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Expectations developed over multiple timescales facilitate
visual search performance
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Peggy Seriès # $
IANC, School of Informatics, University of Edinburgh,

Edinburgh, UK

Our perception of the world is strongly influenced by our
expectations, and a question of key importance is how
the visual system develops and updates its expectations
through interaction with the environment. We used a
visual search task to investigate how expectations of
different timescales (from the last few trials to hours to
long-term statistics of natural scenes) interact to alter
perception. We presented human observers with low-
contrast white dots at 12 possible locations equally
spaced on a circle, and we asked them to simultaneously
identify the presence and location of the dots while
manipulating their expectations by presenting stimuli at
some locations more frequently than others. Our
findings suggest that there are strong acuity differences
between absolute target locations (e.g., horizontal vs.
vertical) and preexisting long-term biases influencing
observers’ detection and localization performance,
respectively. On top of these, subjects quickly learned
about the stimulus distribution, which improved their
detection performance but caused increased false alarms
at the most frequently presented stimulus locations.
Recent exposure to a stimulus resulted in significantly
improved detection performance and significantly more
false alarms but only at locations at which it was more
probable that a stimulus would be presented. Our results
can be modeled and understood within a Bayesian
framework in terms of a near-optimal integration of
sensory evidence with rapidly learned statistical priors,
which are skewed toward the very recent history of trials
and may help understanding the time scale of
developing expectations at the neural level.

Introduction

There is a plethora of evidence that perception is
strongly influenced by expectations. Particularly in
situations of high uncertainty, we rely not only on the
information we can gather at the present moment but
also on our knowledge of the world and our previous
experience in it. Expectations can be formed automat-
ically and continuously, on shorter or longer time-
scales, and have universal impact or apply only in
specific situations. Based upon how expectations
generalize across time and environment, they can be
divided into two major categories; ‘‘structural’’ and
‘‘contextual’’ (Seriès & Seitz, 2013). Structural expec-
tations are developed over long time frames based on
implicit learning of the statistics of the natural
environment, or they can be innate (e.g., the expecta-
tion that ‘‘light comes from above;’’ Adams, Graf, &
Ernst, 2004). Structural expectations apply equally to
already experienced situations and novel ones. In
contrast, contextual expectations modulate perception
in isolated temporal or spatial situations. Contextual
expectations can be manipulated explicitly or implicitly
over short time frames through sensory cues, specific
instructions, or the context in which a stimulus is
shown (e.g., Haijiang, Saunders, Stone, & Backus,
2006; Kok, Brouwer, van Gerven, & de Lange, 2013;
Sterzer, Frith, & Petrovic, 2008).

At the same time, a growing body of work suggests
that visual perception can be thought of as a
continuous process of Bayesian inference (Fiser,
Berkes, Orbán, & Lengyel, 2010). Under that frame-
work, expectations correspond to the ‘‘prior’’ proba-
bility and combine with the observed ‘‘likelihood’’ to
form the ‘‘posterior’’ probability of a hypothesis to be
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true. In visual perception, the hypothesis could
correspond to the presence or a feature of a visual
stimulus. The higher the uncertainty of the observed
visual information is, the stronger the influence of the
prior on the posterior and on the final interpretation of
the visual information. In previous work (Chalk, Seitz,
& Seriès, 2010; Gekas, Chalk, Seitz, & Seriès, 2013), we
found that human observers quickly, automatically,
and implicitly developed expectations based on the
statistical distribution of visual motion stimuli. These
expectations induced biases on the perceived motion
direction of presented stimuli but also induced false
alarms (so-called ‘‘hallucinations’’ of motion) in the
absence of a stimulus. This behavior was well explained
by models that assumed observers acted as Bayesian
observers, using a prior distribution that approximated
the stimulus statistics and suggests that Bayesian
models are a parsimonious way to describe how
expectations of the environment modulate perception.

Expectations can be developed over long time frames
(hours, days, or years). For example, Stocker and
Simoncelli (2006) provided evidence toward the hy-
pothesis that the visual system expects objects to be
static or move slowly, and this prior expectation can
explain perceptual phenomena, such as the aperture
problem and why speed perception can differ between
high- and low-contrast stimuli (Stone & Thompson,
1992). Although this slow-speed prior is thought to
develop over the lifetime, recent research shows that
experience within an hour-long experimental session
and across days of exposure with quickly moving
stimuli can alter this prior toward an expectation of
more quickly moving speeds (Sotiropoulos, Seitz, &
Seriès, 2011). Expectations can also be developed over
very short time frames (seconds or minutes). When we
search for a target with a particular feature (shape,
orientation, color, etc.), it is easier to detect or
discriminate that target or one of its features if we have
seen it or interacted with it in the immediate past. This
effect is formalized as perceptual priming and suggests
that an implicit memory system strongly influences how
visual attention is allocated after exposure to a stimulus
(Kristjánsson & Campana, 2010). Perceptual priming in
visual search has been studied for a variety of features,
including orientation (Olivers & Meeter, 2006), motion
direction (Kristjánsson, 2009), shape (Fecteau, 2007),
and color (Maljkovic & Nakayama, 1994). Many
studies have also shown that repetition of trials with a
target in the same location can improve search
performance significantly (e.g., Geng & Behrmann,
2005; Maljkovic & Nakayama, 1996; Miller, 1988), and
this improvement can be very location-specific. For
example, Le Dantec and Seitz (2012) showed that
repeatedly performing a visual search task to find a
subtly different line orientation led to long-lasting
performance improvements in a large number of

independent locations that incompletely transferred to
neighboring locations as close as 1.58 of visual angle.
Although these studies have shown that the statistical
predictability of a target’s location due to repetition
can facilitate performance, a study by Druker and
Anderson (2010) found that the statistical properties of
a target’s location could influence the observer’s
performance even outside of priming effects. In order
to dissociate the effect of a high-probability location
from a simple location repetition, they used continuous
probability distributions that included a very large
number of possible locations in contrast to typical
visual search experiments that use a limited number of
possible locations. They found that subjects learned the
distribution of the stimulus implicitly, and their
performance was improved more than what would
account to just priming effects given the distance to
recently presented targets. Together, these results
suggest that people are continuously integrating the
statistics of the environment and using this information
to update their expectations of future experiences.

Visual search provides a useful framework in which
to investigate the formation of expectations. Although
mainly signal detection approaches have been used in
accounting for visual search phenomena (Verghese,
2001), studies have also used a Bayesian framework to
successfully model human visual search behavior and
investigate how it compares to that of a Bayesian
optimal observer (Eckstein, Abbey, Pham, & Shimo-
zaki, 2004; Eckstein, Peterson, Pham, & Droll, 2009;
Elazary & Itti, 2010; Ma, Navalpakkam, Beck, Van
Den Berg, & Pouget, 2011). Droll, Abbey, and Eckstein
(2009) compared the performance of learning the
statistics of cue validity by human observers in a visual
search task to that of an ideal Bayesian observer. The
authors found that human observers were able to learn
the statistics in a single experimental session, but
learning was slower compared to that of an ideal
observer even using supervised feedback. Recently,
Vincent (2011) investigated whether better performance
in a visual search task is achieved by combining visual
evidence and prior beliefs in a Bayesian optimal way.
Observers’ prior expectations were manipulated in two
experiments via peripheral cuing and via explicit
information about the stimulus spatial probabilities. It
was found that observers improved their detection rates
by optimally combining slightly biased priors with
sensory evidence irrespective of how expectations were
manipulated. Interestingly, counterpredictive peripher-
al cues (i.e., cues that indicated a location was less likely
than average to contain a target) increased choice
reaction times whereas counterpredictive spatial prob-
abilities slightly decreased reaction times. This sug-
gested that counterpredictive cues guided observers’
attention involuntarily and unavoidably to the less
probable cued locations.
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These results suggest a link between perceptual
priming and expectation formation and that these may
both be parsimoniously described within a Bayesian
model. One possibility is that perceptual priming
influences how attention shifts to repeated stimulus
features or locations. Sigurdardottir, Kristjánsson, and
Driver (2008) showed that priming improved detection
performance for a target but did not facilitate acuity
judgments for the same target. This suggests that
priming might influence the speed of attentional shifts
rather than stimulus sensitivity directly. Also, in an
experiment in which eye movements were analyzed,
Becker (2008) found that the accuracy and time course
of the first saccade within a trial was modulated by
priming effects. Observers would saccade faster and
more accurately when the same target was repeated
than when it changed between trials. At the same time,
many studies have manipulated contextual expectations
so as to direct attention to particular locations or
features. For example, Posner (1980) developed a task
in which a cue explicitly predicts the location of a
subsequent target with a certain probability. Subjects
were found to process the target stimuli faster and more
accurately on correctly cued trials than on incorrectly
cued trials, and the difference has been shown to
increase with cue validity (e.g., Downing, 1988). In that
sense, priming may be considered as a form of
contextual expectation in a very short timescale. This
outstanding issue naturally extends to the question of
what is the distinction between attention and expecta-
tions. The focus of spatial attention has been success-
fully compared to a spotlight (Posner, 1980) as well as
to a zoom lens (Eriksen & Yeh, 1985). A Bayesian
account for attention was described by Eckstein,
Drescher, and Shimozaki (2006), in a study in which
subjects looked at pictures with targets at expected or
unexpected locations or targets completely absent. A
differential weighting Bayesian model was consistent
with subjects’ pattern of first saccades toward probable
locations in target-absent images. Both attention and
expectations are thought to be controlled by similar
cognitive processes (Corbetta & Shulman, 2002), and
on a behavioral level, both can have superficially
identical effects on performance. However, the exact
mechanisms that produce these effects remain unclear
as is the exact nature of the interaction between
attention and expectations (Summerfield & Egner,
2009).

