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Abstract 

Anatomical and functional substrates for prefrontal cortex control of working memory 

by 

Jacob Adam Miller 

Doctor of Philosophy in Neuroscience 

University of California, Berkeley 

Professor Mark D’Esposito, Chair 

 
 
“Memory is a gift of nature, the ability of living organisms to retain and to utilize acquired 
information or knowledge… Owners of biological memory systems are capable of behaving more 
appropriately at a later time because of their experiences at an earlier time, a feat not possible for 
organisms without memory.” 
 
- Tulving (1995, p. 751) 
 
 
“Let me begin with the perplexity. Man’s frontal lobes have always presented problems that 
seemed to exceed those encountered in studying other regions of his brain.” 
 
- Teuber (1964) 
 
 
In the first chapter, I investigate the role of prefrontal cortex activity in working memory. Here, I 
am motivated by inconsistencies in the neural substrates for working memory across studies, 
species, and recording techniques. For instance, non-human primate electrophysiology research 
finds that prefrontal circuitry maintains working memory representations, while human 
neuroimaging suggests that working memory content is instead stored in sensory cortices. These 
seemingly incompatible accounts for working memory are often confounded by differences in the 
amount of task training and stimulus exposure across studies, suggesting that long-term learning 
may influence the role of prefrontal function in working memory maintenance. To answer these 
questions, we longitudinally trained and scanned participants on a working memory task with 
complex stimuli. Then, we used multivariate analyses of functional neuroimaging (fMRI) data to 
test how representational structures of working memory activity patterns in prefrontal cortex 
change across intensive learning. We show that human prefrontal cortex develops stimulus-
selective working memory responses with learning, more akin to results from electrophysiology 
studies. This approach uses a unique training and analysis framework to establish novel evidence 
for long-term memory influences on working memory maintenance. 
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In the second chapter, we investigate how working memory is constantly used to guide our moment 
to moment behaviors. This reliance on working memory can lead us to make mistakes, like saying 
aloud the wrong word in a conversation. Such “action slips” are common occurrences but 
especially pronounced in individuals with prefrontal lesions, who may often pour salt instead of 
sugar into one’s coffee, or mistakenly type “pizza” in an immediate texting conversation when 
thinking about your upcoming lunch (Lhermitte et al. 1986). To study this interaction between 
working memory and ongoing behavior, I implemented a dual-task experiment in which 
directional words must be held in working memory while more immediate, but unrelated, motor 
movements are performed. We show that motor behaviors unrelated to current working memory 
information are still influenced by one’s working memory content (Miller et al. 2020). We are 
currently testing these behaviors with predictions from cortico-striatal circuit models of working 
memory gating (e.g., O’Reilly and Frank, 2006) by using transcranial magnetic stimulation. By 
causally perturbing prefrontal functioning and cortico-striatal connectivity, can we alter when and 
how often working memory content influences our immediate actions?  
 
In the final chapter, I outline how investigating human-specific neuroanatomical structures in 
frontal cortex is critical for a wider investigation of human cognition. The prefrontal cortex is 
disproportionately expanded in the human brain even relative to other advanced primates, and 
some structures such as tertiary sulci, small folds in the cerebral cortex, are often human-specific. 
I use multi-modal neuroimaging data to investigate relationships between microstructural and 
functional properties in human prefrontal cortex. We show that careful identification of often 
overlooked individual-level anatomical features (such as tertiary sulci) serve as a bridge between 
the microanatomical and functional properties of prefrontal cortex (Miller et al. 2021). Identifying 
these structures has implications for both individual-level prefrontal functioning and broader 
mappings between prefrontal anatomy, functioning, and cognitive domains. We propose that such 
careful investigations of individual-level neuroanatomy will help to generate structural-functional 
relationships in areas of cortex previously thought to have little or no consistent links between 
individual-level structure and function (Miller et al. 2021).  
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Chapter 1: Introduction 
 
Understanding how anatomical structures of the brain support functional networks underlying 
human-specific aspects of cognition is a major goal in cognitive neuroscience. Of the many 
anatomical structures to study, the prefrontal cortex is particularly important given its central role 
in cognitive control and goal-directed behavior (Stuss & Knight, 2013; Miller & Cohen, 2001). 
Patients with prefrontal damage have deficits ranging from working memory and attention 
problems, to issues with motivation, response inhibition, and language. How are such a vast array 
of cognitive processes orchestrated by a few cubic centimeters of cortical tissue? Tackling such 
questions seems daunting, but I am inspired in my own work by a seminal proposal from Marsel 
Mesulam’s “From sensation to cognition” (Brain, 1998). There, Mesulam lays out a theoretical 
framework that the unique anatomical and functional properties of association cortex circuits, such 
as prefrontal cortex, can account for the remarkable flexibility of human cognition. As the tools of 
cognitive neuroscience advance, we are now more suited than ever to carry out the empirical work 
to test Mesulam’s framework. 
 
With these questions in mind, I study the neuroanatomical and functional basis for prefrontal 
functioning with a specific interest in working memory, a core building block for flexible 
cognition. Maintaining and manipulating information that is no longer available to the senses 
underlies simple and complex behaviors that are critical for survival. Limits on the quantity and 
quality of representations in working memory are a primary constraint on cognition and adaptive 
behavior. Therefore, accurately characterizing the neural basis for working memory storage and 
control is paramount to understanding cognitive success and its failure.  
 
The present work intentionally focuses on properties of the prefrontal cortex and behaviors 
supported by this area. However, despite self-interest, I do not aim to provide a frontal 
“superiority” view of brain function. Only around 80 years ago frontal cortex was viewed as having 
an almost “silent” or “uncommitted” contribution to human behavior (Penfield and Evans 1935). 
Rather, I seek to demonstrate a neuroscientific approach extendable to a broader understanding of 
brain function, both across scales and species. Just as the prefrontal cortex does not operate in 
isolation as a “seed” of cognition or conscious operations, no single study of animal 
neurophysiology or human neuroimaging can serve to explain the deepest questions of brain-
behavior links. Instead, I firmly contend that in order to understand what processes underlie human 
cognition we must directly link systems-level data from animal models and the more complex 
neural and behavioral circuitry in humans. To that end, I hope these studies step toward the goal 
of determining how neuroanatomy and neural functioning give rise to behavior.  
 
While the following chapters may seem disparate in method, they are all threaded on this central 
question of linking human cognition and prefrontal cortex functioning. Such spread of methods is 
a deliberate attempt to pull multiple lines of investigation together: studying uniquely human 
neuroanatomy, neural functioning, and behavior are all of the utmost importance. Emblemized by 
the breadth of remarkable scientists like Patricia Goldman-Rakic, we cannot let newer methods 
and specialization take away from our potential contributions to theoretical understanding. To best 
make these links, we need interpretable, theoretical frameworks that help build a convergent 
understanding of diverse prefrontal functioning across scales, methods, and species. In other 
words, working toward an “Interactionist” model of neuroscience (Badre et al. 2015).  
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Chapter 2: Long-term learning transforms prefrontal activity during working memory 

 
 

“The significance of working memory for higher cortical function is not necessarily self-evident. 
Perhaps even the quality of its transient nature misleads us into thinking it is somehow less 
important than the more permanent archival nature of long-term memory. However, the brain's 
working memory function, i.e., the ability to bring to mind events in the absence of direct 
stimulation, may be its inherently most flexible mechanism and its evolutionarily most significant 
achievement.” 
 

- Goldman-Rakic (1995, p. 483)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This chapter contains material being prepared for submission with the following co-authors:  
 
Arielle Tambini, Anastasia Kiyonaga, & Mark D’Esposito 
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Abstract 

The lateral prefrontal cortex (lPFC) is reliably active during working memory (WM) across human 
and animal models, but there is ongoing debate regarding the role of the lPFC in successful WM. 
For instance, non-human primate (NHP) electrophysiology research finds that lPFC circuitry 
stores WM representations, while human neuroimaging suggests that WM content is instead stored 
in sensory cortices. These seemingly incompatible accounts for WM are often confounded by 
differences in the amount of task training and stimulus exposure across studies, suggesting that 
long-term learning may influence the role of lPFC function in WM maintenance. To test whether 
long-term learning influences WM representations in lPFC, we implemented a longitudinal 
functional MRI (fMRI) protocol in three human participants. Across three months, each participant 
was trained on (1) a serial reaction time (SRT) task, wherein complex fractal stimuli were 
embedded within probabilistic sequences, and (2) a delayed recognition task probing WM for 
trained or novel stimuli. Participants were scanned repeatedly across training, which allowed us to 
track how WM activity patterns and representations are shaped by long-term associative learning. 
Participants showed learning benefits in the WM task for trained, but not novel, fractals. Neurally, 
a significant population of voxels increased in delay activity throughout lPFC. Pattern similarity 
analyses of WM delay activity demonstrate that item-level representations emerged within lPFC, 
but not in sensory cortices, across learning. Single-item WM delay period activity patterns in lPFC 
also reflected sequence relationships from the SRT task, even though that information was task-
irrelevant for WM. These findings demonstrate that human lPFC develops stimulus-selective WM 
responses with learning and suggests that long-term memory influences on WM may reconcile 
competing accounts of lPFC function.  
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Introduction  

 The lateral prefrontal cortex (lPFC) is considered critical for working memory (WM) 
across human and animal models (Funahashi et al., 1989; Goldman-Rakic, 1995; Leavitt et al., 
2017; E. K. Miller et al., 2018; Sreenivasan et al., 2014). However, there is ongoing debate 
regarding the specific role that lPFC activity plays in successful WM (Christophel et al., 2017; 
Curtis & Sprague, 2021; Lara & Wallis, 2015; Mackey et al., 2016). Non-human primate (NHP) 
electrophysiology research typically finds that lPFC maintains feature-specific WM content 
(Constantinidis et al., 2018; Funahashi et al., 1989; Fuster & Alexander, 1971; Goldman-Rakic, 
1995; E. K. Miller et al., 2018; Romo et al., 1999). Human neuroimaging suggests lPFC activity 
serves control functions over WM while feature-specific content is stored in sensory cortices 
instead (D’Esposito & Postle, 2015; Eriksson et al., 2015; Harrison & Tong, 2009; Riggall & 
Postle, 2012; Serences, 2016). However, these seemingly incompatible accounts are confounded 
by differences in species, measurement granularity, and the amount of task training typically 
performed across studies.  
 

One possibility is that different indices of neural activity, across measurement scales, may 
support distinct conclusions about the cortical substrates for WM. That is, NHP studies typically 
record finer resolution single-unit neuronal activity compared to the millimeter scale of Blood 
Oxygen Level Dependent functional MRI (BOLD fMRI) (Mukamel et al., 2005; Park et al., 2017). 
Discrepancies between study findings may emerge if stimulus-specific WM content is represented 
in human lPFC via spiking patterns in single-units or populations that are simply too fine-grained 
for BOLD fMRI to detect, whereas the spread and spatial organization of neuronal activity in 
sensory cortex is more detectable at the scale of fMRI (Leavitt et al., 2017; Lorenc & Sreenivasan, 
2021; Mendoza-Halliday et al., 2014; Serences, 2016). However, in some cases, stimulus-specific 
WM delay activity has been detected in human frontal cortex (Ester et al., 2015; Lee et al., 2013) 
or NHP sensory regions (Mendoza-Halliday et al., 2014; Supèr et al., 2001), highlighting the need 
to identify which factors truly drive observed differences in findings across studies.   

 
In addition to differences in recording techniques between human and NHP studies, NHPs 

typically undergo months of training and perform orders of magnitude more task trials before the 
critical neural recordings occur (Berger et al., 2018; Birman & Gardner, 2016; Sarma et al., 2016). 
Humans typically complete only a few minutes of task practice prior to fMRI scanning. 
Differences observed in neural WM substrates across species may therefore be driven by long-
term learning influences from extensive task and stimulus experience. In fact, the few studies that 
recorded from NHPs before and after WM training found plasticity in the form of increases in the 
magnitude of WM delay activity and in the strength of item-level stimulus representations   in 
anterior lPFC (Dang et al., 2021; Meyer et al., 2011; Qi et al., 2019; Riley et al., 2018; Sarma et 
al., 2016). This suggests that human lPFC may represent item-level information in WM, depending 
on the level of prior training. However, the typical timeline of fMRI research has limited our ability 
to understand if WM representations change with long-term learning and directly test this 
hypothesis. 

 
 The brain regions and neural mechanisms for WM are classically considered separate from 

long-term memory (LTM) systems (Squire & Zola-Morgan, 1991; Warrington & Shallice, 1969; 
Wickelgren, 1969). However, some WM theories predict that learned associations or semantic 
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links between items should be reflected during WM maintenance (LaRocque et al., 2014; 
Oberauer, 2009), and growing evidence suggests a common neural machinery between WM and 
LTM (Beukers et al., 2021; Fukuda & Woodman, 2017; Hoskin et al., 2019; Lewis-Peacock & 
Norman, 2014; Nee & Jonides, 2011; Ranganath et al., 2003; Ranganath & Blumenfeld, 2005). In 
some cases WM capacity is also greater for stimuli with extensive exposure and familiarity (Asp 
et al., 2021; Brady et al., 2016; Jackson & Raymond, 2008; Xie & Zhang, 2017), suggesting that 
WM and supporting neural mechanisms may change with stimulus experience.  

 
Here, we examined the possibility that long-term learning transforms human lPFC WM 

activity. We asked whether stimulus selectivity emerges in human lPFC as a function of training, 
akin to the stimulus-specific WM activity patterns typically found in NHP studies. To do so, three 
human participants completed over 20 sessions of whole-brain fMRI along with extensive at-home 
training across three months. During this time, participants were continually trained on a delayed 
recognition WM task and a sequence learning task, which both employed a set of 18 novel fractal 
stimuli that were unique to each participant. First, we asked whether lPFC delay period WM 
activity changed in magnitude across learning. Widespread decreases in lPFC activity could 
suggest more automatic task processing with training. Activity increases, however, could suggest 
greater selectivity for the repeated task structure or individual WM stimuli, as persistent activity 
in WM is associated with stimulus-selective patterns (Constantinidis et al., 2018; Curtis & 
Sprague, 2021; Murray et al., 2017). We then tested whether representations of individual stimuli 
or stimulus categories emerged in multivariate WM activity patterns over the course of learning. 
If item-level lPFC activity patterns develop over time, that would suggest that difference in 
participant training may explain discrepant accounts of the role of lPFC as either a source of control 
over WM (from human studies) versus the storage site for WM content (from single-unit NHP 
studies). Alternatively, long-term learning may enhance sensory cortex representations of WM 
content but induce no changes in lPFC, suggesting that differences in lPFC vs sensory-based WM 
storage models are driven by other factors than long-term learning. Finally, to understand how 
WM representations are shaped by associative learning, we asked if representations of associations 
between stimuli in shared temporal sequences (learned outside of the WM task) were reflected 
within WM activity patterns. To preview the results, long-term learning changed the distribution 
and selectivity of lPFC WM delay activity, indicating that WM maintenance mechanisms may be 
flexible to the extent and nature of prior experience with the WM information. These results 
suggest that differences in the extent of training across species may masquerade as differences in 
lPFC function.   
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Results 
 
Intensive training improves WM performance for trained, but not novel, stimuli  
 

To determine how long-term learning influences cortical activity patterns underlying  WM 
maintenance, we trained three human participants on a set of fractal stimuli that was unique to 
each participant (Figure 1a) over three months. These stimuli had no pre-existing meaning and 
have been used to characterize the influence of long-term associative learning on neural selectivity 
(Ghazizadeh et al., 2018; Kim et al., 2015; Sakai & Miyashita, 1991). These complex stimuli were 
chosen to encourage gradual learning and to necessitate a detailed item representation to perform 
the task well. During the three month study period, each participant completed approximately 24 
scanning (fMRI) sessions along with at-home behavioral training sessions multiple times per week 
(Figure 1b). Here we only analyze the first 17 fMRI sessions (~13 weeks), after which point new 
fractals were added into the stimulus set for a second phase of the study. During each fMRI 
session,participants performed two primary tasks, a serial reaction time (SRT) task followed by a 
WM task (Figure 1c-d). The WM task entailed a single-item delayed recognition test wherein the 
WM sample was either a fractal stimulus from the training set or a novel fractal that appeared only 
during that session.  Before the study began, participants completed one block (24 trials) of WM 
task practice with pilot stimuli that never appeared in the main experiment. The first time each 
participant saw their unique set of 18 training stimuli was during the first scanning session.The 
SRT task used the same 18 trained fractal stimuli, for which 12 of the stimuli were embedded in 
high probability sequences (Figure 1c). The sequences were not directly related to the goals of the 
WM task (which was always to remember a single item), but we took advantage of the sequence 
structure to analyze whether item-level WM representations reflected associations (sequence-level 
and categorical) present in the SRT task. 

 
Across the course of training, behavior in the WM task improved for trained stimuli, but 

not for novel stimuli (Figure 1e). Mean WM probe accuracy (% correct) for trials with trained 
stimuli improved by 23% across the 17 sessions, whereas accuracy increased by 4% for novel 
stimuli. To characterize the change in WM performance over time, we used mixed nonlinear 
models with session number (1 → 17; mean-centered) and stimulus category (trained vs. novel) 
as predictors, and WM probe accuracy as the outcome variable, focusing on the linear term (b, see 
Methods: Statistical methods). There was a significant interaction between session number and 
stimulus category for the linear term in the model, b⋅category = 0.01, t(94) = 2.95, p = 0.004. This 
interaction was driven by an increase in accuracy for trained stimuli over time (main effect of 
session number: b = 0.01, t(46) = 3.86, p < 0.001), with no reliable change for novel stimuli (b = 
0.003, p = 0.35).  

 
A complementary pattern emerged when modeling WM probe response time (RT). For RT, 

there was also a significant interaction between session number and stimulus category (b⋅category 
= -22.5, t(4805) = -8.01, p < 0.001), and this was driven by faster responses for trained stimuli 
over time (main effect of session number: b = -15.9, t(3612) = -2.84,  p = 0.005), with no reliable 
change for  novel stimuli (b = -6.7, p = 0.27). When considering WM task accuracy and response 
time for the trained stimuli, nonlinear mixed models slightly outperformed linear models 
(accuracy: nonlinear Akaike information criterion [AIC] = -143.5, linear AIC = -127.5; response 
time: nonlinear AIC = 53857, linear AIC = 53906). The subsequent analyses focus on nonlinear 
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models, because they allow for changes to occur at different rates across the 17 sessions, but all 
results generalize to a linear framework.  

 
In parallel to the WM task, participants also learned associations between individual stimuli 

as part of regularly occurring sequences in the SRT task. Reliable associative learning across 
training was evidenced by reduced response times for intact sequences in the SRT task for all 
participants (SI Figure 1).  
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Figure 1. Longitudinal training across three months within individuals.  
(a) Example set of 18 unique fractal stimuli assigned to a single participant for the in-scanner and at-home behavioral 
tasks. (b) Calendar of all of the MRI (purple) and at-home sessions (SRT - dark green, WM - light green) for each of 
the three participants over the four months of the study. During each MRI session, participants completed both the 
sequence learning and WM tasks. The at-home training sessions consisted of modified versions of each task 
(Methods). The present study analyzes the first 17 sessions, as afterwards new stimuli were added into the training 
set for each participant. (c) The serial reaction time (SRT) task, in which each of the 18 trained stimuli was associated 
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with one of four button responses. Of the 18 trained stimuli, 12 were part of 4 sequences that occurred with high 
probability (75%) in the SRT task, and participants learned the sequences over time (SI Figure 1). (d) The delayed 
three-alternative forced choice WM task, in which one fractal (trained or novel) was presented on each trial. After a 
jittered delay, participants indicated which occluded image matched the original sample. (e) WM task accuracy (top) 
and response time (bottom) improved across training (sessions 1-17) for trials with one of the 18 trained stimuli (blue), 
but not for trials with novel fractal stimuli (orange).  
 
 
Divergent changes in mean WM delay activity within dorsal PFC  
 

To determine if lPFC functioning changes across learning, we split the lPFC into six 
regions of interest (ROIs) along rostral-caudal (from the frontal pole to precentral gyrus) and 
dorsal-ventral (from the superior frontal gyrus to inferior frontal gyrus) axes (Figure 2a). This 
six-region parcellation was chosen to be homologous to a recent NHP study that recorded from 
multiple lPFC areas before and after WM training (Riley et al., 2018). We first tested for evidence 
of broad changes in WM delay activity over time. To test for changes in mean activity across entire 
ROIs, we considered two groups of voxels within each ROI. First, we examined whether peak 
activation in the WM delay period changes across sessions, which may reflect classical persistent 
activity during WM (Curtis & Sprague, 2021). To do this, we thresholded WM delay activity maps 
(collapsed across all delay lengths) for each participant and session at t > 2.5 and determined 
whether peak activation changes over training (Figure 2b, top). Second, we analyzed the mean 
activity of all voxels across each ROI, without any thresholding, to ask whether there are changes 
across an entire cortical region (including voxels with lower WM activity).  

 
The magnitude of WM delay activity changed across training in two lPFC areas. First, the 

peak WM delay period activity in dorsal rostral PFC decreased across sessions (main effect of 
session number, mixed nonlinear model: b = -0.031, t(45) = 2.71, p = 0.009; Figure 2b, top), 
whereas the mean activity for all voxels in this area did not change over sessions (b = 0.023, t(45) 
= 1.27, p = 0.21; Figure 2b, bottom). Dorsal mid-lateral PFC showed the opposite pattern, with an 
increase in the mean activity across all voxels (main effect of session number across training, b = 
0.043, t(45) = 2.85, p = 0.006; Figure 2b, bottom), but no change for peak activation (b = -0.002, 
t(45) = 0.13, p = 0.89; Figure 2b, bottom). No other ROIs showed training-related changes in 
either the peak WM delay activity or mean across all voxels (p-values > 0.1; SI Figure 2). 
However, this approach may obscure divergent changes that occur within specific populations of 
voxels with learning. We next directly tested whether individual voxels increased or decreased 
their activity over time using a voxelwise regression approach.  
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Figure 2. Mean WM delay activity changes in PFC across the course of learning.  
(a) Six-region parcellation of the lateral PFC in an example participant’s inflated left hemisphere. The lPFC was 
divided along a rostral-caudal and dorsal-ventral axis by combining smaller parcels from a multi-modal atlas of the 
cerebral cortex (Glasser et al., 2016). The parcellation was designed to be homologous to NHP electrophysiology 
studies (Riley et al., 2018), and guided by functional subdivisions of human lPFC (Badre & D’Esposito, 2009). (b) 
Top: Mean activity for each fMRI session during the WM delay period for reliably active voxels (within each session), 
thresholded at t > 2.5. The dorsal rostral PFC ROI (green), showed a mean decrease in WM delay activity across 
sessions. Bottom: Mean activity for all voxels in an ROI (unthresholded). The dorsal mid-lateral PFC ROI (orange) 
showed a mean increase in WM delay activity across sessions. For visualization, all ROIs with significant b parameters 
from nonlinear mixed models are indicated with a bolded plot border, along with the fitted nonlinear mixed model 
curve across sessions. No other ROIs showed a mean change in WM delay activity over the course of training.  
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More cortical territory in PFC is recruited for WM delay activity across learning   
 

Populations of voxels involved in WM maintenance may change their activity over 
training, as the stimuli and task become increasingly well-learned. For example, WM processing 
could become more “efficient” by recruiting less cortical territory. Or, more cortical territory could 
be engaged in representing and processing newly learned stimuli and task dimensions. To test these 
different predictions, for each voxel, we assessed the relationship between WM delay activity and 
training time with nonlinear regressions (Figure 3a). We tested whether a meaningful proportion 
of individual voxels within each frontal ROI show systematic changes in activity over training 
compared to chance (permutation testing, see Methods). A schematic of this voxelwise approach 
is shown in Figure 3a, allowing us to test whether populations of voxels show divergent increases 
or decreases in WM delay activity in each ROI with training—information that would be lost when 
averaging across voxels.  

 
 For all lPFC ROIs, a distributed group of voxels increased in WM delay activity with 
training. That is, in every ROI, a significant percentage of voxels showed increased WM delay 
activity across the 17 sessions compared to chance (Figure 3b; dorsal rostral: p < 0.001, dorsal 
mid-lateral: p < 0.001, dorsal caudal: p = 0.01, ventral rostral: p = 0.007, ventral mid-lateral: p 
= 0.03, ventral caudal: p = 0.002; permutation tests). The dorsal mid-lateral and ventral caudal 
PFC showed the largest percentage of voxels with increasing WM delay activity over months of 
training (~25% of voxels). Specific to dorsal caudal PFC, one group of voxels within this ROI 
exhibited increased activity over time (p = 0.01), whereas another distinct group of voxels 
exhibited decreased activity (p = 0.032). These observed changes across all of lPFC were specific 
to the WM delay period, as the encoding (sample) period instead showed widespread decreases in 
activity with training across all ROIs (SI Figure 3).  
 

