)‖ = 0.

Besides, the second term of (31) satisfies

t−1∑
τ=t−p+1

ct−τ−1w

√√√√ L∑
i=1

‖εik(τ)‖2

≤
t−1∑

τ=t−p+1

Lct−τ−1w ‖εik(τ)‖

=

t−1∑
τ=t−p+1

Lct−τ−1w

1∑t−1
τ=t−p+1 Lc

t−τ−1
w

t−1∑
τ=t−p+1

Lct−τ−1w ‖εik(τ)‖

=
L(1− cp−1w )

1− cw

( 1∑t−1
τ=t−p+1 Lc

t−τ−1
w

t−1∑
τ=t−p+1

Lct−τ−1w ‖εik(τ)‖
)
.

Let p→∞. We have

lim
p→∞

t−1∑
τ=t−p+1

ct−τ−1w

√√√√ L∑
i=1

‖εik(τ)‖2 ≤ L

1− cw
lim
p→∞

‖ε(p)‖ = 0, (33)

where the right side follows Mazur’s Lemma that any convex combination of a convergent sequence {ε(p)} converges
to the same limit as the sequence itself.

Following the preceding results, finally we obtain that

‖Zi(t)−X(t)‖ ≤
(
w(t) + v(t)

)
, δ(t), tq ≤ t ≤ tq+1. (34)
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Time ttq tq + Ntq + N0

q-th Policy Iteration

∥Zi(t)−X(t)∥<δ

(N−N0) SamplesN0 Samples

Figure 7: Illustration of the result in (35).

Note that when t → ∞ (p → ∞), w(t) → 0 (see (21)), v(t) → 0 (see (32)). Thus, for all δ > 0, there exist N and
N0 ∈ (0, N) such that, ∀t ∈ [tq +N0, tq+1],

‖Zi(t)−X(t)‖ ≤ δ, ∀i ∈ [L], (35)

which indicates that with large enough N , we are able to collect (N −N0) samples with relative error δ (See Fig. 7).

D Proof of Lemma 2 (b)

Lemma 2 (Convergence of Parameter Estimation). Under Assumptions 1-5, there exists N <∞, such that

(a) the global state estimation error is bounded above by some arbitrarily small δ > 0, i.e., ∀i ∈ [L], ∀q:

‖Zi(tq +N)−X(tq +N)‖ ≤ δ,

(b) the estimation error of θi in (15) is bounded above by some arbitrarily small ξ > 0 when q is large enough,
i.e., ∀i ∈ [L]:

‖θiq − θ̂iq‖ ≤ ξ,

where θ̂iq is an estimate obtained by the ST-based approach and θiq is obtained with full observations. Note
that θ̂iq = θ̂iq(N), θiq = θiq(N).

Proof. Recall the SGD update rule in (18),

θiq(p+ 1) = θiq(p)− αφi(t) ·
(
θiq(p)

>φi(t)− gi(t)
)
,

θ̂iq(p+ 1) = θ̂iq(p)− αφ̂i(t) ·
(
θ̂iq(p)

>φ̂i(t)− ĝi(t)
)
.

(36)

We first define
Φi(tq +N − τ) , I − αφi(tq +N − τ)φ>i (tq +N − τ),

Πi(M) ,
M∏
m=1

Φi(tq +N −m),

Gi(tq +N − τ) , αφi(tq +N − τ)gi(tq +N − τ).

(37)

Next, we use recursion to obtain the relationship between θiq = θiq(N) and θi(q−1) = θiq(1),

θiq = Πi(N)θi(q−1) +

N∑
τ=2

Πi(τ − 1)Gi(tq +N − τ) +Gi(tq +N − 1),

θ̂iq = Π̂i(N)θ̂i(q−1) +

N∑
τ=2

Π̂i(τ − 1)Ĝi(tq +N − τ) + Ĝi(tq +N − 1).

(38)
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Therefore, we have

‖θiq − θ̂iq‖ =‖Πi(N)θi(q−1) − Π̂i(N)θ̂i(q−1)‖ → 1

+ ‖Gi(tq +N − 1)− Ĝi(tq +N − 1)‖ → 2

+ ‖
N∑
τ=2

(
Πi(τ − 1)Gi(tq +N − τ)− Π̂i(τ − 1)Ĝi(tq +N − τ)

)
‖ → 3 .