In this study, we addressed these issues by investi-
gating the form in which perceptual priming acts in a
statistical learning experimental paradigm and how it
interacts with expectations formed over longer time-
scales. We do this through a novel visual search
paradigm (although with some similarities to the task
in Droll et al., 2009) in which we presented human
observers with brief displays of low-contrast stimuli

and asked them to report the presence of a stimulus
(yes/no task) as well as the exact location of the
stimulus (localization task) at the same time. We
manipulated their expectations by presenting stimuli in
some locations more frequently than others. This task
provides an interesting glimpse into the impact of
priors in perceptual judgments as we are able to track a
number of separate but likely related types of errors:
Mislocalizations are errors in detection with which the
location of an item reported is incorrect, false alarms
are errors in detection with which stimuli are detected
when none were present, and positional errors refer to
small but systematic biases in localization estimates
within the neighborhood of a target location. We
hypothesized that subjects would learn the stimulus
distribution and use that information to improve their
performance in the task and, consistent with prior work
(Chalk et al., 2010; Gekas et al., 2013), to observe
biases in subjects’ localization performance toward the
more frequently presented locations (positional errors)
and increased false detections in the absence of stimulus
(false alarms and mislocalizations), matching the
probability distribution of the actual stimuli. In
addition to these effects, we investigated the form of
interaction between the rapidly learned expectations of
the stimulus distribution and priming from very recent
stimulus presentations. Our hypothesis was that
subjects would integrate both sources of information,
which would facilitate their detection performance in
the more probable stimulus locations but also induce
more false alarms in the process.

Methods

Subjects and stimuli

Twenty-eight naive subjects (17 of them female; 19–
33 years of age) with normal or corrected vision were
recruited from the University of California, Riverside.
All subjects gave informed written consent in accor-
dance with the University of California, Riverside
Human Research Review Board and the Declaration of
Helsinki and received course credit for their participa-
tion.

The stimuli consisted of one, two, or three white dots
(0.58 in diameter) at 12 possible locations equally
spaced on a circle at 48 of visual angle from the center
of the screen. They were generated using the Matlab
programming language with the psychophysics toolbox
(Brainard, 1997; Pelli, 1997) and displayed on a CRT
monitor with a resolution of 1400 3 1050 at 100 Hz.
Subjects viewed the display in a darkened room at a
viewing distance of 70 cm. A chin rest was used to
maintain a constant head location and viewing
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distance. The display luminance was calibrated and
linearized with a Cambridge Research Systems Color-
imeter, and the background luminance was set to 5.05
cd/m2.

Procedure

At the beginning of each trial, a central white cross
was presented as a fixation point (Figure 1A). Then, the
stimulus was presented for 100 ms. The display cleared,
and subjects were presented with a central circle and a
cursor, which they could move freely with a mouse.
Subjects were instructed to click inside the circle to
finish the trial if no stimulus was perceived. On the
other hand, they were instructed to move the cursor
outside the circle if they had perceived one or more
stimuli. Then, a white dot appeared at the same
eccentricity as the stimulus and moved in conjunction
with the mouse cursor. Its function was to help subjects
make an accurate localization of where they had
perceived a stimulus. Subjects were instructed to move
the cursor to the location at which they detected a
stimulus and click to validate their decision. At the
same time, a bar extended from the center of the screen
to the point of the cursor. Subjects used the bar to
indicate their confidence level of the stimulus being
present. The longer the length of the bar the more
confident they were of their choice. After clicking, a
small blue dot and a blue bar remained on screen.
Subjects were free to report as many stimuli as they
wanted. To finish the trial, they had to return the cursor
inside the central circle and click. No immediate
feedback was given after each trial. However, block
feedback was given every 50 trials in the form of
detection performance in 10% steps (e.g., ‘‘Your
performance rate was between 60% and 70%’’) along
with a motivational message.

Design

The experiment consisted of two 1-hr sessions
(conducted on successive days) of 900 trials each. The
stimuli were presented in three different contrast levels:
In 60% of trials, contrast was determined using a 2/1
staircase on detection performance (staircase contrast);
in 10% of trials, contrast was high (1.05 cd/m2 above
the background luminance), and stimuli were easily
visible (high contrast); and in 30% of trials, there was
no stimulus presented at all (zero contrast). High-
contrast trials were used as a metric of subjects’
confidence and localization performance. Because
stimuli were easily detected in those trials, subjects
should, on average, be very confident of their choice
and also be fairly accurate in the localization of the

stimulus. Thus, performance in the high-contrast trials
allowed us to calculate a baseline behavior for each
subject regarding his or her confidence and localization
error when reporting a stimulus and compare it to
behavior in the staircase and zero-contrast trials. In the
staircase and high-contrast levels, up to three stimuli
could be presented in the same trial; one stimulus was
presented in 73.33% of trials, two stimuli in 20%, and
three stimuli in 6.67%. We used multiple stimuli in

Figure 1. Experimental procedure. (A) Subjects were presented

with a fixation point followed by the stimulus for a brief 100 ms.

After the screen was cleared, subjects were presented with a

circle and a cursor, which they could freely move. If they had

not perceived a stimulus, they were instructed to click inside

and finish the trial. If they had perceived a stimulus, they were

instructed to move the cursor outside of the circle, and a dot

similar to the stimulus would appear to allow them to indicate

the exact location of the target. Simultaneously, they could

extend a bar away from the circle to indicate their confidence

level of seeing a stimulus at that location. (B) There were 12

possible stimulus locations at 48 of visual angle, equally spaced

on a circle, 158, 458, and 758 away from the horizontal cardinal.

(C) Probability distributions of presented stimulus locations for

the control (black dots) and bimodal (blue dots) groups of

subjects. In the control group, all locations were equally

presented, and in the bimodal group, four locations were two

times more likely to be presented, and two locations were three

times more likely to be presented.
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some trials in order to encourage more false alarms
during the experiment. If subjects were uncertain about
the exact number of stimuli presented in each trial, they
would be more likely to report a false alarm even in
trials in which they had already reported a presented
stimulus.

Stimuli could appear at 12 possible locations (Figure
1B). The probability that a stimulus would appear at a
given location depended upon the subject’s group. In
the control group (n¼ 12), stimuli were equally likely to
appear at all locations (Figure 1C). In the bimodal
group (n ¼ 16), stimuli were more likely to appear at
locations in quadrants II and IV than at locations in
quadrants I and III; in particular, stimuli were twice as
likely to appear at locations 158 (locations 3 and 9) and
758 (locations 5 and 11) away from the horizontal
cardinal and three times more likely at locations 458
away from the horizontal cardinal (locations 4 and 10).
This grid was rotated for each subject such that the
location on the circle for location 1 was located at one
of four possible orientations (458, 1358, 2258, 3158). As
the bimodal distribution is symmetrical, this created
two possible subgroups of frequent versus nonfrequent
locations that were counterbalanced between subjects
(eight subjects in each subgroup) in order to cancel out
any existing biases.

Data analysis

The first 150 trials from each session were excluded
from the analysis in order for the staircase to reach
stable levels. No significant differences were observed
in subjects’ behavior across the two experimental
sessions (Supplementary Figure 1). Thus, we combined
data across both sessions. High-contrast trials were
excluded from the analysis.

