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Maximin Optimal Designs for Cluster Randomized Trials

Sheng Wu*, Weng Kee Wong, and Catherine M. Crespi
Department of Biostatistics, UCLA Fielding School of Public Health, University of California Los 
Angeles CA 90095-1772

Summary

We consider design issues for cluster randomized trials (CRTs) with a binary outcome where both 

unit costs and intraclass correlation coefficients (ICCs) in the two arms may be unequal. We first 

propose a design that maximizes cost efficiency (CE), defined as the ratio of the precision of the 

efficacy measure to the study cost. Because such designs can be highly sensitive to the unknown 

ICCs and the anticipated success rates in the two arms, a local strategy based on a single set of 

best guesses for the ICCs and success rates can be risky. To mitigate this issue, we propose a 

maximin optimal design that permits ranges of values to be specified for the success rate and the 

ICC in each arm. We derive maximin optimal designs for three common measures of the efficacy 

of the intervention, risk difference, relative risk and odds ratio, and study their properties. Using a 

real cancer control and prevention trial example, we ascertain the efficiency of the widely used 

balanced design relative to the maximin optimal design and show that the former can be quite 

inefficient and less robust to mis-specifications of the ICCs and the success rates in the two arms.

Keywords

balanced design; binary outcome; intraclass correlation coefficient; relative cost efficiency; robust 
design; sampling ratio

1. Introduction

Cluster randomized trials (CRTs) are increasingly used in many fields including public 

health, education and clinical research (Donner and Klar, 2000; Hayes and Moulton, 2009). 

CRTs are experiments in which clusters of individuals rather than independent individuals 

are randomly allocated to intervention groups. All individuals in a given cluster receive the 

same treatment. Clusters can be churches, villages, medical practices, families or schools. A 

key feature of CRTs is that outcomes of individuals within a cluster are correlated. The 

intraclass correlation coefficient (ICC), usually denoted by ρ, provides a quantitative 

measure of within-cluster correlation. The ICC is variously defined as the Pearson 

correlation between two members in the same cluster or the proportion of the total variance 

in the outcome attributable to the variance between clusters. Since the correlation increases 
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the sampling error of estimating the intervention effect (Donner, Birkett, and Buck, 1981), 

CRTs are less efficient than individual randomized trials (IRTs). However, there are many 

reasons to use CRTs, including administrative convenience, ethical considerations, to avoid 

treatment group contamination and because the intervention is naturally applied at the 

cluster level.

All else equal, investigators prefer to expend minimal resources to obtain the most accurate 

estimate of an intervention effect. This is even more pertinent when designing CRTs because 

CRTs can be much less efficient than IRTs (see, e.g., Donner and Klar, 2000). However, 

because of the correlated data structure, design issues for CRTs are more complicated than 

for IRTs (Moerbeek and Teerenstra, 2016). In practice, investigators usually use a two-arm 

CRT and assign the same number of clusters to each arm (Hayes and Moulton, 2009). 

Following classic analysis of variance terminology (for example, Milliken and Johnson, 

1984), we call such a design a balanced design. Previous research on IRTs has shown that a 

balanced design may not be the most efficient, particularly when costs are unequal in the 

two arms; discussions can be found in Meydrich (1978), Morgenstern and Winn (1983), 

Yanagawa and Bolt (1977), Lubin (1980), Brittain and Schlesselman (1982), and Gail et al. 

(1996). Several authors, including Breukelen and Candel (2012), Moerbeek, Breukelen and 

Berger (2000), Raudenbush (1997), Raudenbush and Liu (2000) and Moerbeek and 

Teerenstra (2016), have discussed optimal design issues for CRTs that included cost 

considerations in their optimality criterion. However, they have focused mainly on finding 

optimal sample size per cluster rather than optimal allocation of clusters to the two or more 

conditions. Their designs assume an equal number of clusters in the two arms. In addition, 

they assume the outcomes are continuous and the ICCs are the same in the two arms.

The expected success rates in the different conditions are important parameters for any IRT 

or CRT design. Dette (2004) noted that almost all optimal designs for IRTs are locally 

optimal in that they depend on the unknown success rates. Consequently, such designs may 

not be robust when success rates are mis-specified. He proposed a maximin method to 

construct designs that are robust with respect to the unknown parameters. His idea was to 

find a maximin optimal design that maximizes the minimum efficiency over a plausible 

region of nominal possible values of the parameters. He provided some theoretical 

justifications but had no real application.

Our aim in this paper is to develop a flexible maximin approach for designing a two-arm 

CRT with binary outcomes. We assume the total number of clusters is fixed in advance and 

the objective is to determine the optimal proportion of clusters to assign to each arm, 

considering costs. Often, CRTs involve a fixed predetermined number of clusters, due to 

constraints on recruitment rate or the number of available clusters, or financial constraints. 

Such a maximin optimal design offers some global protection against the worst case 

scenario when the nominal values of the parameters for the design problem are very 

incorrect. We allow both costs and ICCs to vary between the two arms, and we develop the 

approach for the three most common treatment effect measures for binary outcomes, risk 

difference (RD), relative risk (RR) and odds ratio (OR). Cluster sizes are assumed equal. 

Using a cancer control and prevention trial, we illustrate that the balanced design that 
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assigns an equal number of clusters to each arm can have low statistical and cost 

efficiencies.

