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ABSTRACT OF THE THESIS 
 
 

Big Data Science: Applying Unsupervised and Supervised Machine Learning Algorithms to 

Predict and Differentiate Between Vulvodynia and Healthy Controls Using High Dimensional 

Neuroimaging Data   

 
by 
 

David Gordon 

Master of Science in Clinical Research 

University of California, Los Angeles, 2018 

Professor Janet Sinsheimer, Chair 

 
Purpose: Due to the high-dimensionality and multicollinearity of brain morphometric and 

functional network features, as well as the small sample size in our study, we utilized a sparse 

partial least squares discriminatory analysis (sPLSDA) algorithm to deal with these challenges 

and select a subset of the original features to explore the underlying mechanisms of vulvodynia 

that differentiate affected individuals from healthy controls.  To the best of our knowledge, this 

is the first study to perform unsupervised and supervised machine learning on neuroimaging data 

among individuals diagnosed with vulvodynia.  Methods: We used a holdout procedure and 

performed a random 70/30 split for both case and healthy control data.  This resulted in a training 

set N=86 (Ncontrols=26, Ncases=60) and a test set N=37 (Ncontrols=11, Ncases=26).  We computed 

principal component analysis (PCA), partial least squares discriminatory analysis (PLSDA), and 

sPLSDA, to extract and select features from the original set of features that differentiate patients 

with vulvodynia from healthy controls.  Furthermore, we applied a 10-fold cross validation 



	 iii	

approach to split the observations into 10 sets and repeatedly train the model on 9 sets and 

evaluate its performance on the 10th set.  Class prediction was determined using the Mahalanobis 

distance metric, which utilizes a majority vote algorithm.  Results: The sPLSDA algorithm 

selected 30 features from the 2768 original features to differentiate vulvodynia from healthy 

controls.  The specificity, sensitivity, and predictive accuracy for the sPLSDA algorithm was 

found to be 89%, 73%, and 86%, respectively.  The most influential selected features that 

differentiate patients with vulvodynia from healthy controls were functional network features, 

specifically of the within-module degree z score and participation related coefficient metrics. 

Discussion: By visualizing the sPLSDA, PLSDA, and PCA algorithms, we were able to examine 

how each algorithm performed on the discrimination, which in turns reveals potential insight into 

underlying mechanisms of vulvodynia, such as the important selected features.  The predictive 

accuracy of the sPLSDA in our study was comparable with the predictive accuracy in previous 

neuroimaging studies utilizing sPLSDA and support vector machines in conditions often 

comorbid with vulvodynia. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	 iv	

The thesis of David Gordon is approved. 
 

Jennifer Labus 

Victor Chaban 

David Elashoff 

Janet Sinsheimer, Committee Chair 

 

 

 

University of California, Los Angeles 

2018 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 v	

Table of Contents 

Abstract………………………………………………………………………………………....…ii 

Committee Page…………………………………………………………………………………..iv 

List of Figures and Tables………………………………………………………………………..vi 

Introduction……………………………………………………………………………………......1 

Methods……………………………………………………………………………………………5 

Results……………………………………………………………………………………………14 

Discussion, Limitations, and Future Directions………………………………………………….17 

References………………………………………………………………………………………..34 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 vi	

List of Figures and Tables 

Table 1. Study Population………………………………………………………………………..22 

Table 2. Functional Network Measures………………………………………………………….23 

Figure 1. Principal Component Analysis………………………………………………………...24 

Figure 2. PCA on Brain Morphometric Measurements and Functional Network Measures…….25 

Figure 3. Partial Least Squares Discriminatory Analysis on Brain Morphometric Measurements 

and Functional Network Measures………………………………………………………………26 

Figure 4. Balanced Error Rate for Tuning sPLSDA Model……………………………………...27 

Figure 5. Final Model - Sparse Partial Least Squares Discriminatory Analysis on Brain 

Morphometric Measurements and Functional Network Measures………………………………28 

Figure 6. Confusion Matrix for Test Set ………………………………………………………...29 

Figure 7. Feature Visualization for Loadings on Component 1………………………………….30 

Figure 8. Feature Visualization for Loadings on Component 2………………………………….31 

Table 3. Features Comprising Each Brain Signature…………………………………………….32 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	 1	

Introduction 
 
The Pain and Interoception Imaging Network (PAIN) is a multimodal, multisite, brain-imaging 

repository for chronic somatic and visceral pain disorders and aims to combine medical imaging 

with advanced physiological, genetics, and omics measures (Labus et al., 2016), (Clemens et al., 

2014), (Landis et al., 2014).  This archive provides a unique opportunity for the application of  

Big Data Science to further understanding of the central mechanism in chronic pain.  According 

to Van Horn and Toga, Big Data Science refers to multifactorial and broad ranging data that is 

accumulating exponentially and increasing the demand for data sharing, multisite studies, multi-

datatype archiving, and exploring and mining the data (Van Horn & Toga, 2014).  Moreover, Big 

Data Science requires novel thinking about how data is generated, managed, integrated, and 

leveraged to advance scientific understanding and healthcare (Bui, Van Horn, & Consortium, 

2017).  The conversion of medical images into mineable high-dimensional data is known as 

medical imaging computing and is supported by the concept that medical images contain 

information regarding underlying pathophysiology and that these relationships can be 

demonstrated through quantitative image analysis (Gillies, Kinahan, & Hricak, 2016).  

Furthermore, medical imaging machine learning algorithms have been integrated with clinical 

variables to predict new cases and healthy controls (Labus et al., 2015), (Gupta, Mayer, et al., 

2015).  The use of structural, functional, and anatomical neuroimaging markers could support 

new gene discoveries and a better understanding of underlying mechanisms of disease as evident 

in current studies integrating neuroimaging endophenotypes and genetic data to lead to new 

treatments (Glahn, Thompson, & Blangero, 2007), (Thompson et al., 2014), (Blokland et al., 

2017).  Furthermore, it has been suggested that medical imaging data can be combined with 

transcriptomic data to bring further insight into molecular intricacies of painful diseases (Katrib, 
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Hsu, Bui, & Xing, 2016).  The integration of such complex and heterogeneous Big Data offers 

unmatched opportunities to study chronic pain conditions (CPCs) (Labus et al., 2016), (Clemens 

et al., 2014), (Landis et al., 2014), (Van Horn & Toga, 2014) (K. A. Le Cao, Rossouw, Robert-

Granie, & Besse, 2008), (K. A. Le Cao, Boitard, & Besse, 2011). 

 

Patterns of brain connectivity can be measured using neuroimaging and can be indexed 

quantitatively and visualized using bioinformatics tools (Irimia, Goh, Torgerson, Vespa, & Van 

Horn, 2014).  Previous studies have shown that there are two main domains of brain networks;  

functional and structural networks, that reflect different underlying neurobiological mechanisms 

and are important for identifying and interpreting functional and structural quantitative measures 

(van den Heuvel & Sporns, 2013).  More specifically, functional networks are derived from 

statistical descriptions of time series data, which in resting-state functional MRI (rs-fMRI) 

studies are expressed as Pearson correlations.  Whereas, structural networks demonstrate 

anatomical connectivity, which in diffusion tensor imaging (DTI) are expressed as probabilistic 

and deterministic tractography (van den Heuvel & Sporns, 2013).  According to Sporns et al., the 

building blocks for organizing brain networks can be thought of as modules (Sporns & Betzel, 

2016).  Methodological approaches for detecting functional and structural modules, are of 

particular interest, as they reveal subnetworks that are particularly densely connected and 

correspond to specialized functional components (Sporns & Betzel, 2016). 

 

Functional magnetic resonance imaging (fMRI) is one of the most widely accepted methods 

using blood oxygenation level dependent (BOLD) signal contrast, because of its non-invasive 

and high spatial resolution (Matthews & Jezzard, 2004).  fMRI is widely used to detect brain 
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regions that change their level of activation in response to tasks, but can also measure 

correlations in spontaneous fluctuations of signals between different brain regions, and reveal 

functionally connected circuits. More recently, the functional activity and connectivity of the 

brain during the resting state have attracted increasing attention (Tunbridge, Farrell, Harrison, & 

Mackay, 2013).  Resting-state functional MRI studies have identified associated fluctuations in 

brain regions involved in motor, auditory, visual, and language function (Craig, 2013).  