As discussed in the experimental procedure, subjects
were free to make an exact localization of a stimulus
they reported. In order to count correctly detected
stimuli, we divided all possible angles in 12 308 bins.
The center of each bin was the exact angle of each
presented location. We then assumed that subjects
correctly identified the location of a stimulus, classified
as a correct detection, when they localized inside the
respective 308 bin of each location; otherwise, the
response was classified as a mislocalization. During our
analysis, it became clear that subjects’ performance was
significantly affected by the absolute location of a
stimulus and, in particular, by the distance from the
horizontal cardinal. In order to simplify our analysis
and be able to show any underlying effects of the
stimulus distribution, we divided the presented loca-
tions into three categories based on the distance from
the horizontal cardinal. Thus, locations were divided
into horizontal (158 away from the cardinal; absolute

locations 2, 3, 8, and 9 in Figure 1B), intermediate (458
away; locations 1, 4, 7, and 10), and vertical locations
(758 away; locations 5, 6, 11, and 12). In the Results, we
will present subjects’ performance over the different
location categories in a within-subjects analysis.

Subjects would sometimes report that they had
perceived one or more stimuli in trials in which no
stimulus was presented (zero-contrast trials). They did
so in approximately 2% of trials for the control and the
bimodal groups. However, that frequency was not large
enough to allow for a within-subjects analysis. Instead,
we resampled each subject’s data with replacement for
all 12 locations and then aggregated all false alarms
from all subjects. We repeated the process 100,000
times and calculated 95% confidence intervals. As we
discussed in the Introduction, we will refer to these
responses as false alarms. The aforementioned misloc-
alizations were more frequent than false alarms
consistently across all subjects (in approximately 10%
of trials for the control and 8% for the bimodal group),
allowing us to do an analysis similar to the detection
performance (within subjects).

Results

Stimulus distribution effects on detection
performance

First, we investigated whether the stimulus distribu-
tion had an effect on subjects’ detection performance
and the probability that subjects would make a
mislocalization (e.g., reporting the wrong stimulus
location when a stimulus was present). As discussed
previously, we separated stimuli locations into three
categories by their distance from the horizontal
cardinal: horizontal, intermediate, and vertical (Figure
2). Further, we separated the locations of stimuli
presented to the bimodal group by the probability of a
stimulus to appear at a location into frequent and
nonfrequent locations. Figure 2A shows the probability
distribution of each location category for the control
group and for the two conditions of the bimodal group.
It was twice as likely for a stimulus to appear at a
frequent horizontal or vertical location than at a
nonfrequent similar location, and three times more
likely for a frequent intermediate location than a
nonfrequent intermediate location. If there is a strong
effect of the stimulus distribution on performance, we
expect to find a significant difference between the
detection performance of frequent and nonfrequent
locations as well as significantly more false alarms at
frequent than nonfrequent locations.

Looking at the fraction of correctly detected stimuli
(i.e., the fraction of correct detections over total stimuli
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presentations; Figure 2B), there is a significant effect of
absolute stimulus location on performance. Subjects
were significantly better at detecting a stimulus at
locations that were closer to the horizontal cardinal
and increasingly worse at locations away from that
cardinal (p , 0.0001, one-way within-subjects ANOVA
for control, frequent, and nonfrequent). Regarding the
effect of the stimulus distribution, detection rates were
consistently higher for stimuli presented at the frequent
locations than at the nonfrequent locations, there was a
significant effect of a location being frequent on the

detection performance (p ¼ 0.007, three-way within-
subjects ANOVA), and there was no significant
interaction between location frequency and distance
from the horizontal cardinal (p ¼ 0.69). It is not
surprising that the average detection performance is
very similar between the control group and the frequent
condition of the bimodal group because its upper
bound is set dynamically by the 2/1 staircase procedure
on correct detection. Overall, subjects in the bimodal
group appeared to have learned the stimulus distribu-
tion, and that facilitated their performance at the

Figure 2. Effect of stimulus distribution on detection performance. (A) (Left) Dividing stimulus locations by their distance from the

horizontal cardinal. (Right) Probability distributions of stimulus locations divided by their distance from the horizontal cardinal for the

control group (black solid line), and for the frequent (red dashed line) and nonfrequent (green dashed-dotted line) conditions of the

bimodal group. (B) The fractions of correctly detected stimuli are plotted against presented stimulus location. (C) Relative frequencies

of subjects’ mislocalizations and (D) false alarms are plotted against stimulus location. (E) Subjects’ mean sensitivity and (F) response

bias are plotted against stimulus location. Results are averaged over all subjects and error bars show within-subject standard error,

except for (D) false alarms in which results are summed over all subjects and error bars show 95% confidence intervals.
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frequently presented locations but at the cost of
reduced performance at the nonfrequently presented
locations.

Looking at subjects’ mislocalizations, there was a
significant effect of absolute stimulus location on their
relative frequencies (p¼ 0.02, p¼ 0.0001, and p¼ 0.01,
one-way within-subjects ANOVA for control, frequent,
and nonfrequent, respectively; Figure 2C). The fre-
quency of mislocalizations was calculated out of the
total number of trials in which a stimulus was presented
at a different location to the mislocalization. The total
number of trials in which a stimulus was presented at a
frequent location was larger than at a nonfrequent
location, so it was important to calculate relative
frequencies and not just absolute frequencies. In
contrast to detection rates, subjects were significantly
more likely to report a stimulus in the intermediate or
vertical locations than in the horizontal locations.
There was no significant effect of a location’s condition
(frequent or nonfrequent) on the relative frequency of
mislocalizations (p ¼ 0.13, three-way within subjects
ANOVA) and no significant interaction between a
location’s condition and distance from the horizontal
cardinal (p¼ 0.2). Overall, it was more likely, but
nonsignificantly so (p¼0.18, two-way between-subjects
ANOVA), for subjects of the control group to make an
incorrect response than for subjects of the bimodal
group.

We also found that subjects reported false alarms in
no-stimulus trials (Figure 2D) and were consistently
more likely to report a stimulus at a frequent location
than at a nonfrequent one, but the difference was
significant only at intermediate locations (p ¼ 0.0005).
This observation is consistent with prior work in which
false alarms were shown to be consistent with
perceptual hallucinations of motion (Chalk et al., 2010;
Gekas et al., 2013; Seitz, Nanez, Holloway, Koyama, &
Watanabe, 2005). The average frequency that subjects
of the bimodal group would report false alarms was
almost identical to subjects of the control group for
horizontal locations. However, it was more likely for
subjects of the bimodal group to report a false alarm at
a frequent location than subjects of the control group,
nonsignificantly for vertical locations and significantly
for intermediate locations (p¼ 0.01). This suggests that
the stimulus distribution had a significant effect not
only between locations (frequent vs. nonfrequent
intermediate locations) but induced significantly more
overall false alarms in the most frequently presented
locations (frequent intermediate). As in our previous
work, the close similarity between subjects’ false alarm
distributions and the distribution of the stimulus
suggests that false alarms might directly reflect the
prior beliefs of subjects in the task. In summary, the
results suggest that the stimulus distribution facilitated

detection performance but also increased subjects’ false
alarms at the frequent stimulus locations.

Finally, we computed subjects’ sensitivity (Figure
2E) and response bias (Figure 2F). The hit rate at each
location was defined as the number of correct
detections divided by the total number of trials in
which a stimulus was presented at that location, and
the false positive rate was defined as the sum of
mislocalizations and false alarms divided by the total
number of trials in which a stimulus was not presented
at that location. Because the number of false alarms
was low, we used a loglinear approach before
calculating the hit and false positive rates, which
involves adding 0.5 to both the number of hits and false
positives and adding 1 to both numbers of trials
(Stanislaw & Todorov, 1999). For sensitivity, we
computed d0 and for response bias the natural
logarithm of b. Not surprisingly, sensitivity signifi-
cantly decreased for locations away from the horizontal
cardinal (p¼ 0.008 and p , 0 .0001 for subjects of the
control and bimodal groups, respectively, one-way
within-subjects ANOVA). Looking at the subjects of
the bimodal group, there was no significant effect of
condition on sensitivity (p¼ 0.44, two-way within-
subjects ANOVA) but significant interaction of loca-
tion3 condition (p¼ 0.002) due to the large sensitivity
difference at the frequent horizontal locations. The
opposite was found regarding subjects’ response biases.
There was a significant effect of location and condition
on response bias (p ¼ 0.0001 and p ¼ 0.0125,
respectively) but no significant interaction of location3
condition (p¼ 0.43). The difference between conditions
was smallest at horizontal locations and largest at the
intermediate locations. Interestingly, subjects of the
control group were more likely to report a stimulus at
the intermediate locations, but there was no significant
effect of location of response bias (p¼ 0.35, one-way
within-subjects ANOVA). Overall, the signal detection
theory analysis highlights the significant sensitivity
differences between locations closer and further away
from the horizontal cardinal and the effect of the
stimulus distribution on subjects’ bias to report the
presence of a stimulus.