In summary, repeated task and stimulus exposure was most commonly associated with 
increased WM delay period activity in a distributed group of voxels across lPFC, suggesting that 
these areas are more involved in WM maintenance over training. However, this increased activity 
may stem from the development of selectivity for individual stimuli over time, or a non-specific 
WM maintenance process that conveys no item-level information content. Therefore, we next 
tested whether frontal voxels with increases in WM delay activity show a corresponding 
differentiation in activity between individual trained stimuli.  
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Figure 3. Distribution of WM delay activity patterns in PFC across the course of learning.  
(a) Schematic of the linear term from the voxelwise regression approach, in which the mean WM delay activity from 
each voxel was regressed against a session number regressor in a nonlinear model (Methods). (b) Example b-
parameter map (thresholded at p < 0.05) for one participant, the result of the linear term from the voxelwise nonlinear 
regression. Increases in activity across training are in red, with decreases in blue. (c) Percentage of voxels with 
increases (red; b > 0) or decreases (blue; b < 0) in activity across training (schematic). Significant changes over time 
are indicated by bolded vertical lines. Null distributions (created by permuting session number in the voxelwise 
regressions) are shown in light red and blue. (d) The percentage of voxels with significant changes in activity levels 
across training within each of the six lPFC ROIs. All ROIs show a significant proportion of voxels with an increase 
in activity, while only the dorsal caudal PFC also shows a significant proportion of activity decreases.  
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Changes in WM delay activity in ventral mid-lateral PFC correspond to increases in stimulus 
selectivity  
 
 What underlies the observed increase in WM delay activity with extensive training? We 
examined whether these changes (Figure 3) are associated with a corresponding increase in 
selectivity among the trained stimuli. We focused on the lPFC voxels that increased in WM delay 
activity across training for each participant, and we tested if these voxels displayed changes in 
stimulus selectivity. We generated a voxelwise selectivity index by analyzing single-trial WM 
delay activity profiles for each voxel across each participant’s 18 trained stimuli. Then, two 
example voxels are highlighted in Figure 4a to show levels of WM delay activity for each of the 
trained stimuli early (session 2) versus late (session 16) in the 3-month training period. For each 
ROI, we tested whether the stimulus selectivity index (F-value) increased as a function of training 
when considering all voxels. Specifically, we used the voxelwise selectivity data in nested, 
nonlinear mixed models (Figure 4b). To test whether any selectivity changes are above and 
beyond what would be randomly expected over time, we created a distribution of null models 
(Methods). The nonlinear models show an increase in stimulus selectivity for the ventral mid-
lateral PFC region (p = 0.021; Figure 4b, right insets), with no other ROIs showing a significant 
linear change over time (different b-parameter value from chance, P’s > X).  
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Figure 4. Increases in WM delay activity correspond to increases in stimulus selectivity across training among 
individual voxels in lPFC.  (a) The mean WM delay activity of two example lPFC voxels for each of the 18 trained 
stimuli early (left, session 2) and late (right, session 16) into training, highlighting an increase in selectivity values (F-
statistic) across the course of learning. (b) For each ROI, the left panel shows the mean selectivity index across sessions 
among all voxels with increasing WM delay activity. Shaded area represents a bootstrapped 68% CI. The right panel 
shows any significant selectivity increases across sessions (bold vertical line), as measured by the b-parameter of the 
nonlinear model. Null distributions of b-parameter values (histogram) from models with session number shuffled are 
shown in lighter colors. For visualization, all ROIs with significant b parameters compared to null distribution are 
indicated with a bolded plot border and bold vertical line.  
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Representational similarity patterns emerge for stimulus category, individual items, and 
sequence category in WM delay activity  
 

After probing changes in activity at the single voxel level, we next tested whether the 
multivariate activity patterns across populations of voxels develop stimulus specificity over time. 
We took advantage of the extensive sampling in our dataset to test whether item-specific 
representational structures also appear in multi-voxel patterns of WM delay activity across the 
course of training. To do so, we employed a pattern similarity analysis framework (Methods). We 
estimated the similarity of representations across individual stimuli (matrices shown in Figure 5; 
Methods) by computing correlations between the WM delay period activity patterns for each 
stimulus. We then created several models to capture hypothesized levels of representational 
information (e.g., item or category level) and tested how well the observed similarity patterns 
matched the idealized models, producing a measure of representational “pattern strength” for each 
ROI in each session (Methods; Figure 5a). To determine if any pattern similarity effects were 
specific to the lPFC or would also be reflected in sensory areas, we examined patterns from early 
visual cortex (V1-V4) and the lateral occipital complex (LOC), a higher-order visual region.  

 
First, we tested whether distinct representations of individual items in WM in lPFC or 

visual ROIs would emerge across training. We operationalized an item-level model for individual 
stimulus representations by testing for greater within-item pattern similarity (maintenance of the 
same trained stimulus across different trials, on-diagonal values in correlation matrix) compared 
to between-item similarity (maintenance of different trained stimuli, off-diagonal correlations), as 
schematized in Figure 5b (left). We focused on the six stimuli for each participant that were not 
part of regularly occurring sequences, in order to avoid capturing the possible restructuring of 
items in temporal sequences that may develop more integrated or differentiated representations 
over time (Sakai & Miyashita, 1991; Schapiro et al., 2012; Schlichting et al., 2015).   

 
Pattern strength for the item-level model showed a significant increase over time in mid-

lateral lPFC (dorsal mid-lateral: b = 0.0004, t(46) = 2.34, p = 0.024; ventral mid-lateral: b = 
0.0004, t(46) = 2.57, p = 0.014; Figure 5b, right) and not in visual areas. That is, patterns of WM 
delay activity for individual trained items became more robust (reliable across trials) and 
differentiated from other trained stimuli across learning. To further test this effect, we also used a 
mixed linear model to compare the pattern strength for item-level selectivity in the first versus 
second half of sessions. When including all ROIs as levels of a categorical predictor in the model, 
mid-lateral PFC areas showed an interaction with learning time (first vs second half of sessions): 
dorsal mid-lateral: β = 0.0056, t(45) = 2.66, p = 0.008; ventral mid-lateral: β = 0.0047, t(45) = 
2.24, p = 0.026. This analysis provides evidence for stronger item-specificity in patterns of lPFC 
delay activity across the course of training.  

 
We next asked whether WM representations of all items show evidence of neural 

differentiation over time, or whether this is specific to trained stimuli. If the emergence of item-
specific representations in lPFC is specific to trained stimuli, then activation patterns between 
trained stimuli should become less similar (as the items become more identifiable from each other) 
while those between novel stimuli should not reliably change. We operationalized this comparison 
with a category-level model which tested for an interaction with a decrease in pattern similarity 
between trained stimuli (that were not part of sequences) and no change similarity between novel 
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stimuli (off-diagonal correlations) as schematized in Figure 5c (left). There was a significant 
increase in pattern strength for the category-level model across sessions in dorsal caudal lPFC 
(dorsal caudal: b = 0.0006, t(46) = 2.57, p = 0.013; Figure 5c, right). This effect was driven by a 
decrease in the similarity between trained stimuli over time (dorsal caudal: b = -0.001, t(46) = -
3.62, p < 0.0017) that was not observed between novel stimuli (dorsal caudal: p = 0.74). These 
pattern similarity analyses show a difference in the representations of trained and novel stimuli 
across learning, such that distinct representations of trained, but not novel, stimuli in WM emerge 
with learning.  
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Figure 5. Emergence of representational similarity patterns for trained items in WM delay activity.  
(a)  Left: Schematic of a pattern similarity matrix of WM delay activity patterns across different stimuli. Right: 
Calculation of the pattern strength metric for each ROI and session by regressing a pattern model against the empirical 
pattern similarity data.  (b) Left: Schematic of RSA framework for the item-level model with an interaction between 
on- (dark blue, positive values) versus off-diagonal (light blue, negative values) correlations among trained stimuli 
not in sequences as a measure of item-level representation. Right: Plots of the pattern strength across sessions for each 
ROI, as assessed by the model fit for the on- versus off-diagonal interaction on left. For visualization, all ROIs with 
significant changes in pattern strength across sessions are indicated with a p-value and bolded plot border, and pattern 
strength is plotted as a change from initial (session 1) baseline values. Each line represents one of the three individual 
participants. (c) Same as in (b), but instead using the category-level model with a trained (light blue, negative values) 
versus novel (dark blue, positive values) stimulus off-diagonal interaction.  
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 Finally, we tested whether associations learned in a distinct task context may influence 
WM maintenance processes even when they are not task-relevant. In parallel to the WM task, 
participants learned that a subset of trained stimuli formed high-probability temporal sequences in 
the SRT task (SI Figure 1). Based on classic studies of paired associate learning (Chen & Naya, 
2020; Sakai & Miyashita, 1991) and multivariate representations that are altered by learning 
(Schapiro et al., 2012; Schlichting et al., 2015), we tested for shared representational structures 
across items in the same temporal sequence (higher similarity across items within the same 
sequence vs. between sequences, SI Figure 4) but found no effects for shared sequence-level 
patterns in any ROIs during WM maintenance (p-values > 0.05).  
 

We then tested whether the organization of stimuli into temporal sequences in the SRT task 
may have resulted in a shared representation between stimuli that belonged to any sequence 
(regardless of sequence identity) which is distinct from items that were not part of a reliable 
temporal structure (non-sequence items). This coarse-level representation of sequence structure 
was operationalized with a sequence category model (Figure 6a, left). Pattern strength for this 
sequence category model showed a significant increase across sessions in caudal lPFC regions 
(dorsal caudal: b = 0.0002, t(46) = 2.99, p = 0.004; ventral caudal: b = 0.0002, t(46) = 2.44, p = 
0.019; Figure 6a, right). This interaction was driven by a decrease in pattern similarity between 
sequence and non-sequence stimuli across sessions (dorsal caudal: b = -0.0007, t(46) = -2.76, p = 
0.008; ventral caudal: b =- 0.0008, t(46) = -4.01, p = 0.002). Across these analyses that consider 
associations in the SRT task, stimuli from learned sequences become more similar to each other 
over training, relative to stimuli not in sequences, specifically in caudal lPFC regions. These 
pattern similarity results suggest a categorical representation in which learned associations from 
LTM are reflected in WM delay activity, even when not directly tested in the WM task.  
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Figure 6. Emergence of pattern similarity for a categorical sequence representation in WM delay activity.   
Left: Schematic of the model matrix for the analysis of correlations for items within trained sequences (dark blue, 
positive values) compared to correlations of trained items not in sequences (light blue, negative values). Right: Plots 
of the pattern strength across sessions for each ROI, as assessed by the model fit for the sequence category model on 
the left. For visualization, all ROIs with significant changes in pattern strength across sessions are indicated with a p-
value and bolded plot border, and pattern strength is plotted as a change from initial (session 1) baseline values. Each 
line represents one of the three individual participants.  
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Figure 7. Summary of results.  
Left: Each lPFC region, depicted with the observed training-related changes in the magnitude or pattern of WM delay 
activity. Right: Legend for the symbols depicting significant changes in WM delay activity levels, the voxelwise 
selectivity of the activity levels across stimuli, or multivariate representations (from pattern similarity analyses) for 
sequences and items in WM.  
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Discussion  
 

Here, we aimed to determine how long-term learning influences lPFC neural 
representations for WM. Over three months, we extensively trained three human participants on a 
WM task and a sequence learning (SRT) task which both employed a unique set of complex, fractal 
stimuli. We found that the distribution and selectivity of  lPFC WM delay activity changed across 
training: more cortical territory was recruited during the WM delay period with learning, and these 
activity changes coincided with increases in stimulus selectivity at the level of both individual 
voxels and multivariate patterns (Figure 7). Below we expand on the present results’ implications 
for the role of lPFC during WM and interactions between LTM and WM. 

 
lPFC - representations or processes? 
 
 Early NHP electrophysiological recordings from lPFC revealed neurons that respond to all 
phases of WM tasks: cue, delay, and response periods (Funahashi et al., 1990). Since then, neurons 
in NHP lPFC have been shown to encode both stimulus representations (Funahashi et al., 1989; 
Murray et al., 2017) and cognitive processes, including motor responses, rule learning, and 
executive control signals (Rigotti et al., 2013; Vallentin et al., 2012; Wallis & Miller, 2003). In 
contrast, human lPFC shows a relative absence of stimulus specific representations during WM 
(D’Esposito & Postle, 2015; Harrison & Tong, 2009; Leavitt et al., 2017; Serences, 2016) and 
human neuroimaging and lesion studies consistently point to lPFC mainly as a source of cognitive 
control signals (Chatham et al., 2014; Gazzaley & Nobre, 2012; Szczepanski & Knight, 2014). 
Thus, the role of lPFC function during WM has been unclear across studies. However, NHP and 
human studies are characterized by stark differences in training regimes before neural recordings 
take place (Berger et al., 2018; Birman & Gardner, 2016; Sarma et al., 2016). Therefore, we 
reasoned that differences in task and stimulus experience may underlie the discrepant conclusions 
about lPFC function. To directly test the influence of training on WM and lPFC function, we 
scanned participants across three months of repeated WM task and stimulus exposure. We provide 
novel evidence that extensive training facilitates stimulus specific representations in human lPFC 
during WM maintenance. The present results show long-term learning as a key influence over 
stimulus specific WM content in human lPFC, when this WM content is difficult to detect in 
human lPFC relative to visual areas (Bhandari et al., 2018; D’Esposito & Postle, 2015; Serences, 
2016).  
 

However, a small number of other notable studies also detect stimulus representations in 
human lPFC during WM, most likely by examining retinotopically organized areas in lPFC with 
visual orientation stimuli (Christophel et al., 2012; Ester et al., 2015) or using objects embedded 
in a high-level stimulus category task (Lee et al., 2013). Here, we specifically demonstrate that  
repeated stimulus and task exposure play a major role in facilitating r stimulus specific activity 
patterns in human lPFC, analogous to patterns  more commonly found in NHP studies. There is 
also a potential dissociation in which initially highly active voxels may be engaged in more 
cognitive control processes for WM (Christophel et al., 2017; Serences, 2016; Sreenivasan et al., 
2014), but a different group of voxels in the same area may develop stimulus-selectivity that only 
emerges with learning. Accordingly, these results point to training as a major factor in the debate 
over what information is encoded in lPFC activity during WM: general responses to task phases 
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(processes) are present without extensive training, while responses to individual stimuli 
(representations) are demonstrated in lPFC after long-term learning.  
 
Implications for models of functional organization of lPFC 
 
 The lPFC is organized in a macroscale gradient along the rostral-caudal axis, both 
functionally (Badre & Nee, 2018; Koechlin et al., 2003) and anatomically (Goulas et al., 2014; J. 
A. Miller et al., 2021; Wagstyl et al., 2020). In this organization, more abstract representations are 
encoded more rostrally along the lPFC (Badre & D’Esposito, 2009), with middle frontal areas 
posited to sit “atop” such a hierarchical organization and provide top-down control signals during 
complex cognitive tasks (Badre & Nee, 2018; Duverne & Koechlin, 2017; Ito et al., 2017). Here, 
our data support a general rostral-caudal gradient in lPFC separating representational levels in 
WM: stimulus-specific representations were found in mid-lateral lPFC areas, categorical 
representations in the most caudal lPFC areas, and the rostral lPFC not showing such stimulus or 
category level representations (Figure 7). This separation of WM representations along a rostral-
caudal lPFC axis was only present after repeated stimulus and task exposure, suggesting that 
learning may use this existing organization in order to easily separate similar but related 
representations for successful WM behavior. While here we show WM stimulus patterns emerge 
in micro-anatomically similar areas to representations found in NHP recordings (e.g., Brodmann’s 
areas 9/46d, 9/46v; (Petrides, 2005)), functional homology is often less similar across NHP and 
human lPFC. For example, lesions of caudal precentral areas in human lPFC cause deficits in 
spatial WM that mirror damage to more anterior, mid-dorsal lPFC areas in NHPs (Mackey et al., 
2016). Where WM representations are actively maintained may then shift in location based on 
learning and task demands.  Here, we show that such learning drives mid-lateral lPFC regions most 
often described as a “controller” of task activity to maintain representations of a given WM 
stimulus.  Future work using longitudinal paradigms in NHP studies might also clarify the 
importance of training, spatial scale, and species differences on WM maintenance processes 
(Badre et al., 2015; Milham et al., 2018; Song et al., 2021). 
 
Plasticity of the PFC 
 
 The lPFC is critical for flexible cognition and multiple theories consider the lPFC to have 
high plasticity, with activity patterns and representations changing based on task demands over 
time (Duncan, 2001; Woolgar et al., 2011). However, these patterns of adaptation from task 
learning have not been systematically tracked over time in human lPFC. Some human 
neuroimaging studies have employed forms of WM training as a route to improve WM and 
cognition more broadly. These early studies found activation increases in frontal and parietal 
cortex after WM training (Klingberg, 2010; Olesen et al., 2004), but recent aggregations of WM 
training studies detail a broader mix of activation changes, with decreases for studies with shorter 
training times (~minutes-hours) and increases for longer training (~days-weeks) (Buschkuehl et 
al., 2012, 2014). However, consistent conclusions are elusive as these studies do not collect 
neuroimaging data at wide a variety of time points to track learning across time, nor do they 
examine the effects of stimulus experience and context on the neural mechanisms of WM 
maintenance.  
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Recently, NHP electrophysiology studies have observed changes in the selectivity and 
magnitude of both single-unit and population spiking during WM (Dang et al., 2021; Meyer et al., 
2011; Qi et al., 2019). These effects were greatest in mid- and anterior dorsal areas of lPFC, 
resembling the emergence of stimulus-selective activity patterns that we observe here in mid-
lateral lPFC. The long-term plasticity in mid-lateral PFC that we observe here is likely enabled by 
several factors that give the region  a high propensity for flexible representations: long-range 
anatomical connections (Chaudhuri et al., 2015; Y. Wang et al., 2021), status as a hub between 
cortical networks (Bertolero et al., 2018; Fornito et al., 2019), and a late anatomical development 
(Garcia-Cabezas et al., 2019; Garcia et al., 2018).  
 
Influence of LTM on WM 
 
 In classic theories, WM and LTM are thought to rely on both different brain areas and 
neuronal mechanisms for memory storage (Squire & Zola-Morgan, 1991; Warrington & Shallice, 
1969; Wickelgren, 1969). Thus, the neural substrates for WM are most often studied without the 
consideration of any longer term learning and memory effects. When the influence of training is 
considered for WM performance, better WM is observed for  familiar, complex stimuli such as 
Pokémon (Xie & Zhang, 2017), meaningful human faces (Asp et al., 2021; Jackson & Raymond, 
2008), and trained geometric shapes (Blalock, 2015). Our findings suggest that these experience-
dependent WM effects are underpinned  by malleability of the cortical representations supporting 
WM across the course of learning. Specifically, our results show that selectivity for individual 
stimuli increased in human lPFC activity patterns across months of training. We also found shared 
representations across stimuli that were part of temporal sequences, consistent with the emergence 
of a “categorical” representation separating items based on their temporal properties in the SRT 
task. The categorical sequence representation may have emerged as a function of memory 
consolidation and repeated practice, leading to a semantic code for stimuli occupying the same 
class of patterns over time (sequence stimuli) versus a distinct class of non-sequence 
stimuli(Binder & Desai, 2011; Eichenbaum, 2017; Nadel & Moscovitch, 1997; Sommer, 2017; 
Winocur & Moscovitch, 2011). Individual stimulus and categorical representations also emerged 
in different areas of lPFC, suggesting long-term learning changed activity patterns along relevant 
functional axes of lPFC organization (Figure 7). Altogether, the results provide key evidence not 
only that LTM can share representational formats with WM (Beukers et al., 2021; Lewis-Peacock 
& Norman, 2014; Nee & Jonides, 2011; Oberauer, 2009), but that long-term learning changes how 
information is represented in WM, even when learned associations are not behaviorally relevant 
for WM. .  
 
Considerations for future studies of WM  
 
 Here we demonstrate effects of long-term learning on the cortical substrates for WM 
maintenance in human lPFC that prompt a larger reconsideration of how WM studies are 
conducted and interpreted. That is, how neural circuitry supports WM is shaped by prior 
experiences and learning, which can lead to drastically different conclusions on the role(s) of lPFC 
in WM, depending on when brain recordings take place relative to prior experience. This timeline 
of learning is especially important to consider because neuronal ensembles in lPFC demonstrate a 
remarkable flexibility in activity magnitude, timing, and dimensionality based on task demands 
(Dang et al., 2021; E. K. Miller & Cohen, 2001; E. K. Miller & Fusi, 2013; Stokes et al., 2013; 
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Wasmuht et al., 2018). Altogether, these data show how long-term learning sculpts neural 
representations during working memory, suggesting that an array of cognitive processes and their 
associated neural circuitry are likely to be transformed by prior experience.  
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Methods 
 
Data and Code Availability 
 

All neuroimaging data will be openly available in the Brain Imaging Data Structure format 
((Gorgolewski et al., 2016); https://bids.neuroimaging.io/) on the OpenNeuro platform upon 
publication (openneuro.org). Analysis and processing code to reproduce the present results, along 
with the stimuli, presentation code, and behavioral data may be found on Open Science Framework 
(OSF) : osf.org 
 
Human participants  
 

The three study participants were all healthy, adult volunteers. Because of the large amount 
of MRI data collected and intensive nature of the behavioral training involved, all participants 
were members of the research team who completed the study over the same time period. One 
participant was a 34-year-old female (sub-001), one was a 25-year-old male (sub-002), and one 
was a 37-year-old female (sub-003). The University of California, Berkeley Committee for the 
Protection of Human Subjects (CPHS) approved the study protocol and no participants reported 
any contraindications for MRI.  
 
Study design and stimuli  
 

The study was designed to investigate WM behavior and neural representations across a 
large amount of training on a specific set of stimuli and tasks. To accomplish this, we assigned 
each participant a unique set of 18 fractal images as their set of trained stimuli. Each image was 
an algorithmically-generated fractal consisting of multiple colors, and the 18 images for each 
participant were balanced according to the primary color group of each image (determined using 
a k-means clustering algorithm on each fractal image in the sklearn Python package: https://scikit-
learn.org/). These fractals were chosen because they are visually complex, approximately uniform 
in  size, cannot be easily verbalized, have no pre-existing meaning, and similar stimuli have been 
used in NHP electrophysiology studies of the neural basis of learning (Ghazizadeh et al., 2018; 
Kim et al., 2015; Sakai & Miyashita, 1991). Because the study participants were also on the 
research team, we avoided participants gaining any foreknowledge of their training set by 
generating thousands of initial images and randomly selecting each training set from among these 
images. Thus, each participants’ first exposure to their training set occurred during the first 
scanning session. The unique 18 stimuli for each participant were then used for all of the following 
fMRI and behavioral training sessions, with additional novel stimuli randomly selected each 
session from the broader set of fractals. Of the 18 fractal stimuli in each participant’s training set, 
12 were randomly assigned to be part of four sequences in the SRT task, with each sequence 
consisting of three fractals and an object image. The sequences were not explicitly instructed and 
were learned over time as part of a serial reaction time (SRT) task (though all participants had 
knowledge of the sequence manipulation). All tasks were programmed using Psychtoolbox 
functions (Brainard, 1997; http://psychtoolbox.org/) in Matlab (https://www.mathworks.com/), 
and stimuli were presented on a plain white background [RGB = 255,255,255].  
 
Longitudinal training  
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Across the course of 15 weeks, each participant underwent 24-25 total sessions of fMRI 

scanning. In the present work, we analyze the first 17 of these fMRI sessions (Phase 1) for each 
participant which took place over ~3 months (13 weeks) of training. In a second study phase 
(Phase 2)of ~3 additional weeks, more fractal stimuli were added into the training set (Figure 1c), 
but the results from this phase of the experiment are not reported here. Over the first week, four 
scans were conducted to ensure that the initial exposure to the tasks and stimuli would be highly 
sampled. fMRI scanning during subsequent weeks occurred at a rate of approximately 1-2x per 
week (depending on participant and scanner availability). 
 

To facilitate learning, at-home behavioral training was implemented multiple times per 
week across the course of the study (Figure 1c), where Participants completed versions of the WM 
and sequence learning tasks on home laptop testing setups. Most sessions were completed at the 
same location for each subject, with a small number completed elsewhere (when traveling, for 
example). The at-home WM task training data can be found on Open Science Framework ().  
 
