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Abstract

Precise regulation of the amplitude and duration of receptor tyrosine kinase (RTK) signaling is 

critical for the execution of cellular programs and behaviors. Understanding these control 

mechanisms has important implications for the field of developmental biology, and in recent years, 

the question of how augmentation or attenuation of RTK signaling via feedback loops modulates 

development has become of increasing interest. RTK feedback regulation is also important for 

human disease research; for example, germline mutations in genes that encode RTK signaling 

pathway components cause numerous human congenital syndromes, and somatic alterations 

contribute to the pathogenesis of diseases such as cancers. In this review, we survey regulators of 

RTK signaling that tune receptor activity and intracellular transduction cascades, with a focus on 

the roles of these genes in the developing embryo. We detail the diverse inhibitory mechanisms 

utilized by negative feedback regulators that, when lost or perturbed, lead to aberrant increases in 

RTK signaling. We also discuss recent biochemical and genetic insights into positive regulators of 

RTK signaling and how these proteins function in tandem with negative regulators to guide 

embryonic development.
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INTRODUCTION

Receptor tyrosine kinases (RTKs) regulate virtually all aspects of embryonic development 

from early patterning to organogenesis (Lemmon and Schlessinger, 2010; Li and Hristova, 

2006). The RTK superfamily encompasses 58 known receptors in humans which are 

classified into several multi-member subfamilies including, among others, fibroblast growth 

factor receptors (FGFRs), insulin and insulin-like growth factor receptors (IR and IGF-1R), 

platelet-derived growth factor receptors (PDGFRs), vascular endothelial growth factor 

receptors (VEGFRs), and epidermal growth factor receptors (EGFR/HER/ERBBs) 

(Lemmon and Schlessinger, 2010). Together, these receptors are involved in the entire 

spectrum of developmental processes. The intracellular signals initiated by RTK activation 

play pivotal roles in cell fate determination and morphogenesis, and many are highly 

conserved in evolution from the nematode Caenorhabditis elegans to humans (Pires-daSilva 

and Sommer, 2003). Furthermore, numerous diseases result from germline or somatic 

genetic changes that alter the activity, abundance, or cellular distribution of RTKs. Mutations 

in RTKs or proteins that facilitate their downstream signaling have been implicated in the 

onset and progression of a wide-range of diseases such as diabetes, inflammation, bone 

disorders, atherosclerosis, angiogenesis, and various cancers (Lemmon and Schlessinger, 

2010).

RTK activation is triggered by binding of extracellular ligands, which leads to receptor 

oligomerization and auto-phosphorylation on tyrosine residues within the cytoplasmic 

domains. These phosphorylated residues create docking sites for phosphotyrosine-binding 

domain-containing proteins that couple RTK activation to downstream signaling pathways 

(Hubbard, 2004; Hubbard and Miller, 2007; Schlessinger, 2000). Interestingly, a large 

number of RTKs induce a similar set of downstream effectors, in particular those coupled to 

activation of the RAS/MAP kinase (MAPK) and phosphatidylinositide-3 kinase 

(PI3K)/AKT pathways (Blume-Jensen and Hunter, 2001; Ledda and Paratcha, 2007). What 

distinguishes the signaling outputs between distinct RTKs is often the duration and extent of 

pathway activation. Feedback regulators play a major role in fine-tuning these variables by 

attenuating or amplifying the signaling output. They can be already present and act prior to 

or immediately after receptor activation (early attenuators) (Haglund et al., 2003; Thien and 

Langdon, 2001) or can be transcriptionally induced by the pathways they eventually inhibit 

(late attenuators) (Table 1) (Casci and Freeman, 1999; Fiorini et al., 2002; Ghiglione et al., 

1999; Golembo et al., 1996; Korsensky and Ron, 2016; Tsang and Dawid, 2004).

Feedback regulators have also been shown to further control RTK-mediated signaling by 

modulating the localization of the ligands necessary for RTK activation. One of the 

characteristic features of RTK signaling in development is the gradation of signal output 

(Ashe and Briscoe, 2006). This gradation is traditionally thought to arise from a 

corresponding gradient in ligand concentration or receptor expression. However, it has 

recently been shown that the presence of regulators significantly contributes to this signal 

gradient. Indeed, the heparin sulfate proteoglycans (HSPGs), which serve as an amplifier of 

many RTK signaling pathways, most notably FGFRs, can control morphogen gradient 

formation by regulating the diffusion rates of ligands (Yan and Lin, 2009). Another example 

of such a mechanism is the action of CBL, a well-characterized negative feedback regulator 
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of multiple RTK pathways such as EGFR, MET, and RET. This protein regulates the 

distribution of the Egfr ligand Gurken during Drosophila melanogaster embryogenesis by 

mediating endocytosis and subsequent degradation of the Egfr-Gurken complex (Chang et 

al., 2008). In this manner, feedback regulators are essential for not only controlling the level 

of signal output but also for tuning their spatiotemporal localization.

Here, we review several modulators of RTK signaling with an emphasis on those with 

known roles in development (Supplemental Table 1) and contributions to human congenital 

disorders (Figure 5). Our discussion highlights the insights gained from in vivo work in 

model organisms that can be used to further our biochemical understanding of RTK 

regulation through feedback pathways. Several other excellent reviews cover feedback 

regulators in more molecular detail (Avraham and Yarden, 2011; Lemmon et al., 2016; 

Mohapatra et al., 2013).

Regulation of biosynthesis and maturation of RTKs

Recent studies have revealed that modulation of RTKs’ signaling outputs starts even prior to 

their arrival at the cell surface. A key aspect of this type of regulation occurs via quality 

control checks in the endoplasmic reticulum (ER), where newly synthesized receptors 

undergo folding and maturation by post-translational modification before being trafficked to 

the cell membrane. RTKs that are not properly synthesized, folded, or modified are degraded 

through a proteasome-dependent pathway. Several proteins, including the Canopy family, 

the Shisa family, and NRDP1, have recently been identified to regulate the strength of RTK-

mediated signaling through interaction with and modification of receptors in the ER, 

consequently controlling the number of functional receptors at the cell surface.

The Canopy (CNPY) genes encode four putative ER-resident proteins hypothesized to be 

positive-feedback regulators of receptor maturation and trafficking (Do et al., 2012; Hart and 

Tapping, 2012; Hirate and Okamoto, 2006; Matsui et al., 2011), however, only a few studies 

to date have addressed their structure or function. In Danio rerio (zebrafish), cnpy1 
expression is restricted to the midbrain-hindbrain boundary and can be induced by 

exogenous Fgf8. Knockdown of cnpy1 resulted in midbrain-hindbrain boundary defects with 

the appearance of an airplane “canopy” and impaired Fgf signaling in a cell-autonomous 

manner, indicating a positive-feedback relationship between cnpy1 and fgf8 (Hirate and 

Okamoto, 2006). Cnpy1 was also shown to positively regulate Fgf signaling for proper 

formation of Kupffer’s vesicle, which orchestrates left–right asymmetric body plan in 

zebrafish (Matsui et al., 2011). The closely related CNPY2 protein has been linked to FGF 

signaling in vitro: in mouse macrophages and human hepatocytes, FGF21 enhanced 

expression of Cnpy2, which resulted in stabilized expression of low-density lipoprotein 

receptors (Do et al., 2012). More recent work has identified CNPY2 as a HIF-1α-regulated 

angiogenic secreted factor that stimulates cell proliferation, migration, and angiogenesis in 

mouse models of cardiovascular pathologies and cancer (Guo et al., 2015b; Guo et al., 

2015c; Ito et al., 2014; Taniguchi et al., 2017; Yan et al., 2016). Although these processes 

are known to be mediated by FGF signaling, no genetic interactions between CNPY2 and 

FGFs have been reported in vivo. While the involvement of Canopy proteins in FGFR 

signaling remains poorly understood, CNPY3 and CNPY4 were shown to regulate the toll-
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like receptors (TLRs), another class of single-pass transmembrane receptors. Co-expression 

of CNPY3 increased trafficking of exogenously expressed TLRs to the cell membrane via 

chaperone gp96, leading to elevated TLR-mediated signaling in vitro (Hart and Tapping, 

2012). Interestingly, CNPY4 seems to exert an opposite effect and led to the downregulation 

of TLRs at the cell membrane, subsequently attenuating TLR-mediated signaling. Canopy 

proteins may play a similar regulatory role on RTKs to control trafficking, as CNPY1 

directly interacts with FGFR1 and modulates the extent of mature N-linked glycosylation of 

the receptor (Matsui et al., 2011), however, further studies will be necessary to understand 

how Canopy proteins interact with and modulate RTK-mediated signaling.

In a manner potentially similar to the Canopy proteins, the nine Shisa proteins in vertebrates 

represent a novel class of ER-associated proteins that antagonize FGF-mediated signaling in 

a cell-autonomous manner by regulating receptor maturation. The founding member of the 

Shisa family, shisa1, was named based on its expression in the prospective head ectoderm 

and organizer in Xenopus laevis and in reference to a form of Japanese sculpture with a 

large head (Yamamoto et al., 2005). Misexpression of shisa1 in X. laevis resulted in enlarged 

cement glands and anterior head structures due to expansion of otx2 expression, which 

marks prospective forebrain and midbrain. Accordingly, morpholino knockdown of shisa1 
reduced Fgf-mediated xbra expression at the mid-gastrula, and embryos exhibited small eyes 

and cement glands, suggesting that Shisa1 directs anterior-posterior axis formation through 

Fgf activity (Yamamoto et al., 2005). Subsequent studies of X. laevis, Gallus gallus (chick), 

and Mus musculus (mouse) showed that Shisa2 expression along the anteroposterior axis 

exerts negative regulatory effects on FGF signaling, suggesting that SHISA2 also plays a key 

role in the proper establishment of segmental patterning of the head (Supplemental Table 1) 

(Filipe et al., 2006; Furushima et al., 2007; Hedge and Mason, 2008; Nagano et al., 2006). 

