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Methods for Cheminformatic Prediction
Elena Louise Cáceres

Abstract

Large scale biological datasets are often comprised of observations which are noisy, which

are biased by environment or process, and which represent fragments of a perpetually grow-

ing, yet incomplete record of human knowledge. Changes to computational methods, data

deposition and storage, and improved collection of data have the potential to mitigate some

of these problems. However, no one solution works for all problems, and care must be taken

to ensure that a chosen method to make predictions for small molecules will be effective.

This thesis centers itself on prediction. How do we improve screening predictions made

on biased and incomplete information? How do we better represent fingerprints for ligand-

based screening when molecular shape is important? What methods might best inform our

ability to make predictions now and improve the next step in the future? And, how can we

create testable hypotheses from phenotypic observations when we can’t directly observe the

mechanism of action?

Chapter 1 presents the published work “Adding Stochastic Negative Examples into Ma-

chine Learning Improves Molecular Bioactivity Prediction”. To address concerns over the

effect that biased molecular affinity datasets may have on the accuracy of deep learning

models, this work suggests an online method where to improve prediction when a dataset

is made up of more binders than non-binders. The method, SNA, samples random, unan-

notated compounds and assigns them as non-binders during neural network training. SNA

drastically improves the ability of the network to identify false positives in a full matrix of

drugs and protein binders while slightly hurting performance on a temporal split.

Chapter 2 encompasses published work “A Simple Representation of Three-Dimensional

x



Molecular Structure” which presents Extended Three-Dimensional Fingerprint (E3FP).

This molecular fingerprinting technique generates a fingerprint that can represent three-

dimensional structure for statistical and machine learning methods. Its advantages over

two-dimensional fingerprints include the ability to encode structural relationships within a

molecule and aggregation of fingerprints into a molecular ensembles. The E3FP was com-

pared against existing two- and three-dimensional representations, and Chapter 2 shows

some cases where the method outperformed these existing techniques.

Chapter 3 provides a brief commentary on the current outlook of deep learning for

prediction of Adsorption, Distribution, Excretion, Metabolism, and Toxicity (ADMET). It

describes how changes to molecular representations of molecules for deep learning have im-

proved prediction of ADMET endpoints. It speculates on why techniques like neural network

multitask training may be fall short of expectations when implemented in practice. And,

it pushes for deep learning interpretability and error estimation to improve trust in deep

learning models and to facilitate iterative improvement of models.

Finally, unpublished work in Chapter 4 focuses on how to use high throughput screening

data to predict and rank a set of proteins to describe the clearance of free tau associated

with applications for Alzheimer’s Disease.
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Chapter 1

Adding Stochastic Negative Examples

into Machine Learning Improves

Molecular Bioactivity Prediction

Figure 1.1: Stochastic Negative Addition of randomly-assigned negative examples changes
the distribution of affinities in the minibatch, resulting in improved DNN predictive perfor-
mance on a Drug Matrix hold out.
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1.1 Abstract

Multitask deep neural networks learn to predict ligand–target binding by example, yet pub-

lic pharmacological data sets are sparse, imbalanced, and approximate. We constructed

two hold-out benchmarks to approximate temporal and drug-screening test scenarios, whose

characteristics differ from a random split of conventional training data sets. We developed

a pharmacological data set augmentation procedure, Stochastic Negative Addition (SNA),

which randomly assigns untested molecule–target pairs as transient negative examples dur-

ing training. Under the SNA procedure, drug-screening benchmark performance increases

from R2 = 0.1926 ± 0.0186 to 0.4269 ± 0.0272 (122%). This gain was accompanied by a

modest decrease in the temporal benchmark (13%). SNA increases in drug-screening perfor-

mance were consistent for classification and regression tasks and outperformed y-randomized

controls. Our results highlight where data and feature uncertainty may be problematic and

how leveraging uncertainty into training improves predictions of drug–target relationships.

1.2 Introduction

Machine learning and deep neural network (DNN) methods have made great strides in scien-

tific pattern recognition, particularly for cheminformatics1–7. As larger amounts of training

data (molecules and their protein binding partners) have become publicly available, ligand-

based predictions of polypharmacology have expanded from classification of binding (e.g.,

active/inactive) to regression of drug–target affinity scores (e.g., Ki and IC50)3,4,8–12 These

models exploit the similar property principle of chemical informatics, which states that small

molecules with similar structures are likely to exhibit similar biological properties, such as

their binding to protein targets13. Such approaches assume that the principle holds true for

large data sets and hinge on the expectation that a greater diversity of training examples will

increase the likelihood of a model finding generalizable patterns relating chemical structure
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to bioactivity. However, these techniques may learn biased patterns from incomplete data

for drug discovery and screening14.

Bias for in silico quantitative structure–activity relationship (QSAR) data sets may be

derived from a variety of sources including the publication record and scaffold bias. In

industry, researchers frequently have access to large databases with large numbers of high-

throughput screen examples that overwhelmingly comprise negative data. While these data

span a diverse chemical space, researchers may be concerned about a bias toward previously

studied scaffolds and programs. On the other hand, academic cheminformatic machine

learning training sets may be typically derived from smaller, institutional data sets and

sparse public bioactivity databases such as ChEMBL and PubChem BioAssay (PCBA)15,16.

Theoretically, the more the researchers who deposit their data into these repositories, the

more diverse the database. However, as scientific literature is a major contributor to these

databases, any publication bias toward well-studied molecules or those with positive bind-

ing profiles (Fig. 1.2) skews both the data set and, consequently, the resulting machine

learning models predictions, as reported by Kurczab et al17. We explore the feasibility of

a method that leverages uncertainty in unexplored chemical space to augment incomplete

public data for small molecule activity prediction using deep learning for both classification

and regression.

A substantial literature focuses on correcting the balance of positive to negative exam-

ples (here, binders to nonbinders) in machine learning training data sets and addressing

data set sparsity12,18–25. These corrections primarily adopt majority- or minority-based ap-

proaches. Minority-based approaches oversample underrepresented classes, and are generally

accomplished by upweighting or oversampling existing training examples – or by adding sim-

ilar synthetically generated ones19,24. Majority-based approaches typically undersample the

overrepresented class in order to achieve balance. Many class imbalance approaches address

situations where positive examples are in the minority. This presents a unique problem for

cheminformatic data sets where binders (<10 µM) are frequently the majority class and non-
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Figure 1.2: Protein targets are biased for positive interactions in a ChEMBL20. Target-wise
distribution of binding (ligand) vs nonbinding molecules in the training set. Each point
represents a single protein target drawn from ChEMBL20. A 1:1 ratio of binders (positives)
and nonbinders (negatives) would fall along the dotted line.

binders are the minority reported class (Fig. 1.2), despite binding in comprehensive screens

is a rare event26. For cheminformatic data sets, undersampling the majority class members

could minimize the crucial effort researchers have invested to establish the chemical feature

diversity upon which similar property principle-based approaches rely25. Accordingly, de la

Vega de León et al. found that removing/ignoring activity labels can decrease performance

in proportion to the amount of data removed22. As nonbinding molecules typically arise

from the same series as binders, and consequently share many of their chemical features,

we suspected that oversampling existing negative examples would contribute little to the

expansion of a model’s decision boundary. It follows, therefore, that oversampling may fail

to add diversity to the minority class, whereas methods that rely on synthetic interpolation

(i.e., generating new fingerprints very similar to existing negatives) increase the chance of

mislabeling a new ligand in the chemical series and overlook protein targets lacking negative

pharmacology data19. From a machine learning perspective, this hinders a model’s gener-

alizability and the scope of its chemical feature space, so oversampling negative examples
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would seem especially problematic for cheminformatic data sets.

Random sampling of unassayed chemical space to assert weak but diverse negative ex-

amples may address these concerns. Others have shown that incorporating random negative

data into training improves classification performance by SVMs27, potency-sensitive influence

relevance voters28, and Bernoulli Nä̈ive Bayes classifiers29. Kurczab and Bojarski assessed

the influence of negative data on a set of eight targets and found that a ratio of 9:1 to

10:1 of negatives to positives was favorable for classification30. In this work, we introduce

putative negatives that continuously change throughout training and extend this method

beyond classification to regression tasks for thousands of protein targets at once. We eval-

uate prediction performance on screening and temporal benchmarks and search for optimal

positive-to-negative ratios under both test scenarios.

We propose an online (continuous) pharmacological training augmentation procedure

for regression and classification tasks: stochastically oversampling the minority (nonbinder)

class from the pool of unlabeled molecule-to-protein interactions spanning the molecule ver-

sus the protein target training space. We designed Stochastic Negative Addition (SNA)

with the challenges of ligand-based drug design in mind. SNA adds more molecule–pro-

tein pairs to a training set where negative examples are otherwise outnumbered and/or

unevenly distributed. Paradoxically, whereas most molecules do not bind to most proteins,

the literature-based pharmacological data sets we used contain a preponderance of positive

reports (Fig. 1.2); we intended SNA to counter this trend without overwhelming training

with negative examples. This method encodes uncertainty for unstudied, and unlabeled,

drug–target pairs. It exploits the observation that, despite meaningful cases of unexpected

polypharmacology, ligand binding events at ≤10 µMare comparatively rare26. This study

expands on prior work by investigating the effect of training augmentation for large num-

bers of protein targets in a multitask setting, applying the method to regression tasks and

assessing the impact of random negatives on complementary benchmarks.
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We assessed DNN model performance on two external test sets. We created a Time

Split hold-out to address a drug discovery scenario with the understanding that this test

set would be skewed toward having fewer negatives. However, while the Time Split might

model drug discovery well, it has an unrealistic class balance (Table A.4). Therefore, we

also created a complementary “screening” use-case benchmark, with a preponderance of

negatives. We used the densely assayed Drug Matrix collection31,32 and removed all of its

protein–molecule interactions from the training set to avoid data leakage. We evaluated the

Drug Matrix hold-out in tandem with Time Split for its ability to model screening cases

where a researcher might wish to understand molecular binding profiles across a range of

targets and compound libraries, where no prior publication reporting biases the benchmark

in favor of binders. To determine how much pre-existing negative examples contributed to

performance, we trained alternative DNNs where we removed negatives from the training

data set. We explored whether SNA could rescue performance in this scenario where actual

negatives were absent. We compared these models to an unaugmented, standard training

regime and appropriate adversarial control studies33. We then explored whether different

ratios of binders to nonbinders their affected performance. Finally, we evaluate whether

SNA improves classification to the extent that it leads to regression. We find using SNA

with a one-to-one positive-to-negative ratio improves performance on screening scenarios

with minor penalty to temporal benchmarks.

1.3 Results

1.3.1 Adding Stochastic Negatives Improves Regression Perfor-

mance

We posited that existing sparse public data sets omit much of the chemical diversity of

the negative bioactivity space. To address this, we developed a machine learning training
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procedure to transiently add likely negative examples: unstudied pairs of small molecules

and protein targets that we assert to not bind. Using a SNA procedure, model predictions

on a screening scenario benchmark data set (Drug Matrix) improved with minimal loss to

performance on a temporal test benchmark (Time Split) (Fig. 1.3).

DNN models trained with five-fold cross validation using SNA (hereafter denoted in ital-

ics as SNA) outperformed conventionally trained models (standard; STD) on the screening

(Drug Matrix) benchmark (Fig. 1.3e,f, Tables 1.1 and A.1 and Figs. A.9, A.10, A.17

and A.18) with little effect on training or random validation performance (Fig. 1.3a–d,

Tables 1.1 and A.1 and Figs. A.9, A.10, A.17 and A.18). SNA performance increased

by 122% in R2 over the STD model on Drug Matrix affinity pAC50 values (see Methods). As

with most screens, much of the data within the screening benchmark consisted of first-pass

“primary” observations assessed only at a single dose of 10 µM. Regression could not be

performed on these observations as no dose–response curve had been collected. To assess

the effect of the proposed SNA training procedure on classification tasks, which would in-

clude these cases as well, we used two analyses: classification and regression-as-classification.

The former consisted of training equivalent DNN architectures with classification loss func-

tions—see the dedicated section below. For the latter, we evaluated the output of the

original regression models as classifiers post hoc by thresholding affinity into positive and

negative assignments according to pAC50 for the underlying truth values and constructing

AUPRCr and AUROCr metrics over a range affinity thresholds instead of confidence thresh-

olds. Thus, we calculated regression-as-classification AUPRCr and AUROCr by combining

primary negatives with secondary (dose–response) negatives from the Drug Matrix screen

versus secondary positives (see Methods). This analysis on Drug Matrix showed a 196%

increase in AUPRC and 14% increase in AUROCr for models trained using SNA over STD

(Fig. 1.3i,k, Tables 1.1 and A.1 and Figs. A.9, A.10, A.17 and A.18). A subsequent

analysis incorporating SNA into a model trained on a scaffold split data set (see Butina Scaf-

fold Split), showed results similar to Drug Matrix performance likewise from R2 0.1547 ±
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Figure 1.3: SNA markedly improves screening performance at minimal cost to temporal
benchmarks. Predictions from a regression-based DNN model [STD; red; (a,c,e,g)] and the
same model trained with the addition of stochastically chosen negative examples during
each epoch [SNA; blue; (b,d,f,h)] show R2 improvements on Drug Matrix (e,f) with mini-
mal cost to Time Split (g,h) performance. Similarly, Drug Matrix screening benchmark by
regression-as-classification AUROCr (i) and AUPRCr (k) plots, with Time Split AUROCr
(j) and AUPRCr (l) plots favor SNA. Performance outperforms scrambled controls (STD
scrambled—gray; SNA scrambled—purple), with SNA models showing greater gains over
their random counterparts.
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Table 1.1: Mean and Standard Deviation (std) Across Independent five-fold Cross Validation
for STD and SNA DNN Models

Training Type Data Set R2

mean
R2

std
AUROCr

mean
AUROCr

std
AUPRCr

mean
AUPRCr

std
STD 0.1926 0.0186 0.6886 0.0094 0.1490 0.0077
STD scrambled 0.0154 0.0092 0.5538 0.0099 0.0816 0.0046
SNA 0.4269 0.0272 0.7833 0.0059 0.4405 0.0079
SNA scrambled

Drug Matrix

0.0021 0.0023 0.4842 0.0134 0.0687 0.0030
STD 0.2152 0.0033 0.7388 0.0024 0.9434 0.0008
STD scrambled 0.0513 0.0032 0.6340 0.0033 0.9057 0.0010
SNA 0.1863 0.0012 0.7133 0.0025 0.9401 0.0006
SNA scrambled

Time Split

0.0020 0.0016 0.4664 0.0106 0.8540 0.0032
STD 0.6370 0.0041 0.9036 0.0016 0.9837 0.0004
STD scrambled 0.0741 0.0026 0.6584 0.0014 0.9200 0.0019
SNA 0.6428 0.0058 0.9064 0.0026 0.9848 0.0003
SNA scrambled

Validation

0.0009 0.0004 0.4700 0.0053 0.8685 0.0012
STD 0.9224 0.0095 0.9809 0.0026 0.9972 0.0004
STD scrambled 0.9212 0.0016 0.9814 0.0002 0.9973 0.0000
SNA 0.8971 0.0100 0.9750 0.0025 0.9962 0.0004
SNA scrambled

Train

0.8618 0.0217 0.9725 0.0047 0.9958 0.0007

0.0026 to 0.3939 ± 0.0521 (154% increase) (Table A.7 and Figs. A.25 and A.35 to A.38).

By contrast, SNA performance on the temporal (Time Split) benchmark decreased

slightly, with SNA models decreasing by 13% in R2 and 3% in AUROCr compared to STD

(Fig. 1.3g,h,l, Tables 1.1 and A.1 and Figs. A.9, A.10 and A.17). STD and SNA

models generalized similarly on cross-validation sets (Fig. 1.3c,d, Tables 1.1 and A.1

and Figs. A.9, A.10, A.17 and A.18), whereas standard models more precisely recapit-

ulated their exact training examples [(Fig. 1.3a,b), Tables 1.1 and A.1 and Figs. A.9,

A.10, A.17 and A.18] than the equivalent SNA model, as expected. As Time Split chem-

ical diversity may not directly reflect that of an explicit chemical scaffold split procedure,

we subsequently created a Taylor–Butina clustered hold-out test set from the original data

set (excluding Drug Matrix) and found trends similar to Time Split, albeit with higher over-

all performance, despite a 13% drop in R2 from 0.3692 ± 0.0027 with STD to 0.3201 ±

0.0021 with SNA (Table A.7 and Figs. A.29 and A.35 to A.38). We saw the same for

the accompanying Taylor–Butina trained models, where SNA k-fold cross-validation perfor-

mance for R2 was approximately 15% lower than STD R2 of 0.3229 ± 0.0111 (Table A.7
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and Figs. A.30 and A.35 to A.38).

SNA Brings Scrambled Control Models Closer to Theoretical Ran-

dom for Regression

To evaluate whether the models withstood adversarial controls33, we trained models on

molecules whose annotations to protein targets had been randomized (y-randomization)34–36.

SNA scrambled and STD scrambled models were trained with and without SNA procedures,

respectively. Our goal was to verify that these intentionally scrambled models would un-

derperform equivalent non-scrambled models on actual benchmarks. Thus, as in previous

sections, we evaluated these models on screening, temporal, and fivefold cross-validation

(Validation) sets.

As intended, scrambled models greatly underperformed those trained on data that was

not scrambled (Figs. 1.4, A.17 and A.18 and Tables 1.1 and A.1). However, some

empirically scrambled models using standard training exceeded expected theoretical perfor-

mance for balanced models (Fig. 1.4e–h; Tables 1.1 and A.1 and Figs. A.17 and A.18).

Scrambled models converged during training and achieved high performance on their scram-

bled train data sets (Table A.1 and Figs. A.13, A.14, A.17 and A.18), consistent with

potential data set memorization rather than generalization37. Unsurprisingly, the R2 for

scrambled models neared 0.0 for screening, temporal, and cross-validation sets (Figs. A.13

to A.16). While models trained on data that was not scrambled data outperform their

scrambled controls, these controls exceeded frequently used, theoretical baselines such as 0.5

for AUROCr and the positive-to-negative ratio random baseline for AUPRCr in regression-

as-classification analyses. STD scrambled models outperformed the 0.5 theoretical-random

in AUROCr (Drug Matrix screening set: 0.5538 ± 0.0099; Time Split temporal set: 0.6340

± 0.0033) (Fig. 1.4e,f; Table A.1). We also found that these STD scrambled models

performed better than the random prevalence line in AUPRCr for Drug Matrix (random
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Figure 1.4: Scrambled control models with SNA more closely match expected random base-
lines. R2 plots of a representative fold from fivefold cross validation (a–d) assess conventional
DNN models trained with y-randomized data [STD scrambled; gray; (a,b)] and the equiva-
lent networks trained with the stochastic negative procedure [SNA scrambled; purple; (c,d)].
Baselines for regression-as-classification AUROCr (e,f) compare the SNA scrambled random
line (purple) to STD scrambled (gray) for both benchmarks. Regression-as-classification for
AUPRCr (g,h) plots show a similar trend with respect to the ratio of positives-to-negatives
in each benchmark.

prevalence: 0.0711; AUPRCr: 0.0816 ± 0.0046) and temporal benchmarks (random preva-

lence: 0.8604; AUPRCr: 0.9057 ± 0.0010) (Fig. 1.4g,h; Table A.1). SNA scrambled models

exhibited reported values nearer the random baselines of 0.5 for AUROCr and the positive-

to-negative ratio for AUPRCr in both the Drug Matrix benchmark (AUROCr: 0.4842 ±

0.0134, AUPRCr: 0.0687 ± 0.003) and temporal benchmark (AUROCr: 0.4664 ± 0.0106,

AUPRCr: 0.8540 ± 0.0032) (Fig. 1.4 and Table A.1).

For DNNs trained with Taylor–Butina k-fold cross-validation data sets, SNA moved

the scrambled baseline toward 0.5 for AUROCr and to the positive-to-negative ratio for

AUPRCr, although this trend was less pronounced than in the random split cross-validation,

particularly for Drug Matrix (Table A.7 and Figs. A.28 and A.35 to A.38).
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1.3.2 SNA Improves Performance for Classification Models

To evaluate whether the SNA training procedure was stable beyond regression and regression-

as-classification, we developed and evaluated DNN classifiers with similar architectures. As

with regression models, SNA classifiers saw increased model performance for the Drug Ma-

trix screening benchmark, with a minor decline in the Time Split temporal benchmark (Ta-

ble A.2 and Figs. 1.5, A.17 and A.18). In fivefold cross-validation, SNA improved screen-

ing benchmark performance by 151% AUPRC and 13% AUROC (Table A.2 and Figs. A.17

and A.18). Consistent with regression models, classification networks trained with SNA ex-

hibited minor (4% AUROC and a 1% AUPRC) decreases on the Time Split benchmark

(Table A.2 and Figs. A.17 and A.18). As before, both models outperformed their scram-

bled baselines. Classifier DNNs showed less performance gain over random controls in the

temporal benchmark than regressor DNNs (Fig. 1.5e,f).

1.3.3 SNA Improves Regression Models Trained without Nega-

tives

As SNA improved performance on a training set – where negatives are not guaranteed to

be distributed across the benchmark sets in the same manner as the train set – we were

curious whether SNA would improve cases where there are no true negative training data

for ligand-binding prediction. To address this question, we evaluated two training regimes.

First, we trained a DNN model solely on positive ligand–target examples (Negatives Re-

moved). Second, we trained the equivalent Negatives Removed model, corrected by the SNA

procedure (Negatives Removed + SNA). To compare model performance, we maintained

the same benchmarks as before (screening/Drug Matrix, temporal/Time Split, and cross-

validation). We hypothesized that removing all training negatives would damage model

performance across the board, while incorporating SNA might partially rescue this effect.

Additionally, we hypothesized classification models would be more sensitive to the removal
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Figure 1.5: Classification models show similar trends to regression-as-classification evalu-
ation. PRC on fivefold cross-validated classification networks (b,d,e,f) versus equivalent
regression networks (a,c,e,f). For both classification (a,e) and regression tasks (b,e), net-
works trained with SNA (SNA; blue) achieved the highest Drug Matrix AUPRC. However,
SNA models [blue; solid—regression, hashed—classification; (c,d)] did not show improved
Time Split performance. AUROC and AUPRC bar plots for Drug Matrix (e) and Time
Split (f) illustrate differences between classification (lighter, hashed bars) and regression
models (solid bars) for SNA models (blue, green), their equivalent networks without SNA
(red, orange), and y-randomized controls (grey, purple, sienna). All DNN models but the
Negatives Removed classification model [(e,f); light orange; hashed] outperformed the scram-
bled benchmarks [(e,f); sienna; hashed]. Regression STD models (red; solid) underperformed
classification STD models [light red; hashed; (e,f)], but the opposite was true for Negatives
Removed models (orange; solid).
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of training negatives than regression models.

Broadly, regression models trained without negative examples underperformed by

regression-as-classification metrics, while achieving similar or better R2 to standard (STD)

for Drug Matrix and Time Split (Fig. 1.6; Tables A.1 and A.2). The R2 difference between

Negatives Removed and STD models was minimal for the Drug Matrix screening benchmark

(Negatives Removed R2: 0.1973 ± 0.0176; STD R2: 0.1926 ± 0.0186) (Fig. 1.6a; Fig. 1.3e;

Table A.1 and Figs. A.9 and A.11). However, we observed larger differences in AUROCr

and AUPRCr, where the STD model outperformed the equivalent Negatives Removed model

for Drug Matrix (Negatives Removed AUROCr: 0.6120 ± 0.0076 vs STD AUROCr: 0.6886

± 0.0094; Negatives Removed AUPRCr: 0.1039 ± 0.0025 vs STD AUPRCr: 0.1490 ±

0.0077) (Fig. 1.6e, Table A.1 and Figs. A.23 and A.24). Removal of negatives from

training harmed the Time Split temporal benchmark performance (−2.2% AUROCr and

−0.5% AUPRCr change from STD) (Fig. 1.4f; Table A.1), but these models showed minor

improvements in R2 (9.3% increase from STD models) (Fig. 1.6c,f). For cross-validation

(Validation) and training data benchmarks, removal of negatives during training uniformly

decreased their performance by 5% (Validation) and 15% (Train) in R2 (Table A.1).

We had anticipated that the SNA training procedure would partially mitigate the absence

of true negatives during model training. Surprisingly, the Negatives Removed + SNA pro-

cedure yielded models with performance nearly indistinguishable from SNA models trained

with full data, SNA (Fig. 1.6e,f, Table A.1 and Figs. A.1 to A.4). As with STD com-

pared to SNA, Negatives Removed + SNA substantially improved the Drug Matrix screening

benchmark performance while slightly decreasing that of the Time Split benchmark com-

pared to a model trained with Negatives Removed alone. We observed 28, 331, and 116%

increases to AUROCr, AUPRCr, and R2, respectively, for the Drug Matrix screening bench-

mark by adding SNA training to Negatives Removed models (Figs. 1.6 and A.1 and Ta-

ble A.1). By contrast, we observed that the Negatives Removed + SNA model training

decreased temporal benchmark R2 performance 25% to 0.1774 ± 0.0018 compared to the
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Figure 1.6: SNA rescues models trained without negative data. R2 plots (a–e) of the same
cross-validation fold show Negatives Removed + SNA models [green; (b,d)] rescue Drug
Matrix performance, with a slight loss in Time Split performance. This is consistent across
regression-as-classification AUPRCr and AUROCr metrics on fivefold cross validated net-
works (e). For Drug Matrix, SNA models [(e); blue, green] outperform equivalent conven-
tional DNNs [(e); red, orange], but not for Time Split [(f); blue vs red, green vs orange].
Scrambled controls for each experiment [(e,f); gray, sienna, purple, chartreuse] establish
baselines.
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Negatives Removed alone (Fig. 1.6d,f; Table A.1 and Fig. A.2). We found little to no

change in mean AUC metrics for regression of Negatives Removed or Negatives Removed

+ SNA models, suggesting that neither stochastic nor true negatives improve performance

on the temporal benchmark. Under these performance metrics, the impact of stochastic

negative data on model training could not be distinguished from that of true negatives.

However, we did not find that stochastic negatives yielded any greater performance than

true negatives, despite the greater diversity of chemical examples covered by the former. To

address whether there was an advantage from reported negatives, we performed an alter-

native training analysis wherein we upweighted existing negatives during training to reach

parity between positives and negatives (see Negatives Upweighted; Table A.1) and found

little improvement in the Time Split benchmark. To evaluate the influence of temporal

versus scaffold test sets, we trained Negatives Removed and Negatives Removed + SNA

models on a Taylor-Butina Scaffold Test Split data set. Again, we note large improvements

to Drug Matrix R2, AUROCr, and AUPRCr (114%, 27%, and 292%, respectively) when Neg-

atives Removed models are augmented with SNA (Table A.7 and Figs. A.28 and A.35

to A.38). As with Time Split, Scaffold Split Test hold-outs performed worse or equivalently

by R2, AUROCr, and AUPRCr (−24%, −0.1%, 0.5%) with SNA (Table A.7 and Figs. A.29

and A.35 to A.38).

1.3.4 SNA Training Corrects for the Absence of True Negatives

in Classification Nearly and in Regression

As with the regression models, removal of true negatives when training classification mod-

els affected performance in most benchmarks. SNA predominantly rescued performance for

classification Negatives Removed models. The removal of true negatives from classification

DNN training so adversely impacted performance on hold-out benchmarks that these mod-

els failed to exceed random baselines (Tables A.2 and A.8 and Figs. A.21, A.22, A.33
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and A.34). This was consistent with the expectation that classification models trained solely

on positive data would overwhelmingly predict positive outcomes. Therefore, we expected

that incorporating stochastically imputed negatives during training (Negatives Removed +

SNA) would improve classification. Drug Matrix screening benchmark performance improved

markedly for Negatives Removed + SNA training compared to Negatives Removed models

(48% increase in AUROC; 291% in AUPRC) (Table A.2 and Figs. A.21 and A.22). Neg-

atives Removed + SNA only slightly improved Time Split AUROC and AUPRC (3% to

AUROC and 1% to AUPRC), although this was in contrast to regression models, where

SNA had decreased performance in this scenario (Tables A.1 and A.2 and Figs. A.21

and A.22). Overall, we observed that the Negatives Removed regression model and its de-

rived regression-as-classification interpretation outperformed the classification model on the

screening benchmark. This was true also for Negatives Removed + SNA training with the

exception of AUROCr for Drug Matrix.

