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Modifications to the K-Profile parameterization with nondiffusive fluxes for Langmuir
turbulence

Tomas Chor, James C. McWilliams and Marcelo Chamecki∗

University of California, Los Angeles

ABSTRACT

The K-profile parameterization (KPP) is a common method to model turbulent fluxes in regional and global oceanic models. Many
versions of KPP exist in the oceanic sciences community and one of their main differences is how they take the effects of nonbreaking
waves into account. Although there is qualitative consensus that nonbreaking waves enhance vertical mixing due to the ensuing Langmuir
circulations, there is no consensus on the quantitative aspects and modeling approach. In this paper we use a recently-developed method
to estimate both components of KPP (the diffusive term, usually called local, and the nondiffusive component, usually called nonlocal)
based on numerically-simulated turbulent fluxes without any a priori assumptions about their scaling or their shape. Through this method
we show that the cubic shape usually used in KPP is not optimal for wavy situation and propose new ones. Furthermore we show that the
formulation for the nondiffusive fluxes, which currently only depend on the presence of surface buoyancy fluxes, should also take wave
effects into account. Finally, we investigate how the application of these changes to KPP improves the representation of turbulent fluxes in
a diagnostic approach when compared to previous models.

1. Introduction

Many state-of-the-art regional and global models param-
eterize vertical mixing in ocean surface boundary layers
(OSBLs) with the K-profile parameterization (KPP; Large
et al. (1994)), which can be written as

⟨𝑤′𝑐′⟩ = −𝐾 (𝑧) 𝜕⟨𝐶⟩
𝜕𝑧︸         ︷︷         ︸

𝐹𝐷 (𝑧)

+𝐹𝑁𝐷 (𝑧). (1)

Here 𝑧 is the vertical coordinate (negative for the ocean),
𝐹𝐷 and 𝐹𝑁𝐷 are the diffusive and nondiffusive compo-
nents of the turbulent flux, 𝐾 (𝑧) is the eddy diffusivity for
a passive scalar, 𝑤 is the vertical velocity of the flow, ⟨𝐶⟩
and 𝑐′ are the average concentration of a passive scalar
and its turbulent fluctuation, respectively. A prime de-
notes a turbulent fluctuation and ⟨·⟩ denotes a temporal
and horizontal average. While KPP is a complete model
(providing closure for buoyancy and momentum fluxes),
we focus on passive scalars in this manuscript (for the sake
of simplicity in initial investigations), with the general aim
of investigating opportunities for improving KPP in wavy
regimes.

Currently there exist many different versions of KPP and
they differ in mainly two aspects: their definition of flux
profiles (i.e. 𝐾 (𝑧) and 𝐹𝑁𝐷 (𝑧)) and the calculation of
the boundary layer depth ℎ. Although it has been shown
numerically that Langmuir turbulence heavily impacts the

∗Corresponding author: Marcelo Chamecki: chamecki@ucla.edu

determination of ℎ by increased entrainment at the bottom
(Grant and Belcher 2009; McWilliams et al. 2014), we fo-
cus in this paper only on the determination of KPP profiles
and treat ℎ as a given. The reader is directed to the recent
study of Li and Fox-Kemper (2017) and references therein
for more information on the efforts to calculate ℎ in the
presence of Langmuir turbulence.

Efforts at adapting 𝐹𝐷 and 𝐹𝑁𝐷 (𝑧) to Langmuir turbu-
lence mostly focused on changing the magnitude of 𝐾 (𝑧),
and few studies have considered the possibility of Lang-
muir turbulence directly modifying the shape and mag-
nitude of nondiffusive fluxes 𝐹𝑁𝐷 (Reichl et al. 2016;
Chen et al. 2016). While the formulation of 𝐾 (𝑧) rel-
ative to surface wind shear and surface buoyancy fluxes
remain the same throughout different versions1 (based on
Monin-Obukhov similarity theory; MOST), the effect of
nonbreaking waves on the magnitude of 𝐾 (𝑧) varies sig-
nificantly from model to model (Li et al. 2019).

While there is general consensus that the presence of
nonbreaking waves (and therefore Langmuir cells (Thorpe
2004)) should enhance the eddy diffusivity of the flow,
there is disagreement on the quantitative aspects (Smyth
et al. 2002; Takaya et al. 2010; Van Roekel et al. 2012; Li
et al. 2019). The fact that many different studies cannot
quantitatively agree on the Langmuir-driven enhancement
could mean that merely enhancing 𝐾 (𝑧) is not an appro-
priate strategy (Van Roekel et al. 2018; Chamecki et al.

1Some exceptions are Sinha et al. (2015); Yang et al. (2015); Large
et al. (2019b). The CVMix project (Griffies et al. 2015) also allows for
different shapes.
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2019). With that in mind, we adopt an alternative ap-
proach that takes Langmuir effects into account in both
𝐾 (𝑧) and 𝐹𝑁𝐷 (𝑧).

In the vast majority of previous KPP versions 𝐹𝑁𝐷 is
assumed to (i) have the same shape as the eddy diffusivity2
and (ii) to depend only on the surface buoyancy fluxes
(implying that 𝐹𝑁𝐷 is designed to model the action of
convective plumes specifically). We relax assumption (ii)
since it has been shown that nondiffusive fluxes are affected
by Langmuir cells (Chen et al. 2016; Chamecki et al. 2019)
and relax assumption (i) based on recent results for the
atmosphere that suggest that the optimal form for 𝐹𝑁𝐷 can
be different from the cubic function that is commonly used
in the literature (Chor et al. 2020b).

In order to investigate how to improve KPP in the pres-
ence of Langmuir turbulence, we use the method developed
in Chor et al. (2020b). This optimization-based method
uses the asymmetry in the vertical transport of two inde-
pendent scalars (i.e., the fact that scalars introduced at the
surface are transported more efficiently than scalars en-
trained at the bottom of the boundary layer (Wyngaard and
Brost 1984)) to bound the transport carried by the diffu-
sive component and is capable of systematically estimating
profiles for 𝐹𝐷 (therefore 𝐾 (𝑧)) and 𝐹𝑁𝐷 (𝑧) without any
imposed shape or scaling. Therefore the main advantage
of this method is that it has few assumptions and the shapes
and magnitudes of 𝐾 (𝑧) and 𝐹𝑁𝐷 (𝑧) are dictated by the
data, as opposed to being a function of scalings chosen a
priori.

We use results for 𝐾 (𝑧) and 𝐹𝑁𝐷 (𝑧) obtained with
the optimization method to investigate the separation be-
tween nondiffusive and diffusive fluxes of passive scalars
in several numerically-simulated OSBL regimes ranging
from waveless neutral to combinations of surface buoy-
ancy fluxes and different types of waves. We then use the
results to investigate modifications to the KPP formula-
tion (both 𝐾 (𝑧) and 𝐹𝑁𝐷 (𝑧) separately) in a way that is
optimized for wavy regimes. We consider our main con-
tributions to be the systematic assessment that Langmuir
effects are required to be considered in the formulation of
nondiffusive fluxes and the investigation of different shapes
for KPP profiles.

We note that our goal is not to introduce a full model,
but to investigate how changes in the formulation of KPP
can lead to a model for passive scalar mixing that is better
suited for regimes with waves. Finally, while the focus of
this work lies in passive scalars, we briefly present selected
results for temperature following the same modelling used
for the tracers in Section 6. For the sake of convenience, a
list of the main symbols used in this paper is included in
Table 1.

2The notable exception being CVMix (Griffies et al. 2015), which
allows different shapes.

2. Theoretical aspects and definitions

a. Definitions

Since it is up for debate whether 𝐹𝐷 and 𝐹𝑁𝐷 represent
the turbulent vertical fluxes due to local and nonlocal pro-
cesses (Zhou et al. 2018), we refer to the first and second
terms on the right-hand side of Equation (1) (namely 𝐹𝐷
and 𝐹𝑁𝐷) as diffusive and nondiffusive.

We define two different passive tracers that will be useful
in implementing the optimization method: a surface-forced
tracer (SFT) and an entrainment-forced tracer (EFT) (Wyn-
gaard and Brost 1984; Chor et al. 2020b). A SFT is one
which has a source at the surface and no other sources/sinks
inside the domain. Figure 1a shows the normalized mean
turbulent flux profile for a SFT from a convective regime
which will be detailed in Section 3. SFTs are known to be
effectively transported by large convective plumes (Kaimal
et al. 1976; Wyngaard and Brost 1984; Moeng and Sullivan
1994), which is sketched in Figure 1a as red arrows. In the
case of wavy oceanic regimes SFTs are also thought to be
efficiently transported vertically by Langmuir circulations.

An EFT, on the other hand, is defined as a tracer whose
flux into the mixed layer is performed solely by entrainment
processes. Vertical transport of this tracer is not as efficient
as that of SFTs since there are no large coherent structures
emerging from the entrainment layer. Figure 1b shows the
mean turbulent flux profile for an EFT as a solid black line
from the same convective simulation used in Figure 1a. In
practice this flux occurs due to a change in concentration
across the entrainment layer, and its mechanism is sketched
in Figure 1b as blue arrows. It should be noted that, since
the transport equations are linear for passive tracers, tracers
that are linear combinations of SFTs and EFTs are also
solutions of the flow. We also use EFTs to define the
maximum entrainment depth ℎ𝑒, which is the depth at
which the turbulent flux of an EFT is at its maximum
(depicted as a dashed brown line in Figure 1).

While there are many ways to define the boundary layer
depth ℎ, it is generally understood that it should represent
the maximum depth that OSBL eddies can penetrate into
the stratified fluid (Li et al. 2016). In the absence of other
sources of instabilities (as is the case with our simulations,
described in Section 3), OSBL eddies emerge from surface
processes. Thus we define ℎ as the depth at which the
SFT turbulent flux ⟨𝑤′𝑐′SFT⟩ reaches roughly zero — in
our convention ℎ is a negative number. We prefer this
definition because it matches very closely to the maximum
buoyancy gradient criterion used in Li and Fox-Kemper
(2017) for convective conditions, which has its relations to
other estimates mapped out (see Figure 1b of Li and Fox-
Kemper (2017)). The boundary layer depth ℎ can be seen in
Figure 1 as a dashed blue line. From here on we prioritize
using the normalized vertical coordinate 𝜎 = 𝑧/ℎ > 0 for
depth, instead of using 𝑧.
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Table 1. List of main symbols used in this paper roughly organized by order of appearance. Note that all concentrations used in this paper are
normalized by arbitrary units. The operator ⟨·⟩ is implemented as a horizontal and time average.