The organization of this paper is as follows. In Section 2, we introduce the common 

correlation model and define cost efficiency (CE). We derive the optimal allocations for 

estimating RD, RR and OR by maximizing CE. We then define relative cost efficiency 

(RCE) and show that the RCEs of balanced designs compared to the optimal allocation can 

be low in many situations. Since the optimal allocation can be highly sensitive to the 

unknown ICCs and the anticipated success rates, a locally optimal design based on single 

best guesses for the ICCs and success rates can be risky. In Section 3, we propose a maximin 

optimal design that permits a range of values to be specified for the success rate and the ICC 

in each arm. In Section 4, we provide guidance on applying the methods and illustrate using 

a real CRT, and show that the maximin optimal design is generally more efficient (i.e., has a 

larger RCE) than the balanced design and is robust to mis-specifications of the ICCs and the 

success rates in the two arms. Section 5 provides a discussion. In the Web Appendix, we 

provide a proof of our main result for the maximin approach, sensitivity analyses, and R 

code to implement the proposed maximin optimal designs for user-specified settings.

2. Optimal Allocation

Our two-arm CRTs with binary outcomes are based on the common correlation model; see, 

for example, Eldridge, Ukoumunne and Carlin (2009) and Ridout, Demetrio and Firth 

(1999). Let Xhij denote the response of the jth individual in the ith cluster in the hth 

treatment arm. Let Xhij = 1 when the outcome of interest is present (success) and Xhij = 0 

otherwise (failure). We assume that the success rate Pr(Xhij = 1) for all individuals in all 

clusters in the hth treatment arm is the same and equal to πh, h ∈ {1, 2} and all cluster sizes 

are equal to m. The responses of individuals from different clusters are assumed to be 

independent, and within each cluster, the correlation of responses between any pair of 

individuals is ρhi, the ICC. We further assume that (i) the ICCs for all clusters in the hth 

treatment arm are the same, so the subscript i in ρhi can be removed, (ii) the total number of 

clusters in the trial is predetermined and equal to k; k1, k2 are the numbers of clusters in arm 

1 and arm 2, respectively, such that k = k1 + k2, and (iii) ρ1 is not necessarily equal to ρ2. 

The last assumption is more exible and also more realistic in some intervention trials; see for 

example, Crespi, Wong and Mishra (2009), Crespi, Wong and Wu (2011) and Wu, Crespi 

and Wong (2012).

We consider three commonly used treatment effect measures, RD = π1 − π2, RR = π1/π2 

and . For a given measure, our goal is to determine the optimal proportion 

of clusters to allocate to arm 1, w = k1/k, in order to minimize the asymptotic variance of the 

relevant estimator,  or . The allocation scheme 

that minimizes this variance is called the optimal allocation. The variances can be derived as 

follows. By the central limit theorem, the maximum-likelihood estimates of (π̂
1, π̂

2) for the 

success rates are approximately normal with

Wu et al. Page 3

Biometrics. Author manuscript; available in PMC 2017 September 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where dh = 1 + (m − 1)ρh is the design effect for arm h ∈ {1, 2}. The asymptotic variance of 

 is

and applying the delta method, we obtain asymptotic variance estimates for  and  as:

and

Next, we consider study costs. In CRTs, there can be costs per individual and costs per 

cluster, and these could vary by arm. Let the cost per individual be ch and the cost per cluster 

be eh in arm h. The total cost function when each cluster has size m is

Following Dette (2004), we define cost efficiency (CE) as the ratio of the precision of the 

treatment effect measure to the total study cost. This is a natural way to combine statistical 

and cost considerations. For each outcome measure x ∈ {RD, RR, OR}, the goal then is to 

determine the optimal proportion of clusters to assign to arm 1, denoted , by maximizing 

the CE for measure x, given by

To find this design, CEx is optimized with respect to w by setting its first derivative equal to 

zero and solving for w. Defining the ratio of total per-cluster costs in the two arms as 

, it follows directly that the optimal allocation  that maximizes CE for each 

measure is

Wu et al. Page 4

Biometrics. Author manuscript; available in PMC 2017 September 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and

We note that if ρ1 = ρ2, we have d1 = d2 and the optimal allocations for all three measures 

reduce to those reported in Dette (2004) for IRTs.

For a vector of fixed design parameters θT = (π1, π2, ρ1, ρ2), the design with a larger CE is 

more desirable, all else being equal. To compare different designs, we use relative cost 

efficiency (RCE), defined as the cost efficiency of a design with allocation w relative to the 

cost efficiency of the optimal design, that is,  The maximal value of 

RCE is 1, which is reached when w is the optimal allocation . For a balanced design, w = 

0.5. If RCEx(0.5) is close to 1, the balanced design performs about as well as the optimal 

design.

For different measures x, RCE of a balanced design compared to the optimal design can be 

quite different. Tables 1, 2 and 3 show RCEx(0.5) for estimating RD, RR and OR, 

respectively, for different combinations of π1 and π2 when the total number of clusters in 

the trial is fixed. The value of the cost ratio, γ = 5, is motivated by one of our cancer control 

and prevention trials described more fully later. For illustration purposes, we also consider γ 
= 2 to ascertain whether RCEx(0.5) is sensitive to the cost ratio value. We focus here on the 

performance of the balanced design because it is widely used in practice. For space 

consideration, we only show the case when ρ1 = 0.05, ρ2 = 0.1 and m = 20, but interested 

readers can compute the RCE for any design of interest using the R code in Web Appendix 

A.4.