1.3.5 Restricting SNA by Molecular Similarity Does Not Dramat-

ically Improve the Procedure

To decrease the likelihood that SNA may assign true-but-unreported ligands to be negatives

during training, we blocklisted potential molecule–target pairs by a separate cheminformatic

method. This blocklist was created using the similarity ensemble approach (SEA) to pre-

dict likely binders (see SNA + SEAblocklisting). We assessed the networks trained with

the SEA blocklist (SNA + SEA blocklist) similarly to the base SNA model procedure for

both classification and regression. As with SNA networks, the SNA + SEA blocklist DNNs

outperformed STD models on Drug Matrix with minor decreases to Time Split for regres-

sion (Table A.1 and Figs. A.1 and A.2) and classification (Table A.2 and Figs. A.5

and A.6). The performance differences between SNA and SNA + SEA blocklist were min-

imal, typically within a 1% difference (Table A.1 and Figs. A.1 to A.4). The exceptions
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were AUPRCr and R2, where SNA + SEA blocklist outperformed SNA on Drug Matrix by

2.8 and 3.3%, respectively. The same was true for classification networks, with SNA + SEA

blocklist performing within a 1% difference to SNA for all but AUPRC, where SNA + SEA

blocklist induced an increase in the mean across cross validated models of 3% (Table A.2

and Figs. A.5 to A.8).

1.3.6 Optimal SNA Ratio for DNN Performance Centers on 1:1

Positive/Negative Examples

To assess the impact of the class balance ratio chosen for the SNA training procedure, we

trained 14 networks with SNA minimum ratios (i.e., minimum ratio of negatives-to-positives

per protein target, below which negatives are added until the ratio is achieved) extending

from no negatives added to the training (0% added) to 93%, as assessed on each protein target

represented within a minibatch. We applied this procedure to regression and classification

DNNs trained with STD and Negatives Removed contexts.

We found that the region between 40% and 60% added-negative ratio was the best tradeoff

of performance across all benchmarks (Fig. 1.7 and Tables A.5 and A.6). Consistent with

established class-balance training procedures, a 50% or 1:1 addition of SNA appears ideal,

for both classification and regression scenarios. We note that the Drug Matrix screening

benchmark improvement is the steepest between 10% and 30% negative addition; while the

Time Split benchmark suffers some decreases in this regime, they are far less pronounced

than the improvements to the screening benchmark.

The most exaggerated difference between classification and regression occurred for Neg-

atives Removed models (Fig. 1.7 and Tables A.5 and A.6). Regression models trained

using the Negatives Removed + SNA method almost entirely rescued the all-data SNA

model performance by a 40% negative-addition ratio for Drug Matrix (Fig. 1.7b). How-

ever, classification Negatives Removed + SNA could not match the AUPRC Drug Matrix
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Figure 1.7: Balanced ratio of positives to negatives achieves the best overall performance.
Increasing the targeted negative-to-positive ratio improves Drug Matrix performance for
classification (a) and regression (b) up to �40–50% negatives per target, with modest impact
to Time Split performance for classification (c) and regression (d) SNA models. SNA rescues
the removal of reported negatives from model training data for regression (b,d) but not
classification (a,c) (Negatives Removed + SNA; dashed line). Shaded areas represent the
maximum and minimum boundaries within fivefold cross validation.
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screening performance of STD (Fig. 1.7a). The screening benchmark performance difference

between SNA and Negatives Removed + SNA models was less pronounced by AUROC. For

the Time Split benchmark, stochastic negatives were less effective in closing the performance

gap between Negatives Removed and STD classification models (Fig. 1.7c) than they were

for regression models (Fig. 1.7d). From this, we conclude that classification tasks perform

much better when trained on true negatives than when trained with stochastically imputed

negatives. Regression models appear to see less gain from reported negatives as compared

to stochastically imputed ones. However, as both classification and regression performed

better with the addition of random negatives, we believe SNA can productively augment

true negatives in the case when there are insufficient negatives and in the case when there

are no negatives to speak of in the training set.

1.4 Discussion

We were concerned that insufficient proportions or diversity of negative examples in bioactiv-

ity training data sets could be lessening machine learning model precision for drug screening

and discovery tasks. With this in mind, we hypothesized that adding transient random neg-

ative examples during training would improve model precision more than it would degrade

model sensitivity. In this study, we set out to investigate the impact of SNA to DNN train-

ing for small-molecule-to-protein target affinities for classification and regression tasks. We

found that adding stochastic negatives to DNN training improves predictive performance on

a full-matrix screening benchmark (Drug Matrix; 7.1% positive cases, Table A.4) for both

classification and regression tasks. This performance boost had minimal negative impact on

a temporal evaluation scenario, which is skewed toward approximately 70% positive cases

(Table A.4). We thresholded the regressed values analogously to classification networks

to obtain a regression-based AUROCr and AUPRCr performance metrics, which frequently

agree with classification performance trends. Finally, we compared the results to scrambled
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baselines, which suggest the method does not solely rely on memorization for performance

improvement.

The SNA data augmentation procedure improved both regression and classification DNN

performance when compared to a standard model (STD) (Figs. 1.3 and 1.5 and Tables A.1

and A.2). Here, we define success as better performance on the screening-scenario bench-

mark, Drug Matrix, with a small relative hit to the Time Split benchmarks, which have a

positive-to-negative ratio that favors positives. This suggests that SNA data augmentation

allows a DNN to preserve potential QSAR information, yielding fewer false-positives that

would otherwise plague the manual review of binding candidates. In a supplemental scaffold

split analysis (see Butina Scaffold Split), we also found that the models perform better on

scaffold-split testing than on Time Split, with similar minor performance decreases under

SNA (Tables A.1, A.2, A.7 and A.8 and Figs. A.2, A.6, A.17 to A.21, A.23, A.24,

A.26, A.29 and A.31 to A.38). We found this behavior unexpected as prior analyses have

shown temporal and scaffold splits to be similar in difficulty5,38,39. The use of Butina scaffold

splitting to define the Validation set—and hence its convergence criteria—may contribute to

the model’s higher-than-expected performance in this scenario, as compared to Time Split,

where the validation set was defined using a conventional random split. Under screening

and scaffold split scenarios, the models meet anecdotal QSAR regression thresholds (R2:

0.3) used for categorical analysis-based triage during early identification and prioritization

of adsorption, metabolism, excretion, and toxicity profiles40,41. This capability is particu-

larly useful for groups that do not have access to extensive and densely sampled corporate

data sets. Performance by AUROCr and AUPRCr metrics indicate the gain to screening

prediction capability for categorical or triaging decisions.

We observe that supplementing DNN training data with random negatives for a large

number of targets from ChEMBL20 is consistent with previous findings with other machine

learning models on smaller numbers of targets, which found that adding negative examples

during training can improve classification of molecular bioactivity17,30. Despite the success of
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minority upweighting in other machine learning fields, we find that upweighting negative data

in the models’ loss function during training yielded no advantage (Table A.1 and Figs. A.1

to A.4), suggesting that existing negatives alone do not cover either a sufficient number of

targets or chemical feature space to be useful. This study adds to evidence, suggesting that

balancing public data sets (given either positive or negative majority classes) for machine

learning training improves classification prediction27–29,42–44. Here, we find a similar prop-

erty holds for DNN regression, given a positive majority class, while including scrambled

baselines to define random performance and show an added benefit of reduced memorization

for augmented train sets.

While we find SNA improves Drug Matrix at a cost to Time Split performance, we note

that the models contain negatives within the training set, which may be unevenly distributed

across protein tasks. This distribution may artificially boost performance for certain tasks

with additional negative data. To address this, we trained a model in the absence of neg-

ative data and without stochastic negatives as a sanity check, where we expected reduced

performance due to loss of negative training examples for certain targets. We found that

this Negatives Removed model improves generalizability for Time Split and depleted per-

formance on Drug Matrix. We do not find this surprising, as the distribution of the Time

Split data set more closely matches the Negatives Removed training set, possibly arising

from a positive-reporting bias for novel molecules in the ChEMBL database underlying the

temporal-split benchmark (71% positive, n = 116929, Table A.4), which is derived from

the literature. A priori, a model trained without negative examples would be more likely to

predict positive binding activity for a novel molecule; a benchmark with 71% positive cases

would reward this propensity. As more negative and screening data make their way into

public data sets, we will be interested to see whether this effect on temporal or scaffold splits

will lessen over time.

Negatives Removed classification DNNs (Table A.2 and Figs. A.21 and A.22) per-

formed far worse than Negatives Removed regression DNNs (Fig. 1.6e,f; Table A.1
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and Figs. A.23 and A.24). We hypothesize this may be because of different objectives

between regression models and classification models—particularly in the absence of negative

data. In such a scenario, removal of negative data is harmful to classification as there is

no information from which to establish a binary decision boundary, whereas a regression

network may be better equipped to extrapolate to unseen structures because of its modeling

of continuous relationships between chemical structure and bioactivity.

Regression models trained with Negatives Removed exhibited performance losses which

SNA rescued (Fig. 1.6). These data suggest that stochastic negatives may usefully supple-

ment true negative data, but because of lack of clearly better performance, we do not believe

that SNA should be used to supplant the use of true negatives in model training. SNA

failed to completely rescue classification Negatives Removed performance. This may reflect

fundamental differences between the aim of regression versus classification or the forms of

the loss functions in question. Exploration of the ranked molecule choice between regression

and classification models should be interesting for future in silico analyses. One explanation

might be that underlying data set biases (such as molecular similarity) may have conse-

quences for classification DNNs that are different for regression DNNs. Regardless, the data

showing Negatives Removed + SNA rescuing model performance suggest it is reasonable to

consider adding random negatives when none are available in the literature.

We also briefly explored the possibility that the SNA method of choosing potential neg-

ative pairs may have unintended consequences for ligands which are topologically similar to

existing ligands for the same target. Using an alternative ligand–target prediction method,

the SEA8 to block potential molecule–target negative pairs and to reduce the probability

of incorrectly assigning a likely ligand to be a negative example, we found that SNA +

SEA blocklist models performed similarly to standard SNA equivalents (see Supplemen-

tary information for Chapter 1). From the results available, we see little reason to include

SEA block-listing during training but see little reason to disavow exploration of additional

blocklisting techniques in the future, such as sphere exclusion for dissimilar compound sam-
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pling(29) as this may change with the data set, representation, model, or task. We note that

SEA is a ligand-based approach and may not yield a sufficiently orthogonal blocklist, espe-

cially considering that our neural networks are trained on ligand topology. Future studies

may address this concern by incorporating biophysical models as a blocklisting methodology,

but we leave the exploration of negative choice open as an option for further studies.

We created scrambled DNN models (e.g., STD scrambled; SNA scrambled) to serve as

low-performance adversarial baselines for our experiments and evaluate them against the

same hold-out benchmarks. These baseline control studies yielded two key observations.

First, as both STD and SNA outperformed their relative scrambled controls, the DNNmodels

here do not rely solely on memorization for their performance. Second, as SNA decreased

the baseline down toward 0.5 for AUROC/AUROCr and to the positive-to-negative ratio for

AUPRC/AUPRCr, we found the SNA training procedure widens the predictive gap between

actual and random models, suggesting additional benefits compared to STD when solely

considering performance metrics.

While it is not unreasonable to assume an SNA ratio mimicking the underlying distribu-

tion of positives-to-negatives would produce the best result, we instead found that a balanced

training set performed well in our exploration of different ratios (Fig. 1.7 and Tables A.5

and A.6). We observed that for SNA and Negatives Removed + SNA models, a data set

comprising approximately 40–60% negatives per target maximized performance for Drug

Matrix and Time Split. These results were consistent across regression and classification

networks. By outperforming analogous models trained on scrambled data sets, we posit

the models have learned beyond simple memorization, such as target (task) distributions.

Considering that the bulk of the improvement on Drug Matrix occurs between 10% and

40% stochastic negatives, we hypothesize that future Time Splits with progressively more

negatives may favor ratios approaching 50% as well. The optimal class balance we found

here is inconsistent with studies using different types of models, which suggest positive to

negative ratios around 1:9–1:10 for SMO, Random Forest, Ibk and J48 algorithms17. How-
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ever, our results are consistent with their conclusion that optimal ratios may change with

choice of algorithm and the properties of a given data set. For instance, our methods involve

multiple rounds of random resampling throughout each epoch of DNN training, and we are

performing a regression task.

This study is not without caveats. As noted in Methods, data from ChEMBL is biased

by both the researcher and assay, and we have made several assumptions in aggregating data

sets. We took aggregate values (median) for duplicated molecule–protein pairs to avoid over-

sampling, particularly well-studied pairs. We made further bulk assumptions about our data

set by asserting a single negative binding threshold (pAC50 = 5.0; 10 µM) when evaluating

the performance, agnostic-to-protein target. For certain proteins, a hit weaker than 10 µM

may be desirable for a researcher, and for other proteins, a hit stronger than 1 nM may be

the minimum affinity necessary to describe a hit. It would be interesting to consider protein-

wise hit thresholds for future AUROCr and AUPRCr regression-as-classification analyses.

Our models are additionally limited by the representation of our data sets. We did not add

any structural protein information. This limits the total variance we could expect to derive

from such a data set, but we believe our method has uses where structural information is

unavailable or where a phenotype-based readout is desired. Furthermore, our choice of the

ECFP4 molecular feature representation45 does not include information that could be ob-

tained from 3D fingerprints or graph convolutional methods1,46,47. Finally, while our study

defines success by the marked improvement on the screening Drug Matrix benchmark with

minimal loss to Time and Scaffold Split Test benchmarks, we acknowledge that different

test sets and measurement statistics are use-case specific choices that must be set by the

researcher. For this reason, we publish performance across all benchmarks in terms of R2,

AUROC, and AUPRC, where it is appropriate.

This method is intended as an interim measure to supplement data sets, while quality

in vitro negative data may be collected and reported by experimental researchers. It is

not intended as a cure-all for the lack of negative data. It may be informative to more
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finely evaluate under what conditions experimental negatives most effectively impact model

predictions and where stochastically asserted ones are sufficient. Analysis for the particular

protein target profiles that benefit under SNA conditions remain as an avenue for future

studies. For example, although SNA and SNA + SEA blocklist models perform similarly,

highly promiscuous targets may suffer under SNA and may suffer less under SNA + SEA

blocklist models. Although this study was designed for data sets containing an affinity

distribution bias, it is possible that stochastic injection of diverse compounds stratified by

other properties could assist in other types of bias as well.

1.5 Conclusions

The SNA approach is a pharmacological data-augmentation procedure for DNNs designed

to randomly assert untested negatives for public data sets where negative data are otherwise

lacking. In each training epoch, new negatives are drawn to ensure that any particular

negative choice does not heavily influence the model. We evaluated SNA at multiple ratios

of positives to negatives and found that a ratio around 1:1 is optimal. We compared SNA

training for both classification and regression networks trained on ChEMBL20. We found

that, generally, SNA improved predictions on a held-out screening-like benchmark (Drug

Matrix) with minimal effect on a 20% Time Split hold-out. Effectively, this resulted in a

lower false-positive rate for the screening scenario. Our random selection of negative data

involved minimal computational overhead. Supplementation of DNN training with stochastic

negatives provides an interim augmentation measure for data sets lacking diverse negative

data until more experimental data become publicly available.
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1.6 Methods

1.6.1 Data Description

We filtered the ChEMBL20 database15 by small molecule-target affinities with a binding

type “B” and reported affinity values of type IC50, EC50, Ki, or Kd. Adapting the ontology

from Visser et al., we treat all Ki, Kd, IC50, EC50, and related values equivalently and

broadly refer to the resulting annotations as “activity concentration 50%” (AC50) values16.

We removed molecules with MW � 800 Da and protein targets with fewer than 10 positive

interactions. We addressed over-weighting of well-studied molecule-to-target pairs by taking

the median across repeated target–molecule pairs. ChEMBL qualifies affinity using the

“Relation” parameter that reports whether the true value is greater than, less than, or equal

to the reported value. For all relations except “equals,” we added random noise to the values

to express uncertainty (Table A.3). We transformed all AC50 values by −log10 to arrive

at pAC50 values for training, such that pAC50 > 10 (i.e., <0.1 nM) would be considered a

strong binder and pAC50 < 5 (i.e. >10 µM) would be considered inactive. For classification

tasks, we used pAC50 � 5.0 to establish positive/active class identity.

Inputs are represented as a 4096-bit RDKit Morgan Fingerprint with a radius of 245.

Predicted values are the log transforms of affinity as described above (pAC50) at 2038 protein

targets for each molecule.

Our literature-derived annotations mined from ChEMBL skew the training set toward

positive examples, with 73% representing binding affinities at 10 �M or lower, 55% of 1 µM

or lower, and 34% of 100 nM or lower. The remaining 27% of the training examples are

explicit negatives—molecules that failed to inhibit the tested protein target by at least 50%

at 10 µM. Six percent of targets (138 proteins) have zero reported nonbinders weaker than

10 µM. For training purposes, no targets have zero reported binders.
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1.6.2 Data Splits

The evaluation benchmarks—which assess two distinct use cases—draw on Drug Matrix

[CHEMBL1909046] and a 20% Time Split hold-out38 and are excluded from the train and

cross-validation sets. For the Time Split hold-out, we set aside approximately the final five

years of ChEMBL activities, as assessed by the first reported publication date for a given

interaction between the molecule and protein target (see code). Like ChEMBL, the Time

Split hold-out is sparsely populated by negative data, but unlike a randomly split ChEMBL

hold-out, it contains more unique structures. Drug Matrix is a data set produced by Iconix

Pharmaceuticals that reports in vitro toxicology data for 870 chemicals across 132 protein

targets48. Of these 132, we used the 84 targets that passed filtering steps defined in Data

Description in our training set from Drug Matrix as a way to measure how we perform on a

set containing a higher ratio of negative data to positive data. Descriptions of positive and

negative attributes for each split are available in Table A.4.

1.6.3 Stochastic Negative Addition

SNA for multitask DNN training is added in an online fashion where new negative training

examples for molecule–protein pairs are generated at each epoch to achieve a desired ratio

of positives to negatives for each target. For the baseline SNA model, negatives are selected

randomly from all unlabeled pairs in the data set to fulfill the desired ratio of positives

to negatives at the target of interest. To evaluate the impact of potentially misassigning

hidden positive examples during training, we developed a second method using the SEA8 to

blocklist potential interactions during the sampling procedure (SNA + SEA blocklist). For

this method, we excluded from consideration (“blocklisted”) all otherwise unlabeled pairs

that achieved a positive SEA prediction with pSEA �5. We tested SNA at the following

positive-to-negative ratios to find an optimal balance beginning at the baseline positive

prevalence in Drug Matrix: [0.07, 0.5, 0.6, 0.75, 0.85, 0.95, 1.0, 1.33, 1.54, 2.0, 2.86, 4.0,
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6.66, 10.0].

1.6.4 Negatives Removed

To assess the impact of training on purely positive data, we scrubbed all negative data

(pAC50 < 5) from the training set (Negatives Removed) and evaluated it on Time Split and

Drug Matrix as we did for training regimes including negatives such as STD and SNA. We

applied SNA to the training regime as above to evaluate the impact of stochastic negatives

on the model’s predictive ability (Negatives Removed + SNA). Each of the 14 ratios listed

above were tested for SNA applied to models trained on the negatives-removed data set to

evaluate the impact of positive-to-negative ratios on performance.

1.6.5 Software

This project was built with Python 2.7. All DNNs were implemented and trained in

Lasagne49 and Theano50. We used RDKit for all handling of molecular structures51. We

used NumPy52 and Scikit-learn53 for performance measures and numerical analyses, and

visualizations were made with Matplotlib54 and Seaborn55.

1.6.6 Multitask Deep Neural Network Model Hyperparameters

and Architecture

As multitask DNN performance is sensitive to architecture and hyperparameter choice, we

optimized hyperparameters and architecture by considering retrospective performance on a

random 20% hold-out of the training data set. We performed a grid search over varying

architectures and manually explored for optimal hyperparameters. Although this optimiza-

tion is not exhaustive, we focused this study on a simple representative architecture with

three fully connected hidden layers with 1024, 2048, and 3072 nodes, respectively. We used
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an input layer of 4096 nodes, the length of our input fingerprints, and an output layer with

2038 target nodes. We use leaky rectified linear unit (leaky-ReLU) activation functions56 for

all hidden layers and L2 weight regularization with a penalty of 5 × 10–5 and mean squared

error for the loss function. We employed stochastic gradient descent with Nesterov momen-

tum57 using a fixed learning rate of 0.01 and momentum of 0.4. Additionally, the hidden

layers were subject to dropout58 with probabilities of 0.1, 0.25, and 0.25, respectively.

1.6.7 Model Training and Classification Accuracy Assessment

R-Squared

We square the correlation coefficient (r_value) from scipy.stats.linregress.

Area under the Curve

Area under the curve (AUC) was analyzed for both the precision-recall curve (AUPRC) and

the receiver operating characteristic curve (AUROC). For classification models, AUC was

implemented as in sklearn, with a ground-truth positive threshold set to 5.0 as in training.

While AUPRC and AUROC are traditionally reported for classification models, we also

reported these metrics for thresholded regression models and denote these with AUROCr

and AUPRCr for clarity. This usage has two underlying assumptions: (1) chemical screens

are performed to assess hit rates past a certain biological threshold [e.g., p(AC50 in molar)

�5] and (2) higher ranking predictions from a regression model are more likely to be tested

first by researchers. Given these assumptions, we posthoc assessed regression models as

classification. Prediction thresholds were chosen over the maximum and minimum of the

predictions for a given model in step sizes of 0.05, and true values were thresholded at 5.0.

At each prediction threshold, true positive rate/precision, false-positive rate, and recall were

calculated and then the AUC generated from points.
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1.6.8 Source Code

All code necessary to reproduce this work is available at https://github.com/

keiserlab/stochastic-negatives-paper under the MIT License.

1.7 Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/

10.1021/acs.jcim.0c00565.
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1.10 Abbreviations Used

1.10.1 General Abbreviations

SNA - Stochastic negative addition as a procedure

AUROC - AUC of the receiver operating characteristic curve

AUPRC - AUC of the precision-recall curve (classification)

AUROCr - AUC of the receiver operating characteristic curve (regression-as-classification)

AUPRCr - AUC of the precision-recall curve (regression-as-classification)

1.10.2 Model Abbreviations

STD - “standard” model trained without SNA procedure STD scrambled - STD model

trained with y-randomization of the input training data

SNA scrambled - SNA model trained with y-randomization of the input training data

Negatives Removed - model trained with negatives removed from the training set

Negatives Removed scrambled - Negatives Removed model trained with y-randomization of

the input training data

SNA + SEA blacklist - SNA model where ligands with a chance of binding (by SEA) are

blacklisted from SNA choice during training

32



References

1. Feinberg, E. N., Sur, D., Wu, Z., Husic, B. E., Mai, H., Li, Y., Sun, S., Yang, J.,

Ramsundar, B. & Pande, V. S. PotentialNet for Molecular Property Prediction. en.

ACS Cent Sci 4, 1520–1530 (Nov. 2018) (cit. on pp. 2, 25).

2. Mayr, A., Klambauer, G., Unterthiner, T., Steijaert, M., Wegner, J. K., Ceulemans, H.,

Clevert, D.-A. & Hochreiter, S. Large-scale comparison of machine learning methods for

drug target prediction on ChEMBL. en. Chem. Sci. 9, 5441–5451 (June 2018) (cit. on

p. 2).

3. Ramsundar, B., Kearnes, S., Riley, P., Webster, D., Konerding, D. & Pande, V. Mas-

sively Multitask Networks for Drug Discovery (Feb. 2015) (cit. on p. 2).

4. Ma, J., Sheridan, R. P., Liaw, A., Dahl, G. E. & Svetnik, V. Deep neural nets as a

method for quantitative structure-activity relationships. en. J. Chem. Inf. Model. 55,

263–274 (Feb. 2015) (cit. on p. 2).

5. Yang, K., Swanson, K., Jin, W., Coley, C., Eiden, P., Gao, H., Guzman-Perez, A.,

Hopper, T., Kelley, B., Mathea, M., Palmer, A., Settels, V., Jaakkola, T., Jensen, K.

& Barzilay, R. Analyzing Learned Molecular Representations for Property Prediction.

en. J. Chem. Inf. Model. 59, 3370–3388 (Aug. 2019) (cit. on pp. 2, 21).

6. Stokes, J. M., Yang, K., Swanson, K., Jin, W., Cubillos-Ruiz, A., Donghia, N. M., Mac-

Nair, C. R., French, S., Carfrae, L. A., Bloom-Ackerman, Z., Tran, V. M., Chiappino-

Pepe, A., Badran, A. H., Andrews, I. W., Chory, E. J., Church, G. M., Brown, E. D.,

Jaakkola, T. S., Barzilay, R. & Collins, J. J. A Deep Learning Approach to Antibiotic

Discovery. en. Cell 180, 688–702.e13 (Feb. 2020) (cit. on p. 2).

7. Withnall, M., Lindelöf, E., Engkvist, O. & Chen, H. Building attention and edge mes-

sage passing neural networks for bioactivity and physical–chemical property prediction.

J. Cheminform. 12, 1 (Jan. 2020) (cit. on p. 2).

33



8. Keiser, M. J., Roth, B. L., Armbruster, B. N., Ernsberger, P., Irwin, J. J. & Shoichet,

B. K. Relating protein pharmacology by ligand chemistry. en. Nat. Biotechnol. 25,

197–206 (Feb. 2007) (cit. on pp. 2, 28).

9. Keiser, M. J., Setola, V., Irwin, J. J., Laggner, C., Abbas, A. I., Hufeisen, S. J., Jensen,

N. H., Kuijer, M. B., Matos, R. C., Tran, T. B., Whaley, R., Glennon, R. a., Hert,

J., Thomas, K. L. H., Edwards, D. D., Shoichet, B. K. & Roth, B. L. Predicting new

molecular targets for known drugs. Nature 462, 175–181 (Nov. 2009) (cit. on p. 2).

10. Lounkine, E., Keiser, M. J., Whitebread, S., Mikhailov, D., Hamon, J., Jenkins, J. L.,

Lavan, P., Weber, E., Doak, A. K., Côté, S., Shoichet, B. K. & Urban, L. Large-scale

prediction and testing of drug activity on side-effect targets. Nature 486, 361–367 (June

2012) (cit. on p. 2).

11. Sydow, D., Burggraaff, L., Szengel, A., van Vlijmen, H. W. T., IJzerman, A. P., van

Westen, G. J. P. & Volkamer, A. Advances and Challenges in Computational Target

Prediction. en. J. Chem. Inf. Model. 59, 1728–1742 (May 2019) (cit. on p. 2).

12. Yang, X., Wang, Y., Byrne, R., Schneider, G. & Yang, S. Concepts of Artificial Intelli-

gence for Computer-Assisted Drug Discovery. en. Chem. Rev. 119, 10520–10594 (July

2019) (cit. on pp. 2, 3).

13. Johnson, M. A., Maggiora, G. M. & American Chemical Society. Meeting. Concepts

and applications of molecular similarity en (Wiley, New York, 1990) (cit. on p. 2).

14. Ding, H., Takigawa, I., Mamitsuka, H. & Zhu, S. Similarity-based machine learning

methods for predicting drug–target interactions: a brief review 2014 (cit. on p. 3).