Symbol Description Units

⟨𝑤′𝑐′⟩ Vertical turbulent flux of scalar 𝐶 m/s
⟨𝑤′𝑐′⟩𝑠 Surface vertical flux of scalar 𝐶 m/s
⟨𝑤′𝑐′⟩𝑒 Vertical turbulent flux of scalar 𝐶 at entrainment m/s
𝜕⟨𝐶⟩
𝜕𝑧 Average vertical gradient of scalar 𝐶 1/m
ℎ OSBL depth m
𝜎 Normalized vertical coordinate (𝑧/ℎ) –
𝐾 (𝜎) Eddy diffusivity for a passive scalar m2/s
𝐹𝐷 (𝜎) Diffusive component of the vertical turbulent flux m/s
𝐹𝑁𝐷 (𝜎) Nondiffusive component of the vertical turbulent flux m/s
𝐿𝑎𝑡 Turbulent Langmuir number (Equation (2)) –
𝐿𝑎SL Surface-layer Langmuir number (Equation (3)) –
Λ Stability parameter (Equation (4)) –
𝑢𝑠 (𝜎) KPP velocity scale (Equation (6)) m/s
𝑢∗ Friction velocity m/s
𝐺𝑘 (𝜎) Nondimensional shape function for 𝐾 (𝜎) –
𝐺𝑠 (𝜎) Nondimensional shape function for surface-driven nondiffusive fluxes –
𝐺𝑒 (𝜎) Nondimensional shape function for entrainment-driven nondiffusive fluxes –
𝐺𝑛 (𝜎) Cubic nondimensional shape function (Equation (8)) –
𝐺𝑙 (𝜎) Shape function for surface-driven nondiffusive fluxes diagnosed from wavy regimes –
G𝑙 (𝜎) Averaged normalized eddy diffusivity for wavy regimes –
𝑔𝑠 (𝜎) Base nondimensional function for 𝐺𝑠 (𝜎) (Equation (15)) –
E Langmuir enhancement parameter –
Esfc Langmuir enhancement parameter fitted for the surface layer –
EOSBL Langmuir enhancement parameter fitted for the entire OSBL –
𝜒 Cost function for optimization procedure (Equation (11)) –
𝑅𝐹 Approximate ratio of nondiffusive to total fluxes (Equation (12)) –
𝛿𝐹 Mean normalized flux error in the OSBL (Equation (18)) –
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Fig. 1. Mean turbulent flux profiles for a SFT (a) and an EFT (b). The data for this plot is taken from a convective simulation without surface
wind shear or waves, to be described in Section 3. Both fluxes are normalized so that the maximum magnitude of the fluxes is unity. Sketched
in the figure are also arrows for transport via coherent convective plumes (red arrows) and entrainment processes (blue arrows), and the boundary
layer depth ℎ.

We define the turbulent Langmuir number as

𝐿𝑎𝑡 =

(
𝑢∗
𝑢𝑠0

)1/2
, (2)

where 𝑢∗ =
√
|⟨𝑢′𝑤′⟩𝑠 | is the friction velocity (⟨𝑢′𝑤′⟩𝑠 is

the average momentum flux at the surface) and 𝑢𝑠0 is the
Stokes drift at the surface (McWilliams et al. 1997). 𝐿𝑎𝑡
assumes that most information on nonbreaking waves can
be obtained by 𝑢𝑠0. However, this ignores other aspects
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of the Stokes drift such as its penetration and at times
may not be a sufficient to the characterization of non-
breaking waves (Li et al. 2019). For that reason Harcourt
and DAsaro (2008) introduced the surface-layer Langmuir
number 𝐿𝑎SL, defined as

𝐿𝑎SL =

(
𝑢∗

⟨𝑢𝑠⟩ −𝑢𝑠ref

)1/2
, (3)

where ⟨𝑢𝑠⟩ is a surface-layer-averaged Stokes drift (in this
case 0 ≤ 𝜎 ≤ 0.2) and 𝑢𝑠ref is a reference Stokes drift (taken
at 𝜎 = 0.765). A few definitions exist that generalize this
parameter to the case where wind and waves are misaligned
(Van Roekel et al. 2012; Reichl et al. 2016) which tend to
exclude 𝑢𝑠ref in the denominator. Since we only investigate
regimes with wind-aligned waves and since 𝑢𝑠ref is too small
in our simulations to make any significant impact, we use
Equation (3) to calculate 𝐿𝑎SL for all simulations in this
work.

We also define the stability parameter Λ as

Λ = 𝜅𝑤3
∗/𝑢3

∗, (4)

where 𝜅 is the von Kármán constant, 𝑤∗ = (𝐵𝑠 |ℎ |)1/3 is the
turbulent convective velocity (Kaimal et al. 1976). Here
𝐵𝑠 is the surface buoyancy flux and positive values imply a
loss of buoyancy. Λ is equivalent to −|ℎ|/𝐿𝑜, where 𝐿𝑜 is
the Obukhov length, with negative values of Λ indicating
stable conditions and positive values indicating unstable
conditions. Finally, we define a Langmuir velocity scale
as 𝑤𝐿 = (𝑢2

∗𝑢
𝑠
0)

1/3 (Harcourt and DAsaro 2008).
It is useful to assume that 𝑢𝑠0 is sufficient to character-

ize the effects of waves (which may be of limited realism)
since in that case 𝐿𝑎𝑡 and Λ are sufficient to characterize
any oceanic regime with only waves, surface wind stress
and surface buoyancy fluxes as forcings. Based on this as-
sumption we use a modified version of the regime diagram
(seen in Figure 2) introduced by Li et al. (2005) and Belcher
et al. (2012) in which the axes are 𝐿𝑎𝑡 and Λ (we constrain
ourselves to unstable regimes, designated by Λ ≥ 0). In
most versions of the diagram, convection was measured
with 𝑤3

∗/𝑤3
𝐿 = 𝐿𝑎2

𝑡Λ/𝜅 (an exception being Figure 9 of Li
and Fox-Kemper (2017), which uses Λ/𝜅), which contains
an implicit dependence on the Langmuir number which we
try to avoid. Furthermore,Λ is common in the atmospheric
literature, making the transfer of knowledge between both
fields more straightforward. Each of the three regions of
the diagram delineate an area where one of the three forc-
ings dominates, while overlapping areas are dominated by
more than one forcing. We also plot the joint probability
density function (Joint PDF) for ocean regimes taken from
the set of simulations in Li et al. (2019) as dashed white
lines as a guide to assess representativeness of regimes.

0 0.01 1 100
0.1

1.0La
t

Wind
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Convection

Lat = 0.3

Neutral SwellNeutral Wind-Wave Eq.

Weak Conv + Waves

Neutral Weak Waves

Pure Wind Stress

Weak Conv + Wind-Wave Eq.

Weak Conv + Weak Waves

Weak Conv + Waveless

Joint PDF Peak

Weak Conv + very Weak Waves

Strong Conv + weak Waves

Strong Conv + Wind-Wave Eq.

Pure Convection

Fig. 2. All simulations used in this manuscript as gray circles in
a 𝐿𝑎𝑡 -Λ parameter space. Solid blue, gray and red lines delineate
regions where at least 25% of the turbulent kinetic energy is produced
by Langmuir (blue), surface wind stress (gray) and buoyancy fluxes
(pink), respectively. Intersection areas are dominated by more than one
forcing. Dashed white lines are the Joint PDF of oceanic regimes from
Li et al. (2019) and the dashed gray line marks the line of wind-wave
equilibrium. Note that most of the figure is in log-scale except the range
0 ≤ Λ ≤ 1×10−2, and that the top and right edges represent infinity.
Note also that a pure convection simulation (where Λ→∞ and 𝐿𝑎𝑡 is
not defined since 𝑢∗ = 𝑢𝑠0 = 0) is plotted as if 𝐿𝑎𝑡 =∞.

b. Current KPP formulation

Several versions of KPP have been proposed, most of
which with different formulations to include wave effects.
A thorough review is outside the scope of this manuscript
and the reader is directed to Li et al. (2019) for details.
The focus of this manuscript is on the formulation of 𝐾 (𝜎)
and 𝐹𝑁𝐷 (𝜎), and we leave other aspects of KPP (e.g. the
estimation of the OSBL depth) untouched. Most formu-
lations of KPP which include wave effects can be written
generally for unstable conditions as

𝐾 (𝜎) = 𝑢𝑠 (𝜎) |ℎ|𝐺𝑘 (𝜎), (5)

𝑢𝑠 (𝜎) = E(𝐿𝑎𝑡 )
𝜅𝑢∗

𝜙(𝑧/𝐿𝑜)
, (6)

𝐹𝑁𝐷 (𝜎) = 𝐺𝑠 (𝜎) ⟨𝑤′𝑐′⟩𝑠 , (7)

which we will also adopt in this manuscript except for the
addition of a few extra dependencies. Here 𝜅 = 0.4 is the
von Kármán constant, 𝜙(𝑧/𝐿𝑜) is the nondimensional gra-
dient for a tracer in the surface layer according to MOST,
𝐺𝑘 (𝜎) is a nondimensional shape function for 𝐾 (𝜎) and
𝐺𝑠 (𝜎) is a nondimensional shape function for the surface-
driven nondiffusive flux. The velocity scale 𝑢𝑠 is capped
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at its value at 𝜎 = 0.1 for unstable conditions according to
most implementations (Large et al. 1994). E is a Lang-
muir enhancement parameter that depends at least on the
Langmuir number 𝐿𝑎𝑡 , but may depend on other variables
(Smyth et al. 2002; Reichl et al. 2016). For example, in
the face of the results in Section 4 and previous studies, we
may expect E(𝐿𝑎𝑡 ,Λ) in some cases (Smyth et al. 2002;
Li and Fox-Kemper 2017).

