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ABSTRACT

Unstructured Geometric Data Processing on the GPU

Data Structures & Programming Models

The surge of interest in 3D geometric data processing arises from the increasing demand for
algorithms capable of analyzing and manipulating complex 3D geometry across various appli-
cations, including computational design, physical simulation, shape analysis, and virtual reality.
Recent advancements in machine learning and data-driven approaches have further expanded
the field’s applications to areas like computer vision and Al-driven asset creation. Despite the
growing influence of geometric data processing, most geometry processing algorithms are im-
plemented using serial processes on the CPU. With more careful design and implementation,
however, the latent parallelism in geometric data processing algorithms can be unlocked, en-
abling dramatic acceleration on highly parallel hardware such as the GPU.

In this dissertation, we argue that data structures and programming models inherited from
serial/limited-parallelism processing of unstructured geometric data are not well-suited for ef-
ficient execution on the GPU. Instead, we propose the creation of tailored data structures
and programming models designed explicitly for GPU hardware, aiming to achieve signifi-
cant speedups in geometric data processing tasks. The rationale behind new data structures lies
in the fundamental differences in the hardware architectures of GPUs and CPUs. Traditional
CPU-optimized data structures often fail to exploit the massive parallelism of GPUs effectively,
leading to suboptimal performance. Similarly, new programming models abstract the intricacies
of low-level implementation details and GPU hardware optimization allowing users to focus on
solving their computational problems efficiently.

In this dissertation, we focus primarily on the explicit representation of geometric data as
unstructured triangle surface meshes. We introduce high-performance data structures tailored
for both static and dynamic local triangle mesh processing on the GPU. These data structures
effectively capture the locality of mesh topology, optimize memory bandwidth usage, and elim-
inate the need for any CPU-GPU data transfer. Our data structures support generic triangle

meshes without stringent requirements on mesh quality and facilitate a wide range of static and
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dynamic local mesh operators commonly found in CPU-based libraries. We propose different
mesh processing optimizations, e.g., confining all topology operations within the GPU’s shared
memory, and relying on speculative processing for dynamic update operations. We also design
intuitive programming models that abstract the complexity of these data structures, providing
users with a clean interface without sacrificing performance.

Furthermore, we present a comprehensive system design that integrates these data structures
and programming models, enabling end-to-end execution of various geometric data processing
applications on the GPU. We conduct thorough evaluations and benchmarks, comparing our
system against well-optimized GPU parallel data structures and CPU-based frameworks. Our
evaluations cover a range of applications including geodesic distance computation, bilateral fil-
tering, mesh smoothing, surface tracking, isotropic remeshing, and Delaunay edge flip. In static
applications, we achieve notable speedups ranging from 4—15x over existing GPU parallel
mesh data structures. For dynamic applications, our system sets new standards for GPU-based
dynamic mesh processing, outperforming state-of-the-art multithreaded CPU alternatives by an
order of magnitude on complex applications. Our system, along with its applications, is made

openly accessible as an open-source project.
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Chapter 1

Introduction

The field of 3D geometric data processing, traditionally linked to simulation, visualization, and
computer-aided design (CAD), is currently experiencing a surge of interest. This heightened
attention stems from the increasing need for algorithms capable of analyzing, synthesizing, and
manipulating 3D geometry. Applications of geometry processing span a wide range, including
shape analysis, computational design, virtual reality, and 3D printing. Additionally, the inte-
gration of machine learning and data-driven approaches into algorithmic design has sparked
significant advancements in this domain. These developments have propelled the field forward
and expanded its application to areas like computer vision and the Al-driven creation of virtual
assets.

Recent advances in 3D scanning, medical imaging, LiDAR, photogrammetry, and simula-
tion have led to the creation of massive datasets of high fidelity geometry. Current geometric
datasets feature meshes with millions of faces capturing intricate and highly detailed geometry.
Unfortunately, processing such complex meshes on CPU-based systems is a time-consuming
task, often taking hours to complete. There is a simultaneous demand for increased fidelity in
other domains, such as real-time rendering. Real-time rendering innovations include the Nanite
system [37], which enabled ray-tracing millions of triangles and micropolygons in real-time
using the GPU. These advancements highlight the pressing need to explore alternative compu-
tational architectures for efficient and fast geometric data processing.

Digital representations of geometric data include meshes, point clouds, implicit surfaces,

and polynomial patches (e.g., splines and NURBS). While other representations are gaining



traction, meshes remain the dominant geometric shape representation for applications like CAD,
simulation, visualization, and geographic information systems (GIS). This situation explains the
multitude of libraries for mesh processing (e.g., CGAL [50], OpenMesh [12], VCGlib [24], and
libigl [45]) that have significantly lowered the entry bar to facilitate geometric data processing.
However, existing libraries are predominantly CPU-based. These libraries exhibit strong offline
performance and reasonable interactive performance on small mesh models. CPU-based so-
lutions, however, struggle to handle highly-detailed meshes efficiently, causing geometric data
processing to become a bottleneck in many domains as geometric detail increases.

GPUs offer a vast number of processing cores that can concurrently execute computations,
allowing for significant acceleration in geometric data processing tasks. Leveraging the paral-
lel nature of GPUs can yield substantial speedups when compared to CPU-based approaches.
While processing unstructured geometry has lots of latent parallelism across the millions of ge-
ometric elements in a detailed mesh, it usually entails complex dependencies, synchronization,
and many levels of memory reference indirections leading to inefficient utilization of massively
parallel hardware. Thus, efficiently harnessing the power of GPUs for unstructured geome-
try processing remains an ongoing challenge, demanding further research to develop new ap-

proaches and optimizations.

1.1 Thesis

My thesis posits that by creating data structures and programming models specifically
designed for the GPU hardware, we could achieve a significant speedup in processing

unstructured geometric data by leveraging the GPU’s massive parallelism.

Why new data structures: Data structures inherited from single-/multi-thread CPU process-
ing of geometric data is not well-suited for efficient execution on the GPU due to the funda-
mentally different hardware architectures. GPUs are designed to handle thousands of threads
in parallel, capitalizing on data parallelism to perform computation efficiently. Data structures
optimized for CPU hardware tend to be designed for sequential accesses and operations which
does not leverage the GPU’s strength in handling multiple data points in parallel. GPUs gen-

erally have higher memory bandwidth compared to CPUs but also higher latency for memory



accesses. Data structures that are optimized for low latency accesses might not perform as well
on the GPU where the preference is for data structures that can exploit the high bandwidth even
if they incur higher latency. While both GPU and CPU architectures benefit from data local-
ity, GPUs achieve peak performance with coalesced memory accesses where threads access
contiguous memory locations concurrently. GPU performance can significantly degrade when
threads in the same warp follow different execution paths, i.e., warp divergence. CPU-optimized
data structures that lead to many conditional logic can cause this divergence. Traditional CPU
data structures may utilize locks or atomic operations extensively to ensure safe concurrent ac-
cess. While GPUs do support atomic operations, their overuse can severely impact performance
due to the high cost of synchronization in a massively parallel environment. Data structures that
minimize the need for synchronization are better suited for GPUs. Finally, GPUs also offer
specialized memory and processing features, e.g., shared memory, texture memory, and various
memory caching mechanisms. Data structures that are not designed with these features in mind

might not utilize the GPU’s capabilities fully.

Why new programming model: Providing efficient GPU data structures is not enough to
take the full advantage of the GPU hardware. Programming directly at the data structure level
requires in-depth knowledge of the architecture, memory hierarchies, and parallel execution
models. Higher abstractions and programming models simplify the development process by
hiding this complexity, allowing developers to focus on solving computational problems rather
than on the intricacies of hardware optimization. Since geometric data processing involves ir-
regular data structures and memory access patterns, a GPU-focused programming model could
abstracts the details of data partitioning, load balancing, and synchronization and ensure effi-
cient execution of these tasks. By offering a higher level of abstraction, these programming
models improve user productivity and open up new possibilities for shared optimization and

performance gains that might be difficult to achieve at the user level.

1.2 Scope

To better position this thesis, we first explore the landscape of geometric data processing. Here,

we focus on the explicit representation of geometric data as unstructured triangle surface mesh



due to its wide use in many computer graphics and scientific computation applications. We
try to characterize the pattern of computation in triangle mesh processes by identifying broad

categories for different aspects of computations.