 
Working memory task  
 

Participants completed a three-alternative forced choice delayed recognition task in each 
scanning and at-home WM training session (Figure 1a). Stimuli included the 18 fractals from the 
participant’s training set, along with 6 novel fractal images, which were randomly selected each 
session. On each trial, a single WM sample stimulus (600 x 600 pixels) was presented in the center 
of a screen for a 0.5 s encoding period. A fixation cross was then presented for a jittered delay 
period of 4, 8, or 12 s, with the goal of facilitating WM maintenance processes. A probe display 
then appeared for a response window of 2 s. The probe display comprised three occluded sections 
of fractal images (⅙ area of each image) at an equal distance from the center of the screen. Each 
probe image was masked within a gaussian window of FWHM at ~⅙ the image size. Participants 
responded via one of three button presses to indicate which probe image segment matched the 
stimulus from the beginning of the trial. A fourth button could be used to indicate a response of “I 
don’t know.”. A sample-matching fractal image was always present in the probe display. One of 
the other probe stimuli was always a novel (untrained) fractal image randomly selected from the 
same color group as the sample fractal image. The third probe image was either a novel fractal 
(50% of trials) or a lure from the set of trained fractal images (50% of trials). The masked section 
of the fractal images was in the same location for each probe image and randomly chosen from 
nine different areas on each trial, and the probe position was counterbalanced across trials within 
a block (Figure 1a). After each trial, there was a jittered intertrial interval (ITI) sampled from an 
exponential distribution (mean = 4 s, range = 1 - 9 s).  
 

In the scanning sessions, participants completed four blocks of 24 trials, with each trained 
and novel fractal image presented as the WM sample stimulus once per block, in random order. 
Each delay length occurred in random order and equally often within a block. For the at-home 
WM training sessions, participants completed two blocks of 24 trials (Figure 1c). The in-scanner 
display was a back-projected 24 in. screen (1024 x 768) for an approximate ~47 cm viewing 
distance, while for at-home training sessions participants used laptop screens of sizes 13.3 in. 
(1440 x 900) [sub-001], 13.3 in. (2560 x 1600) [sub-002], and 12.5 in. (1920 x 1080) [sub-003].  
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Serial reaction time task  
 

In addition to the WM task, participants completed a serial reaction time (SRT) task before 
the WM task in each scanning session and during at-home training sessions. This task served to 
repeatedly expose participants to statistical regularities amongst the trained stimuli, in the form of 
temporal stimulus sequences. During this task, participants made button presses in response to 
each stimulus. The stimulus set consisted of the same 18 fractal stimuli shown in the WM task as 
well as six objects (three animals and three tools) for a total of 24 stimuli. The SRT task consisted 
of two phases: an initial phase in which stimulus-response mappings were learned), followed by a 
second phase during which stimulus sequences were present. 
 

The first section of SRT task was implemented in the first two sessions of the study (one 
fMRI session followed by an at-home behavioral session) during which participants were trained 
to criterion to associate each of the stimuli with one of four button press responses. Participants 
were first exposed to their stimulus set during their first scanning session. During every block, 
each of the 24 stimuli were shown once in a randomized order, with no explicit sequence 
information present (during the first two sessions). Each stimulus was presented on the screen for 
2.3 seconds (followed by a blank screen of .7 s between stimuli) with four response options shown 
as black squares below the stimulus (corresponding to the middle finger of the left hand, ring finger 
of the left hand, ring finger of the right hand, and middle finger of the right hand). During the first 
two blocks of the first scanning session, the correct response was highlighted (square 
corresponding to the response was shown in red instead of black) to allow participants to view the 
correct response and facilitate learning. Thereafter, participants completed 10 more blocks during 
which the correct response was not shown but feedback was provided (when a correct response 
was made the square turned blue and incorrect responses were indicated by the selected option 
turning red with feedback lasting for 200 ms). After the first scanning session, participants 
performed an at-home session to ensure the learning of stimulus-response mappings. Participants 
completed a minimum of five blocks of the task, and continued until a criterion of 80% accuracy 
at the item-level was reached (>=80% of correct first responses for all stimuli across all blocks; 7 
- 15 blocks of training were required to reach criterion). The stimulus-response mappings remained 
constant throughout the study. 
 

After the completion of training to criterion, temporal sequences of stimuli were embedded 
in the SRT task, beginning in the second fMRI session. Of the 24 trained stimuli (18 fractals and 
six objects), 16 stimuli were assigned to form four distinct sequences, with each sequence 
containing three fractals followed by an object (Figure 1b). As in the initial section of this task, 
each stimulus was shown once during each block (set of 24 trials) and the four response options 
were indicated below the stimulus as four black squares. Participants were instructed to press the 
appropriate button for each stimulus. Each stimulus was shown for 1.95 s (fMRI sessions) or 1.8 
s (behavioral sessions) followed by a blank screen for 400 ms. Sequences were presented in a 
probabilistic manner, such that three of the four sequences were presented in an intact fashion in 
each block and each sequence was intact on 75% of blocks in each session (i.e. in 12/16 blocks 
during fMRI sessions). In each block, the order of the presentation of stimuli was randomized with 
the exception of the presentation of the three intact sequences. Stimuli from the non-intact 
sequence (one sequence per block) were presented in a random order with the stipulation that at 
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least two stimuli separated the non-intact sequence stimuli. Feedback was provided throughout the 
experiment as described above in the training to criterion phase. The fMRI sessions contained 18 
blocks of the SRT task and the at-home behavioral sessions consisted of 26 blocks. Stimuli were 
presented in a randomized order (no sequence information was present) during the first two blocks 
of each session which served to acclimate participants to the task.  
 
Object-selective functional localizer task  
 

Functional localizer scans were collected during two separate fMRI sessions for each 
participant, which occurred after sessions 1 and 5 for sub-001, sessions 1 and 15 for sub-002, and 
sessions 5 and 14 for sub-003. Participants performed a one-back task while viewing blocks of 
animals, tools, objects, faces, scenes, and scrambled images. All images were presented on phase 
scrambled backgrounds. Each block lasted for 16 s and contained 20 stimuli per block (300 ms 
stimulus presentation followed by a blank 500 ms inter-stimulus interval). Two stimuli were 
repeated in each block and participants were instructed to respond to stimulus repetitions via button 
press. Each scan (three scans per session) contained four blocks of each stimulus class, which were 
interleaved with five blocks of passive fixation.  
 
fMRI acquisition  
 

All neuroimaging data were collected on a 3 Tesla Siemens MRI scanner at the UC 
Berkeley Henry H. Wheeler Jr. Brain Imaging Center (BIC). Whole-brain Blood Oxygen Level-
Dependent (BOLD) fMRI (T2*-weighted) scans were acquired with a 32-channel RF head coil 
using a 2x accelerated multiband echo-planar imaging (EPI) sequence [repetition time (TR) = 2 s, 
echo time = 30.2 ms, flip angle (FA) = 80°, 2.5 mm isotropic voxels, 52 slices, matrix size = 84 x 
84]. Anatomical MRI scans were collected at two timepoints across the study and registered and 
averaged together before further preprocessing. Each T1-weighted anatomical MRI was collected 
with a 32-channel head coil using an MPRAGE gradient-echo sequence [repetition time (TR) = 
2.3 s, echo time = 3 ms, 1 mm isotropic voxels]. For each scan, participants wore custom-fitted 
headcases (caseforge.com) to facilitate a consistent imaging slice prescription across sessions and 
to minimize head motion during data acquisition. 
 

In each 2-hr scanning session, participants completed the following BOLD fMRI scans: 
(1) 9 min eyes-closed rest run, (2) three 9 min runs of a 1-back stimulus localizer, (3) three 6 min 
runs of the SRT task, (4) 9 min eyes-closed rest block, (5) 9-min stimulus localizer block, (6) four 
6 min runs of the WM task. The present work focuses on the WM task. In the stimulus localizer 
scans, participants completed a 1-back task with a slow, event-related design optimized for 
obtaining single-trial multivariate representations (Zeithamova et al., 2017) (results not reported 
here).  
 
 
 
 
fMRI preprocessing  
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Preprocessing of the neuroimaging data was performed using fMRIPrep version 1.4.0 
(Esteban et al., 2018), a Nipype (Gorgolewski et al., 2017) based tool. Each T1w (T1-weighted) 
volume was corrected for INU (intensity non-uniformity) using N4BiasFieldCorrection v2.1.0 
(Tustison et al., 2010) and skull-stripped using antsBrainExtraction.sh v2.1.0 (using the OASIS 
template). Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-
matter (GM) was performed on the brain-extracted T1w using fast (Zhang et al., 2001) (FSL 
v5.0.9). 

 
Functional data was slice time corrected using 3dTshift from AFNI v16.2.07 (Cox, 1996) 

and motion corrected using mcflirt (Jenkinson et al., 2002) (FSL v5.0.9). This was followed by 
co-registration to the corresponding T1w using boundary-based registration (Greve & Fischl, 
2009) with 9 degrees of freedom, using flirt (FSL). Motion correcting transformations and BOLD-
to-T1w transformation were concatenated and applied in a single step using antsApplyTransforms 
(ANTs v2.1.0) using Lanczos interpolation. Many internal operations of FMRIPREP use Nilearn 
(Abraham et al., 2014), principally within the BOLD-processing workflow. For more details of 
the pipeline see https://fmriprep.readthedocs.io/en/latest/workflows.html. Finally, spatial 
smoothing was only performed in a 4mm FWHM kernel along the cortical surface 
(https://github.com/mwaskom/lyman/tree/v2.0.0) for the mean univariate activity analysis (Figure 
2), while all other analyses used unsmoothed data.  

 
Region-of-Interest (ROI) selection  
 

To generate cortical surface reconstructions, the T1-weighted anatomical MRIs were 
processed through the FreeSurfer (https://surfer.nmr.mgh.harvard.edu/) recon-all pipeline for gray 
and white matter segmentation  (Dale et al., 1999; Fischl, Sereno, & Dale, 1999). To construct the 
lPFC ROIs, we sampled a recent multimodal areal parcellation of the human cerebral cortex 
(Glasser et al., 2016) onto each participant’s native anatomical surface via cortex-based alignment 
(Fischl, Sereno, Tootell, et al., 1999). We combined these smaller parcels on the surface into six 
different lPFC ROIs, with two splits along the rostral-caudal axis and one split along the dorsal-
ventral axis (Figure 2b). The caudal lPFC ROIs fall along the precentral sulcus and gyrus, with 
the most rostral ROIs ending in frontopolar cortex around the anterior ends of the inferior and 
superior frontal sulci. The split between dorsal-ventral ROIs roughly falls along the posterior 
middle frontal sulci, analogous microstructurally to the principal sulcus of macaques (J. A. Miller 
et al., 2021; Petrides, 2019), and the ROIs are bounded dorsally by the superior frontal gyrus and 
ventrally by the inferior frontal gyrus. This lPFC division into six areas was designed to align with 
NHP electrophysiology studies recording from multiple frontal cortex regions (Riley et al., 2018).  
 

We also constructed two visual ROIs in order to determine if effects were specific to lPFC 
or also generalized to lower and higher-order visual areas. An early visual cortex ROI combined 
visual cortical areas V1-V4 for each participant, defined from aligning a probabilistic visual region 
atlas (L. Wang et al., 2015) onto each subject’s native cortical surface using cortex-based 
alignment (Figure 5a). A higher-order visual ROI for the lateral occipital complex (LOC) was 
defined from a separate category localizer scanning session [block-level general linear model 
(GLM) with a contrast of responses of objects > scrambled objects]. Voxel responses were 
thresholded at p < .0001 and the ROI was restricted to voxels reaching this statistical threshold on 
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the lateral surface of the occipital cortex and the posterior portion of the fusiform gyrus 
(Schwarzlose et al., 2008) .  

 
Mean WM delay activity across training 
 

We constructed a separate event-related GLM in SPM12 
(https://www.fil.ion.ucl.ac.uk/spm/) for each participant and session in order to compare activity 
levels for each voxel across training. Separate boxcar regressors were constructed for the encoding 
(0.5 s), delay (4, 8, or 12 s), and probe (2 s) periods of the WM task, and all regressors were 
convolved with a standard double-gamma hemodynamic response function (HRF). Separate task 
event regressors were created for trained and novel fractals. For the session-level GLMs, all four 
WM task runs in each session were concatenated with the spm_fmri_concatenate function. Six 
rigid-body motion parameters were included as nuisance regressors, along with high-pass filtering 
(HPF) of 128s to capture low-frequency trends as implemented in SPM12 
(https://www.fil.ion.ucl.ac.uk/spm/). Voxelwise t-statistic maps were then calculated for WM 
delay (delay > fixation) periods, selecting regressors for trials across all three delay lengths. We 
analyzed changes in mean WM delay activity over learning with nonlinear mixed models using 
mean activity in each ROI as the outcome variable and session number as the predictor (Statistical 
methods). These analyses were performed in two broad groups of voxels: (1) for the mean activity 
of voxels within the peak activation for each ROI (thresholding the maps for each participant and 
session at t > 2.5) and (2) for the mean activity of all voxels across each ROI without any 
thresholding. 
 
Voxelwise regression analysis (recruitment of voxels across training)  
 

To ask whether voxels showed changes in activity across training, we performed voxelwise 
nonlinear regressions on the t-statistic values from the above GLMs (Mean WM delay activity 
across training) across sessions (Figure 3a-c). Separate voxelwise models were run on WM 
encoding and delay period activation to characterize changes in each phase of the WM task 
separately. For each participant and lPFC region, this regression generated a voxelwise b-statistic 
(linear term of quadratic model, see Statistical methods), with positive values indicating an 
increase in activity across sessions and negative values a decrease in activity across sessions. After 
thresholding the voxelwise b-statistic maps at p < 0.05, we then calculated the proportion of voxels 
in each ROI showing an increase or decrease in activity across sessions and averaged this value 
across participants. This generated a measure of how many voxels in an ROI change their activity 
over time, without requiring precise overlap of the specific voxels showing changes across 
participants. To determine if the proportion of voxels showing an increase or decrease in activity 
across sessions was different than chance (p < 0.05 / 2 = 2.5% false-alarm rate for increases or 
decreases), we constructed permuted null distributions of the proportion of increasing and 
decreasing voxels in each ROI. In each of 1,000 permutations, session number was randomly 
shuffled, the regression onto activity across sessions was re-computed, and the proportion of 
voxels showing increases and decreases in activity (mean across participants) was stored to create 
null distributions. P-values were then derived by comparing the actual proportion of increasing 
and decreasing voxels across participants (dark lines in Figure 3d) to the permuted null 
distributions.  
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Stimulus selectivity metric and analyses  
 

In order to determine if WM delay activity showed preferences for any specific fractal 
stimuli we obtained single-trial level voxelwise activity maps by constructing separate least-
squares-all (LSA) GLM for each run, session, and participant (Mumford et al., 2012). Here, GLMs 
were constructed separately for each run in order to estimate pattern similarity between different 
runs, so that correlation measures aren't confounded by temporal autocorrelation within each 
functional scan (Mumford et al., 2014; Zeithamova et al., 2017). In each run-level GLM, the WM 
delay period events for each of the 24 unique stimuli were modeled as separate boxcar regressors 
(collapsed across delay lengths) and convolved with a HRF. The combined WM encoding (0.5 s) 
and probe (2 s) events were included as nuisance regressors, again split by trained and novel 
stimuli. Six rigid-body motion parameters were also included as nuisance regressors, along with 
high-pass filtering (HPF) of 128s to capture low-frequency trends.Voxelwise beta-statistic maps 
from each trial were then used in the selectivity and pattern similarity analyses.  
 

To determine if changes in lPFC activity show selectivity for the trained stimuli across 
training, we calculated a voxelwise selectivity index (among voxels that increased in WM activity 
across training) of WM delay activity for every session, lPFC region, and participant. Analogous 
to stimulus selectivity measures from electrophysiology studies (Naya et al., 2001; Wirth et al., 
2003), an F-statistic was calculated for each voxel using WM delay activity levels (beta estimates) 
across the 18 unique trained stimuli in a repeated-measures ANOVA (with each of the four runs 
in the WM task as the repeated measure, Figure 4a). To determine if lPFC regions showed changes 
in selectivity across training, we implemented nested mixed nonlinear models (see Statistical 
methods) with selectivity as the outcome variable and session number as the predictor. Separate 
models were constructed for each ROI and data from every voxel was included as a nested variable 
within the participant (subject-level) variable. We used every voxel from the ROI to be more 
sensitive to detect changes across training than by using the mean alone, noting that the degrees-
of-freedom were inflated because of correlations between voxels. Accordingly, we assessed the 
significance of an effect of session number (training) on selectivity using permutation testing. A 
null distribution of the relationship between session number and selectivity was created by 
shuffling the session number regressor in each of 1,000 permutations and re-computing the 
relationship between selectivity and session number. The b-statistic from the actual model was 
then compared to the null distribution of b-values for each ROI (Figure 4b).  
 
Representational similarity analyses  
 

To obtain measures of pattern similarity of the fMRI responses in each ROI across 
conditions, we applied a multivariate noise decomposition algorithm to the single-trial WM delay 
period responses (Walther et al., 2016). This process used the time-series of residuals from the 
LSA GLM for each run to account for noise variance within each ROI. Then, for each session, we 
calculated cross-validated (between-run) correlations between the trials for all stimuli (18 trained, 
6 novel fractals). Correlation values were Fisher-z transformed, and then the mean of the between-
run correlations generated a representational similarity or correlation matrix (Figure 5a). One total 
run across all sessions and participants was removed from calculation of between-run correlations 
because of a visual MR artifact. To test for distinct representational structures in WM delay period 
patterns, we operationalized each of four potential representations as specific predictors of pattern 
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similarity and then analyzed how the strength of each model changed across training. Each 
representational structure was coded using values of (1, -1) for specific stimulus pairs, with 
negative values weighted such that the regressor values summed to zero. After constructing, these 
values were then used as predictors of the similarity values (Fisher z-transformed pearson 
correlation), resulting in a model fit (“pattern strength”) for each representational structure. This 
procedure was performed for each session, participant, and ROI. 
 

First, we constructed an item-level model for individual stimulus representations by 
comparing the on-diagonal correlations (between trials featuring the same stimulus) and off-
diagonal correlations for the six trained stimuli not included in any of the learned sequences 
(Figure 5c). Second, we operationalized a category-level model  by testing for an interaction in 
the off-diagonal correlations among all pairs of 18 trained (Figure 5b, dark blue) stimuli and the 
six novel (Figure 5b, light blue) stimuli within each session. Finally, we constructed two separate 
models to test for representations of stimulus sequences from the SRT task. The first sequence 
representational structure was a within-sequence model in which off-diagonal correlations of 
trained stimuli within the same sequence were compared to the correlations between stimuli in 
sequences to the trained stimuli not in sequences (Figure 6a). Next, we constructed a between-
sequence model to test for an interaction in the similarity of stimuli between different sequences 
(Figure 6b,), again compared to a baseline of correlations to trained stimuli not in sequences. A 
final follow-up model directly tested the within versus between-sequence stimulus correlations, 
with no differences found across conditions. For the analysis of off-diagonal correlations among 
trained stimuli in Figure 5a, we excluded the correlations between stimulus pairs within the same 
sequence from the SRT task. To determine if there were changes in pattern similarity across 
training, we used mixed nonlinear models with the beta values from the toy matrix regressor 
(“pattern strength” values) values as the outcome variable and session number (mean-centered) as 
predictors. For all models, ROIs with a significant change in the pattern strength across training 
(significant value of the linear b parameter, see Statistical methods) are bolded in Figure 5 and 
Figure 6. We also included early visual and lateral occipital ROIs in the pattern similarity analyses 
to determine what representational changes are specific to the PFC versus early and higher-order 
sensory areas.  
 
Statistical methods  
 

All changes across training were analyzed using mixed nonlinear models, implemented in 
the nlme library in R (https://cran.r-project.org/web/packages/nlme/index.html). For the nonlinear 
models, we implemented a second-order polynomial function (𝑦	 = 	𝑎 ⋅ 𝑥2 + 𝑏 ⋅ 𝑥 + 𝑐) with all 
three parameters (a, b, c) in the function used as both fixed and random effects (random effects: 
𝑎 + 𝑏 + 𝑐	~ 1	|	𝑠𝑢𝑏𝑗𝑒𝑐𝑡). The linear term of the model (b) was used to test for significance of 
increases or decreases in outcome variables across sessions. For all models, the session number 
(predictor) variable was mean-centered in order to facilitate interpretation of the direction of 
change of the nonlinear models (b > 0: increasing, b < 0: decreasing). Starting values for the 
nonlinear model fitting were obtained using the selected data averaged across conditions and 
groups, implemented in the polyfit function for R. If nonlinear models failed to converge with full 
random effects, the nonlinear term (a) was removed as a random effect and the model was run 
again (random effects: 𝑏 + 𝑐	~ 1	|	𝑠𝑢𝑏𝑗𝑒𝑐𝑡). For all results, changes over time and conditional 
interactions also replicated when using mixed linear models. Voxel-wise regression models and 
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selectivity F-test measures were also calculated using statsmodels 
(https://www.statsmodels.org/stable/index.html) and Scipy (https://www.scipy.org/) functions in 
Python. Neuroimaging files were loaded and operated on using the Nilearn package 
(https://nilearn.github.io/).  
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Supplemental Information  

 

 
SI Figure 1. Sequence learning in the Serial Reaction Time (SRT) task.  
Top: Mean response time (s) for correct trials is plotted for each participant across sequence position (1-4) for intact 
sequences (blue), compared to when the same stimuli were shown out of order (shuffled, red), and relative to non-
sequence stimuli for reference (gray). All three participants showed significantly speeded responses across stimuli in 
intact sequences during fMRI sessions (sub-001, Position 2: t(15) = -5.50, p = 6.1 x 10-5; Position 3: t(15) = -6.29, p 
= 1.4 x 10-5; Position 4: t(15) = -8.58, p = 3.6 x 10-7; ; sub-002, Position 2: t(15) = -7.90, p = 1.0 x 10-6; Position 3: 
t(15) = -7.5, p = 1.8 x 10-6; Position 4: t(15) = -9.4, p = 1.1 x 10-7; sub-003,  Position 2: t(15) = -7.80, p = 1.2 x 10-6; 
Position 3: t(15) = -8.6, p = 3.2 x 10-7; Position 4: t(15) = -8.6, p = 3.3 x 10-7). Bottom: Examples of an intact, left, or 
shuffled, right, sequence in the SRT task. Intact sequences occurred with higher probability (75%) than shuffled 
sequences (25%). Error bars represent 68% CI (S.E.M.).  
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SI Figure 2. Mean WM delay activity in all lPFC regions across training.  
Top: Mean activity for each fMRI session during the WM delay period for highly active voxels in each lPFC ROI, 
thresholded at t > 2.5. Specific to dorsal rostral PFC (green), there was a mean decrease in WM delay activity in the 
ROI across sessions. Bottom: For all voxels (unthresholded) in an ROI, there was only an increase in WM delay 
activity specific to dorsal mid-lateral PFC (orange).   
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SI Figure 3. Distribution of activity for the WM encoding epoch in PFC across the course of learning. Significant 
increases (red) or decreases (blue) in the percentage of voxels changing activity across training are indicated by bolded 
vertical lines. Null distributions were created exactly as in Figure 3, but instead using the WM encoding period activity 
across sessions. All ROIs show a significant proportion of voxels with a decrease in activity, with no ROIs showing 
an increase in WM encoding activity across training.  
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SI Figure 4. Analysis of individual sequence representation in WM delay activity.   
(a) Left: Schematic of the model matrix for the analysis of correlations for items within the same trained sequences 
(dark blue, positive values) compared to correlations of items between different sequences (light blue, negative 
values). Right: Plots of the pattern strength across sessions for each ROI, as assessed by the model fit for the individual 
sequence-level model on the left. For visualization, all ROIs with significant changes in pattern strength across 
sessions are indicated with a p-value and bolded plot border, and pattern strength is plotted as a change from initial 
(session 1) baseline values. Change in pattern strength: dorsal rostral: t(46) = -0.13, p = 0.9; dorsal mid-lateral: t(46) 
= -0.07, p = 0.94; dorsal caudal: t(46) = 0.55, p = 0.59; early visual: t(46) = -1.93, p = 0.06; ventral rostral: t(46) 
= -0.24, p = 0.8; ventral mid-lateral: t(46) = -0.78, p = 0.44; LOC: t(46) = -1.23, p = 0.22. Each color shade represents 
one of the three individual participants.  
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Chapter 3: Cortico-striatal output gating of working memory content  
 
 

“... the neural systems that mediate the sensorimotor behavior of our ancient ancestors may have 
provided the foundations for modern cognitive abilities, and their consideration may shed light on 
the neural mechanisms that underlie human thought.” 
 