 

Vulvodynia is a chronic vulvar pain condition that is often under treated and under diagnosed 

and lasts at least three months, in which women experience spontaneous unprovoked pain in the 

vulvar vestibule, pain provoked by mechanical stimulation including sexual intercourse, tampon 

insertion, or both (Henzell, Berzins, & Langford, 2017; Wesselmann, Bonham, & Foster, 2014).  

The type of pain reported includes neuropathic descriptors (such as hot-burning, itching, tingling 

or “pins and needles”, and light touch) as well as continuous descriptors (such as throbbing and 

tender) and intermittent descriptors (such as sharp and stabbing) (Dargie, Gilron, & Pukall, 

2017), (Reed, Harlow, Plegue, & Sen, 2016).  Previous studies have shown an increased familial 

risk among patients treated for vulvodynia (Morgan et al., 2016).  

 

A recent vulvodynia study using neuroimaging data found evidence that regions comprising the 

sensorimotor, salience, and default mode network showed substantial alterations in comparison 

to healthy controls (Gupta, Rapkin, et al., 2015).  Moreover, Schweinhardt et al. found that 

patients with vulvodynia had increased gray matter in pain modulatory and stress-related areas 

(Schweinhardt, Kuchinad, Pukall, & Bushnell, 2008). In a study applying mild to moderate 

pressure to the vulvar vestibule, it was found that patients with vulvodynia had significantly 
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higher activation levels in the insular and frontal cortical regions than did healthy controls 

(Pukall et al., 2005).  Furthermore, in patients with vuldoynia undergoing evoked pain at the 

thumb during fMRI, it was found that there was augmented brain activation, which suggests 

central neural pathology in vuvlodynia (Hampson et al., 2013).      

 

The aim of this study is to apply big data methodologies to differentiate patients with vulvodynia 

from healthy controls using functional network measures and gray matter morphometry (volume, 

cortical thickness, surface area, and mean curvature).  Although we may perform unsupervised 

machine learning, the extracted features may not clearly differentiate vulvodynia from healthy 

controls and supervised machine learning may need to be utilized to select the important features 

that differentiate vulvodynia from healthy controls.  To perform the computational analysis, we 

will use the programming language R and the R package mixOmics version 6.2.0 (Rohart, 

Gautier, Singh, & Cao, 2017).  This study was approved by the UCLA Institutional Review 

Board.   
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Methods  
 
Participants  

This case-control study sample consisted of a total of 123 female subjects (37 healthy controls 

and 86 patients with vulvodynia) enrolled in studies at the Oppenheimer Center for 

Neurobiology of Stress and Resilience at UCLA (Labus et al., 2016).  The diagnosis of 

vulvodynia was made during a clinical examination by an OB/GYN.  The data used in this study 

was obtained from the PAIN repository and CNS repository (Labus et al., 2016), (Clemens et al., 

2014).  To test the generalizability of the predictive model, we used a holdout procedure through 

random 70/30 split for both case and healthy control data.  This resulted in a training set N=86 

(Ncontrols=26, Ncases=60) and a test set N=37 (Ncontrols=11, Ncases=26) (Table 1).   

 

Structural and Functional Imaging Acquisitions 

Whole brain functional resonance imaging (fMRI) data was acquired using a 3.0T MRI scanner 

(Siemens Trio; Siemens, Erlangen, Germany) (Gupta, Rapkin, et al., 2015). A high resolution 

structural image was acquired from each subject for registration purposes with a magnetization-

prepared rapid acquisition gradient-echo sequence, repetition time = 2200ms, echo time = 

3.26ms, structural acquisition time =5m 12s, slice thickness = 1mm, 176 slices, 256*256 voxel 

matrix, 1mm voxel size. Resting state scans were acquired using the following parameters: 40-

slice whole brain volumes, slice thickness = 4mm, repetition time = 2000ms, echo time= 28ms, 

resting acquisition time = 10ms, flip angle = 77°, field of view = 220, 2×2×2 mm voxel size. 

Noise reducing headphones were used. Subjects rested with eyes closed while functional blood 

oxygen-level dependent images were acquired. 
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T-1 Image Segmentation 

Image segmentation and regional parcellation of gray matter images was performed using the 

FreeSurfer software (Dale, Fischl, & Sereno, 1999; Fischl, Sereno, & Dale, 1999; Fischl, Sereno, 

Tootell, & Dale, 1999) and workflow pipelines from the UCLA Laboratory of 

Neuroimaging pipeline using the Destrieux atlas and the Harvard-Oxford atlas (Destrieux, 

Fischl, Dale, & Halgren, 2010).  This parcellation yielded 74 cortical structures, 7 subcortical 

structures, the cerebellum, and the brainstem, for a complete set of 165 parcellations for the 

entire brain. Gray matter volume was computed for all 165 regions. In addition, for cortical 

regions , cortical thickness, surface area, and mean curvature were computed.  

 

Functional Brain Network Construction 

The parcellation and the functional connectivity results were combined to produce a 165x165 

weighted, undirected connectivity matrix.  Resting-state image preprocessing was performed 

using the SPM8 software (Friston).  Images were transformed from Digital Imaging and 

Communications in Medicine (DICOM) into Neuroimaging Informatics Technology Initiative 

(NIfTI), slice-time corrected, co-registered with the high-resolution structural images, spatially 

normalized to the Montreal Neurological Institute (MNI) space, and resampled to a voxel size of 

2 X 2 X 2 mm. Normalized functional images were further preprocessed and analyzed using the 

SPM-based CONN toolbox version 13 (Whitfield-Gabrieli & Nieto-Castanon, 2012). The 

resting-state images were filtered using a band-pass filter (0.008/s<f<0.08/s) to reduce the low- 

and high-frequency noises. A component based noise-correction method (Whitfield-Gabrieli & 

Nieto-Castanon, 2012), was applied to remove nuisances for better sensitivity and specificity of 

the analysis. Six motion realignment parameters and confounds for white matter and CSF were 
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removed using regression.  ROI-to-ROI functional connectivity, cross-correlations between the 

blood oxygenated level dependent time series, computed between all the brain regions in CONN 

toolbox. The connectivity correlation coefficients were then used to construct the final functional 

network setting negative values to zero.  The magnitude of the correlation represents the weights 

in the functional network. 

 

Computing Functional Network Metrics  

The Graph Theoretic General Linear Model tool and in-house matlab scripts were used to 

calculate and analyze the brain network properties and organization from the subject-specific 

functional brain networks (Spielberg, 2015). A brain network is defined by a collection of nodes 

(brain regions) and links (functional connections) between pairs of nodes (brain regions) 

(Rubinov & Sporns, 2017).  Several local weighted network metrics indexing centrality, 

segregation and integration were computed.  Regions with high centrality are highly influential, 

communicate with many other regions, facilitate functional integration, and play a key role in 

network resilience.  Three general measures of connectivity were assessed: Centrality, 

Segregation, and Integration; which are explained in detail below as well outlined in Table 2. 

   

A. Centrality: 1) Degree Strength reflects the number of other regions a region interacts with 

functionally, 2) Betweenness centrality, reflecting the ability of a region to control information 

flow between two other regions, 3) Eigenvector Centrality, where higher values region is 

connected to other highly connected regions reflective of the global (vs. local) prominence of a 

region, 4) Pagerank Centrality, which is a variant of eigenvector centrality, 5) Within-Module 

Degree Z Score, is a within-module version of degree centrality used to determine nodes with a 



	 8	

large number of nodes, 6) Participation Coefficient, which is a measure of diversity of 

intermodular connections of individual nodes, 7) Diversity Coefficient, which is a related 

measure to the participation coefficient based on Shannon entropy.   

 

B. Segregation: Segregation reflects the presence of densely connected brain regions forming an 

infrastructure having the ability to perform specialized processes and indicating functional 

segregation. Here we compute the clustering coefficient, where a higher value indicates the 

presence of cluster connectivity around an individual brain region.  

 

C. Integration: Integration quantifies the brain’s ability to expeditiously combine specialized 

information from distributed brain regions. This is characterized by the ease by which brain 

regions can communicate with every other brain region in the whole brain network. A primary 

measure of integration is a region’s average characteristic path length or average minimal travel 

distance between regions, shorter characteristic path length indicates greater ability to integrate 

information. 