Although the mechanism of action remains unclear, it has been suggested that the Shisa 

family members bind immature forms of receptors and utilize a conserved PY motif to 

interact with WW-domain-containing proteins such as the E3 ubiquitin ligase family of 

NEDD4 proteins, which are discussed below. In doing so, the Shisa proteins aid in bringing 

these proteins into proximity with immature forms of FGFR in the ER, resulting in 

ubiquitination of the receptor for retention and degradation (Pei and Grishin, 2012; 

Yamamoto et al., 2005).

Another example of a modulator of trafficking is the ubiquitin ligase NRDP1 which 

regulates ERBB3, the catalytically inactive (pseudokinase) member of the ErbB receptor 

family (Qiu and Goldberg, 2002). In zebrafish, nrdp1 is expressed in the neural crest, 

nervous system, and muscle during embryogenesis and significantly overlaps with 

expression of ERBB3, suggesting functional cooperation (Britsch et al., 1998; Lyons et al., 

2005; Maddirevula et al., 2011). Knockdown of nrdp1 resulted in decreased expression of 

melanoblast markers and caused a significant reduction in pigmentation of embryos, a 

process driven by ERRB3 signaling (Maddirevula et al., 2011). As a RING finger-type 

ubiquitin ligase, NRDP1 regulates ERBB3 by controlling the abundance of receptor 

trafficked to the cell surface through constitutive ubiquitination of newly synthesized 

ERBB3 in the ER (Fry et al., 2011). The mechanism by which the cell regulates NRDP1 

activity to fine-tune the precise level of receptor at the membrane was recently found to 

involve RTNA4. This member of the reticulon family of proteins, which control curvature of 
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ER membranes, counteracts the NRDP1-dependent degradation of ERBB3 by sequestering 

NRDP1 into ER tubules. As a result, more ERBB3 can be trafficked to the cell surface, 

where it may engage growth factors and its co-receptors to initiate downstream signaling 

(Hatakeyama et al., 2016).

Regulation of ligand-receptor signaling complex formation

A single RTK can bind multiple different ligands, and a single ligand can bind to multiple 

receptors. The specificity of these interactions is primarily driven by relative ligand/receptor 

affinities and effective concentration of both the receptor and the ligand. While the 

abundance of the receptor is controlled primarily at the level of biosynthesis and 

internalization, the pool of available ligands can be significantly influenced by extracellular 

regulators. For example, HSPGs tightly bind growth factors to limit diffusion in the 

extracellular matrix and therefore increase their local concentration to drive paracrine 

signaling by FGF, EGF, MET, VEGF, and PDGF (Abramsson et al., 2007; Cecchi et al., 

2012; Fager et al., 1992; Forsten and Schneider, 2005; Gengrinovitch et al., 1999; Rapraeger 

et al., 1991; Yayon et al., 1991). Other regulators operate intracellularly at the level of the 

receptor but also modulate the extent of productive ligand/receptor interactions. Recent 

studies have increased our understanding of such modulators and expanded our knowledge 

of similar types of feedback regulators beyond HSPGs. Here we discuss Anosmin 1, FLRT3, 

and SEF; and MIG6, which are FGFR and EGFR pathway-specific protein modulators, 

respectively, that interact with ligand-receptor signaling complexes to mediate assembly and 

activation.

The Anosmin 1 gene encodes an extracellular matrix-associated protein that is largely 

conserved from invertebrates to primates (de Castro et al., 2016), however, no ANOS1 
ortholog has been identified in mouse and rat (de Castro et al., 2014). Therefore, the 

biological functions of Anosmin 1 have primarily been probed by overexpression of human 

Anosmin 1 in mouse and rat neurons, which led to effects on cell adhesion and migration 

and neurite outgrowth and branching (Bribian et al., 2008; Garcia-Gonzalez et al., 2016; 

Soussi-Yanicostas et al., 2002; Soussi-Yanicostas et al., 1998). In development, these 

processes contribute to cranial neural crest formation and several aspects of neurogenesis, as 

shown by in vitro and in vivo studies in C. elegans, D. melanogaster, chick, and zebrafish 

(Supplemental Table 1) (Di Schiavi and Andrenacci, 2013; Endo et al., 2012; Gianola et al., 

2009; Murcia-Belmonte et al., 2016). Anosmin 1 enhances FGF2 signaling specifically 

through FGFR1 in a heparin sulfate (HS)-dependent manner (Bribian et al., 2006; Gonzalez-

Martinez et al., 2004). Heparin-bound Anosmin 1 binds to a pre-formed FGF2/FGFR1 

complex via extracellular FnIII domains to stabilize the complex, resulting in receptor 

activation (Figure 1A) (Cariboni et al., 2004; Hu et al., 2009). In both C. elegans and D. 
melanogaster, perturbation of the FnIII domains ablated biological activity of Anosmin 1 

(Andrenacci et al., 2006; Bulow and Hobert, 2004).

The three Fibronectin-like domain-containing Leucine-rich Transmembrane (FLRT) genes 

encode a highly conserved family of glycosylated proteins that mediate cell recognition and 

FGF signaling in vertebrates in a manner that is distinct from HSPGs and Anosmin 1. Flrt3 
was originally identified in X. laevis as a gene with a similar expression pattern to Fgf 
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signaling molecules, particularly at the midbrain/hindbrain boundary (Bottcher et al., 2004). 

Gain- and loss-of-function of flrt3 or flrt2 phenocopy experiments that perturb Fgf signaling, 

including effects on gastrulation, microcephaly, anterior truncations, and induction of 

ectopic tail-like structures (Bottcher et al., 2004; Cho et al., 2013). In chick, flrt3 is 

necessary but not sufficient for proper formation of the limb organizer called the apical 

epidermal ridge (AER) and co-localized with fgf8 expression and Erk activity (Tomas et al., 

2011). Flrt3 knockout mice are embryonic lethal due to fusion defects and impaired 

definitive endoderm migration, phenotypes attributed to FLRT3’s function as a cell-adhesion 

molecule (Egea et al., 2008; Karaulanov et al., 2006; Maretto et al., 2008; Tsuji et al., 2004). 

X. laevis biochemical analyses in vivo and in vitro revealed that FLRT proteins complex 

with FGFRs to promote downstream signaling of the MAPK/ERK pathway via their 

intracellular domain (Figure 1B) (Bottcher et al., 2004). Although rodent FLRT3 similarly 

physically interacts with FGFR1 (Haines et al., 2006), deletion of Flrt3 in mice had no effect 

on Fgf8 expression or the expression of known Fgf targets, despite expression of Flrt3 in 

well-known Fgf signaling centers such as the AER, the midbrain-hindbrain boundary, and 

the anterior visceral endoderm (Egea et al., 2008; Haines et al., 2006; Maretto et al., 2008). 

Taken together, these studies suggest that the degree of conservation of the FGF/FLRT3 

positive feedback loop varies among species (Supplemental Table 1). Since Flrt3 null mice 

die at early stages of development, it will be worthwhile to investigate whether FLRT3 

modulates FGF signaling at later stages using conditional knockout mice.

Similar to flrt3 in X. laevis, sef (similar expression to fgf gene) was originally identified in 

zebrafish as a gene whose expression domains overlapped with known signaling centers of 

Fgfs (Furthauer et al., 2002; Tsang et al., 2002). Loss- or gain-of-function of sef in zebrafish 

led to various developmental defects, including cephalic malformations, cyclopia, expansion 

of ventrally derived domains, and reduction of the dorsal-most mesoderm (Furthauer et al., 

2002; Tsang et al., 2002). In X. laevis, misexpression of zebrafish sef in the ventral marginal 

region at the 4-cell stage resulted in posterior truncations and gastrulation defects and was 

accompanied by suppression of Fgf target genes (Tsang et al., 2002). SEF transcripts have 

since been detected in zebrafish, chick, and mouse in numerous structures, including 

somites, the developing brain, limbs, and fin buds (Supplemental Table 1) (Boros et al., 

2006; Furthauer et al., 2002; Harduf et al., 2005; Lin et al., 2002; Tsang et al., 2002). 

Surprisingly, Sef null mice are viable and fertile and do not show any obvious morphological 

phenotype during embryonic development (Abraira et al., 2007; Lin et al., 2005; Mellett et 

al., 2015). Lack of severe defects in the Sef mutant mice may be due to compensatory effects 

by other feedback antagonists. Indeed, Sef and the similarly FGF-induced Sprouty genes, 

discussed below, are expressed in overlapping regions along the anterior–posterior axis of 

the mouse embryo (Furthauer et al., 2002; Lin et al., 2002; Minowada et al., 1999).

