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Unraveling the functional dark matter 
through global metagenomics

Georgios A. Pavlopoulos1,2,3 ✉, Fotis A. Baltoumas1, Sirui Liu4, Oguz Selvitopi5, 
Antonio Pedro Camargo2, Stephen Nayfach2, Ariful Azad6, Simon Roux2, Lee Call2, 
Natalia N. Ivanova2, I. Min Chen2, David Paez-Espino2, Evangelos Karatzas1,  
Novel Metagenome Protein Families Consortium*, Ioannis Iliopoulos7, 
Konstantinos Konstantinidis8, James M. Tiedje9, Jennifer Pett-Ridge10, David Baker11,12,13, 
Axel Visel2, Christos A. Ouzounis2,14,15, Sergey Ovchinnikov4, Aydin Buluç5,16 & 
Nikos C. Kyrpides2 ✉

Metagenomes encode an enormous diversity of proteins, reflecting a multiplicity of 
functions and activities1,2. Exploration of this vast sequence space has been limited to 
a comparative analysis against reference microbial genomes and protein families 
derived from those genomes. Here, to examine the scale of yet untapped functional 
diversity beyond what is currently possible through the lens of reference genomes, we 
develop a computational approach to generate reference-free protein families from 
the sequence space in metagenomes. We analyse 26,931 metagenomes and identify 
1.17 billion protein sequences longer than 35 amino acids with no similarity to any 
sequences from 102,491 reference genomes or the Pfam database3. Using massively 
parallel graph-based clustering, we group these proteins into 106,198 novel sequence 
clusters with more than 100 members, doubling the number of protein families 
obtained from the reference genomes clustered using the same approach. We 
annotate these families on the basis of their taxonomic, habitat, geographical and 
gene neighbourhood distributions and, where sufficient sequence diversity is 
available, predict protein three-dimensional models, revealing novel structures. 
Overall, our results uncover an enormously diverse functional space, highlighting  
the importance of further exploring the microbial functional dark matter.

Metagenome shotgun sequencing has become the method of choice for 
studying and classifying microorganisms from various biomes1. With 
the latest advances in whole-genome sequencing technologies and 
the constant improvements in quality and cost efficiency, large-scale 
sequencing has become increasingly easier, faster and more affordable. 
This has led to a considerable increase in metagenomic sequencing 
data over the past few years, therefore making them an indispensable 
resource for investigating the microbial dark matter2.

To elucidate the genetic composition of a metagenomic sample, two 
major approaches are typically used, each with distinct advantages and 
disadvantages. In the first, sequencing reads are accurately mapped to a 
known, annotated set of reference genome sequences to provide a quick 
overview of the presence of known organisms, genes and potential 
functions. MG-RAST4 is one system that excels in this type of analysis. 
In the second approach, massive de novo assembly of the reads into 

contigs/scaffolds can provide invaluable insights into the presence of 
previously undescribed organisms and their genetic makeup. Recent 
technological advancements in assembly and binning tools5 have led to 
a significant increase in the assembled fraction of the average metage-
nome, coupled with a parallel exponential increase in the number of 
metagenome-assembled genomes (MAGs). Data management and 
comparative analysis systems supporting this type of data include 
Integrated Microbial Genomes & Microbiomes (IMG/M)6 and MGnify7.

However, both approaches share the same major limitation with 
respect to gene functional annotation, which relies on predicting func-
tion by homology searching against reference protein databases, such 
as COG8, Pfam3 and KEGG Orthology9. As a result, any genes predicted 
in assembled metagenomic data that do not map to reference protein 
families are typically ignored and dropped from subsequent compara-
tive analysis. To eliminate this reliance on reference datasets and to 
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estimate the breadth of unexplored functional diversity, referred to as 
the functional dark matter, an all-versus-all metagenomic comparison 
is required. Such a task requires considerable computational resources, 
yet reaching such levels of scalability remains technically challenging. 
Although some excellent efforts to address this issue have been recently 
reported10–12, metagenomes have not yet been comprehensively sur-
veyed to uncover the functional dark matter.

Here we present a scalable computational approach for identifying 
and characterizing functional dark matter found in metagenomes. First, 
we identified the novel protein space present in 26,931 metagenomic 
datasets from IMG/M, after removing all genes with matches to the 
IMG database of over 100,000 reference genomes or Pfam. We next 
clustered the remaining sequences into protein families and explored 
their taxonomic and biome distributions and, where possible, predicted 
their tertiary (three-dimensional (3D)) structures.

The novel protein sequence space
We initially collected all protein sequences (longer than 35 amino acid 
residues) from all public reference genomes and assembled metagen-
omes and metatranscriptomes hosted in the IMG/M platform6. In total, 
we extracted all protein sequences from 89,412 bacterial, 9,202 viral, 
3,073 archaeal and 804 eukaryal genomes, resulting in a final dataset of 
94,672,003 sequences. The reference genomes included in this study 
consisted solely of isolate genomes, not MAGs or single-amplified 
genomes. Similarly, for unbinned metagenomes, we extracted all 
predicted protein sequences from scaffolds of at least 500 bp and 
with lengths of at least 35 amino acids from 26,931 datasets (20,759 
metagenomes and 6,172 metatranscriptomes), hereafter referred to as 
the environmental dataset (ED). This resulted in a non-redundant set of 
8,364,611,943 predicted proteins or protein fragments. To identify the 
functional dark-matter component of this dataset, we first discarded 

any protein sequence with hits to Pfam8 or to any sequences from the 
reference genome set. The final non-redundant catalogue representing 
the unexplored metagenomic protein space consisted of 1,171,974,849 
protein sequences (14% of the total).

Novel protein families
We next clustered the 1.1 billion ED proteins using a graph-based 
approach. For comparative purposes, we followed the same approach 
for the 94 million proteins from reference genomes. First, an 
all-versus-all similarity matrix was built for each of the two gene cata-
logues (that is, proteins from reference genomes and those from the 
ED) by calculating all significant pairwise sequence similarities. Each of 
the two graphs was then analysed to identify sequence-similarity-based 
protein clusters. For this purpose, we used HipMCL13, a massively paral-
lel implementation of the original MCL algorithm14 that was previously 
developed for this scale of data and that can run on distributed-memory 
computers. The whole process from data retrieval to cluster genera-
tion is shown in Fig. 1a.

Although most clusters with at least 50 members (and possibly even 
those with at least 25 members) probably represent potentially func-
tionally important clusters, we restricted the subsequent analysis to 
the larger families with at least 100 members to focus on higher-quality 
data as well as better candidates for predicting structures (Table 1). In 
total, we identified 106,198 families with at least 100 members that will 
be referred to as novel metagenome protein families (NMPFs) (Table 1 
(right column)). For comparison, we identified 92,909 protein clusters 
in the corresponding set of protein clusters with at least 100 members 
from reference genomes. By directly comparing the two clustered sets 
(reference versus ED protein clusters), we observed an increase in the 
ED protein clusters by greater than 14-fold for clusters with at least 3 
members, greater than 3-fold for clusters with at least 25 members, 
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around a 2-fold increase for clusters with at least 50 and 75 members 
as well as an increase for clusters with at least 100 members (Table 1). 
Although the metagenome sequence space is intrinsically more 
fragmented compared with the reference genomes (Supplementary 
Methods and Supplementary Fig.  1), and a higher percentage of genes 
would be erroneous or incomplete (which is also one of the reasons 
we decided to focus all further analysis on the larger clusters), these 
results also suggest that much of protein sequence space remains to 
be explored. This is also supported by rarefaction curves generated 
from the ≥100-member clusters (Fig. 1b). These curves show that, as 
more samples become available, the cluster number increases linearly 
for reference genomes but exponentially, without reaching a plateau, 
for metagenomes.