 

Modules and Important Related Metrics  

According to Sporns et al., modules can be thought of as building blocks in the organization of 

brain networks as well as correspond to clusters of nodes that are connected (Sporns & Betzel, 

2016).  Functional connectivity metrics of particular importance to modules are the within-

module degree z score and participation coefficient, which are mathematically defined below 

(Sporns & Betzel, 2016).   

 



	 9	

Within-module degree z score is defined as:  

 

Where ki is the number of links of node i to other nodes in its module si, k̄si is the average of k 

over all the nodes in si, and σksi is the standard deviation of k in si, then zi is the within-module 

degree z-score and measures how well-connected node i is to other nodes in the module 

(Guimerà & Nunes Amaral, 2005).  

 

Participation coefficient is defined as: 

 

Where M is the set of modules and ki(m) is the number of links between i and all nodes in 

module m. 

 

Overview of Analysis 

We will apply sPLSDA, PLSDA, and PCA to perform dimension reduction and uncorrelate the 

independent variables to determine the optimal model for differentiating patients with 

vulvodynia from healthy controls.  Moreover, we will select the model that best differentiates the 

study populations to predict new cases and healthy controls utilizing functional network 

measures and gray matter morphometry (volume, cortical thickness, surface area, and mean 

curvature).  To perform the computational analysis, we will use the programming language R 

and the R package mixOmics version 6.2.0 (Rohart et al., 2017). 
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Sparse Partial Least Squares Discriminatory Analysis  

One of the statistical methodologies we will utilize to explore the relationship between the high 

dimensionality of neuroimaging data is supervised machine learning.  sPLSDA is a variant of 

partial least squares that is a feature selection technique and has been used to analyze brain 

networks in IBS and other conditions (Labus et al., 2015), (Labus et al., 2009), (Labus et al., 

2008).  We chose sPLSDA based on its ability to deal with a large number of predictors, 

multicollinearity with predictors, small sample size, and ability to select important features 

(Rohart et al., 2017).  The sPLSDA has shown good classification performance in comparison 

with other methods and can be used to input data and predict new cases (Rohart et al., 2017), (K. 

A. Le Cao et al., 2011), (K. A. Le Cao et al., 2008).  

 

sPLSDA utilizes shrinkage methodologies to help yield a less complex model by shrinking the 

regression coefficients (Clemmensen, Hastie, Witten, & Ersboll, 2012).  This process is known 

as penalization or regularization.  The least absolute shrinkage and selection operator (lasso), L1 

penalty, has the effect of forcing some of the coefficient estimates to be exactly equal to zero 

when the tuning parameter λ is sufficiently large.  Hence, much like best subset selection, the 

lasso performs variable selection. Furthermore, Rohart et al. suggests incorporating soft-

thresholding to the L1 penalty for signal denoising, which produces smoother results and selects 

the number of features desired on each dimension (Rohart et al., 2017).  The R Package 

mixOmics, replaces the λ parameter with a function called keepX for soft-thresholding (Rohart et 

al., 2017). Thus, sPLSDA has an L1 penalization on the loading vector ah to shrink some 

coefficients to zero. Thus, for each dimension h = 1,.., H, sPLSDA solves: 
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Ultimately, the algorithm uses a weighted loadings filter method to selects only a few of the most 

important features that contributes to the final model.  Each feature selected for a component has 

an associated loading, which is a measure of the importance of that feature in the component for 

the discrimination into the two groups (Mehmood, Liland, Snipen, & Saebo, 2012) (Gidskehaug, 

Anderssen, Flatberg, & Alsberg, 2007).  To avoid potentially overfitting the model, we did not 

utilize the mixOmics optimal constraint function (Rohart et al., 2017).  

 

Partial Least Squares Discriminatory Analysis 

The PLSDA algorithm applies a dimension reduction technique to obtain a set of principle values 

(Mizuta, 2012). PLSDA identifies a new set of features in a supervised way by making use of the 

outcome variable in order to identify new features that not only approximate old features well, 

but also that are related to the outcome variable, which is a limitation of other dimension 

reduction techniques such as PCA.  

 

Principal Component Analysis  

We will explore the performance of an unsupervised learning method, PCA, which is a feature 

extraction technique and discovers the signal in features without the outcome variable by using 

an orthogonal transformation to convert a set of potentially correlated variables into a set of 

linearly uncorrelated variables called principal components. Principal components are a function 

of all the features.  
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Predicting New Case and Control by Distance Metric 

In this study, the Mahalanobis distance was used to classify selected features as being of the 

healthy control or vulvodynia class.  The Mahalanobis distance is a commonly used metric in 

machine learning to measure distance between observations, as it controls for correlation 

between the different features, which is a limitation of the standard Euclidean distance (Shen, 

Kim, & Wang, 2010).  According to Rosenbaum and Rubin, using the Mahalanobis distance may 

slightly improve the matches and reduce bias (Rosenbaum & Rubin, 1983), (Rubin, 1980).  

Moreover, the Mahalanobis distance is recommended for use among study populations that may 

have an imbalance between study groups (Rohart et al., 2017). The R package mixOmics version 

6.2.0 uses the function called majority vote, based on the Mahalanobis distance, to choose the 

class, defined as the centroid distance, that is most common among the selected observations 

(K.-A. Le Cao, Rohart, Gonzalez, & Dejean, 2017).  The Mahalanobis distance formula is shown 

below, where Gk is the centroid: 

 

 

K-Fold Cross-Validation 

K-fold cross validation is a model validation method, which is used to show how well the results 

from a training set generalize to an independent test set. For this study, we will set k=10 and 

repeat 10 times, so it resamples 100 times.  When k = 10, it splits the observations into 10 sets.  

This will repeatedly train the model on 9 sets and evaluate its performance on the 10th set.  
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Performance Evaluations 

We will compute the specificity, sensitivity, precision, recall, observed accuracy, expected 

accuracy, kappa statistics, f-measure, and balanced error rate (BER) to evaluate the performance 

of the binary classifier.  Kappa statistic is a good measure to inspect classifications that may be 

due to chance.  As kappa statistic value calculated for classifiers closer to 1, the performance of 

classifier is assumed to be more realistic rather than being by chance. Thus, kappa statistic value 

is a recommended metric to consider for evaluation in the performance analysis of classifiers.  

Observed accuracy and expected accuracy are commonly used metrics to determine the 

performance/ discriminative ability of binary classifiers. Furthermore, the f-measure is a measure 

of a test's accuracy, which is usually used as performance evaluation metric to assess the 

performance of binary classifier, based on the harmonic mean for the classifier's precision and 

recall. 
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Results 
 
We first performed a preliminary PCA analysis on the brain morphometric and functional 

network measures data (Figure 1), which allows us to explore the sources of variation in the data 

in an unsupervised analysis.  In order to understand the amount of variation explained, we set 

number of components to a rather large number, 10. In Figure 1, the PCA numerical output 

shows that about 26% of the total variance is explained with 3 principal components.  Figure 1 

shows the variance explained per component.   

 

In Figure 2, the samples are represented on the first two principal components and colored 

according to the condition group, vulvodynia is red and healthy control is blue.  We observe that 

group types may not explain the major source of variation.  Note that since PCA is unsupervised, 

we only take into account the sample type information after the PCA, for visualization purposes.  

Confidence ellipses for each group are plotted to highlight the strength of the discrimination 

(confidence level set to 95%).   

 

In Figure 3, we see the supervised analysis helped refine the clusters of samples in a supervised 

fashion.  For discriminant analysis, we set up the Y as a factor indicating the group membership 

of each condition.  We fit a PLS-DA model with two components; the samples are then projected 

in the subspace spanned by these two components.  We observe a fairly clear separation of the 

two groups compared to an unsupervised PCA sample plot; however, this model is built on all 

2768 features, which makes it difficult to examine potential underlying mechanism of 

vulvodynia.  Confidence ellipses for each group are plotted to highlight the strength of the 

discrimination (confidence level set to 95%). 