- Cisek & Kalaska (2010, p. 289)  
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Memory Content Biases Ongoing Action. Journal of Experimental Psychology: Human Perception and 
Performance. http://dx.doi.org/10.1037/xhp0000868 
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Abstract  

 
Working memory (WM) holds information temporarily in mind, imparting the ability to guide 
behavior based on internal goals rather than external stimuli. However, humans often maintain 
WM content for a future task while performing more immediate actions. Consequently, transient 
WM representations may inadvertently influence ongoing (but unrelated) motor behavior. Here, 
we tested the impact of WM on adult human action execution and examined how the attentional 
or “activation” state of WM content modulates that impact. In three dual-task experiments, verbal 
WM for directional words influenced the trajectory and speed of hand movements performed 
during WM maintenance. This movement bias was also modulated by the attentional state of the 
WM content. Prioritized WM content strongly influenced actions during WM maintenance, while 
de-prioritized WM content was less influential. In sum, WM can unintentionally shape ongoing 
motor behavior, but the behavioral relevance of WM content determines the degree of influence 
on motor output.  
 
 

Significance statement 

Working memory allows us to keep information actively in mind, so that we can use that 
information to achieve our moment-to-moment goals. However, this working memory 
maintenance process may unintentionally impact our interactions with the environment, and can 
occasionally interfere with our immediate external goals. This study formalizes the everyday 
“action slips” that humans commit when we type out or say the wrong word aloud in conversation 
because it was held in mind for a different goal. The results show that internally maintained content 
can influence the direction and speed of hand movements that are executed during working 
memory maintenance. However, the extent of this action interference varies with the relevance of 
the maintained content to either immediate or temporally-extended task goals. That is, working 
memory can bias our actions, but we can control the behavioral state of working memory content 
to reduce the likelihood of these everyday errors. 
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Introduction 

As humans engage in complex cognition, our thoughts can inadvertently influence our 
interactions with the environment. Imagine, for instance, accidentally typing out or saying the 
wrong word aloud in conversation because it was currently on your mind. Here, we test the idea 
that such everyday cognitive slips emerge from the typically adaptive processes by which working 
memory (WM) guides behavior. WM maintains temporary mnemonic representations that can 
support perceptual continuity and attentional orienting, but a core function of WM is also to steer 
goal-directed actions (Fuster & Alexander, 1971; van Ede, Chekroud, Stokes, & Nobre, 2019). 
Recent studies have begun to highlight the influential role of WM in preparing volitional motor 
responses (Belopolsky & Theeuwes, 2011; Zokaei, Board, Manohar, & Nobre, 2019), as well as 
the reciprocal role of motor systems in supporting WM maintenance (Hanning, Jonikaitis, Deubel, 
& Szinte, 2016; Ohl & Rolfs, 2017). While WM is classically described as a system for short-term 
information storage, some theories assert that it would be better construed as intention to perform 
an action (Fuster, 1990, 2004, 2015; Postle, 2006; Theeuwes, Belopolsky, & Olivers, 2009). If that 
is the case, then WM content may bias ongoing motor behavior, even when the content is not 
directly task relevant. The current study tests the boundaries of the linkage between WM and action 
control. We investigate whether WM impacts action execution during maintenance, and how that 
impact is modulated by task goals. 

         WM maintenance can bias visual attention toward related content in the environment, even 
at the expense of the current task (Soto, Hodsoll, Rotshtein, & Humphreys, 2008). However, this 
influence of WM can be strategically modulated (Carlisle & Woodman, 2011; Kiyonaga, Egner, 
& Soto, 2012). For instance, when one among several WM items is flagged as relevant (i.e., ‘retro-
cued’), attended WM items evoke more detectable neural traces with fMRI or M/EEG (LaRocque, 
Lewis-Peacock, & Postle, 2014; Wolff, Jochim, Akyurek, & Stokes, 2017), and such prioritized 
content biases visual attention more strongly (Mallett & Lewis-Peacock, 2018; Olivers, Peters, 
Houtkamp, & Roelfsema, 2011; van Moorselaar, Theeuwes, & Olivers, 2014). These findings 
align with a biased competition account of visual attention, wherein visual representations compete 
for attention in a weighted manner (Desimone & Duncan, 1995). This model further predicts that 
WM should have a similar influence on competing response systems. That is, if actively 
maintained WM content biases perceptual representations that guide attention, it may also bias 
motor preparation representations that guide action (Meiran, Cole, & Braver, 2012; Oberauer, 
2010; Theeuwes et al., 2009). Yet we often maintain WM content that is relevant for a future goal 
while engaged in more immediate actions. As a result, actively maintained WM representations 
may bias ongoing (but unrelated) motor behavior. 

         While prioritized WM content is considered to be in a privileged, active state (Zokaei, 
Manohar, Husain, & Feredoes, 2014), deprioritized content is relatively less immediately relevant 
and is considered “unattended” (LaRocque et al., 2014; Lewis-Peacock, Drysdale, Oberauer, & 
Postle, 2011). It may be maintained with lower activity levels (Bays & Taylor, 2018) or in a distinct 
latent format (Rose et al., 2016; Sprague, Ester, & Serences, 2016), but the cognitive, neural, and 
behavioral status of this deprioritized content is currently unclear (Mallett & Lewis-Peacock, 2018; 
Manohar, Zokaei, Fallon, Vogels, & Husain, 2019; Nobre & Stokes, 2019; Park, Sy, Hong, & 
Tong, 2017). If deprioritized content is maintained at a quantitatively lower level of activation, it 
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may exert a diminished but still measurable influence on behavior. If, on the other hand, it is 
maintained in a qualitatively distinct state, it may be prevented from spilling over into behavior. 
Internally oriented attention processes modulate visual WM performance (Souza & Oberauer, 
2016), and are theorized to modulate the nature of visual WM representations (Stokes, 2015; van 
Loon, Olmos-Solis, Fahrenfort, & Olivers, 2018; Wolff, Ding, Myers, & Stokes, 2015). Here, we 
test the idea that such attentional prioritization processes should also determine how WM 
information influences ongoing motor behavior. In other words, we ask whether relative WM 
priority levels drive (sometimes erroneous) actions that occur during maintenance. We therefore 
employ an intervening motor task as a behavioral “probe” into the activation state of the WM 
content. 

         In theories of motor function, goal-potentiated frontal cortical representations feed into a 
basal ganglia gating mechanism whereby only the most active representations surpass the 
threshold to drive actions (Ivry & Spencer, 2004). The behavioral influence of WM has been 
theoretically attributed to a similar output gating function (Wallis, Stokes, Cousijn, Woolrich, & 
Nobre, 2015). In this model, attentional selection transforms WM representations from suspended 
internal maintenance into a behavior-driving state (Myers, Stokes, & Nobre, 2017). The presumed 
gating system also tracks the utility of WM representations, defining which ones should be selected 
(Chatham & Badre, 2015; Cools, Ivry, & D’Esposito, 2006). If the activity state of WM content 
determines such a gating process, task-irrelevant representations could be gated out when they are 
activated above threshold. While output gating has typically been considered to result from 
volitional selection of WM content, it could theoretically sometimes drive incorrect actions. 
However, in a complex task, multiple rules must be tracked and segregated for successful behavior, 
and this may be accomplished through hierarchical control functions which regulate gating 
behavior (Badre & Nee, 2018). Here, we also examine how item-level attentional selection (which 
may promote output gating) interacts with task-level goal maintenance functions to control WM-
guided behavior. 

         Patients with frontal lesions sometimes display contextual action slips, like sprinkling salt 
into tea instead of on food (Schwartz, 1995). These deficits may be an exaggerated form of the 
everyday slips humans commit when thought content unintentionally infiltrates behavior. But what 
determines which representations surpass the action threshold? And how might an adaptive WM 
process interact with contextual task demands? To experimentally formalize action slips, we 
created scenarios wherein hand movements were executed during WM maintenance. In this dual-
task setting, cued movement directions could be either compatible or incompatible with the 
meaning of the maintained content. We manipulated the predictive relationship between WM and 
motor goals across a task context (i.e., varying the proportion of compatible trials), as well the 
attentional priority level of WM content for trial-by-trial WM goals (i.e., retro-cueing). Across 
three experiments, this study examines whether WM maintenance biases intervening motor action, 
and if so, how task context and behavioral relevance influence this bias. 
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Experiment 1: Block-wise WM-relevance manipulation 

Methods 

Participants. Participants were recruited from the Berkeley community, gave informed consent in 
accordance with the University of California Berkeley Institutional Review Board (IRB), and 
received either course credit or $20 per hour for participation. We aimed to recruit 30 participants 
for each experiment. This sample size was estimated from previous experiments that used a WM 
dual-task structure and a similar statistical comparison (e.g., congruent vs. incongruent Stroop 
trials; Kiyonaga & Egner, 2014). We expected a similar effect size, around Cohen’s d = 0.7, for 
our primary effect of WM compatibility. With alpha = 0.05, this would yield a power of 0.96. 
Individuals were excluded if accuracy was below 60% or responses were entered on fewer than ⅔ 
trials for either the motor or WM tasks. Experiment 1 was administered to 32 participants, but 3 
were excluded for failing to meet the accuracy threshold. Therefore, analyses included 29 
participants (9 male; mean age = 20.0 y, range = 18-24). 

Task overview. The goal was to simulate an everyday situation where information is maintained 
for future use while performing immediate actions. We therefore interleaved a verbal delayed 
recognition test with a simple motor task (Fig. 1a). On each trial, participants were instructed to 
remember a directional word (‘up,’ ‘down,’ ‘left,’ or ‘right’). Then, during the WM delay, they 
were visually cued to move the mouse and click on a target located at one of four cardinal screen 
positions (top, bottom, left, or right). After the motor task, participants were tested on their memory 
for the sample word. The meaning of the verbal WM content could be either compatible (e.g., 
remember ‘left’, click inside leftward box) or incompatible (e.g., remember ‘left’, click inside 
rightward box) with the direction of the cued hand movement. The task therefore required 
maintenance of multiple rules and representations for WM and motor components, which were 
sometimes in conflict with each other. 

         To examine how the priority level of WM representations might modulate their influence 
over behavior, we developed three variations of this basic task. Experiment 1 manipulated the 
relative value of the WM content across block conditions by varying the predictive utility of WM 
to the motor task. That is, the ratio of compatible to incompatible trials was varied across three 
task block contexts. Experiment 2 manipulated the trial-by-trial priority status of individual WM 
items to the WM test—with retro-cues to shift attention among simultaneously remembered 
items—while keeping the WM relationship to the motor task unchanged. Experiment 3 combined 
elements of Experiments 1 and 2, to examine the contributions of modulating WM at the level of 
task goals vs. item representations. All data and code are available on the Open Science 
Framework: https://bit.ly/2RlYRm5 

Stimuli and procedure. All tasks were programmed using Psychtoolbox functions (Brainard, 1997) 
(http://psychtoolbox.org/) in Matlab (https://www.mathworks.com/), along with custom scripts to 
track mouse positions. Participants sat ~60 cm from a 23 in. screen. The WM stimuli consisted of 
directional words (‘up,’ ‘down,’ ‘left,’ or ‘right’), presented in black (visual angle ~ 1.2º) on a 
neutral grey background (RGB: [128,128,128]). Every trial began with a 2 sec intertrial interval 
(ITI). Then a WM sample word appeared centrally for 1 sec. After a total delay of 5 sec, a WM 
probe word (selected from the same set as the WM samples) appeared centrally underneath a 
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question mark. The WM task was to make a keyboard button press indicating whether the probe 
word was a match (‘S’ key) or non-match (‘D’ key) to the WM sample. Match and non-match WM 
probes were equally likely (50% match / 50% non-match) in all experiments. 

         During the WM delay, participants completed a manual action task. A central filled colored 
square (i.e., the cue) was flanked by unfilled square boxes (i.e., the targets) at each of four 
locations: to the top, bottom, left, and right of center. The central square could be one of four colors 
(RGB: green = [122,164,86], pink = [198,89,153], orange = [201,109,68], blue = [119,122,205]), 
which were chosen to be maximally distinct, matched on saturation and brightness, and color-blind 
friendly (http://tools.medialab.sciences-po.fr/iwanthue/). Each color was instructed to cue one of 
four screen locations: green = left, pink = right, orange = up, blue = down. The target boxes were 
equidistant from the central color cue and each other (size ~ 3.7º, distance from center ~ 9.3º). The 
motor task was to move the mouse and click inside the target box at the location cued by the color. 
The motor task therefore required a symbolic transformation from color to location, which was 
meant to engage the goal representation circuitry involved in gating motor behaviors (O’Reilly & 
Frank, 2005; Oliveira & Ivry, 2008). The motor task epoch ended when a cursor click was recorded 
in any of the target locations, or when a 2 sec response deadline passed. 

         The sequence of one complete dual-task trial started with a 2 sec ITI, followed by a 1 sec 
WM sample display, then a 2 sec fixation delay. After this first delay, the motor task display 
appeared for 2 sec, followed by another fixation delay of 1 sec, and then finally the WM probe 
display for 2 sec (Fig. 1a, left). There were two primary trial types: compatible trials, wherein the 
meaning of the WM word matched the cued direction of movement, and incompatible trials, 
wherein the WM word was paired with any of the three non-matching movement cues. The ratio 
of compatible to incompatible trials was manipulated across a given task block. Blocks contained 
either 80%, 50%, or 20% compatible trials (Fig. 1a, right). In “high compatibility” blocks (80% 
compatible), the WM sample meaning usually helped the motor task, as it corresponded to the 
directional goal of the upcoming movement. In “middle compatibility” blocks (50% compatible), 
the WM content was equally likely to be helpful or harmful to the motor task on any given trial. 
In “low compatibility” blocks (20% compatible) the WM sample meaning usually differed from 
the motor task target, and was therefore unhelpful. To minimize probabilistic learning effects, 
participants were explicitly informed about the percentage of compatible trials at the start of each 
block. 

         In order to learn the color-direction response mapping, participants practiced at least 12 
trials of the motor task before each experiment. Then participants completed one 6-trial practice 
block of each condition (with feedback for motor and WM response accuracy) before completing 
three 30-trial experimental blocks of each condition (without feedback; 9 blocks total). Participants 
therefore completed 90 trials in each block condition and 135 trials of each compatibility condition 
across blocks (72 incompatible/18 compatible trials across “low compatibility” blocks, 45 
incompatible/45 compatible trials across “middle compatibility” blocks, and 18 incompatible/72 
compatible trials across “high compatibility” blocks). The first block was always middle 
compatibility (50% compatible), while the predictability conditions occurred in random order for 
the remaining blocks. The difference in motor behavior on compatible vs. incompatible trials—or 
the ‘compatibility effect’—will serve here as an operational index of the influence of WM over 
ongoing action. 
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Movement trajectory analysis. Mouse positioning data was tracked across the motor task to assess 
the influence of WM content on the direction of hand movements. To define when hand movement 
trajectories were curved away from the target location, we created a circle around the start position 
with a radius of ¼ the distance to the target. Trajectories were considered precise if they first 
crossed that boundary within 45° of the correct response axis, but were classified as course 
adjustments if they crossed that boundary at a wider angle than 45° before terminating at the correct 
target (Fig. 1b). All cursor trajectories were rotated to a common axis for comparison. Because 
the number of compatible and incompatible trials varied across block conditions in Experiment 1, 
we calculated the proportion of corrected movements as the number of course adjustments divided 
by the total trial number of that type. Finally, to test if course adjustment trajectories were biased 
specifically toward the direction held in WM, we analyzed trajectory data for each incompatible 
trial and categorized whether the exit angle of the initial movement matched the direction held in 
WM. We tested the proportion of trials matching the WM direction against 33.3%—the probability 
of moving randomly into one of the non-target directions on an incompatible trial. This is a 
conservative comparison, as the chance of randomly moving toward any of the four possible 
movement targets would be 25%. 

Movement speed measures: Movement initiation—also sometimes referred to as ‘reaction time’—
was defined as the time from the onset of the color cue until the cursor first crossed a radius of 30 
pixels from the starting position. Movement duration—also sometimes referred to as ‘movement 
time’—was defined as the amount of time after movement initiation until a click was made within 
one of the movement targets. 

Quality control criteria. Trials were excluded if no WM probe response was made. For analyses 
of motor response speeds, outlier trials were excluded if a measurement was greater than 3 standard 
deviations away from the participants’ mean, or if the motor task response was inaccurate. In 
Experiment 1, 2.8% of total trials were excluded as response speed outliers, 1.2% as nonresponse 
trials, and 2.7% as response errors. 

Analysis strategy: For all measures, we conducted a 2 (trial compatibility: compatible vs. 
incompatible) × 3 (block predictability: low vs. middle vs. high compatibility) repeated measures 
ANOVA. To decompose any significant interactions, we conducted one-way ANOVAs of block 
predictability separately for compatible and incompatible trials. All ANOVA main effects and 
interactions are reported with the generalized-eta-squared ( ) effect size measure. This estimate 
indexes the proportion of variability in the outcome measure associated with a given variable and 
generalizes across within- and between-subjects designs (Fritz, Morris, & Richler, 2012). All post-
hoc t-tests are reported with the Cohen’s d effect size and a bootstrapped (n = 10,000 bootstraps) 
95% confidence interval for the Cohen’s d value. 

 

 

 



51 

 

 

Fig 1. Experiment 1 task design and results. (a) Example compatible and incompatible trial sequences (left), which 
were delivered in 3 block conditions (right). (b) Movement trajectories for compatible (green) and incompatible trials 
(orange) from an example subject on middle compatibility blocks. Detail illustrates criteria for categorizing trials as 
“course adjustments.” (c) The proportion of course adjustments on compatible (green) and incompatible (orange) 
trials, collapsed across block condition. (d) Point plots show mean movement speeds for all trial and block conditions, 
while barplots show the difference between compatible (green) and incompatible (orange) for each block condition. 
Left: Movement initiation, or ‘reaction time’. Right: Movement duration, or ‘movement time’. Error bars represent 
SEM. Gray dots are data points from individual participants. 
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Results 

WM accuracy. For all experiments, WM probe accuracy was > 90% correct, confirming that 
participants completed the task as instructed. Neither trial compatibility nor block conditions 
significantly modulated WM probe accuracy (SI Exp. 1 Results). As our goal was to assess the 
influence of WM over motor behavior, the remaining analyses examine motor task performance. 

Movement accuracy and action slips. We first examined whether WM content impacted the 
direction of cued hand movements. Mouse clicking accuracy (% correct of click location) was 
reliably worse on incompatible (96%) vs. compatible trials (98.5%), F(1,28) = 26.3, p < .001,  = .08. 
When the meaning of the WM content was incompatible with motor goals, participants entered 
more responses at the wrong target location. However, there was neither a main effect of block 
predictability, F(2,56) = 0.94, p = .47,  = .006, nor an interaction between factors, F(2,56) = 0.77, p = 
.40,  = .003. 

         Movement landing positions (i.e., final click location) were highly accurate overall (97%), 
but the shape of movement trajectories may also be biased by WM content. For instance, 
incompatible trials could result in curved paths that are skewed toward the direction that matches 
what is held in WM. Mouse movement tracking can therefore provide a more sensitive probe into 
the decision processes and action execution that are influenced by ongoing cognition. Indeed, the 
proportion of movement course adjustments was ~15% greater on incompatible versus compatible 
trials, F(1,28) = 45.0, p < .001,  = .18 (Fig. 1c). The direction of initial movement on these course 
adjustment trials was also most likely to match the meaning of the word held in WM, t(28) = 3.1, p 
= .005, d = 0.57, rather than being driven by general conflict processes that might impair behavior 
overall (Fig. S1). However, while this compatibility effect was descriptively largest in high 
compatibility blocks and smallest in low compatibility blocks, there was neither a main effect of 
block predictability, F(2,56) = 0.3, p = .72,  = .0006, nor an interaction between factors, F(2,56) = 2.4, 
p = .10,  = .006. In sum, action execution was biased by the meaning of WM content, but was 
insensitive to the block WM compatibility context. When the meaning of the WM content was 
incompatible with motor goals, it produced circuitous hand movement trajectories in the WM-
matching direction. 

Movement speeds. Multiple subprocesses may be influenced by the compatibility of the current 
WM content, or its relevance to the motor task. We therefore examined distinct measures of 
movement initiation and duration. A main effect of trial compatibility, F(1,28) = 42.8, p < .001,  = 
.04, indicated that movements were initiated more slowly when the cued movement was 
incompatible with the WM sample (53 ms difference). A main effect of block predictability, 
F(2,56) = 20.1, p < .001,  = .03, indicated that movements were also initiated more slowly overall in 
contexts when WM content was less likely to help motor performance. Moreover, there was an 
interaction between compatibility and predictability factors, F(2,56) = 3.88, p = .026,  = .003. 
Separate follow-up ANOVAs for both trial types revealed effects of block predictability 
(compatible: F(2,56) = 18.1, p < .001,  = .05; incompatible: F(2,56) = 8.21, p < .001,  = .01). However, 
paired comparisons to the middle compatibility condition indicated that compatible movements 
were initiated faster in high compatibility blocks, t(28) = 5.6, p < .001, d = 0.46, CI95% [0.25, 0.79], 
but no different in low compatibility blocks, t(28) = 1.0, p = .32, d = 0.09, CI95% [-0.09, 0.29]. While 
incompatible trials were also initiated faster in high (vs. middle) compatibility blocks, t(28)  = 2.1, 
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p = .04, d = 0.15, CI95% [0.01, 0.31],  they were initiated more slowly in low compatibility blocks, 
t(28) = 2.47, p = .02, d = 0.12, CI95% [0.03, 0.26]. These differences translated into a compatibility 
effect (i.e., incompatible - compatible RT) that was significantly greater in high compatibility 
blocks than in low compatibility blocks, t(28) =  2.76, p = .01, d = 0.52, CI95% [0.20, 0.85],  (Fig. 1d, 
left). 

         Movement duration also showed main effects of trial compatibility, F(1,28) = 33.7, p < .001,  
= .07, and block predictability, F(2,56) = 5.01, p = .010,  = .004. However, while movement initiation 
was overall speeded by a higher frequency of compatible trials, movement duration was slowed 
instead. There was also an interaction between trial and block factors, F(2,56) = 8.44, p < .001,  = 
.008, where follow-up ANOVAs revealed an effect of block predictability only for incompatible 
trials, F(2,56) = 11.3, p = .001,  = .02 (but not compatible, F(2,56) = 1.1, p = .35,  = .002). Incompatible 
movement times were relatively longer in high compatibility blocks (vs. middle compatibility), 
t(28) =  3.83, p < .001, d = 0.26, CI95% [0.12, 0.41], but low compatibility blocks were unaffected, t(28) 
= 0.7, p = .49, d = 0.04, CI95% [-0.10, 0.16]. Like movement initiation, the compatibility effect was 
greater in the high compatibility block condition compared to middle compatibility blocks, t(28) =  
3.82, p < .001, d = 0.56, CI95% [0.29, 0.82] (Fig. 1d, right). Whereas the effect in movement initiation 
was driven by speeding on compatible trials, this effect in movement duration was driven by 
slowing on incompatible trials. That is, the influence of WM on movement speeds was strongest 
when WM content was most relevant to the motor task, although trial compatibility affected 
movement initiation and duration times differently. Even in low compatibility blocks alone, 
however, there was still a robust compatibility effect for both movement initiation, t(28) = 5.56, p < 
.001, d = 0.33, CI95% [0.20, 0.50],  and movement duration, t(28) = 2.87, p = .008, d = 0.35, CI95% [0.12, 
0.65]. To examine whether this effect might stem from a strategic carryover from high 
compatibility blocks when WM content was helpful, we analyzed the compatibility effect only for 
low compatibility (20%) blocks that were administered before any high compatibility (80%) 
blocks. The movement initiation benefit was present even when participants had not yet 
experienced any high compatibility (80%) blocks, t(12) = -2.85, p = .014, d = 0.26, CI95% [0.08, 0.52]. 
Therefore, WM content biased motor behavior before it would have been reinforced as useful for 
the manual task. 

         Finally, to address whether incompatible WM content truly slowed the rate of movement 
execution (rather than requiring time to redirect initially deviant movement paths), we analyzed 
response speeds after excluding course adjustment trials (SI Exp. 1 Results). Even precise 
movements were overall slowed by incompatible WM content, but the predictability between the 
WM content and the motor task only modulated movement initiation (not duration). In other 
words, the extended incompatible movement durations in high compatibility blocks may be 
explained by the longer movement paths on course adjustment trials. 