Biome distribution
To determine the biome distribution landscape of the NMPFs, the corre-
sponding metadata were collected for each sample from IMG/M6 using 
the GOLD database15 ecosystem classification scheme16 (Supplementary 
Table 1). The biome distribution of the NMPFs is shown in Fig. 2a,b and 
Extended Data Fig. 1. Here the three main GOLD ecosystems (environ-
mental, host-associated and engineered) are further divided into eight 
more specific ecosystem types: freshwater, marine, soil, plants, human, 
non-human mammals, other host-associated and engineered. Examin-
ing the network topology, we observed minimum gene sharing within 
each NMPF across the three broad ecosystems, in accordance with 
recent observations of protein families from 13,174 metagenomes17, 
with the exception of soil/plant associations (see below). However, 
7,692 NMPFs (7%) were found to have members across all of the eight 
ecosystem types. The properties of the top NMPFs distributed across 
all ecosystem types are shown in Supplementary Table 2, while the 
properties of the top NMPFs of each distinct ecosystem type are shown 
in Supplementary Tables 3 and 4. In addition to the analysis presented 
above, each ecosystem was further divided into subcategories for finer 
analysis (Extended Data Figs. 2–5 and Supplementary Fig. 2).

The largest number of NMPFs was shared between soil and plant 
environments (62% of the soil and 96% of plant-associated families), as 
would be expected due to the strong overlap of the sampling in these 
ecosystems (that is, most of the plant samples are from the rhizosphere) 
(Fig. 2a and Extended Data Fig. 3). This was followed by NMPFs shared 
between soil and freshwater, which could be primarily due to the assign-
ment of wetland and sediment samples under the freshwater ecosystem 

classification. For the same reason, we observed a notable overlap 
between plants and freshwater NMPFs as well as between soil, fresh-
water and plant NMPFs. Conversely, only 37% of freshwater and 46% of 
marine NMPFs were shared with each other. Even fewer protein families 
were shared between ecosystem types such as human, non-human 
mammals and host-associated. On the other hand, a rather substantial 
overlap in NMPFs between human and engineered environments was 
observed (Fig. 2). This is not surprising, considering that engineered 
environments largely contain samples from human-waste-related eco-
systems (such as solid waste and wastewater). Similarly, an overlap 
exists between freshwater and engineered environments, as well as 
between freshwater and host-associated types (human, non-human 
mammals and other host-associated), as shown in Extended Data Fig. 1. 
These overlaps could be indicative of phenomena such as faecal con-
tamination of freshwater environments, leading to the co-occurrence of 
the same NMPFs—and, therefore, the same microbial communities—in 
different ecosystem types.

The percentage of ecosystem-specific NMPFs varied significantly 
across each of the eight ecosystem types, with the highest percent-
age observed for host-associated (non-human mammals) (85.6%) and 
host-associated (other) samples (79.2%), followed by marine (48.4%) 
and then soil (14.2%) samples (Fig. 2c). This is explained by the unique 
characteristics of the environments contained in these ecosystem 
categories, for example, oceanic environments of marine samples, 
and even more so in the case of the host-associated category, which 
contains a diverse array of microbiome hosts with significant biologi-
cal differences (for example, arthropods and annelids) (Extended Data 
Fig. 4). In contrast to marine samples, freshwater samples had a very 
small percentage of ecosystem-type-specific families, mostly due to 
a large number of wetland and sediment samples with strong associa-
tions with soil, as did the plant/rhizosphere-related samples with soil 
samples (Fig. 2a).

Finally, to investigate the ecosystem distribution of NMPFs, the 
ecosystem prevalence of the most-abundant NMPFs of each eco-
system type was evaluated. The prevalence of each NMPF in an 
ecosystem (for example, freshwater) was calculated as the number 
of family ecosystem-associated datasets over the total number of 
ecosystem-associated datasets in the study (Supplementary Table 3). 
Despite the existence of NMPFs strongly associated with a particu-
lar ecosystem type (for example, >80% of NMPFs), their prevalence 
in the overall datasets associated with said ecosystems was rather 
low, with most NMPFs distributed across 5–20% of the samples 

Table 1 | HipMCL clustering of proteins from reference genomes and metagenomes and their corresponding clusters of 
different protein family sizes (cumulative)

Environmental dataset

Proteins for clustering 570,198,677

Cluster size ≥3 members ≥25 members ≥50 members ≥75 members ≥100 members

Clusters (NMPFs) 64,149,288 1,501,861 428,910 200,075 106,198

Datasets 24,477 23,208 21,447 20,274 19,326

Scaffolds 349,547,957 71,910,494 39,593,021 27,041,114 17,280,119

Proteins 400,241,252 77,892,505 42,280,078 28,621,670 19,986,348

Percentage of proteins 70.19 13.66 7.41 5.02 3.5

Reference genomes

Proteins for clustering 71,312,320

Cluster size ≥3 members ≥25 members ≥50 members ≥75 members ≥100 members

Clusters 4,572,038 415,591 197,965 128,324 92,909

Datasets 80,896 77,611 76,294 75,145 74,134

Proteins 64,427,269 38,509,539 31,100,303 26,906,094 23,860,313

Percentage of proteins 90.34 54.00 43.61 37.73 33.46



Nature  |  Vol 622  |  19 October 2023  |  597

associated with each ecosystem type. The only exception was the 
non-human-mammal-associated NMPFs, for which prevalence reached 
up to around 45% of the total non-human mammalian datasets.

Taxonomic distribution
Taxonomic assignment of NMPFs was performed on the basis of the 
available taxonomy information of the corresponding scaffolds in IMG, 
for each member of the clusters18. In cases in which no such annota-
tion was available, we used a combination of additional approaches 
to computationally infer the taxonomy of the scaffolds (Methods). Of 
the total 17,280,119 IMG/M scaffolds containing the NMPF members, 
8,049,154 were classified as Bacteria, 382,761 as Archaea, 1,184,393 as 
Eukaryota and 1,406,588 as viruses, leaving 6,257,223 as unclassified.

The taxonomic distribution of the NMPFs, on the basis of their 
corresponding scaffold taxonomic assignment, is shown in Fig. 3a 
and Extended Data Fig. 6. The majority of protein families included 
sequences with multiple taxonomic assignments (such as bacterial 
and unclassified, or bacterial and viral). The largest category consisted 
of families with bacterial/unclassified sequences, followed by viruses/
unclassified and bacteria/viruses. A much smaller group of families was 
assigned to Eukarya and even fewer families to Archaea. Finally, 7,253 
clusters had no taxonomic information at all.

As no reliable de novo eukaryotic gene predictor exists for unbinned 
metagenomes19, a lot of sequences may come from eukaryotic scaffolds 
that may contain translation errors (such as mistranslated introns). 
However, analysing the contents of these clusters (Supplementary 
Methods) showed that their majority include proteins from Bacteria 
and Archaea alongside Eukarya, with very few NMPFs containing only 
eukaryotic sequences (Supplementary Data 6). Moreover, more than 
half of these clusters are validated by metatranscriptomic data. These 
two observations supported the quality of the eukaryotic-containing 
NMPFs.