	 15	

In Figure 4, the balanced error rate (12%) is shown for the PLSDA model.  The PLSDA model is 

built on all 2768 features, many of which may be uninformative to characterize the different 

groups. Using the tune.splsda function, we set ncomp=3, as we saw from the PCA and BER that 

after the first two components, the error rate does not significantly improve.  We selected 10-fold 

CV repeated 10 times, which resamples 100 times, and specified a Mahalanobis distance to 

predict the group membership across all CV runs.  BER is appropriate for an unbalanced number 

of samples per group as it calculates the average proportion of wrongly classified samples in 

each group, weighted by the number of samples in each group.  The BER indicates a small gain 

in adding more than 10 selected variables for component 1 and 20 selected variables for 

component 2.  Furthermore, the classification performance displayed suggests that ncomp=2 is 

sufficient to achieve good performance.   

 

Figure 5 shows the final sPLSDA model, which is built on 30 selected features across two 

component; 10 selected features in component 1 and 20 selected features in component 2.  The 

sample plots on the first two components shows that vulvodynia is fairly well separated on the 

first component, while the second component discriminated vulvodynia slightly better.  Also, 

there seems to be clusters within the vulvodynia group that may be indicative of subtypes for 

vulvodynia.  Confidence ellipses for each group are plotted to highlight the strength of the 

discrimination (confidence level set to 95%). 

 

In Figure 6, we computed a confusion matrix for the test set.  The positive predictive 

value/specificity was found to be 89%.  Furthermore, the negative predictive value/sensitivity 

was found to be 73%.  The precision was found to be 89%.  The recall was found to be 92%.  
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The f-measure was found to be 91%.  Moreover, the observed accuracy of the binary classifier 

was found to be 86%; whereas, the expected accuracy (due to chance) was found to be 57%.  

Therefore the kappa statistic can be calculated using the observed accuracy (86.4%) and the 

expected accuracy (57.4%) = 0.864 - 0.574 / 1 - 0.574 = 0.29 / 0.426 = 0.68.   

 

In Figure’s 7 and 8, we see the feature visualization for loading weights for component’s 1 and 2, 

respectively.  The plotLoading function was used, where color indicates the group for which the 

selected variable has a maximal mean value.  The most important variables are ordered from 

bottom to top.  

 

In Table 3, the features compromising each brain signature are displayed.  The two most 

important features on the first brain signature and higher values in the vulvodynia group 

compared to the healthy control group are the 1) Subparietal sulcus within-module degree z-

score and 2) Posterior-ventral part of the cingulate gyrus within-module degree z-score.  The two 

most important features on the first brain signature and lower values in the vulvodynia group 

compared to the healthy control group are the 1) Inferior part of the precentral sulcus diversity 

coefficient and 2) Inferior frontal sulcus diversity coefficient.  Similarly, the three most 

important features on the second brain signature and lower values in the vulvodynia group 

compared to the healthy control group are the 1) Superior frontal gyrus participation coefficient, 

2) Superior temporal sulcus participation coefficient, and 3) Transverse frontopolar gyri and 

sulci participation coefficient. 
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Discussion 

 
The aim of this study was to employ unsupervised and supervised machine learning algorithms 

to differentiate patients with vulvodynia from healthy controls using high-dimensional 

neuroimaging data.  We were able to demonstrate the benefits of sPLSDA over PLSDA and PCA 

to differentiate vulvodynia from healthy controls to include being able to select 30 important 

features from the 2768 original features and predict new cases and controls.    

 

The sensitivity (73%), specificity (89%), and predictive accuracy (86%) achieved with the 

sPLSDA in our study was comparable to the sensitivity (68%), specificity (71%), and predictive 

accuracy (70%), obtained using sPLSDA on gray matter morphometry data for discriminating 

healthy controls from subjects with a condition often comorbid with vulvodynia, irritable bowel 

syndrome (IBS) (Labus et al., 2015) as well as comparable to the predictive accuracy obtained 

using support vector machines and whole-brain voxel-based morphometry data for 

discriminating healthy controls from subjects with interstitial cystitis/bladder pain syndrome, 

which is also a condition comorbid with vulvodynia and IBS (Berman et al., 2002).  

 

Previous studies have proposed that the functional role of brain regions could be determined, 

largely, by its within-module degree z score (which expresses the number of connections a brain 

region makes to other brain regions in the module) and its participation coefficient (which 

expresses the degree to which a brain region’s connections are distributed across modules) that 

define how the brain region is positioned in its own module and with respect to other modules 

(Sporns & Betzel, 2016), (Guimerà & Nunes Amaral, 2005), (Rives & Galitski, 2003), (Han et 

al., 2004). Moreover, modular structures have been reported in biochemical networks and stated 
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to be crucial to functionality (Hartwell, Hopfield, Leibler, & Murray, 1999), (Ravasz, Somera, 

Mongru, Oltvai, & Barabási, 2002), (Ravasz, 2009), (Holme, Huss, & Jeong, 2003), (Papin, 

Reed, & Palsson, 2004). Furthermore, previous studies have reported the need to identify 

modules accurately (Girvan & Newman, 2002), (Newman & Girvan, 2004), (Eriksen, Simonsen, 

Maslov, & Sneppen, 2003), (Bui-Xuan & Jones, 2014), (Newman, 2004), (Radicchi, Castellano, 

Cecconi, Loreto, & Parisi, 2004), (Radicchi, 2018).   

 

In our study, functional features dominated morphometric features and the most influential 

functional features on brain signature 1 were of the within-module degree z score (which were 

higher in the vulvodynia group compared to the healthy control group) and diversity coefficient 

metrics (which is a participation coefficient related measure and was lower in the vulvodynia 

group compared to the healthy control group).  Moreover, on brain signature 2, the most 

influential functional features were of the participation coefficient metrics (which were lower in 

the vulvodynia group compared to the healthy control group).  Therefore, the most influential 

selected features in our study were a combination of the within-module degree z score and 

participation related coefficient metrics.  The most influential within-module degree z score 

metrics in brain signature 1 are located in the cingulate and parietal regions, which are regions 

known to be pain-related networks (Walitt, Ceko, Gracely, & Gracely, 2016).  Furthermore, the 

cingulate region has been associated with the default mode network (DMN) and it is hoped that 

measurements of the constitution of the DMN and how easily it deactivates during tasks in the 

different central sensitivity syndromes will provide more insight into these disorders (Walitt et 

al., 2016).  
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While PCA is able to reduce the dimensionality of high dimensional data and uncorrelate 

independent variables, it is not a feature selection technique rather it is a feature extraction 

technique.  Therefore, performing PCA gives us principal components that are a function of all 

the features and did not reveal a clear pattern based on group type, which was used for 

visualization purposes only after PCA was performed.  Therefore, we explored the use of feature 

selection techniques that were able to reduce the dimensionality of data, uncorrelate the 

independent variables, and select important features.  First, we utilized PLSDA, which selected 

important features that differentiate the patient populations; however, it included all of the 2768 

original features, which makes it difficult to examine the underlying mechanisms of vulvodynia.  

Therefore, we introduced a sparse penalty function to PLSDA.  Using sPLSDA, we were able to 

build a prediction algorithm on 30 features from the 2768 original features.    

 

As mentioned, the sPLSDA method utilizes penalization to shrink regression coefficients toward 

zero and some exactly to zero in order to identify the most key features (Clemmensen et al., 

2012).  Selected key features reveal what the algorithm learned to extract as meaningful 

information and visualizing these key features helps represent that and perhaps lays a foundation 

for future work (Ho, Speier, El-Saden, & Arnold, 2017).  We considered utilizing ridge 

regression; however ridge includes all predictors in the final model and we wanted a model that 

selects a subset of the old features. As a result, models generated from the lasso are generally 

much easier to interpret than those produced by ridge regression.  Similarly, Lange et al. suggests 

the use of penalization methods for high dimensional data to help with identifying key features 

(Lange, Papp, Sinsheimer, & Sobel, 2014).  Furthermore, Chi et al. demonstrated the use of 

penalization methods for selecting key features among integrated imaging and genetics data (Chi 
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et al., 2013).  To assess the model performance we examined the test error rate, particularly the 

BER.  For a good model performance, we would expect a low BER, which was achieved.  To 

examine the BER, we employed the k-fold cross validation approach, where k=10.  We double-

checked the BER accuracy by also performing a permutation test, where we resampled the 

training set 5 times.  The BER was found to be higher for the permutation test (30%) than the k-

fold cross validation (12%) approach; therefore, we suspect the model is a good fit.         