Stimulus distribution effects on localization
performance

Absolute stimulus location and location frequency
had a significant effect on detection performance. We
next looked at whether these properties had an effect
on subjects’ positional estimates of presented stimulus.
We expected that if there were a strong effect, subjects’
positional errors in reporting the target locations, on
average, would be biased toward the frequently
presented locations. Figure 3A shows the averaged
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positional error biases for staircase-contrast and high-
contrast trials. A positive bias indicates systematic
positional errors away from the horizontal cardinal and
a negative bias systematic positional errors toward the
horizontal cardinal. Subjects of both the control and
bimodal groups appear to be biased away from the
horizontal cardinal at horizontal and intermediate
locations both in staircase and high-contrast stimuli. In
vertical locations, they were slightly biased or unbiased
in staircase-contrast stimuli but negatively biased in
high-contrast stimuli. There was no significant differ-
ence between subjects’ positional error biases at
frequent and nonfrequent locations in staircase or high-
contrast trials (p¼ 0.85 and p¼ 0.51, respectively), but
there was a significant effect of absolute position on
positional error biases (p , 0.0001). The similarity of
biases for both low- (staircase) and high-contrast
stimuli at frequent and nonfrequent locations suggest

that these biases are preexisting and largely unaffected
by presented contrast or stimulus distribution.

However, we still expect position estimates in high-
contrast trials to be more consistent across locations
and subjects in comparison to staircase-contrast trials.
Figure 3B plots the averaged standard deviations of
position estimates for staircase-contrast and high-
contrast trials. Indeed, standard deviations in high-
contrast trials were significantly smaller than in
staircase-contrast trials across all data (p¼ 0.041, p ¼
0.011, p¼0.016, three-way within-subjects ANOVA for
control, frequent, and nonfrequent, respectively). There
is also a strong effect of the stimulus distribution;
standard deviations of position estimates at frequent
locations were significantly smaller than at nonfrequent
locations in staircase-contrast trials (p ¼ 0.008, three-
way within-subjects ANOVA), and the smallest devi-
ations were exhibited at the most frequently presented

Figure 3. Effect of stimulus distribution on localization performance and confidence. (A) Subjects’ mean positional error biases are

plotted against stimulus location for (left) staircase-contrast stimuli and (right) high-contrast stimuli. A positive bias indicates

localizations away from the horizontal cardinal (08 angle), and a negative bias indicates localizations toward the horizontal cardinal.

(B) Standard deviations in subjects’ position estimate distributions are plotted against stimulus location for (left) staircase-contrast

stimuli and (right) high-contrast stimuli. Results are averaged over all subjects, and error bars show within-subject standard error. (C)

Box plots, along with individual subject data, of the differences in confidence level reported by subjects of the (C1) control group and

of the (C2) bimodal group (divided into frequent and nonfrequent conditions) between high-contrast trials and correct detections of a

stimulus (left), mislocalizations (center), and false alarms (right). Dots indicate values for each subject. Each box shows the

interquartile range, the horizontal line within the box shows the median, and the notches show 95% confidence intervals on the

median.
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intermediate locations. However, across all data, there
was no significant effect of absolute stimulus location
on the standard deviation. These results suggest that
the stimulus distribution had no effect on the direction
of positional errors but had a significant effect on the
consistency of position estimates.

Confidence levels over correct detections,
mislocalizations, and false alarms

Subjects were more likely to detect a stimulus and
more consistent in reporting the actual location of that
stimulus when it was presented at a frequent location.
We then asked whether subjects were also more
confident when they detected a stimulus at a frequent
location. We used the high-contrast trials as a
benchmark for confidence levels reported by subjects
when they had detected a stimulus. Figure 3C shows
box plots (along with data points for each subject) of
the differences in confidence level reported by subjects
of the control group between high-contrast trials and
trials in which they detected a stimulus (left), reported a
mislocalization (center), and a false alarm (right). The
median lines are significantly smaller than 0 for correct
detections and mislocalizations (with 95% confidence)
but not for false alarms. Moreover, confidence levels
were significantly higher in false alarms than in
mislocalizations. Interestingly, some subjects were
more confident in their false alarms than their average
confidence in successful high-contrast trials at the same
stimulus location. It is worthwhile to remind the reader
here that subjects did not receive any immediate
feedback for their reports during the task. Thus, one
could argue that subjects could have reported a
stimulus as a response strategy when uncertain about
the presence of a stimulus, and they would never be
directly penalized for using such a strategy. However,
we saw that false alarms were rare (Figure 2D). This, in
conjunction with the high, on average, confidence,
suggests that subjects may have felt quite certain when
they chose to report a false alarm and provides some
additional evidence toward the argument that subjects
may have actually ‘‘perceived’’ these stimuli.

A similar behavior was exhibited by subjects of the
bimodal group. Subjects’ reported confidence for false
alarms across locations and for correct detections at
frequent locations were not significantly different from
confidence for high-contrast correct detections. Sub-
jects’ median confidence in frequent locations was
higher than in nonfrequent locations for correct
detections and false alarms, but neither effect was
significant. In contrast to subjects of the control group,
we saw a much larger variation in the bimodal group
with some subjects being very uncertain about their
mislocalizations and false alarms. Overall, there was no

strong effect of the stimulus distribution on subjects’
confidence at detecting a stimulus.

Presented stimulus proximity influences
subjects’ mislocalizations

As seen in Figures 2 and 3, mislocalizations were
more frequent than false alarms but with largely
reduced confidence on average. That hints at a
qualitative difference between mislocalizations and
false alarms. We investigated whether we could
distinguish between mislocalizations that represented
genuine false alarms and those that represented just
extreme errors in position estimates. Figure 4A shows
the proportion of mislocalizations as a function of the
distance from the nearest presented stimulus in the
same trial. The distance ranges from 1 to 6. In the vast
majority of mislocalizations across all data (’80%), a
stimulus was presented at a nearby location in the same
trial (distance¼ 1). It is more likely that such responses
correspond to large errors (localizations outside the 308
window that defines a correct detection) rather than to
false alarms unrelated to the stimulus. If so, the
presented stimulus would be scored as undetected.
Indeed, only a small fraction of these stimuli were
scored as detected (Figure 4B). This might explain the
significantly reduced reported confidence of mislocali-
zations (Figure 3C). These data are consistent with the
idea that mislocalizations are aptly termed and reflect
cases in which stimuli were detected but the location of
the stimuli were not well encoded or recalled.

Another way to visualize subjects’ behavior in these
mislocalizations is to plot a histogram of subjects’
position estimates. Figure 4C shows histograms of
subjects’ (of the bimodal group) position estimates
when a stimulus was presented at a nearby location
(distance¼ 1, gray bars) and at locations further away
(distance . 1, blue bars). Position estimates are
grouped into 38 bins. Because the stimulus distribution
is symmetrical (Figure 1C), it is possible to fold the 12
presented locations around the horizontal cardinal into
six. For example, we can combine the results from the
two frequent horizontal locations (locations 3 & 9 in
Figure 1) and so on. In Figure 4C, 08 angle indicates the
horizontal cardinal, positive angles indicate frequent
locations, and negative angles indicate nonfrequent
locations. When mislocalizations were at a distance of 1
from a stimulus, most position estimates were made at
the boundaries between locations (vertical dotted black
lines), and very few happened close to the stimulus
locations (red and green vertical dashed lines). When
mislocalizations were at a distance larger than 1 from
an actual stimulus, position estimates were less frequent
but more evenly distributed across the visual space.
These larger mislocalizations are most consistent with
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false alarms than misjudgments of the stimulus position
because it would have to be an error of at least 458.
However, we cannot say with complete certainty
whether these responses represent very large errors or
genuine false alarms. Overall, subjects’ mislocalizations
appear to be significantly affected by the proximity to a

presented stimulus and so are very difficult to correctly
classify as errors in position estimates or false alarms.
For that reason, we do not include mislocalizations in
our following analysis regarding recency effects and our
modeling of subjects’ behavior in the task.