Table 1 shows RCEx(0.5) values when the treatment effect measure is RD. The RCEs are 

symmetrical about π1 = 0.5 and about π2 = 0.5 because πh(1 − πh), which is symmetrical 

about 0.5, appears in the formula. The RCEs range between 0.59 and 0.96 for γ = 5 and 

between 0.77 and 1.00 for γ = 2. In most scenarios, RCEx(0.5) is larger than 0.7 for γ = 5 

and larger than 0.8 for γ = 2. The smallest value occurs when π1 = 0.1 or 0.9, π2 = 0.5 and 

γ = 5. Hence the balanced design performs satisfactorily in some cases but can be inefficient 

when costs or success rates are very different between arms.
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Table 2 shows RCEx(0.5) values when the treatment effect measure is RR. Here, the RCEs 

are symmetrical about the diagonal line π1 = 1 − π2, which is also a direct consequence of 

the formula. The RCEs range between 0.24 and 1.00 for γ = 5 and between 0.42 and 1.00 

for γ = 2. RCE values are smaller than 0.8 in many scenarios. This suggests that a balanced 

design often will not perform well for estimating RR. The smallest RCE of 0.24 occurs 

when π1 = 0.9 and π2 = 0.1. Although this magnitude of difference in success rates is 

unlikely to occur in practice, it shows that in extreme cases when the intervention arm is 

much more successful compared with the control arm, the balanced design can perform 

substantially worse for estimating RR than for estimating RD. This reinforces the 

recommendation that the design should be chosen appropriately for the outcome measure.

Table 3 shows RCEx(0.5) values for estimating the OR. Similar to RD, the RCEs are 

symmetrical about π1 = 0.5 and about π2 = 0.5. However, the peaks and trends are different 

because  contains π1(1 − π1) in the numerator whereas  contains π2(1 − π2) in the 

numerator. The range of RCE values for γ = 5 is between 0.59 and 0.96, and the range for γ 
= 2 is between 0.77 and 1.00. For estimating OR, the lowest value of RCEx(0.5), 0.59, 

occurs when γ = 5, π1 = 0.5, and π2 = 0.1 or 0.9.

Tables 1–3 show that the efficiencies of a balanced design can vary substantially depending 

on whether the treatment effect measure is RD, RR or OR, the value of the cost ratio γ, and 

obviously also on the values of θT = (π1, π2, ρ1, ρ2). Because θ and the cost ratio γ can vary 

in many different ways, it can be difficult to discern general trends and patterns as one or 

more of these parameters vary unless we vary only one of the parameters and fix the rest. 

For example, consider the effect on the optimal allocation  when all parameters are fixed 

except the value of only one parameter in the following order: γ, ρ1, ρ2, π1 and π2. From 

the tables and formula for , we observe that if all other parameters are fixed, then  is (i) 

a decreasing function of γ, (ii) an increasing function of ρ1, (iii) a decreasing function of ρ2. 

Further for the treatment effect measure RR,  is a decreasing function of π1, for RD, it is 

an increasing function of π1 until 0.5 after which it decreases, and for OR, it is a decreasing 

function of π1 until 0.5 after which it increases. As a function of π2, we observe an opposite 

trend for RD, RR and OR. The R code available in Web Appendix A.4 allows the user to 

generate the RCEs and  based on the optimal allocation for any different sets of values for 

the parameters.

3. Maximin Optimal Design

In Section 2, we derived the optimal allocation  for a particular measure x ∈ {RD, RR, 

OR} when θ is assumed known. Clearly, the optimal allocation  depends on the vector of 

parameters θT = (π1, π2, ρ1, ρ2), the cluster size m and the cost ratio γ, and so they are 

termed locally optimal designs (Chernoff, 1953). In practice, the cluster size and cost ratio 

are likely known before the study, but the values of π1, π2, ρ1 and ρ2 are not. Consequently, 

nominal values for those parameters are needed before the optimal design can be 

determined. But if the parameters are mis-specified and take different values in the actual 

trial, then the selected design can end up being far from optimal.
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A maximin optimal design can guard against this risk. In general, a maximin optimal design 

is a design that maximizes some measure of performance in the worst case scenario when 

larger values of the measure are more desirable, see for example, Biedermann, Dette and 

Pepelyshev (2004) or Dette and Biedermann (2003). In our context, we chose to maximize 

the RCE in the worst case scenario. Conceptually, the maximin optimal design can be found 

as follows: (1) Specify plausible ranges of values for unknown parameters; (2) For each 

design (for each fixed w in our case), find the worst configuration within the set of possible 

parameter values, i.e., the one that gives the smallest RCE; then (3) Select the design (value 

of w) that maximizes the smallest RCE. This design is the maximin optimal design.

To find the maximin optimal design for a two-arm CRT with binary outcomes with cost 

consideration, we proceed as follows. First, specify a plausible region Θ containing all 

plausible values of θ. We seek the allocation scheme that maximizes the minimum RCE that 

can arise so long as θ is in the user-specified region Θ. More formally, our design criterion is 

to find maximin optimal proportion of clusters to assign to arm 1, , such that 

min(RCEx(θ, w, m, γ)|θ ∈ Θ) is maximized. To this end, recall that dh = 1 + (m − 1)ρh, h ∈ 
{1, 2} and let

The quantity yx(θ) does not have a meaningful interpretation but it allows us to write the 

above expressions for the three measures ,  and , more succinctly as

where, as before, x ∈ {RD, RR, OR}. It also provides a means of translating the four ranges 

for the four parameters into a single overall range. For the given Θ, let  and 

let , where the optimization is over the plausible region Θ. These are 

important quantities needed to obtain the maximin allocation rule. For example, if the 

treatment measure is OR, m = 20, 0.3 ≤ π1 ≤ 0.5, 0.2 ≤ π2 ≤ 0.3, 0.1 ≤ ρ1 ≤ 0.2 and 0.1 ≤ ρ2 

≤ 0.2, we have  and . We show in Web Appendix A.1 that the 

maximin optimal proportion of clusters to assign to arm 1 in a two-arm CRT is

(1)

For the same illustrative example, a direct calculation shows  if γ = 2 and 

 if γ = 1. The practical implication is that if cost in arm 1 is twice as expensive 
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as that for arm 2, the optimal maximin strategy for the given plausible region is to allocate 

about 10% fewer subjects to the more expensive arm.