Topology: Static vs. Dynamic: We can categorize mesh processing workload into two cat-
egories based on their impact on mesh topology: static and dynamic. Static mesh processing
involves queries on the mesh to gather topological and geometric information without altering
the mesh structure/connectivity. Topological queries are queries related to the mesh connectiv-
ity, e.g., stencil operations as in vertex one-ring, computing the Euler characteristic. Geometric
queries pertain to mesh attributes, e.g., face normals. Dynamic mesh processing modifies the
mesh topology by adding or removing elements. Dynamic mesh processing could be considered
as superset of the static one. However, it is possible that by focusing solely on static processing,
we could unlock optimizations not possible in dynamic scenarios. Note that operations alter-
ing only the mesh’s geometric attributes without affecting its topology are still classified under

static processing, e.g., mesh smoothing [36].

Space: Local vs. Global: The space of operation is defined by the topological distance or
coverage extent of the operations. Topological distance is determined through the mesh’s con-
nectivity, independent of its geometric coordinates. Local operations affect a confined area sur-
rounding a given mesh element, e.g., subdividing a triangle or calculating cotangent weights.
In contrast, global operations involve analyzing the entire mesh, often utilizing accelerated data
structures, and cannot be confined to a local neighborhood. Examples of global operations

include ray-mesh intersection and hole filling [100].

Component: Single vs. Multi Mesh: Many applications require only a single mesh to depict
the underlying geometry, e.g., for analyzing and solving partial differential equations (PDEs).
Conversely, the concept of multi-mesh encompasses those applications that employ multiple
meshes to represent the same geometry at varying levels of detail. An example of multi-mesh
usage is in level-of-detail techniques for rendering. In geometry processing, multi-mesh appli-
cations can involve using a coarser mesh as a proxy for a more detailed one (e.g., a mesh cage
for deformation [33] or geometric multigrid on a surface mesh [96]) or representing the same

geometry precisely across different meshes (e.g., in intrinsic mesh processing [87]). The main



computational pattern in working with multi-mesh is establishing correspondence between them
where each mesh element on one mesh maps correctly to its counterpart on the other, despite
differences in resolution or detail. While correspondence can be initially approached as a global
operation, possibly accelerated by bounding volume hierarchies (BVH), the inherent similarity
between the meshes representing the same geometry allows for the exploitation of locality. This

exploitation could enhance the efficiency of calculating correspondence.

Given that the majority of mesh processing operations are memory-bound, understanding
the memory access patterns in geometric data processing is crucial for optimizing performance
on the GPU. The Space of computation significantly influences these memory access patterns.
Local operations—whether static or dynamic—involve accessing or modifying a small area
around a specific mesh element. Thus, these operations are characterized by having high local-
ity between mesh elements and their neighbors. In contrast, global operations for static tasks
typically require navigating a tree-like data structure. For dynamic tasks, global operations
might involve modifying areas of the mesh that are not closely connected topologically, e.g.,
closing gaps or removing overlaps in an uncleaned mesh. Nevertheless, in parallel execution,
global operations can leverage locality to improve efficiency, e.g., threads in the warp access
the same/close-by region in the mesh.

In this landscape of geometric data processing, a significant amount of prior research has
focused on improving the parallel execution of global static operations through the development
of fast tree-like data structures (e.g., BVH, kd-tree, and octree) or hash tables [2, 58]. Some of
these operations are hardware accelerated (e.g., ray tracing) that then find their uses for geomet-
ric data processing [72, 93, 94]. For global dynamic operations, the challenge of modifying or
updating tree data structures on the GPU has garnered attention, particularly due to its relevance
in rendering applications that demand rapid update operations [54, 54].

While the exploration and optimization of global mesh operations remain critical for advanc-
ing geometric data processing, the role of local operations within computational mesh process-
ing cannot be understated. Local operations are paramount in many computational modeling

and simulation applications. Requirements of such applications range from sampling and eval-



uating the surface geometry or a subset of its attributes, querying the incidence or adjacency
of mesh elements, or modifying the underlying geometry. Most of these requirements entail
local processing of the underlying mesh, where the inputs to the computations on each mesh
element are limited to a local neighborhood. For example, to simulate complex turbulence or
multiphase flow phenomena, adaptive mesh refinement locally refines and coarsens the mesh as
needed. This adaptability ensures that transient features are captured accurately, without bur-
dening the computational resources [3]. Similarly, in materials science, simulations that deal
with crack propagation or material failures often hinge on the ability of the mesh to locally
refine around the evolving crack tip, ensuring that the details of the propagation pathway are
well-represented [80]. In topology optimization [59], where material distributions within a de-
sign space evolve to meet performance metrics, the underlying mesh must dynamically adjust
to these innovative configurations. Other domains that require local mesh processing include

real-time interactive applications like surgical simulation [102] and cloth manipulation [75].

1.2.1 State of The Art

In this dissertation, we focus on local operations, both static and dynamic. Prior to the work
done in this dissertation, the efficient execution of local operation on the GPU has not been
widely addressed despite the pivotal role they play in mesh processing. Below, we briefly

discuss the state-of-the-art of static and dynamic local mesh processing.

Static Local Mesh Processing: Solutions for static local operations on the GPU fall into two

categories:

* Hardwired application-specific mesh processing implementations (e.g., Delaunay trian-
gulation [27], mesh painting [84], and rendering subdivision surfaces [91]). Such imple-
mentations may achieve best-of-class performance on a particular problem, but their data
structures are specific to that problem. They may not be easily modified for new or related

problems, and they may not make full use of the GPU’s capabilities.

* Linear-algebraic reformulations of geometry processing workloads [99] aiming to reduce
intermediate data but do not optimize for locality, which is essential for top performance.

This reformulation relies on representing meshes as sparse matrices and computation as



operations on them.

While not discussed in prior art, a careful implementation of a serial data structure on the
GPU is possible. For example, storing the halfedge data of Directed Edges [19] in a structure-of-
array (SoA) format instead of an array-of-structure (AoS) can make it a competitive alternative.
However, such an optimization is beneficial only if the input is globally sorted; otherwise,
caching is ineffective. We will show in Chapter 4 that our data structure delivers superior

performance than Directed Edges with sorted input.

Dynamic Local Operations: Current solutions for dynamic mesh processing on the GPU are
only application-specific. Examples of these applications include surface tracking [23], mesh
simplification [53, 79], mesh subdivision [56], and Delaunay refinement [21]. Thus, similar to
the static case, solutions within these applications do not generalize well to other applications.
A possible solution—albeit hypothetical—is to serialize dynamic updates on the CPU. This
would leave the GPU underutilized for the duration of memory transfer and serialized update
operations on the CPU. Such a solution will not scale well as the mesh size increases since the
transfer of increasingly large amounts of data between the CPU and GPU becomes a significant
bottleneck, severely limiting the overall efficiency and scalability of the process in handling
extensive mesh datasets.

The inherent data-parallel nature of local static and dynamic mesh processing makes it per-
fectly suited for execution on the GPU. With a more principled design and implementation,
the latent parallelism in mesh processing algorithms can be unlocked, enabling dramatic accel-
eration on highly parallel hardware such as the GPU. Delivering the highest performance on
the GPU requires both a high-performance data structure and a powerful programming model.
The data structure is responsible for capturing the locality of the underlying mesh topology in
order to maximize GPU throughput. The programming model would permit its implementa-
tion to transparently map work to computational resources through the data structure without
user intervention. The final goal is to provide the user with the same experience as CPU-based

libraries while simultaneously enjoying the high performance of the GPU.



1.3 Contributions

In this dissertation, we make the following contributions that widen the set of geometric data

processing applications that can be executed efficiently on modern GPUs:

* Data structures for high-performance static and dynamic triangle mesh data structure on
the GPU that capture the locality of the underlying mesh topology and uses bandwidth
efficiently across the different levels of the modern GPU memory hierarchy while avoid-
ing CPU-GPU data transfer. Our data structures assign work to computation resources in
a load-balanced way that has not been used before for GPU mesh data structures. Our
data structures handle generic triangle meshes without hard requirements on mesh quality,
i.e., non-manifoldness or orientability. We do not impose any requirements on the type
of static or dynamic operations—so long as they have a local area of impact. We sup-
port almost all common static and dynamic local mesh operators found in open-source

CPU-based libraries.

* Programming models that provide a clean abstraction that hides the complexity of the
data structure allowing the user to make the best use of our data structures without wor-
rying about performance. Our programming models provide intuitive concise semantics

for both static mesh queries and dynamic mesh updates and for resolving conflicts.

* System design that combines the above data structures and programming models that
serve a wide range of applications to be executed end-to-end on the GPU. Our design
considers both the topology and geometry (i.e., attributes) of the mesh, liberating the user

from low-level intricate implementation details.