Experiment 1 Discussion 

         Motor behavior was influenced by WM content: movement accuracy, precision, initiation, 
and duration were all worse when remembered words were incompatible with the intended 
direction of movement. Even when WM content was irrelevant to the immediate task (i.e., low 
compatibility blocks), it still sometimes translated into motor output. These findings mirror the 
attentional biasing effects of visual WM content (Desimone & Duncan, 1995; Soto et al., 2008), 
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suggesting that this visual cognitive framework may also be applied to understand how verbal WM 
content interacts with ongoing demands, and moreover, how WM content biases overt manual 
actions. Recent theoretical work has further described a strong functional link between visual WM 
and planned actions (van Ede, 2020). The current findings empirically support the notion that WM 
may be best understood as intention to perform an action (Theeuwes et al., 2009), extrapolating 
from this framework to show that the linkage may promote some unplanned influences of WM as 
well. Such an incidental influence of WM content has previously been labeled as “automatic,” 
because it occurs even when the content is detrimental to ongoing processing (e.g., Soto et al., 
2008). However, it could instead stem from a strategic tendency to apply WM content toward 
current behavior because it is typically relevant to immediate goals and would be generally 
adaptive to do so. 

         Indeed, movement speeds revealed that task context can adaptively modulate this WM 
influence over motor behavior. Movements were initiated faster when WM was likely to predict 
movement direction, but slower when it was unlikely to help. Block-level WM utility to the motor 
task may have lowered the decision threshold to trigger a movement, as if the WM content were 
gated into an action-facilitating state. However, this facilitation ultimately produced more time-
consuming movement paths when WM turned out to be incompatible—i.e., slower movement 
duration in high compatibility blocks—as the motion was triggered toward the wrong location and 
required course adjustment to reach the target. 

Here, WM content is in competition for selection with motor rules, and the likelihood for 
selectively gating out the WM content (rather than the correct motor rule) might theoretically 
increase when WM is more likely to aid motor performance (Badre, 2012). However, theories of 
hierarchical control also predict varying levels of segregation between representations for multiple 
concurrent task rules (Verbruggen, McLaren, Pereg, & Meiran, 2018). Here, when the context 
dictated that WM would likely help, it could have increased the relative weighting of the WM rule, 
making it more difficult to segregate from motor goals. This would facilitate motor behavior when 
the two are compatible but promote interference when incompatible, like we observed here. That 
is, these results may reflect control limitations in a task with competing nested rules and demands 
(Braem et al., 2019), rather than a modulation of gating thresholds, per se. 

Experiment 2: Probabilistic retrocue manipulation 

Methods         

Rationale. Experiment 1 showed that the effect of WM content on motor behavior is modulated 
by its predictive relationship to movement goals. However, if this influence of WM does indeed 
stem from the activation state of the WM content—rather than simply the likelihood that the WM 
content will be useful—then prioritized WM content should bias actions, even when there is no 
relationship between WM and motor task components. Therefore, in Experiment 2, we 
manipulated the priority level of individual WM representations among competing alternatives. 
Two WM samples were presented, and trial-by-trial retrocues indicated which sample was most 
likely to be probed. Across all blocks of the experiment, compatible and incompatible trials were 
equally likely. Whereas Experiment 1 may have modulated the tonic weighting between higher 
order WM vs. motor task goals (i.e., compatible trials are more likely, therefore WM > motor), 
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explicit cueing in Experiment 2 should instead acutely modulate the weightings between 
concurrently maintained WM stimuli (i.e., ‘left’ is more likely to be tested, therefore ‘left’ > 
‘right’). If the activation state of WM content determines its degree of influence on behavior, then 
a prioritized (i.e., retrocued) WM item should influence ongoing actions more than a de-prioritized 
(i.e., uncued) item, even when both are equally likely to aid motor task performance. 

Participants. A new set of 31 participants was recruited using the same guidelines and IRB 
approval as in Experiment 1. 28 participants were included in Experiment 2 analyses (14 male; 
mean age = 20.2 y, range = 18-26) after 3 exclusions for below threshold accuracy (60%). 

Procedure. Experiment 2 employed the same basic dual-task structure as Experiment 1, with a few 
key adjustments (Fig. 2a). Rather than a single WM sample, two WM sample words were 
presented sequentially for 250 ms each, separated by a 500 ms ISI. After a 1,500 ms delay, a cue 
(1, 2, or X) was displayed. A 1 or 2 served as an informative retrocue, indicating that either the 
first or second WM sample word was most likely to be probed. An X designated that the two 
sample words were of equal priority, as either word was equally likely to be tested (this is often 
referred to in the literature as a ‘neutral’ condition). Following a second delay of 2,000 ms, 
participants completed the same motor task as in Experiment 1. Before the WM probe, a probe cue 
appeared for 1,500 ms to indicate which item was being tested (1 or 2). Then the match/non-match 
WM probe word appeared centrally until a response, for up to 2,000 ms. Regardless of which item 
was retrocued earlier in the trial, the task was to compare the probe word to the corresponding WM 
sample: the 1st WM sample if the probe cue was a 1, and the 2nd sample if the probe cue was a 2. 
Retrocues were 90% valid, meaning that the WM sample that was cued earlier in the trial was 
probed on 9 out of 10 trials. Therefore, either a 1 or 2 should attentionally prioritize the cued item 
(and relatively de-prioritize the uncued item), whereas an X should result in equal priority for both 
items. 

         Three compatibility conditions were defined based on which WM item was retrocued. On 
compatible trials, the retrocued WM item was congruent with the movement direction. On 
incompatible trials, the retrocued item was incongruent with the movement direction. On equal 
priority trials, neither item was retrocued, Therefore, trials labeled compatible or incompatible 
only occurred when there was an informative retrocue. Retrocues only informed which WM item 
would be probed, but provided no information about the motor task. Compatible, incompatible, 
and equal priority trials were equally distributed in random order within each experimental block 
(i.e., each occurred on 1/3 of trials). Moreover, retrocue validity (i.e., whether the retrocued item 
was probed at the end of the trial) was unrelated to trial compatibility. In Experiment 2, therefore, 
the proportion of compatible trials remained constant across the experiment. 

         Because there were two WM sample items, they could either both be incompatible with 
the movement direction, or one could be compatible while the other was incompatible. Equal 
priority trials were evenly split so that one item was compatible on half of trials, while both items 
were incompatible on the other half of trials. For incompatible trials, the uncued item was selected 
equally often from the remaining three words, which resulted in a compatible uncued item on 1/3 
of incompatible trials. However, this experiment was not optimized to examine these compatibility 
sub-conditions, so analyses collapse across them to maximize trial numbers in each condition (but 
see Experiment 3). Participants completed one 8-trial practice block (with performance feedback), 
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before completing at least 6 experimental blocks of 36 trials (without feedback).  Each participant 
therefore completed at least 72 trials per condition (compatible / incompatible / equal priority 
trials) across the session. 

Quality control criteria. As with Experiment 1, nonresponse trials for the WM probe, outliers for 
the motor response speed (> 3 s.d. from subject mean), and inaccurate motor task responses were 
excluded. In Experiment 2, 3.2% of total trials were excluded as response speed outliers, 1.6% as 
nonresponse trials, and 2.8% as response errors. 

Analysis strategy. We performed one-way ANOVAs, with a factor of cued compatibility 
(compatible vs. equal priority vs. incompatible), on all measures. We then decomposed any 
significant effects of compatibility by calculating and comparing difference scores from the equal 
priority condition, where a ‘benefit’ reflects relatively faster or more precise responses, and a ‘cost’ 
reflects relatively slower or less precise responses. To determine if the influence of compatibility 
was reflected across each subject’s distribution of response times (rather than being driven by a 
small number of trials on either end of the RT distribution), we analyzed the slopes of response 
time decile distributions (SI Exp. 2 Methods). 
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Fig 2. Experiment 2 task design and results. (a) An example trial sequence with possible retrocue and compatibility 
conditions. Green and orange arrows illustrate the hypothetical priority levels of the WM samples in this example 
trial. (b) Movement trajectories for compatible (green), equal priority (blue), and incompatible (orange) trials from an 
example subject on 3 blocks (left). Proportion of course adjustments on compatible, equal priority, and incompatible 
trials (right). (c) Benefits (green) and costs (orange) of compatible and incompatible cueing (compared to equal 
priority) on movement initiation (left) and duration (right) times. Error bars represent SEM. Gray dots are data points 
from individual participants. 
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Results 

WM accuracy. WM probe accuracy was high (~92% correct) and was unaffected by compatibility, 
F(2,54) = 0.4, p = .67,  = .002. To ensure that participants used the retrocue as expected, we examined 
the effect of retrocue validity on WM probe performance. Accuracy was better when participants 
were validly probed on memory for the cued item (94.7%), compared to when they were invalidly 
probed on memory for the uncued item (85.4%), t(27) = 4.1, p < .001, d = 0.98, CI95% [0.61, 1.36]. 
Therefore, participants prioritized the cued item as expected but still remembered the uncued item 
well above chance. 

Movement accuracy and action slips. Overall movement accuracy was high (~97%) and 
marginally influenced by cued compatibility, F(2,54) = 2.6, p = .08,  = .03, in that performance was 
best for compatible and worst for incompatible trials. Movement precision was also influenced by 
the compatibility between WM and movements goals, F(2,54) = 7.4, p = .001,  = .01, as course 
adjustment errors were least frequent on compatible trials and most frequent on incompatible trials. 
This difference in the proportion of course adjustments also emerged as a benefit of compatible 
trials (relative to equal priority), t(27) = 2.4, p = .022, d = 0.14, CI95% [0.02, 0.27], and a marginal cost 
of incompatible trials, t(27) = 1.9, p = .069, d = 0.14, CI95% [0.00, 0.31] (Fig. 2b, right). When 
prioritized WM content was compatible with action goals, movement precision was improved, but 
when the two were incompatible, movement trajectories were more roundabout and required 
adjustment to arrive at the target. 

Movement speeds. The compatibility of the cued WM item influenced movement initiation, F(2,54) 
= 8.3, p < .001,  = 0.008, and duration, F(2,54) = 5.0, p = .01,  = .005. There was a significant benefit 
of compatible cueing to movement initiation, t(27) = 3.3, p = .003, d = 0.20, CI95% [0.06, 0.39],  but no 
cost of incompatible cueing, t(27) = 1.2, p = .25, d = 0.06, CI95% [-0.06, 0.17] (Fig. 2c, left). 
Conversely, there was a significant cost of incompatible cueing to movement duration, t(27) = 2.4, 
p = .024, d = 0.10, CI95% [0.02, 0.21], but no benefit of compatible cueing, t(27) = 1.2, p = 0.24, d = 
0.07, CI95% [-0.04, 0.18]  (Fig. 2c, right). When prioritized WM content matched the goals of a motor 
task, movement initiation was speeded, but when WM matched a motor task distractor, the 
movement itself took longer. This compatibility effect was reflected across the entire RT 
distribution (SI Exp. 2 Results, Fig. S2), rather than being driven by a small number of trials at 
the edges of the distribution. 

Experiment 2 Discussion      

         While Experiment 1 manipulated the utility of WM content to the motor task, Experiment 
2 used retrocues among two WM samples to manipulate their relative value to the WM test. 
Retrocues modulate neural signatures of WM representations (LaRocque et al., 2014), as well as 
pupil responses to WM content (Zokaei et al., 2019), and they are theorized to transform WM 
content into an “output-driving” state (Myers, Stokes, et al., 2017). We therefore predicted that 
retrocues would modulate the behavioral impact of WM, even on a task with a distinct goal from 
the WM task. As predicted, when multiple items were maintained in WM, the prioritized item 
influenced ongoing manual actions (and was also remembered better). Like Experiment 1, 
however, movement speeds suggested that prioritized WM content ignited movements toward 
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WM-compatible locations, but resulted in circuitous and slower movement paths on incompatible 
trials. 

         Even in a task context where WM goals have no predictive relationship to action goals 
(unlike Experiment 1), activated WM content can influence actions. Because Experiment 2 
manipulated the relative priority status of two concurrently-maintained WM items, the findings 
suggest that the activation state of WM determines its sway over behavior. Theories of visual WM 
and attention have proposed that the activation status of a visual WM representation should 
determine whether it biases externally oriented visual attention (Olivers et al., 2011). The current 
findings suggest that this theoretical framework can be applied to understand the relationship 
between verbal WM and motor behavior as well. 

However, retrocues were 90% valid in Experiment 2, which could have encouraged multiple 
strategies, like dropping the uncued item from memory entirely, or actively maintaining both items 
in case the uncued one were tested. Therefore, the distinction in attentional state between cued and 
uncued WM items was still ambiguous. In order to test competing theories about whether or not 
uncued (i.e., “unattended”) WM content influences behavior, we devised an additional experiment 
in which uncued WM content always had to be maintained for later use. Experiment 3 will 
therefore provide a stronger manipulation of attentional prioritization within WM, so we can test 
the impact of attended versus “unattended” WM content and clarify the conditions that trigger WM 
biasing of action. 

 

Experiment 3: Double retrocue manipulation 

Methods         

Rationale. This third (and final) experiment combines elements of Experiments 1 and 2 to examine 
the contributions of several distinct modes of WM modulation and influence over actions. 
Experiment 1 manipulated the task-level predictive relationship between WM and motor goals, 
while Experiment 2 manipulated the item-level likelihood that a given stimulus would need to be 
remembered. Experiment 3 combines these two manipulations, in a between-subjects design, to 
examine whether they evoke distinct or overlapping influences on behavior. This experiment again 
used a trial-by-trial retrocue procedure, but the task-level predictability between WM and motor 
goals was also manipulated between groups. Experiment 3 further employed two 100% valid 
retrocue phases (Fig. 3a). Thus, the cued item was known with certainty to be the one that should 
be prioritized in the first phase, but the uncued item still had to be retained because it was likely 
to become relevant again in the second phase. This allowed us to additionally test whether an 
unprioritized item imparts any trace on concurrent behavior when it may become relevant later. 

Participants. Two new groups of participants were recruited using the same guidelines and IRB 
approval as Experiments 1 and 2. After 3 exclusions for below threshold accuracy (60%), 
Experiment 3 analyses included 30 (out of 30) participants in a “middle compatibility” group 
condition (12 male; mean age = 20.8 y, range = 18-30), and 29 (out of 32) participants in a “low 
compatibility” group condition (7 male; mean age = 20.9 y, range = 18-30). 
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Procedure. Like Experiment 2, two WM sample words were presented on each trial. After a delay 
of 1,500 ms, a retrocue (1, 2, or X) was displayed, but informative retrocues (1 or 2) were 100% 
valid indicators of which item would be probed, while an X indicated equal priority. After a second 
delay of 2,000 ms, participants completed the same motor task as in Experiments 1 and 2. Then 
the WM probe word appeared centrally until a response or a 3,000 ms deadline. On informative 
retrocue trials, participants compared the probe to the cued item. On equal priority trials, 
participants indicated whether the probe matched either item in WM. After an intermediate delay 
of 1,500 ms, the second trial phase began and participants were presented with another retrocue, 
motor task, and WM probe (Fig. 3a). Phase 2 followed the same structure and timing as Phase 1. 
After the second probe, a fixation cross appeared to indicate the start of a new trial. Participants 
completed one 8-trial practice block (with feedback), before completing 7 experimental blocks of 
24 trials (without feedback). 

         The retrocue conditions (1, 2, or X) were evenly distributed, counterbalanced within each 
block and across trial phases, and each equally likely in the first and second phases. Like 
Experiment 2, the compatibility conditions are labeled depending on which of the two WM items 
was cued. However, the ratio of compatible to incompatible trials across the experiment was 
manipulated between groups. One experimental group was administered a version where, like 
Experiment 2, compatible, incompatible, and equal priority trials occurred equally often. 
Therefore 1/3 of all trials were compatible, and any given trial was equally likely to be one of the 
three conditions. Because half of all informatively cued trials were compatible, this is most akin 
to the middle (50%) compatibility condition from Experiment 1 and is therefore referred to as the 
“middle compatibility” group. The other group was administered a lower compatibility task 
version, wherein only one quarter of informatively cued trials were compatible, and therefore only 
1/6 of all trials were compatible. This condition is referred to as the “low compatibility” group 
(Fig. 3b, right). Within a group, the proportion of compatible trials remained fixed across blocks. 
However, because incompatible trials could be categorized into subtypes that had an unequal 
distribution (described below), and the longer running time of the two-phase trial necessitated 
fewer trials per block, the incompatible subtypes could not be evenly divided for each block. 
Therefore, trial numbers of each condition were slightly variable across blocks and participants 
(+/-1 occurrence of each trial type in each block). In total, participants in the “middle 
compatibility” group completed 56 trials (+/- 7) per condition (compatible / incompatible / equal 
priority trials). Participants in the “low compatibility” group completed 28 compatible trials, 84 
incompatible, and 56 equal priority trials. 

         In addition to assessing performance on the compatibility conditions that were tested in 
Experiment 2, here the experiment was designed to also test the behavioral impact of deprioritized 
or “unattended” WM content. On trials where the cued item was incompatible, the uncued item 
was selected from one of the three remaining words and could therefore be either compatible or 
incompatible with the movement direction. The label “fully incompatible with WM” will be used 
to describe trials where both the cued and uncued WM items were incompatible (2/3 incompatible 
trials), while “compatible with uncued WM” will be used to described trials where the cued item 
was incompatible but the uncued item was compatible (1/3 incompatible trials). The label 
“compatible with active WM” will describe trials where the cued item is compatible and the 
uncued item is necessarily incompatible, as it is impossible to have more than one compatible item 
in this task design. If deprioritized WM items have any impact on behavior, then “compatible with 
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uncued WM” trials—when an unprioritized WM item is compatible with the movement 
direction—should be faster than “fully incompatible with WM” trials. 

Quality control criteria. As with Experiments 1 and 2, nonresponse trials for the WM probe, 
outliers for the motor response speed (> 3 s.d. from subject mean), and inaccurate motor task 
responses were excluded. Because Experiment 3 included two motor and WM phases, trimming 
criteria applied to both trial phases. In the “middle compatibility,” group, 6.1% of total trials were 
excluded as response speed outliers, 0.3% as nonresponse trials, and 3.6% as response errors, while 
in the “low compatibility” group, 5.9% were excluded as response speed outliers, 0.5% as 
nonresponses, and 4.6% as response errors. 

Analysis strategy: We first analyzed the compatibility conditions that were tested in Experiment 
2, to assess whether the basic compatibility effects replicated in this modified task design. We 
conducted 3 (trial compatibility: compatible, equal priority, incompatible) × 2 (task group: middle 
vs. low compatibility) repeated measures ANOVAs on all Phase 1 performance measures. Trial 
type was modeled as a within-subjects factor and task compatibility as a between-subjects factor. 
We decomposed any significant interactions with follow-up one-way ANOVAs of trial 
compatibility, separately for each task group. Like Experiment 2, we further decomposed any main 
effects by examining benefits and costs (relative to equal priority trials). This task employed a 
second retrocue and motor phase in order to ensure that uncued WM content was still remembered 
for the later test. Although we had no hypotheses about performance in Phase 2, we also ran a full 
model of the experiment that included task phase. However, the task phase factor showed no main 
effects or interactions with either compatibility or task group (SI Exp. 3 Results). We also 
examined whether Phase 1 item priority levels impacted Phase 2 motor behavior, categorizing 
trials based on the interaction between Phase 1 and Phase 2 attentional states (SI Exp. 3 Results, 
Fig. S4). There were no significant effects of changing priority status, therefore the primary 
analyses below focus on Phase 1 alone. 

         To test the impact of deprioritized WM content, we calculated difference scores from the 
equal priority condition for each compatibility sub-condition. We conducted 3 (trial compatibility: 
compatible with active WM, compatible with uncued WM item, fully incompatible with WM) × 
2 (task group: middle vs. low compatibility) repeated measures ANOVAs on these difference 
scores, for each movement speed measure. We also decomposed any significant interactions with 
follow-up one-way ANOVAs of trial compatibility, separately for each task group. One participant 
was excluded from this analysis because too few trials remained in the “compatible with uncued 
WM item” condition (the least frequent trial type) after removal of outliers and motor errors. 
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Fig. 3. Experiment 3 task design and results.  (a) Example trial sequence. For each task phase, the cued WM sample 
could be either compatible, uninformative (equal priority), or incompatible with the movement direction. (b) Green 
and orange arrows illustrate the hypothetical priority levels of the WM samples in this example trial (left). Task 
predictability conditions differed across two task groups (right). (c) Cost and benefits relative to equal priority trials, 
split by 3 compatibility subtypes (compatible with active WM / compatible with uncued WM / incompatible with WM) 
for each movement measure (initiation / duration) and task phase (Phase 1 / Phase 2). (d) Phase 1 movement initiation 
times split by experiment task group (columns) and WM priority status (compatible with active WM / compatible with 
equal priority WM / compatible with uncued WM). Error bars represent SEM. Gray dots are data points from individual 
participants. In (c), one data point was excluded for visualization, but was included in all statistics. 
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Results 

WM accuracy. WM probe accuracy was high in trial Phase 1 (92.4%), and showed an interaction 
between compatibility and task group, F(2,114) = 3.24, p = .04,  = .01, but no main effects 
(compatibility: F(2,114) = 1.05, p = .35,  = .003, task group: F(1,57) = 0.08, p = .78,  = .001). This 
interaction was likely driven by a trending effect of compatibility in the low compatibility task 
group, F(2,56) = 2.75, p = .07,  = .01, although there were no significant differences between any of 
the main trial types on Phase 1 WM accuracy. On trial Phase 2, WM probe accuracy was also high 
(93.1%), but with no main effect compatibility, F(2,114) = 0.4, p = .65,  = .001, task group, F(1,57) 
= 0.8, p = 0.4,  = .01, or interaction, F(2,114) = 0.1, p = .49  = .0001. Therefore, participants did retain 
both WM items for the second WM test. 

Movement accuracy. Movement accuracy was high in trial Phase 1 (95.2%), but with no main 
effects of cued compatibility, F(2,114) = 1.5, p = .23,  = .004, or task group, F(1,57) = 0.6, p = .45,  = 
.008, nor an interaction, F(2,114) = 1.6, p = .21,  = .005. Accuracy was slightly worse in Phase 2 
(95.8%), but was unaffected by cued compatibility, F(2,114) = 0.5, p = .59,  = .002, or task group, 
F(2,114) = 1.9, p = .17,  = .03, and with no interaction, F(2,114) = 2.2, p = .11,  = .007. Because of a 
programming error, cursor trajectory data are missing for Experiment 3, and the remaining 
analyses focus on movement speeds. 

Movement speeds. There were no main effects of task group for either movement initiation, F(1,57) 
= 0.2, p = .67,  = .002, or duration, F(1,57) = 1.0, p = .31,  = .02, indicating that performance was 
comparable across groups. Replicating Experiment 2, however, there were strong effects of 
compatibility on both movement initiation and duration, which were reflected across the entire 
RT distribution for initiation (SI Exp. 3 Results, Fig. S2). Movement initiation displayed a main 
effect of compatibility, F(2,114) = 13.6, p = < .001,  = .02, as well as an interaction with task group 
F(2,114) = 4.4, p = .01,  = .007 (Fig. S3). Follow-up one-way ANOVAs indicated that the 
compatibility effect was only present in the middle compatibility group, F(2,58) = 13.0, p = < .001,  
= .04, but not the low compatibility group, F(2,58) = 2.1, p = .13,  = .006. In the middle compatibility 
group, there was a significant benefit of compatible cueing to movement initiation, t(28) = 3.9, p < 
.001, d = 0.49, CI95% [0.23, 0.73], but no cost of incompatible cueing, t(28) = 1.13, p = .27, d = 0.09, 
CI95% [-0.07, 0.24], much like Experiment 2. 

Likewise, movement duration displayed a main effect of compatibility, F(2,114) = 5.1, p = .008,  = 
0.007, as well as an interaction with task group, F(2,114) = 4.7, p = .01,  = .007. follow-up one-way 
ANOVAs indicated that the compatibility effect was only present in the middle compatibility 
group, F(2,58) = 10.1, p < .001,  = .02, but not the low compatibility group, F(2,58) = 1.17, p = .32,  = 
.004. Also like Experiment 2, there was no significant benefit of compatible cueing to movement 
duration, t(28) = 0.9, p = .37, d = 0.09, CI95% [0.12, 0.31] but there was a cost of incompatible cueing, 
t(28) = 3.6, p = .001, d = 0.28, CI95% [0.11, 0.51], in the middle compatibility group (Fig. S3). 
Therefore, for the middle compatibility group, the dissociable pattern of benefits and costs between 
movement initiation and duration replicated Experiment 2. However, these benefits and costs 
disappeared in the low compatibility task context, when WM content was unlikely to aid motor 
performance (1/6 of all trials). 
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         These compatibility effects also persisted when the “total” compatibility of the WM sample 
set was held constant. That is, we repeated these ANOVAs including only trials where the WM 
sample contained at least one compatible item (i.e., incompatible trials where the uncued item was 
compatible, and equal priority trials where one of the 2 items was compatible). There were still 
main effects of compatibility on movement initiation, F(2,114) = 4.0, p = .02,  = .01, and movement 
duration, F(2,114) = 3.1, p = .05,  = .007 (SI Exp. 3 Results). Therefore, given trials that included 
both a compatible and an incompatible item, movement speeds were driven by which of the two 
were prioritized (Fig. 3d). 