Figure 4D plots a zoomed-in version of the behavior
in mislocalizations when distance . 1 along with
subjects’ position estimates of false alarms. For both
sets of data, most position estimates were made around
the areaþ458 away from the horizontal cardinal where
the most frequent intermediate stimuli were presented.
This effect was more pronounced for false alarms. We
calculated the probability density function for the false
alarms data using a kernel comprised of a normal
distribution with an automatically computed optimal
sigma (Silverman, 1986) adapted for circular data. The
probability density function matches the stimulus
distribution; subjects were 2.4 times more likely to
report a false alarm at þ458 (frequent intermediate
location) than at �458 (nonfrequent intermediate), 1.4
times at þ158 (frequent horizontal) than at �158
(nonfrequent horizontal), and 1.5 times at þ758
(frequent vertical) than at �758 (nonfrequent vertical).
This result agrees with our previous findings regarding
false alarms matching the stimulus distribution (Chalk
et al., 2010; Gekas et al., 2013) and, along with the
high, on average, confidence levels reported on false
alarms, suggests that subjects were certain of their
reports of the presence and location of these false
alarms.

Effect of stimulus presentation at the same
location n trials back

So far, we showed that the stimulus distribution had a
strong effect on subjects’ detection performance, posi-
tional errors, and false alarms. Finally, we investigated
the effect of location priming on subjects’ behavior and
whether there was an interaction with the stimulus
distribution. Figure 5A shows subjects’ detection per-
formance as a function of whether a stimulus was
presented at the same location n trials back for the
control group and the frequent and nonfrequent
conditions of the bimodal group. In this analysis, we did
not divide locations based on their distance to the
horizontal cardinal in order to have as many data points
as possible. For the control group and the frequent
condition of the bimodal group, there is a strong effect
on detection performance for stimuli presented at the
same location in the preceding trial, but the effect
steadily weakens when exposure is further in the past.
Overall, there was a significant effect of recent exposure
to the same stimulus location for both control group and
frequent condition (p¼0.009 and p¼0.005, respectively,
one-way within-subjects ANOVA). However, we see an

Figure 4. Effect of stimulus proximity on mislocalizations. (A)

Proportions of subjects’ mislocalizations as a function of the

distance from the nearest presented stimulus in the same trial

for the control group (black squares) and for the frequent (red

circles) and nonfrequent (green diamonds) conditions of the

bimodal group. (B) The fraction of correctly detected stimuli

that were presented at a nearby location (distance ¼ 1) to a

mislocalization in the same trial. Results are averaged over all

subjects, and error bars show within-subject standard error. (C)

Histograms of bimodal group’s position estimates when they

made a mislocalization. Gray bars indicate mislocalizations with

a distance of 1 from the nearest stimulus, and blue bars indicate

a distance larger than 1. Vertical red and green dashed lines

indicate frequent and nonfrequent locations, respectively, and

vertical dotted black lines indicate the boundaries between

locations. The 08 angle indicates the horizontal cardinal. (D)

Histograms of bimodal group’s position estimates when they

made a mislocalization with a distance larger than 1 from the

nearest stimulus (blue), and when they reported a false alarm

(yellow).
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important difference in subjects’ performance between
the frequent and nonfrequent conditions. There was no
significant effect of recent stimulus exposure to detection
rates for nonfrequent locations (p¼ 0.73), and there was
a significant effect of a location being frequent on the
detection performance (p¼ 0.0325, three-way within-
subjects ANOVA). With the exception of when n¼ 5
(i.e., a stimulus was presented at the same location in the
fifth preceding trial), detection rates were consistently
higher at frequent locations than at nonfrequent, and
there was only a marginal improvement for the non-
frequent locations even when a stimulus was presented
at the same location in the preceding trial (n¼ 1). A
possible explanation would be that the same stimulus
being presented in two consequent trials is very rare for

the nonfrequent locations (Supplementary Figure 2,
green bars) and that subjects might ‘‘learn’’ that a
stimulus repeat at a nonfrequent location was highly
unlikely. However, a stimulus repeat was equally
unlikely for subjects of the control group (Supplemen-
tary Figure 2, black bars), but there was still a very
strong effect of a stimulus repeat on detection perfor-
mance for that group. Even when a stimulus was not
presented at the same location in the last nine trials (n¼
10þ), which accounts for the majority of trials in each
session, detection rates were higher at the frequent than
at the nonfrequent locations although nonsignificantly
(p¼ 0.18, signed rank test).

We next looked at the effect of location priming on
false alarms. Figure 5B shows the relative frequencies
that subjects would report a false alarm as a function of
whether a stimulus was presented at the same location n
trials back. Again, exposure to a stimulus in the most
recent three trials had a strong effect only for the
control group and the frequent condition of the
bimodal group but not for the nonfrequent condition.
It was only marginally more likely than average for
subjects to report a false alarm at a nonfrequent
location even after a stimulus was presented at the same
location in the preceding trial. Stimulus exposure
further in the past seemed to have very little effect for
the control group or for either of the two conditions.
The difference can be seen also by fitting the data to a
quadratic function (dashed curves). It is interesting to
note that the fits for the control and frequent data are
very similar even though they represent the behavior of
two different groups of subjects. In summary, location
priming had a significant effect on subjects’ detection
performance and probability of reporting false alarms
for all subjects regardless of the stimulus distribution.
However, when the stimulus distribution was bimodal,
this effect only extended to locations at which it was
more likely that a stimulus would be presented.

Computational model

In previous work (Chalk et al., 2010; Gekas et al.,
2013), we described subjects’ performance in a motion
estimation and detection task by using models that
assumed subjects used a Bayesian strategy in which
they combined a learned prior of the stimulus statistics
with their sensory evidence in a probabilistic way.
These models were shown to outperform models that
assumed subjects developed response strategies unre-
lated to perceptual changes. Moreover, they success-
fully fit the experimental data and predicted subjects’
behavior in trials in which no stimulus was presented
but subjects reported a stimulus. Here, we describe a
simple Bayesian model of the experimental task and

Figure 5. Effect of stimulus presentation at the same location n

trials back. (A) The fraction of correctly detected stimuli as a

function of whether a stimulus was presented at the same

location n trials back for the control group (black square) and

for the frequent (red circles) and nonfrequent (green diamonds)

conditions of the bimodal group. Results are averaged over all

subjects, and error bars show within-subject standard error.

Dashed lines indicate the best-fitting linear functions. (B)

Relative frequencies of subjects’ false alarms in the absence of

stimulus as a function of whether a stimulus was presented at

the same location n trials back. Dashed curves indicate the best-

fitting quadratic functions. Response probabilities are calculated

out of the total number of trials in which subjects could make

an incorrect response.
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implement it in order to investigate the form of the
prior distribution that would predict subjects’ behavior
in the experiment. In particular, we were interested in
understanding why there were strong recency effects at
frequently presented locations but weaker effects at
nonfrequently presented locations. The model repli-
cates the behavior of a suboptimal Bayesian observer
performing the experimental task. The observer com-
bines a learned prior of the stimulus statistics with her
sensory evidence in a probabilistic manner. Trial-by-
trial variability is driven by noise in the sensory
likelihood (which, in turn, generates false alarms in the
absence of stimulus), and recency effects are driven by a
dynamically changing prior of recent stimulus history.
We did not explicitly fit the model to the data; however,
we did a systematic exploration of parameter space in
order to find values under which the model approxi-
mated subjects’ average performance in the task.

According to the model (Figure 6, Bayesian model),
in each trial, the observer computes the posterior
probability of a stimulus’ presence at each of the 12
possible stimulus locations given the sensory input at
all locations (x). The posterior probability posti (sjxi) of
a stimulus being present (s) at the ith location is the
combination of the likelihood likelihoodi (xijs) of the
input given stimulus presence at the ith location with

the prior probability priori (s) of a stimulus being
present at the ith location, using Bayes’ rule:

postiðsjxiÞ} likelihoodiðxijsÞ�prioriðsÞ ð1Þ
In each trial, up to three stimuli j combine linearly to

generate the sensory input received by the observer at
each location (xi). The probability of observing a
stimulus at the ith location is calculated according to

likelihoodiðxijsÞ ¼ c�
X

j

Vðxj; jjÞ þ ci; ð2Þ

where c is the stimulus contrast, V(xj, jj) is a von Mises
(circular normal) distribution centered on the stimulus
location xj and with width 1/jj, and ci is a Gaussian
noise variable. The term c has as a multiplicative effect
on the likelihood of a stimulus being observed at a
location and can take values ranging from 0, when no
stimulus is presented, to 1, when a stimulus is presented
with high contrast. We assume that the width 1/jj

varies with the stimulus location so that it is narrower
at locations closer to the horizontal cardinal and wider
at locations further away. The variance of the noise
term c does not vary with absolute stimulus location.