In most previous versions of KPP, the eddy diffusivity
𝐾 (𝜎) and the nondiffusive fluxes 𝐹𝑁𝐷 (𝜎) were limited
to having the same shape. That is, 𝐺𝑘 = 𝐺𝑠/C𝑠 = 𝐺𝑛,
where C𝑠 = 5𝜅 (0.1𝑐𝑠𝜅)1/3 is a nondimensional constant
(𝑐𝑠 is another nondimensional constant that depends on the
chosen formulation for 𝜙(𝑧/𝐿𝑜), which we take from Large
et al. (1994) to be 𝑐𝑠 = 98.96) and𝐺𝑛 (𝜎) is a cubic function
that originated in the neutral atmospheric boundary layer
literature:

𝐺𝑛 (𝜎) = 𝜎 (1−𝜎)2 . (8)

The reasons for a cubic shape are that (i) it is the low-
est degree polynomial that can satisfy all four physically-
motivated boundary conditions for 𝐾 (𝜎) (O’Brien 1970);
and that (ii) a cubic shape matches the estimated 𝐾 (𝜎)
profile for a neutral and waveless simulation (Large et al.
1994; Marlatt et al. 2012).

Although there are a few exceptions that may not fit
Equations (5)-(8) (e.g. Yang et al. (2015), Sinha et al.
(2015) and Large et al. (2019b)), these equations indicate
that in most cases the only adjustment in the KPP profiles
for wavy conditions is a change in the magnitude of the
eddy diffusivity 𝐾 (𝜎) that is accomplished by E. As such,
most of the difference between different KPP versions is
generally confined to formulation used for E (vide Figure
A1 of Li et al. (2019) for a visual comparison).

In particular, most previous models include no changes
in the shape of 𝐾 (𝜎), which is given by the cubic profile
𝐺𝑛 (𝜎) in every regime, or the shape and magnitude of
𝐺𝑠 (𝜎), despite evidence indicating that Langmuir circu-
lations affect nondiffusive vertical transport (Chen et al.
2016). Due to the limiting nature of these assumptions
and the lack of evidence to support their necessity we relax
them here, allowing𝐺𝑘 (𝜎) and𝐺𝑠 (𝜎) to be different from
each other and from𝐺𝑛 (𝜎). Furthermore we allow𝐺𝑠 (𝜎)
to also depend on Λ and 𝐿𝑎𝑡 , for reasons that will become
clearer in Section 4.

Note that Large et al. (2019a) recently introduced a mod-
ified version of MOST for the ocean that includes alterna-
tive formulations for 𝑢𝑠 (𝜎) for waveless regimes (different
from the ones used for the atmosphere) and new formula-
tions for wavy ones. However, we choose to not use their
theory here since we believe that more data is needed in
order to validate those results.

c. A new flux partition model

We base the analyses of this and the following section on
the framework developed in Chor et al. (2020b). Sufficient
information to follow the reasoning is given but the reader
is directed to the original paper for more details. We
consider a three-term flux decomposition without imposing
any shape or scaling for 𝐾 (𝜎) and apply it to a SFT and an
EFT as:

⟨𝑤′𝑐′SFT⟩ =−𝐾 (𝜎) 𝜕⟨𝐶SFT⟩
𝜕𝜎

+ ⟨𝑤′𝑐′SFT⟩𝑒𝐺𝑒 (𝜎)+ (9)

+ ⟨𝑤′𝑐′SFT⟩𝑠𝐺𝑠 (𝜎),

⟨𝑤′𝑐′EFT⟩ =−𝐾 (𝜎) 𝜕⟨𝐶EFT⟩
𝜕𝜎

+ ⟨𝑤′𝑐′EFT⟩𝑒𝐺𝑒 (𝜎). (10)

where the subscripts identify a SFT or EFT quantity,
⟨𝑤′𝑐′⟩𝑠 and ⟨𝑤′𝑐′⟩𝑒 are the values of the turbulent flux
taken at the surface and at ℎ𝑒, respectively. Furthermore,
𝐺𝑠 (𝜎) and 𝐺𝑒 (𝜎) are (as of now) unspecified dimension-
less shape functions associated with surface and entrain-
ment processes, respectively.
𝐾 (𝜎), 𝐺𝑠 (𝜎) and 𝐺𝑒 (𝜎) are assumed to be functions

of the flow alone, and knowledge of those three profiles is
sufficient to reconstruct the total flux of any passive tracer
provided that the fluxes at the vertical boundaries of the
OSBL are known. Given our focus on diagnostic analyses,
we obtain ⟨𝑤′𝑐′⟩𝑠 and ⟨𝑤′𝑐′⟩𝑒 from large-eddy simulations
(LES) results. Note that while a SFT has both components
of the nondiffusive flux (since there may be a small flux of
𝐶SFT through ℎ𝑒), an EFT only has the entrainment-driven
flux, since ⟨𝑤′𝑐′EFT⟩𝑠 = 0 as a boundary condition.

The main difference between our flux separation and pre-
vious approaches is that we separate the nondiffusive flux
𝐹𝑁𝐷 into two components (due to surface and entrainment
processes separately), while previous approaches only con-
sider one component. While we show in Section 4 that
𝐺𝑒 (𝜎) is likely not important in modeling applications
(since its magnitude is small in all cases considered here),
it is critical when applying our method (see Appendix of
Chor et al. (2020b)).
𝐾 (𝜎), 𝐺𝑠 (𝜎) and 𝐺𝑒 (𝜎) need to be estimated, which

introduces the need for an extra equation in addition to
Equations (9)–(10). We follow Chor et al. (2020b) and
use an optimization method that uses only fluxes and mean
scalar gradients of SFTs and EFTs in order to close the
system of equations. To that end, we introduce a cost
function 𝜒 to be minimized in an optimization procedure:

𝜒 = 𝐺𝑠 (𝜎)2 +𝐺𝑒 (𝜎)2. (11)

This choice of 𝜒 is designed to minimize nondiffusive
fluxes 𝐹𝑁𝐷 , which ensures that the flux is fully diffu-
sive in regimes where most of the eddies tend to be small
(e.g. in waveless stable or neutral conditions (Jayaraman
and Brasseur 2018)). Furthermore, diffusive operators are
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known to work in a variety of conditions (Corrsin 1975),
are numerically well-behaved (since they always decrease
integrated variance of the transported scalar) and they avoid
some issues that exist with nondiffusive fluxes (see Section
8.6.4 of Griffies et al. (2015)). Thus, trying to model as
much of the flux as possible with a diffusive operator is
also a modeling-motivated decision.

We emphasize that, although it is common practice to
conceptually think of the diffusive/nondiffusive flux de-
composition as a physical one, that separation is artificial.
The need for a nondiffusive component comes from having
large coherent structures in the flow (Deardorff 1966), but
there does not need to be one-to-one correspondence be-
tween nondiffusive fluxes and large eddies. In fact there is
evidence that the flux due to large structures in convective
flows is different from the nondiffusive flux of KPP (Zhou
et al. 2018). As such, even though 𝜒 is partially physically-
motivated, our method should not be seen as providing
a completely physical partition of the fluxes (because a
physical decomposition of turbulent fluxes into diffusive
and nondiffusive components is impossible). Thus, care
should be taken when trying to interpret our results (or
any other KPP-like decomposition results) in a completely
physical framework.

With that said, by maximizing the eddy diffusivity we
ensure that only the asymmetric part of the vertical trans-
port is allocated to the nondiffusive component. So in
essence, due to our definition of 𝜒, the nondiffusive flux
can be seen as a measure of the asymmetry in the vertical
transport in the OSBL.

As an explanatory example, consider a neutral waveless
regime, where there is almost no asymmetry in the vertical
transport (i.e. transport from surface down is as efficient
as transport from the entrainment up). In this case all the
transport can be represented using a diffusive term and
there is no need for a nondiffusive component. Langmuir
turbulence and convection change this flow in two main
ways: (i) they enhance mixing and transport efficiency and
(ii) they introduce vertical transport asymmetry, since now
the transport from the surface down is more efficient than
the transport from the entrainment up. The enhancement
(i) can be modeled as diffusive behavior even though it
may be caused by large-scale coherent motions. However,
the transport asymmetry (ii) needs to be accounted for by
a nondiffusive term otherwise the resulting eddy diffusiv-
ity may become negative or even singular (Wyngaard and
Brost 1984). Thus, by minimizing nondiffusive fluxes, we
ensure that they are used only in the cases where vertical
transport asymmetry makes it necessary, which generally
coincides with regimes that have a prevalence of large co-
herent structures.

The constraint 𝐾 ≥ 0 is enforced in the optimization but
𝐺𝑒 and 𝐺𝑠 are left unconstrained and can become nega-
tive. Allowing negative values of the shape functions can
potentially impact KPP in two ways. (i) It may exacerbate

an known unphysical behavior where a tracer source at
the surface leads to a reduction of tracer mass in portions
of the OSBL directly due to the nondiffusive component
(which is generally discussed in terms of temperature and
therefore cooling/heating). Moreover (ii) regions with a
negative value of 𝐺𝑠 imply that the nondiffusive flux is in
the opposite sign of the surface flux itself (and similarly
for 𝐺𝑒 and the entrainment flux).

We note that (i) happens for any convex shape function,
which implies that 𝑑𝐺𝑠/𝑑𝜎 changes sign in the domain
(see discussion in Section 8.6.4 of Griffies et al. (2015))
regardless of it having negative values. Furthermore, (i)
and (ii) are only an issue in the absence of diffusive fluxes,
which should be a rare occasion under normal conditions.
In fact, since our method minimizes nondiffusive fluxes, it
is possible that it alleviates these issues by simply increas-
ing the prevalence of diffusive fluxes. Finally, while we
allow negative values of 𝐺𝑠 and 𝐺𝑒, 𝐺𝑒 tends to be small
in magnitude and is not used in the considered modifica-
tions for KPP. Moreover, occasions where 𝐺𝑠 < 0 happen
very rarely in our results and do not change the analyses
significantly. This will become clear when proposing a
different formulation for 𝐺𝑠 (𝜎) based on diagnosed shape
functions in Section 6, where the new shape (shown in Fig-
ure 6c) can be seen to have non-negative values throughout
the domain.

3. Numerical aspects

We use an LES model that was already used success-
fully in other studies (Yang et al. 2015; Chor et al. 2018)
to apply the methods described in Section 2. The model
solves the Craik-Leibovich equations (Craik and Leibovich
1976) and employs a pseudo-spectral scheme in the hor-
izontal directions and a centered finite differences in the
vertical direction to solve the flow. The tracer advection
is solved using a finite volume scheme with bounded ad-
vection (Chamecki et al. 2008). Horizontal boundary con-
ditions are doubly-periodic and the subgrid scale model
used is the Lagrangian-Averaged Scale-Dependent model
(Bou-Zeid et al. 2005), which has been shown to reach
statistical convergence at coarser resolutions than different
subgrid scale closures (Salesky et al. 2017).