(39)

In order to utilize the result in Appendix C, we first explore the relationship between φi(t) and ‖Zi(t) − X(t) +
ûi(t)− ui(t)‖. It can be shown that the norm of yi(t) is equivalent to the F−norm of the product of two matrices, i.e.
Ei(t)Mi(t),

yi(t) =
[
x21(t) x1(t)x2(t) x1(t)x3(t) · · ·u2i (t)

]

=


x1(t)

x2(t)
. . .

xL(t)
ui(t)


︸ ︷︷ ︸

,Ei(t)


x1(t) x2(t) · · · xL(t) ui(t)
x2(t) x3(t) · · · ui(t)

...
...

ui(t)

 .
︸ ︷︷ ︸

,Mi(t)

(40)

Then, we can apply the result in Appendix C (δ(t) is defined in (34), K̂i(q−1) denotes the controller obtained by using
estimated global state, (q − 1) denotes the controller is updated in the last policy update). Note that t ∈ [tq, tq+1]
denotes the q−th policy evaluation time instant.

Tq−1 , ‖θi(q−1) − θ̂i(q−1)‖,
‖ui(t)− ûi(t)‖ = ‖K̂i(q)Zi(t)−Ki(q)X(t)‖,

≤ ‖K̂i(q) −Ki(q)‖‖X(t)‖+ ‖X(t)− Zi(t)‖‖K̂i(q)‖,
≤ κ‖X(t)‖Tq−1 + bkδ(t),

(41)

where bk <∞ is the upper bound of ‖K̂i(q−1)‖. The last inequality follows that

K̂i(q) = −Ĥ−1i(q−1),22Ĥi(q−1),21,

Ki(q) = −H−1i(q−1),22Hi(q−1),21.

Then, we have

K̂i(q) −Ki(q) = −Ĥ−1i(q−1),22Ĥi(q−1),21 +H−1i(q−1),22Hi(q−1),21

= H−1i(q−1),22((Hi(q−1),21 − Ĥi(q−1),21) + (Ĥi(q−1),22 −Hi(q−1),22)Ĥ−1i(q−1),22Ĥi(q−1),21),

‖Ĥi(q−1),22 −Hi(q−1),22‖ ≤ ‖θ̂i(q−1) − θi(q−1)‖,
‖Hi(q−1),22‖ ≤ ‖θi(q−1)‖.

Since the estimated parameters are bounded and κ > 0 is a finite constant, it follows that

‖K̂i(q) −Ki(q)‖ ≤ κ‖θ̂i(q−1) − θi(q−1)‖.
Therefore,

‖gi(t)− ĝi(t)‖ = ‖〈xi(t), xi(t)〉P + 〈ui(t), ui(t)〉R − 〈x̂i(t), x̂i(t)〉P + 〈ûi(t), ûi(t)〉R‖
=‖〈xi(t)− x̂i(t), xi(t)〉P + 〈x̂i(t), xi(t)− x̂i(t)〉P

+ 〈ui(t)− ûi(t), ui(t)〉R − 〈ûi(t), ui(t)− ûi(t)〉R‖
≤λmax(P )(2bxδ(t)) + 2λmax(R)(κ‖X(t)‖Tq−1 + bkδ(t))bu
=c1δ(t) + c2‖X(t)‖Tq−1,

c1 ,2bxλmax(P ) + bkbuλmax(R) <∞,
c2 ,λmax(R)κ <∞,

〈xi(t), xi(t)〉P =xi(t)
TPxi(t),

(42)
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where bx < ∞ is the upper bound of the system state ‖xi(t)‖ and bu < ∞ is the upper bound of the system input
‖ui(t)‖. λmax(P ) is the largest eigenvalue of matrix P and λmax(R) is the largest eigenvalue of matrix R. Hence, we
obtain the following inequality with regard to Ei and Mi

‖Ei(t)− Êi(t)‖ = ‖Zi(t)−X(t)‖+ ‖ui(t)− ûi(t)‖
≤ 2bkδ(t) + κ‖X(t)‖Tq−1
, c3δ(t) + c4‖X(t)‖Tq−1,

‖Mi(t)− M̂i(t)‖ ≤ L‖Zi(t)−X(t)‖+ (L+ 1)‖ui(t)− ûi(t)‖
≤ (2L+ 1)bkδ(t) + (L+ 1)κ‖X(t)‖Tq−1
, c5δ(t) + c6‖X(t)‖Tq−1.