Subsequently, we evaluated whether any of the NMPF proteins 
(and their corresponding families) were found in any of the recently 
identified MAGs from the Genomes from Earth’s Microbiomes (GEM) 
catalogue20. Specifically, we examined whether any of the scaffolds 
containing genes of the NMPFs were binned in any of the 52,515 MAGs 
of the GEM catalogue. This revealed that only 17,953 genes, coming 
from 7,937 NMPFs (7.4% of total) (Fig. 3b,c), were found within the 
GEM catalogue, of which the vast majority (93%) was from uncultured 
species. For those families that were present in two or more MAGs, 
we noticed a strong narrow taxonomic distribution, with more than 
two-thirds being restricted to a single species or genus, and only a 
very small number found across multiple families, classes or phyla 
(Fig. 3d). NMPFs were found to be statistically enriched in several 
phyla common in soil environments (for example, Gemmatimonadota, 
Acidobacteriota, Crenarchaeota and Myxococcota) and statistically 
depleted from several phyla found in humans and other host- 
associated environments (Firmicutes, Proteobacteria and Bacteroi-
dota; Fig. 3e). Taken together, these results reveal that a significant  
fraction of functional diversity remains taxonomically orphan des
pite improvements in sequencing throughout and large-scale MAG 
reconstructions.

Metadata distribution
We next examined the geographical distribution of NMPFs (Extended 
Data Fig. 7). A very small number of families (1,372; 1.3%) was found to 
have limited geographical distribution (within 1 km), and this number 
only moderately increased (4,330; 4%) when we allowed for a maxi-
mum distance of 1,000 km. Most of these families were found in plant, 
soil and freshwater ecosystems. A very small number of these families 
included members found in marine ecosystems or human samples 
as expected from the higher microbial dispersal in these ecosystems 
(Extended Data Fig. 7f,g).
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The majority of NMPFs (64,186 or 60.44%) comprised a mixture of 
proteins from both metagenomes and metatranscriptomes, further 
validating their existence, whereas 38,292 (36.06%) of NMPFs con-
tained proteins found exclusively in metagenomes and 3,720 (3.50%) 
of NMPFs contained proteins found only in metatranscriptomes (Sup-
plementary Table 5). The percentage of families containing members 
from both metagenomes and metatranscriptomes steadily decreased 
along with the number of members per family. NMPFs found in both 
metagenomes and metatranscriptomes also had the widest sample 
distribution, that is, the clusters were found in the largest numbers of 
samples (Supplementary Table 6). The majority of these clusters was 
classified in environmental ecosystems (soil and, to a lesser extent, 
marine and freshwater samples) and primarily contained bacterial 
and unclassified sequences.

To estimate the distribution of novel protein clusters among the 
environmental sequencing data, we compared the number of novel 
proteins, extracted from each scaffold and used in this study, against 
the total number of genes/proteins in the respective scaffold. Most ana-
lysed scaffolds (13,407,728 or 77.59%) contained both novel and known 
genes (top 20 scaffolds; Supplementary Tables 7–11). A comparison of 
novel versus the total number of genes in these scaffolds revealed that 

the size of the scaffold or total number of genes per scaffold was not 
correlated with the number of novel genes. The largest scaffold in our 
study (5,123,848 bp, 4,302 genes) contained only one novel sequence. 
Generally, the largest scaffolds in the study contained only a limited 
number of novel sequences and originated from bacterial or unclas-
sified metagenomic samples (Supplementary Table 9). Conversely, 
the scaffolds with the most novel sequences were of variable length 
(and gene count) and mostly originated from viruses (Supplemen-
tary Table 10).

As the majority of novel proteins (14,185,414 sequences) was located 
next to known genes, we investigated the co-occurrence of NMPFs 
with neighbouring genes assigned to the same Pfam family. Additional 
annotation was obtained by mapping each NMPF’s co-occurring Pfam 
domains to their corresponding COG functional categories; this can be 
used to provide further information on each family’s gene neighbour-
hood. The distribution of NMPFs across functional categories is given 
in Supplementary Figs. 3–5. Conserved gene neighbourhoods suggest 
functional coupling21 and can therefore be used to provide additional 
lines of information for putative function prediction. Accordingly, 
family F004468 was found to co-occur with ribosomal proteins in 78% 
of scaffolds (that is, in 118 scaffolds out of the 151 scaffolds in which it 
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Fig. 3 | Taxonomic composition and occurrence of NMPFs in bacterial  
and archaeal MAGs. a, UpSet plot showing the domain-level taxonomic 
distribution of novel protein clusters. The total size of each taxonomic 
category is represented through the horizontal bar chart on the left. The 
intersections among categories are represented by the chart at the bottom, 
with sizes of the intersections represented by the vertical bar chart at the top. 
b,c, We determined whether NMPFs were found on scaffolds from the GEM 

catalogue (b) and whether they were found on scaffolds from one or more 
cultivated species (c). d, The taxonomic rank of the lowest common ancestor 
(LCA) for 2,419 clusters found in at least 2 MAGs. e, The percentage of genes 
matching a cluster from MAGs assigned to different phyla. The asterisks 
indicate significant P values from a hypergeometric test. Green, clusters 
enriched in the phylum; red, clusters depleted from the phylum. The number of 
genes matching clusters is indicated in parenthesis next to the phylum name.
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was encoded), suggesting that it has a translation-related function. 
Similarly, family F021307 was found within a probable chloroplast 
ribosomal protein operon in 67% of encoding scaffolds. In total, 7,625 
NMPFs were found to have greater than 50% co-occurrence with specific 
Pfams, while 585 families had greater than 90% co-occurrence with a 
Pfam family (Supplementary Data 1). These associations can also be 
used to predict a functional role for NMPFs; a few examples are given 
in Extended Data Figs. 8 and 9, in which the gene neighbourhoods of 
selected NMPFs are presented as association networks, combined with 
functional annotation from COG.

Structural distribution
Recent breakthroughs in protein structure prediction22 have enabled 
fast and accurate structural characterization of protein sequences. 
Metagenomic sequences have been shown to represent a particu-
larly rich source for the discovery of novel structures23,24. Here we ran 
AlphaFold222 on NMPFs with at least 16 diverse sequences, or where 
TrRosetta25 predicted a well-structured protein (Methods). The results 
are summarized in Fig. 4a. Out of the 81,345 NMPFs that met the above 
criteria, 80,585 3D models were predicted, with 13,096 NMPFs having a 

high confidence (predicted TM (pTM) score > 0.700) prediction. The 
pTM-score integrates both the predicted confidence per position and 
the predicted alignment error (pAE) for every pair of positions, indicat-
ing the confidence of domain–domain orientations.

On the basis of structural clustering, these high-confidence predic-
tions represented 4,361 unique structures. To examine the novelty or 
functions of these structures, we compared them to experimentally 
determined structures from SCOP-Extended (SCOPe)26 and assemblies 
from the Protein Data Bank (PDB)27. In total, 3,808 structures (12,253 
NMPFs) had a significant structural overlap with at least 1 SCOPe domain 
(TM-score > 0.5). Of these, 2,718 (7,769 NMPFs) had a non-trivial hit, 
indicating that 62.3% of high-quality predictions had some similarity 
to at least one SCOPe domain or PDB assembly.