We run 13 simulations in total, which are plotted in
the 𝐿𝑎𝑡 -Λ parameter space in Figure 2 as gray circles and
have their characteristics listed in Table 2. Although there
are no simulations in the areas dominated by both wind
stress and Langmuir, or dominated by all three forcings
simultaneously, we do not consider this to be a problem
since the limits of these areas are approximate. Note that
for the Pure Convection simulation, 𝐿𝑎𝑡 is undefined since
𝑢∗ = 𝑢𝑠0 = 0, but we report it as 𝐿𝑎𝑡 →∞ for ease of analysis
since this value represents simulations without waves.

In all cases the rotation frequency is 𝑓0 = 7×10−5 s−1,
the domain is 400×400×150 meters and the grid has 256
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Table 2. Parameters for the simulations used in this paper. All simulations have 256 points in the horizontal direction and 400 points in the
vertical direction, with 400 m horizontal and 150 m vertical domain. Note that in Simulation Pure Convection the actual Langmuir number is
undefined since 𝑢∗ = 𝑢𝑠0 = 0, but we report it as 𝐿𝑎𝑡 →∞ since this value represents waveless conditions and because it makes it possible to plot it
in the 𝐿𝑎𝑡 -Λ parameter space.

𝑢∗ (m/s) 𝐵𝑠 (m2/s3) Λ 𝐿𝑎𝑡 ℎ𝑒 (m) ℎ (m)

Simulation

Neutral Swell 6.1×10−3 0.00 0.00 0.20 −55.9 −66.8

Neutral Wind-Wave Eq. 6.1×10−3 0.00 0.00 0.30 −57.0 −67.5

Neutral Weak Waves 7.0×10−3 0.00 0.00 1.03 −49.9 −60.0

Pure Wind Stress 1.0×10−2 0.00 0.00 ∞ −50.2 −60.0

Weak Conv + Waves 6.1×10−3 5.20×10−9 3.46×10−2 0.40 −55.1 −66.8

Weak Conv + Wind-Wave Eq. 7.0×10−3 2.24×10−7 9.17×10−1 0.30 −52.5 −61.9

Weak Conv + Waveless 7.0×10−3 2.24×10−7 9.44×10−1 ∞ −54.4 −63.8

Weak Conv + Weak Waves 7.0×10−3 2.24×10−7 9.56×10−1 1.03 −54.8 −64.5

Joint PDF Peak 7.0×10−3 4.16×10−7 1.78 0.44 −54.8 −64.9

Weak Conv + very Weak Waves 7.0×10−3 5.54×10−7 2.50 2.00 −56.2 −68.2

Strong Conv + weak Waves 4.0×10−3 1.04×10−6 2.29×101 0.90 −52.9 −62.2

Strong Conv + Wind-Wave Eq. 4.0×10−3 1.04×10−6 2.39×101 0.30 −55.1 −64.9

Pure Convection 0.0 1.63×10−6 ∞ — −48.8 −58.5

points in the horizontal directions and 400 in the vertical
direction. The initial potential temperature (𝜃) profile is
well-mixed until approximately 0.85ℎ with a constant gra-
dient of 2×10−2 Km−1 below it. For ease of the reader,
each simulations has a specific name (that can be found
in Table 2) that gives an approximated brief description of
that simulation.

Wave effects were introduced by imposing a Stokes drift
profile in each simulation. All simulations that have wave
effects are listed in Table 3 along with their respective
wave characteristics, otherwise the imposed Stokes profile
is identically zero. For the sake of control over 𝐿𝑎𝑡 and
the Stokes profile in general, all waves in this manuscript
are monochromatic and thus can be fully defined by setting
a wave length 𝐿𝑤 and a wave amplitude 𝑎 (McWilliams
et al. 1997). Using monochromatic waves also avoids
vertical resolution issues from having to resolve the super-
exponential decay of broadband wave spectra near the sur-
face.

We minimized the effects of inertial oscillations by set-
ting the initial conditions for velocity to their average over
one inertial period (taken from identical simulations on
a coarser grid that were run over many inertial periods
specifically for this purpose). We verified that after this
procedure inertial effects were not visible in averaged re-
sults regardless of the averaging period. All of the sim-

ulations had a spin-up period of at least 8 eddy turnover
times 𝑇∗ and the statistics were collected during the next
6.5𝑇∗ period or longer. Eddy turnover times are calculated
as 𝑇∗ = |ℎ|/MAX(𝑢∗,𝑤∗,𝑤𝐿).

All simulations also have a SFT and an EFT (both pas-
sively transported by the flow) with concentrations 𝐶SFT
and 𝐶EFT which have different initial and boundary condi-
tions. Entrainment fluxes are accomplished by imposing
different initial concentrations for the mixed layer and be-
low it. Thus, EFTs are initialized with zero concentration
until approximately 0.9ℎ and nonzero concentration be-
low. SFTs are initialized with a 𝐶SFT = 0 throughout the
domain. EFTs have a zero-flux boundary condition at the
surface, while we impose a nonzero surface mass flux into
the OSBL for SFTs. Both tracers have horizontally peri-
odic boundary conditions. Throughout this paper all tracer
fluxes are normalized either by their value at the surface
(for SFTs) or by their entrainment fluxes (for EFTs).

4. Results

After the method is applied and profiles for 𝐾 (𝜎),
𝐺𝑠 (𝜎) and 𝐺𝑒 (𝜎) are obtained, 𝐹𝐷 and 𝐹𝑁𝐷 can be cal-
culated. In this section we present the results for 𝐹𝐷 and
𝐹𝑁𝐷 based on our decomposition, and then move on to
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Table 3. Wave parameters for simulations used in this paper that include wave effects. For all other simulations the Stokes drift is identically zero.
𝐷𝑠𝑡 is the e-folding depth of the Stokes profile, given by 𝐷𝑠𝑡 = 𝐿𝑤/(4𝜋) for monochromatic wave spectra.

𝑎 (m) 𝐿𝑤 (m) 𝐿𝑎𝑆𝐿 𝑢𝑠0 (m/s) 𝐷𝑠𝑡 (m)

Simulation

Neutral Swell 2.00 120.0 0.28 1.5×10−1 9.5

Neutral Wind-Wave Eq. 0.80 60.0 0.52 6.8×10−2 4.8

Neutral Weak Waves 0.25 60.0 1.70 6.6×10−3 4.8

Weak Conv + Waves 0.60 60.0 0.69 3.8×10−2 4.8

Weak Conv + Wind-Wave Eq. 0.85 60.0 0.51 7.7×10−2 4.8

Weak Conv + Weak Waves 0.25 60.0 1.74 6.6×10−3 4.8

Joint PDF Peak 0.58 60.0 0.75 3.6×10−2 4.8

Weak Conv + very Weak Waves 0.13 60.0 3.47 1.7×10−3 4.8

Strong Conv + weak Waves 0.22 60.0 1.51 4.9×10−3 4.8

Strong Conv + Wind-Wave Eq. 0.65 60.0 0.51 4.5×10−2 4.8

discuss the eddy diffusivity and shape function profiles in
more detail.

a. Flux decompositions

Figure 3 shows the turbulent flux decomposition for
Simulation Neutral Wind-Wave Eq., which is similar to
the main simulation in McWilliams et al. (1997) but with
Λ = 0. Panel a shows results for a SFT and it is evident
that SFT nondiffusive fluxes are significant in this regime,
accounting for around 40% of the total turbulent flux in the
middle of the OSBL (see Figure 3c, which shows the met-
ric |𝐹𝑁𝐷 |/( |𝐹𝑁𝐷 | + |𝐹𝐷 |), which simplifies to the ratio of
nondiffusive to total fluxes whenever 𝐹𝑁𝐷 and 𝐹𝐷 are both
positive). Although not shown for brevity, it is important
to mention that our optimization method correctly captures
the physical behavior in regimes known to not need nondif-
fusive fluxes (e.g. the Pure wind stress simulation, shown
in the Supplemental Material, and the neutral simulation
of Chor et al. (2020b) are diagnosed by our method to have
negligible nondiffusive fluxes). With that in mind, since
there is no convection in this regime, the nondiffusive term
visible in Figure 3a must be the product of Langmuir cir-
culations. Since the calculation of these fluxes assumes a
minimization of the nondiffusive fluxes (see discussion in
Section c), this is evidence that nondiffusive fluxes must be
present when modeling regimes with nonbreaking waves.
Furthermore, SFT fluxes in the surface layer are fully dif-
fusive, as expected from MOST. Finally, EFTs have very
little nondiffusive fluxes in this regime, indicating a lower
importance of nondiffusive entrainment processes.

Throughout all simulations in this work (shown in the
Supplemental Material), repeated patterns are: (i) fully
diffusive fluxes in the surface and entrainment layers for
SFTs independent of the regime; (ii) significant nondiffu-
sive SFT fluxes in the middle of the OSBL whenever large
eddies are present (either due to convection or nonbreaking
waves) with a peak close to the middle of the OSBL; and
(iii) little contribution from nondiffusive fluxes for EFTs.
Whenever present, the shapes of nondiffusive fluxes are
also similar to those in Figure 3. Thus, in order to avoid
analyzing all simulations with this level of detail, we take
a bulk approach and define

𝑅𝐹 =

∫ 1
0 |𝐹𝑁𝐷 | 𝑑𝜎∫ 1

0 (|𝐹𝐷 | + |𝐹𝑁𝐷 |) 𝑑𝜎
(12)

which indicates the importance of nondiffusive fluxes rel-
ative to total turbulent fluxes. 𝑅𝐹 is bounded between
0 (fully diffusive) and 1 (fully nondiffusive). Due to the
possibility of flux components to have opposite signs, in-
terpreting 𝑅𝐹 as a percentage of fluxes is not precisely
correct. However, as this happens very rarely for SFTs and
for small percentage of the OSBL for EFTs, this is a valid
approximation. Recall also that, given our definition of
the cost function 𝜒 and its implication for the diagnosed
nondiffusive fluxes, 𝑅𝐹 can also be interpreted as a bulk
measure of the vertical transport asymmetry of the flow. In
this case 𝑅𝐹 = 0 would indicate a flow with perfect vertical
transport symmetry (transport from the surface down be-
ing as efficient as transport from the entrainment up), and
contrarily for 𝑅𝐹 = 1.
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Fig. 3. Flux decomposition for Simulation Neutral Wind-Wave Eq.
Panels a and b show the decomposition for an SFT and an EFT, respec-
tively. Panel c shows the metric |𝐹𝑁𝐷 |/( |𝐹𝑁𝐷 | + |𝐹𝐷 |) . The absolute
value operators are used to account for the cancellations that occur for
the EFT.