 

Limitations 

 

Criteria from a Receiver Operating Characteristic (ROC) curve or Area Under the Curve (AUC) 

may not be particularly insightful since the prediction threshold in the mixOmics package is 

based on a specified distance; in the case of our study the Mahalanobis distance. (Rohart et al., 

2017).  The findings from this study are based on data collected from one site; therefore, these 

findings may not generalize to other sites.  Furthermore, data on ethnicity/race was not available.  

Moreover, ROI data was based on only one atlas.  Also, this study only used two types of data.  

Additionally, the study sample size was small and may not generalize.  

 

Future Directions 

 

Medical imaging machine learning algorithms that differentiate irritable bowel syndrome have 

been applied to clinical variables, such as bowel symptoms, to examine its potential use in drug 

discovery and clinical decision support (Labus et al., 2015).  Similarly, the algorithm in our 

study, that utilizes functional network measures and gray matter morphometry, may provide 
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insight when applied to clinical variables, such as pain duration and level of pain intensity.  

Furthermore, recent studies are attempting to integrate anatomical and functional neuroimaging 

endophenotypes with SNP biomarkers and genetic variants to explore underlying mechanisms of 

disease (Thompson et al., 2014), (Blokland et al., 2017), (Davies et al., 2015), (Adams et al., 

2016), (Hibar et al., 2015), (Trampush et al., 2017). A recent study reported that chronic pain 

conditions are moderately heritable (McIntosh et al., 2016).  The sPLSDA method is robust and 

could be used to integrate neuroimaging data with genetic data (Rohart et al., 2017).   
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Table 1. Study Population 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Training Set (N=86) Test Set (N=37) Total (N=123) 

Vulvodynia 
N=60 

 
Healthy Controls 

N=26 

Vulvodynia 
N=26 

 
Healthy Controls 

N=11 

 
Vulvodynia 

N=86 
 

Healthy Controls 
N=37 

 

Mean Age: 28 
SD: 6.5 

Mean Age: 28 
SD: 7.4 

 
Mean Age: 28 

SD: 6.8 
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Table 2. Functional Network Measures 
 

Functional (RS-fMRI) Network Measures 
for 165 Brain Regions 

Centrality 
1.Degree strength 
2.Betweenness centrality 
3.Eigenvector centrality 
4.Pagerank centrality 
5.Closeness centrality 
6.Within-module degree z-score 
7.Participation coefficient 
8.Diversity coefficient  

Integration 
1. Average characteristic path length 

Segregation 
1.Clustering coefficient 
2.Local efficiency   
3.Global efficiency  

Assortativity 
1. Local assortativity  
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Figure 1. Principal Component Analysis 
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Figure 2. PCA on Brain Morphometric Measurements and Functional Network Measures 
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Figure 3. Partial Least Squares Discriminatory Analysis on Brain Morphometric Measurements 
and Functional Network Measures 
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Figure 4. Balanced Error Rate for Tuning sPLSDA Model 
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Figure 5. Final Model - Sparse Partial Least Squares Discriminatory Analysis on Brain 
Morphometric Measurements and Functional Network Measures 
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Figure 6. Confusion Matrix for Test Set  
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Figure 7. Feature Visualization for Loadings on Component 1 
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Figure 8. Feature Visualization for Loadings on Component 2 
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Table 3. Features Comprising Each Brain Signature 
 
Brain 
Region 

Description Hemisphere Metric Loading 
Comp 1 

Loading  
Comp 2  

Network 

Brain Signature 1 
Parietal Subparietal 

sulcus  
R Within-module 

degree z-score 
-0.56  Executive control 

Cingulate 
 

Posterior-
ventral part of 
the cingulate 
gyrus 
(vPCC,isthmus 
of the cingulate 
gyrus)  

L Within-module 
degree z-score 

-0.46  DMN 

Parietal 
 

Inferior part of 
the precentral 
sulcus  

R Diversity 
Coefficient 

0.43  Somatosensory 

Frontal Inferior frontal 
sulcus  

L Diversity 
Coefficient 

0.40  Executive control 

Occipital Cuneus(O6)  L Closeness 
Centrality 

0.21  Other 

Frontal 
 

Inferior frontal 
sulcus  

R Diversity 
Coefficient 

0.19  Executive control 

Occipital Cuneus(O6)  L Strength 0.14  Other 
Cingulate Posterior-dorsal 

part of the 
cingulate 
gyrus(dPCC)  

L Within-module 
degree z-score 

-0.13  DMN 

Frontal Triangular part 
of the inferior 
frontal gyrus  

L Diversity 
Coefficient 

0.12  Emotional Arousal 

Subcortical Thalamus R Within-module 
degree z-score 

0.05  Sensorimotor 
(reward) 

Brain Signature 2 
Frontal Superior frontal 

gyrus(F1)  
L Participation 

Coefficient 
 0.59 Somatosensory 

Temporal Superior 
temporal 
sulcus(parallel 
sulcus)  

R Participation 
Coefficient 

 0.49 Other 

Frontal Transverse 
frontopolar gyri 
and sulci  

R Participation 
Coefficient 

 0.42 Emotional 
Arousal/Central 
Autonomic 
Network/Salience 
 

Cingulate Anterior part of 
thecingulate 
gyrus and 
sulcus(ACC)  

R Participation 
Coefficient 

 0.24 Emotional Arousal 

Insular Vertical ramus 
of theanterior 
segment of the 
lateral 
sulcus(orfissure)  

L Within-module 
degree z-score 

 0.19 Salience/Central 
Automatic 
Network 

Occipital Anterior 
occipital sulcus 
andpreoccipital 
notch(temporo-
occipital 
incisure)  

R Mean Curvature  -0.18 Other 

Insular Vertical ramus 
of theanterior 
segment of the 
lateral 
sulcus(orfissure)  

L Average Path 
Length 

 -0.16 Salience/Central 
Automatic 
Network 
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Insular Vertical ramus 
of theanterior 
segment of the 
lateral 
sulcus(orfissure)  

L Closeness 
Centrality 

 0.15 Salience/Central 
Automatic 
Network 

Frontal Orbital sulci(H-
shaped sulci)  

R Participation 
Coefficient 

 0.15 Salience/Central 
Automatic 
Network/Reward 
(sensorimotor) 

Frontal Opercular part 
of the inferior 
frontal gyrus  

R Local Efficacy  0.10 Emotional Arousal 

Insular Superior 
segment of 
thecircular 
sulcus of the 
insula  

R Strength  0.10 Salience/Central 
Automatic 
Network 

Cingulate Anterior part of 
thecingulate 
gyrus and 
sulcus(ACC)  

L Participation 
Coefficient 

 0.09 Emotional Arousal 

Parietal Supramarginal 
gyrus  
 

R Local Efficacy  0.07 DMN 

Subcortical Hippocampus R Within-module 
degree z-score 

 0.05 Emotional 
Arousal/Reward 
(sensorimotor) 

Subcortical Pallidum R Local 
Assortativity 

 -0.05 Sensorimotor 
(reward)_ 

Frontal Fronto-marginal 
gyrus (of 
Wernicke) and 
sulcus  

R Within-module 
degree z-score 

 -0.04 Executive control 

Frontal Transverse 
frontopolar gyri 
and sulci  

R Diversity 
Coefficient 

 0.03 Salience/Emotiona
l Arousal/Central 
Automatic 
Network 

Insular Superior 
segment of 
thecircular 
sulcus of the 
insula 

L Strength  0.03 Salience/Central 
Automatic 
Network 

Frontal Superior frontal 
gyrus(F1)  
 

L Diversity 
Coefficient 

 0.03 Somatosensory 

Frontal Middle frontal 
sulcus  
 

R Page Rank 
Centrality 

 -0.01 Executive control  

1Negative loadings for each component are associated with higher values and a group contribution/importance in the 
vulvodynia group compared to the healthy control group. 
2Positive loadings for each component are associated with higher values and a group contribution/importance in the 
healthy control group compared to the vulvodynia group. 
 