These novel assignments, based on structural similarity, can now 
be used for functional prediction of the corresponding sequences. A 
few examples are shown in Fig. 4c. For example, family F034396 had 
no hits to the PDB using HHsearch (top hit of e-value = 12), yet a strong 
hit to the PDB using a structural search of the SCOPe domain d3cmba1 
(TM-score = 0.69), with the function of acetoacetate decarboxylase. 
Other examples with no HHsearch hits (e-value > 10), yet strong struc-
tural hits included F010804-d1z45a1 (TM-score = 0.73, galactose 
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Fig. 4 | Structural characterization of the NMPFs. a, Protein clusters with at 
least 16 effective sequences (eff. seqs) or many contacts were submitted to 
AlphaFold. The results were filtered to include structures with high predicted 
confidence (pTM ≥ 0.70), which were then clustered on the basis of pairwise 
TM-score calculation. All of the subsequent steps of the workflow display  
the number of unique clusters followed by the total number of NMPFs in 
parentheses. As filtering was performed at the NMPF level, only the numbers in 
parentheses will sum, as it is possible for members of the same cluster to fall on 
different sides of each TM-score filtering step. Each predicted structure was 
aligned against SCOPe domains. Models with no hits to SCOPe were further 

aligned and filtered if there were any hits to full PDB assemblies or one of the 
SCOPe domains aligned to at least 50% of the predicted structure. The domains 
(from SCOPe matches) or multi-domain (from PDB matches) were further 
screened using HHsearch against the PDB. The PDB of the top hit was compared 
to the prediction. b, Models with no significant hits to either SCOPe or PDB were 
considered to be potential novel folds. pLDDT, per-residue confidence score.  
c, Models with hits to either SCOPe domains or PDB biological assemblies with 
no significant HHsearch hits (HMM-TM-score < 0.5) were considered to be 
novel assignments.
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mutarotase) and F097565-d1xkra_ (TM-score = 0.73, chemotaxis). We 
stress that these cases should be treated as informed predictions that 
require experimental validation, as the same fold does not always cor-
respond to the same function. A full list is provided in Supplementary 
Data 2. However, some validation and additional functional annotation 
can be performed by combining these novel assignments with other 
NMPF metadata, such as gene co-occurrence. A few examples are given 
in Extended Data Fig. 8.

To confirm that the remaining 553 proteins with no SCOPe hit were 
novel folds, a more thorough search was performed against all PDB bio-
logical assemblies, including all possible chain permutations. In total, 
345 models had a hit to at least one PDB entry, of which 305 represented 
additional novel assignments. The remaining 208 were processed for 
further filtering, removing predictions of which 50% of the structure 
matched a SCOPe domain. Finally, 162 folds and/or domain–domain 
orientations from 223 NMPFs were identified as novel (Fig. 4b). A com-
plete list of these folds is provided in Supplementary Data 3.

Although the absence of any significant structural homology pre-
cludes the reliable functional annotation for these novel folds, some 
hints towards their potential function can be gleaned from their asso-
ciated metadata. Characteristic examples are given in Extended Data 
Fig. 9, showcasing the gene neighbourhood and ecosystem metadata 
of three NMPFs with novel structural folds.

Discussion
Arguably, the best approach for estimating and exploring microbial 
functional diversity is through systematically cataloguing and exhaus-
tively characterizing sequence-diversity space. Over the past three 
decades, genome sequencing of hundreds of thousands of cultured 
microbial strains has enabled unprecedented growth and characteriza-
tion of this sequence space, revealing that sequencing efforts targeted 
to maximize phylogenetic diversity can lead to further discoveries and 
growth of currently known protein family diversity28. Although the 
exploration of the corresponding sequence-encoded functional diver-
sity is lagging substantially29, the explosion in the number of identified 
novel protein families has, to a great extent, been accompanied by an 
increase in targeted functional characterization of some of those fami-
lies, particularly in areas of important biotechnological applications 
such as the discovery of new CRISPR–Cas genes and systems30. The 
advent of metagenomics has further fuelled the rush to discover new 
enzymatic activities by unearthing a hidden treasure trove of untapped 
sequence information. Yet, aside from generating for-the-first-time 
important habitat-specific environmental gene catalogues31, most 
explorations of exponentially growing metagenomic sequence space 
have focused on expanding the diversity and characterization of previ-
ously known protein families32.

To alleviate this limitation and pioneer global insights into the extent 
of novel sequence space and, by effect, functional diversity across 
the realm of sequenced biomes, we have amassed close to 27,000 
publicly available assembled metagenomic and metatranscriptomic 
datasets. From these datasets, we generated the NMPF catalogue, 
consisting of 106,198 metagenome protein families of 100 members 
or more with no sequence similarity to genes from reference microbial 
genomes or Pfam entries. Although these families represented a mere 
duplication over the number of families generated from more than 
100,000 reference genomes integrated into IMG from all domains 
of life, far greater increases were observed in the families containing 
more than 25, 50 or 75 members, strongly suggesting that extensive 
sequence and functional diversity remains untapped. We anticipate 
that this diversity in unexplored microbial protein space will continue 
to increase over the next several years as more novel environmental 
samples are sequenced.

Although a much smaller number of metatranscriptomes was avail-
able for this analysis (4,739; 17.6%), we observed that the majority of 

NMPFs (60%) comprised proteins encoded by genes identified in both 
metagenomes and metatranscriptomes, indicating that most of those 
genes are actively expressed, further supporting the validity of those 
clusters. The clustering quality was also supported by the observation 
that 92% of clusters had members spanning 50 samples or more, while 
50% of the clusters were from proteins distributed across 100 samples 
or more (Fig. 2d).

The identification of 7.5% of the NMPFs on the recently reconstructed 
MAGs of the GEM catalogue indicates that, as we continue to access 
the genetic content of uncultured microbial diversity, an increasing 
number of taxonomically orphan novel protein families will become 
taxonomically assigned, an important step towards their functional 
and ecological characterization.

There are several limitations underlying the metagenomic data and 
methodology used in this study. One limiting factor to consider is the 
short size (shorter than 5 kb) of the majority of scaffolds used in this 
study. However, note that, due to the required alignment coverage of 
at least 80%, potentially truncated sequences have to be sufficiently 
complete to cluster with full-length sequences (defined as located in 
the middle of longer scaffolds). This requirement has largely precluded 
the enrichment of NMPFs with fragmented proteins. However, even  
in the case of NMPFs with a high percentage of these suspect sequences, 
the clusters are found to produce stable 3D models (often with high 
structural quality, as evidenced by pLDDT and pTM scores), many of 
which have structural homologues to SCOPe domains. As a result, 
families containing such sequences could potentially represent pro-
tein fragments or protein domains that form parts of multi-domain 
sequences, or components in multimeric complexes. An additional 
potential limitation is the inclusion of eukaryotic sequences in the 
sequence dataset, which may introduce errors in the analysis. Yet, as 
shown (taxonomic distribution; Supplementary Methods), the contri-
butions from eukaryotic scaffolds are relatively small, and the majority 
of the associated NMPFs also contain data from metatranscriptomes 
and/or prokaryotic taxa in sequence alignments, supporting their 
validity. However, until reliable eukaryotic gene predictors for metage-
nomes become available, eukaryotic, as well as unclassified NMPFs and 
sequences should be handled with care.