Results for 𝑅𝐹 are shown in Figure 4a for SFTs and
Figure 4b for EFTs. It becomes immediately clear that 𝑅𝐹
values for EFT are much lower than SFTs throughout the
parameter space, with the pure wind stress case being the
only exception. The magnitude of 𝑅𝐹 for EFTs suggests
that entrainment-driven nondiffusive transport is always
smaller than 10% of the total flux (the maximum value
of 𝑅𝐹 for EFTs is 0.09). Note that the percentage of
nondiffusive to total EFT fluxes can be higher at specific
depths for some regimes.
𝑅𝐹 values for SFTs, however, indicate that surface-

driven nondiffusive transport can account for approxi-
mately 50% of the total flux (the maximum value is 48%
for simulation Weak Conv + very Weak Waves). In fact,
every simulation that is not the Pure wind stress simula-
tion (𝐿𝑎𝑡 →∞, Λ = 0) has more than 10% of nondiffusive
fluxes. The fact that nondiffusive fluxes are important even
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Fig. 4. Ratio of nondiffusive to total fluxes 𝑅𝐹 (defined in Equa-
tion (12)) for each individual simulation plotted on top of the 𝐿𝑎𝑡 -Λ
parameter space as colored circles. Panel a shows results for SFTs and
panel b shows results for EFTs.

when minimizing them points to their indispensability in
KPP-like models. In particular, we see a significant pres-
ence of nondiffusive fluxes for neutral simulations with
waves (corresponding to the line Λ = 0 on the left edge
of the parameter space). As an example, 𝐹𝑁𝐷 accounts
for 15% of the total flux in Simulation Neutral Wind-Wave
Eq. This value is not as large as 𝑅𝐹 for the Pure Convec-
tion simulations (approximately 35%), but it is significant.
Since our method minimizes 𝐹𝑁𝐷 , this is the lower bound
for nondiffusive fluxes, which points to the need of consid-
ering waves in the formulation of 𝐹𝑁𝐷 .

Furthermore, it is interesting to see that the peak val-
ues of 𝑅𝐹 for SFTs happen when there are weak waves
and moderate convection, which has higher values of 𝑅𝐹
than the Pure Convection simulation. This points to some
interaction between Langmuir circulations and convective
plumes, even though the flux decomposition profiles show
no qualitative difference from the other regimes (see Sup-
plemental Material).
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b. Eddy diffusivity shapes

Figure 5 shows 𝐾 (𝜎) for selected simulations obtained
with our optimization method (black) along with estimates
from different models in the literature for comparison (col-
ored lines). The cases that are not shown follow similar
patterns. It is clear that model predictions differ from our
optimized results for both magnitude and shape of 𝐾 (𝜎)
in most cases.

Considering the profiles shown in Figure 5 and the rest
of our results (Supplemental Material) we see that the opti-
mized eddy diffusivity shapes are very similar to each other
whenever waves are present. This can be seen in Figure 6a
where we show 𝐾 (𝜎) normalized by its integral over 𝜎 (in
order to focus on the shapes as opposed to the magnitudes)
for all regimes with waves (solid black lines). It is clear that
all shapes in wavy regimes are similar to each other, and
that they are different from the community-standard cubic
function 𝐺𝑛 (𝜎) (dashed gray line). The same quantities
for regimes without waves are plotted in Figure 6b for ref-
erence, where a clear mismatch between them is evident.
We also plot the average eddy diffusivity shape for wavy
regimes G𝑙 (𝜎) (green dashed line in Figure 6a), which will
be used later in the paper to modify the traditional KPP.

Results in Figure 6a-b indicate that the presence of waves
changes the eddy diffusivity shapes in a way that does not
depend on either the precise characteristics of the waves
or the strength of the convection. This rough collapse
into one specific shape (G𝑙 (𝜎)) makes it possible to seek
a universal fixed curve for KPP in wavy situations that
should be different from the cubic shape. This is further
explored in Section 6.

c. Nondiffusive flux shapes 𝐺𝑠 (𝜎)
Results for the surface-driven nondiffusive shape func-

tions 𝐺𝑠 (𝜎) are shown in Figure 7, where the line col-
ors follow those of Figure 5. Our results indicate that
the nondimensional shape profile for nondiffusive surface
transport 𝐺𝑠 (𝜎) can change between regimes, dependent
on the surface flux, which is something previous KPP ver-
sions do not consider. This suggests that 𝐺𝑠 (𝜎) should
depend on the magnitude of surface buoyancy fluxes, and
not just their presence (as is the case with current formula-
tions). Figure 7a also indicates that the effect of Langmuir
circulations on 𝐺𝑠 (𝜎) is also significant (given that it is a
neutral simulation with waves and nonzero 𝐺𝑠 (𝜎)), which
is a conclusion that follows directly from the flux partition
shown in Figure 3.

Furthermore, it appears that the shapes of 𝐺𝑠 (𝜎) ob-
tained from our method for wavy regimes are also different
from the commonly-used cubic shape in KPP-like mod-
els. In order to better explore that, we also plot 𝐺𝑠 (𝜎)
for the wavy cases in Figure 6c where results are again
normalized by their integral over 𝜎 in order to focus on
shapes. There is clearly significant difference between the

traditional KPP model profile (dashed gray line) and our
optimization results (solid black lines), especially close to
the surface. While the cubic profile produces significant
amount of nondiffusive fluxes in the surface layer, profiles
from our method are approximately zero in that region,
which is in accordance with MOST. Furthermore, the sim-
ilarity of profiles in wavy regimes once again suggests that
the presence of waves collapses profile shapes, creating a
somewhat wave-universal shape G𝑠 (𝜎) that does not de-
pend on other characteristics of the flow. G𝑠 (𝜎), which
is the average of the solid black lines for wavy regimes, is
shown as a dashed green line in Figure 6c. We also show
𝐺𝑠 (𝜎) for waveless regimes in Figure 6d for reference,
where the mismatch between simulations is clear.

d. Enhancement factors E
It is useful to separate our eddy diffusivities in a shape

and a scaling, according to previous models. We focus
for now on wavy regimes and use the average of eddy
diffusivity shapes G𝑙 (𝜎) (shown as a green line in Figure
6a) to define

𝐺𝑙 (𝜎) =
1
𝐴∗ G𝑙 (𝜎) (13)

where 𝐴∗ is a constant that is used solely to impose that
𝑑𝐺𝑙 (𝜎)/𝑑 (𝜎) = 1 at the surface. Thus 𝐴∗ = 𝑑G𝑙 (𝜎)/𝑑𝜎 at
𝜎 = 0. More information about this shape and instructions
for implementation are given in Appendix A1.

Since 𝐺𝑙 (𝜎) only contains information from regimes
with waves, it is an empirical shape function appropriate for
wavy (or Langmuir) regimes at expense of some accuracy
for waveless ones. Since waveless regimes are uncommon
in the ocean we believe this to be a well-founded choice,
with the possible caveat of ice-covered regions. Nonethe-
less, in order to retain compliance with the canonical case
of neutral waveless oceans (wind-stress-dominated regime)
in the analyses to follow, we postulate an alternative for-
mulation for 𝐺𝑘 (𝜎) as

𝐺𝑘 (𝜎) =
{
𝐺𝑛 (𝜎) if Λ < 1×10−3 and 𝐿𝑎𝑡 > 10,
𝐺𝑙 (𝜎) otherwise.

(14)

These thresholds for 𝐿𝑎𝑡 andΛ are somewhat arbitrary and
more simulations are needed to assess them (as well as po-
tential impacts of sharp thresholds on prognostic models).
However, since this region of the 𝐿𝑎𝑡 -Λ parameter space
is far from the bulk of the Joint PDF, we do not focus on
precise values for now.

With𝐺𝑘 (𝜎) defined we can base the next steps on Equa-
tion (6), of which the only unknown is E. We set out to
estimate E by fitting its value so as to minimize the error
between 𝐾 (𝜎) given by Equation (6) and the eddy diffu-
sivity calculated via our optimization method (shown for
selected cases in Figure 5). We do this in two different
ways: (i) we fit E based only on data for the surface layer
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Fig. 5. Eddy diffusivity profiles 𝐾 (𝜎) for some of the simulations in this manuscript. Black lines are results from our optimization method,
gray lines show results from the model by Smyth et al. (2002), orange lines represent the model by Van Roekel et al. (2012) with aligned wind and
waves and green lines represent the model by Reichl et al. (2016).
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Fig. 6. Eddy diffusivity (panels a and b) and nondiffusive surface flux shapes (panels c and d) normalized by their integral over 𝜎. Left column
shows results from wavy regimes only and right column shows results from waveless regimes only. Black lines are results from all regimes in this
paper using our optimization method. Dashed gray lines are the cubic shape function 𝐺𝑛 (𝜎) for reference and dashed green lines represent the
empirical curve, which is average of the wavy simulations.

(Esfc, where we take the surface layer to be the upper 10%
of the OSBL) and (ii) we fit E based on the entire OSBL
(EOSBL). The rationale behind (i) is to focus on the mod-
ification of MOST relations by E which acts to decrease
vertical gradients near the surface (given in nondimen-
sional form by 𝜙(𝑧/𝐿𝑜)) through stronger vertical mixing.
The reasoning behind (ii) is to focus on the impact on the
vertical transport and mixing due to large eddies in the
flow.

Results for approaches (i) and (ii) are shown in Figure
8 panels a and b, respectively. In both cases the largest
enhancements to the eddy diffusivity happen for regimes
that fall in the Langmuir-dominated region, as expected.
Larger magnitudes are found when focusing on the sur-
face layer for fitting (approach (i)), coinciding with the
region where the Stokes drift has the largest shear. Note

that clearly E > 1 for the Pure convection regime in both
panels (Λ → ∞, 𝐿𝑎𝑡 → ∞). This is most likely due to
that regime being outside the range of validity of MOST
measurements.