 

 

 
 

 
 
 



	 34	

References	

	

1. Adams,	H.	H.,	Hibar,	D.	P.,	Chouraki,	V.,	Stein,	J.	L.,	Nyquist,	P.	A.,	Rentería,	M.	E.,	.	.	.	

Thompson,	P.	M.	(2016).	Novel	genetic	loci	underlying	human	intracranial	volume	

identified	through	genome-wide	association.	Nat	Neurosci,	19(12),	1569-1582.	

doi:10.1038/nn.4398	

2. Berman,	S.	M.,	Naliboff,	B.	D.,	Chang,	L.,	Fitzgerald,	L.,	Antolin,	T.,	Camplone,	A.,	&	

Mayer,	E.	A.	(2002).	Enhanced	preattentive	central	nervous	system	reactivity	in	

irritable	bowel	syndrome.	Am	J	Gastroenterol,	97(11),	2791-2797.	

doi:10.1111/j.1572-0241.2002.07024.x	

3. Blokland,	G.	A.	M.,	Del	Re,	E.	C.,	Mesholam-Gately,	R.	I.,	Jovicich,	J.,	Trampush,	J.	W.,	

Keshavan,	M.	S.,	.	.	.	Petryshen,	T.	L.	(2017).	The	Genetics	of	Endophenotypes	of	

Neurofunction	to	Understand	Schizophrenia	(GENUS)	consortium:	A	collaborative	

cognitive	and	neuroimaging	genetics	project.	Schizophr	Res.	

doi:10.1016/j.schres.2017.09.024	

4. Bui,	A.	A.	T.,	Van	Horn,	J.	D.,	&	Consortium,	N.	B.	K.	C.	(2017).	Envisioning	the	future	

of	'big	data'	biomedicine.	J	Biomed	Inform,	69,	115-117.	

doi:10.1016/j.jbi.2017.03.017	

5. Bui-Xuan,	B.	M.,	&	Jones,	N.	S.	(2014).	How	modular	structure	can	simplify	tasks	on	

networks:	parameterizing	graph	optimization	by	fast	local	community	detection.	

Proc	Math	Phys	Eng	Sci,	470(2170),	20140224.	doi:10.1098/rspa.2014.0224	



	 35	

6. Chi,	E.	C.,	Allen,	G.	I.,	Zhou,	H.,	Kohannim,	O.,	Lange,	K.,	&	Thompson,	P.	M.	(2013).	

IMAGING	GENETICS	VIA	SPARSE	CANONICAL	CORRELATION	ANALYSIS.	Proc	IEEE	

Int	Symp	Biomed	Imaging,	2013,	740-743.	doi:10.1109/ISBI.2013.6556581	

7. Clemens,	J.	Q.,	Mullins,	C.,	Kusek,	J.	W.,	Kirkali,	Z.,	Mayer,	E.	A.,	Rodriguez,	L.	V.,	.	.	.	

Group,	M.	R.	N.	S.	(2014).	The	MAPP	research	network:	a	novel	study	of	urologic	

chronic	pelvic	pain	syndromes.	BMC	Urol,	14,	57.	doi:10.1186/1471-2490-14-57	

8. Clemmensen,	L.,	Hastie,	T.,	Witten,	D.,	&	Ersboll,	B.	(2012).	Sparse	Discriminant	

Analysis.	In:	Technometrics.	

9. Craig,	A.	D.	(2013).	An	interoceptive	neuroanatomical	perspective	on	feelings,	

energy,	and	effort.	Behav	Brain	Sci,	36(6),	685-686;	discussion	707-626.	

doi:10.1017/S0140525X13001489	

10. Dale,	A.	M.,	Fischl,	B.,	&	Sereno,	M.	I.	(1999).	Cortical	surface-based	analysis.	I.	

Segmentation	and	surface	reconstruction.	Neuroimage,	9(2),	179-194.	

doi:10.1006/nimg.1998.0395	

11. Dargie,	E.,	Gilron,	I.,	&	Pukall,	C.	F.	(2017).	Self-Reported	Neuropathic	Pain	

Characteristics	of	Women	With	Provoked	Vulvar	Pain:	A	Preliminary	Investigation.	J	

Sex	Med,	14(4),	577-591.	doi:10.1016/j.jsxm.2017.02.008	

12. Davies,	G.,	Armstrong,	N.,	Bis,	J.	C.,	Bressler,	J.,	Chouraki,	V.,	Giddaluru,	S.,	.	.	.	

Scotland,	G.	(2015).	Genetic	contributions	to	variation	in	general	cognitive	function:	

a	meta-analysis	of	genome-wide	association	studies	in	the	CHARGE	consortium	

(N=53949).	Mol	Psychiatry,	20(2),	183-192.	doi:10.1038/mp.2014.188	



	 36	

13. Destrieux,	C.,	Fischl,	B.,	Dale,	A.,	&	Halgren,	E.	(2010).	Automatic	parcellation	of	

human	cortical	gyri	and	sulci	using	standard	anatomical	nomenclature.	Neuroimage,	

53(1),	1-15.	doi:10.1016/j.neuroimage.2010.06.010	

14. Eriksen,	K.	A.,	Simonsen,	I.,	Maslov,	S.,	&	Sneppen,	K.	(2003).	Modularity	and	extreme	

edges	of	the	internet.	Phys	Rev	Lett,	90(14),	148701.	

doi:10.1103/PhysRevLett.90.148701	

15. Fischl,	B.,	Sereno,	M.	I.,	&	Dale,	A.	M.	(1999).	Cortical	surface-based	analysis.	II:	

Inflation,	flattening,	and	a	surface-based	coordinate	system.	Neuroimage,	9(2),	195-

207.	doi:10.1006/nimg.1998.0396	

16. Fischl,	B.,	Sereno,	M.	I.,	Tootell,	R.	B.,	&	Dale,	A.	M.	(1999).	High-resolution	

intersubject	averaging	and	a	coordinate	system	for	the	cortical	surface.	Hum	Brain	

Mapp,	8(4),	272-284.		

17. Friston,	K.	Statistical	Parametric	Mapping	Software.	In.	

18. Gidskehaug,	L.,	Anderssen,	E.,	Flatberg,	A.,	&	Alsberg,	B.	K.	(2007).	A	framework	for	

significance	analysis	of	gene	expression	data	using	dimension	reduction	methods.	

BMC	Bioinformatics,	8,	346.	doi:10.1186/1471-2105-8-346	

19. Gillies,	R.	J.,	Kinahan,	P.	E.,	&	Hricak,	H.	(2016).	Radiomics:	Images	Are	More	than	

Pictures,	They	Are	Data.	Radiology,	278(2),	563-577.	

doi:10.1148/radiol.2015151169	

20. Girvan,	M.,	&	Newman,	M.	E.	(2002).	Community	structure	in	social	and	biological	

networks.	Proc	Natl	Acad	Sci	U	S	A,	99(12),	7821-7826.	

doi:10.1073/pnas.122653799	



	 37	

21. Glahn,	D.	C.,	Thompson,	P.	M.,	&	Blangero,	J.	(2007).	Neuroimaging	endophenotypes:	

strategies	for	finding	genes	influencing	brain	structure	and	function.	Hum	Brain	

Mapp,	28(6),	488-501.	doi:10.1002/hbm.20401	

22. Guimerà,	R.,	&	Nunes	Amaral,	L.	A.	(2005).	Functional	cartography	of	complex	

metabolic	networks.	Nature,	433(7028),	895-900.	doi:10.1038/nature03288	

23. Gupta,	A.,	Mayer,	E.	A.,	Sanmiguel,	C.	P.,	Van	Horn,	J.	D.,	Woodworth,	D.,	Ellingson,	B.	

M.,	.	.	.	Labus,	J.	S.	(2015).	Patterns	of	brain	structural	connectivity	differentiate	

normal	weight	from	overweight	subjects.	Neuroimage	Clin,	7,	506-517.	

doi:10.1016/j.nicl.2015.01.005	

24. Gupta,	A.,	Rapkin,	A.	J.,	Gill,	Z.,	Kilpatrick,	L.,	Fling,	C.,	Stains,	J.,	.	.	.	Labus,	J.	S.	(2015).	

Disease-related	differences	in	resting-state	networks:	a	comparison	between	

localized	provoked	vulvodynia,	irritable	bowel	syndrome,	and	healthy	control	

subjects.	Pain,	156(5),	809-819.	doi:10.1097/01.j.pain.0000461289.65571.54	

25. Hampson,	J.	P.,	Reed,	B.	D.,	Clauw,	D.	J.,	Bhavsar,	R.,	Gracely,	R.	H.,	Haefner,	H.	K.,	&	

Harris,	R.	E.	(2013).	Augmented	central	pain	processing	in	vulvodynia.	J	Pain,	14(6),	