* Applications and benchmarks that thoroughly evaluate our system against well-optimized
GPU parallel data structure as well as (single- and multi-core) CPU-based frameworks.
Our applications include geodesic distance computation, mesh fairing, bilateral filtering,
surface tracking, Delaunay edge flip, and surface remeshing. For static applications, we
achieve 4—15x speedup on selected applications over GPU parallel mesh data structures.

For dynamic applications, our system sets the bar for dynamic mesh processing on the



GPU and delivers an order-of-magnitude better performance compared to state-of-the-
art multithreaded CPU alternatives. We also showcase scenarios where our performance
may not be leading, yet it remains on par with other mesh frameworks. Our system and

its applications are open-source.!

'https://github.com/owensgroup/RXMesh
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Chapter 2

Background & Preliminaries

2.1 Mesh Terminology

A mesh is a surface of polygonal faces glued together
along the edges (as shown in the inset). These polygons
could be of any shape, e.g., triangles, quads, and irregu-
lar polygons. In this work, we focus primarily on triangle

surface meshes.

Formally speaking, triangular mesh M discretely
represents the topology and geometry of some underlying 2D object embedded in 3D space.
M = (V, &, F) consists of a collection of k-cells for & = 0, 1,2 where 0-cells, 1-cells, and
2-cells are a set of vertices V), edges &, and faces F respectively and each (k — 1)-cell lies on
the boundary of a k-cell. We use the term mesh element or (element for short) to refer to a
vertex, edge, or face. A 2-manifold mesh is one where edges and triangles meet at a vertex can
be arranged in a cyclic order t1, ey, to, €9, ..., t,, e, without repetitions such that edge e; is an
edge of triangles ¢; and ¢, ;—implying that an edge is incident to exactly two faces. Otherwise,
it is a non-manifold mesh. If an edge is on the boundary of only one face, it is a boundary
edge, otherwise, an internal edge. A vertex and face incident to a boundary edge is a boundary
vertex and boundary face, respectively. Two vertices are neighbors if they share an edge. The
valence of vertex V' is the number of edges connected to V. The one-ring of vertex V' is the

set of vertices that are connected to V' by an edge. A face’s summit is the set of vertices that

10



Table 2.1: List of first-order queries on surface triangle mesh

Query Definition

VV  For vertex V, return adjacent vertices
VE  For vertex V, return incident edges
VF  For vertex V, return incident faces
EV  For edge E, return incident vertices
EF  For edge E, return incident faces

FV  For face F, return incident vertices
FE  For face F, return incident edges

FF  For face F, return adjacent faces

form that face. A mesh is said to be orientable if it is possible to assign a consistent orientation
to all its faces. Finally, adjacency relations assign a neighboring relation to two k-cells of the
same dimension, while incident relations are between k-cells of different dimensions. Such re-
lations are summarized in Table 2.1. Higher-order queries can be composed of these first-order
queries. Of particular interest is the rwo-hop neighbors that require stepping (“hopping”) on
the first-order neighbors before reaching the answer; for instance the union of one-ring of the
one-ring vertices.

Meshes can be specified in many formats, however, indexed triangles format is by far the
most widely used, exemplified by the Wavefront OBJ file format. In this format, mesh vertices
are expressed as ordered triples of coordinates followed by an ordered list of faces’ vertex
indices. An example is shown in Figure 2.1 for a simple tetrahedron. The OBJ file format
additionally allows isolated edges and vertices, making it feasible to represent triangle meshes

regardless of their quality, e.g., self-intersection, non-manifold.
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Figure 2.1: Example of indexed triangles format to represent a tetrahedron composed of four
triangular faces.

2.2 GPU Terminology

This work targets NVIDIA GPUs using the CUDA programming model [77]. Here we outline
the most important aspects of achieving high performance on these GPUs.

Modern NVIDIA GPUs are throughput-oriented manycore processors that use massive par-
allelism and latency-hiding techniques to achieve peak performance. The GPU features both
computational and memory hierarchy that allow tens of thousands of hardware-scheduled threads
to run simultaneously. The orchestration between these hierarchies is the determining factor for
the full utilization of these computational threads. NVIDIA GPUs contain many parallel cores
called “streaming multiprocessors” or “SMs”, each has several parallel processors. The GPU
thus can achieve parallelism within and across cores. NVIDIA GPUs use the Single Instruc-
tion Multiple Thread (SIMT) programming model to achieve data parallelism where multiple
independent threads execute concurrently using a single instruction.

GPU programs are called “kernels” and are launched over a grid of thread blocks (virtualized
cores). The GPU hardware is responsible for assigning thread blocks to SMs in a way that
keeps cores busy whenever thread blocks are available. All blocks and threads can access a
large shared pool of global memory and an on-chip L2 cache. Each thread block also has access
to a small pool of user-programmable “shared memory” accessible only to threads in the thread

block as well as a small hardware-managed L1 cache, also local to the thread block. In recent
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GPUs, L1 cache and shared memory are combined within a 128 KB of data cache. Data loaded
from global memory is implicitly cached in L1 and L2. Each thread has exclusive access to
registers (maximum of 255 registers per thread and 64k per SM). Registers have the lowest
latency, highest throughput, and smallest aggregate size, followed by shared/L1, followed by
L2, followed by global memory. One key to high performance is to design data structures to
primarily access the fastest levels of the memory hierarchy.

Within a thread block, the GPU hardware runs 32 threads (a “warp”) at a time in lockstep.
If those 32 threads access global memory, they obtain the highest bandwidth only if they access
neighboring addresses in global memory (these accesses are termed “coalesced”). When a warp
stalls execution (e.g., because of a long-latency memory read), the GPU quickly switches to a
different warp and hence can hide the latency of the first warp. The GPU can best hide latency if
it has many warps available (“resident”) to run at any time. The metric of “occupancy” reflects
the fraction of time that the GPU is busy running an active warp; maximizing occupancy by
minimizing per-warp and per-block resources, allowing more warps to be resident, is another

key to high performance.
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Chapter 3

Related Work

3.1 Mesh Data Structures

Efficient mesh data structures enable faster processing, reduced memory usage, and enhanced
accuracy in the representation and manipulation of complex 3D geometries. Here we focus on
data structures of mesh topology (i.e., connectivity information), which is distinguished from
the mesh geometry (i.e., geometric attributes on the mesh elements). The study and development
of efficient mesh data structures, an area as old as the inception of personal computers [9], have
been a significant focus in computer graphics research. We still rely on this early work on mesh
data structures even with the massive evolution of computer hardware architecture. The Winged
Edge data structure [9] stores adjacency information, enabling efficient navigation across the
mesh by linking faces and vertices to edges. The Halfedge data structure [67]—one of the most
widely used data structures for polygonal meshes—splits each edge into two half-edges with
opposite directions, facilitating the traversal and manipulation of mesh surfaces with mature,
well-maintained implementations in various libraries, e.g., CGAL [50]. With few modifications,
halfedge can represent non-manifold meshes [34]. Directed Edges [19] specializes halfedge for
triangular meshes and reduces the memory footprint of halfedge by devising special indexing
rules that implicitly encode some connectivity information. The Cell-tuple [15] is used for
higher-dimensional meshes, providing a more flexible representation for complex geometries.
Linear Algebraic Representation (LAR) [32] was introduced as an alternative representation for

polygonal meshes. Departing from the graph-like representation, LAR represents meshes as
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sparse matrices while query and update operations are sparse matrix multiplication or matrix

transpose.

3.2 Parallel Mesh Processing

Due to the limited processing and memory capacity of a single-core system, researchers and
practitioners have long sought to process meshes more quickly and efficiently through dis-
tributed and multi-core systems. The data structures used in parallel systems are generally the
same as those used in sequential processing systems but with modifications to facilitate and
reduce communication across partitioned mesh boundaries, to manage mesh attributes, and to
maintain correspondence between the geometric representation and its discretized mesh repre-
sentation [25, 44].