Additional analyses of each compatibility sub-condition provided further insight into the costs and 
benefits of WM content at different levels of attentional priority. We analyzed movement speed 
difference scores from equal priority trials as a function of whether (1) the cued WM item was 
compatible, (2) the uncued WM item was compatible, or (3) both WM items were incompatible 
(Fig. 3b). For movement initiation, there was a main effect of trial compatibility, F(2,112) = 9.4, p 
< .001,  = .06, as well as an interaction between compatibility and task group, F(2,112) = 3.0, p = .05,  
= .02 (Fig. 3c, left). Follow-up tests showed that, in only the middle compatibility task group, there 
was a strong initiation benefit when the hand movement direction was compatible with the active 
(cued) WM item, t(28) = 4.0, p < .001, d = 0.51, CI95% [0.24, 0.77]. There was also a marginal benefit 
compared to equal priority trials when the movement was compatible with the uncued WM item, 
t(28) = 0.3, p = .051, d = 0.28, CI95% [0.05, 0.55], and no effect when both WM items were 
incompatible, t(28) = 2.0, p = .78, d = 0.05. Although there was a small benefit of a compatible 
uncued item (compared to equal priority), however, this condition did not differ from fully 
incompatible trials, t(28) = 1.9, p = .07, d = 0.26, CI95% [0.03, 0.53]. Moreover, movement initiation 
was still significantly faster when the cued WM item was compatible, compared to the uncued 
item, in the middle compatibility group alone, t(28) = 2.0, p = .05, d = 0.23, CI95% [0.05, 0.38], and 
combined across both task groups,  t(58) = 2.6, p = .01, d = 0.21, CI95% [-0.01, 0.48] (Fig. 3d). 

To further probe a possible impact of relatively unattended WM content, we also tested whether 
equal priority trial performance varied according to the compatibility of the sample set. Indeed, 
movement initiation was faster on trials when the equal priority WM set included one compatible 
item versus two incompatible WM items, although neither was cued as most relevant – both for 
the middle compatibility group, t(29) = 2.8, p = .009, d = 0.24, CI95% [0.06, 0.40], and marginally for 
the low compatibility group, t(28) = 2.0, p = .06, d = 0.23, CI95% [-0.01, 0.50]. 

Finally, movement duration also displayed a main effect of compatibility when examining these 
trial sub-type difference scores, F(2,112) = 5.3, p = .006,  = .03, as well as an interaction between 
compatibility and task group, F(2,112) = 9.4, p < .001,  = .06 (Fig. 3c, right). As with the earlier 
experiments and analyses, in the middle compatibility group there was no benefit (relative to equal 
priority trials) when the movement direction was compatible with the active (cued) WM item, t(28) 
= 0.8, p = .43, d = 0.08, CI95% [-0.03, 0.40]. However, there were costs when the WM content was 
fully incompatible with the movement direction, t(28) = 3.3, p = .003, d = 0.29, CI95% [0.11, 0.56] as 
well as when the movement was compatible with the uncued WM item (but the cued item was still 
incompatible) t(28) = 2.7, p = 0.01, d = 0.28, CI95% [0.09, 0.55]. In the case of movement duration, the 
unattended compatible content did not appear to impart any benefit. Again, these costs of 
incompatible cuing were eliminated in the low compatibility task group, when WM content was 
unlikely to aid motor performance on average. 
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Experiment 3 Discussion 

         Like Experiment 2, compatible WM content facilitated movement initiation while 
incompatible content slowed the motion itself (relative to equal priority trials). Here, we also show 
that deprioritized WM content can modestly influence action in certain contexts. Movement 
initiation was faster when there was a compatible item in the WM set (vs. two incompatible items), 
even if that item was not cued as relevant (either uncued or equal priority). Rather than an all-or-
none influence of attentional prioritization, remembered items at lower priority may be maintained 
in a state that still influences behavior, but to a lesser extent than fully prioritized WM content. 
However, movement duration times were unaffected by deprioritized content, suggesting that 
accessory WM items may influence decision processes to start actions, but only prioritized content 
influences execution of the action itself. 

Experiment 3 further supports the hypothesis that WM activation status modulates its impact on 
action. When two items were maintained, the attended one preferentially drove ongoing behavior. 
Item-level WM priority status also interacted with the task-level WM predictive utility to 
movement goals. When WM goals had a neutral relationship to motor goals (middle compatibility 
group, 1/3 compatible trials total), item-level activation status of WM content exerted a strong 
influence over behavior. However, in a task context when WM content was unlikely to help motor 
behavior (low compatibility group, 1/6 compatible trials total), both costs and benefits from WM 
content were eliminated. This suggests that the temporally-extended, higher-order task goals may 
take precedence and control the impact of phasic item-level attentional modulation.    
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General Discussion 

         Here, we examined how transient WM representations shape ongoing actions. We tested 
whether WM content influences movements executed during maintenance, and we probed the 
flexibility of that influence by manipulating the task-relevance of WM to either motor or 
mnemonic goals. Movements were less accurate, less precise, initiated later, and completed more 
slowly when they were incompatible with WM content. Across all three experiments, motor 
benefits of compatible WM content manifested in accelerated decision processes, while costs of 
incompatible content manifested in imprecise and time-consuming actions (Table 1). This effect 
on movement speeds depended on the priority level of WM representations, and was enhanced or 
diminished when WM content was predictably helpful or harmful to motor behavior, respectively. 
Visual WM content has long been shown to inadvertently influence perception and attention (Soto 
et al., 2008), and these findings now demonstrate that verbal WM exerts similar influences on 
motor behavior. However, rather than a monolithic effect on movement, WM content biases 
distinct stages of action execution in dissociable ways. 

 Theories of visual WM and attention have proposed that the ‘activation state’ of visual WM 
content will determine whether it incidentally biases perceptual and attentional processing (Olivers 
et al., 2011). A more recent proposal further distinguishes between neural and “functional” 
activation states, to suggest that the influence of WM will depend on its intended future use (Nobre 
& Stokes, 2019). The current results suggest that these frameworks can be applied to understand 
the incidental influence of verbal WM content on manual actions. These results support and 
augment theoretical conceptualizations of WM as intention or preparation for future actions 
(Fuster, 1990, 2004; Fuster & Alexander, 1971; Postle, 2006; Theeuwes et al., 2009). Here, verbal 
WM biases actions even when it is irrelevant (or detrimental) to the current task. This translation 
of WM content into (sometimes incorrect) actions confirms predictions of action control made by 
event coding theories, which propose a potentially automatic relationship between action selection 
and execution (Hommel, 2009). The present study also advances recent descriptions of a reciprocal 
influence between visual WM and planned motor behavior (van Ede, 2020), which can be observed 
in oculomotor (Hanning et al., 2016; Ohl & Rolfs, 2017; van Ede, Chekroud, & Nobre, 2019) and 
pointing movements (Heuer, Crawford, & Schubo, 2017). Here, we show that this framework may 
additionally extend to the influence between verbal WM and unplanned actions. Moreover, the 
task and trial-level modulations that we observed here also fit predictions from an intention-based 
reflexivity theory—that WM information in the focus of attention should exert the greatest 
influence over actions (Meiran et al., 2012). Therefore, several complementary theories of 
attentional and action control may be informed by the current findings. 

While many studies have demonstrated the privileged status of attended WM content, the fate of 
unattended content remains debated (Myers, Chekroud, Stokes, & Nobre, 2017; Schneegans & 
Bays, 2017). Yet, unattended WM content evokes detectable neural traces in higher cortical 
regions (Christophel, Iamshchinina, Yan, Allefeld, & Haynes, 2018). Here, unprioritized (and 
presumably less active) WM content still modestly influenced movement initiation, suggesting 
that these representations may be sufficient to guide WM-based decisions. However, the results 
do show a graded influence of prioritization over WM content: uncued WM content influenced 
only movement initiation (not duration) and to a lesser extent than prioritized content. The 
observed distinction between movement initiation and duration also supports a theoretical 



67 

mechanism whereby prioritization reduces the time to access a given representation in WM, as 
suggested by drift diffusion modeling (Shepherdson, Oberauer, & Souza, 2017). That is, the graded 
effect of WM priority may be specific to movement initiation time because it influences decision 
processes involved in triggering a movement, rather than the mechanics that influence the duration 
of the movement itself. 

         The current data show that the WM-action bias can be modulated by modulating item 
representations, but superordinate task goals can also influence that item-level bias. Earlier 
theories of procedural WM suggest that executive systems mediate the interaction between 
immediate goals and a task set (Oberauer, 2009, 2010). This is consistent with the current finding 
that higher-order WM task context determines the degree to which WM influences motor behavior. 
WM item selection (or output gating) may work in tandem with task-level control functions that 
segregate competing demands in complex tasks (Badre & Nee, 2018). That is, WM goals may be 
prioritized over motor goals when WM is likely to aid motor performance, biasing motor decision-
making toward WM (e.g., Experiment 1, high compatibility condition). Moreover, when WM and 
motor goals are equally weighted and may compete (e.g., a middle compatibility condition), item-
level attentional modulation may tip the balance in favor of prioritized WM content. When WM 
is unlikely to aid motor behavior across the task, however, representations for WM and motor rules 
may be well-segregated (Verbruggen et al., 2018), minimizing leakage of WM content into action 
execution (e.g., Experiment 3, low compatibility condition). These findings may therefore extend 
the application of output gating and hierarchical control models to complex scenarios where WM 
content can trigger incorrect actions.           

         It remains unknown at which representational level these interactions occur, or whether the 
WM compatibility effect generalizes between content with less explicit overlap. In an adaptive 
system, it seems most likely that this interplay would in fact depend on the content domains being 
sufficiently related. Likewise, classic work on interference between WM and reading demonstrates 
that verbal and spatial recall are processed in a modality-specific manner, with the highest levels 
of interference when competing information is presented in the same domain (Brooks, 1968).  The 
present results and related work therefore point to WM-motor interactions that may occur at an 
abstract, executive control level. For example, in a multi-component model of working memory, 
the spatially-focused visuospatial sketchpad and the verbally-focused phonological loop only have 
direct connections through a central executive system (Baddeley & Logie, 1999; Repovs & 
Baddeley, 2006). It may also be the case that verbal WM content for directions (e.g., ‘left’) 
generates neural signals similar to those for actions themselves, for instance, via priming (Mollo, 
Pulvermuller, & Hauk, 2016), or that the demand here to transform the symbolic motor cue into a 
direction resulted in an interfering verbal representation. Alternatively, participants here may have 
recoded verbal directions into visuo-spatial representations. However, the WM response in this 
task had no directional content, and used a different effector from the manual task, so we would 
not expect the WM response preparation to influence the motor task response. Yet, a visuo-spatial 
representation may still have been the most efficient or preferred maintenance strategy. So, having 
established some of the boundaries of the interplay between verbal WM and motor behavior, 
additional work should tease apart where those boundaries manifest representationally. 

         While it may seem intuitive that more task relevant WM content would exert the greatest 
impact on behavior, the compatibility of WM content to motor goals was typically unknown or 
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unlikely in most cases across these three Experiments. This was a simple WM task, performed 
with high accuracy, which should engage relatively modest attentional demands. Yet WM content 
imparted a dramatic influence on the course and speed of hand movements, producing a seemingly 
inadvertent impact over ongoing behavior. The modulation of this WM bias by task context, 
however, highlights the sensitivity of the system to temporally-extended regularities of the 
environment. Compatibility effects were consistently stronger when WM was most likely to help 
performance (on either the motor or WM task). Collectively, these results support the idea that 
occasional glitches in motor output stem from an adaptive WM system that adjusts to the 
correspondence between WM and other concurrent goals. 
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Chapter 4: Tertiary sulcal morphology links prefrontal anatomy and function  

 
 
“... Our knowledge of corticocortical connectivity in the human, however, is still lagging behind. 
Given the ever more pressing evidence from brain imaging studies, which demonstrates the widely 
distributed and variable character of cortical networks, makes it imperative to further scrutinize 
corticocortical connectivity in the human in order to better understand the complexities of 
cognition.”  
 

- Fuster, The Prefrontal Cortex (Ch. 2) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This chapter contains previously published material from the following work, and permissions 
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can also be found at the following reference:      
    
Miller, J.A., Voorhies, W.I., Lurie, D.J., D'Esposito, M., Weiner, K.S. Overlooked tertiary sulci serve as a 

meso-scale link between microstructural and functional properties of human lateral prefrontal cortex. 
Journal of Neuroscience (2021) https://doi.org/10.1523/JNEUROSCI.2362-20.2021  
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Abstract  

 
Understanding the relationship between neuroanatomy and function in portions of cortex that 
perform functions largely specific to humans such as lateral prefrontal cortex (LPFC) is of major 
interest in systems and cognitive neuroscience. When considering neuroanatomical-functional 
relationships in LPFC, shallow indentations in cortex known as tertiary sulci have been largely 
unexplored. Here, by implementing a multi-modal approach and manually defining 936 
neuroanatomical structures in 72 hemispheres (in both males and females), we show that a subset 
of these overlooked tertiary sulci serve as a meso-scale link between microstructural (myelin 
content) and functional (network connectivity) properties of human LPFC in individual 
participants. For example, the posterior middle frontal sulcus (pmfs) is a tertiary sulcus with three 
components that differ in their myelin content, resting state connectivity profiles, and engagement 
across meta-analyses of 83 cognitive tasks. Further, generating microstructural profiles of myelin 
content across cortical depths for each pmfs component and the surrounding middle frontal gyrus 
(MFG) shows that both gyral and sulcal components of the MFG have greater myelin content in 
deeper compared to superficial layers and that the myelin content in superficial layers of the gyral 
components is greater than sulcal components. These findings support a classic, yet largely 
unconsidered theory that tertiary sulci may serve as landmarks in association cortices, as well as a 
modern cognitive neuroscience theory proposing a functional hierarchy in LPFC. As there is a 
growing need for computational tools that automatically define tertiary sulci throughout cortex, 
we share pmfs probabilistic sulcal maps with the field. 
 
 

Significance statement  
 
Lateral prefrontal cortex (LPFC) is critical for functions that are thought to be specific to humans 
compared to other mammals. However, relationships between fine-scale neuroanatomical 
structures largely specific to hominoid cortex and functional properties of LPFC remain elusive. 
Here, we show that these structures, which have been largely unexplored throughout history, 
surprisingly serve as markers for anatomical and functional organization in human LPFC. These 
findings have theoretical, methodological, developmental, and evolutionary implications for 
improved understanding of neuroanatomical-functional relationships not only in LPFC, but also 
in association cortices more broadly. Finally, these findings ignite new questions regarding how 
morphological features of these neglected neuroanatomical structures contribute to functions of 
association cortices that are critical for human-specific aspects of cognition. 
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Introduction 

Understanding how anatomical structures of the brain support functional gradients and 
networks that perform computations for human-specific aspects of cognition is a major goal in 
systems and cognitive neuroscience. Of the many anatomical structures to target, lateral prefrontal 
cortex (LPFC) is expanded in the human brain relative to non-human primate species commonly 
used in neuroscience research, such as rhesus macaques (Semendeferi et al., 2002; Donahue et al., 
2018; Barrett et al., 2020), and is particularly important given its central role in cognitive control 
and goal-directed behavior (Miller and Cohen, 2001; Szczepanski and Knight, 2014). Major 
progress has been made in understanding the relationship between the functional organization and 
the large-scale cortical anatomy of human LPFC. For example, previous findings support a 
hierarchical functional gradient organized along the rostral-caudal anatomical dimension of LPFC 
spanning several centimeters (Badre and D'Esposito, 2009; Nee and D’Esposito, 2016; Demirtas 
et al., 2019). Beyond this large-scale organization of human LPFC, it is largely unknown if more 
fine-grained structural-functional relationships exist. Thus, to begin to fill this gap in knowledge, 
we sought to answer the following question in the present study: Do individual differences in fine-
grained morphological features of LPFC shed light on microstructural and functional properties of 
LPFC? 

An important morphological feature of cortex is the patterning of the indentations, or sulci. 
Indeed, 60-70% of the cortex is buried in sulci and some sulci serve as landmarks that identify 
different cortical areas, especially in primary sensory cortices (Van Essen and Dierker, 2007; Zilles 
et al., 2013). In these cases, merely identifying a sulcus provides functional insight (Hinds et al., 
2008). Despite this widely replicated relationship between sulcal morphology and functional 
representations in primary sensory cortices, much less is known regarding the predictability 
between shallow, tertiary sulci and functional representations in association cortex, especially 
LPFC. A classic theory proposed by Sanides (1964) hypothesized that the late emergence and 
protracted development of tertiary sulci may co-occur with microstructural and functional features 
of association cortices, along with cognitive functions such as sustained attention and “active 
thinking” (Sanides, 1964) that also develop fully after adolescence (Fisher, 2019).  

However, at least two factors have prevented the examination of tertiary sulci relative to 
anatomical and functional organization in human LPFC. First, tertiary sulci are presently excluded 
from nearly all published neuroanatomical atlases because classic anatomists could not 
discriminate tertiary sulci from indentations produced by veins and arteries on the outer surface of 
the cerebrum in post-mortem tissue, which is considered the gold standard of anatomical research 
(Weiner et al., 2018). Consequently, tertiary sulci within the posterior middle frontal gyrus (MFG) 
were either undefined in classic atlases or conflated with more anterior structures (Figure 1; 
(Miller et al., 2020a)). Second, the majority of human functional magnetic resonance imaging 
(MRI) studies of LPFC implement group analyses on average brain templates. As shown in Figure 
1, averaging cortical surfaces together causes tertiary sulci in LPFC to disappear, especially within 
the posterior MFG. 
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Figure 1. A synopsis of ambiguity regarding sulcal definitions in the human posterior middle frontal gyrus over 
the last 130 years. Classic and modern schematics of the sulcal patterning in human lateral prefrontal cortex (LPFC). 
(a) Sulci in the middle frontal gyrus are labeled in yellow on classic and modern schematics of human LPFC. 
Historically, anatomists had previously either (1) not labeled the sulci within the location of the modern pmfs (first 
two images; arrow indicates depicted, but unlabeled sulcal components) (Eberstaller, 1890; Connolly, 1950) or 2) 
included these sulci in the definition of the posterior portion of the frontomarginal sulcus (third image; (Rajkowska 
and Goldman-Rakic, 1995)). The most recent schematic (fourth image, adapted from Petrides, 2019) proposes that 
the pmfs is separate from the intermediate frontal sulcus (imfs-h and imfs-v, synonymous with the frontomarginal 
sulcus) and consists of three distinct components: posterior (pmfs-p), intermediate (pmfs-i), and anterior (pmfs-a). (b) 
Three individually labeled left hemispheres with the pmfs outlined in white. The pmfs is prominent within individual 
participants (Extended Data Figure 2-1 for all participants). The superior and inferior frontal sulci (sfs, ifs) are labeled 
for reference above and below the middle frontal gyrus, respectively. (c) Average cortical surfaces show much smaller 
pmfs components compared to individual participants. As more participants are averaged together into templates, the 
pmfs disappears almost entirely, which is inconsistent with their prominence in individual hemispheres. 
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Here, we implemented a multi-modal approach demonstrating that identifying individual 
sulci in LPFC reveals that the posterior middle frontal sulcus (pmfs) serves as a meso-scale link 
between microstructural (myelin content) and functional (network connectivity) properties of 
human LPFC in individual participants. Specifically, after manually labeling LPFC tertiary sulci 
in 72 hemispheres based on a recently proposed labeling scheme (Petrides and Pandya, 2012; 
Petrides, 2019), we found that three components of the pmfs are dissociable based on myelin 
content, resting state functional connectivity profiles, and cognitive task activations. Moreover, 
the pmfs shows a distinct microstructural profile of myelin content across cortical depths from the 
surrounding MFG and distinct functional activations from the intermediate frontal sulcus (imfs). 
Together, these results not only provide important evidence that individual differences in LPFC 
sulcal patterning reflect meaningful differences in microstructural and functional properties, but 
also suggest that the pmfs serves as a bridge to Sanides’ classic hypothesis. 

 
 Materials and Methods 

  
In the sections below, we describe the data used and the analysis methods implemented in three 
separate sections: 1) the general approach and a description of the multi-modal datasets that were 
used, 2) a detailed description of the methodology used for sulcal labeling within individual 
participants, and 3) the calculation of anatomical and functional metrics. 
  
General approach 
We sought to characterize sulcal morphology at the individual level in the LPFC of the human 
brain. To implement this process, we manually defined sulci following the most recent and 
comprehensive proposed labeling of sulci in the frontal lobe (Petrides and Pandya, 2012; Petrides, 
2019). As in our prior work (Weiner et al., 2014; Weiner et al., 2018), all sulci were defined in 
native space cortical surfaces and individual hemispheres, which enables the most accurate 
definition of tertiary sulci within in vivo MRI data. 
  
Multi-modal HCP dataset 
We analyzed a subset of the multi-modal MRI data available for individual participants from the 
Human Connectome Project (HCP). We began with the first 5 numerically listed HCP participants 
and then randomly selected 31 additional human participants from the HCP for a total of 36 
individuals (17 female, 19 male, age range 22-36 years). 
Anatomical T1-weighted (T1w) MRI scans (0.7 mm voxel resolution) were obtained in native space 
from the HCP database, along with outputs from the FreeSurfer pipeline slightly modified by the 
HCP (Dale et al., 1999; Fischl et al., 1999a; Glasser et al., 2013). Maps of the ratio of T1-weighted 
and T2-weighted scans, which is a measure of tissue contrast enhancement related to myelin 
content, were downloaded as part of the HCP ‘Structural Extended’ release. All additional 
anatomical metrics, which are detailed in the next section, were calculated on the full-resolution, 
native FreeSurfer (https://surfer.nmr.mgh.harvard.edu/) meshes (Dale et al., 1999; Fischl et al., 
1999a; Fischl et al., 1999b). 
  
Anatomical labeling and metrics 
Manual sulcal labeling 
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Guided by a recent comprehensive proposal for labeling sulci in LPFC (Petrides, 2019), each 
sulcus was manually defined within each individual hemisphere on the FreeSurfer inflated mesh 
with tksurfer. The curvature metric in FreeSurfer distinguished the boundaries between sulcal and 
gyral components, and manual lines were drawn to separate sulcal components based upon the 
proposal by Petrides and colleagues (Amiez and Petrides, 2007; Petrides and Pandya, 2012; 
Petrides, 2019; Germann and Petrides, 2020), as well as the appearance of sulci across the inflated, 
pial, and smoothwm surfaces. We maintained the number of components for all tertiary sulci (e.g., 
the three components of the posterior middle frontal sulcus - pmfs) based on the proposal by 
Petrides and colleagues to test if each of these sulcal components could be defined in a relatively 
large sample size (N=72) of in vivo hemispheres. The labels were generated using a two-tiered 
procedure. The labels were first defined manually by J.M. and W.V. and then finalized by a 
neuroanatomist (K.S.W.). All anatomical labels for a given hemisphere were fully defined before 
any morphological or functional analysis of the sulcal labels was performed. The superior, inferior, 
posterior, and anterior boundaries of our cortical expanse of interest were the following sulci, 
respectively: (1) the anterior and posterior components of the superior frontal sulcus, (2) the 
inferior frontal sulcus, (3) the central sulcus, and (4) the horizontal (imfs-h) and vertical (imfs-v) 
intermediate frontal sulci. In each hemisphere, we first labeled the large primary sulci such as the 
central sulcus before labeling the secondary (e.g. sfs, ifs, imfs) sulci, and then we identified the 
tertiary sulcal components of the pmfs. Primary, secondary, and tertiary labels refer to the time in 
which the sulci emerge in gestation (Sanides, 1964; Chi et al., 1977; Welker, 1990; Armstrong et 
al., 1995). An example hemisphere with every sulcus labeled within these boundaries is shown in 
Figure 2a, and the pmfs sulcal components are plotted on each hemisphere in Extended Data 
Figure 2-1. 
  