There is a general trend of E to increase with decreasing
𝐿𝑎𝑡 , which is expected given that this indicates stronger
Langmuir circulations. However, for both Esfc and EOSBL

the trend is broken for the Neutral swell case. Nonmono-
tonic dependence on 𝐿𝑎𝑡 has been observed before for
swell cases (McWilliams et al. 2014) and it may be due
to the larger Stokes drift penetration in this regime (by a
factor of two; see Table 3) which translates to a smaller
shear at the surface. The use of the surface layer Langmuir
number 𝐿𝑎SL mitigates this effect (not shown), which is
in line with previous studies indicating that 𝐿𝑎SL may be
more effective at capturing certain Langmuir effects (Har-
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Fig. 7. Nondiffusive surface shape functions 𝐺𝑠 (𝜎) for selected simulations (same simulations as in Figure 5). Black lines show results from
our optimization method and colored lines represent results from literature models where 𝐺𝑠 (𝜎) = C𝑠𝐺𝑛 (𝜎) (Smyth et al. 2002; Van Roekel
et al. 2012; Reichl et al. 2016). Note that all colored lines coincide either because the authors explicitly use the same formulation (the case for Large
et al. (1994) and Smyth et al. (2002)) or because the authors did not explore convective conditions and (for the purposes of this work) we complete
KPP in these cases with the default shape from Large et al. (1994) for the nondiffusive component (the case for Van Roekel et al. (2012) and Reichl
et al. (2016)).
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Λ parameter space. Panel shows results for the fit using only the surface
layer and panel b shows results for the fit using the entire OSBL.

court and DAsaro 2008). This should be especially true
for broadband spectra, which we chose not to include in
this study.

In order to compare our fitted coefficients with literature
estimates we plot Figure 9, which shows different formula-
tions for E in the vertical axes and EOSBL in the horizontal
axes. The chosen estimates of E are those from Smyth
et al. (2002), Harcourt and DAsaro (2008), Takaya et al.
(2010), Van Roekel et al. (2012) and Reichl et al. (2016)
(see Appendix A1 for details about their implementation),
shown in panels a, b, c, d and e, respectively. The formu-
lations by Harcourt and DAsaro (2008) and Van Roekel
et al. (2012) are based on empirical formulations for the
averaged vertical velocity variance in the OSBL ⟨𝑤′2⟩ (the
overline indicating vertical average within the boundary
layer). Under such conditions the enhancement of verti-
cal velocity variance (compared with neutral and waveless
conditions (Li et al. 2005)) is generally accepted to be the
square of the eddy diffusivity enhancement E since it is
assumed that 𝑢𝑠 ∼ ⟨𝑤′2⟩1/2 in Equation (6) (Reichl et al.
2016; Li et al. 2019)3.

Based on Figure 9 we see that the literature estimates
somewhat capture the general trend of E, although most
of the formulations tend to underestimate E compared to
EOSBL. Estimates by Smyth et al. (2002), Harcourt and
DAsaro (2008) and Van Roekel et al. (2012) have roughly
half of the points outside of the 30% error lines, while
Reichl et al. (2016)’s formulation is clearly the one that
matches our results the most. Note that E for the swell
regime appear to be better represented by formulations
that consider 𝐿𝑎SL (panels b, d and e) than formulations
that use 𝐿𝑎𝑡 (panels a and c). The largest deviation for the
swell case happens for Smyth et al. (2002)’s formulation
which predicts E ≈ 10, while the fitted value is EOSBL ≈ 2.

3An implicit assumption needed to go from ⟨𝑤′2 ⟩ formulations to E
formulations is that Langmuir turbulence and convection do not affect the
length scale of mixing compared to a pure wind stress (neutral waveless)
regimes. An alternative scaling would require that an integral time scale
(Taylor 1922) be unaffected if one defines the eddy diffusivity based on
velocity and time scales, as opposed to velocity and length scales.
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This result provides further evidence that 𝐿𝑎SL may be
preferred in comparison with 𝐿𝑎𝑡 .

It has been demonstrated that ⟨𝑤′2⟩ scales with
𝐿𝑎−4/3

SL (which is consistent with a Langmuir-turbulence-
dominated turbulent dissipation (Harcourt and DAsaro
2008)), while it seems that other flow metrics scale with
𝐿𝑎−2

SL (McWilliams et al. 2014), raising the question of
which scaling is more appropriate for the eddy diffusiv-
ity enhancement E. Among the E formulations investi-
gated here, only those by Harcourt and DAsaro (2008)
and Takaya et al. (2010) (panels b and c) derive from the
𝐿𝑎−4/3

SL scaling for vertical velocity variance. From Figure
9 it does not seem that these formulations produce signif-
icantly different results than the other ones, and a more
thorough examination is needed to further investigate this
issue which we leave for future studies.

Moreover, it has been pointed out that Langmuir cells
tend to affect neutral simulations more than strongly con-
vective ones (Li and Fox-Kemper 2017), which translates
into a Λ-dependent E formulation (i.e. E(𝐿𝑎𝑡 ,Λ)). The
only model that includes such a dependence is the one by
Smyth et al. (2002), and it does not appear to match EOSBL

in convective regimes better than other models (based on
Figure 9). In order to further investigate this Λ dependence
we have fitted various different ad-hoc formulations for E
(that included both a 𝐿𝑎𝑡 and a Λ dependence) against
both Esfc and EOSBL. While the fitted coefficients reveal
a clear dependence of Esfc on Λ, results for EOSBL are
inconclusive. Specifically, when fitting for EOSBL, there
is an extremely high uncertainty level for every coefficient
that impacts Λ. This result either indicates that a Λ de-
pendence is unnecessary for EOSBL (which would raise the
question of why this is the case for EOSBL but not Esfc)
or it may simply be a result of not having enough data
points for the fit. More extensive surveys are needed to
further investigate this issue. Moreover none of the fitted
expressions obtained in this procedure (either for Esfc or
EOSBL) is reported here since they did not significantly im-
proved results compared to the formulations available in
the literature.

In the rest of the paper we focus on E obtained using
the entire OSBL (EOSBL) in order to concentrate on the
enhanced mixing effects of large eddies. Furthermore,
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it should be noted that final results were observed to be
similar regardless of which E estimation was chosen.

5. Implications for modeling

A few key differences become clear when comparing our
results to the curves used by models. The first being that
models generally underestimate the eddy diffusivity mag-
nitudes compared to our method (see Figure 5), which is
not surprising since our method maximizes 𝐾 (𝑧). Further-
more, much of the difference in 𝐾 (𝜎) between models and
our results appear in the middle of the OSBL and seem to
be related to a difference in shape. In particular, whenever
waves are present 𝐾 (𝜎) assumes a shape that is clearly
different from a cubic polynomial (see Figure 6a, which
shows that our shapes have a more pronounced peak that
is closer to the surface when compared to a cubic polyno-
mial). This implies that much of the discrepancies between
our results and models can be reduced in a straightforward
way simply by considering an alternative shape in wavy
regimes.

Our results also suggest that the magnitude of 𝐺𝑠 (𝜎)
should depend on the magnitude of surface buoyancy
fluxes, and not just its presence, as is common with previ-
ous models (see Equation 7 and Figure 7). Furthermore,
based on the regimes on the Λ = 0 line in Figure 4, 𝐺𝑠 (𝜎)
should also depend on whether or not the ocean has waves.
Some studies have identified influences on nondiffusive
transport in KPP-like models whenever Langmuir circula-
tions are present (Yang et al. 2015; Chamecki et al. 2019)
and our results confirm that in a more systematic manner
since profiles for 𝐺𝑠 (𝜎) are, through the definition of our
optimization method, as small as they can be.

Moreover, 𝐺𝑠 (𝜎) shapes obtained by our method are
clearly different from the cubic shape used by previous
models, especially in the surface layer. This is no sur-
prise since the assumption of a cubic shape for 𝐺𝑠 (𝜎) is
essentially a pragmatic one and our results further indi-
cate that the shapes of 𝐾 (𝜎) and 𝐺𝑠 (𝜎) need not be the
same. Finally, our results point to 𝐺𝑒 (𝜎) contributions
being small throughout the parameter space (see Figure 4),
which justifies the community practice of neglecting that
flux component in KPP.

In summary, these results indicate that (i) a change in
the function 𝐺𝑘 (𝜎) for another shape in wavy regimes
may be beneficial, (ii) 𝐺𝑠 (𝜎) should change magnitude
depending on 𝐿𝑎𝑡 and Λ, (iii) 𝐺𝑠 (𝜎) should also have a
different shape than the cubic shape𝐺𝑛 (𝜎) and (iv)𝐺𝑒 (𝜎)
may be neglected for now. We will explore these aspects
in the next Section 6.

6. Changes to KPP

Based on the discussion from the previous section we
consider modifications to existing wave-aware KPP formu-
lations and explore their impact on modeled fluxes.
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Fig. 10. Comparison between the nondiffusive component shape
function 𝐺𝑠 (𝜎) with and without considering Langmuir effects in its
formulation as quantified by their maximum value in the OSBL. The
horizontal axis shows the values for the results of the optimization and
vertical axes shows results using KPP’s original formulation (panel a)
and Equation (15) (panel b). Also shown are the 1:1 line (dashed black)
and lines corresponding to 15 and 30% error (dashed green).

For the purposes of implementation we use 𝐺𝑘 (𝜎) as
defined in Equation (14) with the empirical function𝐺𝑙 (𝜎)
as defined in Equation (13). More information on imple-
menting this shape and an alternative polynomial fit can be
found in Appendix A1. We also report results using only
E from Reichl et al. (2016), which we refer to as ER16 from
now on. This is done for the sake of simplicity, since the
bulk results reported are very similar independently of the
enhancement factor formulation (the exception being Sim-
ulation Neutral Swell using E from Smyth et al. (2002)).
This is an indication that, despite the differences in E seen
in Figure 9, most of the differences in results come from
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changing the shapes 𝐺𝑘 (𝜎) and 𝐺𝑠 (𝜎) (to be detailed in
the next section).

b. Nondiffusive flux

According to the previous discussions, the nondiffusive
shape function should have a dependence on waves and
surface buoyancy fluxes (characterized by 𝐿𝑎𝑡 and Λ, re-
spectively). This dependence can be introduced in a simple
way as

𝐺𝑠 (𝜎) = [Langmuir+Convection] 𝑔𝑠 (𝜎) (15)
Langmuir = L1 [1−𝐻 (𝐿𝑎𝑡 − 𝐿𝑎𝑐)] (16)

Convection = C1 𝐻 (Λ) {1+ erf [C2 (Λ−Λ𝑐)]}
2

, (17)

where we impose that Λ𝑐 = 𝜅 (which happens when
𝑢∗ = 𝑤∗). Furthermore, since we do not have enough in-
formation about the transition between no waves and weak
waves, we somewhat arbitrarily choose a step transition
which happens for 𝐿𝑎𝑐 = 10 (𝑢∗ = 100𝑢𝑠0). This addi-
tive formulation for Langmuir and convective effects is an
initial step, but, as indicated by Figure 4a, interactions be-
tween both processes are possible and should be explored
in the future.