The observer then makes perceptual estimates by
comparing the posterior at each location with the
posterior distribution posti (njxi) of the stimulus being

Figure 6. (Bayesian model). The sensory evidence based on a noisy observation of the stimulus is combined with the prior to form the

posterior distribution. A perceptual estimate is made by taking the mean of the posterior, and a response is made of the presence and

location of the stimulus. (Model of the prior distribution). The recent stimulus distribution is a weighted sum of the stimuli the observer

detected n trials back. The statistical expectation is an approximation of the true stimulus distribution implicitly learned after hundreds

of trials. The prior distribution before each new trial is constructed by combining the recent stimulus distribution with the statistical

expectation. When the expectation is uniform (e.g., for the control group), the prior distribution is just the recent stimulus

distribution.
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absent (n) given the observation. This is calculated
similarly so that posti (njxi) } likelihoodi (xijn) � priori
(n). If the ratio of posti (sjxi) / posti (njxi) is greater than
1, the observer reports that a stimulus was present at
the location, otherwise that it was absent. For
simplicity, in the model, the observer detects a stimulus
at the ith location when the posterior posti (sjxi) is larger
than a threshold level a; otherwise, the stimulus is not
detected. The model follows the same staircase
procedure in regard to the stimulus’ contrast as in the
experiment. If the observer successfully detects all
presented stimuli in a trial, the stimulus’ contrast is
decreased whereas if the observer fails to detect any of
the stimuli the contrast is increased. However, if the
observer detects at least one of the stimuli (if more than
one was presented) but not all, the contrast remains the
same. The starting value for c is 0.5 and changes in
steps of 0.005. When c is equal to 0, only random noise
affects the observer’s likelihood. This allows the model
to generate false alarms in trials in which no stimulus is
shown. For each of the possible 12 locations, if the
posterior is larger than the threshold a, the observer
reports a false alarm at that location.

We ran simulations of 16 ‘‘observers’’ presented with
the same set of stimuli as each of the 16 experimental
subjects of the bimodal group. The result for each
observer was obtained after 1,000 simulations, and we
averaged the results over all observers (16,000 simula-
tions in total). The model requires five free parameters:
the widths of the likelihood for each location in relation
to its distance from the horizontal cardinal (jhorizontal,
jintermediate, jvertical), threshold a, and the variance of the
Gaussian noise rnoise. We adjusted the values of the free
parameters to approximate the average detection
performance of the subjects in the experiment (in
regard to the performance gap between horizontal and
vertical locations) as well as their frequency of false
alarms in the no stimulus trials. We did not fit the free
parameters to the experimental data; instead we used
values that provided a good qualitative fit with
subjects’ average performance. We leave the fitting of
individual subjects’ performances to future work.

Using the computational model, we can compare the
effect of different priors on the observer’s behavior. We
consider three different types of priors: a recent stimulus
distribution, a statistical expectation of the stimulus
distribution, and a combination of the two (Figure 6,
Model of the prior). The recent stimulus distribution is a
weighted sum of the stimuli j n trials back defined as

recent stimulus distribution ¼ Uþ
X

j;n

wn�Vðxj;jjÞ; ð3Þ

where U is a uniform prior over each location, and wn is
the weight given to stimuli of the n trial defined as wn¼
w1 � exp[-k(n-1)], with w1 the weight of the stimuli one
trial back and k the rate of the weight’s decrease over

time. Importantly, only stimuli detected by the observer
are considered when calculating the recent stimulus
distribution. For the simulations of the model, we
defined n¼10, so that the observer has a memory of the
last 10 trials.

The statistical expectation is defined as an approx-
imation of the true stimulus distribution presented to
the bimodal group formalized as the sum of two
circular normal distributions centered on the most
frequently presented locations (458 and 2258). The
widths of the distributions can vary in order to
manipulate the degree of the effect of the prior. Finally,
the combined prior distribution is obtained by multi-
plying the recent stimulus distribution with the
expectation. The two distributions are combined
equally.

The different models of the prior make distinct
predictions regarding recency effects for frequent and
nonfrequent locations. Figure 7 shows three successive
example trials of the task and the prior distribution
before the presentation of a new stimulus for each trial.
In Trial 1, a stimulus is presented at the same location
as in the preceding trial at a nonfrequent location. The
recent stimulus distribution (black solid line) is strongly
biased toward that location (vertical green dotted line).
However, because the location is nonfrequent, the
combined prior (dashed orange line) is biased toward
the nearby frequent locations and not as much on the
presented primed nonfrequent location. Thus, under
equal noise levels, an observer utilizing only the recent
stimulus distribution as a prior is more likely to
correctly detect and report the stimulus than an
observer utilizing the combined prior. In Trial 3, a
stimulus is presented at the same location as in the
preceding trial but now at a frequent location. The
recent stimulus distribution is biased toward that
location (vertical red dotted line) but not very strongly
because of the recent presentation of stimuli at other
locations. However, the combined prior is strongly
biased toward the location. Thus, an observer utilizing
the combined prior is more likely now to correctly
detect and report the stimulus than an observer
utilizing just the recent stimulus distribution.

The combined model of the prior offers a parsimo-
nious explanation for the recency effects on subjects’
detection performance at frequent locations and also
the weaker evidence of such effects at the nonfrequent
locations. Additionally, it can provide an explanation
for subjects’ false alarms. In a trial in which no stimulus
is presented, the posterior collapses to the prior
distributions. If we imagine that no stimulus was
presented in Trial 1 and the observer reports a false
alarm, the observer is more likely to report it at a
nearby frequent location and not at the primed
nonfrequent location. In contrast, in Trial 3, the
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observer is even more likely to report a false alarm at
the primed frequent location.

All simulations of the model use the same values for
jhorizontal, jintermediate, jvertical, threshold a, and noise
variance rnoise. Supplementary Figure 3 shows the
behavior of the model using a flat prior: priori (s)¼ b �
(1/12) for each location, where b is the fraction of trials
in which a stimulus is presented (b ¼ 0.7). As can be
expected, in this case, there are no performance
differences between frequent and nonfrequent locations

and no recency effects. We ran simulations using the
three different priors. We set the parameters of the
priors so that the overall number of false alarms was
very similar between the three simulations and the
experimental data. Figure 8 shows the results of the
simulations along with the experimental data for
detection performance and false alarms. We calculated
the root mean square error (RMSE) between the linear
and quadratic fits of the simulations and the experi-
mental data. When the prior is limited to the statistical

Figure 7. Example run of three successive trials. For each trial, we show the recent stimulus history and compare the different prior

distributions before the new stimulus is presented. The recent stimulus history shows the stimuli presented in the last three trials,

which are used to calculate the recent stimulus distribution (black solid line). The vertical solid lines indicate the exact recent stimuli

angle of presentation, and the width of the line indicates the weight of the stimulus on the prior. The recent stimulus distribution is

combined with the Bimodal expectation (blue dashed line) to form the combined prior distribution (orange dashed-dotted line). The

vertical dashed colored lines indicate the exact angle of presentation. Red stimuli indicate frequent locations and green stimuli

nonfrequent locations. When a frequent location is primed (Trial 3), the combined prior distribution is strongly skewed toward that

location. When a nonfrequent location is primed (Trial 1), the combined prior is less affected as the peak of the distribution is still

closer to the nearby frequent locations.
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expectation, the model does not reproduce any recency
effects, resulting in an overall RMSE of 7.73 in the
percentage of stimuli correctly detected over the total
number of stimulus presentations and 0.31 in the
percentage of false alarms over the total number of no-
stimulus trials. On the other hand, when the prior is
limited to the recent stimulus distribution, the model
predicts strong recency effects but for both conditions

resulting in a larger overall error in both detection
(7.81%) and false alarms (0.32%) in comparison to the
statistical expectation. The simulations using the
combined prior are the closest to the experimental
results with the smallest overall error (5.74% and 0.3%).
Although recency effects are observed in both condi-
tions, they are stronger at frequent locations than at
nonfrequent locations. Further, detection performance

Figure 8. Comparison between experimental data and model. (A) Experimental data. (Left) The fraction of correctly detected stimuli

as a function of whether a stimulus was presented at the same location n trials back and plotted against the presented location.