Quantification of sulcal depth and surface area 
Sulcal depth was calculated from the native meshes generated by the FreeSurfer HCP pipeline. 
Raw values for sulcal depth (mm) were calculated from the sulcal fundus to the smoothed outer 
pial surface using a custom-modified version of a recently developed algorithm for robust 
morphological statistics building on the FreeSurfer pipeline (Madan, 2019). Surface area (mm2) 
was generated for each sulcus through the mris_anatomical_stats function in FreeSurfer (Dale et 
al., 1999; Fischl et al., 1999a). We focused on sulcal depth as it is the main measurement that is 
used to discriminate tertiary sulci from primary and secondary sulci. Specifically, primary sulci 
are deepest, while tertiary sulci are shallowest, and secondary sulci are in between (Sanides, 1964; 
Chi et al., 1977; Welker, 1990; Armstrong et al., 1995). We also included surface area as tertiary 
sulci typically also have a reduced surface area compared to primary and secondary sulci. 
  
Calculating T1w/T2w myelin index along an anterior-posterior dimension in LPFC 
In order to test if there is a relationship between any of our sulci of interest and myelin content, we 
used an in vivo proxy of myelination: the T1w/T2w maps for each individual hemisphere (Glasser 
and Van Essen, 2011; Shams et al., 2019). To generate the T1w/T2w maps, two T1- and T2-
weighted images from each participant were registered together and averaged as part of the HCP 
processing pipeline (Glasser et al., 2013). The averaging helps to reduce motion-related effects or 
blurring. Additionally (and as described in Glasser et al., 2013), the T1w/T2w images were bias-
corrected for distortion effects with field maps. We averaged the T1w/T2w value across each vertex 
for each sulcus in order to test if the pmfs sulcal components are separable based on myelin content 
(Figure 3). We further sought to characterize the relationship between morphology and myelin by 
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determining if there was an anterior-posterior gradient of myelination across individual 
hemispheres. To do so, we first calculated the minimum geodesic distance of each vertex from the 
central sulcus. Geodesic distance was calculated on the fiducial surface using algorithms in the 
pycortex package (Gao et al., 2015). Then, we averaged across the vertices within each sulcus and 
tested for a linear relationship between average distance from the central sulcus and myelin 
content. To take advantage of each participant’s individual data, we built a mixed linear model 
(random intercepts) in the lme4 R package, using sulci and hemisphere as explanatory variables to 
correlate with average myelin content (Figure 3). 
  
Sampling T1w/T2w myelin index across cortical depths 

In order to investigate the microstructural profile of the pmfs across cortical layers, we generated 
nine surfaces from the outermost (pial) to the innermost (white matter) layers in all of the manually 
labeled hemispheres using an equivolumetric approach (Waehnert et al., 2014). We implemented 
the equivolume surface algorithm spanning nine cortical depths with the surfacetools Python 
package that builds on top of FreeSurfer (Dale et al., 1999) outputs: 
https://github.com/kwagstyl/surface_tools. The high-resolution T1w/T2w volumetric data in each 
HCP participant’s native anatomical space were then sampled onto each equivolume surface using 
the FreeSurfer mri_vol2surf function to obtain a value of T1w/T2w at each cortical depth. The 
stability of depth profiles of T1w/T2w values extracted from individual regions was shown to be 
highest in the same HCP dataset when using a solution of 14 equivolume surfaces, with stability 
plateauing when using nine or more equivolume surfaces (Paquola et al., 2019). We compared the 
mean T1w/T2w value across depths for each participant in the manually defined pmfs components 
and the surrounding middle frontal gyrus (as defined by FreeSurfer parcellations (Destrieux et al., 
2010), but with the pmfs components removed). We then conducted a repeated-measures ANOVA 
followed by post-hoc t-tests at each depth to test for differences in myelin content between the 
pmfs components and the MFG (Figure 5). Tests across each of the nine cortical depths were 
corrected for multiple comparisons at a familywise error (FWE) threshold of p = 0.05/9. 
  
Cross-validation of sulcal location 
In order to quantify the ability to predict the location of each sulcus across participants, we 
registered all sulcal labels to a common template surface (fsaverage) using cortex-based alignment 
(Fischl et al., 1999b). Similarity between each transformed individual label and the labels defined 
on fsaverage was calculated via the DICE coefficient, where X and Y are each label: 
  
The cortex-based alignment algorithm aligns the surfaces based on sulcal depth and curvature 
metrics. We use the central sulcus as a proxy noise ceiling measurement for DICE coefficient 
values from other frontal sulci because it is a large and deep sulcus and is used in the surface 
registration algorithm that aligns cortical surfaces across participants (Fischl et al., 1999b). 
         Sulcal probability maps were calculated to describe the vertices with the highest alignment 
across participants for a given sulcus. A map was generated for each sulcus by calculating, at each 
vertex in the fsaverage hemisphere, the number of participants with that vertex labeled as the given 
sulcus, divided by the total number of participants. In order to avoid overlap among sulci, we then 
constrained the probability maps into maximum probability maps (MPMs) by only including 
vertices where (1) greater than 33% of participants included the given sulcal label and (2) the 
sulcus with the highest value of participant overlap was assigned to a given vertex. In a leave-one-
participant out cross-validation procedure, we generated probability maps from n = 35 participants 
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and registered the probability map to the held-out participant’s native cortical surface. This 
provided a measure of sulcal variability and prediction accuracy (Figure 8). This procedure also 
allows the identification of the pmfs sulcal components within held-out individual participants, 
reducing the extent of manual labeling necessary to identify this structure in future studies. Finally, 
the MPMs were used when analyzing meta-analytical functional data (described in the section 
Cognitive Component Modeling) and whole brain population receptive field data (Figure 7). The 
MPMs and code for alignment to new participants will be available on OSF with the publication 
of this paper. 
  
Functional metrics 
Resting-state network connectivity fingerprints 
In order to test if the three pmfs sulcal components were functionally distinct from one another, 
we calculated and compared functional connectivity network fingerprints for each sulcus. Resting-
state network parcellations for each individual participant were used from Kong et al. (2018), who 
generated individual network definitions by applying a hierarchical Bayesian network algorithm 
to produce maps for each of 17-networks (Yeo et al., 2011) in individual HCP participants. These 
data were calculated in the template HCP fs_LR 32k space. We resampled the network profiles for 
each participant onto the fsaverage cortical surface and, then, to each native surface using CBIG 
tools (https://github.com/ThomasYeoLab/CBIG). We then calculated the overlap of each pmfs 
sulcus in each participant with each of the 17 resting-state networks. We also separated the 
components of the pmfs and tested whether they showed similar or different network connectivity 
fingerprints using a 3-way repeated-measures ANOVA (sulcal component x network x 
hemisphere). Variability across individuals in the network profiles for each pmfs component was 
calculated by generating the Wasserstein metric (Earth Mover’s Distance) between the resting-
state network overlap values for each unique pair of participants (Figure 5b). 
  
Cognitive component modeling 
To further examine if the pmfs-p, pmfs-i, and pmfs-a are functionally distinct, we quantified the 
overlap between the maximum probability maps (MPMs) of each sulcal component and meta-
analytic fMRI data from hundreds of experiments aligned to the fsaverage surface. Specifically, 
we quantitatively related the sulcal MPMs to vertex-wise maps for 14 cognitive components, 
which quantify how each vertex is recruited in a given set of cognitive operations across tasks and 
experiments (Yeo et al., 2015). We used a Bayesian method of expectation maximization to 
determine the combination of cognitive components that best fit each sulcal MPM. This resulted 
in a set of probabilities for each cognitive component for each sulcal map. We tested whether all 
sulci and the three components of the pmfs were distinguishable based upon these cognitive 
component loadings from a repeated-measures ANOVA (Figure 6). 
  
Retinotopic response mapping 
To determine if there was any correspondence between the manually labeled LPFC sulci and 
retinotopic representations, we analyzed a recent population receptive field mapping dataset 
(Benson et al., 2018). As these data were only available in a template (fsaverage) space, we used 
the predicted sulcal locations from probabilistic maps (as used in the cognitive components 
analysis) for these analyses (Figure 7). For each sulcus, we extracted the mean R2 value (the 
percentage of variance in each vertex explained by the population receptive field model) across 
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participants for vertices that showed meaningful retinotopic responses (thresholded at R2 > 10%, 
as in (Mackey et al., 2017)). 
  
Statistical methods 
All repeated measures ANOVAs (including sphericity correction) and post-hoc t-tests were 
performed with the afex and emmeans R packages, imported into Python via rpy2. For each 
repeated measures ANOVA, cortical hemisphere and sulcus were used as within-subject factors. 
Effect sizes for each main effect and interaction were calculated and reported with the generalized 
eta-squared metric (Fritz et al., 2012). Mixed linear models were implemented in the lme4 R 
package. Cortical surface files were loaded in and operated on in Python using the nilearn software: 
https://nilearn.github.io 
  
 
  

Results 

Before conducting our multimodal examination relating morphological features of tertiary sulci to 
microstructural and functional properties of LPFC, we first had to confront the contradictory nature 
of historic and modern definitions of sulci within the middle frontal gyrus (MFG). For example, 
sulcal definitions within the MFG vary in a) their nomenclature, b) the number of sulcal 
components depicted or acknowledged in schematics, c) the omission or inclusion of sulci within 
the posterior MFG, and d) the actual empirical data that is included to support the illustration of 
the sulcal patterning (Figure 1). To ameliorate these concerns and to either empirically support or 
to refute the generality of sulcal definitions within the posterior MFG, we apply a classic, 
multimodal approach that has been used to distinguish cortical areas from one another in order to 
determine sulcal definitions in the posterior MFG. Specifically, after identifying each sulcus within 
the posterior MFG based on recent proposals (Petrides and Pandya, 2012; Petrides, 2019), we use 
both anatomical and fMRI data to either support or refute the identification of individual sulci 
within this cortical expanse. Implementing this two-pronged approach, we first examined if the 
three components of the posterior middle frontal sulcus (pmfs) are consistently identifiable within 
individual hemispheres. And if so, we then tested if the three pmfs components are anatomically 
and functionally homogenous, or serve to identify anatomical and functional heterogeneity in 
LPFC. This approach supports the latter in which there are three anatomically and functionally 
distinct sulci within the posterior MFG: the posterior (pmfs-p), intermediate (pmfs-i), and anterior 
(pmfs-a) posterior middle frontal sulci. 
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Figure 2. LPFC tertiary sulci are easily identifiable and characteristically shallow. (a) Left: an example inflated 
cortical surface of an individual left hemisphere in which the sulci examined in the present study are outlined and 
labeled (Extended Data Figure 2-1 for all participants).  Sulci are dark gray, while gyri are light gray. Right: Two 
post-mortem hemispheres (Retzius, 1896) and three histological sections (note that the pmfs components are referred 
to as “intermediate frontal sulcus” in the Allen Human Brain Atlas: https://atlas.brain-map.org/; (Ding et al., 2016)) 
showing that the pmfs sulci are also identifiable in post-mortem tissue samples.  (b) Top: Surface area for each sulcus 
(ordered posterior to anterior) is plotted for each individual participant (gray circles), as well as the mean (colored 
bars) and 95% confidence interval (black line). Acronyms used for each LPFC sulcus are also included. Darker shades 
indicate right hemisphere values, while lighter shades indicate left hemisphere values. The three pmfs sulci have the 
smallest surface area of all LPFC sulci measured in the present study. Bottom: Same layout as above, but for sulcal 
depth (mm). The three pmfs sulci are the shallowest of the LPFC sulci measured here. 
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Three posterior middle frontal sulci (pmfs) are identifiable within individuals and are 
characteristically shallow 

Before examining the sulcal patterning within the posterior MFG, we first identified reliable sulci 
(Materials and Methods: manual sulcal labeling) surrounding the MFG in both in vivo cortical 
surface reconstructions of MRI data and post-mortem brains (Figure 2a). Posteriorly, we 
identified the central sulcus (cs), as well as the superior (sprs) and inferior (iprs) pre-central sulci. 
Superiorly, we identified the anterior (sfs-a) and posterior (sfs-p) superior frontal sulci. Inferiorly, 
we identified the inferior frontal sulcus (ifs). Anteriorly, we identified the horizontal (imfs-h) and 
vertical (imfs-v) intermediate frontal sulci. The latter two sulci are consistent with Eberstaller’s 
classic definition of the middle frontal sulcus, but have since been renamed (Figure 1; (Miller et 
al., 2020a)). Within the posterior MFG, we identified three sulci in every hemisphere (N=72). 
From posterior to anterior, the first sulcus (pmfs-p) is positioned immediately anterior to the sprs 
(Figure 2a, Extended Data Figure 2-1), and most commonly does not intersect other sulci (see 
Table 1 for a summary of the morphological patterns, or types). The second sulcus (pmfs-i) is 
located immediately anterior to the pmfs-p, and typically aligns with the separation between the 
sfs-a and sfs-p components. The pmfs-i is most often independent (especially in the right 
hemisphere) or intersects (especially in the left hemisphere) the pmfs-a. Finally, the third sulcus 
(pmfs-a) is immediately anterior to the pmfs-i, inferior to the sfs-a, and posterior to the imfs-h. The 
pmfs-a most commonly intersects other sulci in the right hemisphere. 
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Each sulcus is also identifiable within individual in vivo volumetric slices (Petrides, 2019) and in 
postmortem brains (Figure 2), which indicates that the computational process used to generate the 
cortical surface reconstruction in the MRI data does not artificially create these sulci within the 
MFG. Our results show that the pmfs is distinguishable from the imfs, which is in correspondence 
with the recent atlas from Petrides (2019), whereas the pmfs and imfs were often combined in 
classic sulcal atlases (Ono et al., 1990). 

The two most identifying morphological features of the three pmfs sulci are their surface area and 
depth (Figure 2b). Each pmfs sulcus is of roughly equal surface area (Figure 2b, Table 2), which 
is smaller than the surface area of the other examined sulci in LPFC (Figure 2b, Table 2). A two-
way repeated-measures ANOVA with factors sulcus and hemisphere yielded a main effect of 
sulcus (F(5.78, 202.15) = 384.1, p < 0.001,  = 0.84) and no main effect of hemisphere (F(1, 35) = 0.1, p = 0.77). The 
depth of the three pmfs sulci are also the shallowest of the lateral PFC sulci examined (Figure 2b, 
Table 1). A two-way repeated-measures ANOVA with sulcus and hemisphere as factors yielded a 
main effect of sulcus (F(3.15, 103.84) = 77.7, p < 0.001,  = 0.55), and a main effect of hemisphere (F(1, 33) = 
20.4, p < 0.001,  = 0.02) in which sulci were deeper in the right compared to the left hemisphere (Figure 
2b, Table 2). Post-hoc tests show that, across hemispheres, the pmfs-p is shallower than all other 
sulci (p-values < 0.001, Tukey’s adjustment), and the pmfs-i and pmfs-a are shallower than all other sulci 
except for the imfs-v. Taken together, three pmfs sulci are identifiable in individual hemispheres 
(Figure 2, Extended Data Figure 2-1) and distinguish themselves from other LPFC sulci based 
on their surface area and shallowness. 
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The pmfs-p, pmfs-i, and pmfs-a are anatomically dissociable and reflect a larger rostro-caudal 
myelination gradient in LPFC 

         While the pmfs-p, pmfs-i, and pmfs-a are morphologically distinct from surrounding sulci 
(Figure 2), it is presently unknown if they are anatomically and functionally similar or distinct 
from one another. To test this, we first extracted and compared average MRI T1w/T2w ratio values 
from each sulcus. The T1w/T2w ratio is a tissue contrast enhancement index that is correlated with 
myelin content (Figure 3a; (Glasser and Van Essen, 2011; Shams et al., 2019)). We chose this 
index because myeloarchitecture is a classic criterion used to separate cortical areas from one 
another (Vogt and Vogt, 1919; Flechsig, 1920; Hopf, 1956; Dick et al., 2012). A two-way 
repeated-measures ANOVA with sulcus and hemisphere as factors yielded a main effect of sulcus 
(F(1.76, 61.7) = 85.0, p < 0.001, = 0.39) and a main effect of hemisphere (F(1, 35) = 10.5, p = 0.003, = 0.05) on 
myelin content, but no sulcus x hemisphere interaction (F(1.73, 60.5) = 2.5, p = 0.10). The differences in 
myelin across sulci were driven by the finding that T1w/T2w decreased from posterior to anterior 
across hemispheres: pmfs-p vs. pmfs-i, t(70) = 9.75, p < 0.001 (Tukey’s post-hoc), pmfs-i vs. pmfs-a, t(70) = 
2.62, p = 0.029, and pmfs-p vs. pmfs-a, t(70) = 12.37, p < 0.001. The right hemisphere also had higher myelin 
content overall in the pmfs, t(35) = 3.25, p = 0.003. Accordingly, the three sulcal components are 
differentiable based on myelin content in both hemispheres (Figure 3b). 
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Figure 3. The pmfs sulci are anatomically differentiable based on myelin content. (a) Top: Schematic of the 
calculation of geodesic distance along the cortical surface. For each sulcus, the average distance of each vertex from 
the central sulcus was calculated (dotted black line; Materials and Methods). Bottom: an example T1w/T2w map in 
an individual participant in which 5-95% percentile of values are depicted. (b) T1w/T2w values (a proxy for myelin 
content) are plotted for each component of the pmfs for each individual participant (N = 36). Bars represent mean ± 
95% CI, while each participant is depicted as a circle. Darker shades indicate right hemisphere values, while lighter 
shades indicate left hemisphere values. The components of the pmfs are differentiable based on myelin content, with 
a decrease from posterior to anterior across both hemispheres. (c) Scatterplot showing the negative relationship 
between distance from the central sulcus and the mean myelination value for all labeled sulci from each individual (N 
= 36 participants). The mixed linear model (Materials and Methods) with predictors of distance and hemisphere 
shows a marginal r2 of 60.8%. Scatterplot is bootstrapped at 68% CI for visualization. (d) Scatterplot showing the 
mean T1w/T2w value for each sulcus as a function of distance (mm) from the central sulcus. Error bars for both the x- 
and y-axes represent S.E.M. (68% CI) across individuals (N = 36 participants). Dark purple: right hemisphere; Light 
purple: left hemisphere. 

 

         The rostro-caudal gradient among the pmfs-p, pmfs-i, and pmfs-a sulci is embedded within 
a larger rostro-caudal myelination gradient in lateral PFC. Specifically, modeling T1w/T2w content 
across frontal sulci as a function of distance from the central sulcus (Figure 3c) using a mixed 
linear model revealed a significant, negative effect of distance from the central sulcus along the 
rostral-caudal axis (= -0.001, z = -33.8, p < 0.001), with no differences between hemispheres (= -0.003, z = -
0.8, p = 0.4).  Together, our quantifications show that the pmfs-p, pmfs-i, and pmfs-a are embedded 
within a larger anatomical and functional hierarchical gradient in LPFC (see Discussion for further 
details). 
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The pmfs components show a microstructural profile across cortical layers that is distinct from 
the middle frontal gyrus (MFG)  

Classic and modern findings show that there is generally more intracortical myelin in deeper 
cortical layers and that the depths of sulci often have less myelinated fibers than gyral crowns 
(Braitenberg, 1962; Sanides, 1972; Welker, 1990; Annese et al., 2004; Rowley et al., 2015). 
Building on this work, we sought to calculate microstructural profiles for myelin content across 
cortical depths for each pmfs component, as well as the gyral components of the MFG that surround 
them (Figure 4; Materials and Methods). To do so, we implemented equivolume algorithms to 
construct cortical surfaces within the gray matter. The depth profiles from equivolume surfaces 
have been used to investigate cortical laminar organization in vivo and correspond with those 
obtained from both ex vivo MRI data and post-mortem histological sections (Waehnert et al., 2014; 
Paquola et al., 2019). 
 

 
Figure 4. The pmfs sulci and middle frontal gyrus have differentiable myelin profiles across cortical depths. (a) 
Left: Tissue contrast enhancement (T1w/T2w metric, a proxy for myelin) at nine cortical depths, sampled from the 
outer gray matter (pial) to the gray/white matter boundary (white matter) using equivolume surfaces (Materials and 
Methods). The MFG (excluding the pmfs) has higher myelin content than all pmfs components in the upper cortical 
layers, while the pmfs components have higher myelin content in deeper layers. Shaded area represents bootstrapped 
68% CI across participants. Green asterisks show significant statistical differences between the MFG and all pmfs 
components (MFG > pmfs), while purple asterisks show the reverse (pmfs > MFG; all tests FWE-corrected at p < 
0.05/9). Right: Myelinated fiber density (y-axis) profile across cortical depths (x-axis) in post-mortem histological 
sections of the MFG, adapted from Braitenberg (1962). B: stria of Baillarger. G: stria of Gennari. Similar to our 
measurements, myelination increases from outer to inner layers within the MFG. (b) Left: Individual left hemisphere 
with the manually defined pmfs components (white) and the surrounding MFG (green) as defined by FreeSurfer 
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(Destrieux et al., 2010). We excluded the pmfs components from the MFG to test for anatomically distinct profiles. 
Middle: Example equivolume surfaces at five different cortical depths, from the pial to white matter surfaces, which 
were used to sample the T1w/T2w metric across depths. Right: Myelination stain of a post-mortem histological section 
of the MFG from Braitenberg (1962). Arrow: Location from which the myelinated fiber density profile in (a, right) 
was calculated. 

 
 

         The MFG and pmfs components show distinct microstructural profiles of myelin content 
across cortical depths. A three-way repeated-measures ANOVA with factors of structure (pmfs-p, 
pmfs-i, pmfs-a, MFG), cortical depth (0%, 12.5%, 25%, 37.5%, 50%, 62.5%, 75%, 87.5%, 100%), and 
hemisphere (left, right), yields main effects of structure (F(2.26, 78.94) = 15.6, p < 0.001, = 0.007), depth 
(F(1.39, 48.49) = 1849.6, p < 0.001, = 0.84), and a structure x depth interaction (F(6.78, 237.43) = 78.5, p < 0.001, = 
0.02). This interaction between structure and depth did not differ by hemisphere (F(4.69, 164.26) = 1.13, 
p = 0.35, = 0.02), so subsequent analyses are collapsed across hemispheres. To determine which 
differences drive the distinct profiles in myelin content across cortical layers between the pmfs and 
MFG, we conducted post-hoc tests at each cortical depth (Figure 4a). The MFG had higher myelin 
content in each of the upper cortical depths (0%, 12.5%, 25%, 37.5%) compared to all of the pmfs 
components (all p-values < 0.001, FWE-corrected at  = 0.05/9 for the 9 cortical depths). In the middle-to-deep layers 
(50%, 62.5%), the pmfs-p had higher myelin content than either the pmfs-i (50%: t(105) = 6.4, p < 0.001; 
62.5%: t(105) = 7.0, p < 0.001) or pmfs-a (50%: t(105) = 7.1, p < 0.001; 62.5%: t(105) = 8.1, p < 0.001), and was even 
higher than the MFG (50%: t(105) = 0.27, p = 0.99; 62.5%: t(105) = 3.7, p = 0.002). At the deepest cortical layers, 
closest to the gray/white matter boundary, all three pmfs components showed increased myelin 
relative to the MFG. Specifically, the pmfs-a showed the highest myelin content in the deepest 
layers, but all three pmfs components displayed higher myelin than the MFG (all p-values < 0.001, FWE-
corrected at  = 0.05/9 for the 9 cortical depths). The profile of myelin content across cortical depths in the pmfs 
and MFG is also robust when comparing myelin content at a coarser (3 instead of 9) level of upper, 
middle, and lower depths (mean of depths within each bin): structure x depth interaction (F(3.87, 
135.4) = 127.4, p < 0.001,  = 0.02). Altogether, the pmfs differed from the MFG in microstructure across 
cortical layers, with lower myelin content in upper layers and higher myelin content in deeper 
layers. This surface-based sampling of cortical depths provides in vivo neuroimaging evidence for 
a microanatomical distinction of the pmfs from the surrounding MFG. Further, the depth profiles 
of T1w/T2w values within the MFG are similar to classic myeloarchitectural quantifications of the 
MFG (Figure 4). 
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The pmfs-p, pmfs-i, and pmfs-a exhibit different characteristic patterns of whole brain functional 
connectivity 

         To determine if the pmfs-p, pmfs-i, and pmfs-a are functionally distinct, we leveraged 
detailed individual functional parcellations of the entire cerebral cortex based on functional 
connectivity from a recently published study (Kong et al., 2018; Figure 5a). Importantly, this 
parcellation was conducted blind to both cortical folding and our sulcal definitions. Within each 
hemisphere in the same participants in which we generated manual sulcal labels, we generated a 
functional connectivity network profile (which we refer to as a “connectivity fingerprint”). For 
each sulcal component, we calculated the overlap between 17 functional networks (on the native 
hemisphere, based on the DICE coefficient; Materials and Methods). This technique generated 
a cortical topography reflective of the whole-brain connectivity patterns for each sulcal component 
(Figure 5a, bottom), and can be interpreted similarly to other studies of functional network 
variations (Gordon et al., 2017; Seitzman et al., 2019), as a trait-like connectivity profile for each 
pmfs component within each participant. 
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Figure 5. The pmfs components are functionally differentiable based on connectivity fingerprints within 
individuals. (a) Schematic of how individual-level resting state connectivity profiles were generated in each 
participant. Resting-state network parcellations for each participant were obtained from a recent study (Kong et al., 
2018) in an observer-independent fashion of sulcal definitions in LPFC. Example individual cortical topographies are 
shown in four individual participants, colored according to the group parcellation. The individual cortical topographies 
and pmfs sulcal definitions were used to calculate the connectivity fingerprint, which represents the overlap of each 
network within the pmfs component of each participant. (b) Polar plots showing the mean connectivity fingerprint of 
the three pmfs components (plotted outwards) with each of 17 resting-state functional connectivity networks, across 
participants. Resting-state networks with the highest overlap across participants are labeled. (c) Left: Polar plots 
showing variability among 6 individual participants. Right: Dissimilarity of the resting-state network fingerprints 
(variability in the connectivity fingerprint across participants represented by the Wasserstein distance between unique 
pairs of participants; Materials and Methods) are plotted as a function of each pmfs component for left and right 
hemispheres. Error bars represent 68% CI (SEM) across unique participant pairs. 
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Our approach demonstrated that the pmfs-p, pmfs-i, and pmfs-a have different connectivity 
fingerprints and thus, are functionally dissociable. Average connectivity fingerprints across 
participants are illustrated in Figure 5b. A repeated-measures ANOVA with sulcal component 
(pmfs-p, pmfs-i, pmfs-a), hemisphere (left, right), and network yielded a significant component x 
network interaction (F(32, 1120) = 45.2, p < 0.001, = 0.29), as well as a component x network x hemisphere 
interaction (F(32, 1120) = 5.26, p < 0.001,  = 0.040) (Figure  5b). In each hemisphere, there is a component 
x network interaction (left: F(32, 1120) = 29.4, p < 0.001, = 0.35, right: F(32, 1120) = 23.2, p < 0.001, = 0.27) in which 
the difference between hemispheres is driven by the pmfs-p connectivity fingerprint. Specifically, 
the pmfs-p overlaps most with the default mode network in the left hemisphere and the cognitive 
control network in the right hemisphere. 