15. Bento, A. P., Gaulton, A., Hersey, A., Bellis, L. J., Chambers, J., Davies, M., Krüger,

F. A., Light, Y., Mak, L., McGlinchey, S., Nowotka, M., Papadatos, G., Santos, R.

& Overington, J. P. The ChEMBL bioactivity database: an update. en. Nucleic Acids

Res. 42, D1083–90 (Jan. 2014) (cit. on pp. 3, 27).

34



16. Visser, U., Abeyruwan, S., Vempati, U., Smith, R. P., Lemmon, V. & Schürer, S. C.

BioAssay Ontology (BAO): a semantic description of bioassays and high-throughput

screening results. en. BMC Bioinformatics 12, 257 (June 2011) (cit. on pp. 3, 27).

17. Kurczab, R., Smusz, S. & Bojarski, A. J. The influence of negative training set size on

machine learning-based virtual screening. en. J. Cheminform. 6, 32 (June 2014) (cit. on

pp. 3, 21, 24).

18. Japkowicz, N. & Stephen, S. The class imbalance problem: A systematic study. Intel-

ligent data analysis 6, 429–449 (2002) (cit. on p. 3).

19. Chawla, N. V., Bowyer, K. W., Hall, L. O. & Kegelmeyer, W. P. SMOTE: Synthetic

Minority Over-sampling Technique. 1 16, 321–357 (June 2002) (cit. on pp. 3, 4).

20. Buda, M., Maki, A. & Mazurowski, M. A. A systematic study of the class imbalance

problem in convolutional neural networks (Oct. 2017) (cit. on p. 3).

21. Whitehead, T. M., Irwin, B. W. J., Hunt, P., Segall, M. D. & Conduit, G. J. Imputation

of Assay Bioactivity Data Using Deep Learning. en. J. Chem. Inf. Model. 59, 1197–

1204 (Mar. 2019) (cit. on p. 3).

22. De la Vega de León, A., Chen, B. & Gillet, V. J. Effect of missing data on multitask

prediction methods. en. J. Cheminform. 10, 26 (May 2018) (cit. on pp. 3, 4).

23. Huang, C., Li, Y., Loy, C. C. & Tang, X. Learning Deep Representation for Imbalanced

Classification in (2016), 5375–5384 (cit. on p. 3).

24. He, H. & Garcia, E. A. Learning from Imbalanced Data 2009 (cit. on p. 3).

25. Sundar, V. & Colwell, L. The Effect of Debiasing Protein–Ligand Binding Data on

Generalization 2020 (cit. on pp. 3, 4).

26. Bradley, D. Dealing with a data dilemma. en. Nat. Rev. Drug Discov. 7, 632–633 (Aug.

2008) (cit. on pp. 4, 5).

35



27. Heikamp, K. & Bajorath, J. Comparison of confirmed inactive and randomly selected

compounds as negative training examples in support vector machine-based virtual

screening. en. J. Chem. Inf. Model. 53, 1595–1601 (July 2013) (cit. on pp. 5, 22).

28. Lusci, A., Browning, M., Fooshee, D., Swamidass, J. & Baldi, P. Accurate and efficient

target prediction using a potency-sensitive influence-relevance voter. en. J. Chemin-

form. 7, 63 (Dec. 2015) (cit. on pp. 5, 22).

29. Mervin, L. H., Afzal, A. M., Drakakis, G., Lewis, R., Engkvist, O. & Bender, A. Tar-

get prediction utilising negative bioactivity data covering large chemical space. en. J.

Cheminform. 7, 51 (Oct. 2015) (cit. on pp. 5, 22).

30. Kurczab, R. & Bojarski, A. J. The influence of the negative-positive ratio and screening

database size on the performance of machine learning-based virtual screening. en. PLoS

One 12, e0175410 (Apr. 2017) (cit. on pp. 5, 21).

31. DrugMatrix/ToxFX https://ntp.niehs.nih.gov/results/drugmatrix/

index.html. Accessed: 2019-6-23 (cit. on p. 6).

32. Svoboda, D. L., Saddler, T. & Auerbach, S. S. An Overview of National Toxicology

Program’s Toxicogenomic Applications: DrugMatrix and ToxFX 2019 (cit. on p. 6).

33. Chuang, K. V. & Keiser, M. J. Adversarial Controls for Scientific Machine Learning.

en. ACS Chem. Biol. 13, 2819–2821 (Oct. 2018) (cit. on pp. 6, 10).

34. Lipiński, P. F. J. & Szurmak, P. SCRAMBLE’N’GAMBLE: a tool for fast and facile

generation of random data for statistical evaluation of QSAR models 2017 (cit. on

p. 10).

35. Rücker, C., Rücker, G. & Meringer, M. y-Randomization and its variants in

QSPR/QSAR. en. J. Chem. Inf. Model. 47, 2345–2357 (Nov. 2007) (cit. on p. 10).

36. Tropsha, A. Best Practices for QSAR Model Development, Validation, and Exploita-

tion. en. Mol. Inform. 29, 476–488 (July 2010) (cit. on p. 10).

36

https://ntp.niehs.nih.gov/results/drugmatrix/index.html
https://ntp.niehs.nih.gov/results/drugmatrix/index.html


37. Wallach, I. & Heifets, A. Most Ligand-Based Classification Benchmarks Reward Mem-

orization Rather than Generalization. en. J. Chem. Inf. Model. 58, 916–932 (May 2018)

(cit. on p. 10).

38. Sheridan, R. P. Time-split cross-validation as a method for estimating the goodness

of prospective prediction. en. J. Chem. Inf. Model. 53, 783–790 (Apr. 2013) (cit. on

pp. 21, 28).

39. Xu, Y., Ma, J., Liaw, A., Sheridan, R. P. & Svetnik, V. Demystifying Multitask

Deep Neural Networks for Quantitative Structure–Activity Relationships. J. Chem.

Inf. Model. 57, 2490–2504 (Oct. 2017) (cit. on p. 21).

40. Sanders, J. M., Beshore, D. C., Culberson, J. C., Fells, J. I., Imbriglio, J. E., Gunaydin,

H., Haidle, A. M., Labroli, M., Mattioni, B. E., Sciammetta, N., et al. Informing the

Selection of Screening Hit Series with in Silico Absorption, Distribution, Metabolism,

Excretion, and Toxicity Profiles: Miniperspective. J. Med. Chem. 60, 6771–6780 (2017)

(cit. on p. 21).

41. Cáceres, E. L., Tudor, M. & Cheng, A. C. Deep learning approaches in predicting

ADMET properties. en. Future Med. Chem. (Oct. 2020) (cit. on p. 21).

42. Korkmaz, S. Deep Learning-Based Imbalanced Data Classification for Drug Discovery

2020 (cit. on p. 22).

43. Zakharov, A. V., Peach, M. L., Sitzmann, M. & Nicklaus, M. C. QSAR modeling of

imbalanced high-throughput screening data in PubChem. en. J. Chem. Inf. Model. 54,

705–712 (Mar. 2014) (cit. on p. 22).

44. Lee, Y. O. & Kim, Y. J. The Effect of Resampling on Data‐imbalanced Conditions for

Prediction towards Nuclear Receptor Profiling Using Deep Learning. Mol. Inform. 39,

1900131 (Aug. 2020) (cit. on p. 22).

45. Rogers, D. & Hahn, M. Extended-connectivity fingerprints. en. J. Chem. Inf. Model.

50, 742–754 (May 2010) (cit. on pp. 25, 27).

37



46. Axen, S. D., Huang, X.-P., Cáceres, E. L., Gendelev, L., Roth, B. L. & Keiser, M. J. A

Simple Representation of Three-Dimensional Molecular Structure. en. J. Med. Chem.

60, 7393–7409 (Aug. 2017) (cit. on p. 25).

47. Kearnes, S., McCloskey, K., Berndl, M., Pande, V. & Riley, P. Molecular graph con-

volutions: moving beyond fingerprints. en. J. Comput. Aided Mol. Des. 30, 595–608

(Aug. 2016) (cit. on p. 25).

48. Ganter, B., Tugendreich, S., Pearson, C. I., Ayanoglu, E., Baumhueter, S., Bostian,

K. A., Brady, L., Browne, L. J., Calvin, J. T., Day, G.-J., Breckenridge, N., Dunlea,

S., Eynon, B. P., Furness, L. M., Ferng, J., Fielden, M. R., Fujimoto, S. Y., Gong, L.,

Hu, C., Idury, R., Judo, M. S. B., Kolaja, K. L., Lee, M. D., McSorley, C., Minor,

J. M., Nair, R. V., Natsoulis, G., Nguyen, P., Nicholson, S. M., Pham, H., Roter, A. H.,

Sun, D., Tan, S., Thode, S., Tolley, A. M., Vladimirova, A., Yang, J., Zhou, Z. &

Jarnagin, K. Development of a large-scale chemogenomics database to improve drug

candidate selection and to understand mechanisms of chemical toxicity and action. en.

J. Biotechnol. 119, 219–244 (Sept. 2005) (cit. on p. 28).

49. Dieleman, S., Schlüter, J., Raffel, C., Olson, E., Sønderby, S. K., Nouri, D., Maturana,

D., Thoma, M., Battenberg, E., Kelly, J., Fauw, J. D., Heilman, M., de Almeida, D. M.,

McFee, B., Weideman, H., Takács, G., de Rivaz, P., Crall, J., Sanders, G., Rasul, K.,

Liu, C., French, G. & Degrave, J. Lasagne: First release Aug. 2015 (cit. on p. 29).

50. The Theano Development Team et al. Theano: A Python framework for fast computa-

tion of mathematical expressions (May 2016) (cit. on p. 29).

51. Landrum, G. RDKit 2010 (cit. on p. 29).

52. Oliphant, T. Guide to NumPy: 2nd Edition en (CreateSpace, 221 W. 6th Street, 15th

Floor, Austin, TX, Sept. 2015) (cit. on p. 29).

53. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,

M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,

38



D., Brucher, M., Perrot, M. & Duchesnay, É. Scikit-learn: Machine Learning in Python.

J. Mach. Learn. Res. 12, 2825–2830 (2011) (cit. on p. 29).

54. Hunter, J. D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 9, 90–95

(2007) (cit. on p. 29).

55. Waskom, M., Botvinnik, O., O’Kane, D., Hobson, P., Lukauskas, S., Gemperline, D. C.,

Augspurger, T., Halchenko, Y., Cole, J. B., Warmenhoven, J., de Ruiter, J., Pye, C.,

Hoyer, S., Vanderplas, J., Villalba, S., Kunter, G., Quintero, E., Bachant, P., Martin,

M., Meyer, K., Miles, A., Ram, Y., Yarkoni, T., Williams, M. L., Evans, C., Fitzgerald,

C., Brian, Fonnesbeck, C., Lee, A. & Qalieh, A. mwaskom/seaborn: v0.8.1 (September

2017) Sept. 2017 (cit. on p. 29).

56. Maas, A. L., Hannun, A. Y. & Ng, A. Y. Rectifier nonlinearities improve neural network

acoustic models in Proc. icml 30 (2013), 3 (cit. on p. 30).

57. Nesterov, Y. A method of solving a convex programming problem with convergence rate

O
(

1
k2

)
in Soviet Math. Dokl 27 () (cit. on p. 30).

58. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout:

a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15,

1929–1958 (2014) (cit. on p. 30).

39



Chapter 2

A simple representation of

three-dimensional molecular structure

2.1 Abstract

Statistical and machine learning approaches predict drug-to-target relationships from 2D

small-molecule topology patterns. One might expect 3D information to improve these cal-

culations. Here we apply the logic of the Extended Connectivity FingerPrint (ECFP) to

develop a rapid, alignment- invariant 3D representation of molecular conformers, the Ex-

tended Three-Dimensional FingerPrint (E3FP). By integrating E3FP with the Similarity

Ensemble Approach (SEA), we achieve higher precision-recall performance relative to SEA

with ECFP on ChEMBL20, and equivalent receiver operating characteristic performance.

We identify classes of molecules for which E3FP is a better predictor of similarity in bioac-

tivity than is ECFP. Finally, we report novel drug-to-target binding predictions inaccessible

by 2D fingerprints and confirm three of them experimentally with ligand efficiencies from

0.442 - 0.637 kcal/mol/heavy atom.
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2.2 Introduction

Many molecular representations have arisen since the early chemical informatics models of

the 1970s, yet the most widely used still operate on the simple two-dimensional (topologi-

cal) structures of small molecules. Fingerprints, which encode molecular 2D substructures

as overlapping lists of patterns, were a first means to scan chemical databases for struc-

tural similarity using rapid bitwise logic on pairs of molecules. Pairs of molecules that are

structurally similar, in turn, often share bioactivity properties1 such as protein binding pro-

files. Whereas the prediction of biological targets for small molecules would seem to benefit

from a more thorough treatment of a molecule’s explicit ensemble of three-dimensional (3D)

conformations2, pragmatic considerations such as calculation cost, alignment invariance, and

uncertainty in conformer prediction3 nonetheless limit the use of 3D representations by large-

scale similarity methods such as the Similarity Ensemble Approach (SEA)4,5, wherein the

count of pairwise molecular calculations reaches into the hundreds of billions. Furthermore,

although 3D representations might be expected to outperform 2D ones, in practice, 2D

representations nonetheless are in wider use and can match or outperform them3,6–8.

The success of statistical and machine learning approaches building on 2D fingerprints

reinforces the trend. Naive Bayes Classifiers (NB)9–11, Random Forests (RF)12,13, Support

Vector Machines (SVM)10,14,15, and Deep Neural Networks (DNN)16–20 predict a molecule’s

target binding profile and other properties from the features encoded into its 2D finger-

print. SEA and methods building on it such as Optimized Cross Reactivity Estimation

(OCEAN)21 quantify and statistically aggregate patterns of molecular pairwise similarity to

the same ends. Yet these approaches cannot readily be applied to the 3D molecular represen-

tations most commonly used. The Rapid Overlay of Chemical Structures (ROCS) method

is an alternative to fingerprints that instead represents molecular shape on a conformer-by-

conformer basis via gaussian functions centered on each atom. These functions may then be

compared between a pair of conformers22,23. ROCS however must align conformers to de-
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termine pairwise similarity; in addition to the computational cost of each alignment, which

linear algebraic approximations such as SCISSORS24 mitigate, the method provides no in-

variant fixed-length fingerprint (feature vectors) per molecule or per conformer for use in

machine learning. One way around this limitation is to calculate an all-by-all conformer

similarity matrix ahead of time, but this is untenable for large datasets such as ChEMBL25

or the 70-million datapoint ExCAPE-DB26, especially as the datasets continue to grow.

Feature Point Pharmacophores (FEPOPS), on the other hand, use k-means clustering to

build a fuzzy representation of a conformer using a small number of clustered atomic feature

points, which simplify shape and enable rapid comparison27,28. FEPOPS excels at scaffold

hopping, and it can use charge distribution based pre-alignment to circumvent a pairwise

alignment step. However, pre-alignment can introduce similarity artifacts, such that explicit

pairwise shape-based or feature- point-based alignment may nonetheless be preferred27. Ac-

cordingly, 3D molecular representations and scoring methods typically align conformers on

a pairwise basis2,3. An alternative approach is to encode conformers against 3- or 4-point

pharmacophore keys that express up to 890,000 or 350 million discrete pharmacophores,

respectively29,30. The count of purchasable molecules alone, much less their conformers,

however, exceeds 200 million in databases such as ZINC (zinc.docking.org)31, and

the structural differences determining bioactivity may be subtle. To directly integrate 3D

molecular representations with statistical and machine learning methods, we developed a

3D fingerprint that retains the advantages of 2D topological fingerprints. Inspired by the

widely used circular ECFP (2D) fingerprint, we develop a spherical Extended 3D Finger-

Print (E3FP) and assess its performance relative to ECFP for various systems pharmacology

tasks. E3FP is an open-source fingerprint that encodes 3D information without the need for

molecular alignment, scales linearly with 2D fingerprint pairwise comparisons in computation

time, and is compatible with statistical and machine learning approaches that have already

been developed for 2D fingerprints. We use it to elucidate regions of molecular similarity

space that could not previously be explored. To demonstrate its utility, we combine E3FP
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with SEA to predict novel target- drug activities that SEA could not discover using ECFP,

and confirm experimentally that they are correct.

2.3 Results

The three-dimensional fingerprints we present are motivated by the widely-used two-

dimensional (2D) Extended Connectivity FingerPrint (ECFP)32, which is based on the Mor-

gan algorithm33. ECFP is considered a 2D or “topological” approach because it encodes

the internal graph connectivity of a molecule without explicitly accounting for 3D struc-

tural patterns the molecule may adopt in solution or during protein binding. While ECFP

thus derives from the neighborhoods of atoms directly connected to each atom, a 3D fin-

gerprint could incorporate neighborhoods of nearby atoms in 3D space, even if they are not

directly bonded. We develop such an approach and call it an Extended Three-Dimensional

FingerPrint (E3FP).

A single small molecule yields multiple 3D fingerprints

Many small molecules can adopt a number of energetically favorable 3D conformations,

termed “conformers”. In the absence of solved structures, it is not always apparent which

conformer a molecule will adopt in solution, how this may change on protein binding, and

which protein-ligand interactions may favor which conformers34. Accordingly, we gener-

ate separate E3FPs for each of multiple potential conformers per molecule. E3FP encodes

all three-dimensional substructures from a single conformer into a bit vector, represented

as a fixed-length sequence of 1s and 0s (Fig. 2.1a). This is analogous to the means by

which ECFP represent two-dimensional substructures. To encode the three-dimensional

environment of an atom, E3FP considers information pertaining not only to contiguously

bound atoms, but also to nearby unbound atoms and to relative atom orientations (stere-
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Figure 2.1: Diagram of information flow in the E3FP algorithm. A) Overview of finger-
printing process for cypenamine. At iteration 0, we assign atom identifiers using a list of
atomic invariants and hash these into integers (shown here also as unique atom colors). At
iteration i, shells of radius i ·r center on each atom (top right). The shell contains bound and
unbound neighbor atoms. Where possible, we uniquely align neighbor atoms to the xy-plane
(top right) and assign stereochemical identifiers. Convergence occurs when a shell’s substruc-
ture contains the entire molecule (third from the right) or at the maximum iteration count.
Finally we “fold” each iteration’s substructure identifiers to 1024-bit space. B) Overview of
fingerprinting for compound 1. C) Overview of fingerprinting for a large, flexible molecule
(CHEMBL210990; expanded in Figure S1). A three-dimensional substructure can consist of
two disconnected substructures and their relative orientations (right).
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ochemistry). We designed this process to be minimally sensitive to minor structural fluc-

tuations, so that conformers could be distinguished while the set of conformers for a given

molecule would retain a degree of internal similarity in E3FP space. https://www.over-

leaf.com/project/606e379906d9bb5d62653c22 The binding-relevant conformers of most small

molecules are not known a priori. Accordingly, prior to constructing any 3D fingerprint, we

generate a library of potential conformers for the molecule, each of which in turn will have

a unique fingerprint. We employed a previously published protocol using the open-source

RDKit package35, wherein the authors determined the number of conformers needed to re-

cover the correct ligand conformation from a crystal structure as a function of the number

of rotatable bonds in the molecule, with some tuning (see Experimental Section).

E3FP encodes small molecule 3D substructures

The core intuition of E3FP generation (Fig. 2.1a) is to draw concentrically larger shells and

encode the 3D atom neighborhood patterns within each of them. To do so, the algorithm

proceeds from small to larger shells iteratively. First, as in ECFP, we uniquely represent each

type of atom and the most important properties of its immediate environment. To do so, we

assign 32-bit integer identifiers to each atom unique to its count of heavy atom immediate

neighbors, its valence minus neighboring hydrogens, its atomic number, its atomic mass, its

atomic charge, its number of bound hydrogens, and whether it is in a ring. This can result

in many fine-grained identifiers, some examples of which are visualized as differently colored

atoms for the molecule cypenamine in Fig. 2.1a and for larger molecules in Fig. 2.1b-c.

At each subsequent iteration, we draw a shell of increasing radius around each atom,

defining the neighbors as the atoms within the shell as described above. The orientation

and connectivity of the neighbors–or lack thereof (as in Fig. 2.1c, red circle, expanded in

Figure S1)–is combined with the neighbors’ own identifiers from the previous iteration to

generate a new joint identifier. Thus, at any given iteration, the information contained
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within the shell is the union of the substructures around the neighbors from the previous

iterations merged with the neighbors’ orientation and connectivity with respect to the center

atom of the current shell. The set of atoms represented by an identifier therefore comprise

a three-dimensional substructure of the molecule.

We continue this process up to a predefined maximum number of iterations or until

we have encountered all substructures possible within that molecule. We then represent

each identifier as an “on” bit in a sparse bit vector representation of the entire conformer

(Fig. 2.1a, bitvector). Each “on” bit indicates the presence of a specific three-dimensional

substructure. The choice of numerical integer to represent any identifier is the result of a hash

function (see Experimental Section) that spreads the identifiers evenly over a large integer

space. Because there are over four billion possible 32-bit integers and we observe far fewer

than this number of molecular substructures (identifiers) in practice, each identifier is unlikely

to collide with another and may be considered unique to a single atom or substructure. Since

this still remains a mostly empty identifier space, we follow the commonly used approach

from ECFP, and “fold” E3FP down to a shorter bitvector for efficient storage and swift

comparison; adapting the 1024-bit length that has been effective for ECFP46,36 (Table S2).

To demonstrate the fingerprinting process, Fig. 2.1a steps through the generation of an

E3FP for the small molecule cypenamine. First, four carbon atom types and one nitrogen

atom type are identified, represented by five colors. As cypenamine is fairly small, E3FP fin-

gerprinting terminates after two iterations, at which point one of the substructures consists

of the entire molecule. The slightly larger molecule 1 (CHEMBL270807) takes an additional

iteration to reach termination (Fig. 2.1b). Fig. 2.1c and Figure S1 demonstrate the same

process for CHEMBL210990. This molecule is more complex, with 13 distinct atom types,

and in the conformation shown reaches convergence in three iterations. Because the molecule

bends back on itself, in the second and third iterations, several of the identifiers represent

substructures that are nearby each other in physical space but are not directly bound to each

and other and indeed are separated by many bonds (e.g., red circle in Fig. 2.1c). 2D finger-
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prints such as ECFP are inherently unaware of unconnected proximity-based substructures,

but they are encoded in E3FP.

SEA 3D fingerprint performance exceeds that of 2D in binding

prediction

We were curious to determine how molecular similarity calculations using the new E3FP rep-

resentations would compare to those using the 2D but otherwise similarly-motivated ECFP4

fingerprints. Specifically, we investigated whether the 3D fingerprint encoded information

that would enhance performance over its 2D counterpart in common chemical informatics

tasks.

The ECFP approach uses several parameters, (e.g., ECFP4 uses a radius of 2), and

prior studies have explored their optimization36. We likewise sought appropriate parameter

choices for E3FP. In addition to the conformer generation choices described above, E3FP

itself has four tunable parameters: 1) a shell radius multiplier (r in Fig. 2.1a), 2) number of

iterations (i in Figure 1a), 3) inclusion of stereochemical information, and 4) final bitvector

length (1024 in Fig. 2.1a). We explored which combinations of conformer generation and

E3FP parameters produced the most effective 3D fingerprints for the task of recovering

correct ligand binders for over 2,000 protein targets using the Similarity Ensemble Approach

(SEA). SEA compares sets of fingerprints against each other using Tanimoto coefficients

(TC) and determines a p-value for the similarity among the two sets; it has been used to

predict drug off-targets4,5,37,38, small molecule mechanisms of action39–41, and adverse drug

reactions4,42,43. For the training library, we assembled a dataset of small molecule ligands

that bind to at least one of the targets from the ChEMBL database with an IC50 of 10 µM

or better. We then generated and fingerprinted the conformers using each E3FP parameter

choice, resulting in a set of conformer fingerprints for each molecule and for each target.

We performed a stratified 5-fold cross-validation on a target-by-target basis by setting aside
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Figure 2.2: Comparative performance of E3FP and ECFP. For all pairs of 308,315 molecules
from ChEMBL20, A) log density plot summarizing 95 billion maximum Tanimoto Coeffi-
cients (TC) calculated between E3FP conformer fingerprint sets versus corresponding TC
by ECFP4 fingerprints. The dotted red line is a linear least squares fit. Optimal SEA TC
cutoffs for E3FP (green) and ECFP4 (blue) are dotted lines. Red markers indicate examples
in Fig. 2.3. B) Histograms of TCs from (A). C) Combined precision-recall (PRC) curves
from 5 independent 5-fold cross- validation runs using 1024-bit E3FP, E3FP without stere-
ochemical identifiers (E3FP-NoStereo), E3FP without stereochemical identifiers or nearby
unbound atoms (E2FP), E3FP without nearby unbound atoms (E2FP-Stereo), ECFP4, and
ECFP4 with distinct bond types encoding chirality (ECFP4-Chiral). Only the PRC of the
highest AUC fold is shown. D) Combined highest-AUC ROC curves for the same sets as
in (C). E) Results of bootstrapping AUCs as in Table 2.1. Dots indicate mean AUC, and
whiskers standard deviations. Insets show absolute scale. F) Target-wise comparison of
mean AUPRCs using E3FP versus ECFP4.
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Table 2.1: Mean and standard deviations for combined fold AUPRC and AUROC curves
versus target-wise AUPRC and AUROC curves across 5 independent repeats of 5-fold cross-
validation are shown. A random classifier will produce a mean AUPRC of 0.0051 (fraction
of positive target/mol pairs in test data), a mean target AUPRC of 0.0053± 0.0076, and a
mean AUROC and mean target-wise AUROC of 0.5.

Name Mean Fold
AUPRC

Mean Fold
AUROC

Mean Target
AUPRC

Mean Target
AUROC

ECFP4 0.5799± 0.0018 0.9882± 0.0001 0.6965± 0.2099 0.9772± 0.0387
ECFP4-Chiral 0.5977± 0.0017 0.9882± 0.0002 0.7021± 0.2088 0.9769± 0.0391
E2FP 0.5781± 0.0015 0.9871± 0.0002 0.7080± 0.2034 0.9768± 0.0392
E2FP-Stereo 0.6390± 0.0011 0.9883± 0.0001 0.7140± 0.2016 0.9780± 0.0371
E3FP-NoStereo 0.6849± 0.0012 0.9894± 0.0003 0.7312± 0.1989 0.9774± 0.0409
E3FP 0.6426± 0.0016 0.9886± 0.0002 0.7046± 0.1991 0.9805± 0.0326

one fifth of the known binders from a target for testing, searching this one fifth (positive

data) and the remaining non-binders (negative data) against the target using SEA, and then

computing true and false positive rates at all possible SEA p-value cutoffs. For each target in

each fold, we computed the precision recall curve (PRC), the receiver operating characteristic

(ROC), and the area under each curve (AUC). Likewise, we combined the predictions across

all targets in a cross-validation fold to generate fold PRC and ROC curves.

As there are far more negative target-molecule pairs in the test sets than positives,

a good ROC curve was readily achieved, as many false positives must be generated to

produce a high false positive rate. Conversely, in such a case, the precision would be very

low. We therefore expected the AUC of the PRC (AUPRC) to be a better assessment of

parameter set44. To simultaneously optimize for both a high AUPRC and a high AUC

of the ROC (AUROC), we used the sum of these two values as the objective function,

AUCSUM. We employed the Bayesian optimization program Spearmint45 to optimize four

of five possible E3FP parameters (we did not optimize fingerprint bit length, for simplicity

of comparison to ECFP fingerprints) so as to maximize the AUCSUM value and minimize

runtime of fingerprinting (Figure S2).