It is interesting to note that the optimal allocation rule has the same form for all three 

measures, RD, RR and OR, but the optimal proportion of clusters to assign to arm 1 varies 

because the value of  depends on  and  which depend on the measure of interest. 

When ρ1 = ρ2, the formula for  simplifies and becomes the optimal allocation to arm 1 

in an IRT.

Now that we have moved from specifying single values of parameters to specifying ranges 

of parameters, it is natural to ask how the optimal design depends on the specified range. 

Table 4 provides examples of how different ranges of ρ1 and ρ2 affect the maximin optimal 

allocation  for the three measures when π1 and π2 are fixed. For all measures, the value 

of  increases as ρ1 increases and as ρ2 decreases. This is the similar to the result in 

Section 2 in which the value of  increases as ρ1 increases and ρ2 decreases. The maximal 

optimal design allows specifying the ranges of ρ1 and ρ2 instead of single values of ρ1 and 

ρ2, but the maximal optimal allocation  depends on the locations of those ranges. 

Limited by space, we do not show examples of how different ranges of π1 and π2 affect the 

maximin optimal allocation . Web Appendix A.4 contains R code for calculating 

for a user-specified parameter set Θ. Interested readers can use the code to further explore 

the effects of ranges of parameters on the maximin optimal design.

The locally optimal design in Section 2 is for a particular point in the set Θ. The maximin 

optimal design is unique and a globally optimal design, which considers the worst case 

scenario that can arise within the set of plausible values of θ ∈ Θ. It can be shown that 

is a locally optimal design for a point in the set Θ, and the RCE of the maximin optimal 

design is 1 when that particular point is the true value of θ. This is a common feature of 

maximin optimal designs in general, see for example, the discussion in Dette and 

Biedermann (2003).

4. Guidance for Constructing a Maximin Optimal Design for CRTs and 

Example

We now provide a step by step approach to find a maximin optimal design for a two-arm 

CRT with a binary outcome when the total number of clusters is fixed in advance.

Step 1. Estimate the cluster size m and the cost ratio γ of the total cost per cluster in arm 1 

compared to arm 2. In our maximin optimal design method, these are assumed known. Like 

many design methods for CRTs, our method assumes cluster size is constant. If there is 

some uncertainty about the value of m or γ, a sensitivity analysis can be conducted, varying 

these values.

Step 2. Select a treatment effect measure. As mentioned previously, the maximin optimal 

design can be different for the different measures of treatment effect for binary outcomes, 

the risk difference, the risk ratio and the odds ratio. For the design, investigators should use 
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the treatment effect measure that they plan to estimate, as specified in the study protocol. For 

example, if the protocol calls for using a mixed logistic regression model, investigators 

should select the odds ratio as their measure for the design work.

Step 3. Specify ranges of possible values for the parameters (π1, π2, ρ1, ρ2). Investigators 

need to specify minimum and maximum values for plausible success rates and ICCs in each 

condition. Previous studies, pilot data and expert opinion can help to specify these ranges. 

There is a large literature on elicitation of prior distributions for parameters in Bayesian 

analyses; see, for example, Garthwaite, Kadane and O'Hagan (2005). The task here is easier 

than soliciting a prior distribution, since we need only a range for each parameter, not a full 

joint probability distribution. However, some ideas for specifying parameter locations and 

intervals can be applied. One may ask the question “What is the range of values within 

which the response rate will have a 95% chance to occur?” to solicit a 95% credible interval 

for a parameter. The range for each of the two ICCs may be harder to elicit, since the ICC is 

a less intuitive parameter than the success rate, but there are an increasing number of 

literature reviews summarizing ICC values for various types of studies (for example, Crespi, 

Maxwell and Wu, 2011; Hade et al., 2010), and these can help provide information for 

specifying a plausible range for each of the ICCs.

Step 4. Compute the maximin optimal allocation  and assign this proportion of clusters 

to arm 1 and the remainder to arm 2. More precisely, for a fixed total number of clusters k, 

the optimal number of clusters to assign to arm 1 is , rounded to the nearest integer.

We now apply the maximin approach to redesign a CRT for the Samoan Women's Health 

Study (Mishra et al., 2007) to illustrate these steps. This study used a cluster randomized 

design for an intervention trial whose objective was to increase mammography usage among 

Samoan American women. A total of 61 Samoan-language churches in two counties in 

southern California agreed to participate in the study, providing our fixed total k. Churches 

served as clusters and were randomly assigned to either participate in a culturally-tailored 

breast cancer education program or a control condition. The intervention included specially 

developed English and Samoan language breast cancer educational booklets, skill building 

and behavioral exercises, and interactive group discussion sessions. In the control arm, 

women were provided with standard breast cancer educational materials. The mean cluster 

size was 14 and we use this value as the constant cluster size. The binary outcome was self-

reported mammogram use at follow-up. Because the intervention condition required 

substantially more resources than the control condition, our estimation was that a cost ratio 

of γ = 5 was justified.