In an effort to leverage existing codes, Cirrottola and Froehly [25] designed a system and
algorithm where existing sequential remeshers are used within a parallel framework. They also
describe a repartitioning algorithm to more easily move interfaces between parallel regions.
Creating new parallel applications, improving performance, or porting parallel systems to new
hardware is often difficult because of the tight coupling of code responsible for functionality
with code responsible for achieving performance. Tsolakis et al. [92] breaks this coupling by
creating a tasking framework for speculative mesh operations based on a separation of concerns,
i.e., functionality vs. performance. Our work in this dissertation is similar in this regard and we
seek to abstract away mesh operations from how those operations are performed in parallel on
the GPU. Jiang et al. [46] address many of these issues through a declarative programming
approach where users focus on their desired mesh processing steps by specifying invariants
and desiderata and where the underlying system deals with the necessary scheduling and par-
allelization of low-level mesh operations. PUMI [44] focuses on alleviating the bottleneck (i.e.,
geometry and mesh processing) in end-to-end simulation runtime on massively parallel com-
puters through infrastructure that provides a link between the mesh and the original domain, a

partitioning model that facilitates interactions across nodes, and load balancing.
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3.3 GPU Mesh Data Structure

Mesh as a Matrix: Recent research, including some of the work in this dissertation, seeks to
leverage the GPU’s capabilities by formulating mesh data structures as matrices and computa-
tions as operations on them. The basis for this formulation rests firmly on algebraic topology
and the elegant Linear Algebraic Representation (LAR) of mesh elements [32]. LAR relies on
encoding incidence relations between each k-cell to unordered (k — 1)-cells in a sparse ma-
trix format. These relations are also known as boundary operators. Query computations are
realized in terms of sparse matrix operations—a well-studied topic within the HPC community.
Furthermore, LAR naturally represents non-manifold meshes without any special treatment.

In LAR, any incidence or adjacency relation can be represented with sparse matrices where
the matrix rows represent the source or input and the columns represent the farget or output.
Figure 4.4 shows two such matrices, where a nonzero value means the two mesh elements are
incident. To reduce its memory footprint, LAR proposed storing only a subset of these matrices

and dynamically computing the rest on demand from the stored subset.

For a triangle mesh, the minimum number of matrices to fully .
. . MVV =M EVMEV
represent all mesh elements is two: one matrix for each top-down

_ T
Myg = Mgy,
(from k-cell to (k — 1)-cell) or bottom-up (from (k£ — 1)-cell to -
. . . . . . MVF = MEVMFE
k-cell) incident relations. For example, storing Mgy (incidence .
MEF =M FE

from edges to vertices) and My (incidence from faces to edges)
Mgg = M{pMpg

Mpy = MppMgy
Mpp = MppMfy

is enough to perform all queries as shown in the inset. Note that

this matrix-matrix multiplication uses a different semiring than tra-

ditional matrix multiplication: replacing summation with logical or
and multiplication with logical and, leading to a binary representation of incidence/adjacency.
Higher-order queries can be answered similarly by using information from first-order queries.
For example, computing the one-ring of the faces’ summits is Mgy = Mgy Myyv. While LAR
sets the theoretical foundation for general-purpose high-performance mesh data structures on
the GPU, it does not attempt to capture the mesh locality.

Representing meshes as sparse matrices indicates, in theory, that a general-purpose sparse

matrix library could be used to implement LAR operations. However, we see two obstacles here.
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The first is that most sparse matrix libraries do not support alternate semirings. The second is
that because meshes have a particular structure (e.g., Mgy will always associate one edge with
two vertices), a general-purpose sparse matrix library misses opportunities for mesh-specific
optimizations to sparse operations.

The LAR representation is the basis of recent work that targets mesh processing on the GPU,
e.g., Mesh Matrix [99] and the ternary sparse matrix representation [73] for volumetric meshes.
Mesh Matrix represents surface meshes by encoding the relation between 2-faces (triangles) and
O-faces (vertices), limiting it to applications that do not require explicit edge representations.
Mesh Matrix offers a compact representation as a single array augmented with an action map,
a small local map that encodes the interaction between vertices. With the action map, Mesh
Matrix claims to eliminate the need to create intermediate data. However, Mesh Matrix does

not improve locality which is crucial for high throughput.

3.4 Mesh Processing Programming Model

GPU-specific programming models are found in many domains, e.g., graph processing [95],
sparse voxel computation [43], and simulation [10]. The challenge for a programming model
for GPU mesh processing is to provide an intuitive, high-level abstraction for the programmer
that encompasses a large set of mesh processing applications while making the best use of the
underlying hardware.

The programming model of Mesh Matrix is one approach with a programming model that
is centered on linear algebra primitives and action maps. Mesh Matrix refrains from mimicking
existing halfedge-like operations and instead casts mesh processing workloads in the language
of linear algebra. Mesh Matrix’s programming model is orthogonal to ours. While Mesh Ma-
trix seeks to reformulate the whole geometry processing pipeline, in this dissertation, we do not
wish to intervene in how the downstream computation is performed but only in how it is sched-
uled and assigned to the computation resources. For example, Mesh Matrix requires re-writing
applications in the language of linear algebra while ours provides the user with primitive query
operations with which the user can compose their complex applications.

Many runtime libraries expose different programming models for dynamic operations. The
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most widely used approach for exposing mesh manipulation is through local operators, e.g.,
edge flip, vertex split [12, 14, 24, 29, 50]. These operators are inherently linked to the un-
derlying data structures, leading to an inseparable intertwining of the user interface and the
implementation details. The cavity operator [63] was introduced for anisotropic mesh adap-
tation as a generic operator for implementing mesh updates. With the cavity operator, every
operation creates a hole in the mesh and then fills it with a different set of mesh elements. A
similar idea was used for mesh improvement [1] where the cavity could shrink or expand to
meet different objectives for mesh improvement e.g., non-obtuse triangulation. While not ex-
tensively explored in prior work, the cavity operator offers an elegant and generic programming

model for mesh updates, distinguished by its independence from specific data structures.

3.5 Domain Specific Languages (DSL)

DSL and compiler techniques can be used to improve portability across different architectures.
Liszt [31] is a DSL designed for building mesh-based PDE solvers, featuring specialized lan-
guage statements for interacting with unstructured meshes and managing data. Its compiler
leverages program analysis to uncover parallelism, locality, and synchronization in Liszt pro-
grams, enabling the generation of applications optimized for various platforms, including clus-
ters and GPUs. Ebb [10] is a DSL for simulation that is efficiently executable on both CPUs
and GPUs, distinct from prior DSLs due to its three-layer architecture that separates simulation
code, data structure definitions for geometric domains, and runtimes for parallel architectures.
This structure allows for the easy addition of new geometric domains through a unified rela-
tional data model, enabling programmers to focus on simulation physics and algorithms with-
out the complexities of parallel computing implementation. While compiler-based techniques
and DSL provide concise easy-to-use interfaces, their main disadvantage is the need for rela-
tively time-consuming static analysis of the input data. These compiler techniques are not easily
amenable to dynamic mesh updates, which generate their workloads at runtime. Additionally,
static analyses are unable to reveal the parallelism in dynamic mesh update applications, as the
parallel schedule is heavily reliant on runtime data and cannot be determined at the time of

compilation [55].

18



Chapter 4

Static Triangle Mesh Processing

Figure 4.1: In RXMesh, we partition the mesh into small patches that fit in the GPU’s shared
memory. To eliminate the communication between different thread blocks, we augment each
patch by a ribbon (shown in white).

In this chapter, we present RXMesh, a GPU static triangle mesh data structure that captures
locality by partitioning the input mesh into small patches that fit in the GPU’s fast shared mem-
ory, ensuring excellent caching irrespective of query operations or input order. Our patching

technique is fast, highly parallel, and accepts generic inputs. To eliminate communication dur-

I'This chapter substantially appeared as “RXMesh: A GPU Mesh Data Structure” published at SIGGRAPH
2021 [66], for which I was the first author and responsible for most of the research and writing.
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ing query operations, we extend each patch with information from neighboring patches with
minimal overhead. Each patch is then represented independently using a compact sparse matrix
representation that simultaneously allows for parallelization and excellent query load balance.
RXMesh’s complexity is hidden behind a simple programming model and interface that allows
both ease of use and high performance across different applications.

The contributions of this chapter are:

* The design of RXMesh, a high-performance general-purpose static triangle mesh data
structure on the GPU. Our data structure can capture the locality of the underlying mesh
topology and uses bandwidth efficiently across the different levels of the modern GPU
memory hierarchy. Our data structure enables a novel way of assigning work to compu-
tation resources in a load-balanced way that has not been used before for GPU mesh data

structures.

* A clean programming abstraction that hides the complexity of the data structure behind a
flexible programming model that allows the user to make the best use of our data structure

without worrying about performance.

* The combination of our programming model and data structure is thoroughly evaluated
via benchmarks and applications and compared against a well-optimized parallel Directed
Edges [19] data structure as well as (single- and multi-core) CPU-based frameworks. We

achieve significant speedups over these frameworks.