(43)

Furthermore, we can obtain that

‖φi(t)− φ̂i(t)‖ = ‖Ei(t)Mi(t)− Ei(t+ 1)Mi(t+ 1)− Êi(t)M̂i(t) + Êi(t+ 1)M̂i(t+ 1)‖
≤ ‖Ei(t)Mi(t)− Êi(t)M̂i(t)‖+ ‖Ei(t+ 1)Mi(t+ 1)− Êi(t+ 1)M̂i(t+ 1)‖
≤ (c3bm + c5bx)(δ(t) + δ(t+ 1)) + (c4bm + c6bx)(‖X(t)‖+ ‖X(t+ 1)‖))Tq−1
, c7(δ(t) + δ(t+ 1)) + c8(‖X(t)‖+ ‖X(t+ 1)‖)Tq−1.

(44)

Thus,

‖(I − αφ̂i(t)φ̂>i (t))− (I − αφi(t)φ>i (t))‖ = ‖αφ̂i(t)φ̂>i (t)− αφi(t)φ>i (t)‖
≤ c9(δ(t) + δ(t+ 1)) + c10(‖X(t)‖+ ‖X(t+ 1)‖)Tq−1.

(45)

Now, we are ready to analyze term 1 : ‖Πi(N)θi(q−1) − Π̂i(N)θ̂i(q−1)‖. Note that

‖Π(n)‖ ≤ cnπ ≤ c̄nπ,
‖Π̂(n)‖ ≤ ĉnπ ≤ c̄nπ,
c̄π = max{cπ, ĉπ},

(46)

where cπ = maxt{‖Φi(t)‖} < 1 and ĉπ = maxt{‖Φ̂i(t)‖} < 1.

Hence, we have

‖Πi(N)− Π̂i(N)‖ = ‖
N∏
m=1

Φi(tq +N −m)−
N∏
m=1

Φ̂i(tq +N −m)‖ ≤ c̄Nπ . (47)

Now, we consider

‖Π(N)θi(q−1) − Π̂(N)θ̂i(q−1)‖ ≤ ‖Π(N)− Π̂(N)‖‖θ̂i(q−1)‖+ ‖θ̂i(q−1) − θi(q−1)‖‖Π(N)‖
≤ c11c̄Nπ + ‖Π(N)‖Tq−1
, ξ1.

(48)

Notice that as N →∞, ξ1 → 0.

Similarly, we analyze term 2 : ‖G(tq +N − 1)− Ĝ(tq +N − 1)‖,

‖G(tq +N − 1)− Ĝ(tq +N − 1)‖ =α‖φ>(tq +N − 1)g(tq +N − 1)− φ̂>(tq +N − 1)ĝ(tq +N − 1)‖
≤‖φ>(tq +N − 1)− φ̂>(tq +N − 1)‖‖g(tq +N − 1)‖

+ ‖g(tq +N − 1)− ĝ(tq +N − 1)‖‖φ̂>(tq +N − 1)‖
≤c12δ(tq +N) + c13δ(tq +N − 1)

+
(
c14‖X(tq +N)‖+ c15‖X(tq +N − 1)‖

)
Tq−1

,ξ2,

(49)

where the second inequality follows from (42) and (44). Notice that as N →∞, ξ2 → 0. (49) also indicates that for all
ε2 > 0, there exists a 0 < N2 <∞, when N > N2, such that,

‖G(tq +N)− Ĝ(tq +N)‖ < ε2,

‖G(tq +N)‖ < ε2.
(50)
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Consider term 3 : ‖
∑N
τ=2

(
Π(τ − 1)G(tq +N − τ)− Π̂(τ − 1)Ĝ(tq +N − τ)

)
‖,

‖
N∑
τ=2

(
Π(τ − 1)G(tq +N − τ)− Π̂(τ − 1)Ĝ(tq +N − τ)