Next, we consider specifying the range of possible values for each of the parameters π1, π2, 

ρ1 and ρ2. An earlier study reported prevalences of mammography use of 0.224 and 0.244 

among Samoan women in Hawaii and Los Angeles, respectively (Mishra, Luce and Hubbell, 

2001). Treating this as an estimate for the proportion of mammography use by Samoan 

women in the control condition, we specify the range of values for π2 as [0.2, 0.3]. To 

estimate a possible range of values for the proportion of responders in the intervention arm, 

one may proceed as follows. First, we believe the intervention will increase mammography 

use and so the smallest value of π1 should be larger than the largest anticipated value of π2. 
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Second, we have less certainty about the intervention effect, so we specify a wider range of 

possible values for π1. Accordingly, we set the range of π1 to be [0.3, 0.6]. The next task is 

to specify reasonable ranges for the ICCs. This is always problematic when no similar prior 

studies are available, which is the case here. We combed the literature and found that Hade 

et al. (2010) had reported ICCs for cancer screening CRTs ranged from 0.05 to 0.3. 

However, not all of the clusters were churches and not all of the trials involved 

mammography use. Nevertheless, given the limited information available, we worked with 

these ranges of values for both ρ1 and ρ2. For illustration purposes, we also consider the case 

when the cost ratio is γ = 2 to ascertain whether the maximin optimal design is sensitive to 

the cost ratio value.

Results, obtained using formula (1), are summarized in Table 5. The numbers of clusters 

have been rounded to the nearest integer. Recalling that the cost ratio γ is the total cost in 

arm 1 relative to arm 2, we observe that in general, fewer clusters are allocated to the more 

costly arm 1. We also see that the maximin optimal design is indeed sensitive to the cost 

ratio value; for example, for RD, the number of clusters allocated to arm 1 decreases from 

26 to 19 as γ is changed from 2 to 5.

Let us compare the RCE of our maximin optimal design to the RCE of the balanced design 

for each measure. We first consider RD. Figure 1(a) shows RCEs of the maximin optimal 

design and the balanced design when the cost ratio is 2, which is relatively small. The 

quantity on the x-axis is yRD(θ), which, we recall, does not have a meaningful interpretation 

but does serve to translate the four parameter ranges into one overall range. For the Samoan 

Women's Health study, for RD, the minimum value of yRD(θ), which is 0.22, occurs when 

(π1, π2, ρ1, ρ2) = (0.5, 0.2, 0.3, 0.05) and the maximum value, which is 2.97, occurs when 

(π1, π2, ρ1, ρ2) = (0.3, 0.3, 0.05, 0.3). We observe that over the whole range of yRD(θ), the 

lowest RCE for the maximin optimal design is about 0.91, while the lowest RCE for the 

balanced design is about 0.83. In addition, for a larger portion of the range of yRD(θ), the 

RCE of the maximin optimal design is larger than that of the balanced design.

Figure 1(b) shows results for cost ratio γ = 5. We observe that the RCE of the maximin 

optimal design is always larger than 0.92, while the RCEs of balanced designs can be as low 

as 0.66. In addition, the RCE of the maximin optimal design exceeds than that of the 

balanced design for almost the whole range of yRD(θ), suggesting that the maximin optimal 

design greatly outperforms the balanced design when the cost ratio is 5.

Figures 1(c) and (d) show RCEs for the outcome measure RR when the cost ratio is γ = 2 

and 5. Here, yRR(θ) ranges from about 0.2 to 18. From both plots, we observe that the 

maximin optimal design outperforms the balanced design over almost the entire range of 

possible parameter values. The lowest RCEs of the balanced designs are less than 0.6 and 

0.4 for γ = 2 and γ = 5 respectively, and both are lower than those in Figures 1(a) and (b). 

This suggests that if the outcome measure is RR rather than RD, the performance of the 

balanced design is more sensitive to mis-specified parameters and the maximin optimal 

design is more helpful to avoid low RCE whether the cost in the intervention arm is twice or 

5 times that in the control arm.
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Figures 1(e) and (f) shows RCEs for OR for the cost ratios γ = 2 and 5. The lowest RCEs of 

the maximin design are larger than 0.90, and it clearly outperforms the balanced design for 

almost all possible parameter values. Note that the lowest RCEs of the balanced design are 

about 0.75 and 0.57 for γ = 2 and γ = 5 respectively, and both are lower than those for RD 

but larger than those for RR. The implication is that the balanced design is less sensitive for 

estimating OR than for estimating RR but more sensitive than estimating RD. The upshot is 

that the maximin optimal design is again helpful to avoid having a low RCE.

In the Samoan Women's Health Study, the planned outcome analysis involved estimating the 

odds ratio using generalized estimating equations (GEE). According to Table 5, the maximin 

allocation value is 0.272 and the maximin optimal design would allocate 17 churches to the 

intervention condition and 44 to the control condition. From Figure 1(f), we see that the 

maximin design does an excellent job of guarding against low relative cost efficiency. The 

maximin optimal design is generally more efficient (i.e., has a larger RCE) than the balanced 

design and is robust to mis-specifications of the ICCs and the success rates in the two arms. 

While some investigators may not be comfortable with such an unequal allocation and may 

prefer to adjust it, this information can be useful as part of the overall study planning process 

and can lead to designs that are superior to a default balanced design.