RXMesh, as presented in this chapter, is limited to static applications that do not require
changing the underlying mesh topology but may possibly change the geometric attributes of the

mesh. In Chapter 5, we will show how to extend RXMesh for dynamic mesh operations.

4.1 Programming Model

Traditionally, a mesh data structure provides the user with handles to operate over various el-
ements. These handles abstract away element indices with iterators and circulators [12]. This
abstraction is suitable for serial processing since a single thread works on elements sequentially.

The same abstraction could be applied in the GPU-parallel context, where different threads
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work on different elements identified by the thread index. However, this could lead to poor
performance due to memory divergence because elements that are topologically close could be
assigned to threads that are not in the same index range. Thus, we depart from this traditional
sequential mesh processing programming model in favor of one that offers higher performance.

Our programming model decouples user-specified computation from how that computation
is assigned to GPU computation resources (e.g., threads). The user defines only the compu-
tation, which will typically include one or more query operations. Then our implementation
assigns GPU threads to elements with the goal of exploiting locality for query operations and
inducing load balance. This maximizes query performance, which is usually the bottleneck of
mesh processing pipelines on the GPU. The user can define computation on either all or a sub-
set of elements. While computing over all elements typically makes the best use of the GPU’s
computational power, our implementation is still able to exploit locality even when operating
on a subset of the elements. A similar programming model has been used for sparse voxel
computation [43] and proved to be powerful, performant, and flexible.

From a user perspective, our programming model is similar to the “think like a vertex”
(TLAV) [69] programming model for the parallel processing of graphs. In TLAYV, the user de-
velops an algorithm by focusing on one vertex and the computation on that vertex based on its
local data and incident and adjacent vertex and edge data, then applying that computation to all
(or a subset of) vertices. Our programming model generalizes this idea to all three types of mesh
elements: vertices, edges, and faces. Programs in our programming model, then, run in parallel
over all elements, evaluate one or more queries into the mesh for each element, then combine
those query results at each element with arbitrary user-specified computation. With this pro-
gramming model, the user can specify single kernels that can operate on any combination of
vertices, edges, or faces, and within those kernels, operate on each primitive set efficiently, in
parallel.

As an example, consider computing the vertex normal at each vertex in a mesh by sim-
ply computing the normal of each face and atomically adding it to each of its three vertices.
Our programming model requires the user to specify the computation, which includes making

queries to fetch the three vertices of the face, computing the face normal, and then atomically
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__global__ void
ComputeVertexNormal (RXMesh rxmesh,
Vec3<float>x* VertexNormals,
const Vec3<float>x VertexCoords) {
rxmesh.template kernel<Op::FV> (
[&] (const uint32_t f_id, const Iterator fv_iter) {
//The face’s three vertices

uint32_t vO (fv_iter([0]), vl(fv_iter[l]), v2(fv_iter[2]);

//Compute face normal

Vec3<float> faceNormal = ComputeFaceNormal (v0, vl, v2,
VertexCoords) ;

//Update vertex normals with faceNormal component

atomicAdd<Vec3<float>> (VertexNormals[v0], faceNormal) ;

atomicAdd<Vec3<float>> (VertexNormals[vl], faceNormal) ;

atomicAdd<Vec3<float>> (VertexNormals([v2], faceNormal);});

Listing 4.1: Vertex normal computation using RXMesh. Our parallel programming model abstracts away
the details of assigning work to processors. Threads are assigned automatically to faces, which leads to
high throughput on queries. The user can focus on specifying only the computation, i.e., computing the
face normal and adding it to the face’s three vertices.

adding the normal components to each vertex. It does not require the user to consider either
parallel execution across faces, mapping threads to queries, or memory locality. This allows
the user to write the computation kernels as shown in Listing 4.1 without worrying about these
low-level details.

When operating on a subset of the elements, it is possible to query all the elements and then
only use the results of those in the active set. However, this is a waste of memory bandwidth.
Thus, we require the user to specify the participating elements in the active set using a lambda
function that takes the element index as an input and returns a boolean indicating the element’s
membership in the active set. For example, the user can use the input element index to index
a boolean array of the active set. By default, this lambda function returns true, thus the query

should be applied on all elements.
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4.2 Goals and Design Principles
4.2.1 Goals

Given the programming model, we now describe a static triangle mesh data structure for the
GPU that implements the queries in Table 2.1. Our data structure meets the following design

goals:

Performance: Our primary goal is performance, measured by the elapsed time to process a
mesh computation. We achieve this performance by exploiting locality, reducing memory oper-
ations, efficiently utilizing the different layers of the GPU memory hierarchy, and maximizing
GPU occupancy. While much of a typical geometry processing application consists of local
computations that are suitable for parallelization, the topological locality of the mesh represen-
tation is not usually captured in the data structures used in prior work. This lack of locality
leads to poor memory performance. To maximize overall performance, we aim to capture this

locality in our data structure.

Generality: While hardwired application-specific data structures can result in high-performance
implementations of a specific application, their performance often degrades when they are de-
ployed in a different application. Our goal is to provide a data structure that supports sustained
high performance across a variety of applications. The target applications should be able to ef-
ficiently perform queries on any mesh element. Additionally, we make no assumption about the
input mesh quality—we assume generic, possibly non-manifold, meshes expressed as indexed

triangle inputs.

Compactness: Generality and high performance might be achieved by storing all possible
query results, but at the cost of higher memory overhead, which can limit the user to small
inputs only. More importantly, the limited size of the GPU’s programmer-managed shared
memory limits the amount of locality we can exploit. We strive to store a minimal amount
of data and instead efficiently compute queries dynamically, resulting in a minimal memory

footprint.

Easy to use: Different applications may have different requirements for how they access a

mesh data structure. The user might need to access the data structure directly from within user-
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Figure 4.2: Color indicates the face index, highlighting the different ways of capturing locality;
global sorting (left) and patching (right).

defined GPU kernels. We aim to provide a data structure that allows efficient access with an

intuitive access model for a variety of use cases.

4.2.2 Design Principles

In this section, we explore two different methods to capture mesh locality: sorting and patching.
We analyze why patching is the right choice, design a compact LAR-based representation for
patches, and contrast it against alternative less-compact representations. Finally, we detail the
importance of decorating the patches with ribbons for better locality.

4.2.2.1 Locality by Patching

Ideally, all the accesses necessary to perform a computation would be stored in the memory
layer with the highest bandwidth. For the GPU, this is the L1 cache or the per-block shared
memory. The mesh operations that we target have access patterns with high locality between
mesh elements and their neighbors, so we would benefit from a data organization that can
better capture that locality. Specifically, we aim for a coherent correspondence between the
mesh topology and how the mesh is stored in the GPU global memory, i.e., elements that are
topologically close are also stored nearby in memory.

The most straightforward implementation of our programming model would place all mesh
data in global memory, making no optimization for locality. For this implementation, if the
mesh data is unstructured, it is likely that hardware caches would capture little locality, limiting

the performance.
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We can improve locality capture, and hence performance, by sorting the input mesh coher-
ently [49], using some kind of spatial information as the sort key (Figure 4.2). However, this

approach has two disadvantages:

* It requires sorting not just the topology but also the mesh attributes (e.g., coordinates,
texture coordinates, normals), which have a considerably larger storage requirement than

the requirement for the mesh topology alone.

* Even if the initial sorting and data movement is not an issue, there is no generic method
of sorting all mesh elements coherently, especially for meshes with a high genus number.
For example, vertices can be sorted lexicographically based on their coordinates, but this
leaves the faces and edges unsorted, and thus accesses to them will not be cache-friendly.
Additionally, such sorting would always create occasional gaps between two neighbor

elements, i.e., seams where there will be a transition in the element index.

The L1 cache may also be rapidly exhausted if mesh attributes are queried simultaneously
with topology queries, which is the common case. Thus, we implemented an alternate design:
subdivide the mesh into small patches that can fit in the user-managed shared memory and
perform all the computation/queries in the shared memory. This guarantees that we always
exploit the highest memory bandwidth even if the mesh attributes are used in the computation.

4.2.2.2 Work Mapping

Now that our accesses are within the fast shared memory, we turn to efficiently scheduling our
computation. Because mesh data is sparse, simple methods to map work to processing resources
often leads to idle threads, branch divergence, and memory divergence. For example, consider
assigning mesh vertices to threads where each vertex may have a different valence (Figure 4.3).
Ensuring good computation performance through load balancing is one of our key design goals.
We achieve this load balance by appropriate work mapping where threads cooperate to perform
their respective queries. We discuss this implementation in Section 4.3.2.