The prototypic sef in zebrafish encodes a transmembrane receptor-like glycoprotein that 

blocks phosphorylation of Fgfr and subsequent activation of the Ras/Mapk and PI3K/Akt 

signaling cascades (Figure 1C) (Furthauer et al., 2002; Harduf et al., 2005; Kovalenko et al., 

2006; Kovalenko et al., 2003; Preger et al., 2004; Tsang et al., 2002; Xiong et al., 2003; 

Yang et al., 2003). In vitro studies with mammalian SEF not only replicated the FGFR-

induced antagonism seen in other species but also revealed that SEF can inhibit signaling 

activated by other growth factors, including EGF, PDGF, and nerve growth factor (NGF) 
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(Kovalenko et al., 2003; Preger et al., 2004; Ren et al., 2008; Torii et al., 2004; Ziv et al., 

2006). Interestingly, alternative spliced isoforms of SEF have been identified in humans 

(Preger et al., 2004; Rong et al., 2007; Ziv et al., 2006). SEF-a is similar to the prototypic 

SEF reported in zebrafish and mice (Furthauer et al., 2002; Lin et al., 2002; Tsang et al., 

2002; Yang et al., 2003), whereas SEF-b, which lacks a signal peptide for secretion, is 

localized to the cytoplasm and acts at the level of, or downstream from, MEK (Figure 2F) 

(Preger et al., 2004; Yang et al., 2003; Ziv et al., 2006). Although both isoforms interact with 

FGFR1, the outcome of this association is not identical, as the cell-surface SEF-a inhibits 

multiple FGF signaling pathways (Preger et al., 2004). Whether these isoforms function 

cooperatively or in the same developmental processes remains to be determined; to note, the 

SEF-b isoform exhibits a restricted pattern of expression in human tissues compared with 

SEF-a (Preger et al., 2004). Since RTKs deliver varied biological responses, it seems likely 

that SEF can interfere with RTK signaling at different levels to fine-tune signaling in a cell 

context- and isoform specific-manner.

Through an evolutionarily conserved modular domain named the ErbB binding region 

(EBR), the multi-adaptor protein Mitogen-Inducible Gene 6 (MIG6) mediates catalytic 

repression of ligand-bound ERBB receptors, namely EGFR, ERBB2, and ERBB4 (Anastasi 

et al., 2007; Hackel et al., 2001). Since ERBB3 signals as an obligate heterodimer with the 

other members of the ErbB family, MIG6 also inhibits its signaling and thus is a cellular 

inhibitor of the entire ErbB family. Knockout of Mig6 in mice resulted in aberrant lung 

development associated with high neonatal mortality (Ferby et al., 2006; Jin et al., 2009; 

Zhang et al., 2005), and surviving mice developed degenerative joint diseases and 

spontaneous tumors in organs including the skin, gastrointestinal tract, lung, and 

endometrium (Supplemental Table 1) (Ferby et al., 2006; Jeong et al., 2009; Jin et al., 2009; 

Zhang et al., 2005). Importantly, over proliferation and impaired differentiation of epidermal 

keratinocytes and the resulting skin tumors could be rescued by genetic or pharmacological 

suppression of EGFR, indicating that unrestrained EGFR activation and sustained signaling 

through MAPK was a result of loss of Mig6 (Ferby et al., 2006). Tissue-specific deletion of 

Mig6 in mouse hepatocytes caused hepatomegaly and fatty liver, a phenotype similar to that 

observed in mice homozygous for a gain-of-function Egfr allele (Ku et al., 2012; Natarajan 

et al., 2007; Reschke et al., 2010; Scheving et al., 2014). Receptor-induced phosphorylation 

of the MIG6 ERB domain stabilizes the MIG6/EGFR interaction and prevents activation of 

EGFR by blocking an allosteric site critical for activation within the receptor dimers (Figure 

1D) (Park et al., 2015; Zhang et al., 2007; Zhang et al., 2005). Upon docking onto EGFR, 

MIG6 is also capable of recruiting components of the endocytic machinery, leading to 

receptor degradation independent of phosphorylation and ubiquitination (Frosi et al., 2010; 

Segatto et al., 2011; Walsh and Lazzara, 2014; Ying et al., 2010). This two-tiered 

mechanism of MIG6-mediated inhibition provides for immediate repression of EGFR 

signaling (kinase inhibition) coupled to longer term isolation from incoming ErbB receptor 

ligands (endocytosis) (Anastasi et al., 2016). Whether MIG6 exerts either of these inhibitory 

functions on other RTKs remains to be determined. MIG6 binding to ErbB receptors is 

dependent on a protein interface in the kinase domain unique to the ErbB family, so 

involvement of MIG6 with other RTKs would involve a different mechanism or could imply 

that these RTKs signal in cooperation with ErbB receptors. In vitro analyses suggest that 
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MET could be a potential target of MIG6, as overexpression of MIG6 was able to inhibit the 

HGF/MET-induced cell migration and neurite outgrowth (Pante et al., 2005).

Receptor dephosphorylation

The phosphorylation status and signaling output of RTKs is determined by a balance 

between the intrinsic kinase activity of the receptor and the activities of protein tyrosine 

phosphatases (PTPs). PTPs have evolved in a number of families that are structurally and 

mechanistically distinct and control a broad spectrum of RTK signaling pathways (Ostman 

and Bohmer, 2001; Tonks, 2006). As such, they are arguably one of the most important 

regulators of the extent and intensity of RTK signaling. Animal studies thus far, however, 

have yielded only limited insights into specific functions of individual PTPs. While 

knockout mouse models have been made for all classical PTP genes except Ptpn18, Ptpn20, 
Ptpn21, and Ptpru (Hendriks et al., 2013), many of these knockout models displayed only 

mild developmental defects, suggesting significant functional redundancy between PTPs.

Ptpn11 is one of the few exceptions, as Ptpn11 knockout mice died at mid-gestation with 

multiple defects in mesodermal patterning (Qu et al., 1997; Saxton et al., 1997). Selective 

deletion of Ptpn11 in developing kidneys of mice caused reduced ureteric bud branching by 

downregulation of the transcription factors Etv4 and Etv5, which are targets of glial-derived 

neurotrophic factor (GDNF)/RET signaling and of other RTKs (Willecke et al., 2011). 

Ptpn11-deficiency in cardiomyocytes resulted in early postnatal lethality and dilated 

cardiomyopathy associated with increased IR signaling and decreased activation of ERK1/2 

and JNK2 (Princen et al., 2009). Numerous other in vivo studies have linked Ptnp11 with 

FGF-dependent MAPK/ERK signaling and have revealed roles for Ptnp11 in patterning and 

specification of the optic vesicle, lens and lacrimal gland development, chondrogenesis, 

intestinal progenitor cell fate, lung branching morphogenesis, and formation of the 

midbrain-hindbrain boundary, among others (Supplemental Table 1) (Cai et al., 2013; Dee et 

al., 2016; Heuberger et al., 2014; Pan et al., 2010; Tefft et al., 2005; Yang et al., 2013). 

PTPN11 encodes the widely expressed non-receptor tyrosine phosphatase Src-homology 2 

domain-containing phosphatase 2 (SHP2) (Dance et al., 2008), which in the absence of 

upstream stimulation, is kept in a low-activity state by an intramolecular interaction between 

the N-terminal SH2-domain and the catalytic phosphatase domain. Activation of RTKs 

and/or subsequent activation of scaffolding adaptor proteins leads to recruitment of SHP2 to 

signaling complexes, where engagement of the SH2-domains induces a conformational 

change that resolves auto-inhibitory interactions. SHP2-mediated dephosphorylation of 

FGFRs is controlled by the adaptor protein GRB2, which recruits SHP2 to the activated 

receptors (Figure 2A). GRB2 additionally redirects activated SHP2 to other signaling 

proteins, such as Sprouty or STAT proteins, that normally inhibit signaling through ERK1/2, 

AKT, or STAT5. In this manner, SHP2 can further promote RTK signaling (Ahmed et al., 

2010; Ahmed et al., 2013; Hadari et al., 1998; Hanafusa et al., 2004; Tajan et al., 2015; You 

et al., 1999).
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Dephosphorylation of signaling pathway components

The intracellular events downstream of activated RTKs are responsible for transduction and 

amplification of ligand-induced signaling. This most commonly involves protein 

phosphorylation, which ultimately results in changes in gene expression and other cellular 

effects. The PI3K/AKT and RAS/MAPK pathways are principal signaling mechanisms for 

controlling cell survival, proliferation, differentiation, and migration (Figure 2) (Mendoza et 

al., 2011), and as such, must be precisely spatially and temporally regulated. Phosphatase 

and Tensin homolog (PTEN) and Dual-Specificity Phosphatases (DUSPs) represent early 

and late attenuators, respectively, of RTK-induced intracellular signal transduction cascades. 

PTEN is the main negative regulator of the PI3K/AKT pathway, whereas DUSPs modulate 

activation of the RAS/MAPK pathway (Carracedo et al., 2008; Katz et al., 2011) (Figure 2). 

Multiple mechanisms and modes of crosstalk have been uncovered between these two 

pathways, further complicating our understanding of their complex roles in development 

(Mendoza et al., 2011).

The first, and probably still the clearest, indication that PTEN plays an essential role in 

regulation of cell growth came from early studies in D. melanogaster (Goberdhan and 

Wilson, 2003). Pten-deficient cells proliferated at a faster rate than their heterozygous 

counterparts, showed an autonomous increase in cell size, and formed enlarged organs (Gao 

et al., 2000; Goberdhan et al., 1999; Huang et al., 1999). In vitro and in vivo studies revealed 

that PTEN controls cell growth and proliferation by antagonizing growth factor-induced 

activation of the PI3K/AKT pathway. Specifically, PTEN preferentially dephosphorylates 

membrane-bound PIP3 into PIP2. This prevents PIP3-mediated recruitment of AKT to the 

plasma membrane and its activation (Figure 2B) (Engelman et al., 2006; Maehama and 

Dixon, 1998). Numerous subsequent studies in mice and other model organisms have 

examined the functional role of Pten in various organs and tissues, yielding a diverse 

spectrum of phenotypes (Supplemental Table 1) (Knobbe et al., 2008). Knockout mouse 

models of Pten showed that deletion of a single allele resulted in lethal polyclonal 

autoimmune disorders and various forms of epithelial cancer (Di Cristofano et al., 1999; Di 

Cristofano et al., 1998). Because of the lethal nature of Pten loss, conditional deletion 

models have been used to address the roles of PTEN during development. Tissue-specific 

deletion of Pten in mouse neurons resulted in progressive macrocephaly, seizures, and 

ataxia, and neurons lacking Pten expressed high levels of phosphorylated AKT (Backman et 

al., 2001; Groszer et al., 2001; Kwon et al., 2001). In vitro and in vivo analyses revealed that 

PTEN also regulates cardiac hypertrophy and survival by blocking growth factor signaling 

through the PI3K/AKT pathway (Crackower et al., 2002; Schwartzbauer and Robbins, 

2001). As PI3K pathway signaling is regulated in part by IR signaling and affects 

downstream proteins involved in metabolism such as mTOR, Pten-deficiency in hepatocytes 

led to massive hepatomegaly and steatohepatitis with triglyceride accumulation (Horie et al., 

2004; Stiles et al., 2004).