5. Discussion

Much of the research in finding optimal allocation schemes for a CRT involve locally 

optimal designs in which the design depends on the success rates and ICCs, which are 

typically unknown in advance. Such single best guesses for these parameters can result in 

substantial loss in efficiency if these parameters are mis-specified. In this paper, we provide 

a novel approach to designing a two-arm CRT that allows a range of plausible values to be 

specified for each of the design parameters. The approach is exible and applies when the 

intervention effect is measured in terms of RD, RR or OR. We provide closed form formulae 

for the optimal proportions of equal-sized clusters in the two arms for three common 

outcome measures when we have a predetermined fixed number of clusters. Our optimal 

design maximizes a cost efficiency measure that combines the precision of the estimated 

intervention effect and cost of the study. We also compare our proposed designs with the 

popular balanced designs using the RCE measure and show that RCEs of a balanced design 

can be very low relative to maximin optimal designs.

We consider three treatment effect measures, RD, RR and OR, in our work. RR is often used 

in randomized controlled trials and cohort studies and OR is typically used for cross-

sectional and case-control studies (Sistrom, Garvan and Grobbee, 2011). OR is also used in 

randomized controlled trials (Knol and Duijnhoven, 2004). Ukoumunne et al (2008) 

discussed how these measures can affect the results using the GEE method of analysis. 

Because the same design can have different efficiencies under different outcome measures, 

investigators should ensure that they use the same measure for their design and their 

analysis.

Throughout, we have assumed that the cluster size is constant. In practice, cluster sizes often 

vary. Several complications arise when adapting design methods for CRTs with equal cluster 
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size to CRTs with unequal cluster sizes. For example, in the latter case, there is now a choice 

of several different weighting schemes for computing treatment effect estimates and several 

different variance estimators just for risk difference alone (Guittet, Ravaud and Giraudeau, 

2006; Kerry and Bland, 2001). Since the optimal design depends on the specific estimators, 

deriving and studying formulas for maximin optimal designs for CRTs with varying cluster 

sizes for the various risk measures and weighting schemes would require a substantial effort. 

Compounding the issue is that there is currently no agreed upon method for designing a CRT 

with unequal cluster sizes in the literature and so it is not clear how to fairly evaluate 

performance of our proposed maximin optimal designs when cluster sizes are unequal. 

However, we can offer some general observations for designing a maximin optimal CRT 

with unequal cluster sizes.

First, we explored how the maximin optimal allocation varies as a function of the common 

cluster size for a range of scenarios. The results in Web Appendix A.2 show that the 

maximin allocation strategy generally varies very little as the common cluster size is 

changed, except when cluster sizes are small for some scenarios. This provides some 

assurance that the method may work acceptably in many settings.

We were also able to find a result from Kang et al. (2005) that seems helpful. They worked 

on sample size issues for detecting a user-specified risk difference and derives the design 

effect for V ar(π̂) under varying cluster sizes when equal weights for subjects (that is, 

weights equal to cluster size) are assumed. The modified design effect has the formula 1 + 

[E(M) − 1]ρ + E(M)ρCV2, where E(M) is the expected cluster size and CV is the coefficient 

of variation of cluster size. We amended our optimal allocation formula for risk difference to 

use this design effect. Plots in the Web Appendix A.3 show how the ratio of the optimal 

allocation for varying cluster size to the optimal allocation for constant cluster size varies as 

a function of the CV for the risk difference measure for selected scenarios. A ratio of 1 

indicates that the optimal allocations are the same for both formulas. When CV =0, we have 

constant cluster size and the two formulas coincide. As the CV is increased to 0.8, we 

observe an increase or decrease of only about 4% in the ratio, which is unlikely to make 

much difference after we round an allocation to whole numbers of clusters. In practice, the 

CV for cluster sizes is rarely larger than 0.8 (Carter, 2010; Eldridge et al., 2006). These 

figures also show that varying the expected cluster size is likely to have little impact.

While we are unable to fully explore the impact of varying cluster sizes on the maximin 

optimal allocation analytically, the observations suggest that using the mean cluster size in 

our formulas for CRTs with constant cluster size may produce acceptable results in some 

settings. Researchers may wish to conduct similar sensitivity analyses for their particular 

user-specified settings.

We conclude by noting that there are alternative design approaches when there are un-known 

parameters in the model. One option is to use a Bayesian approach where we first solicit a 

joint prior distribution for all parameters and then find the optimal proportion to arm 1 (or 

arm 2) that minimizes the averaged expected variance with respect to the joint prior 

distribution of π1, π2, ρ1 and ρ2. Frequently, the priors for the various parameters are 

assumed to be independent. Interestingly, while there is work on analyzing binary outcome 
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in IRTs using Bayesian methods (Matthews, 1999), we were unable to find papers that focus 

on constructing Bayesian optimal designs for CRTs. One reason may be the practical 

difficulties encountered in eliciting a joint prior distribution for ICCs and the response rates.

In summary, the maximin method proposed in this work may appear technically more 

complex but may actually be simpler to implement in practice because it is relatively easy to 

elicit a range of plausible values for each of the parameters in the design problem. 

Additionally, the maximin optimal design offers some protection against the worst case 

scenario and is generally more robust than locally optimal designs. Our results also show 

they tend to be more efficient than balanced designs in terms of the RCE measure. Other 

design work in a non-CRT setting also supports such a conclusion when a maximin (or 

equivalently a minimax) optimal design was used to estimate parameters in a nonlinear 

regression model, see for example, Tekle, Tan and Berger (2008), Ouwens, Tan and Berger 

(2002), Rodriguez, Ortiz and Martnez (2014), King and Wong (2000), Biedermann et al. 