We base ourselves on Figure 6c and define 𝑔𝑠 (𝜎) =
G𝑠 (𝜎)/𝐵∗, with 𝐵∗ being a rescaling factor chosen so
that MAX(𝑔𝑠 (𝜎)) = 0.15. This arbitrary rescaling is done
so that the magnitude of 𝑔𝑠 (𝜎) roughly matches that of
𝐺𝑛 (𝜎) (traditionally used in KPP), which facilitates com-
parisons. Details on implementing this alternative shape
can be found in Appendix A1 along with polynomial func-
tions to approximate the relevant curves. Furthermore,
note that the Heaviside function on the Convection term
ensures that the contributions from convection are null in
neutral and stable regimes, which is also common practice
with the original KPP.

A fit of Equations (15)-(17) using all wavy regimes
yields the values L1 = 0.95, C1 = 1.95 and C2 = 1.82.
A comparison between diagnosed 𝐺𝑠 (𝜎) from our opti-
mization method and from Equations (15)-(17) is shown
in Figure 10b, where the chosen measure is the maximum
value of 𝐺𝑠 (𝜎) in the OSBL (which in our formulation
happens at around 𝜎 ≈ 1/2). Roughly half of the regimes
fall within the 15% error lines. For the sake of reference we
also show our optimized profiles agaisnt the currently-used
KPP formulation in Figure 10a. A comparison between
panels a and b reveals that including Langmuir effects in
the formulation for 𝐺𝑠 (𝜎) significantly improves results,
further indicating the importance of Langmuir circulations
for nondiffusive fluxes. Note that the goal of this com-
parison is not to emphasize that our fitted expression are
a better match to the diagnosed values, but to illustrate
that Langmuir turbulence effects need to be included in the
nondiffusive flux formulation of KPP in order to faithfully
represent wavy regimes.

The values of L1 and C1 suggest that waves can have
an impact on nondiffusive fluxes that is approximately half
of that for strong convection. For a representative oceanic
regime (say Simulation Weak Conv + Wind-Wave Eq.,
where Equations (15)-(17) and our optimization differ by
only 10% on their estimate of 𝐺𝑠 (𝜎)), these values pre-
dict that around 35% of the nondiffusive fluxes are due to
Langmuir circulations, pointing to the need to include this
effect in KPP.

c. Passive scalar flux comparisons

We show results for the total turbulent flux and each
individual component 𝐹𝐷 and 𝐹𝑁𝐷 in Figure 11 for Simu-
lation Joint PDF Peak, where we compare results from two
different KPP formulations (dashed lines) with results from
our optimized method (solid lines). Left panels (a and c)
show results from the original KPP formulation using ER16

as dashed lines while right panels (b and d) show results
from our modified KPP as dashed lines. Top panels show
fluxes for SFTs, where it is clear that much of the error
happens in the surface layer due to the parameterization of
the diffusive fluxes. The diffusive term also artificially pro-
duces a bump in the entrainment layer that is small using
our proposed formulation but quite significant when using
the original KPP formulation. It is challenging to represent
diffusive fluxes in these regions due to the large gradients,
which enhances small errors in the eddy diffusivity. How-
ever, the middle of OSBL is generally well-represented
by the diffusive term in both formulations. The nondiffu-
sive terms match relatively well using our new formulation
that takes Langmuir into account (panel b), but there is
significant mismatch using the original KPP formulation
(panel a), especially in the surface layer. In general our
modified formulation appears to be more accurate than the
traditional one.

Panels c and d of Figure 11 show results for the same
simulation but for EFTs. Fluxes using our proposed formu-
lation (panel d) are reasonably well represented until about
𝜎 = 1/2 (even considering the error introduced in neglect-
ing 𝐺𝑒 (𝜎); dashed blue line). Model results using the
original KPP formulation (panel d) underdiagnose the flux
in the same region. The diffusive flux is poorly represented
in both cases in the entrainment due again to the very large
gradients in this region, however, results are significantly
worse using the original KPP formulation (panel c).

Figure 11 is predominantly representative of the other
simulations studied here: most of the error happens in
regions of large gradients (i.e. the surface and entrainment
layers) while the middle of the OSBL is better represented.
This is true for both KPP formulations. With that in mind
we avoid analyzing each simulation in detail by calculating
the mean normalized error in the OSBL 𝛿𝐹 defined as

𝛿𝐹 =
1

⟨𝑤′𝑐′⟩𝑏

[∫ 1

0
(𝐹LES −𝐹KPP)2 𝑑𝜎

]1/2
, (18)
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Fig. 11. Normalized turbulent fluxes for SFTs (top panels), EFTs (middle panels) and temperature (bottom panels) for simulation Joint PDF
Peak. Solid lines are LES results and dashed lines are results from KPP formulations. Model results from left column panels were obtained using
the traditional formulation for 𝐺𝑘 (𝜎) and 𝐺𝑠 (𝜎) and enhancement factor from Reichl et al. (2016)’s formulation. Model results from right
column are obtained with the modified formulation introduced in this manuscript. Gray lines are the full turbulent flux, red lines are nondiffusive
fluxes due to surface processes and blue lines are nondiffusive fluxes due to entrainment processes.

where 𝐹 is the total turbulent flux (either from LES or
using KPP) and ⟨𝑤′𝑐′⟩𝑏 is a normalization factor equal
to the absolute value of the surface flux for SFTs and the
entrainment flux for EFTs.

We apply Equation 18 to the results of three KPP for-
mulations. (A) Using the traditional KPP formulation with
ER16 (same formulation used in the left panels of Figure
11). (B) Using our modified KPP formulation (Equations
(14) and (15)) with ER16. (C) Using our modified KPP for-
mulation with EOSBL (same formulation used in the right
panels of Figure 11). Thus the difference from formu-

lations A to B is simply the formulation of 𝐺𝑘 (𝜎) and
𝐺𝑠 (𝜎). From formulations B to C we change only ER16

to the OSBL-fitted EOSBL, therefore assessing the loss in
accuracy from using a formulaic estimate of E instead of
an optimized one.

Results for 𝛿𝐹 can be seen in Figure 12 for formulations
A (left panels), B (middle panels) and C (right panels).
Panels a, b and c show 𝛿𝐹 for SFTs and panels d, e and f
show 𝛿𝐹 for ETFs. Only wavy simulations are shown with
non-neutral simulations shown in red and neutral simu-
lations in blue. From comparing panels a and b (whose
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Fig. 12. Mean normalized error 𝛿𝐹 for each simulation with waves. Upper panels (a, b, c) show results for SFTs, middle panels (c, e, f) show
results for EFTs and lower panels (g, h, i) show results for temperature. Each column shows results for the total turbulent flux error calculated using
a different formulation with differences in 𝐺𝑘 (𝜎) , 𝐺𝑠 (𝜎) and in the estimation of E, as indicated at the top of the figure.

only differences are 𝐺𝑘 (𝜎) and 𝐺𝑠 (𝜎)) we can see that
replacing the commonly used cubic function for the pro-
posed formulations somewhat improves the representation
of SFT fluxes, although the difference is small. However,
the improvement for EFT fluxes is much more significant
(panels d and e; note the difference in the vertical axis
between the top row and the one below it). Furthermore,
panel d reveals that the traditional KPP is significantly
worse at diagnosing EFT fluxes than SFT fluxes. Such a
large discrepancy between EFTs and SFTs does not happen
using the shape functions proposed in this manuscript.

Analyzing the transition between the middle panels of
Figure 12 and the right panels, we see that 𝛿𝐹 decreases
only slightly when going from formulation B to C (for
both SFTs and EFTs). This indicates that modeling the

enhancement factor E with a simple formulation is not a
major source of error and most of the discrepancies be-
tween the diagnosed KPP fluxes and those from LES can
be accounted for by the shape functions used. Such a re-
sult suggests that the accuracy of KPP can be significantly
improved simply by changing the formulations for 𝐺𝑘 (𝜎)
and 𝐺𝑠 (𝜎).

d. Potential temperature flux comparisons

We dedicate this section to analyzing the effect of
our modifications when diagnosing potential temperature
fluxes with KPP for the sake of completeness. We assume
that 𝐾 (𝜎) and 𝐺𝑠 (𝜎) are the same for passive scalars
and temperature, and use their profiles to reconstruct the
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turbulent fluxes from the LES-measured mean potential
temperature gradients. Results for the turbulent flux sepa-
ration via this method can be seen for simulation Joint PDF
Peak in Figure 11, panels e and f. As is the case for passive
scalars, the new formulation appears to more accurately
capture both the total flux and each separate component
then the traditional formulation.

Since results for simulation Joint PDF Peak are repre-
sentative of other regimes, we also apply Equation (18)
to potential temperature to obtain a bulk error measure.
Results of 𝛿𝐹 for temperature are shown in the bottom
panels of Figure 12 (panels g, h, i), where each column
corresponds to results using a different formulation as in-
dicated at the top of the figure. We again see that results
are similar to those for passive scalars: the overall error is
significantly reduced when switching from the cubic shape
to the one introduced in this work, and the formulation for
E does not appear to introduce major discrepancies.

Even though potential temperature was never considered
in any of the analyses up to this point, the accuracy of the
flux representation is similar to that of the passive scalars
(panels a-d). This result which builds confidence in our
assumption of universality of𝐾 (𝜎) and𝐺𝑠 (𝜎) profiles and
further provides evidence that changing the formulation of
𝐺𝑘 (𝜎) and 𝐺𝑠 (𝜎) in KPP may be beneficial.