We constrained all optimization solely to the choice of fingerprint parameters, on the same
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underlying collection of precomputed molecular conformers. For computational efficiency, we

split the optimization protocol into two stages (see Experimental Section). This yielded an

E3FP parameter set that used the three lowest energy conformers, a shell radius multiplier of

1.718, and 5 iterations of fingerprinting (Figure S4). After bootstrapping with 5 independent

repeats of 5-fold cross-validation using E3FP, and ECFP4 on a larger set of 308,316 ligands

from ChEMBL20, E3FP produced a mean AUPRC of 0.6426, exceeding ECFP4’s mean

AUPRC of 0.5799 in the same task (Fig. 2.2c,e; Table 2.1). Additionally, E3FP’s mean

AUROC of 0.9886 exceeds ECFP4’s AUPRC of 0.9882 (Fig. 2.2d-e; Table 2.1). Thus, at

a SEA p-value threshold p ≤ 3.45× 10−47, E3FP achieves an average sensitivity of 0.6976,

specificity of 0.9974, precision of 0.5824, and F1 score of 0.6348. ECFP4 achieves 0.4647,

0.9986, 0.6236, and 0.5325, at this p-value threshold. ECFP4 is unable to achieve the high

F1 score of E3FP, but at its maximum F1 score of 0.5896 it achieves a sensitivity of 0.6930,

a specificity of 0.9966, and a precision of 0.5131 using a p-value threshold p ≤ 3.33× 10−23.

To ensure a fair comparison, we subjected ECFP to a grid search on its radius parameter

and found that no radius value outperforms ECFP4 with both AUPRC and AUROC (Table

S1). Additionally, fingerprints with longer bit lengths did not yield significant performance

increases for E3FP or ECFP4, despite the expectation that longer lengths would lower feature

collision rates (Table S2); indeed, it appears that increasing the fingerprint length reduced

the performance of E3FP. By design, this optimization and consequent performance analysis

does not attempt to quantify novelty of the predictions, nor assess the false negative or

untested-yet-true- positive rate of either method.

We note that E3FP was optimized here for use with SEA, and SEA inherently operates

on sets of fingerprints, such as those produced when fingerprinting a set of conformers. Most

machine learning methods, however, operate on individual fingerprints. To determine how

well E3FP could be integrated into this scenario, we repeated the entire cross-validation with

four common machine learning classifiers: Naive Bayes Classifiers (NB), Random Forests

(RF), Support Vector Machines with a linear kernel (LinSVM), and Artificial Neural Net-
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works (NN). As these methods process each conformer independently, we computed the

maximum score across all conformer-specific fingerprints for a given molecule, and used that

score for cross-validation. Compared to cross-validation with SEA, LinSVM and RF pro-

duced better performance by PRC using both E3FP and ECFP4, while NB and RF suffered

a performance loss (Figure S5). For ECFP4, this trend continued when comparing ROC

curves, while for E3FP it did not (Figure S6). In general, the machine learning methods

underperformed when using E3FP compared to ECFP4. When we instead took the bitwise

mean of all conformer-specific E3FPs to produce one single summarizing “float” fingerprint

per molecule, we observed an improvement across all machine learning methods except for

LinSVM. The most striking difference was for RF, where performance with “mean E3FP”

then matched ECFP4.

3D fingerprints encode different information than their 2D coun-

terparts

2D fingerprints such as ECFP4 may denote stereoatoms using special disambiguation flags

or identifiers from marked stereochemistry (here termed “ECFP4-Chiral”)32. E3FP encodes

stereochemistry more natively. Conceptually, all atoms within a spatial “neighborhood”

and their relative orientations within that region of space are explicitly considered when

constructing the fingerprint. To quantify how stereochemical information contributes to

E3FP’s improved AUPRC over that of ECFP4, we constructed three “2D- like” limited

variants of E3FP, each of which omits some 3D information and is thus more analogous to

ECFP. The first variant, which we term “E2FP,” is a direct analogue of ECFP, in which only

information from directly bound atoms are included in the identifier and stereochemistry is

ignored. This variant produces similar ROC and PRC curves to that of ECFP4 (Fig. 2.2c-d;

Figures S7-S8). A second variant, “E2FP-Stereo,” includes information regarding the relative

orientations of bound atoms. E2FP-Stereo achieves a performance between that of ECFP4
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and E3FP, demonstrating that E3FP’s approach for encoding stereochemical information is

effective (Fig. 2.2c-d). The third variant, “E3FP-NoStereo,” includes only the information

from bound and unbound atoms. E3FP-NoStereo performs slightly better than E3FP in

both ROC and PRC analysis (Fig. 2.2c-d), indicating that E3FP’s enhanced performance

over ECFP4 in PRC analysis is due not only to the relative orientations of atoms but also due

to the inclusion of unbound atoms. All variants of E3FP with some form of 3D information

outperformed both ECFP4 and ECFP4-Chiral (Fig. 2.2c-d; Figures S7-S8).

On average, the final E3FP parameters yield fingerprints with 35% more “on” bits than

ECFP4, although if run for the same number of iterations, ECFP is denser. Thus E3FP

typically runs for more iterations (Figure S4c-d). Folding E3FP down to 1024 bits results

in an average loss of only 1.4 bits to collisions. The TCs for randomly chosen pairs of

molecules by E3FP are generally lower (Fig. 2.2a-b) than those for ECFP4, and there

are fewer molecules with identical fingerprints by E3FP than by ECFP4. The final E3FP

parameter set outperforms ECFP up to the same number of iterations (Table S1, Figure 2c-

d). Intriguingly, E3FP outperforms ECFP4 at this task on a per- target basis for a majority

of targets (Fig. 2.2f).

Fourteen molecular pairs where 3D and 2D fingerprints disagree

To explore cases where E3FP and ECFP4 diverge, we computed E3FP versus ECFP4 pair-

wise similarity scores (Tanimoto coefficients; TCs) for all molecule pairs in ChEMBL20 (red

markers in Fig. 2.2a). We then manually inspected pairs from four regions of interest. Pairs

representative of overall trends were selected, with preference toward pairs that had been

assayed against the same target (Table S3). The first region contains molecule pairs with

TCs slightly above the SEA significance threshold for E3FP but below the threshold for

ECFP4 (denoted by ’x’ markers). These predominantly comprise small compact molecules,

with common atom types across multiple orders or substituents on rings (Fig. 2.3a).
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Figure 2.3: Examples of molecule pairs with high differences between E3FP and ECFP Tan-
imoto coefficients. Molecule pairs were manually selected from regions of interest, displayed
as red markers in Fig. 2.2a: A) Upper left, B) Upper right, C) Lower right, and D) Far
right. Pair TCs for ECFP4 and E3FP are shown next to the corresponding 2D and 3D
representations; the conformer pairs shown are those corresponding to the highest pairwise
E3FP TC. Where pair TCs for ECFP4 with stereochemical information differ from standard
ECFP4, they are included in parentheses. Each colored asterisk indicates a target for which
existing affinity data for both molecules was found in the literature and is colored according
to fold-difference in affinity: black for <10-fold, orange for 10-100-fold, red for >100-fold.
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Some of these molecules are already reported to interact with the same protein targets.

For instance, CHEMBL113217 binds to GABA-B receptor with an IC50 of 280 nM, while

CHEMBL113907 binds GABA-B with a similar IC50 of 500 nM (Fig. 2.3a)46. In another

example, CHEMBL329431 binds to inducible, brain, and endothelial human nitric-oxide

synthases with IC50s of 10.0 µM, 10.1 µM, and 59 µM, respectively47, while CHEMBL365849

binds to the same targets at 3.1 µM, 310 nM, and 4.7 µM48. The black asterisk alongside this

pair marks similar affinities for the first target (within 1 log), and the gold asterisks affinities

for the second two, each spanning two logs. Red asterisks mark targets whose affinities differ

by more than two logs, but no such cases were found for this region.

The second region (red crosses in Fig. 2.2a) contains molecule pairs with TCs con-

sidered significant both in 2D and in 3D, but whose similarity was nonetheless greater

by 3D (Fig. 2.3b). For instance, the molecule pairs often differed by atom types in or

substituents on a ring, despite a high degree of similarity in 3D structures. In the case

of CHEMBL158261 and CHEMBL333193, the molecules bind to carbonic anhydrase II

with near-identical affinities of 3.6 nM and 3.3 nM49. Interestingly, the 2D similarity of

this pair is barely above the significance threshold. In another example, the molecules

CHEMBL186856 and CHEMBL306541 achieve markedly similar pharmacological profiles,

as the first binds to the inducible, brain, and endothelial human nitric-oxide synthases with

IC50s of 1.2 µM, 2.8 µM, and 10.5 µM50, whereas the second was reported at 2.9 µM, 3.2 µM,

and 7.1 µM51. On the other hand, two other pairs somewhat differ in binding profile: while

CHEMBL218710 binds to metabotropic glutamate receptors 2 and 3 with Kis of 508 nM

and 447 nM, CHEMBL8839 binds to these targets more potently, at 40.6 nM and 4.7 nM52.

Likewise, the binding profiles of CHEMBL255141 and 1 to histamine H3 receptor differed

by approximately an order of magnitude, with respective Kis of 17 nM and 200 nM53.

The third region (red squares in Fig. 2.2a) contains molecule pairs significant in 2D but

not in 3D (Fig. 2.3c), and the fourth region (red diamonds in Fig. 2.2a) contains pairs

identical by 2D yet dissimilar in 3D (Fig. 2.3d). These examples span several categories:
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First, the conformer generation protocol failed for some pairs of identical or near-identical

molecules having many rotatable bonds, because we generated an insufficient number of

conformers to sample the conformer pair that would attain high 3D similarity between them

(not shown). Second, in cases where the 2D molecules do not specify chirality, the specific

force field used may favor different chiralities, producing artificially low 3D similarity. As an

example, CHEMBL20429 and CHEMBL21309 (Fig. 2.3c) have relatively similar affinities

for vesicular acetylcholine transporter at 200 nM and 40 nM54 despite their low 3D similarity.

Third, some pairs consist of molecules primarily differentiated by the size of one or more

substituent rings (Fig. 2.3c-d). ECFP4 is incapable of differentiating rings with 5 or more

identical atom types and only one substituent, while E3FP substructures may include larger

portions of the rings. The role of ring size is revealed in the target affinity differences for one

such pair: CHEMBL263575 binds to the kappa opioid, mu opioid, and nociceptin receptors

with Kis of 100 nM, 158 nM, and 25 nM, while CHEMBL354652 binds to the same recep-

tors notably more potently at 2.9 nM, 0.28 nM, and 0.95 nM55. Fourth, many pairs consist of

molecules primarily differentiated by the order of substituents around one or more chiral cen-

ters (Fig. 2.3c-d). The molecules CHEMBL148543 and CHEMBL35860, for example, bind

to HIV type 1 protease with disparate Kis of 560 nM56 and 0.12 nM57 despite their excep-

tionally high 2D similarity of 0.853 TC. Likewise, CHEMBL1807550 and CHEMBL3125318

have opposing specificities for the human sodium/glucose cotransporters 1 and 2; while

the former has IC50s of 10 nM and 10 µM for the targets58, the latter has IC50s of 3.1 µM

and 2.9 nM59. In another example, despite being identical by standard 2D fingerprints, the

stereoisomers CHEMBL2051761 and CHEMBL2051978 bind to maltase-glucoamylase with

IC50s of 28 nM versus 1.5 µM, and to sucrase-isomaltase at 7.5 nM versus 5.3 µM60. The

stereoisomers CHEMBL301670 and CHEMBL58824, however, show a case where 3D dissim-

ilarity is a less effective guide, as both molecules bind to the muscarinic acetylcholine recep-

tors M1-M4 with generally similar respective IC50s of 426.58 nM versus 851.14 nM, 95.5 nM

versus 851.14 nM, 1.6 µM versus 794.33 nM, and 173.78 nM versus 794.33 nM61. Similarly,
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CHEMBL606937 and CHEMBL606938 have low similarity in 3D but bind to sigma opioid

receptor with IC50s of 37 and 34 nM62.

E3FP predicts correct new drug off-targets that are not apparent

in 2D

As E3FP enhanced SEA performance in retrospective tests (Fig. 2.2c-d), we hypothe-

sized that this combination might identify novel interactions as yet overlooked with two-

dimensional fingerprints. We therefore tested whether SEA with E3FP would make correct

drug-to-target predictions that SEA with ECFP4 did not make. Using a preliminary choice

of E3FP parameters (Table S4), we generated fingerprints for all in-stock compounds in the

ChEMBL20 subset of the ZINC15 (zinc15.docking.org) database with a molecular

weight under 800 Da. As our reference library, we extracted a subset of ChEMBL20 compris-

ing 309 targets readily available for testing by radioligand binding assay in the Psychoactive

Drug Screening Program (PDSP)63 database. Using SEA on this library, we identified all

drug-to-target predictions with a p-value stronger than 1× 10−25. To focus on predictions

specific to E3FP, we removed all predictions with a p-value stronger than 0.1 when counter-

screened by SEA with ECFP4, resulting in 9,331 novel predicted interactions. We selected

eight predictions for testing by binding assay; of these, five were inconclusive, and three

bound to the predicted target subtype or to a close subtype of the same receptor (Table

S4-S7). We address each of the latter in turn.

The E3FP SEA prediction that the psychostimulant and antidepressant64–66 cypenamine

(CHEMBL2110918, KEGG:D03629), for which we could find no accepted targets in the liter-

ature despite its development in the 1940s, would bind to the human nicotinic acetylcholine

receptor (nAchR) α2β4 was borne out with a Ki of 4.65 µM (Fig. 2.4c; Table S7). Of note,

this corresponds to a high ligand efficiency (LE) of 0.610 kcal/mol/heavy atom (see Experi-

mental Section). An LE greater than 0.3 kcal/mol/heavy atom atom is generally considered
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Figure 2.4: Experimental results of novel compound-target predictions. A) SEA predictions
that motivated the binding experiments, with 2D versus 3D SEA p-values for each drug-
target pair. Tanimoto coefficients score the similarity of 2D versus 3D structures for the
searched drug against its most similar known ligand(s) of the target by ECFP (left) and E3FP
(right). E3FP uses an early parameter set. Supporting Table S4 shows recalculated SEA
p-values on the final E3FP parameter set used elsewhere. B-E) Experimentally measured
binding curves for tested drugs and reference binders (black) at protein targets B) M5, C)
α2β4, D) α3β4, and E) α4β4. See Table S7 for more details.
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a promising drug candidate67. As any prediction is only as specific as the reference lig-

and data from ChEMBL upon which it was based, we assayed cypenamine against multiple

subtypes of nAchR. Cypenamine also bound to the nAchR subtypes α3β4 and α4β4 with

Ki’s of 2.69 and 4.11 µM (Fig. 2.4d-e, Table S7) and ligand efficiencies of 0.637 and 0.616

kcal/mol/heavy atom.

Anpirtoline (CHEMBL1316374) is an agonist of the 5-HT1B, 5-HT1A, and 5-HT2 re-

ceptors, and an antagonist of the 5-HT3 receptor, with Ki’s of 28, 150, 1490, and 30 nM,

respectively68,69. However, we predicted it would bind to the nAchRs, of which it selectively

bound to α3β4 at a Ki of 3.41 µM and an LE of 0.536 kcal/mol/heavy atom (Fig. 2.4d,

Table S7). In this case, the motivating SEA E3FP prediction was for the α4β2 subtype of

nAchR, for which the experiment was inconclusive, suggesting either that the ligand refer-

ence data from ChEMBL distinguishing these subtypes was insufficient, or that the SEA

E3FP method itself did not distinguish among them, and this is a point for further study.

Alphaprodine (CHEMBL1529817), an opioid analgesic used as a local anesthetic in pe-

diatric dentistry70, bound to the muscarinic acetylcholine receptor (mAchR) M5 with a Ki

of 771 nM and an LE of 0.442 kcal/mol/heavy atom (Fig. 2.4b, Figure S9e). We found no

agonist activity on M5 by alphaprodine by Tango assay71,72 (Figure S10b), but we did find

it to be an antagonist (Figure S11). Intriguingly, alphaprodine also showed no significant

affinity for any of the muscarinic receptors M1-M4 up to 10 µM (Figures S9a-d), indicating

that it is an M5-selective antagonist. Muscarinic M5 selective small molecules are rare in

the literature73. Whereas its M5 selectivity would need to be considered in the context of its

opioid activity (mu, kappa, and delta opioid receptor affinities however are not publicly avail-

able), alphaprodine nonetheless may find utility as a M5 chemical probe, given the paucity

of subtype-selective muscarinic compounds. Interestingly, the E3FP SEA prediction leading

us to the discovery of this activity was for the muscarinic M3 receptor, to which alphapro-

dine ultimately did not bind and for which alphaprodine showed no agonist activity (Figure

S10a). This highlights not only the limitations of similarity-based methods such as SEA for
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the discovery of new subtype-selective compounds when none of that type are previously

known, but also the opportunity such methods provide to identify chemotypes and overall

receptor families that merit further study nonetheless.

2.4 Discussion

Three results emerge from this study. First, we encode a simple three-dimensional molecular

representation into a new type of chemical informatic fingerprint, which may be used to

compare molecules in a manner analogous to that already used for two-dimensional molecular

similarity. Second, the 3D fingerprints contain discriminating information that is naturally

absent from 2D fingerprints, such as stereochemistry and relationships among atoms that are

close in space but distant in their direct bond connectivity. Finally, as small molecules may

adopt many structural conformations, we combine conformation-specific 3D fingerprints into

sets to evaluate entire conformational ensembles at once. This may be of interest in cases

where different conformations of a molecule are competent at diverse binding sites across the

array of proteins for which that same molecule is, at various potencies, a ligand.

We devised a simple representation of three-dimensional molecular structures, an “ex-

tended 3D fingerprint” (E3FP), that is directly analogous to gold standard two-dimensional

approaches such as the extended connectivity fingerprint (ECFP). As with two-dimensional

fingerprints, this approach enables pre-calculation of fingerprints for all conformers of interest

in an entire library of molecules once. Unlike conventional 3D approaches, similarity calcula-

tions in E3FP do not require an alignment step. Consequently, E3FP similarity calculations

are substantially faster than standard 3D comparison approaches such as ROCS. Further-

more, E3FP fingerprints are formatted identically to ECFP and other 2D fingerprints. Thus

systems pharmacology approaches such as SEA4,5, Naive Bayes Classifiers9, SVM14, and

other established machine learning methods may readily incorporate E3FPs for molecular

conformers without modification. While choices of E3FP’s parameter space might be specif-
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ically optimized for the machine learning method in question, we have demonstrated that

E3FP’s highest-performing parameter choice for SEA (Fig. 2.2c-d) produces fingerprints

that likewise perform well for SVM, random forests, and neural networks (Figures S5-S6).

To explore the role of 2D vs 3D features in the discriminatory power of molecular fin-

gerprints, we progressively disabled capabilities specific to E3FP, such as stereochemistry

encoding (termed “E3FP-NoStereo”) and non-bonded atom relationships (termed “E2FP-

Stereo”), eventually arriving at a stripped-down version of E3FP (termed “E2FP”) that,

much like ECFP, encodes only 2D information. We evaluated the consequences of remov-

ing these three-dimensional features on performance in retrospective machine learning tasks

(e.g., Fig. 2.2c-e; Table 2.1; Figures S7-S8) We found that inclusion of non-bonded atoms

was a more important contributor to performance than stereochemical information. Intrigu-

ingly, while progressively adding stereochemical information and inclusion of nonbonded

atoms produces marked improvement over ECFP4, inclusion only of nonbonded atom infor-

mation produces the highest performance fingerprint of all, perhaps because 3D orientations

of larger substructures are implicitly encoded within shells purely by relative distances. This

observation leads us to believe that a more balanced inclusion of stereochemical information

and nonbonded atoms may produce an even higher performing fingerprint. Historically, 3D

representations have typically underperformed 2D ones such as ECFP7, and this has always

been the case with Similarity Ensemble Approach (SEA) calculations in particular6. Here,

however, we find that E3FP exceeds the performance of ECFP in its precision-recall curve

(PRC) and matches that of ECFP in its receiver-operating characteristic curve (ROC) area

under the curve (AUC) scores (Fig. 2.2c-e; Table 2.1; Figures S7-S8). While the ROC curve

evaluates the general usefulness of the fingerprint for classification by comparing sensitivity

and specificity, the precision-recall evaluates how useful the method is for real cases where

most tested drug-target pairs are expected to have no affinity. The increased performance

in PRC curves when using E3FP over ECFP4 therefore indicates an increased likelihood of

correctly predicting novel drug-target pairs with no loss in predictive power.

60



E3FP’s utility for this task became especially clear when we used it to predict novel

drug to protein binding interactions. To do so, we examined only strong SEA predictions

with E3FP (SEA-E3FP; p-value ≤ 1× 10−25) that could not be predicted using SEA with

ECFP (SEA-ECFP; p-value ≤ 0.1). We considered this a challenging task because on-market

drugs might be expected to have fewer unreported off-targets in general than a comparatively

newer and less-studied research compound might. Furthermore, much of the prior work in

chemical informatics guiding molecule design and target testing has been motivated by 2D

approaches2,7,74. Accordingly, approximately half of the new predictions were inconclusive

in this first prospective test of the method (Tables S4 and S6). Nonetheless, many also

succeeded with high ligand efficiencies (LEs), and these included unique selectivity profiles

(Fig. 2.4). In one example, SEA-E3FP successfully predicted that alphaprodine would

also act as an antagonist of the M5 muscarinic receptor, which to our knowledge is not

only a new “off-target” activity for this drug, but also constitutes a rare, subtype selective

M5 antimuscarinic ligand73. The M5 muscarinic receptor has roles in cocaine addiction75,

morphine addiction76, and dilation of cerebral blood vessels, with potential implications

for Alzheimer’s disease77. Study of M5 receptors has been hindered by a lack of selective

ligands. Due to serious adverse reactions78, alphaprodine was withdrawn from the market in

the United States in 1986 and is therefore unlikely to be applied as a therapeutic. However,

alphaprodine might be explored not only as a chemical probe for studying M5, but also as a

reference for future therapeutic development.

Anpirtoline and cypenamine, likewise predicted and subsequently experimentally con-

firmed to bind previously unreported off-targets among the nicotinic receptors, exhibited

exceptional LEs (0.536 - 0.637 kcal/mol/heavy atom), a commonly used metric of opti-

mization potential. Recent patents combining psychostimulants with low-dose antiepileptic

agents for the treatment of attention deficit hyperactivity disorder (ADHD) incorporate

cypenamine79,80, and nicotinic agents improve cognition and combat ADHD81. Given like-

wise the association of nicotinic acetylcholine receptor (nAchR) α4 gene polymorphisms
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with ADHD82, a combination of traditional psychostimulant activity with “non-stimulant”

nAChR activity via α4 might improve anti-ADHD efficacy. Whereas cypenamine’s micro-

molar binding concentration to nAchR is likely below the plasma concentrations it reaches

at steady state, its exceptional LEs at nAchR may support further optimization of this phar-

macology. As with cypenamine, anpirtoline may serve as a well-characterized starting point

for further nAchR optimization, and secondarily, its serotonergic activity may serve as a

guide to explore cypenamine’s likely serotonergic activity. Anpirtoline’s benign side effect

profile, combined with the nAchR α3β4 subunit’s role in nicotine addiction83 and the lack

of α3β4 specific drugs84 , motivate further exploration.

We find that, whereas E3FP’s performance matches or exceeds that of ECFP under mul-

tiple retrospective metrics, and whereas it leads to new off-target predictions complementing

those of ECFP with SEA, there are cases where the more traditional 2D representation yields

higher retrospective performance. It would be difficult to tease out the impact that 2D has

of necessity made in guiding the design and testing of such molecules, and only time will tell

whether ECFP’s higher performance in these cases is due to true pharmacology or historical

bias. However, we currently find that ECFP outperforms E3FP on specific targets using SEA

(Fig. 2.2f) and in general when applying other machine learning methods (Figures S5-S6).

Similarly, ECFP performs well on highly flexible molecules, owing to the difficulty of a small

conformer library representing the flexibility of these molecules. Conversely, E3FP’s poten-

tial for discerning similar target binding profiles is best realized when comparing molecules

with a high degree of conformational similarity on the one hand or on the other one or

more chiral centers. As is evident from their respective PRC plots, E3FP typically discrim-

inates SEA predictions more than ECFP does, thereby achieving a better precision-recall

ratio, at the initial cost of some sensitivity (Fig. 2.2c). However, this also allows E3FP to

consider more distant molecular similarity relationships while maintaining greater discrim-

inatory power than ECFP does at this range. It would be interesting to explore whether

some of these more distant relationships might also be regions of pharmacological novelty.
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One longtime advantage of 2D molecular representations has been their ability to implic-

itly sidestep the question of conformation. Whereas heroic effort has gone into solving the

crystallographic conformations of hundreds of thousands of small molecules85,86, the binding-

competent 3D conformations for millions of research25 and purchasable31 small molecules are

not known. Furthermore, polypharmacology exacerbates this problem, wherein a single small

molecule can bind many protein partners, as it is not always the case that the molecule in

question will adopt the same conformation for each binding site2. Powerful methods to enu-

merate and energetically score potential conformations exist87–89, but it falls to the researcher

to prioritize which of these conformers may be most relevant for a given protein or question.

Treating the top five, ten, or more most energetically favorable conformers as a single set,

however, may be an alternate solution to this problem. We originally developed SEA so as

to compare entire sets of molecular fingerprints against each other4, so it seemed natural

to use it in a conformational-set-wise manner here. Furthermore, because SEA capitalizes

on nearest-neighbor similarities among ligands across sets of molecules, we expected that it

might analogously benefit from nearest-neighbor similarities in conformational space, on a

protein-by-protein basis. This may indeed be the case, although we have not attempted to

deconvolve E3FP’s performance in a way that would answer whether different E3FPs, and

hence different conformations, of the same molecule most account for its predicted binding

to different protein targets.

The E3FP approach is not without its limitations. E3FP fingerprints operate on a pre-

generated library of molecular conformers. The presence of multiple conformers and therefore

multiple fingerprints for a single molecule hampers machine learning performance in naive

implementations (Figures S5-S6), as flexible molecules dominate the training and testing

data. We anticipate higher numbers of accepted conformers to only exacerbate the problem.

The full conformational diversity of large, flexible molecules pose a substantial represen-

tational challenge as well (Fig. 2.3c-d). As E3FP depends upon conformer generation, a

generator that consistently imposes specific stereochemistry on a center lacking chiral infor-
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mation may produce artificially low or high 3D similarity (Fig. 2.3c). Furthermore, the core

intuition of E3FP hinges on the assumption that most binding sites will have differing affini-

ties for molecules with diverging stereochemical orientations, such as stereoisomers. Due to

site flexibility, this is not always the case (Fig. 2.3c-d).

Despite these caveats, we hope that this simple, rapid, and conformer-specific extended

three-dimensional fingerprint (E3FP) will be immediately useful to the broader community.

To this end, we have designed E3FP to integrate directly into the most commonly used

protein target prediction methods without modification. An open-source repository imple-

menting these fingerprints and the code to generate the conformers used in this work is

available at https://github.com/keiserlab/e3fp/tree/1.0.

2.5 Experimental Section

Generating Conformer Libraries

To maximize reproducibility, we generated conformers following a previously published pro-

tocol35 using RDKit90. For each molecule, the number of rotatable bonds determined the

target number of conformers, N , such that: N = 50 for molecules with less than 8 rotatable

bonds, N = 200 for molecules with 8 to 12 rotatable bonds, and N = 300 for molecules with

over 12 rotatable bonds. We generated a size 2N pool of potential conformers.

After minimizing conformers with the Universal Force Field89 in RDKit, we sorted them

by predicted energy. The lowest energy conformer became the seed for the set of accepted

conformers. We considered each candidate conformer in sorted order, calculated its root

mean square deviation (RMSD) to the closest accepted conformer, and added the candidate

to the accepted set if its RMSD was beyond a predefined distance cutoff R. Optionally,

we also enforced a maximum energy difference E between the lowest and highest energy

accepted conformers. After having considered all 2N conformers, or having accepted N
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conformers, the process terminated, yielding a final set of conformers for that molecule.