Additionally, there are also individual and hemispheric differences in the connectivity fingerprint 
of each pmfs component at the level of individual participants (Figure 5c; Extended Data Figure 
5-1). To characterize individual differences, we built on work showing network connectivity 
variations across individuals (Kong et al., 2018; Seitzman et al., 2019) by relating this connectivity 
variability to individual anatomical landmarks in LPFC. We quantified connectivity fingerprint 
variability by measuring the pairwise Wasserstein distance between the connectivity profiles for 
all unique participant pairs for each sulcal component, in which a larger distance indicates 
decreased similarity, and therefore greater variability (see Materials and Methods). This 
approach quantifies how variable the pattern of network overlap (connectivity fingerprint) is across 
individuals for each pmfs component (Figure 5c, right). In the right hemisphere, the pmfs-p 
showed the most variable network profile across all unique participant pairs (pmfs-p vs. pmfs-i, 
Wilcoxson-Signed rank test, W = 7.2x104, p < 0.001, pmfs-p vs. pmfs-a, W = 7.4x104, p < 0.001), while the pmfs-i was 
most variable in the left hemisphere (pmfs-i vs. pmfs-a, W = 8.8x104, p = 0.014, pmfs-i vs. pmfs-p, W = 8.0x104, p < 
0.001). This analysis suggests that the right pmfs-p and left pmfs-i mark regions of LPFC with 
particularly high levels of individual differences in functional connectivity profiles, providing an 
anatomical substrate for network connectivity differences across individuals. 

The pmfs-p, pmfs-i, and pmfs-a are functionally dissociable: Meta-analyses across 83 
experimental task categories        

We next tested if the dissociation of functional networks between the pmfs-p, pmfs-i, and pmfs-a 
identified in individual participants (Figure 5) can also be observed in meta-analytic analyses of 
functional activation data at the group-level. That is, do the components of the pmfs show a 
functional dissociation of engagement over a wide array of cognitive operations? To test for 
different patterns of functional activations across tasks, we generated sulcal probability maps on a 
template cortical surface (Figure 6a, bottom left). Analogous to probabilistic maps for functional 
regions (Wang et al., 2015; Weiner et al., 2017; Weiner et al., 2018), the maps provide a vertex-
wise measure of anatomical overlap across individuals for all 13 LPFC sulci examined in the 
present study. As the pmfs components disappear on average templates (Figure 1), these 
probabilistic maps are independent of the sulcal patterning of the template itself, which merely 
serves as a cortical surface independent of each individual cortical surface. We then compared 
these sulcal probability maps to 14 probabilistic “cognitive component” maps derived from an 
author-topic model of meta-analytic activation data across 83 experimental task categories (Yeo 
et al., 2015). 
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Figure 6. The pmfs and imfs components are functionally differentiable based on cognitive components:  A 
meta-analysis of fMRI experimental tasks. (a) Schematic of analyses linking sulcal probability maps (bottom, left) 
and cognitive component maps (right) from a meta-analysis of fMRI experimental tasks (Yeo et al., 2015) using an 
expectation maximization algorithm (Materials and Methods). For each pmfs component, the algorithm provides a 
posterior probability for each of 14 cognitive components being associated with the provided sulcal probability map. 
(b) For each pmfs and imfs component in each hemisphere, the posterior probability for each cognitive component is 
plotted. This approach further supports that the pmfs-p (Component 12, lh; Component 11, rh), pmfs-i (Component 
10, lh and rh), and pmfs-a (Component 10, lh; Component 9, rh; Materials and Methods) are functionally dissociable 
based on meta-analytic data of cognitive task activations. The imfs-h and imfs-v are also dissociable from the pmfs 
components in the left hemisphere, and functionally similar to the pmfs-a in the right hemisphere. Gray dots indicate 
individual participant data points when the analysis is performed with individual labels transformed to a template 
cortical surface, rather than with probability maps (Materials and Methods). 
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The cognitive component model links patterns of brain activity to behavioral tasks via latent 
components representing putative functional subsystems (Yeo et al., 2015). Each cognitive 
component map (which was calculated on the same template cortical surface used here) provides 
the probability that a given voxel will be activated by each of the 14 components (across all 83 
tasks). We then used an expectation maximization algorithm (via posterior probability, Materials 
and Methods) to relate brain activity in each sulcal probability map to each cognitive component 
(Figure 6a, right). Importantly, when calculating the posterior probabilities, we implemented a 
leave-one-participant-out cross-validation procedure when constructing the sulcal probability 
maps in order to assess variability in the generated posterior probabilities for each cognitive 
component (Figure 6b). To indicate feasibility of this approach, the somato-motor components of 
the cognitive component map (C01, C02) align most highly with the central sulcus as one would 
expect, which shows the ability of this method to measure structural-functional correspondences 
at the meta-analytic level. 

This approach further reveals that the pmfs-p, pmfs-i, and pmfs-a are functionally dissociable based 
on meta-analytic data of cognitive task activations. In the right hemisphere, the pmfs-p, pmfs-i, and 
pmfs-a showed distinct probabilities for separate cognitive components: 1) the pmfs-p loaded onto 
a default mode component (C11), 2) the pmfs-i loaded onto an executive function component 
(C10), and 3) the pmfs-a loaded onto an inhibitory control component (C09). In the left 
hemisphere, the pmfs-a and pmfs-i both loaded onto an executive function (C10) component, while 
the pmfs-p loaded onto an emotional processing/episodic memory component (C12). The pmfs was 
also dissociable in activation profiles from the more anterior imfs. In the left hemisphere, the imfs 
showed no overlap with the pmfs, with the imfs-h loading onto the inhibitory control component 
(C09), and the imfs-v loading onto a default mode component (C11). In the right hemisphere, both 
the imfs-h and imfs-v loaded onto the same inhibitory control component (C09) as the pmfs-a. 

Like our individual participant analyses, there were also hemispheric differences: the cognitive 
components overlapping the most with the pmfs-a and pmfs-p differed between the two 
hemispheres. The pmfs-p loaded onto an emotional processing/episodic memory component in the 
left hemisphere (Figure 6b, top row) and a default mode component in the right hemisphere 
(Figure 6b, top row), while the pmfs-a loaded onto an executive function component in the left 
hemisphere (Figure 6b, third row) and an inhibitory control component in the right hemisphere 
(Figure 6b, third row). 

Finally, previous studies have identified retinotopic representations in human LPFC (Hagler and 
Sereno, 2006; Kastner et al., 2007; Mackey et al., 2017), but the three pmfs components did not 
overlap with cognitive components associated with visual processing in these meta-analytic 
analyses. To further examine the relationship between the pmfs components and visual processing, 
we analyzed whether the pmfs components explained a significant amount of variance (Figure 7) 
in a newly published, whole brain dataset of population receptive field measurements in 181 
participants (Benson et al., 2018). When considering voxels that demonstrate retinotopic responses 
(R2 > 15%), the highest overlap between predicted pmfs location and retinotopic representations 
was specific to the right hemisphere for the pmfs-i (mean R2 across participants = 28.5%), with 
less overlap in the left hemisphere (all other pmfs R2 values < 20%). The most consistent 
correspondence between visual field maps and sulcal location occurred at (1) the intersection of 
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the sprs and sfs-p, and (2) the intersection of the iprs and ifs, as previously reported ((Mackey et 
al., 2017); Figure 7). The iprs showed the highest retinotopic responses of the LPFC sulci (lh: 
34.2%; rh: 48.9%) measured here, and this is also consistent with a recent study identifying a 
region critical for conditional eye movements within a similar location in the ifs (Germann and 
Petrides, 2020). Future studies examining the relationship between pmfs components and 
retinotopic representations in individual participants will further expand on these findings. 

Figure 7. Comparing the overlap between retinotopic responses relative to the predicted location of the pmfs 
sulcal components. Map of the mean (n = 181) R2 metric (colorbar) from the HCP retinotopy dataset (Benson et al., 
2018) on the fsaverage template cortical surface for each hemisphere, thresholded at 15%. This metric measures how 
well the fMRI time-series at each vertex is modeled by population receptive field (pRF) modeling that was calculated 
and shared by Benson and colleagues (https://osf.io/bw9ec/wiki/home/). Predicted pmfs location from the maximum 
probability maps is overlaid in orange (thresholded at 33% overlap across participants). There was only a modest 
overlap between predicted pmfs location and retinotopic representations (a) in the right hemisphere (no overlap in the 
left hemisphere). Instead, and consistent with prior work (Mackey et al., 2017), the highest correspondence between 
retinotopic responses and sulcal patterning in LPFC occurs at two sulcal intersections: 1) the sprs and sfs-p (c), and 
(2) the iprs and ifs (b). 

 

 

Extensive individual differences in the location of the pmfs across individuals 

Although the three pmfs components are prominent within each hemisphere, there is extensive 
individual variability in the precise location of each sulcal component within the posterior MFG. 
To determine how well the probability maps could predict the location of the pmfs-p, pmfs-i, and 
pmfs-a within individual hemispheres, we used a cross-validated approach, iteratively leaving out 
one participant from the calculation of probability maps (Figure 8a). Then, the maximum 
probability maps (MPMs) were projected to the held-out individual’s native cortical surface to 
calculate the overlap between the manually identified and probabilistically identified sulcal 
locations. This procedure resulted in a measure of location variability for each sulcal component 
(Figure 8b). For these calculations, we used the central sulcus (cs) as a noise ceiling (left: cs = 0.85 ± 
0.02; right: cs = 0.85 ± 0.06) as it is a) considered very stable across individuals (see Materials and 
Methods) and b) used in the cortex-based alignment procedure (Fischl et al., 1999b). 
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Figure 8. Quantification and prediction of pmfs-p, pmfs-i, and pmfs-a within individual hemispheres. (a) 
Procedure to generate sulcal probability maps based on the manual anatomical labeling within each individual 
participant. Labels from each individual are transformed to a template cortical surface to form a probabilistic sulcal 
map and then projected onto the surface of a held-out individual participant. The overlap between the manual 
anatomical label on the held-out participant and predicted location was then calculated for each iteration across 
participants. (b) Overlap (DICE coefficient) between predicted and manual location of each pmfs component within 
individual participants. Prediction for the pmfs is highest when all three components are combined. The central sulcus 
(cs) is included as a noise ceiling for reference, as this landmark is used in the surface registration algorithm that aligns 
cortical surfaces across participants. 
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The pmfs components exhibited significant variability in sulcal location across participants (left: 
pmfs-p = 0.30 ± 0.28, pmfs-i = 0.32 ± 0.18, pmfs-a = 0.27 ± 0.20; right: pmfs-p = 0.03 ± 0.04, pmfs-i = 0.37 ± 0.18, pmfs-a = 0.20 
± 0.20). A 2-way repeated-measures ANOVA with pmfs sulcal component (pmfs-p, pms-i, pmfs-a) 
and hemisphere (right, left) revealed a sulcus x hemisphere interaction (F(1.84, 64.47) = 9.52, p < 0.001, 
= 0.08) driven by the finding that the pmfs-p is highly variable across individuals, resulting in very 
little predictability in the right hemisphere (Figure 8b). When using all three pmfs components 
together, prediction is more robust (left: pmfs = 0.41 ± 0.13; right: pmfs = 0.37 ± 0.15), but still much lower 
than the predictability of the cs and also lower than prediction performance for all other LPFC 
sulci quantified in the present study (Figure 8b). These results demonstrate that although the pmfs 
is prominent within each individual (Extended Data Figure 2-1), the location of each pmfs 
component is variable across individuals, which provides empirical support for the historical 
confusion regarding its identification and labeling (Figure 1).  

Discussion 

Here, we examined the relationship between cortical anatomy and function in human lateral 
prefrontal cortex (LPFC) and showed for the first time (to our knowledge) that the posterior middle 
frontal sulcus (pmfs) serves as a meso-scale link between myelin content and functional 
connectivity in individual participants. The pmfs is a characteristically shallow tertiary sulcus with 
three components that differ in their myelin content, resting state connectivity profiles, and 
engagement across meta-analyses of 83 cognitive tasks. We first discuss how these findings 
suggest modern empirical support for a classic, yet largely unconsidered, anatomical theory 
(Sanides, 1962, 1964), as well as a recent cognitive neuroscience theory proposing a functional 
hierarchy in LPFC (Koechlin and Summerfield, 2007; Badre and D'Esposito, 2009; Badre and 
Nee, 2018). We end by discussing a growing need for computational tools that automatically 
define tertiary sulci throughout cortex. 

The anatomical-functional coupling in LPFC identified here is quite surprising considering the 
widespread literature providing little support for fine-grained anatomical-functional coupling in 
this cortical expanse and in association cortices more broadly when conducting traditional group-
analyses (Paquola et al., 2019; Vazquez-Rodriguez et al., 2019). Indeed, cortical folding patterns 
relative to the location of anatomical, functional, or multimodal transitions are considered 
“imperfectly correlated” (Welker, 1990; Glasser et al., 2016) in association cortices and especially 
in LPFC (Van Essen et al., 2012; Caspers et al., 2013; Robinson et al., 2014; Coalson et al., 2018). 
Contrary to these previous findings that did not consider tertiary sulci, the present findings appear 
to support a classic, yet largely unconsidered theory proposed by Sanides (1962, 1964) that tertiary 
sulci are potentially meaningful anatomical and functional landmarks in association cortices – and 
in particular, in LPFC. Specifically, Sanides proposed that because tertiary sulci emerge late in 
gestation and exhibit a protracted postnatal development, they likely serve as functional and 
architectonic landmarks in human association cortices, which also exhibit a protracted postnatal 
development. Sanides (1964) further proposed that the late morphological development of tertiary 
sulci is likely related to protracted cognitive skills associated with LPFC. Interestingly, identifying 
pmfs components in his classic images shows myeloarchitectonic gradations among five areas in 
LPFC (Figure 9a). Linking these data to recent modern parcellations of the human cerebral cortex 
(Sallet et al., 2013; Glasser et al., 2016) shows that pmfs components likely serve as boundaries 
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among a series of cortical areas, which can be addressed in future research in individual 
participants (Figure 9b). 

Figure 9. Linking the past to the present: Myelination gradients, cortical areas, and the pmfs. (a) Left: 
Photograph of a left hemisphere from Sanides (1962). Numbers indicate cortical areas differing in myeloarchitecture. 
Dotted white lines: Sulcal boundaries as defined by Sanides. Dotted colored lines: pmfs-p (green), pmfs-i (red), and 
pmfs-a (blue) based on modern definitions used in the present study. Identifying pmfs components in Sanides’ classic 
images shows that he identified myeloarchitectonic gradations within pmfs components, which is consistent with the 
present measurements. Gradations occurred in superior-inferior, as well as anterior-posterior dimensions. In the 
inferior portion of the pmfs-p (green), there is an anterior-posterior transition between areas 40 and 55. In the pmfs-i 
(red), there are two transitions: (i) a superior-inferior transition between areas 44 and a transition zone to area 55, and 
(ii) an anterior-posterior transition between areas 44 and 45.  In the pmfs-a, there is a transition between areas 45 and 
54. Right: Myelination stain of a histological section (coronal orientation) from Sanides (1962). Arrows indicate 
boundaries between labeled myeloarchitectonic areas (numbers). pmfs-a is labeled to help the reader link the 
myelination stain to the image at left. The reader can appreciate the shallowness of the pmfs-a relative to the sulcus 
(ifs) between areas 54 and 58, which is also consistent with our measurements (Figure 2). (b) Left: Maximum 
probability maps (thresholded at 33% overlap across participants) for the pmfs-p, pmfs-i, and pmfs-a are shown on the 
FreeSurfer average template (left hemisphere). The probability maps are shown relative to four areas from a multi-
modal cortical parcellation based on structural and functional MRI data (Glasser et al., 2016). The pmfs-a appears to 
denote the dorsal to ventral transition between areas 46 and p9/46v in anterior LPFC, while the pmfs-p appears to 
denote the dorsal to ventral transition between areas 8Av and 8C in posterior LPFC. Right: pmfs and imfs maximum 



97 

probability maps relative to a resting-state fMRI parcellation with proposed homologous parcels between monkey and 
human LPFC from Sallet et al., 2013. Here, the pmfs-i and pmfs-a denote the 9/46d and 9/46v boundary, while the 
imfs is situated within area 46. This relationship is also consistent with a recent cytoarchitectonic atlas showing that 
the pmfs-a identifies a transition between 9/46v and 9/46d (Petrides, 2019). 

In addition to supporting Sanides’ classic anatomical theory, the present data demonstrated that 
the three pmfs components exhibit different resting-state connectivity profiles along a rostral-
caudal axis, which builds on previous work also supporting a functional hierarchy along a rostral-
caudal axis of LPFC. Further consistent with this hierarchy, evidence from neuroimaging, lesion, 
and electrocorticography studies indicate that this proposed rostral-caudal axis of LPFC is also 
related to levels of temporal and cognitive abstraction. That is, more anterior LPFC cortical regions 
are more highly engaged in tasks with higher abstract complexity (Koechlin et al., 2003; Koechlin 
and Summerfield, 2007; Voytek et al., 2015; Mansouri et al., 2017). While there is axonal tracing 
data in non-human primates suggesting an anatomical basis for such a hierarchical organization 
(Goulas et al., 2014; Goulas et al., 2019), the present findings provide new evidence for 
anatomically and functionally dissociable sulcal components in LPFC that also support a 
hierarchical organization within individuals. Future work leveraging finer-scale multimodal and 
microanatomical data from individual human brains will be critical for uncovering anatomical and 
functional properties of LPFC across spatial and temporal scales that may further support the 
proposed functional rostral-caudal hierarchy of human LPFC. 

Together, the culmination of present and previous findings suggest that tertiary sulci are landmarks 
in human ventral temporal cortex (Nasr et al., 2011; Caspers et al., 2013; Weiner et al., 2014; 
Lorenz et al., 2017), medial PFC (Amiez et al., 2019; Lopez-Persem et al., 2019), and now, LPFC. 
This begs the question: How many other tertiary sulci serve as cortical landmarks? We stress that 
it is unlikely that all tertiary sulci will serve as cortical landmarks, since neuroanatomists have 
known for over a century that not all sulci function as cortical landmarks (Smith, 1907; Bailey and 
Bonin, 1951; Ono et al., 1990; Welker, 1990; Van Essen et al., 2019). Nonetheless, this does not 
preclude the importance of future studies identifying which tertiary sulci are architectonic, 
functional, behavioral, or multimodal landmarks – not only in healthy young adults as examined 
here, but also in developmental (Voorhies et al., 2020) and clinical (Garrison et al., 2015; Brun et 
al., 2016) cohorts. Additionally, tertiary sulci can also serve as evolutionary markers for primate 
cortical homology. For example, shallow “dimples” co-occur with the frontal eye field (FEF) in 
macaques, while deeper sulci co-occur with the proposed homologue of the FEF in humans (Amiez 
and Petrides, 2009; Schall et al., 2020). Humans may also have tertiary sulci in locations that non-
human primates do not have dimples as was recently shown in medial PFC (Amiez et al., 2019). 

Carefully examining the relationship among tertiary sulci and multiple types of anatomical, 
functional, and behavioral data in individual participants will require new neuroimaging tools to 
automatically identify tertiary sulci throughout human cortex. For instance, most neuroimaging 
software packages are only capable of automatically defining ~30-35 primary and secondary sulci 
in a given hemisphere (Destrieux et al., 2010). Current estimates approximate ~110 sulci in each 
hemisphere when considering tertiary sulci (Petrides, 2019). Thus, studies in the immediate future 
will still require the manual identification of tertiary sulci, which is labor intensive and requires 
expertise ((Miller et al., 2020a) for a historical discussion regarding the manual labeling of tertiary 
sulci in LPFC). For example, the present study required manual definitions of 936 sulci in 72 
hemispheres. While 72 is a large sample size compared to other labor-intensive anatomical studies 
in which 20 hemispheres is considered sufficient to encapsulate individual differences (Amunts 
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and Zilles, 2015; Amunts et al., 2020), 2400 hemispheres are available just from the HCP alone. 
Defining tertiary sulci in only the LPFC of every HCP participant would require ~26,400 manual 
definitions, while defining all tertiary sulci in the entire HCP dataset would require over a quarter 
of a million (~256,800) manual definitions. Consequently, manual identification of tertiary sulci 
will continue to limit sample sizes in immediate future studies until new automated methods are 
generated (Klein et al., 2017; Hao et al., 2020; Lyu et al., 2020). 

In the interim, we sought to leverage the anatomical labeling in this study to aid the field in the 
identification of sulcal landmarks in LPFC. The probability maps of sulcal locations in the present 
study are openly available and may be transformed to held-out individual brains (Figure 9). 
Accordingly, manual identification of these landmarks within individuals is greatly aided, allowing 
future studies to apply these tools to identify LPFC tertiary in individual participants, including 
those from various groups such as patient or developmental cohorts. Because smaller tertiary sulci 
in association cortex are the latest sulcal indentations to develop (Sanides, 1962, 1964; Chi et al., 
1977; Welker, 1990; Armstrong et al., 1995), their anatomical trajectories and properties likely 
relate to the development of cognitive abilities associated with the LPFC and other association 
areas as Sanides hypothesized, which recent ongoing work supports (Voorhies et al., 2020). 
Moving forward, we hope to leverage the manual labeling performed here to develop better 
automated algorithms for sulcal labeling within individuals. Future work using deep learning 
algorithms may help to identify tertiary structures in novel brains without manual labeling or 
intervention (Borne et al., 2020; Hao et al., 2020; Lyu et al., 2020). Such automated tools have 
translational applications as tertiary sulci are largely hominoid-specific structures (Amiez et al., 
2019; Miller et al., 2020b) located in association cortices associated with pathology in many 
neurological disorders. Thus, morphological features of these under-studied neuroanatomical 
structures may be useful clinical biomarkers for future diagnostic purposes. To begin to achieve 
this goal and to aid the field, we share our probabilistic maps of LPFC tertiary sulci with the 
publication of this paper.   
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