(2004), and Dette and Biedermann (2003).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The research of Professor Wong and Wu reported in this paper was partially supported by the National Institute of 
General Medical Sciences of the National Institutes of Health under the Grant Award Number R01GM107639. The 
research of Professor Crespi was partially supported by grants CA16042 and TR000124 from the National Institute 
of Health. Professor Wong wishes to thank the hospitality at the Isaac Newton Institute of Mathematical Sciences at 
Cambridge where he worked on this manuscript during the 1-week health care design workshop hosted by 
Professor Rosemary Bailey in July 2015. Wu is also grateful to the International Biometric Society, Western North 
American Region 2015 Student Paper Award Committee for receiving a distinguished paper award in the student 
paper competition based on an earlier version of this paper. The contents in this paper are solely the responsibility 
of the authors and do not necessarily represent the official views of the National Institutes of Health.

The authors would like to thank all members of the editorial team for providing very helpful and valuable feedback 
on an earlier version of the paper.

References

Biedermann, S., Dette, H., Pepelyshev, A. mODa 7 -Advances in Model-Oriented Design and 
Analysis. Physica-Verlag HD: 2004. Maximin optimal designs for a compartmental model; p. 41-49.

Breukelen GJ, Candel MJ. Calculating sample sizes for cluster randomized trials: we can keep it 
simple and efficient. Journal of Clinical Epidemiology. 2012; 65:1212–1218. [PubMed: 23017638] 

Brittain E, Schlesselman JJ. Optimal allocation for the comparison of proportions. Biometrics. 1982; 
38:1003–1009. [PubMed: 7168791] 

Carter B. Cluster size variability and imbalance in cluster randomized controlled trials. Statistics in 
Medicine. 2010; 29:2984–2993. [PubMed: 20963749] 

Chernoff H. Locally optimal designs for estimating parameters. The Annals of Mathematical Statistics. 
1953; 24:586–602.

Crespi CM, Maxwell AE, Wu S. Cluster randomized trials of cancer screening interventions: are 
appropriate statistical methods being used? ContemporaryClinical Trials. 2011; 32:477–484.

Crespi CM, Wong WK, Mishra S. Using second-order generalized estimating equations to model 
heterogeneous intraclass correlation in cluster randomized trials. Statistics in Medicine. 2009; 
28:814–827. [PubMed: 19109804] 

Wu et al. Page 13

Biometrics. Author manuscript; available in PMC 2017 September 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Crespi CM, Wong WK, Wu S. A new dependence parameter approach to improve the design of cluster 
randomized trials with binary observations. Clinical Trials. 2011; 8:687–698. [PubMed: 22049087] 

Dette H. On robust and efficient designs for risk estimation in epidemiological studies. Scandinavian 
Journal of Statistics. 2004; 31:319–331.

Dette H, Biedermann S. Robust and efficient designs for the Michaelis-Menten model. Journal of the 
American Statistical Association. 2003; 98:679–686.

Donner, A., Klar, N. Design and Analysis of Cluster Randomization Trials in Health Research. New 
York, NY: Oxford University Press; 2000. 

Donner T, Birkett N, Buck C. Randomization by cluster: sample size requirements and analysis. 
American Journal of Epidemiology. 1981; 114:906–914. [PubMed: 7315838] 

Eldridge SM, Ashby D, Kerry S. Sample size for cluster randomized trials: the effect of coefficient of 
variation of cluster size and analysis method. International Journal of Epdeimiology. 2006; 
35:1292–1300.

Eldridge SM, Ukoumunne OC, Carlin JB. The intra-cluster correlation coefficient in cluster 
randomized trials: a review of definitions. International Statistical Review. 2009; 77:378–394.

Gail MH, Mark SD, Carroll RJ, Green SB, Pee D. On design considerations and randomization-based 
inference for community intervention trials. Statistics in Medicine. 1996; 15:1069–1092. 
[PubMed: 8804140] 

Garthwaite PH, Kadane JB, O'Hagan A. Statistical methods for eliciting probability distributions. 
Journal of the American Statistical Association. 2005; 100:680–700.

Guittet L, Ravaud P, Giraudeau B. Planning a cluster randomized trial with unequal cluster sizes: 
practical issues involving continuous outcomes. BMC Medical Research Methodology. 2006; 6:17. 
[PubMed: 16611355] 

Hade EM, Murray DM, Pennell ML, Rhoda D, Paskett ED, Champion VL, et al. Intraclass correlation 
estimates for cancer screening outcomes: estimates and applications in the design of group-
randomized cancer screening studies. Journal of the National Cancer Institute. 2010; 40:97–103.

Hayes, RJ., Moulton, LH. Cluster Randomised Trials. Boca Ration, FL: CRC Press; 2009. 

Kang S-H, Ahn CW, Jung S-H. Sample size calculation for dichotomous outcomes in cluster 
randomization trials with varying cluster size. Drug Information Journal. 2003; 37:109–114.

Kerry SM, Bland JM. Unequal cluster sizes for trials in English and Welsh general practice: 
implications for sample size calculations. Statistics in Medicine. 2001; 20:377–390. [PubMed: 
11180308] 

King J, Wong WK. Minimax D-optimal designs for the logistic model. Biometrics. 2000; 56:1263–
1267. [PubMed: 11129489] 

Knol NJ, Duijnhoven RJ. Proportions, odds and risk. Radiology. 2004; 230:12–19. [PubMed: 
14695382] 

Lubin JH. Some efficency comments on group size in study design. American Journal of 
Epidemiology. 1980; 111:347–359. [PubMed: 6987863] 

Matthews JNS. Effect of prior specification on Bayesian design for two-sample comparison of a binary 
outcome. The American Statistician. 1999; 53:254–256.