Overall, as more metagenomic data become available, an increasing 
diversity of sequences will be incorporated into NMPFs, which will then 
enable the generation of a much higher number of high-confidence 
structures, and therefore further increase the numbers of assignments 
to known structures as well as uncover novel folds. The identification 
of NMPFs opens new paths for structural genomics and challenges for 
fold recognition and the exploration of microbial dark matter.
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Methods

Data collection and filtering
All publicly available metagenomes, metatranscriptomes and refer-
ence genomes were retrieved from the IMG/M database6 (database 
release, July 2019). Low-complexity regions were removed with the use 
of the tantan application33. In total, we extracted all protein sequences 
from 89,412 bacterial, 9,202 viral, 3,073 archaeal and 804 eukaryal 
genomes. This corresponded to 87,084,214 bacterial, 221,027 viral, 
2,464,569 archaeal and 4,902,193 eukaryotic non-redundant proteins, 
resulting in a final dataset of 94,672,003 sequences. Pfam hits (v.31) 
were detected with the use of the hmmsearch tool (HMMER v.3.1 pack-
age)34 using the default trusted cut-off. Hits to proteins from reference 
genomes were calculated using LAST35. We considered a hit to be any 
aligned sequence at >30% identity over 70% of its length (bidirec-
tionally between the query and the subject). A detailed workflow of 
the sequence selection, filtering and analysis procedure is provided 
the Supplementary Methods. Α full summary of the sequences con-
tained in each metagenome and metatranscriptome dataset, including 
hits to Pfam and reference genomes, sequences used in clustering  
(see below) and the remaining unannotated sequences, is provided 
in Supplementary Data 4.

Sequence clustering and analysis
Sequence clustering was performed using the HipMCL algorithm with 
inflation parameter 2.0 using identity scores as the input. HipMCL 
was chosen over other clustering solutions owing to its scalability and 
parallelization capabilities, as well as its ability to efficiently cluster 
very large datasets (Supplementary Methods). Before clustering, the 
all-versus-all pairwise alignments were calculated using LAST (70% 
sequence identity, 80% alignment coverage). The reference genome 
graph consisted of 71,312,220 nodes (proteins) and 5,313,956,680 
edges (pairwise similarities). The graph for the ED proteins consisted 
of 570,198,677 nodes and 5,196,499,560 edges. Notably, during the simi-
larity matrix construction, 23,359,783 (~24.67%) out of the 94,672,003 
reference proteins and 601,776,172 (~51.34%) out of the 1,171,974,849 ED 
proteins remained as singletons. Using 2,500 compute nodes (170,000 
compute cores) of the NERSC Cori supercomputer (Intel KNL partition), 
HipMCL clustered the reference protein graph in 24 min and the ED 
protein graph in 3 h and 20 min.

Notably, for this task, we explored several graph- and sequence- 
based methods such as CD-HIT36, UCLUST37, kClust38 or Louvain39 that 
could not perform at this scale as well as MMSeq2-linclust40 and SPICi41,  
which were previously proposed to scale at this data size but none 
performed sufficiently well for the scope of this work. A comparison 
among these different clustering strategies is provided in the Supple-
mentary Methods. With regard to sequence identity, we set the cut-off 
at 70% to achieve a compromise between sensitivity and specificity. 
Although other resources have used more stringent parameters (such 
as MGnify6, in which sequence clustering is performed with a 90% 
sequence identity cut-off), focusing on specificity, we have chosen 
a more sensitivity-based approach, yet not overly sensitive, to avoid 
artifacts produced by noise, multi-domain effects and false posi-
tives. Regarding alignment coverage, the choice of a high-coverage 
threshold (80%) ensures generating better-quality sequence align-
ments and avoiding potential artifacts, such as partial hits involv-
ing significantly truncated/incomplete genes, pseudogenes and 
chimeric sequences. The overall quality of the final dataset is further 
improved by considering MCL clusters with 100 members or more, 
ensuring the preclusion of spurious gene products. An analysis of 
how the clustering cut-off values (specifically sequence identity) 
may influence the quality of the resulting clusters is also provided 
in the Supplementary Methods.

For each cluster, a multiple-sequence alignment (MSA) was calcu-
lated using Clustal Omega42. The resulting MSAs were then filtered to 

produce seed (non-redundant) alignments using a script written in 
Python and the ProDy/Evol and Biopython modules43 (90% sequence 
identity, 75% alignment coverage) (Supplementary Methods). All of 
the subsequent analysis steps, including the calculation of length 
distributions, HMM profile training and 3D structure predictions, 
were performed using the generated seed MSAs. HMM profiles were 
generated using the hmmalign utility of HMMER v.3.1 suite34. The 
representative consensus sequences for each cluster were calculated 
with Biopython (Supplementary Methods). Consensus sequences 
were searched against the whole Pfam-A8 database (v.33) HMM pro-
files with HMMER (inclusion thresholds: 7.0 total, 5.0 domain), as well 
as against the reference genomes using BLAST44 (30% identity, 50% 
coverage bidirectionally). Initial NMPFs of ≥100 members (113,752 
clusters from 19,473 datasets with 20,211,137 scaffolds and 21,260,914 
proteins) were processed for additional filtering with more stringent 
criteria to remove sequences with even weak similarities to Pfam-A 
models or genes from reference genomes, based on their calculated 
consensus profile sequences. This resulted in a more-stringent set of 
106,198 clusters. Clusters of which the consensus sequence was found 
to have a hit to either Pfam-A or a reference genome were removed.  
A complete summary of the clustering procedure for each ED dataset is 
provided in Supplementary Data 3. Plot distributions were computed 
using R and the R/ggplot245 package. For all calculations regarding 
NMPF sequence length, the average sequence length of each cluster’s 
seed MSA was calculated and used.

Verification of protein family novelty
Additional searches were performed against the reference proteomes 
of RefSeq (November 2021 release) using the NMPF clusters’ consen-
sus sequences and HMM profiles with LAST (matrix: BLOSUM62, gap 
open: 11, gap extend: 2) and HMMER (inclusion thresholds: 7.0 total, 
5.0 domain), respectively, and applying a 70% alignment coverage 
cut-off. These searches showed that 5,111 clusters (around 5% of the 
total) obtained positive hits against 134,273 RefSeq sequences. Taxo-
nomic annotation of these sequences showed that 75,215 (56.01%) of 
the positive hits were eukaryotic, 46,793 (34.85%) were bacterial, 9,296 
(6.92%) were archaeal and 2,905 (2.16%) were viral, with 64 sequences 
having no taxonomic annotation. About half (70,554 or 52.54%) of the 
hits were published from 2020 onwards, with the majority of those 
matching genes from MAGs. Cross-examination of the RefSeq hits 
with UniProt (release 2021_04) records showed that 31,242 (23.27%) of  
the RefSeq sequences were mapped to 33,628 UniProtKB entries  
(453 SwissProt and 33,175 TrEMBL); these sequences correspond to 
only 32 NMPF clusters. The rest of the RefSeq sequences (103,031) were 
contained in the UniParc archive of UniProt and had no annotation 
evidence (either manual or automatically generated). The NMPF clus-
ters were searched against Pfam-B, a non-annotated, computationally 
generated dataset of alignments for sequences not covered by Pfam-A. 
This resulted in 8,313 unique clusters with positive hits against 5,310 
Pfam-B. Finally, the positive hits against the searches of each dataset 
were compiled and compared. In total, 12,846 clusters had a positive hit 
to RefSeq, Pfam-B or both, while the rest of the clusters (93,352) had no 
hits. Finally, all NMPF sequences were searched against AntiFam46 v.6.0, 
a collection of HMM profiles designed to detect potential spurious 
protein sequences, pseudogenes and false protein translations. Only 
43 sequences were identified, with low-score hits and low alignment 
coverage (<50%) to two AntiFam profiles.