Dashed lines indicate the best-fitting linear functions. (Right) Relative frequencies of subjects’ false alarms as a function of whether a

stimulus was presented at the same location n trials back and plotted against the presented location. Dashed curves indicate the best-

fitting quadratic functions. (B) Simulations of 16 observers presented with the same stimuli as the experimental subjects using three

distinct priors: ‘‘statistical expectation’’ of the stimulus distribution, ‘‘recent stimulus distribution,’’ and the combined distribution of

the former two. Insets show the RMSE of each simulation with the experimental data. For detection, we calculated the percentage of

correctly detected stimuli over the total number of stimulus presentations and for false alarms the percentage of false alarms over

the total number of no-stimulus trials. The simulations of the combined prior more successfully matched the experimental data than

the simulations of the other prior distributions.
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is different between the two conditions even when a
stimulus was presented at the same location 10 or more
trials in the past.

The Bayesian model presented here can successfully,
albeit simplistically, describe our experimental results.
However, it is important to note that the model does
not correspond to an optimal Bayesian model of the
task. For example, it does not take into account the
statistics of the number of stimuli presented in each
trial or the motor noise in the localization task. A more
complete model would have to take into account the
aforementioned issues as well as the mislocalizations of
presented stimuli, how multiple stimuli presented in the
same trial combine (e.g., a nonlinear integration of
stimuli information), and the preexisting biases we
observed in subjects’ localization performance at
different absolute stimulus locations. The implementa-
tion of such a model could help explain certain
deviations between model and data, such as the
prediction of a large detection performance gap
between frequent and nonfrequent intermediate loca-
tions, which was not observed experimentally. That
model will be the focus of future work.

Discussion

Both perceptual priming and statistically driven
expectations have been shown to have a strong
influence on visual perception. In the current study, we
investigated their interaction in a visual search task.
Our results showed that both priming and expectations
had a significant effect on visual perception by
facilitating detection performance and by inducing
more false alarms in the absence of stimulus. However,
recency effects were subdued or even nonexistent at
locations at which it was less likely that a stimulus
would be presented. We also found that subjects’
detection and localization performance were signifi-
cantly affected by absolute stimulus location and that
statistically driven expectations had a strong effect on
subjects’ localization consistency and the probability
distribution of false alarms.

Cardinal effects on performance

Visual search performance has been shown to vary
across the visual field even at equal eccentricities. A
horizontal–vertical anisotropy in which performance is
better on the horizontal than the vertical meridian is
well documented (Carrasco, Evert, Chang, & Katz,
1995; Rijsdijk, Kroon, & Van der Wildt, 1980) as is a
vertical asymmetry in which performance is better in
the lower than the upper visual field (Edgar & Smith,

1990; Rubin, Nakayama, & Shapley, 1996). The
horizontal–vertical anisotropy has also been shown to
lead to more saccades to the upper and lower visual
fields during visual search (Najemnik & Geisler, 2008).
Physiological studies in human and nonhuman prima-
tes have found that along the vertical meridian of the
retina there are lower densities of ganglion cells (Perry
& Cowey, 1985) and cones (Curcio, Sloan, Packer,
Hendrickson, & Kalina, 1987) than along the hori-
zontal meridian, and similar asymmetries have been
found in the lateral geniculate nucleus (Connolly &
Van Essen, 1984) and V1 (Tootell, Switkes, Silverman,
& Hamilton, 1988) of macaque monkeys.

Carrasco, Talgar, and Cameron (2001) investigated
whether covert attention affects these performance
asymmetries in discrimination, detection, and localiza-
tion tasks and found that attentional manipulations did
not have an effect on performance asymmetries. Our
results agree with these findings. Subjects showed
significantly better detection performance at locations
closer to the horizontal cardinal and increasingly worse
away from it. This performance gap was unaffected by
the stimulus distribution; even though detection per-
formance was, on average, better at frequent locations,
performance at frequent vertical locations was still
worse than performance at nonfrequent intermediate
locations and so on. This suggest that subjects
preexisting horizontal–vertical anisotropy, which may
be considered a structural expectation, provides a
strong constraint on subjects’ performance that was
minimally impacted by our relatively brief intervention.

Although there was a strong effect of the absolute
stimulus location on detection performance, the same
was not observed for accuracy in localization perfor-
mance. Subjects’ localizations at horizontal locations
were not significantly more accurate than localizations
at other locations. However, subjects exhibited sys-
tematic positional error biases away from the hori-
zontal cardinal and toward locations between the
intermediate and vertical locations (between 458 and
758 away from the horizontal cardinal), and these
biases appear to be unaffected by the stimulus
distribution. We have observed similar biases toward
oblique (458 away from the cardinals) locations in a
previous statistical learning experiment (unpublished)
in which low-contrast coherent motion stimuli were
shown at multiple motion directions, which were not
restricted to a part of the visual field but encompassed
the whole circular annulus. We found that subjects’
estimates of the presented stimuli motion directions
were strongly biased toward the oblique directions and
that this bias seemed to mask the possible influence of
the stimulus distribution on estimation behavior.

These findings relate to the ongoing discussion on
whether structural expectations match the statistics of
the environment and whether they are continuously
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updated over the observer’s lifetime. Recent studies
have successfully managed to measure observers’ biases
of visual stimuli and compare it to the environment’s
statistics. For example, Girshick, Landy, and Simon-
celli (2011) investigated subjects’ performance on
comparing different orientations of uncertain stimuli
and found that it was strongly biased toward the
cardinal axes. These biases were shown to match the
distribution of local orientations in a data set of
photographs. So, if these biases are learned over very
long-term exposure, can they be quickly updated in an
experimental task? In Sotiropoulos et al. (2011), we
showed that the structural prior on slow speeds of
moving stimuli is not fixed and can change through
experimental training. Interestingly, this change oc-
curred inside the experimental session but also carried
over incompletely between different sessions. Our
experimental findings in the current task suggest that
there are structural expectations that affect subjects’
perception of the stimulus location, which were largely
unaffected by exposure to the stimulus distribution
during our task. The exact nature of these expectations
is unknown, and further work will be needed to identify
their origin. Further, it would be interesting to
investigate whether they can be modulated by a longer-
lasting perceptual learning experiment. An alternate
explanation for this behavior unrelated to perceptual
priors could be that subjects used the physical structure
of the monitor as a reference with which they could
improve their localization performance. Although we
cannot rule out this possibility, we suspect it unlikely
given that the distance of stimulus presentation to the
monitor edges was large (12.58 visual angle to the top
and 21.68 to the sides of the monitor).

Developing expectations of different timescales

A growing body of work shows that expectations can
be quickly developed in experimental settings (e.g.,
Adams et al., 2004). In previous work (Chalk et al.,
2010; Gekas et al., 2013), we found that, after a few
minutes of presenting low-contrast coherent moving
stimuli to subjects, they perceived new stimuli as
moving in directions closer to the most frequently
presented directions than they actually were. Addi-
tionally, we found that subjects were more consistent in
their estimations at the most frequently presented
directions, that they were better at detecting stimuli
that were moving in these directions, and that they were
more likely to report motion in these directions in trials
in which no stimulus was presented but they reported
seeing a stimulus. In the current study, we found that
the stimulus distribution had the same effects on
subjects’ behavior (with the exception of positional

error biases) inside of a similar time frame (around 5 to
8 min of stimulus presentation).

Interestingly, we found that perceptual priming had
similar effects as the manipulated stimulus distribution
on the behavior of subjects of the control group for
which the stimulus distribution was uniform. In our
task, priming significantly facilitated detection perfor-
mance and induced significantly more false alarms.
Notably, all forms of priming are not the same, and we
do not suggest that all forms of priming involve the
same underlying mechanisms; priming in visual search
has been shown for many different forms of stimulus
characteristics from easy pop-out search tasks to more
difficult conjunction search tasks, and importantly, it
has been shown that the level of priming can be affected
by the stimuli used to test the priming effects (e.g.,
McBride, Leonards, & Gilchrist, 2009). In our study,
priming seems to act as a form of very short-term
expectation that changes dynamically over time. When
the average statistics of the stimuli were uniform,
statistical regularities over a few recent trials induced
identical results as statistical regularities that would
need much longer exposure to be learned by subjects.
This suggests that the updating process of expectations
works continuously from the very short timescale of a
few trials to the medium timescale of an experimental
session and the long timescales of structural expecta-
tions formed over an observer’s lifetime.