579-589.	doi:10.1016/j.jpain.2013.01.767	

26. Han,	J.	D.,	Bertin,	N.,	Hao,	T.,	Goldberg,	D.	S.,	Berriz,	G.	F.,	Zhang,	L.	V.,	.	.	.	Vidal,	M.	

(2004).	Evidence	for	dynamically	organized	modularity	in	the	yeast	protein-protein	

interaction	network.	Nature,	430(6995),	88-93.	doi:10.1038/nature02555	

27. Hartwell,	L.	H.,	Hopfield,	J.	J.,	Leibler,	S.,	&	Murray,	A.	W.	(1999).	From	molecular	to	

modular	cell	biology.	Nature,	402(6761	Suppl),	C47-52.	doi:10.1038/35011540	

28. Henzell,	H.,	Berzins,	K.,	&	Langford,	J.	P.	(2017).	Provoked	vestibulodynia:	current	

perspectives.	Int	J	Womens	Health,	9,	631-642.	doi:10.2147/IJWH.S113416	



	 38	

29. Hibar,	D.	P.,	Stein,	J.	L.,	Renteria,	M.	E.,	Arias-Vasquez,	A.,	Desrivières,	S.,	Jahanshad,	

N.,	.	.	.	SYS.	(2015).	Common	genetic	variants	influence	human	subcortical	brain	

structures.	Nature,	520(7546),	224-229.	doi:10.1038/nature14101	

30. Ho,	K.,	Speier,	W.,	El-Saden,	S.,	&	Arnold,	C.	(2017).	Classifying	Acute	Ischemic	Stroke	

Onset	Time	using	Deep	Imaging	Features.	In:	AMIA	Annu	Symp	Proc.	

31. Holme,	P.,	Huss,	M.,	&	Jeong,	H.	(2003).	Subnetwork	hierarchies	of	biochemical	

pathways.	Bioinformatics,	19(4),	532-538.		

32. Irimia,	A.,	Goh,	S.	Y.,	Torgerson,	C.	M.,	Vespa,	P.,	&	Van	Horn,	J.	D.	(2014).	Structural	

and	connectomic	neuroimaging	for	the	personalized	study	of	longitudinal	

alterations	in	cortical	shape,	thickness	and	connectivity	after	traumatic	brain	injury.	

J	Neurosurg	Sci,	58(3),	129-144.		

33. Katrib,	A.,	Hsu,	W.,	Bui,	A.,	&	Xing,	Y.	(2016).	"RADIOTRANSCRIPTOMICS":	A	synergy	

of	imaging	and	transcriptomics	in	clinical	assessment.	Quant	Biol,	4(1),	1-12.	

doi:10.1007/s40484-016-0061-6	

34. Labus,	J.	S.,	Naliboff,	B.,	Kilpatrick,	L.,	Liu,	C.,	Ashe-McNalley,	C.,	dos	Santos,	I.	R.,	.	.	.	

Mayer,	E.	A.	(2016).	Pain	and	Interoception	Imaging	Network	(PAIN):	A	multimodal,	

multisite,	brain-imaging	repository	for	chronic	somatic	and	visceral	pain	disorders.	

Neuroimage,	124(Pt	B),	1232-1237.	doi:10.1016/j.neuroimage.2015.04.018	

35. Labus,	J.	S.,	Naliboff,	B.	D.,	Berman,	S.	M.,	Suyenobu,	B.,	Vianna,	E.	P.,	Tillisch,	K.,	&	

Mayer,	E.	A.	(2009).	Brain	networks	underlying	perceptual	habituation	to	repeated	

aversive	visceral	stimuli	in	patients	with	irritable	bowel	syndrome.	Neuroimage,	

47(3),	952-960.	doi:10.1016/j.neuroimage.2009.05.078	



	 39	

36. Labus,	J.	S.,	Naliboff,	B.	N.,	Fallon,	J.,	Berman,	S.	M.,	Suyenobu,	B.,	Bueller,	J.	A.,	.	.	.	

Mayer,	E.	A.	(2008).	Sex	differences	in	brain	activity	during	aversive	visceral	

stimulation	and	its	expectation	in	patients	with	chronic	abdominal	pain:	a	network	

analysis.	Neuroimage,	41(3),	1032-1043.	doi:10.1016/j.neuroimage.2008.03.009	

37. Labus,	J.	S.,	Van	Horn,	J.	D.,	Gupta,	A.,	Alaverdyan,	M.,	Torgerson,	C.,	Ashe-McNalley,	

C.,	.	.	.	Mayer,	E.	A.	(2015).	Multivariate	morphological	brain	signatures	predict	

patients	with	chronic	abdominal	pain	from	healthy	control	subjects.	Pain,	156(8),	

1545-1554.	doi:10.1097/j.pain.0000000000000196	

38. Landis,	J.	R.,	Williams,	D.	A.,	Lucia,	M.	S.,	Clauw,	D.	J.,	Naliboff,	B.	D.,	Robinson,	N.	A.,	.	.	

.	Group,	M.	R.	N.	S.	(2014).	The	MAPP	research	network:	design,	patient	

characterization	and	operations.	BMC	Urol,	14,	58.	doi:10.1186/1471-2490-14-58	

39. Lange,	K.,	Papp,	J.	C.,	Sinsheimer,	J.	S.,	&	Sobel,	E.	M.	(2014).	Next	Generation	

Statistical	Genetics:	Modeling,	Penalization,	and	Optimization	in	High-Dimensional	

Data.	Annu	Rev	Stat	Appl,	1(1),	279-300.	doi:10.1146/annurev-statistics-022513-

115638	

40. Le	Cao,	K.-A.,	Rohart,	F.,	Gonzalez,	I.,	&	Dejean,	S.	(2017).	Omics	Data	Integration	

Project:		Predict	Method	for	(mint).(block).(s)pls(da)	methods		

41. p.p1	{margin:	0.0px	0.0px	0.0px	0.0px;	font:	24.3px	Helvetica;	-webkit-text-stroke:	

#000000}	

42. span.s1	{font-kerning:	none}.	In.	

43. Le	Cao,	K.	A.,	Boitard,	S.,	&	Besse,	P.	(2011).	Sparse	PLS	discriminant	analysis:	

biologically	relevant	feature	selection	and	graphical	displays	for	multiclass	

problems.	BMC	Bioinformatics,	12,	253.	doi:10.1186/1471-2105-12-253	



	 40	

44. Le	Cao,	K.	A.,	Rossouw,	D.,	Robert-Granie,	C.,	&	Besse,	P.	(2008).	A	sparse	PLS	for	

variable	selection	when	integrating	omics	data.	Stat	Appl	Genet	Mol	Biol,	7(1),	Article	

35.	doi:10.2202/1544-6115.1390	

45. Matthews,	P.	M.,	&	Jezzard,	P.	(2004).	Functional	magnetic	resonance	imaging.	J	

Neurol	Neurosurg	Psychiatry,	75(1),	6-12.		

46. McIntosh,	A.	M.,	Hall,	L.	S.,	Zeng,	Y.,	Adams,	M.	J.,	Gibson,	J.,	Wigmore,	E.,	.	.	.	Hocking,	

L.	J.	(2016).	Genetic	and	Environmental	Risk	for	Chronic	Pain	and	the	Contribution	

of	Risk	Variants	for	Major	Depressive	Disorder:	A	Family-Based	Mixed-Model	

Analysis.	PLoS	Med,	13(8),	e1002090.	doi:10.1371/journal.pmed.1002090	

47. Mehmood,	T.,	Liland,	K.,	Snipen,	L.,	&	Saebo,	S.	(2012).	A	review	of	variable	selection	

methods	in	Partial	Least	Squares	Regression.	In:	Chemometrics	and	Intelligent	

Laboratory	Systems.	

48. Mizuta,	M.	(2012).	Dimension	Reduction	Methods.	In:	Handbook	of	Computational	

Statistics.	