7. Conclusions

Efforts to adapt KPP to Langmuir turbulence flows have
concentrated on two different effects: the modification of
the eddy diffusivity profiles to account for increased mix-
ing (Smyth et al. 2002) and the modification of the OSBL
depth calculation to account for increased entrainment at
the mixed layer base (Li and Fox-Kemper 2017). These
efforts are complimentary and both are necessary to cor-
rectly represent OSBL effects in large-scale models. In
this work we assumed the OSBL depth to be known and
focused on a more general determination of both 𝐾 (𝑧) and
𝐹𝑁𝐷 (𝑧) (instead of focusing only on 𝐾 (𝑧) as most pre-
vious studies). In particular we investigated the question
of how should KPP profiles be modified to better account
for the effects of Langmuir turbulence. In most previous
works in this line, the bulk of the proposed modifications
to the KPP profiles consisted in enhancing the eddy diffu-
sivity (Li et al. 2019). The main conclusion of this work
is that other modifications to the profiles are likely needed
in addition to the eddy-diffusivity enhancement.

First, the formulation of the nondiffusive fluxes 𝐹𝑁𝐷
should be changed to account for Langmuir circulations.
In previous KPP versions the nondiffusive flux formulation
depends solely on the presence of a surface destabilizing
buoyancy flux (Large et al. 1994; Sullivan and McWilliams
2010; Smyth et al. 2002). However, we showed that the
smallest 𝐹𝑁𝐷 necessary to reproduce observed fluxes us-
ing KPP in wavy regimes without buoyancy fluxes is still

significant. As an example, in a neutral regime in wind-
wave equilibrium (𝐿𝑎𝑡 = 0.3) where large flow structures
are likely to come from Langmuir circulations, 𝐹𝑁𝐷 ac-
counts for at least 40% of the flux in the middle of the
OSBL (see Figure 3). We proposed an alternative formu-
lation for 𝐺𝑠 (𝜎) (given by Equations (15)-(17)) in which
the effects of Langmuir circulations and convection are ad-
ditive. A fit of the coefficients to LES data suggest that
that waves can account for approximately one third the
magnitude of nondiffusive fluxes in convective regimes,
but further investigations are needed for a more precise
number.

Second, changing the shapes of both the eddy diffusivity
and the nondiffusive 𝐹𝑁𝐷 fluxes is likely to be beneficial
since our results show that both assume a shape that is dif-
ferent from the commonly-used cubic polynomial (O’Brien
1970; Large et al. 1994). Our results also show that shapes
for 𝐹𝑁𝐷 and the eddy diffusivity are different from each
other, which is different from previous KPP versions.

Furthermore, while most discrepancies between KPP-
diagnosed fluxes and LES-measured ones in our results
come from the choice of the shape function, the lack of
consensus on the wave-driven flux enhancement still needs
to be remedied. While the proposed changes in this paper
would also extend this influence to the nondiffusive flux
term, there are still questions regarding the diffusivity en-
hancement factor E. In particular some of the unknowns
are how E should scale with the Langmuir number 𝐿𝑎𝑡
(Harcourt and DAsaro 2008; McWilliams et al. 2014) and
whether or not E depends on the stability Λ (Li and Fox-
Kemper 2017). Our results point towards the Langmuir
number being more important than Λ, but more investiga-
tions are needed to explore these issues.

It should be noted that we performed a diagnostic anal-
ysis of OSBL turbulent fluxes in which KPP calculations
are carried out with averaged profiles from LES, which
assesses the accuracy of modeling assumptions rather than
model performance. While diagnostic studies are impor-
tant, especially in first studies such as the present paper,
the main goal of KPP is to provide predictive capabilities
to large-scale models. Therefore, our results should also
be assessed prognostically (Pope 2000, Section 13.4.6),
by using KPP formulations to advance mean profiles in
time. This investigation, however, is outside the present
scope since it would require many extra comparisons and
a thorough investigation of other aspects of KPP (such as
the OSBL depth estimation and possibly different formu-
lations for momentum), being more suited for a dedicated
future study.

Finally, our simulations do not contain several effects
that could complicate analyses. These include wind-wave
misalignment (Van Roekel et al. 2012) and swell effects on
wind-wave equilibrium (McWilliams et al. 2014), as well
as breaking waves (Sullivan and McWilliams 2010). It is
possible that the use of broadband wave spectra reveals a
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dependence of the 𝐾 (𝜎) and 𝑔𝑠 (𝜎) profiles on the Stokes
drift, but since this investigation requires a significant num-
ber of extra simulations we chose not to pursue that pos-
sibility here. We have also considered only one value for
the Coriolis parameter, and it is possible that varying this
parameter (as well as including the aforementioned effects)
may change the profiles reported here, especially for shear-
dominated regimes. These extra complexities were beyond
the scope of the present paper and are left for future studies.

Data availability statement. Data are publicly
available through the Gulf of Mexico Research Ini-
tiative Information and Data Cooperative (GRIIDC) at
https://data.gulfresearchinitiative.org/data/R5.x283.000:0008
(doi:10.7266/JRFXRNA9).
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APPENDIX

A1. KPP implementation

Based on the fact that the waves in our regimes are
wind-aligned and 𝑢𝑠ref is small, we are able to simplify
some of the formulations for E from the literature used for
the purposes of this work. Formulations by Smyth et al.
(2002)4 and Takaya et al. (2010) were used exactly as they
appear in their original manuscripts. The formulation for
Harcourt and DAsaro (2008) used here is based on their
equation for the vertical variance and can be written as

E𝐻1 = 𝑎1 + 𝑎2𝐿𝑎
−4/3
SL , (A1)

E𝐻2 = 𝑎3 + 𝑎4exp(−𝑎5𝐿𝑎SL), (A2)

E =

[
1

0.64
MAX(E𝐻1, E𝐻2)

]1/2
, (A3)

with coefficients 𝑎1 = 0.398, 𝑎2 = 0.48, 𝑎3 = 0.64, 𝑎4 = 3.5,
𝑎5 = 2.69.

The formulation for Van Roekel et al. (2012)’s enhance-
ment factor is also based on their equation for the average
vertical velocity variance and it can be written as

E =
[
1+ (𝑏1𝐿𝑎SL)−2 + (𝑏2𝐿𝑎SL)−4]1/2

, (A4)

with coefficients 𝑏1 = 1.5 and 𝑏2 = 5.4.

4In Smyth et al. (2002) the convective velocity 𝑤∗ is defined dif-
ferently from our definition. However this appears to be a typo since
none of the other equations in their manuscript reflect that alternative
definition and we maintain the original formulation with the reported
values for the coefficients exactly while still using our definition of 𝑤∗.

The formulation for Reichl et al. (2016)’s enhancement
factor can be written as

E = 1+ (E ′−1) 𝐺𝑛 (𝜎)
MAX(𝐺𝑛 (𝜎))

(A5)

E ′ = MIN(2.25,1+ 𝐿𝑎−1
SL). (A6)

In order to make future investigations easier for the
reader, we included the empirical shape profiles 𝐺𝑙 (𝜎)
and 𝑔𝑠 (𝜎) in an public Zenodo repository (Chor et al.
2020a) as a comma-separated value file. Furthermore, the
same file is available on the GRIIDC website (see Data
availability statement).

We also report polynomial fits of the same curves. The fit
for the shape function𝐺𝑠 (𝜎) was performed with a weight-
ing function W(𝜎) = |𝑑𝐶∗

SFT/𝑑𝜎 | + |𝑑𝐶∗
EFT/𝑑𝜎 |, where

𝑑𝐶∗
𝑖 /𝑑𝜎 is the mean gradient of the 𝑖-th scalar (SFT or

EFT) normalized such that the maximum gradient is unity
in the OSBL for any given simulation. W(𝜎) depends on
the depth and it is an average between all wavy regimes.
The rationale for W(𝜎) is that the precise value of 𝐾 (𝜎)
(and therefore 𝐺𝑙 (𝜎)) is more important in regions with
large gradients. W(𝜎) generally gives more weight for
values close to the surface and close to 𝜎 = 1, since these
regions generally exhibit larger gradients.

The lowest degree polynomial that produces reasonable
results for𝐺𝑙 (𝜎) is a sextic polynomial, which satisfies the
usual constraints for KPP, namely 𝐺𝑘 (𝜎 = 0) = 𝐺𝑘 (𝜎 =
1) = 0, 𝑑𝐺𝑘/𝑑𝜎 = 1 at the surface and 𝑑𝐺𝑘/𝑑𝜎 = 0 at
𝜎 = 1 (O’Brien 1970). The result of the fit can be seen in
Figure 13a as a dashed brown line and its formula is

𝐺𝑙 (𝜎) =𝜎(1−𝜎)2 [1+ 𝑐4𝜎 + 𝑐5 (𝜎 +𝜎2)+ (A7)

𝑐6 (3𝜎 +2𝜎2 +𝜎3)
]
, (A8)

with the fitted coefficients 𝑐4 = 45, 𝑐5 = −33 and 𝑐6 =
9. Also shown are the original empirical curve and the
traditional cubic curve for reference. Notice that, due to
the weighting factor, the polynomial fit is very accurate
close to 𝜎 = 1 and the surface, but significantly less so in
the middle o the OSBL. In our tests, this level of accuracy
already produces results that are virtually identical to those
produced using the true empirical function, but might be
subpar for applications with sharper gradients away from
the boundaries.

Based on 𝐺𝑠 (𝜎) profiles for wavy regimes (see Figure
6c), we choose 𝑔𝑠 (𝜎) as being a piecewise function that
can be written with the aid of a Heaviside function 𝐻 (·) as

𝑔𝑠 (𝜎) = 2 (𝜎−0.2)(1−𝜎)2𝐻 (𝜎−0.2), (A9)

valid for 0 ≤ 𝜎 ≤ 1. As an illustration we show 𝐺𝑠 (𝜎) for
simulation Strong Conv + Wind-Wave Eq. in Figure 13b
as a dashed brown line.
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Fig. A1. Panel a: Eddy diffusivity shape functions for wavy conditions 𝐺𝑙 (𝜎) . Dashed green line shows the empirical curve obtaining by
averaging profiles from all simulations and imposing MOST compliance. Dashed brown line shows the weighted polynomial fit (using W) to this
curve and dashed gray is KPP’s original cubic polynomial. Panel b: Same as panel a but for the surface-driven nondiffusive shape function𝐺𝑠 (𝜎) .
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