DUSPs constitute a large heterogeneous subgroup of the PTP superfamily characterized by 

their ability to dephosphorylate tyrosine, serine, and threonine residues. Despite a fairly 

detailed understanding of the biochemical properties and catalytic mechanisms employed by 

DUSPs (Farooq and Zhou, 2004; Owens and Keyse, 2007), knowledge of their in vivo roles 
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is still expanding (Supplemental Table 1). Of interest here, gene knockdown or 

overexpression studies in zebrafish, chick, and mouse first identified an in vivo role for 

DUSP6 in fin/limb bud patterning as a negative feedback regulator of the FGF-RAS/MAPK 

signaling pathway (Figure 2G) (Kawakami et al., 2003). FGF8 signaling induces expression 

of DUSP6, which encodes an ERK-specific DUSP, and establishes a negative feedback loop 

(Bermudez et al., 2010; Groom et al., 1996; Kawakami et al., 2003; Mourey et al., 1996; 

Muda et al., 1996). Targeted inactivation of Dusp6 in mice led to increased levels of 

phosphorylated ERK, the phosphorylated ERK target Erm, and transcripts initiated from the 

Dusp6 promoter itself (Li et al., 2007). Furthermore, Dusp6 knockout mice displayed 

cardiac hypertrophy and multiple skeletal abnormalities including dwarfism, defects in the 

middle ear bones and otic capsule, and premature fusion of the cranial sutures 

(craniosynostosis); histological analysis of the long bones revealed disorganization of 

chondrocytes in the growth plate (Li et al., 2007; Maillet et al., 2008; Urness et al., 2008). 

These same skeletal phenotypes are also found in mouse models of human disorders with 

constitutive activating mutations in FGFRs (Neben and Merrill, 2015; Ornitz and Marie, 

2015), highlighting the relationship between FGF signaling and DUSP6. Although many 

agonists in addition to FGFs activate ERK1/2 during embryonic development, including 

EGF, NGF, HGF, VEGF, and PDGF, few studies have examined their regulation by DUSP6 

in vivo (Bermudez et al., 2010).

Non-catalytic feedback modulators of signaling pathways

Sprouty (SPRY) and SPRED genes encode highly conserved protein families with no 

apparent enzymatic function that inhibit different steps of the RAS/MAPK signaling 

pathway and fine-tune RTK signaling in a cell context- and isoform specific-manner. Some 

evidence suggests that Sprouty proteins indirectly regulate the PI3K/AKT pathway, however, 

these effects are poorly understood (Castellano and Downward, 2011; Steelman et al., 2011). 

As late attenuators transcriptionally induced by growth factor activation, Sprouty and 

SPRED proteins adapt cells to longer term external stimulation, persisting on the timescale 

of hours (Volinsky and Kholodenko, 2013).

The first member of the Sprouty family identified was found in a screen for genes involved 

in development of trachea and eyes in Drosophila (Casci et al., 1999; Hacohen et al., 1998). 

Like Drosophila Sprouty, mammalian Sprouty proteins antagonize FGF signaling in tubular 

morphogenesis associated with tracheal/lung development (Figure 4A, A’) (Metzger et al., 

2008; Shaw et al., 2007; Tefft et al., 1999) and angiogenesis (Taniguchi et al., 2007a; 

Taniguchi et al., 2009). Since these initial findings, the number of pathways and biological 

processes regulated by Sprouty proteins continues to expand, including submandibular 

parasympathetic gangliogenesis (Figure 4B-B’) (Knosp et al., 2015), ureteric branching 

(Figure 4C, C’) (Basson et al., 2005; Basson et al., 2006; Chi et al., 2004; Gross et al., 2003; 

Michos et al., 2010), external genitalia development (Figure 4D, D’) (Ching et al., 2014), 

endochondral bone formation (Figure 4E, E’) (Joo et al., 2016; Minowada et al., 1999), and 

branchial nerve development (Figure 4F-F”) (Simrick et al., 2011), among others 

(Supplemental Table 1).

Neben et al. Page 10

Dev Biol. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



As the functions of Sprouty proteins in embryonic development have been reviewed 

previously by others (Cabrita and Christofori, 2008; Horowitz and Simons, 2008; Warburton 

et al., 2008), we highlight here the specific roles of these proteins in craniofacial and tooth 

development as an example of the types of effects these genes can have on RTK-mediated 

signaling. SPRY2 and FGF8/FGFR3 signaling is required for cell fate decisions in the 

mouse auditory sensory epithelium, as loss of Spry2 resulted in dramatic perturbations in 

organ of Corti cytoarchitecture (Figure 4G, G’) (Shim et al., 2005). Combined deletion of 

Spry1 and Spry2 in mice caused highly disorganized palatal rugae including broader and 

ectopic ruga formation (Figure 4H, H’), indicating that the FGF pathway is activatory in a 

Turing-type reaction-diffusion system for the striped pattern that establishes and maintains 

the palatal rugae (Economou et al., 2012). Spry2;Spry4 double knockout mice are 

embryonic lethal by E12.5 with craniofacial and limb morphogenesis abnormalities (Figure 

4I, I’) (Taniguchi et al., 2007a; Taniguchi et al., 2009). The Spry4 loss of function 

phenotypes, including dwarfism and polysyndactyly, resemble mouse models of human 

disorders with activating mutations in FGFRs (Neben and Merrill, 2015; Ornitz and Marie, 

2015; Taniguchi et al., 2007a), suggesting that loss of Spry4 results in hyperactivation of 

FGF signaling. Mice carrying single and various combinations of Sprouty mutant alleles 

also possess supernumerary teeth and display abnormalities in tooth size, shape, and micro-

structure (Boran et al., 2009; Charles et al., 2011; Klein et al., 2008; Klein et al., 2006; 

Lagronova-Churava et al., 2013; Lochovska et al., 2015; Marangoni et al., 2015; Percival et 

al., 2017). For example, Spry2+/−;Spry4−/− mice develop a ‘tusk’-like incisor in their lower 

jaws due to the presence of enamel on the lingual surface (Figure 4J, J’) (Boran et al., 2009; 

Klein et al., 2008). Importantly, the lingual ameloblast phenotype can be rescued in the adult 

by reducing Fgf gene dosage (Klein et al., 2008), demonstrating the critical role of Sprouty 

genes in controlling the epithelial-mesenchymal FGF signaling loop.

The four mammalian orthologues of Sprouty proteins share sequence similarity to D. 
melanogaster Sprouty in the cysteine-rich C-terminus but significantly differ among each 

other and from the fly ortholog in the N-terminus (de Maximy et al., 1999; Leeksma et al., 

2002; Mason et al., 2006). This sequence divergence at the N-terminus could dictate 

differential functions, potentially by mediating protein-protein interactions. Indeed, Sprouty 

proteins can interact directly with multiple downstream components of the RTK pathway, 

including FRS2, GRB2, RAF1, B-RAF, and SHP2. In most cases, however, it remains 

unclear how these associations modulate signaling. The best studied family members, 

SPRY1 and SPRY2, have been shown to antagonize RTK signaling at multiple levels, such 

as binding to the GRB2/SOS complex (Figure 2D) and inhibition of RAF1 activation by 

RAS (Figure 2D’) depending on the cellular context and/or the identity of the RTK (Mason 

et al., 2006). The phosphorylation of SPRY1 and SPRY2 at Tyrosine 53 and Tyrosine 55, 

respectively, induces a conformational change that has been shown to be essential for protein 

binding and modulation of RAS/MAPK signaling (Alsina et al., 2012; Guy et al., 2009; 

Hanafusa et al., 2002; Mason et al., 2004; Sasaki et al., 2003; Sasaki et al., 2001). Sprouty 

proteins may mediate their actions in part by increasing active forms of such phosphatases as 

PTEN (Edwin et al., 2006; Patel et al., 2013). In cultured cells, SPRY2 increased overall 

PTEN protein levels while decreasing PTEN phosphorylation, resulting in increased PTEN 

activity. This was reflected by diminished activation of AKT by EGF signaling and blocked 
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cell proliferation (Edwin et al., 2006). In the context of EGFR signaling, SPRY2 levels are 

controlled through phosphorylation-dependent complex formation with C-CBL in vitro (Hall 

et al., 2003; Mason et al., 2004; Rubin et al., 2003). Binding of SPRY2 to C-CBL directs the 

proteolytic degradation of SPRY2 but also inhibits C-CBL-mediated degradation of EGFR, 

leading to sustained signaling activity (Egan et al., 2002; Ng et al., 2008; Rubin et al., 2003; 

Wong et al., 2002). This function may be limited to SPRY2, however, as SPRY4 suppression 

of MAPK/ERK activation by EGF stimulation did not result in interaction with C-CBL 

(Mason et al., 2004; Wong et al., 2001).