49. Morgan,	T.	K.,	Allen-Brady,	K.	L.,	Monson,	M.	A.,	Leclair,	C.	M.,	Sharp,	H.	T.,	&	Cannon-

Albright,	L.	A.	(2016).	Familiality	analysis	of	provoked	vestibulodynia	treated	by	

vestibulectomy	supports	genetic	predisposition.	Am	J	Obstet	Gynecol,	214(5),	

609.e601-607.	doi:10.1016/j.ajog.2015.11.019	

50. Newman,	M.	E.	(2004).	Fast	algorithm	for	detecting	community	structure	in	

networks.	Phys	Rev	E	Stat	Nonlin	Soft	Matter	Phys,	69(6	Pt	2),	066133.	

doi:10.1103/PhysRevE.69.066133	



	 41	

51. Newman,	M.	E.,	&	Girvan,	M.	(2004).	Finding	and	evaluating	community	structure	in	

networks.	Phys	Rev	E	Stat	Nonlin	Soft	Matter	Phys,	69(2	Pt	2),	026113.	

doi:10.1103/PhysRevE.69.026113	

52. Papin,	J.	A.,	Reed,	J.	L.,	&	Palsson,	B.	O.	(2004).	Hierarchical	thinking	in	network	

biology:	the	unbiased	modularization	of	biochemical	networks.	Trends	Biochem	Sci,	

29(12),	641-647.	doi:10.1016/j.tibs.2004.10.001	

53. Pukall,	C.	F.,	Strigo,	I.	A.,	Binik,	Y.	M.,	Amsel,	R.,	Khalifé,	S.,	&	Bushnell,	M.	C.	(2005).	

Neural	correlates	of	painful	genital	touch	in	women	with	vulvar	vestibulitis	

syndrome.	Pain,	115(1-2),	118-127.	doi:10.1016/j.pain.2005.02.020	

54. Radicchi,	F.	(2018).	Decoding	communities	in	networks.	Phys	Rev	E,	97(2-1),	

022316.	doi:10.1103/PhysRevE.97.022316	

55. Radicchi,	F.,	Castellano,	C.,	Cecconi,	F.,	Loreto,	V.,	&	Parisi,	D.	(2004).	Defining	and	

identifying	communities	in	networks.	Proc	Natl	Acad	Sci	U	S	A,	101(9),	2658-2663.	

doi:10.1073/pnas.0400054101	

56. Ravasz,	E.	(2009).	Detecting	hierarchical	modularity	in	biological	networks.	Methods	

Mol	Biol,	541,	145-160.	doi:10.1007/978-1-59745-243-4_7	

57. Ravasz,	E.,	Somera,	A.	L.,	Mongru,	D.	A.,	Oltvai,	Z.	N.,	&	Barabási,	A.	L.	(2002).	

Hierarchical	organization	of	modularity	in	metabolic	networks.	Science,	297(5586),	

1551-1555.	doi:10.1126/science.1073374	

58. Reed,	B.	D.,	Harlow,	S.	D.,	Plegue,	M.	A.,	&	Sen,	A.	(2016).	Remission,	Relapse,	and	

Persistence	of	Vulvodynia:	A	Longitudinal	Population-Based	Study.	J	Womens	Health	

(Larchmt),	25(3),	276-283.	doi:10.1089/jwh.2015.5397	



	 42	

59. Rives,	A.	W.,	&	Galitski,	T.	(2003).	Modular	organization	of	cellular	networks.	Proc	

Natl	Acad	Sci	U	S	A,	100(3),	1128-1133.	doi:10.1073/pnas.0237338100	

60. Rohart,	F.,	Gautier,	B.,	Singh,	A.,	&	Cao,	K.-A.	L.	(2017).	mixOmics:	an	R	package	for	

‘omics	feature	selection	and	

61. multiple	data	integration.	In:	bioRxiv.	

62. Rosenbaum,	P.	R.,	&	Rubin,	D.	B.	(1983).	The	Central	Role	of	the	Propensity	Score	in	

Observational	Studies	for	Causal	Effects.	Biometrika,	70(1),	41-55.	

doi:10.2307/2335942	

63. Rubin,	D.	B.	(1980).	Bias	Reduction	Using	Mahalanobis-Metric	Matching.	Biometrics,	

36(2),	293-298.	doi:10.2307/2529981	

64. Rubinov,	M.,	&	Sporns,	O.	(2017).	Brain	Connectivity	Toolbox.	In.	

65. Schweinhardt,	P.,	Kuchinad,	A.,	Pukall,	C.	F.,	&	Bushnell,	M.	C.	(2008).	Increased	gray	

matter	density	in	young	women	with	chronic	vulvar	pain.	Pain,	140(3),	411-419.	

doi:10.1016/j.pain.2008.09.014	

66. Shen,	C.,	Kim,	J.,	&	Wang,	L.	(2010).	Scalable	large-margin	Mahalanobis	distance	

metric	learning.	IEEE	Trans	Neural	Netw,	21(9),	1524-1530.	

doi:10.1109/TNN.2010.2052630	

67. Spielberg,	J.	(2015).	Graph	Theoretic	General	Linear	Model.	In.	

68. Sporns,	O.,	&	Betzel,	R.	F.	(2016).	Modular	Brain	Networks.	Annu	Rev	Psychol,	67,	

613-640.	doi:10.1146/annurev-psych-122414-033634	

69. Thompson,	P.	M.,	Stein,	J.	L.,	Medland,	S.	E.,	Hibar,	D.	P.,	Vasquez,	A.	A.,	Renteria,	M.	E.,	

.	.	.	Alzheimer’s	Disease	Neuroimaging	Initiative,	E.	P.	I.	C.,	I.	M.	A.GEN	Consortium,	

S.guenay	Youth	Study	(SYS)	Group.	(2014).	The	ENIGMA	Consortium:	large-scale	



	 43	

collaborative	analyses	of	neuroimaging	and	genetic	data.	Brain	Imaging	Behav,	8(2),	

153-182.	doi:10.1007/s11682-013-9269-5	

70. Trampush,	J.	W.,	Yang,	M.	L.,	Yu,	J.,	Knowles,	E.,	Davies,	G.,	Liewald,	D.	C.,	.	.	.	Lencz,	T.	

(2017).	GWAS	meta-analysis	reveals	novel	loci	and	genetic	correlates	for	general	

cognitive	function:	a	report	from	the	COGENT	consortium.	Mol	Psychiatry,	22(3),	

336-345.	doi:10.1038/mp.2016.244	

71. Tunbridge,	E.	M.,	Farrell,	S.	M.,	Harrison,	P.	J.,	&	Mackay,	C.	E.	(2013).	Catechol-O-

methyltransferase	(COMT)	influences	the	connectivity	of	the	prefrontal	cortex	at	

rest.	Neuroimage,	68,	49-54.	doi:10.1016/j.neuroimage.2012.11.059	

72. van	den	Heuvel,	M.	P.,	&	Sporns,	O.	(2013).	Network	hubs	in	the	human	brain.	Trends	

Cogn	Sci,	17(12),	683-696.	doi:10.1016/j.tics.2013.09.012	

73. Van	Horn,	J.	D.,	&	Toga,	A.	W.	(2014).	Human	neuroimaging	as	a	"Big	Data"	science.	

Brain	Imaging	Behav,	8(2),	323-331.	doi:10.1007/s11682-013-9255-y	

74. Walitt,	B.,	Ceko,	M.,	Gracely,	J.	L.,	&	Gracely,	R.	H.	(2016).	Neuroimaging	of	Central	

Sensitivity	Syndromes:	Key	Insights	from	the	Scientific	Literature.	Curr	Rheumatol	

Rev,	12(1),	55-87.		

75. Wesselmann,	U.,	Bonham,	A.,	&	Foster,	D.	(2014).	Vulvodynia:	Current	state	of	the	

biological	science.	Pain,	155(9),	1696-1701.	doi:10.1016/j.pain.2014.05.010	

76. Whitfield-Gabrieli,	S.,	&	Nieto-Castanon,	A.	(2012).	Conn:	a	functional	connectivity	

toolbox	for	correlated	and	anticorrelated	brain	networks.	Brain	Connect,	2(3),	125-

141.	doi:10.1089/brain.2012.0073	

 

 