However, statistical regularities over the last few
trials still affected subject’s performance even when the
average statistics of the stimuli were bimodal. Thus,
expectations of different timescales appear to interact
depending on the properties of the task and the
environment. In our results, priming, as a form of
short-term expectation, interacts with the longer-term
expectation formed by the group of subjects that were
presented with the bimodal stimulus distribution,
which, in turn, interacts with the longer-term expecta-
tion of a horizontal–vertical anisotropy. Although the
role of expectations and their effect on perception are
increasingly being studied, the interactions of different
types of expectations have earned less attention from
the scientific community. A synergistic effect between
spatial and temporal expectations was observed by
Doherty, Rao, Mesulam, and Nobre (2005) in an EEG
experiment, and this effect was recently shown to
enhance visual discrimination (Rohenkohl, Gould,
Pessoa, & Nobre, 2014); temporal expectations signif-
icantly increased the effectiveness of spatial expecta-
tions, but they did not facilitate performance at
locations that were unattended. Likewise, Kingstone
(1992) found a synergistic interaction between location
and form expectations. However, response times were
lower when a cued form appeared at an uncued
location or when an uncued form appeared at a cued
location. Our findings are in agreement with these
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studies. If we consider priming as a form of short-term
expectation, it has a positive interaction with the
longer-term expectation of the stimulus distribution
when the primed location is a more probable location
but a neutral interaction when the primed location is a
less probable location. It is also worthwhile to note that
priming does not have a negative interaction in that it
does not divert attention from a more probable
location toward a less probable location. In contrast to
counterpredictive external cues in Vincent (2011),
priming did not reflexively draw attention to the
primed nonfrequent location. Otherwise, we would
expect to see increased detection performance and more
false alarms at primed nonfrequent locations in
comparison to nonprimed nonfrequent locations.

Mechanisms of developing expectations

The timescale over which expectations are developed
and/or updated is not yet clearly understood. In
sensorimotor tasks, for example, it has been shown that
observers combine prior knowledge obtained over
short timescales and uncertain sensory information in a
near-optimal way (Körding &Wolpert, 2004; Tassinari,
Hudson, & Landy, 2006). However, some studies have
suggested that this process might be suboptimal
(Eckstein et al., 2004; Raviv, Ahissar, & Loewenstein,
2012). Raviv et al. (2012) showed that subjects
exhibited biases in a two-tones discrimination task that
matched the stimulus distribution. These biases were
strongly skewed toward the most recent trials and
deviated from biases of an optimal Bayesian observer.
They suggested that subjects did not learn a close
approximation of the true stimulus distribution and
that their behavior could be better described by an
‘‘implicit memory’’ model in which the representation
of past stimuli is a continuously updating single scalar.
An interpretation of this finding is that subjects
assumed the statistics of the stimuli in the experiment
were highly volatile and only the very recent stimulus
history was informative. However, the task was
purposely brief, consisting of tens of trials, so it is
possible that subjects could not form a complete picture
of the prior in that time frame. In our study, on the
other hand, subjects had abundant exposure to the
statistics of the stimuli, and we found that subjects
learned the (static) bimodal statistics of the stimuli
while also being affected by the recent stimulus history
for the frequent locations. Compared to the study of
Raviv et al., this suggests that which aspects of the
statistics of the stimuli are learned and used could
depend on specific task properties (e.g., time frame of
exposure, complexity, initial instructions, etc). Com-
plex recency effects can arise even in simple two-
alternative forced choice (2AFC) tasks. For example, in

a speeded 2AFC task, Jones, Curran, Mozer, and
Wilder (2013) define as a ‘‘first-degree recency effect’’
the reduction in response time due to a physical match
between a current stimulus and past stimuli in recent
trials. They also define as a ‘‘second-degree recency
effect’’ the reduction in response time in a repetition
trial (i.e., the current trial matches the previous one)
when recent trials were repetitions and in an alternation
trial (i.e., the current trial mismatches the previous one)
when recent trials were alternations. They proposed
two simple learning mechanisms that can explain these
recency effects: learning the base rate, which is the
proportion of trials in which each stimulus occurs, and
learning the repetition rate, which is the proportion of
trials that repeat the previous trial. However, it is the
interaction of these two mechanisms that can explain
specific phenomena, such as the alternation advantage
that was not predicted by previous models of sequential
effects (Wilder, Jones, & Mozer, 2010; Yu & Cohen,
2008). More work will be needed to identify how these
learning processes differ in different task situations and
whether such differences could be explained in terms of
the system trying to optimize its task performance.

A number of questions regarding the underlying
mechanisms of expectations remain open. For example,
how expectations developed over short (minutes) or
medium (hours) time frames persist over time and,
eventually, become structural expectations. Contextual
expectations can persist for long periods (e.g., Sotir-
opoulos et al., 2011) or even transfer to different tasks
(e.g., Turk-Browne & Scholl, 2009), so the same
mechanisms that are responsible for the formation of
these short-term expectations should, to some extent,
be used for the formation of long-term structural
expectations. Another important question is how
expectations are encoded in the properties of popula-
tions of sensory neurons. Although Bayesian models
provide us with mechanisms to successfully describe
behavioral performance, they usually fail to be
predictive at the neural level (Colombo & Seriès, 2012;
O’Reilly, Jbabdi, & Behrens, 2012). Unfortunately, it is
still unknown how probability distributions are neu-
rally implemented, and it is generally difficult to
propose experimental setups that would distinguish
between different models of neurally plausible proba-
bilistic inference. Nonetheless, our findings and mod-
eling work suggest some of the constraints that such
models should adhere to. We show that a prior of the
very recent stimulus history is constantly updated and
interacts directly with priors formed further in the past
in a synergistic way. Moreover, we show that priors can
dynamically change over very short timescales (seconds
to a few minutes) whereas the formation of a longer-
term prior requires at least 5 to 10 min of stimulus
exposure. Similar timescales were reported by Chopin
and Mamassian (2012) in a visual adaptation task.
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They showed that visual adaptation could lead to
negative correlation of the current percept with visual
events presented recently (up to 3 min) and a positive
correlation with a reference window of stimuli further
into the past (5 to 10 min). This result seems to
contradict our findings at first glance. However, we
should note that the negative correlation arises after
repeated presentation of the same stimulus. It was
unlikely that we would observe negative correlations in
our experiment as the same stimulus was never
presented at the same location for more than two
consecutive trials.

In the current study, we described a Bayesian model
in which the prior is a combination of a continuously
updating distribution of the recently presented stimuli
and an expectation of the average stimuli statistics
developed over hundreds of trials. We believe this
model of the prior distribution offers a parsimonious
explanation for our experimental results. However, the
model is unable to predict whether the final prior is
indeed a combination of two separate processes of
different timescales or one single process extended over
time. For example, we could implement a prior that is a
sum of all presented stimuli (going back as far as the
start of the experimental session) in which the
importance of the last few presented stimuli is
overvalued. The behavioral effects of such a prior
would be identical to the effects of the combined prior
we described. How could we distinguish between the
two alternatives? More physiology and imaging studies
investigating the neural loci of expectations could help
us answer that question.

Finally, the current study replicates our previous
findings that statistically driven expectations can induce
increased false alarms in the absence of stimulus and
that the probability distribution of these false alarms
matches the distribution of the presented stimuli. Fiser
et al. (2010) argued the interesting notion that, in the
absence of sensory inputs, the prior distribution might
be reflected on the spontaneous activity of neurons.
This notion accounts for the observed similarity
between spontaneous activity and evoked activity. For
example, Berkes, Orbán, Lengyel, and Fiser (2011)
found that the spontaneous activity of awake ferrets in
the primary visual cortex at different stages of
development is similar to the averaged evoked activity
and that this similarity increased with age and was
specific to responses evoked by natural scenes. More-
over, it has been found that spontaneous activity is
sufficient to evoke firing in some cells without sensory
input (Tsodyks, Kenet, Grinvald, & Arieli, 1999). We
believe the link between spontaneous activity and the
prior distribution is a promising direction for future
research as are alternative approaches, such as the top-
down modulation of sensory signals or the shift in the
selectivity of neurons. However, more theoretical and

experimental work is needed to answer the outstanding
questions regarding the potential neurobiological
mechanisms of priors.

In conclusion, our results show that human observ-
ers are able to probabilistically combine their noisy
observations with a learned expectation of likely
stimulus locations. Furthermore, learned expectations
over a large number of trials are combined with recent
exposure to a stimulus, which facilitates correct
detection of stimuli but at the cost of increased false
detections (mislocalizations and false alarms). Our
work suggests that prior expectations may develop
simultaneously over different timescales, potentially
through multiple mechanisms, and interact synergisti-
cally depending on the demands of the behavioral task.
These findings may help in the effort of understanding
how probabilistic inference could be implemented in
the cortex.

Keywords: expectation, perceptual priming, psycho-
physics, Bayesian
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