SPREDs (Sprouty-related PRoteins with an EVH1 Domain) are a family of membrane-

associated, negative RAS/MAPK signaling modulators that possess structural and functional 

similarities to their relatives, the Sprouty proteins. There are four known mammalian 

SPRED proteins: SPRED1, SPRED2, SPRED3, and EVE-3, the last of which is a splice 

variant of SPRED3 (Kato et al., 2003; King et al., 2006; Wakioka et al., 2001). Spred1 
knockout mice are viable and fertile but exhibit low body weight, a shortened face, and 

impaired hippocampus-dependent learning capabilities (Brems et al., 2007; Denayer et al., 

2008; Inoue et al., 2005; Phoenix and Temple, 2010). Spred2 deficiency in mice suppressed 

aorta-gonad-mesonephros hematopoiesis and caused defects in bone morphogenesis, with 

the mice exhibiting a dwarfing phenotype and increase of early hematopoiesis (Bundschu et 

al., 2005; Nobuhisa et al., 2004). Overlapping expression patterns of different SPRED 

family members and their possible redundancy might preclude certain phenotypes from 

being observed in the single null alleles (Supplemental Table 1). Indeed, deletion of both 

Spred1 and Spred2 in mice, which have overlapping expression patterns in the heart, lung, 

liver, and bone, resulted in embryonic lethality with subcutaneous hemorrhage, edema, and 

dilated lymphatic vessels (Engelhardt et al., 2004; Kato et al., 2003; Stowe et al., 2012; 

Taniguchi et al., 2007b; Tuduce et al., 2010).

Like Sprouty proteins, SPRED proteins inhibit growth factor-mediated MAPK/ERK 

activation, albeit by different biochemical mechanisms. Overexpression of SPRED1 

increases RAF recruitment to the plasma membrane and prolongs RAS/RAF interaction, 

thus withdrawing RAF from activation by phosphorylation (Figure 2C) (Bundschu et al., 

2005; Wakioka et al., 2001). Subsequent studies confirmed that SPRED proteins also inhibit 

activation of RAS by the small GTPase RAP1 without affecting receptor phosphorylation 

(King et al., 2006; Nonami et al., 2005; Stowe et al., 2012). Recently, it was proposed that 

SPRED1-plasma membrane translocation is mediated in a B-RAF- and C-RAF-dependent 

manner to specifically disturb K-RAS but not H-RAS membrane anchorage (Siljamaki and 

Abankwa, 2016). This potential mechanism may explain why it has been difficult to pinpoint 

whether SPRED1 acts at the level of RAS or RAF.

Originally isolated from the bovine brain (Bernier and Jolles, 1984), RAF Kinase Inhibitor 

Protein (RKIP; also known as PhosphatidylEthanolamine-Binding Protein, PEBP1) was 

renamed based on its physiologically relevant inhibition of the RAS/MEK/ERK pathway 

(Yeung et al., 1999; Yeung et al., 2001). Expression of RKIP mRNA has since been detected 

in all mammalian tissues tested, with high levels in spermatids and brain oligodendrocytes, 

Purkinje cells, and specific cortical and hippocampal neuronal cell layers (Bernier and 

Jolles, 1984; Frayne et al., 1999; Theroux et al., 2007). RKIP deficient mice are viable but 
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develop an olfaction deficit, a phenotype that correlates with the expression pattern of the 

gene in the brain (Theroux et al., 2007). Subsequent studies in model organisms have 

identified RKIP as critical for neurological functioning, photoreceptor degeneration, 

myogenesis, reproduction, and spermatogenesis (Supplemental Table 1) (Antoun et al., 

2012; Gibbons et al., 2005; Murga-Zamalloa et al., 2011; Nixon et al., 2006; Subramanian et 

al., 2014; Yamamoto et al., 2012). RKIP inhibits RAF-1 mediated phosphorylation and 

activation of MEK by competitive physical association which disrupts the interaction 

between these kinases (Figure 2E). Overexpression of RKIP in vitro reduced cell 

proliferation and transformation and was accompanied by alterations in MEK-, ERK-, and 

AP-dependent transcription (Yeung et al., 1999). Interestingly, although RKIP can interact 

with B-RAF, depletion of RKIP did not affect B-RAF activation, indicating that RKIP may 

selectively limit the dynamic range of MAPK signaling in response to growth factors (Trakul 

et al., 2005).

Early attenuation of RTK signaling via receptor ubiquitination and 

degradation

Another common mechanism by which RTK signaling is downregulated is the removal of 

receptors from the plasma membrane via endocytosis. This can occur either reversibly, when 

internalized receptors are recycled back to the plasma membrane after a period of time, or 

irreversibly, when the downregulated receptors are sent for lysosomal degradation. RTK 

internalization and degradation are regulated upon growth factor induced RTK activation 

through ubiquitination of the intracellular receptor domains by E3 ubiquitin ligases (Figure 

3) (Goh and Sorkin, 2013). The two main E3 ligases involved in RTK ubiquitination during 

development are the HECT-type ligase NEDD4 and the RING-type ligase CBL. Both 

NEDD4 and CBL regulate signal duration of multiple RTKs, and their disruption in 

development results in serious abnormalities.

NEDD4 (Neuronal precursor cell Expressed and Developmentally Downregulated) proteins 

are found ubiquitously in eukaryotes and have expanded to nine known family members in 

mammals, with two of them, NEDD4 and NEDD4L (also known as NEDD4-2) being very 

closely related (Supplemental Table 1) (Scheffner and Kumar, 2014). Complete loss of 

Nedd4 in mice resulted in embryonic lethality at mid-gestation with pronounced heart 

defects, subcutaneous bleeding, and developmental delays (Fouladkou et al., 2010; Kawabe 

et al., 2010; Liu et al., 2009). Although NEDD4 has several additional substrates beyond 

RTKs, biochemical analysis suggested that the Nedd4 loss-of-function phenotype can be at 

least partially attributed to abnormal RTK signaling: the growth retardation in Nedd4 
heterozygous mice is associated with reduced cell surface expression and signaling through 

IR and IGF-1R (Cao et al., 2008). That loss of Nedd4 resulted in loss of IGF-1R signaling 

contradicts earlier in vitro studies which reported that NEDD4 ubiquitinates and decreases 

stability of IGF-1R (Vecchione et al., 2003). This suggests that NEDD4 may fine-tune RTK 

signaling differently in distinct cell types. In agreement with a role for NEDD4 in promoting 

receptor degradation, Nedd4L-deficient mouse embryos showed increased expression of 

neurotrophic RTK 1 (NRTK1, also known as TRKA), a possible contributor to the pain 

sensitivity phenotype in heterozygous adults (Yanpallewar et al., 2016). The binding of 
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NEDD4L to activated NRTK1 leads to receptor ubiquitination and down-regulation and to 

the modulation of neuronal survival in vitro (Figure 3A) (Arevalo et al., 2006; Yu et al., 

2014). NEDD4 may also attenuate RTK signaling by regulating the levels of the tumor 

suppressor PTEN. In vitro studies demonstrated that NEDD4 was responsible for PTEN 

ubiquitination (Trotman et al., 2007; Wang et al., 2007), and subsequent studies in X. laevis 
confirmed that Nedd4-mediated ubiquitination of Pten promoted axonal and dendritic 

branching by allowing full activation of the PI3K/Akt pathway (Christie et al., 2010; 

Drinjakovic et al., 2010; Schmeisser et al., 2013). However, it does not appear that aberrant 

PTEN ubiquitination in mice played a role in impaired axon growth upon deletion of Nedd4 
and Nedd4L (Hsia et al., 2014), suggesting that NEDD4 regulation of PTEN may only occur 

in specific biological contexts.

The first evidence that members of the CBL (Casitas B-lineage Lymphoma proto-oncogene) 

family of E3 ligases (cbl in D. melanogaster, SLI-1 in C. elegans, and CBL-3, CBL-B, and 

C-CBL in mammals) act as negative regulators of RTKs was provided by genetic screens in 

C. elegans and D. melanogaster (Supplemental Table 1). These early studies demonstrated 

that loss-of-function point mutations in the CBL homologs sli-1 and cbl resulted in aberrant 

signaling by the EGFR homologs LET-23 and Der, respectively (Jekely et al., 2005; Meisner 

et al., 1997; Pai et al., 2000; Wang et al., 2008; Yoon et al., 1995). Subsequent studies of the 

mammalian homologs have shown that c-Cbl- or Cbl-b-deficient mice are viable and fertile 

with only minor phenotypic differences, but combined deletion results in early embryonic 

lethality before mid-gestation (Mohapatra et al., 2013; Nakamura et al., 2001). This 

redundancy is consistent with in vitro work demonstrating that C-CBL and CBL-B work 

cooperatively to control the duration of EGFR signaling (Pennock and Wang, 2008). Upon 

ligand-induced receptor activation, phosphorylated CBL proteins complex with EGFR via a 

highly conserved TKB domain to facilitate receptor ubiquitination and degradation by a 

catalytic RING finger domain (Figure 3B) (de Melker et al., 2001; Haglund et al., 2003; 

Levkowitz et al., 1999; Levkowitz et al., 1998; Longva et al., 2002). The c-Cbl knockout 

phenotype is faithfully recapitulated by a mutation in the RING finger domain that 

eliminates its E3 ligase activity and resulted in more severe phenotypic changes than a loss-

of-function mutation in the c-Cbl TKB domain (Thien and Langdon, 2005; Thien et al., 

2003). Thus, TKB domain-mediated interactions with RTKs could not fully explain the 

spectrum of C-CBL functions. Further confirmation of this hypothesis came from a study 

analyzing homozygous knock-in mutation of Tyrosine 737, which eliminates the binding site 

for PI3K in the C-terminal tail of CBL, located outside of the TKB domain (Adapala et al., 

2010a; Adapala et al., 2010b). Abrogation of the CBL/PI3K interaction resulted in perturbed 

RANKL-mediated signaling, leading to increased bone mass due to a cell-autonomous 

defect in osteoclast function, a phenotype not seen with other Cbl mutations (Adapala et al., 

2010a; Adapala et al., 2010b).