We tuned this protocol using three adjustable parameters: (1) the minimum root mean

square distance (RMSD) between any two accepted conformers, (2) the maximum computed

energy difference between the lowest energy and highest energy accepted conformers, and

(3) the number of lowest energy conformers to be accepted (fingerprinted). We generated

two different conformer libraries by this protocol. In the first (rms0.5), we used a RMSD

cutoff R = 0.5, with no maximum energy difference E. In the second (rms1_e20), we chose

a RMSD cutoff R = 1.0, with a maximum energy difference of 20 kcal/mol.

Enumerating Protonation States

Where specified, we generated dominant tautomers at pH 7.4 from input SMILES using the

CXCALC program distributed with ChemAxon’s Calculator Plugins91. We kept the first two

protonation states with at least 20% predicted occupancy. Where no states garnered at least

20% of the molecules, or where protonation failed, we kept the input SMILES unchanged.

Conformer generation for each tautomer proceeded independently and in parallel.

ECFP Fingerprinting

To approximate ECFP fingerprints, we employed the Morgan fingerprint from RDKit using

default settings and an appropriate radius. ECFP4 fingerprints, for example, used a Morgan

fingerprint of radius 2. Where ECFP with stereochemical information is specified, the same

fingerprinting approach was used with chirality information incorporated into the fingerprint.

E3FP Fingerprinting

Given a specific conformer for a molecule, E3FP generates a 3D fingerprint, parameterized

by a shell radius multiplier r and a maximum number of iterations (or level) L, analogous
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to half of the diameter in ECFP. E3FP explicitly encodes stereochemistry.

Generating Initial Identifiers

Like ECFP, E3FP generation is an iterative process and can be terminated at any iteration or

upon convergence. At iteration 0, E3FP generation begins by determining initial identifiers

for each atom based on six atomic properties, identical to the invariants described in32 : the

number of heavy atom immediate neighbors, the valence minus the number of neighboring

hydrogens, the atomic number, the atomic mass, the atomic charge, the number of bound

hydrogens, and whether the atom is in a ring. For each atom, the array of these values

are hashed into a 32-bit integer, the atom identifier at iteration 0. While the hashing

function is a matter of choice, so long as it is uniform and random, this implementation used

MurmurHash392.

Generating Atom Identifiers at Each Iteration

At each iteration i where i > 0, we consider each atom independently. Given a center atom,

the set of all atoms within a spherical shell of radius i · r centered on the atom defines its

immediate neighborhood, where the parameter r is the shell radius multiplier (Fig. 2.1a).

We initialize an array of integer tuples with a number pair consisting of the iteration number

i and the identifier of the central atom from the previous iteration.

For each non-central atom within the shell, we add to the array an integer 2-tuple con-

sisting of a connectivity identifier and the atom’s identifier from the previous iteration. The

connectivity identifiers are enumerated as an expanded form of those used for ECFP: the

bond order for bond orders of 1-3, 4 for aromatic bonds, and 0 for neighbors not bound

to the central atom. To avoid dependence on the order in which atom tuples are added to

the array, we sort the positions of all but the first tuple in ascending order. 3-tuples are

then formed through the addition of a stereochemical identifier, followed by re-sorting. This
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process is described in detail below.

We then flatten the completed array into a one-dimensional integer array. We hash this

1D array into a single new 32-bit identifier for the atom and add it to an identifier list for

the iteration, after optional filtering described below.

Adding Stereochemical Identifiers

We generate stereochemical identifiers by defining unique axes from the sorted integer 2-

tuples from the previous step combined with spatial information. First, we determine the

vectors from the center atom to each atom within the shell. Then, we select the first unique

atom by atom identifier from the previous iteration, if possible, and set the vector from the

central atom to it as the y-axis. Where this is not possible, we set the y-axis to the average

unit vector of all neighbors. Using the angles between each unit vector and the y-axis, the

atom closest to 90 degrees from the y-axis with a unique atom identifier from the previous

iteration defines the vector of the x-axis (Fig. 2.1a).

We then assign integer stereochemical identifiers s. Atoms in the y > 0 and y < 0

hemispheres have positive and negative identifiers, respectively. s = ±1 is assigned to atoms

whose unit vectors fall within 5 degrees of the y-axis. We divide the remaining surface of

the unit sphere into eight octants, four per hemisphere. The x-axis falls in the middle of the

s = ±2 octants, and identifiers ±3− 5 denote remaining octants radially around the y-axis

(Fig. 2.1a). If unique y- and x-axes assignment fails, all stereochemical identifiers are set

to 0.

Combining the connectivity indicator and atom identifier with the stereochemical identi-

fier forms a 3-tuple for each atom, which, when hashed, produces an atom identifier depen-

dent orientation of atoms within the shell.
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Removing Duplicate Substructures

Each shell has a corresponding substructure defined as the set of atoms whose information is

contained within the atoms in a shell. It includes all atoms within the shell on the current

iteration as well as the atoms within their substructures in the previous iteration. Two shells

have the same substructure when these atom sets are identical, even when the shell atoms

are not. As duplicate substructures provide little new information, we filter them by only

adding the identifiers to that iteration’s list that correspond to new substructures or, if two

new identifiers correspond to the same substructure, the lowest identifier.

Representing the Fingerprint

After E3FP runs for a specified number of iterations, the result is an array of 32-bit identifiers.

We interpret these as the only “on” bits in a 232 length sparse bitvector, and they correspond

to 3D substructures. As with ECFP, we “fold” this bitvector to a much smaller length such

as 1024 by successively splitting it in half and conducting bitwise OR operations on the

halves. The sparseness of the bitvector results in a relatively low collision rate upon folding.

Fingerprint Set Comparison with SEA

The similarity ensemble approach (SEA) is a method for searching one set of bitvector

fingerprints against another set4. SEA outputs the maximum Tanimoto coefficient (TC)

between any two fingerprint sets and a p-value indicating overall similarity between the sets.

SEA first computes all pairwise TCs between the two fingerprint sets. The sum of all TCs

above a preset pairwise TC threshold T defines a raw score. For a given fingerprint, SEA

calculates a background distribution of raw scores empirically4. This yields an observed

z-score distribution, which at suitable values of T follows an extreme value distribution

(EVD). For values of T ranging from 0 to 1, comparing goodness of fit (chi-square) to an
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EVD vs a normal distribution determines an optimal range of T , where the empirical z-score

distribution favors an EVD over a normal distribution. In this EVD regime we may convert

a z-score to a p-value for any given set-set comparison.

K-fold Cross-Validation with SEA

We performed k-fold cross-validation on a target basis by dividing the ligands of at least µM

affinity to each target into k sets per target. For a given fold, k − 1 ligand sets and their

target labels together formed the training data. The remaining ligand sets and their target

labels formed the test data set. Due to the high number of negative examples in the test

set, this set was reduced by ~25% by removing all negative target-molecule pairs that were

not positive to any target in the test set. Conformers of the same ligand did not span the

train vs test set divide for a target. For each fold, conformer fingerprint sets for molecules

specific to the test set were searched against the union of all training conformer fingerprints

for that target, yielding a molecule-to-target SEA p-value. From the -log p-values for all

test-molecule-to-potential-target tuples, we constructed a receiving operator characteristic

(ROC) curve for each target, and calculated its area under the curve (AUC). We likewise

calculated the AUC for the Precision-Recall Curve (PRC) at each target. For a given fold,

we constructed an ROC curve and a PRC curve using the -log p-values and true hit/false

hit labels for all individual target test sets, which we then used to compute a fold AUROC

and AUPRC. We then computed an average AUROC and AUPRC across all k folds. The

objective function AUCSUM consisted of the sum of the average AUROC and AUPRC.

Optimizing Parameters with Spearmint

E3FP fingerprints have the following tunable parameters: stereochemical mode (on/off),

nonbound atoms excluded, shell radius multiplier, iteration number, and folding level. Ad-

ditional tunable parameters for the process of conformer generation itself are the minimum
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RMSD between conformers, the maximum energy difference between conformers, and how

many of the first conformers to use for searching. This parameter space forms a 8-dimensional

hypercube. Of the 8 dimensions possible, we employed the Bayesian optimization program

Spearmint45 to explore four: shell radius multiplier, iteration number, number of first con-

formers, and two combinations of values for the RMSD cutoff and maximum energy difference

between conformers. We evaluated the parameter sets by an objective function summing

ROC and PRC AUCs (AUCSUM), and Spearmint proposed future parameter combinations.

The objective function evaluated k-fold cross-validation with the similarity ensemble ap-

proach (SEA) as described in the following section.

For the first stage, the dataset consisted of 10,000 ligands randomly chosen from

ChEMBL17, the subset of targets that bound to at least 50 of these ligands at µM or better,

and the objective function used was the AUPRC. Spearmint explored values of the shell

radius multiplier between 0.1 and 4.0Å, the number of lowest energy conformers ranging

from 1 to all, and maximum iteration number of 5. Additionally, two independent conformer

libraries were explored: rms0.5 and rms1_e20 (see above). 343 unique parameter sets were

explored. We found that the best parameter sets used less than 35 of the lowest energy con-

formers, a shell radius multiplier between 1.3 and 2.8Å, and 2-5 iterations. The conformer

library used did not have an apparent effect on performance (data not shown).

For the second stage, we ran two independent Spearmint trajectories with a larger dataset

consisting of 100,000 ligands randomly chosen from ChEMBL20, the subset of targets that

bound to at least 50 of these ligands at µM or better, and the AUCSUM objective function.

We employed the CXCALC program91 to determine the two dominant protonation states for

each molecule at physiological pH, and then conformers were generated using an RMSD cutoff

of 0.5. The number of fingerprinting iterations used in both trajectories was optimized from

2 to 5, but the two trajectories explored different subsets of the remaining optimal parameter

ranges identified during the first stage: the first explored shell radius multipliers between 1.3

and 2.8Å with number of conformers bounded at 35, while the second explored shell radius
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multipliers between 1.7 and 2.8Å with number of conformers bounded at 20. Spearmint

tested 100 parameter combinations in each trajectory.

During optimization, we observed that the simple heuristic used by SEA to automatically

select the TC threshold for significance resulted in folds with high TC cutoffs having very

high AUPRCs but low AUROCs due to low recall, while folds with low TC cutoffs had lower

AUPRCs but very high AUROCs (Figure S3). Several folds in the latter region outperformed

ECFP4 in both AUPRC and AUROC (Figure S3c). We therefore selected the best parameter

set as that which produced the highest AUCSUM while simultaneously outperforming ECFP4

in both metrics. For all future comparisons, the TC cutoff that produced the best fold results

was applied to all folds during cross-validation.

K-fold Cross-Validation with Other Classifiers

We performed k-fold cross-validation using alternative classifiers in the same manner as for

SEA, with the following differences. We trained individual classifiers on a target by target

basis. In the training and test data, we naively treated each conformer fingerprint as a

distinct molecular fingerprint, such that the conformer fingerprints did not form a coherent

set. After evaluating the target classifier on each fingerprint for a molecule, we set the

molecule score to be the maximum score of all of its conformer fingerprints.

For the Naive Bayes (NB), Random Forest (RF), and Support Vector Machine with a

linear kernel (LinSVM) classifiers, we used Scikit- learn version 0.18.1 (https://github.

com/scikit-learn/scikit-learn/tree/0.18.1). We used default initialization

parameters, except where otherwise specified. For the RF classifier, we used 100 trees with

a maximum depth of 2. We weighted classes (positive and negative target/molecule pairs)

to account for class imbalance. For LinSVM kernel, we applied an l1 norm penalty and

balanced class weights as for RF.
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We implemented Artificial Neural Network (NN) classifiers with nolearn version 0.6.0

(https://github.com/dnouri/nolearn/tree/0.6.0). We trained networks inde-

pendently for each target using 1024-bit input representations from either E3FP or ECFP.

The NN architecture comprised 3 layers: an input layer, a single hidden layer with 512 nodes,

and an output layer. We used dropout93 as a regularizer on the input and hidden layers at

rates of 10% and 25%, respectively. The hidden layer activation function was Leaky Recti-

fied Linear94 with default leakiness of 0.01. The prediction layer used softmax nonlinearities.

We trained networks trained for 1000 epochs with early stopping to avoid overfitting, by

monitoring the previous 75 epochs for lack of change in the loss function. The final softmax

layer contained 2 tasks (classes), one corresponding to binding and the other corresponding

to the absence of binding. This softmax layer produced a vector corresponding to the prob-

ability of a given molecule being a binder or non-binder given the neural network model. We

calculated training error using a categorical cross entropy loss.

Predicting Novel Compound-Target Binding Pairs

To identify novel compound-target pairs predicted by E3FP but not by ECFP, we built a sub-

set of 309 proteins/complex mammalian targets (106 human) for which the National Institute

of Mental Health Psychoactive Drug Screening Program (NIMH PDSP)63 had established

binding assays. We selected all compounds listed as in-stock in ZINC1531, downloaded on

2015-09-24. We fingerprinted all ligands in ChEMBL2095 with affinity < µM to the PDSP

targets using the RDKit Morgan algorithm (an ECFP implementation) as well as by a pre-

liminary version of E3FP (Table S4). We likewise fingerprinted the ZINC15 compounds

using both ECFP and E3FP. We queried the search compounds using SEA against a dis-

crete sets of ligands from < 10 nM affinity (strong binders) to < µM affinity (weak binders)

to each target, in log-order bins, using both ECFP and E3FP independently. We filtered

the resulting predictions down to those with a strong SEA-E3FP p-value < 1× 10−25 and
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≤ nM affinity to the target, where the SEA-ECFP p-value exceeded 0.1 (i.e., there was

no significant SEA-ECFP prediction) in the same log-order affinity bin. From this set of

compound-target pairs, we manually selected eight for experimental testing.

Experimental Assays of Compound-Target Binding Pairs

Radioligand binding and functional assays were performed as previously described71,96,97. De-

tailed experimental protocols and curve fitting procedures are available on the NIMH PDSP

website at: https://pdspdb.unc.edu/pdspWeb/content/PDSP%20Protocols%

20II%202013-03-28.pdf.

Ligand efficiencies were calculated using the expression

LE = −RT (lnKi)/Nheavy ≈ −0.596 lnKi/Nheavy

where R is the ideal gas constant, T is the experimental temperature in Kelvin, and

Nheavy is the number of heavy atoms in the molecule98. The ligand efficiency is expressed in

units of kcal/mol/heavy atom.

Source Code

Code for generating E3FP fingerprints is available at https://github.com/

keiserlab/e3fp/tree/1.0 under the GNU Lesser General Public License version 3.0

(LGPLv3) license. All code necessary to reproduce this work is available at https:

//github.com/keiserlab/e3fp-paper/tree/1.0 under the GNU LGPLv3 license.
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2.6 Supporting Information

Supporting figures and tables include an enlarged Fig. 2.1c, parameter optimization and

cross-validation results, references for highlighted molecule pairs in Fig. 2.3, descriptions of

compounds used in experiments, and all experimental results. This material is available free

of charge via the Internet at doi:10.1021/acs.jmedchem.7b00696.
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Chapter 3

Deep learning approaches in

predicting ADMET properties

3.1 Abstract

Since the early days of Lipinski’s rule of five, the field of predictive ADMET (absorption,

distribution, metabolism, excretion and toxicity) in medicinal chemistry has expanded in

importance and has grown to include areas such as high-throughput assay development,

data mining, data visualization, machine learning and structure-based modeling1,2. Many

studies have demonstrated the role of effective application of in silico predictive ADMET

models in accelerating the identification of small molecules with improved efficacy, safety

and dose1.

Machine learning models are now routinely used by drug discovery teams to predict prop-

erties of small molecules based off their chemical structure. The first methods were ‘simple’

linear models such as those used in Free-Wilson and Hammett analyses and these are still in

use today due to their easy interpretability and effectiveness on small datasets2. Nonlinear

models were later established to capture more complex relationships between structure and
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activity, and such approaches include support vector machines, recursive partitioning meth-

ods (such as random forest, Cubist and XGBoost) and deep learning methods such as deep

artificial neural networks (DNNs)2,3.

Deep learning-based approaches are showing increasing promise and usefulness for AD-

MET prediction, fueled by increasing computational power, larger datasets generated in a

standardized manner, and adaptation of image and language processing advances to chem-

istry1,2. Here, we first explore the role of deep learning in recent ADMET prediction per-

formance advances and then discuss ongoing work to address challenges in evaluating, inter-

preting and implementing deep learning for molecular design.

3.2 Rise of deep learning for ADMET prediction

A 2012 Kaggle competition sponsored by Merck & Co., Inc., (NJ, USA) generated excitement

around DNNs for ADMET prediction when researchers reported that simple DNNs yielded

a 10% mean improvement in R2 performance across 15 large assay datasets when compared

with widely-used, prevailing random forest (RF) models4. R2 is the squared Pearson correla-

tion coefficient that ranges from 0–1 (higher is better) and measures how well the prediction

matches the experimental data, usually on a left-out data subset4. Other researchers, includ-

ing those at Vertex Inc., (MA, USA)5, Eli Lilly & Co. (IN, USA)6 and Bayer AG (Berlin,

Germany)7, similarly found that simple DNNs (in these cases, fully-connected DNNs) were

comparable or slightly improved over prevailing models when trained on large, proprietary

ADMET datasets. Despite promising results, many practitioners at the time felt that the

impact of the generally modest performance improvement seen in these early DNNs did not

justify the major increase in resources, computational and human, required to maintain such

models.

The winning Kaggle competitor demonstrated dramatic performance improvements on

some Kaggle end points using a multitask DNN that simultaneously learned all assay tasks
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within a single model4,7–9. However, thoughtful investigation into these DNNs led to a more

nuanced understanding of their performance for ADMET prediction. Xu et al. and Kearnes

et al. raised concerns that multitask models derived a large part of their improved per-

formance from ‘memorizing’ or ‘leaking’ molecules regardless of the relevance of assisting

assays2,5,7,9. This behavior manifests advantageously when molecules are structurally sim-

ilar and assays are related, but potentially worsens or does not improve predictions when

molecules are similar and assays are unrelated.

In an interesting demonstration of this, Wenzel et al. trained a multitask fully-connected

DNN using large Sanofi–Aventis AG liver microsome stability datasets (∼50,000 compounds)

for three species and found predictive performance improved for human liver microsomes

(HLM), but worsened slightly or stayed the same for rat and mouse liver microsomes (RLM

and MLM, respectively)8. However, when overlapping molecules were disallowed between

the prediction molecules for HLM and any training molecules (regardless of species), essen-

tially no benefit was seen from multitask training. Upon addition of five additional species

with small liver microsome datasets of 200–1500 compounds each to create an eight-species

multitask model, Wenzel et al. saw mixed predictive performance, with macaque predictions

benefiting (R2 increased by 0.09 or 15%), but monkey predictions worsening (R2 decreased

by 0.09 or 24%). Montanari et al. explored the benefits of multitask fully-connected DNNs

and concluded it was ‘trial-and-error type of work’7.

3.3 Learned featurization improves predictive perfor-

mance

As enthusiasm tempered for multitask DNNs, a new twist on deep learning was emerging.

Both the prevailing models (such as RF models) and the DNN models described above

require a static ‘fingerprint’ representation of each compound. Fingerprints are vectors
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of discrete numbers where each number represents the presence (zero or one) or count of

a chemical fragment2. Duvenaud et al. proposed that instead of enumerating possible

fragments into a static fingerprint, a graph convolutional DNN (GCNN) approach could be

used to dynamically learn a fingerprint optimized for the most relevant chemical information,

where adjacency in the vector representation encodes fragment similarity relevant to an assay

end point of interest2,5,10–14.

In a recent study, Feinberg et al. investigated prediction of 31 ADMET end points using

a state-of-the-art GCNN and large, standardized assay datasets at Merck & Co., Inc.14.

Their single-task GCNN showed strong performance improvements over RF for about a

third of end points, with improvements in R2 of 0.15–0.31 or 45%–133%. These end points

include plasma protein binding (PPB), HLM and RLM, cytochrome p450 3A4 (CYP3A4)

and 2D6 inhibition, hERG binding and kinetic solubility in water. Especially remarkable

was the large improvement for rat and human PPB (R2 improvements of 0.31 and 0.19,

respectively). Another third of end points showed smaller improvements (R2 improvements

of 0.05–0.14) that may be meaningful. Conversely, a third of end points showed minimal or

no improvement, notably including all in vivo pharmacokinetic end points. The authors saw

additional performance improvements by adding a multitask approach for featurization and

this improvement was most notable for hepatocyte stability, permeability and P-glycoprotein

efflux. Overall, they found that their multitask GCNNs performed equivalently or better

than single-task GCNNs, which, in turn, performed equivalently or better than RF models.

Using a different state-of-the-art GCNN, Yang et al. showed notable performance relative

to RF on smaller proprietary industrial ADMET datasets as well as on public datasets. On

four large Amgen Inc., (CA, USA), datasets (rat PPB, solubility, RLM and human PXR

activation), their ensemble single-task GCNN models showed median improvement of 14% in

root-mean-square error compared with RF models using fingerprints11. Liu et al. compared

yet another single-task GCNN model approach to a Cubist approach using five different

Amgen Inc. datasets15, and found that single and multitask GCNNs showed 10% and 38%
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mean improvements in R2 performance, respectively, over Cubist models. Liu et al. found

that single-task GCNNs consistently outperformed Cubist in HLM, CYP3A4 and solubility

end points, while both performed equivalently for human PXR activation prediction. They

applied a multitask GCNN to modeling of multiple solubility and PXR subsets and these

models consistently outperformed Cubist models. These studies suggest that GCNNs are

not only competitive to RF and Cubist models, but in some cases yield robust increases in

predictivity.

Another study by Montanari et al. used eight Bayer AG proprietary ADMET datasets

with 39,000–236,000 compounds each to compare the learned representations from GCNNs

against two fingerprint-based approaches, simple fully-connected DNNs and RFs7. Multi-

task GCNNs improved predictive performance the most over prevailing RF models. With

membrane affinity and PPB end points, they saw R2 improvements of 0.26–0.28 or 65–67%.

Overall, they found that deep learning approaches out-performed RF, multitask models were

competitive or outperformed single-task models, and GCNNs outperformed fully-connected

DNNs of the same singletask or multitask training type.

Taken together, recent work suggests models built using GCNNs can consistently deliver

better or equivalent predictive performance compared with prevailing approaches (such as

RF, Cubist and support vector machine), and, in some cases, demonstrate impressive gains.

We highlight PPB and RLM/HLM end points as two end points that see strong improve-

ment in multiple studies, especially with larger industrial datasets (>15,000 compounds).

Multitask GCNNs appear to slightly outperform single-task GCNNs, although ensemble

single-task GCNNs reported by Yang et al.11 are putting up a solid fight for comparative

performance (manuscript in preparation).
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3.4 Measuring how models generalize for medicinal

chemistry

The performance metrics reported in the earlier sections use datasets split into a learning

subset and a testing subset using either a time-based split or a scaffold-based split16. These

two splits are preferred over a random split, which is considered less reflective of real-world

drug discovery settings and gives an unrealistically optimistic assessment of prospective

performance. In time splits, earlier data is used for training, and more recent data for testing.

This simulates the drug discovery setting where researchers relentlessly evolve molecules into

novel chemical space over time. Recent work suggests that a scaffold split —which assigns

different compound clusters or scaffolds to the training and testing sets —can be useful

when temporal splits are insufficiently diverse, where there is no testing date available or

where there are concerns over model generalizability. Using industrial datasets, scientists

at our laboratories found models perform better on time splits than on scaffold splits of

the same datasets, and both are clearly more challenging than random splits9,16. On the

other hand, studies using Amgen Inc. (CA, USA), Novartis AG, (Basel, Switzerland), and

Bayer AG (Berlin, Germany) datasets found scaffold splits to be slightly more difficult than

time splits11. Our takeaway is that scaffold split is a good, but imperfect, estimate of time

split and both are clearly more predictive of expected performance in medicinal chemistry

progression than random split.

To assess the potential of GCNN models for chemical space extrapolation, Feinberg et

al. recently proposed a time plus molecular weight (MW) split14. In this split, models are

trained on earlier compounds with MW �500 Da and tested on later molecules with MW

�600 Da. Under this split, GCNNs were able to maintain much of their performance on the

third of assays where they performed strongly14. This contrasts with the poor performance

of RF models. The results suggest that learned representations encoded by GCNNs may be

better at extracting structure–activity relationships from smaller molecules that extrapolate

96



in chemical space to larger molecules.

Splits are schemes designed purely to assess predictive performance. When it comes to

building models for deployment to medicinal chemistry teams, all available data are used

for training, and, in practice, the predictive performance for lead optimization is typically

slightly better than that reported in the studies discussed above. In general, machine learning

approaches perform better with multiple experimental observations and molecular diversity.

Repeated observations are useful for quantifying experimental variability in the assay and

therefore the limits of predictability1,17. Molecular diversity in the training data allows

models to generalize to a wide range of molecular scaffolds (global diversity) as well as

learn nuances from smaller functional group perturbations (localized diversity). A continued

discussion between modelers and chemists can lead to selection of molecules that fill in model

gaps to ultimately improve predictions. We next discuss methods that can help direct such

discussions.

3.5 Interpretability, error & the use of deep learning

models

As DNN models increasingly are applied in drug discovery, users will want information

on a model’s underlying molecular assumptions, uncertainty for individual predictions and

chemical domain validity. Deep learning methods currently fall short of regression and

recursive partitioning approaches (such as RF and Cubist) in these areas, although addressing

these shortcomings are the focus of active, burgeoning work2,3.

Interpretability is important in allowing scientists to ‘sanity check’ structure–activity re-

lationships identified by a model and identify spurious correlations1,2 which restrict rather

than improve drug discovery. Current interpretative approaches can be broken down into

three types: quantifying prediction changes at a specific heavy atom from in silico addition
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or deletion of a fragment to the atom position, quantifying the effect of a particular input

feature based on a DNN’s internal learned weight matrix and building separate explanation

models that approximate a complex model that is not interpretable (such as Shapley ad-

ditive explanations)2,3,8,14,18. These approaches highlight substructures on a molecule that

contribute strongly to a model’s prediction and enable both human review and further molec-

ular design. We expect this area to develop significantly in the next couple years.

In addition to interpretability, users can benefit from reliable estimates for when an

individual prediction is a confident one or is beyond the scope of the model’s underlying

assumptions. Hirschfeld et al. recently categorized error estimation approaches for deep

learning methods as falling into four broad categories: using ensembles of models generated

with multiple parameter or training sets, creating DNN models that directly estimate a

standard deviation along with a predicted value, calculating uncertainty based on distance

from closely related training molecules and combining DNN outputs with methods like RF

that have established approaches to estimate uncertainty19.

It is important to separate the concepts of errors intrinsic to assays themselves (aleatoric

error) from errors caused by insufficient data and limitations of machine learning models

(epistemic uncertainty) as each would result in a different approach to fix the error (such as

alternate assays for aleatoric error or increased sampling of chemical space for epistemic un-

certainty). Currently, there is little consensus on the overall optimal approach for estimating

uncertainty for DNNs, but methods that append a RF model to a GCNN do appear to have a

slight edge and error prediction performance does appear to be task dependent19. Emerging

DNNs known as fully Bayesian networks19, whose parameters are treated as distributions,

also hold promise. As methodologies mature for error estimation, greater confidence may be

applied to certain model predictions and molecular spaces to be treated with concern can be

highlighted.

As an additional note, while DNNs are considered state-of-the-art for certain tasks, they
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require a lot of data and computational resources. For low data regimes, traditional meth-

ods such as RF or even regression may perform as well or better than DNN approaches and

should not be discarded out-of-hand, especially considering that these models have estab-

lished techniques for interpretability and error estimation1. As the field continues to change,

the goal for predictive modelers and drug discovery groups will be to continuously review

trade-offs between methods.