4.2.2.3 Index Space

The memory footprint of a patch can be reduced by using 16-bit indices to represent its ele-

ments. However, such /ocal indices can only represent standalone independent patches, which
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Figure 4.3: Directly assigning threads to mesh elements leads to load imbalance due to irregular
mesh topology. Our programming model assigns mesh patches to blocks, enabling threads to
cooperatively perform their queries, leading to well-balanced computation.

is insufficient since the user expects a single index/handle per element that can be used for ac-
cessing mesh attributes. For that, we map each local index to a global one, resulting into two
index spaces: a local and global index space. The local index space is used to perform the
query operations, which return their results after being mapped to the global index space, thus
hiding the complexity and details of patching from the user. The mapping has a low overhead
as it only requires a single coalesced bulk read from the global memory, which we discuss in

Section 4.3.2.

4.2.2.4 Compact Patch Representation

Our top priority in choosing a data structure is supporting the operations specified in our pro-
gramming model (Section 4.1). Not all data structures support all operations; for instance,
indexed triangles do not allow working on edges. Beyond this, we aim for a data structure that
gives us both compactness and high performance. While a smaller overall memory footprint for
a mesh is desirable, even more important for high performance, in the presence of our patching
strategy, is minimizing storage per patch. Patches must be able to fit into shared memory, so
storing more elements per patch allows more work per patch, increasing GPU utilization. Here

we discuss two viable options:
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Figure 4.4: It is possible to represent all incident and adjacency relations in a mesh in terms
of sparse matrices. Here we show two such relations—EYV and FE. In our implementation, we
only store the top-down incidence relation between each k-cell and (k — 1)-cell. Exploiting the
matrices’ sparsity, we store them compactly in flat arrays where indices indicate the elements
connectivity. We generate all remaining incidence and adjacency matrices from these two .

Directed Edges: Directed Edges is a variant of the halfedge data structure specialized for edge
manifold meshes. Directed Edges, which support all first-order queries, requires 21 bytes/face
using 16-bit indices to represent the vertices, edges, halfedges, and faces within a patch in its

local index space. The disadvantages of using directed edges are:
* [t uses more memory than necessary (as we show below).

e Itis only limited to edge manifold meshes. Generalizing it to non-manifold requires extra

storage [34].

* It does not easily allow for threads to cooperate to fulfill queries; instead, each thread

works independently, which might incur load imbalance in irregular meshes.

Mesh as a Matrix: Our choice, Linear Algebraic Representation (LAR) [32], is an attractive

representation for patch information because:

* A patch can be represented using only 12 bytes/face by only storing EV and FE in two
matrices, namely Mgy and Mpg (Figure 4.4). All other relations can be queried on the

fly.
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* It can represent any mesh irrespective of its quality (e.g., non-manifold) without any

special treatment.

» Threads can cooperate to perform queries. For example, computing VE is simply trans-
posing Mgy, which can be computed by dividing rows equally among the threads. Since
arow in Mgy contains only two entries, the computation is well-balanced across threads.

We discuss these implementation details in Section 4.3.2.

4.2.2.5 Ribbons

Once we divide our mesh into patches, we find that the boundary mesh elements of the patches
require special treatment because otherwise they will falsely represent boundaries of the mesh.
For instance, querying the neighbor vertices of a patch boundary vertex will require reading an-
other patch from global memory. This approach leads to both branch divergence and additional
global memory accesses. Thus, we augment each patch with a ribbon—the union of the one-
ring of the patch’s boundary vertices—and add it to the patch local index space (Figure 4.1).
This moderately increases memory usage per patch (we quantify this in Section 4.4) while sig-
nificantly increasing the locality. Note that if the input mesh has a boundary, we do not add
ribbons so we can accurately identify boundary elements.

Section 4.2.2.4 notes the importance of a compact representation to maximize the size of
the patch that can fit into shared memory. The patch representation must store both the mesh
elements “within” the patch as well as the patch’s ribbon. Because the size of the ribbons
scales only with the perimeter of the patch, maximizing the size of the patch also maximizes the
fraction of storage that stores the patch’s elements vs. its ribbon. Thus a more compact mesh
representation better uses its storage to work on that patch’s elements, which directly leads to

higher performance.

4.3 Implementation Details

We discuss here some details crucial for implementing our data structure.

4.3.1 Memory Storage

For every ribbon-augmented patch we store the following:
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* Mpg and Mgy matrices with three and two nonzero entries per row, respectively.

* Local-to-global mapping for vertices, edges, and faces stored in a flat array, indexed by

the element’s local index and storing its respective global index.

* The total and owned number of vertices, edges, and faces in the patch.

Matrices: Mpp and Mgy are very sparse and thus a sparse matrix format is a natural way to
store them (e.g., as compressed-sparse-row [CSR]). Zayer et al. [99] showed that sparse-matrix-
based storage of meshes can be further reduced from what CSR provides by taking advantage
of the fixed number of entries per row. For Mgy, we store the edges in a flat array of size
2n., where n. is the number of edges and each pair of entries represents an edge. We store the
vertices such that the first vertex is the source and the second is the target. Similarly, we store
Mpr in a flat array of size 3ny, where n; is the number of faces. We reorder the edges of each
face such that their order indicates the face orientation and reserve one bit in each entry for the

edge sign, as shown in Figure 4.4.

Local-to-Global Mapping: Since we augment patches with ribbons, some mesh elements
are shared between more than one patch. For that, we define the “ownership* of an element
by a patch as the patch that possesses all the information necessary to perform all queries for
this element. Each mesh element is owned by only one patch, which we enforce by a mapping
between (globally indexed) elements and their owning patches. When assigning local index to
the different elements within a patch, we make sure that lower indices are given to the owned
elements. Thus, if we want to check if an element is owned by a patch, we check its local index

against the number of owned elements by the patch of that element type.

Global-to-Local Mapping: We store the patch owning the mesh elements as three arrays (for
vertices, edges, and faces), indexed by the mesh global index. Once the patch is known, we can
search within its local-to-global mapping array for the local index. However, this search is not

needed for first-order queries.

4.3.2 Queries

We now discuss how to perform efficient queries given the patched mesh from how we assign

threads to mesh elements to how we perform such queries. Ashkiani [4] presented a novel per-
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thread-assignment, per-warp-processing strategy for parallel tasks on the GPU. In this strategy,
the user, through the programming model, assigns parallel tasks to threads, but the implementa-
tion instead assigns threads within a warp to work together to fulfill their tasks collaboratively.
The result is increased warp efficiency due to better load balance when compared to tradi-
tional per-thread work assignment and processing, where branch and memory divergence may
significantly inhibit high performance. Such an approach has been previously used in high-
performance hash tables [6] and graph data structures [7] on the GPU.

We extend Ashkiani’s strategy to per-thread assignment, per-block processing. From the
user’s perspective, each thread is responsible for a mesh element’s queries, but all threads in the
block cooperate to fulfill their queries by both sharing useful information via fast shared mem-
ory and leveraging the even-faster intra-warp communication when possible. While queries are
handled cooperatively, per-element computation instead uses traditional per-thread processing.
Note that this processing and assignment is not exposed to the user and is done automatically.
The user only implements the operation that each thread performs on the given mesh query
output, closely following our programming model (Section 4.1). Since many mesh processing
applications perform identical operations on the mesh elements (utilizing information about the
mesh element’s local neighborhood), our programming model can be adopted easily for these
applications.

4.3.2.1 Structuring All Queries:

For all queries, we first assign a single CUDA block to each patch. Let the number of source
mesh elements owned by the patch be /N; and the number of the threads in a block 7'; each thread
is nominally responsible for N;/T" mesh elements. One primary goal of our query implemen-
tation is to minimize global-memory communication and ensure load balance by performing
as much computation locally within a block (in shared memory and registers) as possible and
let threads collaborate to perform otherwise imbalanced queries. We start by loading the patch
information from global memory into shared memory. Because we bound the maximum size
of a patch, we guarantee that all storage can fit within shared memory, as it allows using 16-bit

unsigned integers to represent the indices of per-patch mesh elements.?

“The size of a patch S, does not exceed 768 faces. The Euler-Poincaré characteristic, then, implies no more
than 3/25,, edges per patch. Since we store two vertices for each edge (in Mgy ) along with the three edges for
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Mpgy, Mgy, and Mpg queries return a fixed number of outputs (kK = 2-3); we term these
fixed offset queries because we know for any input element ¢, its output will be stored in output
locations [ki, k(i + 1)). Other queries are variable offset because queries on all elements do
not return the same number of outputs for each query (e.g., My produces a variable-sized
one-ring). We store the output of fixed-offset queries in a flat array in shared memory where the
offset determines the boundary of each source’s output. For variable-offset queries, we store
the output in two arrays: one for the values and another for the prefix-sum of the offsets.