Late attenuation of RTK signaling via receptor ubiquitination and 

degradation

By recruitment of E3 ubiquitin ligases to the receptor complex, members of the Leucine-

Rich and Immunoglobulin-like domain (LRIG) and Suppressor of Cytokine Signaling 
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(SOCS) families accelerate receptor ubiquitination and degradation (Figure 3C, D) (Gur et 

al., 2004; Laederich et al., 2004). Unlike NEDD4 and CBL ubiquitin ligases, the expression 

of LRIG1 and SOCS genes are induced by growth factor activation of RTKs via 

transcriptional activation and translation (Segatto et al., 2011). The LRIG1 transmembrane 

protein and SOCS cytosolic adaptor proteins have been shown to interact with RTKs and 

attenuate receptor signaling through both ligand-dependent and independent mechanisms.

Genetic approaches in vivo have confirmed the essential biological functions of LRIG 

proteins and have provided insight into the broad range of their effects on signaling 

pathways (Supplemental Table 1). Deletion of Lrig1 in mice leads to psoriasis-like 

epidermal hyperplasia and dramatically increased proliferation of the intestinal crypts and 

tracheal and bronchial epithelium (Karlsson et al., 2008; Lu et al., 2014; Luetteke et al., 

1994; Suzuki et al., 2002). These phenotypes were correlated with a substantial increase in 

total and phosphorylated protein levels of EGFR, ERBB2, ERBB3, and MET in associated 

tissues (Suzuki et al., 2002), emphasizing the role of LRIG1 as a negative regulator of RTK 

signaling in vivo. Importantly, the skin and intestinal phenotypes in Lrig1-deficient mice 

could be rescued by genetic or chemical inhibition of EGFR phosphorylation, suggesting 

direct involvement of LRIG1 in controlling the strength of EGFR signaling (Luetteke et al., 

1994). Indeed, extensive in vitro studies have demonstrated that LRIG1 attenuates the half-

life of all four receptors of the ErbB family and of MET by amplifying C-CBL-mediated 

ubiquitination (Goldoni et al., 2007; Gur et al., 2004; Laederich et al., 2004; Rafidi et al., 

2013; Rondahl et al., 2013; Shattuck et al., 2007; Stutz et al., 2008; Yi et al., 2011). 

Additional in vitro work suggests that limited proteolysis of the soluble ectodomain of 

LRIG1 may inhibit EGFR signaling by competing with ligand binding and stabilizing the 

receptor in the inactive monomeric state (Goldoni et al., 2007). LRIG1 was also shown to 

restrict RET recruitment to lipid rafts and to inhibit binding of its ligand GDNF preventing 

receptor activation (Ledda et al., 2008). While the functions of the other members of the 

LRIG family, LRIG2 and LRIG3, remain poorly understood, studies in X. laevis have 

demonstrated that lrig3 modulates Fgf-dependent Erk phosphorylation and Wnt signaling 

during neural crest cell specification and induction. When co-expressed in vitro, Lrig3 co-

immunoprecipitated with Fgfr1 via its ectodomain, and this interaction was correlated with 

reduced levels of Fgfr1 protein (Zhao et al., 2008), suggesting that Lrig3 may attenuate Fgf 

signaling by the mechanisms similar to those described for EGFR and RET.

Although the biological roles of SOCS proteins have traditionally been considered in the 

context of cytokine receptor signaling through the JAK/STAT pathway in immunity and 

hematopoiesis, emerging evidence implicates SOCS proteins in the control of RTK signaling 

during development (Supplemental Table 1) (Trengrove and Gray, 2013). In vitro and in vivo 
studies demonstrated that SOCS2 exerts a dual role in the regulation of EGF signaling: 

Socs2 knockout mice displayed increased intestinal growth due to enhanced responsiveness 

to EGF (Michaylira et al., 2006), and cortical neurons derived from transgenic Socs2 
overexpressing mice had increased neural outgrowth, apparently also due to enhanced EGF 

signaling (Goldshmit et al., 2004). The gigantism phenotype of Socs2-deficient mice 

suggests an important role for SOCS2 in the regulation of growth, possibly by modulating 

growth hormone and IGF-1R signaling (Greenhalgh et al., 2002; Metcalf et al., 2000). These 

mice exhibited prolonged STAT5B activation, and loss of Stat5b function partially relieved 
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the growth enhancement. In contrast to Socs2 mutants, but similar to Nedd4 heterozygous 

mice, Socs6 knockout mice displayed a mild growth retardation thought to be due to 

perturbation of IGF-1R signaling (Krebs et al., 2002). Despite in vitro studies supporting a 

role for SOCS6 in neural stem differentiation and glucose metabolism (Choi et al., 2010; 

Gupta et al., 2011; Liu et al., 2008a; Liu et al., 2008b; Vlacich et al., 2010), mice deficient in 

Socs6 did not display phenotypic alterations consistent with such functions (Krebs et al., 

2002). However, transgenic mice overexpressing Socs6 had altered glucose metabolism 

compared to wild type mice, with enhanced PI3K/AKT activation that was independent of 

increased IR or IGF-1R phosphorylation (Li et al., 2002). This suggests an additional 

mechanism by which SOCS6 regulates insulin signaling downstream of the receptor to 

control glucose metabolism. Similar to the engagement of LRIG1 with many RTKs, in vitro 
studies suggest that SOCS proteins regulate multiple RTKs including c-KIT, FLT3, IR, 

IGF-1R, and EGFR by enhancing their degradation via recruitment of E3 ubiquitin ligase 

complexes (Banks et al., 2005; Kario et al., 2005; Krebs et al., 2002; Nicholson et al., 2005; 

Trengrove and Gray, 2013). A subset of SOCS proteins – SOCS2, SOCS6, and SOCS7 – 

protect RTKs from SOCS-mediated degradation by interacting with the domains of other 

SOCS proteins responsible for the recruitment of E3 ubiquitin ligase complexes (Piessevaux 

et al., 2006). This suggests a role for these SOCS proteins in restoring cells to a responsive 

state for subsequent RTK stimulation.

Modulators of RTK signaling associated with human congenital disorders

Given the critical roles of RTK signaling in cell fate determination and morphogenesis, there 

has been great interest in understanding how RTK regulators are deregulated in human 

disorders. Indeed, both gain-of-function mutations, which lead to constitutive protein 

activation, and loss-of-function mutations, which lead to non-functional or dominant 

negative proteins, have been mapped to regulators of RTK signaling in human disease 

(Rauen, 2013; Tartaglia and Gelb, 2005). Importantly, mutations in the same gene can cause 

multiple conditions with wide phenotypic variability, and mutations in different genes can 

result in disorders with overlapping clinical features, linking these genes into overarching 

molecular networks. Studying the underlying pathophysiology of these disorders has 

uncovered novel regulators of RTKs, revealed new biological functions for those already 

identified, and advanced development of molecular-based therapies for treatment. We 

highlight here efforts that have provided information regarding human genetic disorders. 

Several other excellent reviews cover feedback regulators in cancer (Casaletto and 

McClatchey, 2012; Logue and Morrison, 2012; Regad, 2015)

The key role for Anosmin 1 in neuronal targeting and migration was determined by the 

identification of missense mutations that result in inactive protein in Kallmann syndrome 

(KS) (Bick et al., 1992). KS is a disorder characterized by hypogonadotropic hypogonadism 

(HH), defined as absent or incomplete sexual maturation by the age of 18 years, with or 

without anosmia. Less frequent symptoms include renal agenesis, cleft palate, mirror 

movements, and hearing loss (Tsai and Gill, 2006). FGFR1 loss-of-function mutations in an 

autosomal dominant form of KS first suggested that Anosmin 1 was involved in FGF 

signaling (Dode et al., 2003). Interestingly, missense mutations in members of the FGF8 set 

of co-regulated genes, or synexpression group, including DUSP6, SPRY4, FLRT3, and SEF, 
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have also been identified in individuals with HH with or without anosmia (Miraoui et al., 

2013). The functional characterization of these mutations may offer new insight into their 

molecular mechanisms of action and roles of these genes in regulation of FGF signaling in 

gonadotropin-releasing hormone biology.

The importance of genes that encode protein components or regulators of the RAS/MAPK 

pathway is elegantly demonstrated by germline mutations associated with a class of 

developmental disorders known as the RASopathies (Goodwin et al., 2015; Goyal et al., 

2017; Jindal et al., 2015; Jindal et al., 2017; Rauen, 2013). In one of these conditions, 

Costello syndrome (CS), nearly all individuals have a heterozygous de novo germline 

mutation in HRAS that results in a constitutively active protein (Aoki et al., 2005; Estep et 

al., 2006), while in cardio-facio-cutaneous syndrome (CFC), patients have heterozygous 

activating germline mutations in KRAS, BRAF, MEK1, or MEK2, all components of the 

RAS/MAPK pathway (Niihori et al., 2006; Rodriguez-Viciana et al., 2006). Because of the 

common underlying pathway dysregulation, RASopathies exhibit numerous overlapping 

clinical phenotypes. Heterozygous inactivating mutations in SPRED1 cause 

Neurofibromatosis Legius syndrome (NFLS), a mild form of Neurofibromatosis 1 (NF1), 

which is characterized by multiple cafe-au-lait skin spots, variable dysmorphic features such 

as hypertelorism or macrocephaly, lipomas, and mild learning disabilities or attention 

problems (Figure 5A) (Brems et al., 2007; Brems et al., 2012). The similarities of NFLS and 

NF1 are explained by the shared underlying molecular mechanism: SPRED1 downregulates 

the RAS/MAPK pathway through neurofibromin, the NF1 gene product (Stowe et al., 2012). 