3.6 Future perspective

We believe that GCNNs will play a major role in ADMET prediction models for medicinal

chemistry and their predictive ability has already surpassed RF and fully connected DNNs

for a subset of end points. So where will the next improvements in ADMET predictions

come from? We suggest three areas.

The first is increased incorporation of mechanistic understanding and biophysical in-

formation that DNNs must currently attempt to infer. The model interpretability tools

discussed above provide insights that can be matched to mechanistic understanding1. Bio-

physical information can include quantum chemical properties and 3D properties such as

molecular flexibility, conformational energies and biomolecular interactions (ion channels

and CYPs, for instance). For more complex biological end points, such as those from in vivo

pharmacokinetic studies, incorporating modeling of biological processes may help1.

The second is creative algorithmic advances to improve generalization and reduce reliance

on dataset size. Currently, deep learning models may be limited by the range of the chemical

diversity, data availability and bias inherent to an institution’s focus. One approach from

the vision and language realms called ‘pretraining’ allow a DNN model trained once using

very large datasets to be successful in new domains with very small datasets1,2. While this

approach has so far yielded mixed results for chemistry, it is still early days. It also remains

to be seen how efforts by researchers to share and combine data from public and private
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realms can overcome deficiencies in chemistry coverage4.

Finally, ADMET prediction models can often be better integrated into the iterative

medicinal chemistry design-make-test cycle. We note that in our practice, models con-

sidered poorly predictive (e.g., hERG models with time split R2 of ∼0.3) are still useful in

prioritizing molecules, especially in the context of large numbers of molecules and categorical

predictions20. Nevertheless, methods for highlighting gaps in prediction model ’knowledge’

can facilitate design of molecules to explore deficiencies. DNNs using continuous representa-

tions that allow for generative creation of new molecules with desired properties may further

contribute to efficient lead evolution1. We believe a close coupling of graph convolutional

ADMET predictors and medicinal chemistry collaboration will improve the speed and reli-

ability of designing new and improved therapeutics.
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Chapter 4

Target deconvolution for reduction of

free tau in a high throughput screen

4.1 Abstract

Tau aggregation and dysfunction is a known hallmark of Alzheimer’s disease and many other

dementias. As such, targeting tau aggregation is an attractive candidate for therapeutics.

However, the understanding of how free tau is regulated is limited. To better understand

the role of tau aggregation in disease, it is important to identify cellular mechanisms which

are responsible for clearing free tau and also to find tool compounds which may allow more

precise inquiry. In this study, we designed a computational analysis to find mechanistic

hypotheses for a recent high throughput chemical screen measuring free tau reduction. We

used the Similarity Ensemble Approach to generate protein target predictions based on the

molecules in the screen. We filtered protein predictions based on expression and performed

hypergeometric enrichment to rank protein targets. Using our procedure, we reduced the

potential search space from 2,713 protein targets to 48 targets. These targets represent

hypotheses for mechanism of action which may be tested to study free tau.
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4.2 Introduction

Alzheimer’s disease (AD) and dementia-related diseases are marked by devastating progres-

sive memory degradation and cognitive decline. In the US alone, AD affects 6.2 million

people and in conjunction with other dementias, causes one in three senior deaths. While

deaths from heart disease have decreased by 7.3% from 2000-2019, deaths from AD have

increased 145%1. Alzheimer’s disease exhibits substantial caregiver burden. Caregivers are

often family members of the afflicted and approximately 11 million Americans provide 15.3

billion hours of unpaid care for Alzheimer’s patients2.

Current treatment options for AD are limited and are not effective as curative treatments.

There are only five FDA-approved drugs which fit into two classes of medications for AD:

cholinesterase inhibitors and N-methyl-D-aspartate (NMDA) antagonists3. Cholinesterase

inhibitors (donepezil, rivastigmine, and galantamine), work by inhibiting the breakdown

of the neurotransmitter acetylcholine by acetylcholinesterase4. This prolongs the presence

of acetylcholine in the brain and offsets the loss of neurons which produce acetylcholine.

The second class of drugs consists of the NMDA antagonist memantine. Memantine works

by reducing the excitotoxic effect of excess glutamate in the brain5. Due to the dearth of

treatment and curative options, identification of new pathways and targets for AD remains

a potentially impactful research direction.

AD proteinopathy is characterized by aggregates of amyloid-beta plaques (Aβ) and tau

neurofibrillary tangles (NFT), which are present in AD patients preceding clinical symptom

onset6. Despite AD’s classification as a secondary tauopathy, the tau burden of AD patients

is better correlated with atrophy in the brain than Aβ7. Additionally, direct evidence of mu-

tations to MAPT have been implicated in dementia8. This evidence suggests that targeting

tau aggregation may prove useful for therapeutic interventions.

Under normal conditions, tau is a microtubule-associated phosphoprotein which helps to

stabilize the microtubule. In AD and other neurodegenerative diseases, hyperphosphorylated
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tau detaches from the microtubules and forms aggregates9. Although hyperphosphorylation

is most well studied, tau is known to undergo many post-translational modifications (in-

cluding ubiquitination, acetylation, and glycosylation) which have been implicated in its

aggregation10. As free tau off of the microtubules is most available for aggregation, finding

compounds which mediate its aggregation would be useful in studying dementias and the

role of tau in neurodegeneration.

To better understand how free tau affects AD and other tauopathies, it is important to

identify chemical tool compounds and proteins that reduce free tau in vitro. Our collabo-

rators conducted a high-throughput screen for compounds associated with reduction in free

tau from an inducible cell model. We sought to infer protein targets for tau reduction from

the chemical similarity of screening compounds to compounds with known protein annota-

tions. We made protein target predictions for each compound using the Similarity Ensemble

Approach (SEA)11. We reduced our protein targets based on annotations from Uniprot and

the Human Protein Atlas12,13. Finally, we calculated the enrichment of our targets against

the background and corrected for multiple hypotheses. Our process significantly reduced the

initial number of targets to a manageable set of proteins. These target hypotheses can be

used to test biological hypotheses for reduction of free tau.

4.3 Results and Discussion

To better understand the mechanisms driving free tau clearance, we designed a computa-

tional pipeline to perform target deconvolution on chemical high throughput screens Fig. 4.1.

Given 153,588 compound activities from a screen designed to identify reduction in GFP-

bound free tau, we predicted a set 2,713 protein targets of interest across all compounds in

the screen using SEA. Using compound hit annotations for reducing GFP tau, we removed

1,532 proteins from our enrichment list because they were not associated with any compound

hits in the initial screen. Then, we mapped our ChEMBL26 protein targets to UniProt to
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identify species of origin. We removed 111 non-vertebrate proteins from the enrichment set

while keeping 82 proteins that did not map to a Uniprot ID and 295 proteins from non-

human vertebrates. We reasoned that proteins not expressed in HEK293 cells are unlikely to

be potential mechanisms of action in our screen. Therefore, we removed 318 human proteins

from our enrichment list which were not expressed in HEK293. This filtration procedure

reduced our enrichment set by 28%, but the set of 753 proteins was still quite large with

no way to rank predictions. We ranked proteins using a hypergeometric test to calculate a

p-value describing the enrichment of proteins in our hit compounds against the background

of all compounds and we corrected for multiple hypotheses using the Benjamini-Hochberg

correction. This final step reduced our enrichment set to 48 protein ranked targets of interest

(Table 1), which represent 1.8% of our original predicted space.

The next step is to validate our procedure by selecting tool compounds from our enriched

targets and to test them in vitro, with the goal of establishing a phenocopy where free tau

is reduced. In the meanwhile, a preliminary literature search revealed some targets related

to AD, Aβ, and tau, with two candidates currently in clinical trials:

• Tau acts on p53-binding protein MDM-2 (MDM2) resulting in deregulation of MDM2

and disruption of p53 activity and function14.

• Nuclear factor erythroid 2-related factor 2 (NRF2) is hypothesized to reduce phospho-

rylated tau by inducing autophagy14.

• Protein Kinase C alpha activation is associated with reduction in soluble Aβ and also

has been hypothesized to reduce tau hyperphosphorylation through GSK-3β15.

• A Protein Kinase C inhibitor, bryostatin, is currently in phase 2 clinical trials for

Alzheimer’s disease16.

• Deficiency of G protein-coupled receptor kinase 5 (GRK5), induces tau hyperphospho-

rylation through GSK3β activation17.
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• Disruption of the IκB kinase (IKK) complex significantly reduced tau aggregation in

a CRISPR screen18.

• ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 1 (CD38), has been shown to reduce

Aβ plaques in mice and is currently the target of a phase 2 clinical trial for Alzheimer’s

disease19,20.

• Dual-specificity tyrosine-phosphorylation regulated kinase 1A increases Tau phospho-

rylation21,22.

• Beta amyloid A4 protein (Aβ) regulates tau proteostasis23.

• c-Jun N-terminal kinase 1 (JNK1) hyperphosphorylates tau24.

Computational target enrichment and deconvolution of a high throughput screen on

HEK293 GFP-tau/mCh-MAP2 cell lines identified known protein targets which affect tau

phosphorylation and which may be involved with AD. While we tried to provide a few ex-

amples where our method may have resulted in true positives, we note that this analysis

will invariably produce false positives and cannot replace compound-target testing for a phe-

nocopy. As SEA relies on inference to a background dataset, certain predictions may be

missed due to lack of data sampling or quality of annotations. Additionally, our enrichment

relies on compound hits sharing mechanisms of action and that those mechanisms are unique

against the background of the screen. We believe the large number of compounds selected

for diversity were sufficient to ensure a suitable background, but we acknowledge there are

no guarantees for the shared mechanisms of our hits despite some promising preliminary re-

sults. As we expect many of the compound hits originating from the high throughput screen

to be inhibitors, our enriched proteins may not fully capture complementary effects from

protein activation. An approach to complement a chemical screen could mirror research al-

ready completed on the complementarity of target predictions from CRISPRi and CRISPRa

screens25,26.
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Figure 4.1: We refined the set of all SEA predicted hits across all compounds (far left)
by their association with a known hit, presence in a vertebrate species, and expression in
HEK293 cell lines. Our process reduced the number of putative targets from 2,713 to 752 as
potential candidates for mechanism of action. We computed the hypergeometric enrichment
of each target compared to the background and corrected the resulting p-values via Benjamini
Hochberg multiple hypothesis correction (alpha 0.1). The final list of 48 proteins for most
likely candidates represent 1.8% of the original search space. (far right).

Despite the limitations of our method, we note that this approach allowed us to reduce

our search space to 1.8% of the original 2,713 protein target predictions. The method can be

scaled and automated, and choices in library creation and cutoffs are easily applied equally

to all targets and molecules. Data availability and completeness will affect any prediction

based on reported interactions27, but we note that our target deconvolution is not intended

to state that a target does not work, it is intended to prioritize ones we have evidence for.

Pragmatically, the ability to generate molecular hypotheses for biological phenotypes such as

reduction in free tau is a useful tool for drug discovery and is helpful for prioritizing targets.

In silico approaches such as our own have already demonstrated potential in uncovering

interesting biological properties or targets based on chemical structure or phenotype28–30,

and we are excited for their continued utility.
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Table 4.1: Ranked list of SEA predicted ChEMBL26 protein targets. Compound counts
represent the number of hit or background molecules in the screen mapping to the target of
interest. The p-values are Benjamini-Hochberg corrected p-values from the hypergeometric
test.

Protein Description ChEMBL ID Hit Compounds All Compounds P-value
Cytochrome P450 1A2 CHEMBL3356 11 244 0.00E+00
Prenyl protein specific protease CHEMBL3411 13 130 0.00E+00
p53-binding protein Mdm-2 CHEMBL5023 9 256 8.43E-09
Nuclear factor erythroid 2-related factor 2 CHEMBL1075094 12 558 1.33E-07
Arachidonate 5-lipoxygenase CHEMBL5211 8 220 5.50E-07
Dual specificity tyrosine-phosphorylation-regulated kinase 1B CHEMBL5543 11 512 5.94E-07
Mitogen-activated protein kinase; ERK1/ERK2 CHEMBL1907606 5 59 2.63E-06
Cyclin-dependent kinase 4 CHEMBL331 6 127 2.63E-06
Protein kinase C alpha CHEMBL299 9 395 9.42E-06
CDK3/Cyclin E CHEMBL3038471 4 35 1.31E-05
Transient receptor potential cation channel subfamily M member 8 CHEMBL3108632 6 146 1.31E-05
G protein-coupled receptor kinase 6 CHEMBL6144 9 439 3.82E-05
Thioredoxin reductase CHEMBL2096978 5 97 5.22E-05
Glutamate [NMDA] receptor subunit epsilon 2 CHEMBL3442 4 47 7.12E-05
Cyclooxygenase CHEMBL2095157 9 505 7.12E-05
Dual specificity protein kinase CLK3 CHEMBL4226 7 284 7.14E-05
Dual specificity protein kinase CLK2 CHEMBL4225 7 293 1.70E-04
Dual-specificity tyrosine-phosphorylation regulated kinase 1A CHEMBL2292 10 671 1.94E-04
Ribosomal protein S6 kinase alpha 1 CHEMBL2553 5 123 1.94E-04
Platelet-derived growth factor receptor CHEMBL2095189 11 918 5.74E-04
Aryl hydrocarbon receptor CHEMBL3201 6 244 6.77E-04
Glutathione reductase CHEMBL2755 5 154 1.05E-03
Dual specificity protein kinase CLK4 CHEMBL4203 9 639 1.33E-03
Serine/threonine-protein kinase SMG1 CHEMBL1795195 5 163 1.47E-03
Muscarinic acetylcholine receptor CHEMBL2094109 5 187 1.82E-03
Phosphodiesterase 5A CHEMBL3478 6 311 2.04E-03
G protein-coupled receptor kinase 5 CHEMBL5678 5 201 2.21E-03
Histone deacetylase 3/NCoR1 CHEMBL3038484 8 591 2.51E-03
Inhibitor of nuclear factor kappa B kinase epsilon subunit CHEMBL3529 5 204 2.63E-03
Dual specificty protein kinase CLK1 CHEMBL4224 8 620 3.57E-03
Phosphatidylinositol 3-kinase catalytic subunit type 3 CHEMBL1075165 4 124 4.01E-03
Proto-oncogene tyrosine-protein kinase MER CHEMBL5331 5 238 4.03E-03
Thioredoxin reductase 1, cytoplasmic CHEMBL6035 3 62 7.05E-03
Phosphodiesterase 5A CHEMBL4567 3 89 9.16E-03
CDK2/Cyclin A CHEMBL3038469 6 487 9.85E-03
Kinesin-like protein 1 CHEMBL4581 9 1036 1.00E-02
Beta-adrenergic receptor kinase 1 CHEMBL3711550 6 502 1.13E-02
Histone-lysine N-methyltransferase EZH2 CHEMBL2189110 3 102 2.35E-02
ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 1 CHEMBL3425388 2 29 2.75E-02
Phosphatidylinositol-5-phosphate 4-kinase type-2 gamma CHEMBL1770034 3 110 3.67E-02
CRY2/PER2 CHEMBL4296116 3 115 3.84E-02
Phosphodiesterase 1 CHEMBL2097166 3 115 4.07E-02
Serine/threonine-protein kinase TBK1 CHEMBL5408 5 392 4.07E-02
Dual specificity tyrosine-phosphorylation-regulated kinase 1A CHEMBL5508 4 244 4.34E-02
Beta amyloid A4 protein CHEMBL2487 11 1590 4.91E-02
c-Jun N-terminal kinase, JNK CHEMBL2096667 3 128 5.35E-02
Tyrosine-protein kinase ABL CHEMBL1862 14 2343 6.93E-02
Choline acetylase CHEMBL3945 3 133 6.93E-02
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4.4 Methods

4.4.1 HEK293 GFP-tau/mCh-MAP2 cell line

Human HEK293 cell lines were designed to express a GFP-tagged wild type 0N4R tau when

treated with doxycycline (Dox). To engineer cell lines that display dose-dependent control of

GFP-tau coupled to the microtubules, the cells were engineered to express an Escheria coli

dihydrofolate reductase mutant (ecDHFR)31 fused to a MAP2c with an mCherry reporter32.

Under untreated conditions, the ecDHFR-mCherry-MAP2c fusion will be degraded by cel-

lular processes due to the ecDHFR’s instability. However, upon treatment with trimetho-

prim (TMP), the ecDHFR is stabilized and ecDHFR-mCherry-MAP2c will not be degraded.

MAP2c is closely related to tau (without tau’s aggregation motifs) and the two proteins

share microtubule binding sites33. The TMP-stabilized ecDHFR-mCherry-MAP2c displaces

GFP-tau from the microtubules, allowing TMP-mediated control over free GFP-tau in the

cytoplasm.

4.4.2 High Throughput Screens

The screening sets of compounds (n=153,588) originated from the Small Molecule Discovery

Center (SMDC) at UCSF. The first set of 50k screening compounds consisted of Chem-

Bridge “Premium” compounds. The remaining compounds were screened in a second batch

and consisted of “ChemBridge ION-Kinase”, “ChemBridge Gallo”, and “ChemDiv Diverse”

compound sets. For the primary screen, HEK293 GFP-tau/mCh-MAP2 cells were plated

in PDL-coated 384-well µclear plates at 3,000 cells per well in 40 µL DMEM. The following

day, 10 µL Dox/TMP solution were dispensed into plates using an EL406 liquid dispenser

(BioTek) so the final concentrations of dox and TMP are 10 ng/mL and 1 µM, respectively.

100 nL of compounds were pin-transferred into plates to the final concentration of 10 µM

using Biomek FXP liquid handler (Beckman Coulter).Each plate contained a vehicle con-
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trol, DMSO, and 10 �M FK-506 as positive control. Post 24-hour incubation, cells were then

fixed and stained in 4% paraformaldehyde (Fisher Scientific) and 1 µg/mL Hoechst 33342

for 30 mins. High-throughput imaging at 20X was performed on an InCell 2500 automated

microscope (GE Healthcare) and the level of GFP intensity per cell was quantified using the

InCell Developer high-content image analysis software.

4.4.3 Primary screen for modulators of free GFP-tau

HEK293 GFP-tau/mCh-MAP2 cells were plated in PDL-coated 384-well µclear plates at

3,000 cells per well in 40 µL DMEM. The following day, 10 µL Dox/TMP solution were

dispensed into plates using an EL406 liquid dispenser (BioTek) so the final concentrations

of dox and TMP are 10 ng/mL and 1 µM, respectively. 100 nL of compounds were pin-

transferred into plates to the final concentration of 10 µM using Biomek FXP liquid handler

(Beckman Coulter) and incubated for 24 hr at 37°C. Cells were then fixed and stained in

4% paraformaldehyde (Fisher Scientific) and 1 µg/mL Hoechst 33342 for 30 mins. High-

throughput imaging at 20X was performed on an InCell 2500 automated microscope (GE

Healthcare) and the level of GFP intensity per cell was quantified using the InCell Developer

high-content image analysis software.

4.4.4 Annotation of compound hits

Compound results from the primary screen were selected for activity against normalized

GFP intensity corresponding to free GFP tau.

For the first screen, 145 compounds were annotated as hits if either DxA fold change or

DxA b-score were less than 3 standard deviations below the mean. For this screen, toxicity

of each compound was noted, but was not considered during the hit-calling process.

In the second batch screen, 1558 compounds were determined to be hits by fulfilling
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criteria corresponding to activity beyond 3 standard deviations from the mean (GFP-Tau b-

score > 10.13; Negative control fold change (<0.8) - normalized to only negative control; and

Control normalized inhibition (>70%) - normalized to both positive and negative controls).

The pool of initial compounds was narrowed down to 1,199 compounds by removing toxic

and proliferative compounds outside of 3 standard deviations from the mean. Cutoffs for

toxic and proliferative means a compound was discarded if the cell count b-score was outside

the range (-5,5) and if the negative control cell count fold change was outside of the range

(0.6, 1.4). Finally, to select for the most active hits, 309 compounds were selected as final

hits based on fulfilling at least two of the criteria used for activity selection. From the pool of

309 compounds, 199 compounds were selected for re-testing and 173 replicated the original

active result.

For enrichment analysis, all 145 hits from the first screen, the 110 untested hits from the

second screen, and the 173 validated compounds from the second screen were selected as

hits.

4.4.5 SEA library preparation and annotation

We collected small molecule and protein binding data from ChEMBL26, and limited the

number of protein targets to those with at least 15 binders at 10 µM or stronger34. We

computed a statistical background for SEA using this data and computed the p-value based

on an extreme value distribution and the maximum Tanimoto similarity of the prediction to

the annotated compounds (MaxTc). We condensed multiple results from SEA by assigning

a hit based on lowest p-val. From the condensed list of predictions, we assigned a protein hit

if a target’s predicted p-val for a compound was below 1e-40 or if the MaxTc of the query

compound was greater than or equal to 0.4035.
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4.4.6 SEA results filtering

From the list of 2,713 condensed Similarity Ensemble Approach (SEA) predicted proteins

saved for hypergeometric enrichment, we discarded 1,532 predicted targets which had no

hit compounds from either screen associated with its prediction. We mapped each protein

to UniProt to get species annotations and saved 82 targets which did not map to UniProt

for hypergeometric enrichment. Of the 1,099 targets that mapped to UniProt, we removed

111 targets which belonged to non-vertebrate species from our enrichment list and kept 295

targets which mapped to non-human vertebrates. We removed targets from the enrichment

list which were not expressed (NX <1.0) in HEK293 RNA-seq transcript data obtained from

the Human Protein Atlas. Our filtration procedure removed 1,961 proteins from our final

enrichment list (n=752 proteins).

4.4.7 Enrichment of protein target hits

We conducted a hypergeometric enrichment on targets associated with hit compounds com-

pared to all compounds in the screen as background. The resulting probability for each

protein describes the chances that protein would have at least the number of hit compounds

associated with it given the number of all compounds associated with that protein if drawn

at random. Because we had multiple p-values for comparison, we conducted a Benjamini-

Hochberg multiple hypothesis correction at a permissive alpha (alpha=0.1) since we were

willing to allow a slightly higher false positive rate36. The final list of 48 enriched proteins

to search represented 1.8% of the original 2,713 SEA hits.

116



References

1. SCI Facts and Figures. en. J. Spinal Cord Med. 40, 872–873 (Nov. 2017) (cit. on p. 107).

2. 2021 Alzheimer’s disease facts and figures. en. Alzheimers. Dement. 17, 327–406 (Mar.

2021) (cit. on p. 107).

3. How is Alzheimer’s disease treated? https://www.nia.nih.gov/health/how-

alzheimers-disease-treated. Accessed: 2021-5-26 (cit. on p. 107).

4. Joe, E. & Ringman, J. M. Cognitive symptoms of Alzheimer’s disease: clinical manage-

ment and prevention. en. BMJ 367, l6217 (Dec. 2019) (cit. on p. 107).

5. Witt, A., Macdonald, N. & Kirkpatrick, P. Memantine hydrochloride. en. Nat. Rev.

Drug Discov. 3, 109–110 (Feb. 2004) (cit. on p. 107).

6. Dugger, B. N. & Dickson, D. W. Pathology of Neurodegenerative Diseases. en. Cold

Spring Harb. Perspect. Biol. 9 (July 2017) (cit. on p. 107).

7. Whitwell, J. L., Josephs, K. A., Murray, M. E., Kantarci, K., Przybelski, S. A., Weigand,

S. D., Vemuri, P., Senjem, M. L., Parisi, J. E., Knopman, D. S., Boeve, B. F., Petersen,

R. C., Dickson, D. W. & Jack Jr, C. R. MRI correlates of neurofibrillary tangle pathol-

ogy at autopsy: a voxel-based morphometry study. en. Neurology 71, 743–749 (Sept.

2008) (cit. on p. 107).

8. Hutton, M., Lendon, C. L., Rizzu, P., Baker, M., Froelich, S., Houlden, H., Pickering-

Brown, S., Chakraverty, S., Isaacs, A., Grover, A., Hackett, J., Adamson, J., Lincoln,

S., Dickson, D., Davies, P., Petersen, R. C., Stevens, M., de Graaff, E., Wauters, E., van

Baren, J., Hillebrand, M., Joosse, M., Kwon, J. M., Nowotny, P., Che, L. K., Norton,

J., Morris, J. C., Reed, L. A., Trojanowski, J., Basun, H., Lannfelt, L., Neystat, M.,

Fahn, S., Dark, F., Tannenberg, T., Dodd, P. R., Hayward, N., Kwok, J. B., Schofield,

P. R., Andreadis, A., Snowden, J., Craufurd, D., Neary, D., Owen, F., Oostra, B. A.,

Hardy, J., Goate, A., van Swieten, J., Mann, D., Lynch, T. & Heutink, P. Association

117

https://www.nia.nih.gov/health/how-alzheimers-disease-treated
https://www.nia.nih.gov/health/how-alzheimers-disease-treated


of missense and 5’-splice-site mutations in tau with the inherited dementia FTDP-17.

en. Nature 393, 702–705 (June 1998) (cit. on p. 107).

9. Dolan, P. J. & Johnson, G. V. W. The role of tau kinases in Alzheimer’s disease. en.

Curr. Opin. Drug Discov. Devel. 13, 595–603 (Sept. 2010) (cit. on p. 108).

10. Arakhamia, T., Lee, C. E., Carlomagno, Y., Duong, D. M., Kundinger, S. R., Wang, K.,

Williams, D., DeTure, M., Dickson, D. W., Cook, C. N., Seyfried, N. T., Petrucelli, L. &

Fitzpatrick, A. W. P. Posttranslational Modifications Mediate the Structural Diversity

of Tauopathy Strains. en. Cell 180, 633–644.e12 (Feb. 2020) (cit. on p. 108).

11. Keiser, M. J., Roth, B. L., Armbruster, B. N., Ernsberger, P., Irwin, J. J. & Shoichet,

B. K. Relating protein pharmacology by ligand chemistry. en. Nat. Biotechnol. 25,

197–206 (Feb. 2007) (cit. on p. 108).

12. Uhlen, M., Oksvold, P., Fagerberg, L., Lundberg, E., Jonasson, K., Forsberg, M.,

Zwahlen, M., Kampf, C., Wester, K., Hober, S., Wernerus, H., Björling, L. & Pon-

ten, F. Towards a knowledge-based Human Protein Atlas. en. Nat. Biotechnol. 28,

1248–1250 (Dec. 2010) (cit. on p. 108).

13. The Human Protein Atlas http://www.proteinatlas.org. Accessed: 2021-5-12

(cit. on p. 108).

14. Jo, C., Gundemir, S., Pritchard, S., Jin, Y. N., Rahman, I. & Johnson, G. V. W. Nrf2

reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein

NDP52. en. Nat. Commun. 5, 3496 (Mar. 2014) (cit. on p. 109).

15. Hongpaisan, J., Sun, M.-K. & Alkon, D. L. PKC ε activation prevents synaptic loss, Aβ

elevation, and cognitive deficits in Alzheimer’s disease transgenic mice. en. J. Neurosci.

31, 630–643 (Jan. 2011) (cit. on p. 109).

16. Bryostatin Treatment of Moderately Severe Alzheimer’s Disease https : / /

clinicaltrials.gov/ct2/show/NCT04538066?term=bryostatin&draw=

2&rank=3. Accessed: 2021-5-27 (cit. on p. 109).

118

http://www.proteinatlas.org
https://clinicaltrials.gov/ct2/show/NCT04538066?term=bryostatin&draw=2&rank=3
https://clinicaltrials.gov/ct2/show/NCT04538066?term=bryostatin&draw=2&rank=3
https://clinicaltrials.gov/ct2/show/NCT04538066?term=bryostatin&draw=2&rank=3


17. Zhao, J., Li, X., Chen, X., Cai, Y., Wang, Y., Sun, W., Mai, H., Yang, J., Fan, W.,

Tang, P., Ou, M., Zhang, Y., Huang, X., Zhao, B. & Cui, L. GRK5 influences the

phosphorylation of tau via GSK3β and contributes to Alzheimer’s disease. en. J. Cell.