Now, the output needs to be mapped to the global index space. Reading the mapping from
global memory would entail many scattered memory reads. Instead, we load the local-to-global
mapping of the output element type into shared memory. Once the output is computed in local
space, we use the local-to-global mapping to map the output of the query into the global index
space. The mapping happens on the fly only when the user fetches the query’s output.

It is possible to structure similar queries that only act on a subset of the mesh elements. In
this scenario, each thread checks if any of its assigned source elements are part of the active set
(Section 4.1). If one thread in the block has an active source element, the whole block performs
the request query for the respective patch.

Queries that go beyond the first-order queries benefit from having the majority of the in-
formation resident in the shared memory after performing the first-order query. For example,
querying the vertex two-ring is done by reading the one-ring of the one-ring. After performing
the first one-ring, the next one-ring is already resident in the shared memory. However, for
near-ribbon elements, this may require reading neighbor patches from global memory. For that,
each thread adds to a shared-memory buffer the patch it needs to read in order to complete its
query. This list is then filtered in place to generate a list of unique patches. The whole block
then iterates over this list, performs the query for the whole patch, then allows threads to com-
plete their queries. Subsequently, if additional patches still need to be read, they are scheduled

in the next pass.

each face (in Mrg), the total storage is 6.S),. Since we use unsigned 16-bit indices to store the patch information,
we require less than 10 kB per patch, which can fit in shared memory on any NVIDIA GPU. In addition and
depending on the query operation, we might need to load only Mg or only Mgy, leading to less shared memory
usage and potentially better occupancy.
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4.3.2.2 Structuring Specific Queries:

We discuss here the implementation of RXMesh data structure on how to compute different
queries where the needed patch information (Mpg, Mgy, or both) resides in shared memory.
To minimize our shared-memory footprint, we aggressively reuse shared memory wherever
possible, e.g., by overwriting the query output where patch information is stored.

In our implementation, we only store Mpp and Mgy and synthesize any other queries we
require, as described below. The significant advantage of this decision is that we minimize
storage (Section 4.2.2.4) and thus enable larger patches with their greater efficiency. This ad-
vantage comes with the computation cost of having to construct the queries listed below on
the fly. Thus, we have invested significant effort into making this computation as inexpensive
as possible, aided significantly by the storage of the relevant per-patch matrices in fast shared

memory.

FE and EV: They do not require any further computation after reading them from global

memory.

FV: Since FV = FE x EV, each thread reads the three edges of the face(s) assigned to
it from Mpp and replaces the edges with three vertices. We incorporate information about the
face orientation and edge direction to result in three unique vertices for each face (i.e., we write
the first vertex of the edge unless the edge is flipped). The code snippet in Listing 4.2 shows

how such computation can be done without thread divergence.

EF and VE: They are simply matrix transposes of Mpg and Mgy respectively. Below, we

discuss how to efficiently compute matrix transpose.

VF: We first compute FV as shown earlier and then transpose the output matrix in place. The

input matrix has the same structure as Mg, i.e., three entries per row.

VV: This query can be computed by first computing VE and then replacing each edge with

the appropriate (other) vertex.

FF: Since FF = FE x EFT, we first transpose Mpgp. Then each thread reads the three
edges of its face(s), counts the number of (other) faces incident to this edge, and stores the

results in a shared memory buffer. We then compute a prefix-sum of this buffer so that each
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_ _device__ void
ComputeFV (const uint32_t pNumFaces, const uintl6_t* s_Mev,

uintl6_t* s_Mfe) {

for (uint32_t f = threadIdx.x; f<pNumFaces; f+= blockDim.x) {
for (uint32_t e =0; e< 3; ++e) {

uint32_t edge = s_Mfe[f*x3 + e];

// get edge direction

uint32_t edge_dir = edge & 1;

// shift right to get the actual edge index

edge = edge >>1;

// 1f the edge is flipped, take the second vertex
uintl6_t vertex = (2xedge) + (1 + edge_dir);

vertex = s_Mev|[vertex]

//store results

s_Mfe[f*3 + e] = vertex;

Listing 4.2: Computing FV using patch matrices in shared memory.

face knows where to store its results in shared memory. This query requires both Mpp and its
transpose to be resident at the same time in shared memory, which slightly increases the shared

memory requirement for this particular query.

Matrix Transpose as Multisplit: It is now obvious that matrix transpose is such an impor-
tant kernel for the majority of the queries (5 of the 8 queries require matrix transpose). Given
the structure of the input matrices, we realize matrix transpose as a multisplit operation. Multi-
split [5] is a GPU parallel primitive that, given an unordered set of keys and a function that splits
those input keys into buckets, outputs the buckets such that each bucket output is contiguous but
otherwise unordered. This exactly matches the matrix transpose operation where the input is
Mpg, Mgy, or My, the function is the key itself, and the buckets are the matrix columns. We
implement a custom multisplit for our transpose, which differs from Ashkiani et al.’s [5] in that

our total number of buckets (the number of columns) is significantly larger than any bucket’s
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output. For instance, the valence of a vertex is on average 6 while a patch can have on average
384 vertices.

Listing 4.3 shows how we implement matrix transpose (inspired by multisplit) in a scenario
where the offset is overwritten in the input matrix buffer. It requires a single template parameter,
which can be derived from the maximum allowed size of a patch. Threads can than read a fixed
number of entries from the input matrix (line 5-13). Each thread atomically adds the number
of buckets it reads (line 18-22) so that a prefix sum can be computed (line 24) that tells each
thread where to place its results (line 26-32). This kernel illustrates how threads can collaborate

to perform an otherwise imbalanced computation by distributing the work among the threads.

4.3.3 Patching
4.3.3.1 Patch Quality

We seek to partition the input mesh into a set of disjoint patches P. A single patch should be
contiguous, i.e., a single connected component. The patch size .S, is identified by its faces count.
Ideally, we seek equal-sized patches to ensure perfect load balance when patches are assigned
to different blocks. However, this is not feasible since partitioning a graph into roughly equal
partitions is NP complete [18]. Additionally, our experiments showed that occasional small
patches do not degrade performance. Since we assign one CUDA block per patch, if a patch is
small, its assigned block will finish in a shorter time, freeing the SM for another block ensuring
full occupancy of the GPU. Smaller patches require less shared memory and thus may allow
more thread blocks to be resident on one SM at the same time. However, smaller patches also
increase storage overhead due to ribbons. Thus, our partitioning goal is contiguous patches of
as equal size as possible, while tolerating small patches. The patching process should be fast,
easy to parallelize, and incur low memory overhead.

Partitioning and clustering graphs and meshes for the purpose of distributing them across
parallel processors reduces complexity and induces load balance. Bulug et al. [18] summarize
many of the plethora of techniques for graph and mesh partitioning. Mesh partitioning is used
as a preprocess step to improve vertex locality to increase rendering performance [49], to ap-
proximate 3D shapes [26], to simplify meshes [47], and for mesh parameterization [20]. What

makes our problem unique is our requirement for small-sized contiguous patches, with a patch
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__device__ void template <uintlé6_t itemPerThread>
MatrixTranspose (uintl6_t* Matrix, uintl6_t* Output,
uintl6_t* nRows, uintl6_tx* nCols,
uintl6_t* nnzPerRow) {
uintl6_t nnz = nRows * nnzPerRow;
uintl6_t thread_data[itemPerThread];
uintl6_t local_offset[itemPerThread];
for (int i = 0; 1 < itemPerThread; ++i) {
uint32_t index = itemPerThread * threadIdx.x + 1i;

if (index < nnz) {

thread_data[i] = Matrix[index];
Matrix[index] = 0;

} else {
thread_data[i] = OxXFFFF;

}

__syncthreads () ;

for (int i = 0; i < itemPerThread; ++1i) {
if (thread_datal[i] != OxFFFF) ({

local_offset[i]=atomicAdd (Matrix[thread_datali]]l,1);

}
__syncthreads () ;

CUBPrefixSum (Matrix, nCols) ;

for (int i = 0; i < itemPerThread; ++1i) {
if (thread_data[i] != OxFFFF) {

uintl6_t offset = Matrix|[thread_data[i]]+local_offset[i];

uintl6é_t row = (itemPerThread * threadIdx.x + i) /
nnzPerRow;
Output [offset] = row;

Listing 4.3: Multisplit-inspired matrix transpose where all threads in the block collaborate to carry out
the computation to improve load balance.
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size of S, = ~512-768 faces.