Interaction between these proteins facilities plasma membrane localization of neurofibromin, 

where it functions as a RAS GTPase-activating protein to negatively regulate RAS signaling 

(Adapala et al., 2010a; Dunzendorfer-Matt et al., 2016; Hirata et al., 2016; Martin et al., 

1990; Stowe et al., 2012; Xu et al., 1990). Association of SPRED2 and SPRED3 with 

neurofibromin suggests that these isoforms may compensate for loss of Spred1 and thus 

helps explain the milder phenotype associated with NFLS in comparison with NF1 (Stowe et 

al., 2012).

The manifestations of another RASopathy, LEOPARD syndrome 1 (LPRD1), are numerous: 

multiple lentigines, electrocardiographic conduction abnormalities, ocular hypertelorism, 

pulmonic stenosis, abnormal genitalia, retardation of growth, and sensorineural deafness 

(Figure 5B) (Legius et al., 2002; Mendez et al., 1985). LPRD1-associated PTPN11 
mutations lead to a catalytically defective SHP2 protein that acts in a dominant negative 

fashion and interferes with MAPK/ERK signaling (Digilio et al., 2002; Kontaridis et al., 

2006; Tartaglia et al., 2006). In contrast, heterozygous missense mutations in PTNP11 that 

result in excessive SHP2 activity are a principal cause of Noonan syndrome (NS) (Fragale et 

al., 2004; Tartaglia and Gelb, 2005), a relatively common disorder characterized by short 

stature, facial dysmorphia, and a wide spectrum of congenital heart defects (Figure 5C) 

(Digilio et al., 2002; Tartaglia et al., 2001). How two mutations with opposite effects on 

catalytic activity result in syndromes with similar clinical symptoms is a fascinating open 

question. Genetic and biochemical studies in D. melanogaster and zebrafish successfully 

demonstrate that ptpn11 mutations associated with LPRD1 and NS result in distinct but 

similar phenotypes, and in the case of the zebrafish, recapitulate the craniofacial and cardiac 

defects of human patients (Supplemental Table 1) (Bonetti et al., 2014; Jopling et al., 2007; 
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Oishi et al., 2006; Oishi et al., 2009; Stewart et al., 2010). Mouse models generated for the 

two most prevalent LPRD1 and NS PTPN11 mutations exhibit developmental defects, 

including reduced length, craniofacial abnormalities, congenital heart defects, with 

activation of the PI3K/AKT or RAS/ERK pathways, respectively (Araki et al., 2004; De 

Rocca Serra-Nedelec et al., 2012; Marin et al., 2011). Importantly, genetic deletion of 

ERK1/2 prevented cardiac abnormalities in a cardiomyocyte-specific SHP2 gain-of-function 

mouse model of NS (Nakamura et al., 2007), and injection of the MAPK/ERK kinase 

inhibitor U0126 in utero prevented craniofacial malformations in newborn pups (Nakamura 

et al., 2009). Similarly, pharmacological intervention with rapamycin, an inhibitor of mTOR, 

reversed the hypertrophic cardiomyopathy in a mouse model of LPRD1 (Marin et al., 2011). 

These studies suggest that some RASopathy-associated PTPN11 mutations can be rescued, 

opening a new therapeutic avenue for affected individuals. A NS-like phenotype has been 

associated with several additional genes including C-CBL (Figure 5D) (Martinelli et al., 

2010; Niemeyer et al., 2010; Perez et al., 2010). In vitro studies showed that the C-CBL 
mutations found in patients impaired CBL-mediated degradation of cell-surface receptors in 

a dominant-negative fashion and caused dysregulation of intracellular signaling through 

RAS, explaining the overlapping phenotype in NS associated with RAS/MAPK pathway 

activating mutations (Martinelli et al., 2010; Schubert et al., 2006).

Germline mutations and deletions in PTEN that result in dysregulation of the PI3K/AKT 

pathway cause Bannayan-Ruvalcaba-Riley syndrome (BRRS) and Cowden syndrome 1 

(CWS1) (Liaw et al., 1997; Marsh et al., 1999; Nelen et al., 1997; Zhou et al., 2003). BRRS 

and CWS1 are rare allelic disorders that share characteristics such as hamartomatous polyps 

of the gastrointestinal tract, mucocutaneous lesions, and increased risk of developing 

neoplasms (Blumenthal and Dennis, 2008). It has been suggested that both conditions and 

several other distinctive phenotypes associated with PTEN mutations be referred to as PTEN 

hamartoma tumor syndrome (Lachlan et al., 2007; Marsh et al., 1999; Nelen et al., 1997; 

Sarquis et al., 2006). Also included in this spectrum of disorders are PTEN-related Proteus 

syndrome (PS) and ‘Proteus-like’ syndrome, complex and highly variable disorders 

involving vascular malformations and hamartomatous overgrowth of multiple tissues 

associated with germline and tissue-specific somatic activating mutations in AKT1 or 

PTEN, respectively (Cohen, 2014; Lindhurst et al., 2011; Smith et al., 2002; Turner et al., 

2004; Zhou et al., 2001; Zhou et al., 2000). These correlations demonstrate the critical 

involvement of PTEN in regulation of the pro-proliferative signals mediated by the 

PI3K/AKT pathway.

Expanding the array of clinically distinct phenotypes associated with PTEN mutations are 

VACTERL association and macrocephaly/autism syndrome (Butler et al., 2005; Reardon et 

al., 2001). VACTERL describes a constellation of congenital anomalies including vertebral 

anomalies, anal atresia, congenital cardiac disease, tracheoesophageal fistula, renal 

anomalies, radial dysplasia, and other limb defects (Khoury et al., 1983), whereas 

macrocephaly/autism syndrome is characterized by increased head circumference, abnormal 

facial features, and delayed psychomotor development resulting in autistic behavior or 

intellectual disability (Figure 5E) (Herman et al., 2007; Tsujita et al., 2016). Whether 

individuals affected with macrocephaly/autism syndrome and VACTERL association 

develop further clinical manifestations of other PTEN-associated syndromes is unknown. 
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Mouse models with deficient Pten result in macrocephaly and autistic-like behavior with 

abnormal activation of PI3K/AKT pathway (Supplemental Table 1) (Chen et al., 2015; 

Clipperton-Allen and Page, 2014; Kwon et al., 2006; Page et al., 2009). Future analyses of 

specific disease-causing human PTEN mutations will prove useful in understanding the 

mechanisms underlying these heterogeneous phenotypes.

The recent discovery of autosomal recessive LRIG2 mutations in Urofacial syndrome (UFS) 

provides additional insight into LRIG2 function as a regulator of RTK signaling. UFS 

presents with urinary bladder dysfunction associated with abnormal facial expressions 

(Figure 5F) (Stuart et al., 2013). Interestingly, loss of function mutations in Heparanase-2, 

which regulates the availability and signaling of growth factors through processing of 

HSPGs, were also identified as causative for UFS (Daly et al., 2010; Pang et al., 2010). In 

fact, deletion of Hpse2 but not Lrig2 in X. laevis and mice caused UFS-like urological 

phenotypes. These observations suggest that HPSE2 might functionally overlap in its mode 

of RTK inhibition with LRIG2 (Supplemental Table 1) (Guo et al., 2015a; Roberts et al., 

2014).

CONCLUDING REMARKS

From the single cell stage, RTKs guide the embryogenesis, development, and postnatal 

growth of nearly all organisms. Our understanding of the significant contribution that RTKs 

play has been enabled through extensive work in model organisms and by advances in 

elucidating the biochemistry, cell biology, and structure of these receptors. Equally 

important contributions have arisen from studies of human congenital disorders and clinical 

analyses of RTKs in diseases. These studies reveal that a complex network of proteins is 

required to guide RTKs during their lifetime in the cell, from their biosynthesis and 

maturation in the ER, subsequent trafficking to the cell surface, ligand-dependent activation 

triggering autophosphorylation and downstream signaling, and final desensitization by 

ubiquitination and endocytosis. Although we have come to appreciate the mechanisms by 

which many of these regulators contribute to the duration and extent of ligand-dependent 

RTK activation in development, there are still many exciting discoveries to be made about 

the individual steps that are necessary to properly regulate RTK signaling. Our knowledge of 

the specificity of individual regulators for different RTKs and insights into the mechanism of 

their function remains largely minimalistic. Even more lagging are structural studies on 

many of these targets, which are necessary to advance development of specific therapeutics 

for patients in which modulation of RTK regulators could be clinically beneficial. Lastly, it 

is likely that many feedback regulatory loops still remain to be discovered.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• RTK signaling plays pivotal roles in cell fate determination and 

morphogenesis.

• Feedback regulators fine-tuning the duration and extent of pathway activation.

• Positive regulators function in tandem with negative regulators in 

development.

• Germline mutations in RTK regulators cause human genetic disorders.
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Figure 1. Modulation of RTK signaling by regulation of the ligand-receptor signaling complex 
formation
(A) Heparin-bound Anosmin 1 binds to a pre-formed FGF2/FGFR1 complex, promoting its 

assembly and resulting receptor activation. FGFR signaling induces expression of FLRT3 
and SEF via transcriptional activation and translation. (B) FLRT3 complexes with FGFR to 

promote downstream signaling of the MAPK/ERK pathway via its intracellular domain. (C) 

SEF complexes with FGFR and blocks receptor phosphorylation and activation of the RAS/

MAPK and PI3K/AKT signaling cascades. (D) EGFR signaling induces MIG6 expression 

via transcriptional activation and translation. MIG6 accumulates in the cytoplasm where it 
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binds directly with the ligand-activated ErbB kinase domain to inhibit auto-phosphorylation. 