Ecosystem and taxonomic annotation of protein clusters
NMPF clusters were annotated with available environmental and taxon-
omy metadata through their associated environmental datasets. In the 
case of environmental metadata, the GOLD15 ecosystem classification 
scheme14 was used to organize datasets into ecosystem groups (such 
as freshwater, marine, soil, host-associated); each protein cluster was 
then assigned to one or more ecosystems on the basis of the ecosystem 
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information of the ED samples in IMG on which the protein sequences 
were found. In addition to GOLD, the Environment Ontology (ENVO)47 
and Earth Microbiome Project Ontology (EMPO)48 were considered as 
potential alternative classification systems. Mapping of ED samples 
and NMPFs to ENVO and EMPO was performed using the metadata 
of the GOLD biosample project associated with each ED sample. The 
ecosystem assignments for all three classification systems are pre-
sented in Supplementary Data 5. Ultimately, the GOLD classification was 
used, as it was found to offer the most diverse options and classified all 
ED samples and NMPFs. From the 19,326 environmental samples that 
included the NMPFs, 14,540 (75.24%) were environmental (for example, 
soil, freshwater), 3,867 (20.01%) were host-associated (for example, 
human, plants) and 919 (4.76%) came from engineered environments 
(for example, wastewater, industrial wastes).

In a similar manner, the initial taxonomic annotation for the clus-
ters was performed using the NCBI taxonomy information of the scaf-
folds contained in each IMG/M dataset, where available. Note that the 
majority of the scaffolds used in this study were too short and therefore 
remained unclassified taxonomically. Furthermore, there is very little 
information on the taxonomy of viral scaffolds. To alleviate these issues, 
annotations for scaffolds >5 kb that had previously been identified as 
viral and included in version 3.0 of IMG/VR49 were used. Moreover, 
scaffolds 1–5 kb in length were analysed using DeepVirFinder (v.1.0)50, 
and the generated P values were subsequently converted to q values 
using the R package qvalue51 to obtain estimates of the false-discovery 
rate. Scaffolds with q ≤ 0.001 were retained as putative viral scaffolds. 
Unclassified scaffolds were further analysed using two eukaryotic 
sequence detection tools, Whokaryote52 and EukRep53. Furthermore, 
the NMPF clusters were searched against the Tara Oceans collection 
of eukaryotic MAGs54. Finally, all remaining unclassified scaffolds were 
taxonomically assigned using the MMseqs2 taxonomy tool40,55, per-
forming six-frame translation searches against UniRef5056 and assign-
ing each analysed scaffold to the lowest common ancestor of the best 
hits for each frame. The taxonomic assignments of the NMPF clusters 
were based on the source scaffolds and are given in Supplementary 
Data 6. A detailed description of the taxonomic annotation and analysis 
is given in the Supplementary Methods.

Distribution analysis of the protein clusters across ecosystems and 
NCBI taxa was performed by creating and visualizing networks with 
Gephi57 using the Yifan Hu algorithm58 to generate the layout. As the 
resulting networks, when taking into account all clusters, were very 
dense, an association threshold was used to filter the data for better 
clarity, keeping only the edges where at least 2% of the members of each 
cluster were assigned to a certain ecosystem or phylogeny. Additional 
analysis was performed by creating circos plots and distribution matri-
ces, produced using the R/chorddiag59 and Processing/P5 libraries, 
respectively. Bar plots were also created in R, using the R/ggplot245 and 
R/plotly60 libraries. Visualizations of geographical distribution were 
created using maps from the Natural Earth public domain repository 
(https://www.naturalearthdata.com/).

Sequence quality control
The quality of the predicted protein sequences used in the analysis 
was evaluated by taking into account the predicted gene coordinates 
and gene density of the source ED scaffolds. In particular, evaluation 
was performed for scaffolds identified as eukaryotic from the IMG/M 
pipeline, as well as scaffolds with no taxonomic annotation and low 
density, as the latter is often indicative of potential eukaryotic con-
tigs, or contigs featuring alternative genetic codes. Furthermore, the 
distance of each NMPF sequence from its respective scaffold ends was 
evaluated to detect potentially shortened/truncated genes. Based on 
the above, a number of metrics have been established to assess the 
quality of NMPF clusters. Details on the analysis are provided in the 
Supplementary Methods. The quality assessment of NMPFs is presented 
in Supplementary Data 7.

Protein cluster co-occurrence with Pfams
The co-occurrence of NMPFs with known protein domains was deter-
mined by performing searches for the existence of Pfam protein 
domains in the analysed scaffolds containing both novel and known 
protein-coding genes. The translated sequences of the known genes 
for each scaffold were searched against the HMM profiles of Pfam 
using HMMER and the HMM profiles’ default trusted cut-off. All posi-
tive hits were assigned to their respective scaffolds and, in turn, to 
NMPFs containing novel sequences from these scaffolds, as poten-
tial co-occurring domains. The co-occurrence frequency percentage 
of each Pfam domain for each NMPF was calculated, defined as the 
number of scaffolds containing this domain over the total number 
of scaffolds associated with the NMPF. The Pfam domains were sub-
sequently mapped to COG7 domains and their functional categories. 
No associations to Pfam were observed for 7,885 NMPFs; for the rest of 
the clusters, the top five Pfam and COG hits based on their frequency 
are reported in Supplementary Data 1. Moreover, the gene neighbour-
hoods of selected NMPFs were visualized as association networks, 
built with NORMA (v.2.0)61, and using COG functional categories to 
provide annotations.

Protein fold prediction. Multiple-sequence alignment. The query 
sequence for the MSA was determined by taking the central or pivot 
sequence of the seed MSA. Query sequences were defined in each MSA 
by performing pairwise distance calculations, creating an all-against-all 
distance matrix, and selecting the sequence with the minimum Ham-
ming distance. The MSAs were then recalculated using the central 
sequence as a guide, filtering to remove sequences poorly aligned 
to the query (cut-offs set at 90% for sequence identity and 80% for 
alignment coverage), as well as poorly aligned positions (low column 
occupancy). The final MSAs were considered for further analysis if they 
had more than 16 effective sequences. Calculations were performed 
using Python and the TensorFlow262, SciKit63 and Biopython libraries.
TrRosetta for initial screening. For the initial pass, each of the putative 
protein families was analysed using TrRosetta25 to obtain a distogram. 
Notably, a distogram is a tensor that contains the predicted distance 
distribution for every pair of residues. By summing the distances of less 
than 8 Å, a distogram can be converted into a contact map, indicating the 
probability of contact. The mean of the top probabilities has been shown 
to be highly correlated with structure accuracy26 and can be used to filter 
for proteins that are probably well structured. This metric is very fast 
to compute and enables us to quickly scan through 106,198 examples. 
MSAs with at least 0.5 average probability were selected for AlphaFold 
prediction, alongside the MSAs with enough effective sequences.
AlphaFold for final prediction. As none of the NMPFs match known 
protein families (Pfam) or structures in the PDB, AlphaFold222 was 
run with no template input. Five models were generated per run and 
the model with the best pLDDT average was selected for downstream 
evaluation.
Searching for structural homologues. Before any structural search, 
regions with low predicted confidence (pLDDT < 0.7) were removed. 
To test whether there is any structural similarity to experimentally 
determined structures, a TMalign64 search was performed against every 
domain in SCOPe27 (21 October 2021, v.2.0.8), an annotated version of 
the SCOP65 database of protein domains. To test if hits (TM-score > 0.5) 
were novel assignments (not easily inferred from distant sequence hom-
ologues), the TMalign score was also computed for the structure of the 
top HHsearch hit. Finally, the TM-score could be low owing to the length 
difference between the target and query. This can happen because 
the query is multi-domain; to account for this, an additional search 
was performed against the entire PDB28 (accessed on 17 December  
2021) using MMalign66. To further confirm that any hits to PDB were 
non-trivial, we compared the predicted structure to the PDB structure 
of the top hit from an HMM–HMM alignment search, using HHsearch67. 