State-of-the-art graph partitioning tools are not suitable to meet these requirements. For
example, ParMETIS [85] is a MPI-based multi-core parallel graph and mesh partitioning tool
based on multilevel recursive-bisection, multilevel k—way, and multi-constraints partitioning
schemes. ParMETIS excels at producing patches of equal size; however, it does not guarantee
that result patches are contiguous. nvGRAPH? is a CUDA-based high-performance tool for
solving various graph-based problems. nvGRAPH provides graph partitioning routines based
on spectral clustering [76]. While nvGRAPH is parallel, fast, and able to partition graphs into
roughly equal-sized partitions, it can only do this for coarse-grain partitions, i.e., fewer than 40
partitions. Otherwise, the required memory footprint is too high.

4.3.3.2 Patching Algorithm

Overview: We design a new mesh partitioning technique on the GPU to meet our require-
ments while taking advantage of 1) having no hard constraints over the number of patches and
2) having only upper bounds on the patch size. We leverage ideas from Lloyd’s k-means clus-
tering algorithm [61], which is a highly parallel process to partition a given graph.

Given an undirected graph G = (V, £) with nonnegative edge weights w € R, k-means
seeks to partition G into k partitions Py, . .., P of equal weights, i.e., the sum of weights of all
edges in a partition is equal. Alternatively, weights could be associated with the vertices and
the sum will run over the vertex weights. Lloyd’s clustering algorithm is an iterative process to

compute these partitions. After randomly selecting & (vertex) seeds, it iterates over two phases:
* Assigning vertices to the “nearest” seed to create £ partitions.
» Updating the partition’s seed with the partition’s “centroid.”

The algorithm iterates until seeds are no longer updated or a maximum number of iterations
is reached. The algorithm requires a distance metric between vertices to compute the vertex’s
nearest seed and the partition’s centroid.

We employ Lloyd’s algorithm where the mesh faces are considered the vertices of the graph

to be partitioned, two vertices are neighbors if the two faces they represent are adjacent, and all

3nvGRAPH is available at https://developer.nvidia.com/nvgraph/.
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edges have a weight of 1. This formulation makes Lloyd’s algorithm applicable regardless of
the input mesh quality (e.g., non-manifold). Lloyd’s algorithm is excellent in minimizing large
variances in size between initial patches. However, the convergence of the algorithm plateaus
after a few iterations, often leaving a few overly large patches. We overcome this by inserting
more seeds in the large patches, effectively reducing their sizes in subsequent iterations. Our

patching process stops when the largest patch size is less than S,,.

Implementation Details: Our patching process implements Lloyd’s algorithm on the GPU
by iterating over three stages in order: patch assignment, patch construction, and seed update.
Since we have no hard constraint on the number of patches, we add a fourth stage, seed ad-
dition, to accelerate convergence. Initially, patches are imbalanced and the traditional Lloyd’s
algorithm helps to deliver patches of equal size. Since our only hard requirement is patches
below a certain size, adding a modest number of additional patches helps us to quickly meet our
convergence criterion.

Initialization: we start the patching process by selecting random faces as the seeds for
Lloyd’s algorithm. If the mesh is composed of multiple components, we first add one seed per
component and then distribute the remaining seeds proportionally to the components’ size. The
initial number of seeds is the number of input faces divided by the desired patch size .S,. Each
seed face is assigned to a distinct patch. We also store the face count in each patch, initialized
to one.

Patch Assignment: we implement a parallel iterative process for patch assignment such that
a face assigned to a patch propagates its patch ID to each of its neighboring faces if they have
not been assigned yet (using atomic compare-and-swap).

We store patch IDs per mesh face in a pre-allocated buffer in global memory. Patch as-
signment ends when all faces have been assigned to a patch. Because faces are assigned to
patches only by their neighbors, our patch assignment process guarantees that each patch is a
single connected component. If the seeds are well-spaced, this stage tends to produce patches
of relatively uniform size. Isolated faces are identified at the beginning as separate components.
These faces will be seeds but will not grow further.

Construct Patches: after assigning faces to patches, we construct a patch data structure. We
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represent patches in a compact format that consists of an offset array and a value array. The
offset array is the prefix sum of the patch size array while the value array stores the IDs of the
patch’s faces. We construct this compact format by first computing the maximum patch size,
necessary for termination, with CUB’s* parallel reduce (with the maximum operator) on the
patch size buffer. Next, we run CUB’s inclusive prefix sum to compute the offset array. Finally,
we launch a kernel where threads are assigned to different faces. Each thread atomically adds
its face to its patch value array.

Update Seeds: the next step chooses a new seed per patch. We aim to choose a seed that is
as central within the patch as possible. We begin by launching a kernel that assigns one block
per patch. Each block starts by constructing the patch boundary faces, i.e., faces in this patch
incident to faces assigned to a different patch. We store these boundary faces in a “visited”
shared-memory buffer. Starting from these boundary faces, we use “push” traversal to identify
the faces neighbor to the boundary faces and inside this patch. We assign threads to visited
faces, and on each round, each thread checks if any of its incident faces is inside this patch and
is not visited (using atomic compare-and-swap). 1If so, the thread marks the neighbor face as
visited and adds it to the visited buffer. When all faces in the patch have been added to the visited
list, we pick a face randomly from the faces added in the final round. This face—hopefully one
at the “center” of the patch—is a seed in the next iteration.

Seed Addition: we repeat the above three stages until the maximum patch size is less than
Sp. We accelerate the convergence by inserting new seeds along the boundaries of the large
patches that violate the patch-size criterion. However, we do not do this on every iteration, in-
stead prioritizing Lloyd’s algorithm’s opportunity to rebalance the existing patches toward equal
sizes. We only insert new seeds when the convergence rate slows down. Our experiments show
that inserting new seeds after every fifth iteration best balances accelerating the convergence

without excessively increasing the number of patches.

4CUB is included in CUDA: https://docs.nvidia.com/cuda/archive/11.1.1/cub/.
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4.4 Evaluation

We evaluate our data structure and programming model on both fundamental query operations
and full applications in Section 4.5. We perform our comparisons on an NVIDIA DGX Station
with an NVIDIA Tesla V100 GPU with 32 GB of device memory. The CPU is an Intel Xeon
E5-2698 v4 with 20 cores and 256 GB main memory. All code was compiled on Ubuntu 20.04
with gee 9.3 and CUDA 11.1. Input meshes are collected from Thingi10K [101] and Smithso-
nian [90] repositories.

We compare our RXMesh against GPU and CPU data structures:

1. Parallel Directed Edges (PDE): our well-optimized GPU-parallel implementation of Di-
rected Edges [19]. We have implemented the best possible version of this data structure

that we could. Our implementation includes the following optimizations:

» Using index-based instead of pointer-based data structures.

» Using SoA instead of AoS to store a halfedge’s information. We store the target
vertex, face and next halfedge in three different buffers, each indexed by a halfedge
index. Each vertex and face stores their halfedge in two different buffers indexed by
the vertex and face index respectively. All other indirections are calculated implic-
itly, e.g., the two halfedges of an edge ¢ take the indices 2¢ and 2: 4+ 1 and thus the

twin halfedge can be referenced implicitly.

» Storing query outputs in registers (when possible) before storing them to slower
global memory. This helps reduce memory transactions yielding better memory

performance when the output size is known beforehand (e.g., FV query).

2. OpenMesh (Version 8.1) [12] and CGAL [50], the state-of-the-art CPU mesh libraries.
We compare against both serial and OpenMP-parallel implementations (with the thread

count set to omp_get _max_threads [40 on a DGX machine]).

Our measurements do not include the time it takes to read meshes from disk or the time to
transfer data to the GPU. Additionally, our timings do not include the time it takes to create

the patches designed to fit into GPU local memory. We do this for two reasons: (1) we get
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Figure 4.5: Assortment of RXMesh patches

more fine-grained information about the performance of different parts of our system; (2) the
cost of patch construction is quickly amortized over subsequent query operations. Patching
time ranges from a few tens of milliseconds for small models up to 15 seconds for very large
ones. Figure 4.6a shows the performance measurements of our patching technique on all data
sets used in all experiments where it shows that patching time scales linearly with face count.
Additionally, we compare against ParMETIS [85] on 8 i