This interaction can direct trafficking of the MIG-bound EGFR from the plasma membrane 

to late endosomes, targeting the receptor for lysosomal degradation. Dashed lines connecting 

the human congenital disorder with the protein in the pathway encoded by the causative 

mutated gene. Syndromes noted in the text and/or Supplemental Table 1. HH, 

hypogonadotropic hypogonadism with or without anosmia; KS, Kallmann syndrome; FGFR, 

Fibroblast Growth Factor Receptor; GF, growth factor; HS, heparin-sulfate; P, 

phosphorylation; RTK, receptor tyrosine kinase.
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Figure 2. Feedback modulators of intracellular signal transduction cascades
FGFR signaling induces expression of the SPRED family, the Sprouty family, SEF, and 

nuclear DUSPs via transcriptional activation and translation to attenuate RAS/MAPK 

signaling. (A) Growth factor-activated RTKs induce GRB2-mediated recruitment of SHP2 to 

signaling complexes. GRB2 redirects activated SHP2 to other signaling proteins that 

normally inhibit RTK signaling, subsequently acting as a positive regulator. (B) Growth 

factor-activated RTKs recruit and activate PI3K. The PI3K lipid signaling intermediate is 

dephosphorylated by PTEN, thereby attenuating PI3K/AKT signaling. (C) SPRED proteins 

increase RAF recruitment to the plasma membrane and prolongs RAS/RAF complexation, 
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withdrawing RAF from activation by phosphorylation. (D, D’) Sprouty proteins translocate 

to the plasma membrane where they are phosphorylated. This phosphorylation induces a 

confirmation change that allows Sprouty proteins to bind and disrupt the GRB2/SOS 

complex, RAS activation, and RAF activation, thereby attenuating RAS/PI3K and RAS/

MAPK signaling. (E) RKIP binds to both RAF1 and MEK to prevent their physical 

interaction and MEK phosphorylation, thereby attenuating RAS/MAPK signaling. (F) SEF-

b suppresses activation at the level of, or downstream from, MEK. (G) DUSP6 

dephosphorylates ERK. Dashed lines connecting the human congenital disorder with the 

protein in the pathway encoded by the causative mutated gene. Syndromes noted in the text 

and/or Supplemental Table 1. BRRS, Bannayan-Ruvalcaba-Riley syndrome; CFC, cardio-

facio-cutaneous syndrome; CS, Costello syndrome; CWS1, Cowden syndrome 1; HH, 

hypogonadotropic hypogonadism with or without anosmia; LDD, Lhermitte-Duclos disease; 

LPRD1, LEOPARD syndrome 1; MAS, Macrocephaly/autism syndrome; MC, 

Metachondromatosis; NFLS, Neurofibromatosis Legius syndrome; NS, Noonan syndrome; 

PS-like, Proteus-like syndrome; VACTERL, vertebral anomalies, anal atresia, congenital 

cardiac disease, tracheoesophageal fistula, renal anomalies, radial dysplasia, and other limb 

defects; GF, growth factor; P, phosphorylation; RTK, receptor tyrosine kinase.
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Figure 3. Attenuation of RTK signaling by receptor ubiquitination and degradation
(A) Growth factor activation of RTKs leads to recruitment of NEDD4 to the receptor 

complex. (B) Independent and (C) SOCS- or (D) LRIG-mediated mechanisms recruit CBL 

to the receptor complex. NEDD4 and CBL direct the ubiquitination of RTKs, resulting in 

receptor endocytosis and routing to early endosomes. RTKs can then either be recycled to 

the plasma membrane or targeted for lysosomal degradation, thereby attenuating receptor 

signaling. Dashed lines connecting the human congenital disorder with the protein in the 

pathway encoded by the causative mutated gene. Syndromes described in the text and/or 

Supplemental Table 1. PVNH7, Periventricular nodular heterotopia 7; NS-like, Noonan 
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syndrome-like; UFS, Urofacial syndrome; GF, growth factor; P, phosphorylation; RTK, 

receptor tyrosine kinase; U, ubiquitination.
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Figure 4. Mouse models are invaluable in decoding the developmental roles of the regulator 
family of Sprouty proteins
(A-A’) E12.5 Spry2−/− mouse lung showing the normal ventral secondary branch (V1) and 

an ectopic branch (V*) that forms earlier and proximal to V1 (Metzger et al., 2008). (B-B’) 
Genetic deletion of Spry1;Spry2 in mice disrupts submandibular gland epithelial 

development resulting in a wide primary duct (white lines) and abnormal branching 

morphogenesis at E13 (Knosp et al., 2015). (C-C’) Kidneys and urogenital tract 

abnormalities in Spry1−/− newborn pups. Normal ureters and abnormal hydroureters are 

indicated by red and yellow arrows, respectively. Ad, adrenal; Ki, kidney; Ut, uterus (Basson 
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et al., 2005). (D-D’) Fusion of the preputial (Pre) and labioscrotal (LS) folds along the 

ventral surface of the genital tubercle (GT) is disrupted in E16.5 male Spry1−/−;Spry2−/− 

mice, resulting in the absence of an internalized urethra in the proximal GT (red arrow) 

(Ching et al., 2014). (E-E’) Von Kossa/Safranin-O staining of E18.5 femur sections showed 

more proliferating chondrocytes in the growth plate of Spry2−/− mice than in that of wild 

type (Joo et al., 2016). (F-F”) E10.5 Spry1−/−;Spry2−/− mice have trigeminal defects, facial 

nerve defects, and glossopharyngeal and vagus cranial nerves display incomplete or irregular 

bridging between proximal and distal ganglia. Arrows highlight abnormal morphology, and 

asterisks indicate missing portions (Simrick et al., 2011). (G-G’) The region of the P0 

Spry2−/− mouse cochlea shown has four rows of outer hair cells (OHCs) instead of the three 

found in control and elsewhere in the Spry2 null organ of Corti. PC, pillar cells; IHC, inner 

hair cells (Shim et al., 2005). (H-H’) Increased FGF signaling in Spry1−/−;Spry2−/− mice 

resulted in disorganized and compacted rugae at P0 (Economou et al., 2012). (I-I’) Gross 

appearance of wild type and Spry2−/−;Spry4−/− at E12.5. The arrow and arrowhead indicate 

hemorrhage and edema, respectively (Taniguchi et al., 2009). (J-J’) Abnormal length and 

thickness of adult Spry2−/−;Spry4+/− incisor as well as the absence of a sharp tip (asterisk) 

(Klein et al., 2008). Reprinted or adapted with permission.
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Figure 5. Characteristic features of craniofacial disorders associated with regulators of RTK 
signaling
(A) Mild hypertelorism, epicanthic folds, broad nasal tip, full lips and café-au-lait spot on 

the left upper arm of a child who has Neurofibromatosis Legius syndrome with a SPRED1 
mutation (Brems et al., 2007). (B) Dysmorphic features including hypertelorism, 

downslanting palpebral fissures, epicanthus, coarse facial features, and large, thick, low-set 

ears of an adolescent boy who has LEOPARD syndrome with a PTPN11 mutation (Santoro 

et al., 2014). (C) Characteristic craniofacial features including hypertelorism with 

downslanting palpebral fissures, full or ptotic upper eyelids, and low-set, posteriorly rotated 

ears with a thickened helix of a young boy who has Noonan syndrome with a PTPN11 
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mutation (Allanson et al., 2010). (D) Distinctive facial features including hypertelorism, 

ptosis, downslanting palpebral fissures, epicanthal folds, and low-set, posteriorly rotated ears 

of a woman who has Noonan syndrome-like phenotype with a C-CBL mutation (Martinelli 

et al., 2010). (E) Bilateral plantar creases and a flat appearing mid-face with a prominent 

forehead of a boy who has Macrocephaly/autism syndrome with a PTEN mutation (Butler et 

al., 2005). (F) Inversion of facial expression when smiling in a young girl who has Urofacial 

syndrome with a LRIG2 mutation (Stuart et al., 2013). Reprinted or adapted with 

permission.
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Table 1

Classification of RTK signaling modulators according to their spatiotemporal feedback

Feedback Modulator Target/Pathway
Signaling
Output Mechanism of Action

Late, reversible Anosmin 1 FGFR Amplification FGF-FGFR signaling complex 
assembly and stabilization

DUSP6 FGF-MAPK Attenuation Dephosphorylation of ERK

FLRT family FGFR Amplification FGF-FGFR signaling complex 
activation

MIG6 ErbB receptor family Attenuation Inhibition of ErbB receptor family 
dimerization

SEF FGF-MAPK/ERK & FGF-PI3K/AKT Attenuation FGF-FGFR signaling complex 
assembly and activation

SPRED FGF-RAS/RAF Attenuation Inhibition of RAF activation

Sprouty family RAS/MAPK & RAS/PI3K Attenuation Inhibition of downstream effector 
signaling

Early, reversible PTEN PI3K/AKT Attenuation Dephosphorylation of PIP3

RKIP RAF/MEK Attenuation Inhibition of RAF1 and MEK 
interaction

SHP2 EGFR, FGF-MAPK/ERK, IR, & RET Amplification Dephosphorylation of inhibitory 
modulators of downstream 
effectors

Late, irreversible CNPY1 FGFR Amplification FGFR maturation

LRIG family ErbB receptor family, MET, & RET Attenuation Receptor ubiquitination and 
degradation

SOCS family c-KIT, EGFR, FLT3, IGF-1R, & IR Attenuation Receptor ubiquitination and 
degradation

Early, irreversible CBL family EGFR, MET, PDGFR, & RET Attenuation Receptor ubiquitination and 
degradation

NEDD4 & NEDD4L ErbB receptor family, FGFR, IGF-1R, IR, 
NRTK1, & VEGFR

Attenuation Receptor ubiquitination and 
degradation

NRDP1 ERBB3 Attenuation ERBB3 trafficking and 
ubiquitination

SHISA2 FGFR Attenuation Receptor maturation and 
ubiquitination
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