https://www.naturalearthdata.com/


The predicted structures with non-trivial hits to SCOPe that were sup-
ported by HHsearch results are referred to as novel assignments.
Clustering. For clustering, the all-versus-all TMalign score was com-
puted for all predicted structures with pTM > 0.7 trimmed to regions 
with pLDDT > 0.7. Clusters are defined as the connected components 
of a network, where edges are defined by TM-score > 0.6 for both 
target-to-query and query-to-target alignment.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
All of the analysed datasets along with their corresponding sequences 
are available from the IMG system (http://img.jgi.doe.gov/). A list of 
the datasets used in this study is provided in Supplementary Data 
8. All data from the protein clusters, including sequences, multiple 
alignments, HMM profiles, 3D structure models, and taxonomic and 
ecosystem annotation, are available through NMPFamsDB, publicly 
accessible at www.nmpfamsdb.org. The 3D models are also available 
at ModelArchive under accession code ma-nmpfamsdb.

Code availability
Sequence analysis was performed using Tantan (https://gitlab.com/
mcfrith/tantan), BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi), 
LAST (https://gitlab.com/mcfrith/last), HMMER (http://hmmer.org/) 
and HH-suite3 (https://github.com/soedinglab/hh-suite). Clustering 
was performed using HipMCL (https://bitbucket.org/azadcse/hipmcl/
src/master/). Additional taxonomic annotation was performed using 
Whokaryote (https://github.com/LottePronk/whokaryote), EukRep 
(https://github.com/patrickwest/EukRep), DeepVirFinder (https://
github.com/jessieren/DeepVirFinder) and MMseqs2 (https://github.
com/soedinglab/MMseqs2). 3D modelling was performed using 
AlphaFold2 (https://github.com/deepmind/alphafold) and TrRo-
setta2 (https://github.com/RosettaCommons/trRosetta2). Structural 
alignments were performed using TMalign (https://zhanggroup.org/
TM-align/) and MMalign (https://zhanggroup.org/MM-align/). All cus-
tom scripts used for the generation and analysis of the data are available 
at Zenodo (https://doi.org/10.5281/zenodo.8097349).
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Extended Data Fig. 1 | Distribution of NMPF clusters across the eight 
ecosystem types. (a) Circos Plot. The distribution of the ecosystems is 
presented in a chord-like circular diagram. The rim of the diagram represents 
the total size of the ecosystem types (i.e. number of NMPFs in each ecosystem), 
with the numbers outside the rim indicating the size scale. The intersections of 
categories are represented by arcs drawn between them. The size of the arc is 
proportional to the importance of the flow. (b) 8×8 matrix. Each cell in the 

matrix presents the common NMPFs in a binary combination of two ecosystems 
(e.g. 17,442 NMPFs are common among Marine and Freshwater ecosystems). 
The diagonal of the matrix displays the ecosystem-specific NMPFs. Each 
ecosystem column is coloured using the same colour code as Fig. 2, with the 
brightness of each cell being proportional to the NMPF number (brighter 
colour = less NMPFs).
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Extended Data Fig. 2 | Distribution of NMPF clusters across the sub-categories of the Freshwater (top) and Marine (bottom) aquatic ecosystems. Data are 
shown as circos plots (a,d), colour-coded matrices (b,e) and UpSet plots (c,f).



Extended Data Fig. 3 | Distribution of NMPF clusters across the sub-categories of the Soil (top) and Plant (bottom) ecosystems. Data are shown as circos 
plots (a,d), colour-coded matrices (b,e) and UpSet plots (c,f).
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Extended Data Fig. 4 | Distribution of NMPF clusters across the sub-categories of the Non-human mammal (top) and Other Host-associated (bottom) 
ecosystems. Data are shown as circos plots (a,d), colour-coded matrices (b,e) and UpSet plots (c,f).



Extended Data Fig. 5 | Distribution of NMPF clusters across the sub-categories of the Human tissue (top) and Engineered (bottom) ecosystems. Data are 
shown as circos plots (a,d), colour-coded matrices (b,e) and UpSet plots (c,f).
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Extended Data Fig. 6 | Distribution of NMPF clusters across different taxa 
(bacteria, archaea, eukarya, viruses, and unclassified). (a) Venn Diagram, 
displaying the intersections among the different taxonomy categories.  

(b) Network representation of the protein clusters and their taxonomic 
assignments. The taxa are represented by central, coloured nodes (hubs) 
whereas the grey peripheral nodes represent the protein clusters.



Extended Data Fig. 7 | Geographical distribution of the ED samples and 
NMPFs. (a) Locations for all ED samples in the study with available geo-location 
metadata (Longitude and Latitude). (b-f) Distribution of geographically-isolated 
NMPF clusters, based on a cut-off distance of 1, 10, 100, 500, and 1000 Km. In all 
cases, dots are coloured based on the ecosystem type (blue: marine, cyan: 
freshwater, brown: soil, purple: other environmental, green: plants, red: human, 

magenta: non-human mammals, salmon pink: other host-associated, grey: 
engineered). (g) UpSet plot showing the distribution of the geographically- 
isolated NMPF clusters, based on a cut-off distance of 1000 Km (as shown in 
panel f). Map panels were created using data from the Natural Earth dataset 
(www.naturalearthdata.com).

http://www.naturalearthdata.com
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Extended Data Fig. 8 | Functional annotation of NMPFs with remote 
structural homologues. Five example NMPFs (a-e) are shown. Annotation is 
performed using using structural information (left), gene co-occurrence 
analysis (middle), and ecosystem distribution (right). Each of the NMPFs has  
a high-quality 3D model with at least one remote structural homologue to 
SCOPe. The NMPFs’ 3D models, produced with AlphaFold, and the structures  
of the SCOPe domains are rendered in the same orientation and coloured based 
on their per-residue structure confidence (pLDDT for AlphaFold models and 

inverse B-factor for experimental structures). The gene neighbourhood of  
each NMPF is presented in the form of an association network; with nodes 
representing gene products (the NMPFs and their adjacent genes that encode 
Pfam domains) and edges representing co-occurrence in the same sequencing 
scaffold. Pfam domains are further grouped using their associated COG 
functional categories as annotation. Finally, the NMPFs’ associated ecosystems 
are presented in pie charts. Ecosystems with a <1% presence in the NMPFs are 
summed into the category “Other ecosystems”.



Extended Data Fig. 9 | Putative functional annotation of NMPFs with 
potential novel structural folds. Three example NMPFs (a-c) are shown.  
The produced AlphaFold 3D model (left), gene co-occurrence analysis (middle)  
and ecosystem distribution (right) are given. 3D models are coloured based  
on their per-residue structure confidence (pLDDT). The gene neighbourhood  
of each NMPF is presented in the form of an association network; with nodes 

representing gene products (the NMPFs and their adjacent genes that encode 
Pfam domains) and edges representing co-occurrence in the same sequencing 
scaffold. Pfam domains are further grouped using their associated COG 
functional categories as annotation. Finally, the NMPFs’ associated ecosystems 
are presented in pie charts. Ecosystems with a <1% presence in the NMPFs are 
summed into the category “Other ecosystems”.
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Software and code
Policy information about availability of computer code

Data collection No specialized software was used for data collection.