)
‖

≤
N∑
τ=2

‖Π(τ − 1)− Π̂(τ − 1)‖‖G(tq +N − τ)‖+ ‖G(tq +N − τ)− Ĝ(tq +N − τ)‖‖Π̂(τ − 1)‖

=

N
′∑

τ=2

(
‖Π(τ − 1)− Π̂(τ − 1)‖‖G(tq +N − τ)‖+ ‖G(tq +N − τ)− Ĝ(tq +N − τ)‖‖Π̂(τ − 1)‖

)
+

N∑
τ=N ′

(
‖Π(τ − 1)− Π̂(τ − 1)‖‖G(tq +N − τ)‖+ ‖G(tq +N − τ)− Ĝ(tq +N − τ)‖‖Π̂(τ − 1)‖

)
,

(51)

where N
′

= N −N2 − 1 > N2 (assuming N is large enough). Using the result from (46) and (50), we further obtain,

‖
N∑
τ=2

(
Π(τ − 1)G(tq +N − τ)− Π̂(τ − 1)Ĝ(tq +N − τ)

)
‖

≤
N

′∑
τ=2

(
‖Π(τ − 1)− Π̂(τ − 1)‖‖G(tq +N − τ)‖+ ‖G(tq +N − τ)− Ĝ(tq +N − τ)‖‖Π̂(τ − 1)‖

)
+

N∑
τ=N ′

(
‖Π(τ − 1)− Π̂(τ − 1)‖‖G(tq +N − τ)‖+ ‖G(tq +N − τ)− Ĝ(tq +N − τ)‖‖Π̂(τ − 1)‖

)

<

N
′∑

τ=2

(
c̄τ−1π ε2

)
+

N∑
τ=N ′

(
bg c̄

τ−1
π

)
=
c̄π(1− c̄N

′
−1

π )

1− c̄π
ε2 +

c̄N
′
−1

π (1− c̄N−N
′
+1

π )

1− c̄π
bg

=
c̄π(1− c̄N−N2−2

π )

1− c̄π
ε2 +

c̄Nπ (c̄−2−N2
π − 1)

1− c̄π
bg

,ξ3,

(52)

where bg = maxτ{‖G(tq +N − τ)− Ĝ(tq +N − τ)‖, ‖G(tq +N − τ)‖} <∞. Notice that when N →∞, ξ3 → 0.

When N > 2N2 + 1, by combing the results from (48), (49) and (52), we obtain the upper bound on ‖θiq − θ̂iq‖:
‖θiq − θ̂iq‖ = 1 + 2 + 3

<ξ1 + ξ2 + ξ3

=c11c̄
N
π +

c̄π(1− c̄N−N2−2
π )

1− c̄π
ε2 +

c̄Nπ (c̄−2−N2
π − 1)

1− c̄π
bg + c12δ(tq +N) + c13δ(tq +N − 1)

+
(
c14‖X(tq +N)‖‖+ c15‖X(tq +N − 1)‖+ ‖Π(N)‖

)
Tq−1

=ζ(N) + ψ(N)Tq−1,

ζ(N) , c11c̄
N
π +

c̄π(1− c̄N−N2−2
π )

1− c̄π
ε2 +

c̄Nπ (c̄−2−N2
π − 1)

1− c̄π
bg + c12δ(tq +N) + c13δ(tq +N − 1),

ψ(N) , c14‖X(tq +N)‖+ c15‖X(tq +N − 1)‖+ ‖Π(N)‖.

(53)

Notice that when N →∞, ψ(N)→ 0 and ζ(N)→ 0.

Further we consider,
Tq − Tq−1 = ζ(N) + (ψ(N)− 1)Tq−1

= ζ(N) + (ψ(N)− 1)(ζ(N) + ψ(N)Tq−2)

= ψ(N)(ζ(N) + (ψ(N)− 1)Tq−2)

= ψ(N)(Tq−1 − Tq−2).
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We observe that when N is large enough, ψ(N) < 1, such that

|Tq − Tq−1| < |Tq−1 − Tq−2| < · · · < |T1 − T0| . (54)

Notice that when q is large enough, θiq converges to optimal (Lemma 1), thus, we can now draw the conclusion: for any
ξ > 0, there exist N <∞ and policy improvement step q <∞ such that,

Tq = ‖θiq − θ̂iq‖ ≤ ξ. (55)
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