Physiol. 234, 10411–10420 (July 2019) (cit. on p. 109).

18. Duan, L., Hu, M., Tamm, J. A., Grinberg, Y. Y., Shen, F., Chai, Y., Xi, H., Gibilisco,

L., Ravikumar, B., Gautam, V., Karran, E., Townsend, M. & Talanian, R. V. Arrayed

CRISPR reveals genetic regulators of tau aggregation, autophagy and mitochondria in

Alzheimer’s disease model. en. Sci. Rep. 11, 2879 (Feb. 2021) (cit. on p. 110).

19. Blacher, E., Dadali, T., Bespalko, A., Haupenthal, V. J., Grimm, M. O. W., Hartmann,

T., Lund, F. E., Stein, R. & Levy, A. Alzheimer’s disease pathology is attenuated in a

CD38-deficient mouse model 2015 (cit. on p. 110).

20. Study of Daratumumab in Patients With Mild to Moderate Alzheimer’s Disease - Full

Text View - ClinicalTrials.Gov https://clinicaltrials.gov/ct2/show/

NCT04070378. Accessed: 2021-5-27 (cit. on p. 110).

21. Jin, N., Yin, X., Gu, J., Zhang, X., Shi, J., Qian, W., Ji, Y., Cao, M., Gu, X., Ding, F.,

Iqbal, K., Gong, C.-X. & Liu, F. Truncation and Activation of Dual Specificity Tyrosine

Phosphorylation-regulated Kinase 1A by Calpain I: A MOLECULAR MECHANISM

LINKED TO TAU PATHOLOGY IN ALZHEIMER DISEASE*. J. Biol. Chem. 290,

15219–15237 (June 2015) (cit. on p. 110).

22. Woods, Y. L., Cohen, P., Becker, W., Jakes, R., Goedert, M., Wang, X. & Proud, C. G.

The kinase DYRK phosphorylates protein-synthesis initiation factor eIF2B� at Ser539

and the microtubule-associated protein tau at Thr212: potential role for DYRK as a

glycogen synthase kinase 3-priming kinase 2001 (cit. on p. 110).

23. Moore, S., Evans, L. D. B., Andersson, T., Portelius, E., Smith, J., Dias, T. B., Saurat,

N., McGlade, A., Kirwan, P., Blennow, K., Hardy, J., Zetterberg, H. & Livesey, F. J.

APP metabolism regulates tau proteostasis in human cerebral cortex neurons. en. Cell

119

https://clinicaltrials.gov/ct2/show/NCT04070378
https://clinicaltrials.gov/ct2/show/NCT04070378


Rep. 11, 689–696 (May 2015) (cit. on p. 110).

24. Yoshida, H., Hastie, C. J., McLauchlan, H., Cohen, P. & Goedert, M. Phosphorylation

of microtubule-associated protein tau by isoforms of c-Jun N-terminal kinase (JNK).

en. J. Neurochem. 90, 352–358 (July 2004) (cit. on p. 110).

25. Jost, M., Chen, Y., Gilbert, L. A., Horlbeck, M. A., Krenning, L., Menchon, G., Rai,

A., Cho, M. Y., Stern, J. J., Prota, A. E., Kampmann, M., Akhmanova, A., Steinmetz,

M. O., Tanenbaum, M. E. & Weissman, J. S. Combined CRISPRi/a-Based Chemical

Genetic Screens Reveal that Rigosertib Is a Microtubule-Destabilizing Agent. en. Mol.

Cell 68, 210–223.e6 (Oct. 2017) (cit. on p. 110).

26. Gilbert, L. A., Horlbeck, M. A., Adamson, B., Villalta, J. E., Chen, Y., Whitehead,

E. H., Guimaraes, C., Panning, B., Ploegh, H. L., Bassik, M. C., Qi, L. S., Kampmann,

M. & Weissman, J. S. Genome-Scale CRISPR-Mediated Control of Gene Repression

and Activation. en. Cell 159, 647–661 (Oct. 2014) (cit. on p. 110).

27. Mestres, J., Gregori-Puigjané, E., Valverde, S. & Solé, R. V. The topology of drug–

target interaction networks: implicit dependence on drug properties and target families.

Mol. Biosyst. 5, 1051–1057 (2009) (cit. on p. 111).

28. Lounkine, E., Keiser, M. J., Whitebread, S., Mikhailov, D., Hamon, J., Jenkins, J. L.,

Lavan, P., Weber, E., Doak, A. K., Côté, S., Shoichet, B. K. & Urban, L. Large-scale

prediction and testing of drug activity on side-effect targets. en. Nature 486, 361–367

(June 2012) (cit. on p. 111).

29. Scheiber, J., Jenkins, J. L., Sukuru, S. C. K., Bender, A., Mikhailov, D., Milik, M.,

Azzaoui, K., Whitebread, S., Hamon, J., Urban, L., Glick, M. & Davies, J. W. Mapping

adverse drug reactions in chemical space. en. J. Med. Chem. 52, 3103–3107 (May 2009)

(cit. on p. 111).

30. McCarroll, M. N., Gendelev, L., Kinser, R., Taylor, J., Bruni, G., Myers-Turnbull, D.,

Helsell, C., Carbajal, A., Rinaldi, C., Kang, H. J., Gong, J. H., Sello, J. K., Tomita,

120



S., Peterson, R. T., Keiser, M. J. & Kokel, D. Zebrafish behavioural profiling identifies

GABA and serotonin receptor ligands related to sedation and paradoxical excitation.

en. Nat. Commun. 10, 4078 (Sept. 2019) (cit. on p. 111).

31. Iwamoto, M., Björklund, T., Lundberg, C., Kirik, D. & Wandless, T. J. A general

chemical method to regulate protein stability in the mammalian central nervous system.

en. Chem. Biol. 17, 981–988 (Sept. 2010) (cit. on p. 113).

32. Shaner, N. C., Campbell, R. E., Steinbach, P. A., Giepmans, B. N. G., Palmer, A. E. &

Tsien, R. Y. Improved monomeric red, orange and yellow fluorescent proteins derived

from Discosoma sp. red fluorescent protein. en. Nat. Biotechnol. 22, 1567–1572 (Dec.

2004) (cit. on p. 113).

33. Xie, C., Soeda, Y., Shinzaki, Y., In, Y., Tomoo, K., Ihara, Y. & Miyasaka, T. Iden-

tification of key amino acids responsible for the distinct aggregation properties of

microtubule-associated protein 2 and tau. en. J. Neurochem. 135, 19–26 (Oct. 2015)

(cit. on p. 113).

34. Index of /pub/databases/chembl/ChEMBLdb/releases/chembl_26/ https://ftp.

ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_26/.

Accessed: 2021-5-26 (cit. on p. 115).

35. Irwin, J. J., Gaskins, G., Sterling, T., Mysinger, M. M. & Keiser, M. J. Predicted

Biological Activity of Purchasable Chemical Space. en. J. Chem. Inf. Model. 58, 148–

164 (Jan. 2018) (cit. on p. 115).

36. Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A Practical and

Powerful Approach to Multiple Testing 1995 (cit. on p. 116).

121

https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_26/
https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_26/


Appendix A

Supplementary information for

Chapter 1

This section presents the Supplementary Information for “Adding Stochastic Negative Ex-

amples into Machine Learning Improves Molecular Bioactivity Prediction” (Chapter 1).

A.1 Supporting Methods

A.1.1 SNA + SEAblocklisting

We were concerned over the potential impact of choosing structurally similar ligand analogs

as negative examples for SNA. We trained an additional SNA model where predictions from

Similarity Ensemble Approach (SEA) for our dataset were blocklisted from SNA selection

if SEA predicted likely binders. Effectively, we took these predictions and did not allow

the neural network to see these molecule-protein pairs as random transient negatives during

minibatching. From the results in Tables S1,S3 and Figures S1, S2, S5, and S6 we found

that SEA blocklisting of SNA choices during training improved performance of SNA on Drug

Matrix screening benchmarks and Time Split benchmarks, but the bulk magnitude of the
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change was relatively small for all but the mean R2 reported for Drug Matrix with regression

DNNs. Classification results were also improved with very small magnitudes when we applied

SEA blocklisting to SNA training. We concluded, therefore, that there exists a small risk

for negative choice on overall model performance when using SNA. However, as SEA is

also a ligand-based method, we suggest further research into more orthogonal methods of

blocklisting.

A.1.2 Negatives Upweighted

To perform class balancing by upweighting negative examples, we calculated training loss as

defined in Methods then scaled its components by weights based on the positive-to-negative

ratio within the minibatch. We calculated a weight for known negative examples within each

protein task, which is defined as the maximum value of 1.0 or the number of positive examples

for the given target divided by the number of negative examples for the given target. If the

weight was less than 1.0 or Nan (in the case where there are no negative examples), we

set the weighting scheme to 1.0. Finally, the loss of each interaction is multiplied by the

weighting scheme to upweight the impact of existing negatives.

A.1.3 Butina Scaffold Split

To assess whether a strict scaffold split would produce different results from the Time Split

benchmark analysis, we created a scaffold split of all ChEMBL training data. As we per-

formed this analysis retroactively after all other benchmarks, this benchmark operates on

the same dataset as Time Split, and thus a model trained on this split cannot be evaluated

on the Time Split holdout, or vice versa. Using chemfp, we calculated the Tanimoto distance

between ECFP4 1024-bit fingerprints1. Then, we used Taylor-Butina clustering with a cutoff

of 0.4 for Tanimoto2,3. Unassigned singletons were assigned to the cluster belonging to their

closest match if a match exists over 0.4 Tanimoto similarity. Then we split the data into
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a 20% hold out, assigning the largest clusters to Train first similar to Wu et al.4. Cross

validation was performed over 5 random assignments of scaffolds without replacement and

DNN networks were trained as already defined in Methods. Note that in the interests of

time we excluded Fold 1 due to edge case behavior we encountered in it, at outlier batch

sizes ≤2 during training.
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A.2 Supporting Figures and Tables

Table A.1: Mean performance metrics and standard deviation across 5-fold cross for all
regression models. Models with stochastic negatives used a 1:1 positive-to-negative ratio.

Dataset Training Type mean R2 R2 std mean AUROCr AUROCr std mean AUPRCr AUPRCr std

STD 0.1926 0.0186 0.6886 0.0094 0.149 0.0077
STD scrambled 0.0154 0.0092 0.5538 0.0099 0.0816 0.0046
SNA 0.4269 0.0272 0.7833 0.0059 0.4405 0.0079
SNA scrambled 0.0021 0.0023 0.4842 0.0134 0.0687 0.003
Negatives Removed 0.1973 0.0176 0.612 0.0076 0.1039 0.0025
Negatives Removed scrambled 0.0065 0.0032 0.5315 0.0052 0.0756 0.0014
Negatives Removed +SNA 0.4257 0.0179 0.7848 0.0053 0.4484 0.0061
Negatives Upweighted 0.2177 0.0192 0.7024 0.0062 0.167 0.0081
SNA +SEA blacklist

Drugmatrix

0.4411 0.0169 0.7858 0.0051 0.4528 0.0069
STD 0.2152 0.0033 0.7388 0.0024 0.9434 0.0008
STD scrambled 0.0513 0.0032 0.634 0.0033 0.9057 0.001
SNA 0.1863 0.0012 0.7133 0.0025 0.9401 0.0006
SNA scrambled 0.002 0.0016 0.4664 0.0106 0.854 0.0032
Negatives Removed 0.2352 0.0043 0.7223 0.005 0.9385 0.0009
Negatives Removed scrambled 0.0547 0.0029 0.6253 0.0053 0.9024 0.0011
Negatives Removed +SNA 0.1774 0.0018 0.7091 0.0025 0.9385 0.0007
Negatives Upweighted 0.2179 0.0064 0.7418 0.0036 0.9444 0.0011
SNA +SEA blacklist

Time Split

0.1878 0.0021 0.715 0.0012 0.9405 0.0004
STD 0.637 0.0041 0.9036 0.0016 0.9837 0.0004
STD scrambled 0.0741 0.0026 0.6584 0.0014 0.92 0.0019
SNA 0.6428 0.0058 0.9064 0.0026 0.9848 0.0003
SNA scrambled 0.0009 0.0004 0.47 0.0053 0.8685 0.0012
Negatives Removed 0.6034 0.0014 0.8362 0.0024 0.9704 0.0009
Negatives Removed scrambled 0.082 0.0024 0.6474 0.0011 0.9167 0.0016
Negatives Removed +SNA 0.6026 0.0082 0.8799 0.0028 0.9795 0.0004
Negatives Upweighted 0.6268 0.0057 0.9018 0.0017 0.9835 0.0003
SNA +SEA blacklist

Test

0.6462 0.0066 0.907 0.0024 0.9849 0.0003
STD 0.9224 0.0095 0.9809 0.0026 0.9972 0.0004
STD scrambled 0.9212 0.0016 0.9814 0.0002 0.9973 0.0000
SNA 0.8971 0.01 0.975 0.0025 0.9962 0.0004
SNA scrambled 0.8618 0.0217 0.9725 0.0047 0.9958 0.0007
Negatives Removed 0.7842 0.0017 0.8223 0.0012 0.9684 0.0002
Negatives Removed scrambled 0.6454 0.0033 0.6518 0.0021 0.9283 0.0007
Negatives Removed +SNA 0.7875 0.0129 0.9127 0.0027 0.9848 0.0005
Negatives Upweighted 0.8712 0.0163 0.9692 0.0041 0.9954 0.0006
SNA +SEA blacklist

Train

0.9064 0.0069 0.9771 0.0015 0.9965 0.0002
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Table A.2: Mean performance metrics and standard deviation across 5-fold cross for all
classification models. Models with stochastic negatives used a 1:1 positive-to-negative ratio

Dataset Training Type mean AUROC AUROC std mean AUPRC AUPRC std

STD (classifier) 0.7202 0.0050 0.1690 0.0024
STD scrambled (classifier) 0.6070 0.0107 0.1075 0.0063
SNA (classifier) 0.8168 0.0047 0.4240 0.0085
SNA scrambled (classifier) 0.5645 0.0044 0.0845 0.0029
Negatives Removed (classifier) 0.5434 0.0194 0.0794 0.0051
Negatives Removed scrambled (classifier) 0.5275 0.0086 0.0748 0.0033
Negatives Removed +SNA (classifier) 0.8035 0.0034 0.3103 0.0074
Negatives Removed +SNA scrambled (classifier) 0.5440 0.0062 0.0936 0.0015
SNA +SEA blacklist (classifier)

Drug Matrix

0.8199 0.0034 0.4319 0.0054
STD (classifier) 0.7314 0.0044 0.9397 0.0010
STD scrambled (classifier) 0.6955 0.0088 0.9259 0.0028
SNA (classifier) 0.7010 0.0016 0.9346 0.0006
SNA scrambled (classifier) 0.6579 0.0029 0.9144 0.0022
Negatives Removed (classifier) 0.6332 0.0100 0.9099 0.0037
Negatives Removed scrambled (classifier) 0.6262 0.0056 0.9069 0.0024
Negatives Removed +SNA (classifier) 0.6542 0.0031 0.9187 0.0011
Negatives Removed +SNA scrambled (classifier) 0.5739 0.0055 0.8893 0.0018
SNA +SEA blacklist (classifier)

Time Split

0.7031 0.0018 0.9354 0.0005
STD (classifier) 0.9044 0.0019 0.9827 0.0001
STD scrambled (classifier) 0.7401 0.0038 0.9419 0.0022
SNA (classifier) 0.9010 0.0014 0.9823 0.0003
SNA scrambled (classifier) 0.7354 0.0035 0.9407 0.0012
Negatives Removed (classifier) 0.6642 0.0075 0.9238 0.0026
Negatives Removed scrambled (classifier) 0.6255 0.0088 0.9111 0.0014
Negatives Removed +SNA (classifier) 0.7091 0.0048 0.9343 0.0020
Negatives Removed +SNA scrambled (classifier) 0.6233 0.0065 0.9110 0.0014
SNA +SEA blacklist (classifier)

Test

0.9004 0.0011 0.9822 0.0003
STD (classifier) 0.9606 0.0033 0.9937 0.0006
STD scrambled (classifier) 0.8162 0.0110 0.9665 0.0028
SNA (classifier) 0.9652 0.0023 0.9944 0.0004
SNA scrambled (classifier) 0.7473 0.0021 0.9433 0.0016
Negatives Removed (classifier) 0.6655 0.0106 0.9241 0.0026
Negatives Removed scrambled (classifier) 0.6264 0.0052 0.9113 0.0019
Negatives Removed +SNA (classifier) 0.7178 0.0028 0.9359 0.0008
Negatives Removed +SNA scrambled (classifier) 0.6232 0.0047 0.9110 0.0017
SNA +SEA blacklist (classifier)

Train

0.9593 0.0010 0.9933 0.0002

Table A.3: ChEMBL activity relation actions.

ChEMBL activity Dataset action

’=’ or ’<’ accept pAC50 value as is
’>’ Add np.random 2-3 logs to reported pAC50
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Table A.4: Positive and Negative splits for Validation, Train, Time Split, and Drug Matrix

Dataset Num Positives Num Negatives Total Percent Positive Percent Negative

Train All 403409 154826 558235 72.3 27.7
Test Fold 0 80861 31341 112202 72.1 27.9
Train Fold 0 322548 123485 446033 72.3 27.7
Test Fold 1 81373 32890 114263 71.2 28.8
Train Fold 1 322036 121936 443972 72.5 27.5
Test Fold 2 79566 29624 109190 72.9 27.1
Train Fold 2 323843 125202 449045 72.1 27.9
Test Fold 3 80312 29874 110186 72.9 27.1
Train Fold 3 323097 124952 448049 72.1 27.9
Test Fold 4 81297 31097 112394 72.3 27.7
Train Fold 4 322112 123729 445841 72.2 27.8
Time Split 83155 33774 116929 71.1 28.9
Drug Matrix (dose response) 2714 330 3044 89.2 10.8
Drug Matrix (primary) 2714 35451 38165 7.1 92.9
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Table A.5: Regression performance for SNA models across multiple positive to negative
ratios.

Dataset Model
Pos:Neg

Ratio

Target

Min

%Neg

Target

%Pos
AUROCr

AUROCr

std
AUPRCr

AUPRCr

std
R2 R2

std

0.0000 0.0 100.0 0.6120 0.0076 0.1039 0.0025 0.1973 0.0176

0.0753 93.0 7.0 0.7404 0.0059 0.3937 0.0043 0.3529 0.0139

0.1111 90.0 10.0 0.7495 0.0053 0.4061 0.0073 0.3654 0.0207

0.2500 80.0 20.0 0.7671 0.0060 0.4270 0.0070 0.3865 0.0171

0.4286 70.0 30.0 0.7708 0.0061 0.4308 0.0085 0.3912 0.0193

0.6666 60.0 40.0 0.7757 0.0104 0.4403 0.0104 0.4060 0.0185

0.8182 55.0 45.0 0.7864 0.0082 0.4456 0.0087 0.4245 0.0249

1.0000 50.0 50.0 0.7848 0.0053 0.4479 0.0062 0.4257 0.0179

1.2222 45.0 55.0 0.7937 0.0078 0.4534 0.0099 0.4327 0.0226

1.5000 40.0 60.0 0.7969 0.0115 0.4528 0.0106 0.4317 0.0202

2.3333 30.0 70.0 0.7798 0.0053 0.3695 0.0186 0.4321 0.0139

4.0000 20.0 80.0 0.7358 0.0055 0.2457 0.0165 0.3966 0.0163

9.0000 10.0 90.0 0.6482 0.0070 0.1195 0.0052 0.2816 0.0150

Negs

Rem.

+SNA

19.0000 5.0 95.0 0.6124 0.0077 0.1042 0.0054 0.2033 0.0087

0.0000 0.0 100.0 0.6886 0.0094 0.1490 0.0077 0.1926 0.0186

0.0753 93.0 7.0 0.7474 0.0103 0.4032 0.0070 0.3641 0.0215

0.1111 90.0 10.0 0.7540 0.0098 0.4166 0.0087 0.3800 0.0202

0.2500 80.0 20.0 0.7697 0.0070 0.4380 0.0048 0.4028 0.0202

0.4286 70.0 30.0 0.7721 0.0078 0.4367 0.0057 0.4092 0.0203

0.6666 60.0 40.0 0.7799 0.0034 0.4433 0.0018 0.4187 0.0166

0.8182 55.0 45.0 0.7857 0.0064 0.4453 0.0040 0.4239 0.0166

1.0000 50.0 50.0 0.7841 0.0061 0.4428 0.0054 0.4282 0.0215

1.2222 45.0 55.0 0.7901 0.0032 0.4502 0.0024 0.4329 0.0151

1.5000 40.0 60.0 0.7908 0.0032 0.4490 0.0062 0.4341 0.0159

2.3333 30.0 70.0 0.7803 0.0066 0.3702 0.0194 0.4383 0.0194

4.0000 20.0 80.0 0.7434 0.0066 0.2504 0.0159 0.3987 0.0093

9.0000 10.0 90.0 0.7012 0.0064 0.1661 0.0065 0.3184 0.0152

Drug

Matrix

SNA

19.0000 5.0 95.0 0.6831 0.0063 0.1477 0.0042 0.2172 0.0229

0.0000 0.0 100.0 0.8362 0.0024 0.9704 0.0009 0.6034 0.0014

0.0753 93.0 7.0 0.8511 0.0021 0.9741 0.0003 0.4798 0.0053

0.1111 90.0 10.0 0.8600 0.0023 0.9760 0.0003 0.5137 0.0066

0.2500 80.0 20.0 0.8730 0.0025 0.9784 0.0004 0.5631 0.0072

0.4286 70.0 30.0 0.8782 0.0024 0.9793 0.0002 0.5852 0.0055
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Table A.5: Regression performance for SNA models across multiple positive to negative
ratios.

Dataset Model
Pos:Neg

Ratio

Target

Min

%Neg

Target

%Pos
AUROCr

AUROCr

std
AUPRCr

AUPRCr

std
R2 R2

std

0.6666 60.0 40.0 0.8790 0.0027 0.9795 0.0004 0.5910 0.0085

0.8182 55.0 45.0 0.8779 0.0027 0.9792 0.0004 0.5966 0.0051

1.0000 50.0 50.0 0.8799 0.0028 0.9795 0.0004 0.6026 0.0082

1.2222 45.0 55.0 0.8801 0.0033 0.9796 0.0005 0.6036 0.0079

1.5000 40.0 60.0 0.8793 0.0018 0.9794 0.0004 0.6040 0.0053

2.3333 30.0 70.0 0.8745 0.0035 0.9783 0.0010 0.6203 0.0032

4.0000 20.0 80.0 0.8649 0.0024 0.9764 0.0007 0.6205 0.0019

9.0000 10.0 90.0 0.8465 0.0023 0.9727 0.0008 0.6084 0.0021

Negs

Rem.

+SNA

19.0000 5.0 95.0 0.8358 0.0028 0.9705 0.0008 0.6017 0.0024

0.0000 0.0 100.0 0.9036 0.0016 0.9837 0.0004 0.6370 0.0041

0.0753 93.0 7.0 0.8674 0.0020 0.9778 0.0002 0.5122 0.0044

0.1111 90.0 10.0 0.8799 0.0024 0.9802 0.0002 0.5521 0.0063

0.2500 80.0 20.0 0.8962 0.0022 0.9831 0.0002 0.6074 0.0068

0.4286 70.0 30.0 0.9022 0.0028 0.9841 0.0003 0.6277 0.0068

0.6666 60.0 40.0 0.9035 0.0027 0.9843 0.0002 0.6328 0.0066

0.8182 55.0 45.0 0.9055 0.0024 0.9846 0.0003 0.6408 0.0049

1.0000 50.0 50.0 0.9061 0.0025 0.9847 0.0003 0.6419 0.0054

1.2222 45.0 55.0 0.9064 0.0023 0.9848 0.0003 0.6432 0.0066

1.5000 40.0 60.0 0.9070 0.0027 0.9849 0.0002 0.6451 0.0076

2.3333 30.0 70.0 0.9085 0.0012 0.9849 0.0003 0.6520 0.0034

4.0000 20.0 80.0 0.9076 0.0019 0.9846 0.0004 0.6516 0.0039

9.0000 10.0 90.0 0.9069 0.0027 0.9844 0.0004 0.6509 0.0051

Test

SNA

19.0000 5.0 95.0 0.9066 0.0024 0.9842 0.0005 0.6501 0.0043

0.0000 0.0 100.0 0.7223 0.0050 0.9385 0.0009 0.2352 0.0043

0.0753 93.0 7.0 0.7025 0.0016 0.9360 0.0004 0.1608 0.0013

0.1111 90.0 10.0 0.7011 0.0008 0.9359 0.0002 0.1616 0.0013

0.2500 80.0 20.0 0.7032 0.0019 0.9367 0.0004 0.1677 0.0011

0.4286 70.0 30.0 0.7028 0.0011 0.9367 0.0002 0.1691 0.0017
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Table A.5: Regression performance for SNA models across multiple positive to negative
ratios.

Dataset Model
Pos:Neg

Ratio

Target

Min

%Neg

Target

%Pos
AUROCr

AUROCr

std
AUPRCr

AUPRCr

std
R2 R2

std

0.6666 60.0 40.0 0.7049 0.0014 0.9374 0.0004 0.1720 0.0016

0.8182 55.0 45.0 0.7070 0.0023 0.9379 0.0006 0.1764 0.0018

1.0000 50.0 50.0 0.7091 0.0025 0.9385 0.0007 0.1774 0.0018

1.2222 45.0 55.0 0.7098 0.0026 0.9387 0.0006 0.1793 0.0035

1.5000 40.0 60.0 0.7111 0.0019 0.9390 0.0004 0.1792 0.0012

2.3333 30.0 70.0 0.6973 0.0012 0.9356 0.0004 0.1820 0.0027

4.0000 20.0 80.0 0.7005 0.0025 0.9347 0.0007 0.1899 0.0052

9.0000 10.0 90.0 0.7166 0.0021 0.9380 0.0007 0.2163 0.0040

Negs

Rem.

+SNA

19.0000 5.0 95.0 0.7277 0.0056 0.9398 0.0012 0.2437 0.0061

0.0000 0.0 100.0 0.7388 0.0024 0.9434 0.0008 0.2152 0.0033

0.0753 93.0 7.0 0.7015 0.0012 0.9369 0.0004 0.1682 0.0011

0.1111 90.0 10.0 0.7037 0.0015 0.9377 0.0004 0.1731 0.0015

0.2500 80.0 20.0 0.7060 0.0020 0.9383 0.0006 0.1785 0.0017

0.4286 70.0 30.0 0.7090 0.0016 0.9391 0.0005 0.1825 0.0028

0.6666 60.0 40.0 0.7104 0.0033 0.9392 0.0007 0.1835 0.0018

0.8182 55.0 45.0 0.7113 0.0023 0.9395 0.0006 0.1846 0.0024

1.0000 50.0 50.0 0.7109 0.0023 0.9395 0.0006 0.1831 0.0028

1.2222 45.0 55.0 0.7122 0.0029 0.9398 0.0007 0.1838 0.0022

1.5000 40.0 60.0 0.7129 0.0023 0.9400 0.0006 0.1843 0.0023

2.3333 30.0 70.0 0.7131 0.0033 0.9398 0.0007 0.1911 0.0024

4.0000 20.0 80.0 0.7210 0.0022 0.9406 0.0005 0.1997 0.0036

9.0000 10.0 90.0 0.7329 0.0018 0.9426 0.0004 0.2154 0.0021

Time

Split

SNA

19.0000 5.0 95.0 0.7380 0.0041 0.9431 0.0011 0.2213 0.0050

0.0000 0.0 100.0 0.8223 0.0012 0.9684 0.0002 0.7842 0.0017

0.0753 93.0 7.0 0.8775 0.0014 0.9787 0.0002 0.5620 0.0036

0.1111 90.0 10.0 0.8905 0.0015 0.9811 0.0003 0.6236 0.0043

0.2500 80.0 20.0 0.9090 0.0017 0.9843 0.0003 0.7247 0.0037

0.4286 70.0 30.0 0.9154 0.0017 0.9853 0.0003 0.7744 0.0097
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Table A.5: Regression performance for SNA models across multiple positive to negative
ratios.