Data analysis Sequence analysis was performed using Tantan (https://gitlab.com/mcfrith/tantan), BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi), LAST 
(https://gitlab.com/mcfrith/last), HMMER (http://hmmer.org/), and HH-suite3 (https://github.com/soedinglab/hh-suite). Clustering was 
performed using HipMCL (https://bitbucket.org/azadcse/hipmcl/src/master/). Additional taxonomic annotation was performed using 
Whokaryote (https://github.com/LottePronk/whokaryote), EukRep (https://github.com/patrickwest/EukRep), DeepVirFinder (https://
github.com/jessieren/DeepVirFinder) and MMseqs2 (https://github.com/soedinglab/MMseqs2). 3D modeling was performed using 
AlphaFold2 (https://github.com/deepmind/alphafold) and TrRosetta2 (https://github.com/RosettaCommons/trRosetta2). Structural 
alignments were performed using TMalign (https://zhanggroup.org/TM-align/) and MMalign (https://zhanggroup.org/MM-align/). All custom 
scripts used for the generation and analysis of the data are available through the following repository:https://doi.org/10.5281/
zenodo.8097349.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
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- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

All of the analyzed datasets along with their corresponding sequences are available from the IMG system (http://img.jgi.doe.gov/). A list of the datasets used in this 
study is provided as a source data file (IMG_datasets.xlsx) alongside this paper. All data from the protein clusters, including sequences, multiple alignments, HMM 
profiles, 3D structure models, and taxonomic and ecosystem annotation are available through NMPFamsDB, publicly accessible through www.nmpfamsdb.org. The 
3D models are also available in ModelArchive (https://modelarchive.org) with the accession code ma-nmpfamsdb through  https://modelarchive.org/doi/10.5452/
ma-nmpfamsdb.

Human research participants
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Reporting on sex and gender No human research participants were involved in the study.

Population characteristics No human research participants were involved in the study.

Recruitment No human research participants were involved in the study.

Ethics oversight No human research participants were involved in the study.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Describe how sample size was determined, detailing any statistical methods used to predetermine sample size OR if no sample-size calculation 
was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data exclusions Describe any data exclusions. If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the 
rationale behind them, indicating whether exclusion criteria were pre-established. 

Replication Describe the measures taken to verify the reproducibility of the experimental findings. If all attempts at replication were successful, confirm this 
OR if there are any findings that were not replicated or cannot be reproduced, note this and describe why.

Randomization Describe how samples/organisms/participants were allocated into experimental groups. If allocation was not random, describe how covariates 
were controlled OR if this is not relevant to your study, explain why.

Blinding Describe whether the investigators were blinded to group allocation during data collection and/or analysis. If blinding was not possible, 
describe why OR explain why blinding was not relevant to your study.

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional, 
quantitative experimental, mixed-methods case study). 
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information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For 
studies involving existing datasets, please describe the dataset and source.

Sampling strategy Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to 
predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a 
rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and 
what criteria were used to decide that no further sampling was needed.

Data collection Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper, 
computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and 
whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.

Timing Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample 
cohort.

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the 
rationale behind them, indicating whether exclusion criteria were pre-established.

Non-participation State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no 
participants dropped out/declined participation.

Randomization If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if 
allocation was not random, describe how covariates were controlled.

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description We have developed a computational approach to generate reference-free protein families from the sequence space in 
metagenomes. We have analyzed 26,931 metagenomes and identified 1.17 billion protein sequences longer than 35 amino acids 
with no similarity to any sequences from 102,491 reference genomes or Pfam. Using massively parallel graph-based clustering, we 
grouped these proteins into 106,198 novel sequence clusters with more than 100 members, more than doubling the number of 
protein families obtained from the reference genomes clustered using the same approach. We have annotated these families based 
on their taxonomic, habitat, geographic and gene neighborhood distributions and, where sufficient sequence diversity was available, 
predicted protein structures using AlphaFold, revealing novel structures. 

Research sample The research sample consisted of a collection of 8,364,611,943  predicted protein sequences from 26,931 publicly available 
metagenome and metatranscriptome datasets in IMG/M, as well as a collection of 94,672,003 from all isolate genomes in IMG/M 
(reference dataset). For each metagenome or metatranscriptome dataset, the analyzed data included the sequencing scaffolds and 
their predicted gene products, the associated ecosystem and phylogenetic metadata.

Sampling strategy No statistical-based sample size caculation was performed. The datasets consisted of all publicly available data in IMG/M.

Data collection Data collection involved retrieving and analyzing sequences from IMG/M. Additional data was retrieved from reference databases to 
compare, analyze and annotate our results (e.g. Pfam, NCBI RefSeq etc).

Timing and spatial scale Datasets were collected from the July 2019 release of IMG/M.

Data exclusions The study focused on publicly available IMG/M datasets. Private datasets were not considered, as they have not yet been released to 
the public.

Reproducibility No experimental trials were performed. All data analysis is described in detail in the Methods section of the manuscript.

Randomization Randomization was not a relevant feature, as work involved computational analysis of metagenome datasets and had no 
experiments involving samples, organisms or participants.

Blinding Blinding was not a relevant feature, as the study focuses on the computational analysis of data. In addition, each analysis was 
performed by multiple participants for validation.

Did the study involve field work? Yes No

Field work, collection and transport

Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).
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Access & import/export Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in 
compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority, 
the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Describe all antibodies used in the study; as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the 
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines
Policy information about cell lines and Sex and Gender in Research

Cell line source(s) State the source of each cell line used and the sex of all primary cell lines and cells derived from human participants or 
vertebrate models.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for 
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

Name any commonly misidentified cell lines used in the study and provide a rationale for their use.

Palaeontology and Archaeology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the 
issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable, 
export.

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where 
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are 
provided.

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance 
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.



5

nature portfolio  |  reporting sum
m

ary
M

arch 2021
Animals and other research organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 
Research

Laboratory animals For laboratory animals, report species, strain and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field; report species and age where possible. Describe how animals were 
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released, 
say where and when) OR state that the study did not involve wild animals.

Reporting on sex Indicate if findings apply to only one sex; describe whether sex was considered in study design, methods used for assigning sex. 
Provide data disaggregated for sex where this information has been collected in the source data as appropriate; provide overall 
numbers in this Reporting Summary. Please state if this information has not been collected.  Report sex-based analyses where 
performed, justify reasons for lack of sex-based analysis.

Field-collected samples For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature, 
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance 
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data
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All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.

Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.

Outcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern
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Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented 
in the manuscript, pose a threat to:

No Yes
Public health

National security

Crops and/or livestock

Ecosystems

Any other significant area
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Experiments of concern

Does the work involve any of these experiments of concern:

No Yes
Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents

Enhance the virulence of a pathogen or render a nonpathogen virulent

Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

Any other potentially harmful combination of experiments and agents

ChIP-seq

Data deposition
Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

For "Initial submission" or "Revised version" documents, provide reviewer access links.  For your "Final submission" document, 
provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session 
(e.g. UCSC)

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to 
enable peer review.  Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and 
whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot 
number.

Peak calling parameters Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files 
used.

Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.

Software Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a community 
repository, provide accession details.

Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.
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Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a 

community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the 
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell 
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state; event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial 
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used 
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across 
subjects).

Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size, 
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction, 
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for 
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g. 
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and 
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and 
second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether 
ANOVA or factorial designs were used.

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See Eklund et al. 2016)

Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).
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Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation, 
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph, 
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency, 
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation 
metrics.
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