Meydrich EF. Cost considerations and sample size requirements in cohort and case-control studies. 
Scandinavian Journal of Statistics. 1978; 107:201–205.

Milliken, GA., Johnson, DE. Analysis of Messy Data Volume I: Designed Experiments. Belmont, CA: 
Lifetime Learning Publications; 1984. 

Mishra SI, Bastani R, Crespi CM, Chang LC, Luce PH, Baquet CR. Results of a randomized trial to 
increase mammogram usage among Samoan women. Cancer Epidemiology, Biomarkers and 
Prevention. 2007; 16:2594–2604.

Mishra SI, Luce PH, Hubbell FA. Breast cancer screening among American Samoan women. 
Preventive Medicine. 2001; 33:9–17. [PubMed: 11482991] 

Moerbeek M, Breukelen GJ, Berger MP. Design issues for experiments in multilevel populations. 
Journal of Educational and Behavioral Statistics. 2000; 25:271–284.

Moerbeek, M., Teerenstra, S. Power Analysis of Trials with Multilevel Data. Boca Raton, FL: CRC 
Press; 2016. 

Wu et al. Page 14

Biometrics. Author manuscript; available in PMC 2017 September 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Morgenstern H, Winn DM. A method for determining the sampling ratio in epidemiologic studies. 
Statistics in Medicine. 1983; 2:387–396. [PubMed: 6417752] 

Ouwens MJNM, Tan FES, Berger MPF. Maximin D-optimal designs for longitudinal mixed effects 
models. Biometrics. 2002; 58:735–741. [PubMed: 12495127] 

Raudenbush SW. Statistical analysis and optimal design for cluster randomized trials. Psychological 
Methods. 1997; 2:173–185.

Raudenbush SW, Liu X. Statistical power and optimal design for multisite randomized trials. 
Psychological Methods. 2000; 5:199–231. [PubMed: 10937329] 

Ridout MS, Demetrio CGB, Firth D. Estimating intraclass correlation with binary data. Biometrics. 
1999; 55:137–148. [PubMed: 11318148] 

Rodriguez C, Ortiz I, Martnez I. Locally and maximin optimal designs for multi-factor nonlinear 
models. Statistics: A Journal of Theoretical and Applied Statistics. 2014; 49:1157–1168.

Sistrom CL, Garvan CW, Grobbee DE. Potential misinterpretation of treatment effects due to use of 
odds ratios and logistic regression in randomized controlled tirals. PLoS ONE. 2011; 6:e21248. 
[PubMed: 21698176] 

Tekle FB, Tan FES, Berger MPF. Maximin D-optimal designs for binary longitudinal responses. 
Computational Statistics & Data Analysis. 2008; 52:5253–5262.

Ukoumunne OC, Forbes B, Carlin JB, Gulliford MC. Comparison of the risk difference, risk ratio and 
odds ratio scales for quantifying the unadjusted intervention effect in cluster randomized trials. 
Statistics in Medicine. 2008; 27:5143–5155. [PubMed: 18613226] 

Wu S, Crespi CM, Wong WK. Comparison of methods for estimating the intraclass correlation 
coefficient for binary responses in cancer prevention cluster randomized trials. Contemporary 
Clinical Trials. 2012; 33:869–880. [PubMed: 22627076] 

Yanagawa T, Bolt WJ. Optimal sampling ratios for prospective studies. American Journal of 
Epidemiology. 1977; 106:436–437. [PubMed: 920730] 

Wu et al. Page 15

Biometrics. Author manuscript; available in PMC 2017 September 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Relative cost efficiency (RCE) of the maximin optimal design (solid line) and the balanced 

design (dashed line) for estimating the risk difference, relative risk and odds ratio for cost 

ratios γ = 2 and γ = 5 when π1 ∈ [0.3, 0.6], π2 ∈ [0.2, 0.3], ρ1 ∈ [0.05, 0.3], ρ2 ∈ [0.05, 

0.3] and all clusters have m = 14 subjects.
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Table 4

Maximin optimal allocation  for outcome measure x and different ranges of ρ1 and ρ2 when π1 ∈ [0.3, 

0.5], π2 ∈ [0.2, 0.3], γ = 5 and m = 20.

ρ1/ρ2 [0, 0.1] [0.1, 0.2] [0.2, 0.3]

x = RD

[0, 0.1] 0.315 0.247 0.212

[0.1, 0.2] 0.408 0.327 0.285

[0.2, 0.3] 0.461 0.375 0.330

x = RR

[0, 0.1] 0.226 0.175 0.150

[0.1, 0.2] 0.297 0.233 0.201

[0.2, 0.3] 0.341 0.271 0.235

x = OR

[0, 0.1] 0.273 0.210 0.179

[0.1, 0.2] 0.358 0.281 0.243

[0.2, 0.3] 0.408 0.326 0.283
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Table 5

Maximin optimal designs for the Samoan Women's Health Study with 61 clusters and 14 subjects per cluster.

RD RR OR

γ = 2

0.430 0.316 0.382

k1 26 19 23

k2 35 42 38

γ = 5

0.315 0.210 0.272

k1 19 13 17

k2 42 48 44
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