Dataset Model
Pos:Neg

Ratio

Target

Min

%Neg

Target

%Pos
AUROCr

AUROCr

std
AUPRCr

AUPRCr

std
R2 R2

std

0.6666 60.0 40.0 0.9158 0.0028 0.9854 0.0004 0.7835 0.0118

0.8182 55.0 45.0 0.9095 0.0020 0.9842 0.0004 0.7726 0.0108

1.0000 50.0 50.0 0.9127 0.0027 0.9848 0.0005 0.7875 0.0129

1.2222 45.0 55.0 0.9123 0.0038 0.9847 0.0006 0.7887 0.0166

1.5000 40.0 60.0 0.9104 0.0017 0.9843 0.0003 0.7840 0.0088

2.3333 30.0 70.0 0.8950 0.0036 0.9817 0.0005 0.8049 0.0133

4.0000 20.0 80.0 0.8756 0.0016 0.9783 0.0003 0.8074 0.0062

9.0000 10.0 90.0 0.8450 0.0007 0.9727 0.0002 0.7918 0.0085

Negs

Rem

+SNA

19.0000 5.0 95.0 0.8240 0.0021 0.9688 0.0005 0.7840 0.0039

0.0000 0.0 100.0 0.9809 0.0026 0.9972 0.0004 0.9224 0.0095

0.0753 93.0 7.0 0.8966 0.0006 0.9830 0.0001 0.5984 0.0011

0.1111 90.0 10.0 0.9156 0.0007 0.9864 0.0002 0.6670 0.0021

0.2500 80.0 20.0 0.9462 0.0009 0.9916 0.0002 0.7859 0.0040

0.4286 70.0 30.0 0.9623 0.0010 0.9942 0.0001 0.8487 0.0028

0.6666 60.0 40.0 0.9673 0.0009 0.9950 0.0001 0.8687 0.0025

0.8182 55.0 45.0 0.9733 0.0012 0.9959 0.0002 0.8912 0.0048

1.0000 50.0 50.0 0.9753 0.0017 0.9962 0.0003 0.8984 0.0061

1.2222 45.0 55.0 0.9746 0.0018 0.9961 0.0003 0.8961 0.0074

1.5000 40.0 60.0 0.9762 0.0016 0.9964 0.0002 0.9022 0.0075

2.3333 30.0 70.0 0.9832 0.0017 0.9975 0.0003 0.9287 0.0062

4.0000 20.0 80.0 0.9861 0.0007 0.9979 0.0001 0.9399 0.0032

9.0000 10.0 90.0 0.9844 0.0026 0.9977 0.0004 0.9339 0.0097

Train

SNA

19.0000 5.0 95.0 0.9830 0.0042 0.9974 0.0006 0.9296 0.0165
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Table A.6: Classification performance for SNA models across multiple positive to negative
ratios.

Dataset Model
Pos:Neg

Ratio

Target

Min

%Neg

Target

%Pos
AUROC

AUROC

std
AUPRC

AUPRC

std

0.0000 0.0 100.0 0.5434 0.0194 0.0794 0.0051

0.0753 93.0 7.0 0.7391 0.0022 0.2235 0.0012

0.1111 90.0 10.0 0.7515 0.0020 0.2570 0.0016

0.2500 80.0 20.0 0.7787 0.0089 0.2667 0.0158

0.4286 70.0 30.0 0.7934 0.0026 0.2940 0.0066

0.6666 60.0 40.0 0.8003 0.0025 0.3035 0.0038

0.8182 55.0 45.0 0.8014 0.0034 0.3138 0.0048

1.0000 50.0 50.0 0.8035 0.0034 0.3103 0.0074

1.2222 45.0 55.0 0.8064 0.0037 0.3116 0.0065

1.5000 40.0 60.0 0.8086 0.0035 0.3060 0.0091

2.3333 30.0 70.0 0.7690 0.0040 0.2832 0.0104

4.0000 20.0 80.0 0.6846 0.0041 0.1558 0.0120

9.0000 10.0 90.0 0.5331 0.0188 0.0834 0.0060

Negs

Rem.

+SNA

19.0000 5.0 95.0 0.5466 0.0059 0.0777 0.0012

0.0000 0.0 100.0 0.7202 0.0050 0.1690 0.0024

0.0753 93.0 7.0 0.7870 0.0034 0.3258 0.0038

0.1111 90.0 10.0 0.7952 0.0048 0.3485 0.0051

0.2500 80.0 20.0 0.8095 0.0028 0.4038 0.0059

0.4286 70.0 30.0 0.8113 0.0038 0.4159 0.0050

0.6666 60.0 40.0 0.8167 0.0017 0.4235 0.0041

0.8182 55.0 45.0 0.8119 0.0040 0.4176 0.0085

1.0000 50.0 50.0 0.8168 0.0047 0.4240 0.0085

1.2222 45.0 55.0 0.8216 0.0042 0.4280 0.0064

1.5000 40.0 60.0 0.8228 0.0038 0.4248 0.0041

2.3333 30.0 70.0 0.8051 0.0025 0.3924 0.0074

4.0000 20.0 80.0 0.7789 0.0033 0.3115 0.0105

9.0000 10.0 90.0 0.7470 0.0028 0.2151 0.0104

Drug

Matrix

SNA

19.0000 5.0 95.0 0.7136 0.0019 0.1637 0.0041

0.0000 0.0 100.0 0.6642 0.0075 0.9238 0.0026

0.0753 93.0 7.0 0.6342 0.0021 0.9226 0.0020

0.1111 90.0 10.0 0.6713 0.0017 0.9273 0.0016

0.2500 80.0 20.0 0.6930 0.0044 0.9306 0.0019

0.4286 70.0 30.0 0.7018 0.0033 0.9324 0.0010
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Table A.6: Classification performance for SNA models across multiple positive to negative
ratios.

Dataset Model
Pos:Neg

Ratio

Target

Min

%Neg

Target

%Pos
AUROC

AUROC

std
AUPRC

AUPRC

std

0.6666 60.0 40.0 0.7057 0.0033 0.9332 0.0022

0.8182 55.0 45.0 0.7085 0.0028 0.9340 0.0014

1.0000 50.0 50.0 0.7091 0.0048 0.9343 0.0020

1.2222 45.0 55.0 0.7097 0.0034 0.9344 0.0015

1.5000 40.0 60.0 0.7073 0.0040 0.9338 0.0024

2.3333 30.0 70.0 0.6774 0.0045 0.9296 0.0016

4.0000 20.0 80.0 0.6177 0.0059 0.9122 0.0028

9.0000 10.0 90.0 0.5692 0.0154 0.8976 0.0034

Negs

Rem.

+SNA

19.0000 5.0 95.0 0.6538 0.0073 0.9201 0.0016

0.0000 0.0 100.0 0.9044 0.0019 0.9827 0.0001

0.0753 93.0 7.0 0.8074 0.0017 0.9626 0.0005

0.1111 90.0 10.0 0.8297 0.0066 0.9677 0.0014

0.2500 80.0 20.0 0.8706 0.0019 0.9763 0.0004

0.4286 70.0 30.0 0.8881 0.0019 0.9799 0.0003

0.6666 60.0 40.0 0.8926 0.0018 0.9807 0.0002

0.8182 55.0 45.0 0.8999 0.0015 0.9821 0.0003

1.0000 50.0 50.0 0.9010 0.0014 0.9823 0.0003

1.2222 45.0 55.0 0.8993 0.0072 0.9820 0.0014

1.5000 40.0 60.0 0.9030 0.0013 0.9827 0.0004

2.3333 30.0 70.0 0.9063 0.0013 0.9833 0.0004

4.0000 20.0 80.0 0.9057 0.0024 0.9831 0.0004

9.0000 10.0 90.0 0.9052 0.0023 0.9829 0.0003

Test

SNA

19.0000 5.0 95.0 0.9031 0.0032 0.9825 0.0003

0.0000 0.0 100.0 0.6332 0.0100 0.9099 0.0037

0.0753 93.0 7.0 0.5904 0.0007 0.9036 0.0006

0.1111 90.0 10.0 0.6339 0.0009 0.9134 0.0003

0.2500 80.0 20.0 0.6454 0.0037 0.9168 0.0015

0.4286 70.0 30.0 0.6534 0.0018 0.9192 0.0003
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Table A.6: Classification performance for SNA models across multiple positive to negative
ratios.

Dataset Model
Pos:Neg

Ratio

Target

Min

%Neg

Target

%Pos
AUROC

AUROC

std
AUPRC

AUPRC

std

0.6666 60.0 40.0 0.6554 0.0019 0.9193 0.0007

0.8182 55.0 45.0 0.6569 0.0013 0.9197 0.0003

1.0000 50.0 50.0 0.6542 0.0031 0.9187 0.0011

1.2222 45.0 55.0 0.6574 0.0013 0.9194 0.0001

1.5000 40.0 60.0 0.6546 0.0028 0.9189 0.0006

2.3333 30.0 70.0 0.6247 0.0015 0.9123 0.0008

4.0000 20.0 80.0 0.5893 0.0054 0.8951 0.0017

9.0000 10.0 90.0 0.5745 0.0064 0.8916 0.0041

Negs

Rem.

+SNA

19.0000 5.0 95.0 0.6259 0.0086 0.9058 0.0035

0.0000 0.0 100.0 0.7314 0.0044 0.9397 0.0010

0.0753 93.0 7.0 0.6791 0.0012 0.9281 0.0003

0.1111 90.0 10.0 0.6829 0.0010 0.9294 0.0003

0.2500 80.0 20.0 0.6890 0.0006 0.9320 0.0003

0.4286 70.0 30.0 0.6954 0.0007 0.9336 0.0002

0.6666 60.0 40.0 0.6950 0.0011 0.9333 0.0005

0.8182 55.0 45.0 0.6982 0.0026 0.9338 0.0007

1.0000 50.0 50.0 0.7010 0.0016 0.9346 0.0006

1.2222 45.0 55.0 0.7029 0.0040 0.9350 0.0012

1.5000 40.0 60.0 0.7012 0.0023 0.9343 0.0008

2.3333 30.0 70.0 0.7134 0.0037 0.9374 0.0012

4.0000 20.0 80.0 0.7226 0.0026 0.9387 0.0009

9.0000 10.0 90.0 0.7302 0.0031 0.9398 0.0007

Time

Split

SNA

19.0000 5.0 95.0 0.7321 0.0022 0.9401 0.0006

0.0000 0.0 100.0 0.6655 0.0106 0.9241 0.0026

0.0753 93.0 7.0 0.6363 0.0019 0.9232 0.0008

0.1111 90.0 10.0 0.6750 0.0009 0.9281 0.0007

0.2500 80.0 20.0 0.7001 0.0022 0.9321 0.0009

0.4286 70.0 30.0 0.7087 0.0040 0.9337 0.0013
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Table A.6: Classification performance for SNA models across multiple positive to negative
ratios.

Dataset Model
Pos:Neg

Ratio

Target

Min

%Neg

Target

%Pos
AUROC

AUROC

std
AUPRC

AUPRC

std

0.6666 60.0 40.0 0.7138 0.0027 0.9349 0.0007

0.8182 55.0 45.0 0.7169 0.0005 0.9356 0.0005

1.0000 50.0 50.0 0.7178 0.0028 0.9359 0.0008

1.2222 45.0 55.0 0.7184 0.0017 0.9361 0.0008

1.5000 40.0 60.0 0.7153 0.0039 0.9352 0.0009

2.3333 30.0 70.0 0.6831 0.0039 0.9308 0.0014

4.0000 20.0 80.0 0.6204 0.0043 0.9126 0.0015

9.0000 10.0 90.0 0.5712 0.0151 0.8981 0.0037

Negs

Rem

+SNA

19.0000 5.0 95.0 0.6552 0.0086 0.9204 0.0026

0.0000 0.0 100.0 0.9606 0.0033 0.9937 0.0006

0.0753 93.0 7.0 0.8277 0.0009 0.9669 0.0002

0.1111 90.0 10.0 0.8547 0.0075 0.9728 0.0017

0.2500 80.0 20.0 0.9101 0.0011 0.9841 0.0002

0.4286 70.0 30.0 0.9387 0.0009 0.9896 0.0002

0.6666 60.0 40.0 0.9471 0.0012 0.9912 0.0002

0.8182 55.0 45.0 0.9640 0.0009 0.9942 0.0002

1.0000 50.0 50.0 0.9652 0.0023 0.9944 0.0004

1.2222 45.0 55.0 0.9586 0.0176 0.9931 0.0033

1.5000 40.0 60.0 0.9698 0.0020 0.9952 0.0003

2.3333 30.0 70.0 0.9674 0.0032 0.9948 0.0005

4.0000 20.0 80.0 0.9648 0.0027 0.9944 0.0005

9.0000 10.0 90.0 0.9619 0.0016 0.9939 0.0003

Train

SNA

19.0000 5.0 95.0 0.9596 0.0054 0.9935 0.0010
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Table A.7: Regression performance for Butina Split SNA models.

Model Dataset mean R2 R2 std mean AUROCr AUROCr std mean AUPRCr AUPRCr std

STD 0.1547 0.0026 0.6683 0.005 0.1342 0.0029
STD scrambled 0.0112 0.009 0.5196 0.0061 0.0735 0.0012
SNA 0.3939 0.0521 0.7863 0.0075 0.4273 0.0109
SNA scrambled 0.0022 0.0015 0.5027 0.0093 0.0737 0.0017
Negatives Removed 0.1794 0.0226 0.6249 0.0081 0.1078 0.0043
Negatives Removed scrambled 0.0083 0.0094 0.5069 0.0057 0.0707 0.0017
Negatives Removed +SNA 0.3832 0.0388 0.7956 0.002 0.4224 0.0182
Negatives Removed + SNA scrambled

Drug Matrix

0.0043 0.0049 0.4712 0.0386 0.0717 0.0102
STD 0.3692 0.0027 0.8092 0.0026 0.9435 0.0007
STD scrambled 0.0687 0.0027 0.6428 0.0027 0.869 0.0004
SNA 0.3201 0.0021 0.7936 0.0023 0.9434 0.0006
SNA scrambled 0.0009 0.0005 0.4786 0.0032 0.8074 0.0023
Negatives Removed 0.3411 0.0065 0.7618 0.0018 0.9263 0.0008
Negatives Removed scrambled 0.0841 0.0034 0.652 0.0023 0.871 0.0021
Negatives Removed +SNA 0.2594 0.0201 0.7608 0.0094 0.9305 0.0042
Negatives Removed + SNA scrambled

Butina Scaffold Split

0.0013 0.0016 0.5101 0.0181 0.8234 0.009
STD 0.3229 0.0111 0.8147 0.006 0.9682 0.0029
STD scrambled 0.0543 0.0072 0.646 0.0108 0.9241 0.0059
SNA 0.2747 0.0169 0.7946 0.0087 0.967 0.0029
SNA scrambled 0.0004 0.0003 0.4776 0.0025 0.8831 0.0044
Negatives Removed 0.2578 0.022 0.782 0.0072 0.9613 0.0032
Negatives Removed scrambled 0.0531 0.0105 0.656 0.0058 0.9251 0.0037
NEG_RM_SNA 0.219 0.0136 0.7619 0.0116 0.9599 0.0034
NEG_RM_SNA_scrambled

Butina Split Validation

0.001 0.0007 0.5095 0.0168 0.8942 0.0078
STD 0.9411 0.0082 0.9857 0.0019 0.9981 0.0003
STD scrambled 0.9615 0.005 0.9909 0.0014 0.9988 0.0002
SNA 0.8515 0.0276 0.9638 0.0063 0.9949 0.001
SNA scrambled 0.7372 0.0123 0.9453 0.0038 0.9922 0.0007
Negatives Removed 0.7661 0.0113 0.8349 0.0015 0.9731 0.0005
Negatives Removed scrambled 0.5441 0.0091 0.6965 0.0039 0.9406 0.0014
Negatives Removed +SNA 0.6906 0.1007 0.8913 0.0226 0.9824 0.0042
Negatives Removed + SNA scrambled

Train

0.4269 0.0216 0.8472 0.0064 0.9734 0.0016
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Table A.8: Classification performance for Butina Split SNA models.

Model Dataset mean AUROC AUROC std mean AUPRC AUPRC std

STD (classifier) 0.6976 0.0035 0.1610 0.0046
STD scrambled (classifier) 0.5673 0.0119 0.0819 0.0038
SNA (classifier) 0.8012 0.0139 0.3660 0.0241
SNA scrambled (classifier) 0.5547 0.0104 0.0796 0.0043
Negatives Removed (classifier) 0.5763 0.0088 0.0887 0.0024
Negatives Removed scrambled (classifier) 0.5514 0.0100 0.0821 0.0027
Negatives Removed +SNA (classifier) 0.7960 0.0060 0.3115 0.0041
Negatives Removed +SNA scrambled (classifier)

Drug Matrix

0.5414 0.0116 0.0823 0.0043
STD (classifier) 0.7955 0.0010 0.9376 0.0004
STD scrambled (classifier) 0.7117 0.0023 0.9012 0.0019
SNA (classifier) 0.7362 0.0073 0.9186 0.0030
Negatives Removed (classifier) 0.6674 0.0028 0.8776 0.0024
SNA scrambled (classifier) 0.6558 0.0016 0.8772 0.0015
Negatives Removed scrambled (classifier) 0.6574 0.0032 0.8765 0.0020
Negatives Removed +SNA (classifier) 0.6522 0.0009 0.8812 0.0011
Negatives Removed +SNA scrambled (classifier)

Butina Scaffold Split

0.5714 0.0078 0.8427 0.0046
STD (classifier) 0.7987 0.0169 0.9639 0.0048
STD scrambled (classifier) 0.7156 0.0199 0.9424 0.0073
SNA (classifier) 0.7463 0.0125 0.9534 0.0045
SNA scrambled (classifier) 0.6998 0.0188 0.9346 0.0095
Negatives Removed (classifier) 0.6489 0.0082 0.9267 0.0056
Negatives Removed scrambled (classifier) 0.6044 0.0129 0.9135 0.0064
Negatives Removed +SNA (classifier) 0.6537 0.0225 0.9276 0.0088
Negatives Removed +SNA scrambled (classifier)

Butina Split Validation

0.5802 0.0083 0.9080 0.0061
STD (classifier) 0.9093 0.0047 0.9855 0.0010
STD scrambled (classifier) 0.7747 0.0036 0.9576 0.0013
SNA (classifier) 0.8601 0.0174 0.9758 0.0035
SNA scrambled (classifier) 0.7588 0.0043 0.9527 0.0013
Negatives Removed (classifier) 0.6781 0.0038 0.9331 0.0018
Negatives Removed scrambled (classifier) 0.6333 0.0041 0.9203 0.0023
Negatives Removed +SNA (classifier) 0.7197 0.0066 0.9420 0.0022
Negatives Removed +SNA scrambled (classifier)

Train

0.6090 0.0052 0.9159 0.0024
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Figure A.1: Drug Matrix performance for all regression models. Note: R2 values for SNA
scrambled and Negatives Removed +SNA are close to 0.0

Figure A.2: Time Split performance for all regression models. Note: R2 values for SNA
scrambled and Negatives Removed +SNA are close to 0.0
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Figure A.3: Train performance for all regression models

Figure A.4: Validation performance for all regression
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Figure A.5: Drug Matrix performance for all classification models

Figure A.6: Time Split performance for all classification models.
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Figure A.7: Validation performance for all classification models.

Figure A.8: Train performance for all classification models.
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Figure A.9: STD model R2 plots for Drug Matrix (column 1), Time Split (column 2),
Validation(column 3), and Train (column 4) across each fold (0-4, top to bottom, increasing).
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Figure A.10: SNA model R2 plots for Drug Matrix (column 1), Time Split (column 2),
Validation (column 3), and Train (column 4) across each fold (0-4, top to bottom, increasing).
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Figure A.11: Negatives Removed DNN R2 plots for Drug Matrix (column 1), Time Split
(column 2), Validation(column 3), and Train (column 4) across each fold (0-4, top to bottom,
increasing).
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Figure A.12: Negatives Removed +SNA DNN R2 plots for Drug Matrix (column 1), Time
Split (column 2), Validation (column 3), and Train (column 4) across each fold (0-4, top to
bottom, increasing).
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Figure A.13: STD scrambled (y-randomized training set control) DNN R2 plots for Drug
Matrix (column 1), Time Split (column 2), Validation (column 3), and Train (column 4)
across each fold (0-4, top to bottom, increasing).
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Figure A.14: SNA scrambled (y-randomized training set control with stochastic negatives)
DNN R2 plots for Drug Matrix (column 1), Time Split (column 2), Validation (column 3),
and Train (column 4) across each fold (0-4, top to bottom, increasing).
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Figure A.15: Negatives Removed scrambled (y-randomized training set control with Neg-
atives removed from the training set) DNN R2 plots for Drug Matrix (column 1), Time
Split (column 2), Validation (column 3), and Train (column 4) across each fold (0-4, top to
bottom, increasing). Note that “Train” (rightmost column) plots show a discontinuity at y
< 5 because this is a Negatives Removed scenario, such that these negative examples were
removed during model training, but nonetheless retained and used for model evaluation in
this plot.
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Figure A.16: Negatives Removed +SNA scrambled (y-randomized training set control with
stochastic negatives) DNN R2 plots for Drug Matrix (column 1), Time Split (column 2),
Validation (column 3), and Train (column 4) across each fold (0-4, top to bottom, increasing).
Note that “Train” (rightmost column) plots show a discontinuity at y < 5 (although less than
that of Figure S15) because this is a Negatives Removed scenario, such that these negative
examples were removed during model training, but nonetheless retained and used for model
evaluation in this plot.
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Figure A.17: AUPRC plots for SNA, STD, SNA scrambled, and STD scrambled classification
DNNs for Drug Matrix (upper left), Time Split (upper right), Validation (lower left), and
Train (lower right). Each fold is plotted individually, with the mean AUPRC plotted with a
thicker line.
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Figure A.18: AUROC plots for SNA, STD, SNA scrambled, and STD scrambled classification
DNNs for Drug Matrix (upper left), Time Split (upper right), Validation (lower left), and
Train (lower right). Each fold is plotted individually, with the mean AUROC plotted with
a thicker line.
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Figure A.19: AUPRCr plots for SNA, STD, SNA scrambled, and STD scrambled regression
DNNs for Drug Matrix (upper left), Time Split (upper right), Validation (lower left), and
Train (lower right). Each fold is plotted individually, with the mean AUPRCr plotted with
a thicker line.
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Figure A.20: AUROCr plots for SNA, STD, SNA scrambled, and STD scrambled regression
DNNs for Drug Matrix (upper left), Time Split (upper right), Validation (lower left), and
Train (lower right). Each fold is plotted individually, with the mean AUROCr plotted with
a thicker line.
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Figure A.21: AUPRC plots for Negatives Removed, Negatives Removed +SNA, Negatives
Removed scrambled, and Negatives Removed +SNA scrambled classification DNNs for Drug
Matrix (upper left), Time Split (upper right), Validation (lower left), and Train (lower right).
Each fold is plotted individually, with the mean AUPRC plotted with a thicker line.
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Figure A.22: AUROC plots for Negatives Removed, Negatives Removed +SNA, Negatives
Removed scrambled, and Negatives Removed +SNA scrambled classification DNNs for Drug
Matrix (upper left), Time Split (upper right), Validation (lower left), and Train (lower right).
Each fold is plotted individually, with the mean AUROC plotted with a thicker line.
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Figure A.23: AUPRCr plots for Negatives Removed, Negatives Removed +SNA, Negatives
Removed scrambled, and Negatives Removed +SNA scrambled regression DNNs for Drug
Matrix (upper left), Time Split (upper right), Validation (lower left), and Train (lower right).
Each fold is plotted individually, with the mean AUPRCr plotted with a thicker line.
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Figure A.24: AUROCr plots for Negatives Removed, Negatives Removed +SNA, Negatives
Removed scrambled, and Negatives Removed +SNA scrambled regression DNNs for Drug
Matrix (upper left), Time Split (upper right), Validation (lower left), and Train (lower right).
Each fold is plotted individually, with the mean AUROCr plotted with a thicker line.
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Figure A.25: Drug Matrix holdout performance for all Butina Split classification models.

Figure A.26: Butina Scaffold Test Split holdout performance for all Butina Split classification
models.
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Figure A.27: Butina Split k-fold cross validation performance for all Butina Split classifica-
tion models.

Figure A.28: Drug Matrix performance for all Butina Split regression models.
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Figure A.29: Butina Scaffold Test Split holdout performance for all Butina Split regression
models.

Figure A.30: Butina Split k-fold cross validation performance for all Butina Split regression
models.
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Figure A.31: Butina Split AUPRC plots for SNA, STD, SNA scrambled, and STD scrambled
classification DNNs for Drug Matrix (upper left), Butina Scaffold Test Split (upper right),
Validation (lower left), and Train (lower right). Each fold is plotted individually, with the
mean AUPRC plotted with a thicker line.
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Figure A.32: Butina Split AUROC plots for SNA, STD, SNA scrambled, and STD scrambled
classification DNNs for Drug Matrix (upper left), Butina Scaffold Test Split (upper right),
Validation (lower left), and Train (lower right). Each fold is plotted individually, with the
mean AUROC plotted with a thicker line.
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Figure A.33: Butina Split AUPRC plots for Negatives Removed, Negatives Removed +SNA,
Negatives Removed scrambled, and Negatives Removed +SNA scrambled classification
DNNs for Drug Matrix (upper left), Butina Scaffold Test Split (upper right), Validation
(lower left), and Train (lower right). Each fold is plotted individually, with the mean AUPRC
plotted with a thicker line.
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Figure A.34: Butina Split AUROC plots for Negatives Removed, Negatives Removed +SNA,
Negatives Removed scrambled, and Negatives Removed +SNA scrambled classification
DNNs for Drug Matrix (upper left), Butina Scaffold Test Split (upper right), Validation
(lower left), and Train (lower right). Each fold is plotted individually, with the mean AU-
ROC plotted with a thicker line.
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Figure A.35: Butina Split AUPRCr plots for SNA, STD, SNA scrambled, and STD scrambled
regression DNNs for Drug Matrix (upper left), Butina Scaffold Test Split (upper right),
Validation (lower left), and Train (lower right). Each fold is plotted individually, with the
mean AUPRCr plotted with a thicker line.
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Figure A.36: Butina Split AUROCrplots for SNA, STD, SNA scrambled, and STD scrambled
regression DNNs for Drug Matrix (upper left), Butina Scaffold Test Split (upper right),
Validation (lower left), and Train (lower right). Each fold is plotted individually, with the
mean AUROCr plotted with a thicker line.
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Figure A.37: Butina Split AUPRCr plots for Negatives Removed, Negatives Removed +SNA,
Negatives Removed scrambled, and Negatives Removed +SNA scrambled DNNs for Drug
Matrix (upper left), Butina Scaffold Test Split (upper right), Validation (lower left), and
Train (lower right). Each fold is plotted individually, with the mean AUPRCr plotted with
a thicker line.
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Figure A.38: Butina Split AUROCr plots for Negatives Removed, Negatives Removed +SNA,
Negatives Removed scrambled, and Negatives Removed +SNA scrambled DNNs for Drug
Matrix (upper left), Butina Scaffold Test Split (upper right), Validation (lower left), and
Train (lower right). Each fold is plotted individually, with the mean AUROCr plotted with
a thicker line.
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