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ABSTRACT OF THE THESIS

Comparison of Different Hierarchical Dirichlet Process Implementations

by

Peichen Wu

Master of Science in Statistics

University of California, Los Angeles, 2020

Professor Arash Amini, Chair

The Hierarchical Dirichlet Process (HDP) is an important Bayesian nonparametric model

for grouped data, such as corpus or document collections. It can be very useful in an NLP

setting where we are trying to classify documents in a corpus. A great advantage of HDP is

its flexibility: we do not need to specify the number of components (or topics) we want and

can instead let the data decide. Like other Bayesian nonparametric models, exact posterior

inference is intractable, instead we can use Monte Carlo Markov Chain (MCMC) methods to

estimate the posterior distribution, and different MCMC methods can affect the performance

of the HDP implementation. In this thesis, we will compare four different HDP samplers

by applying them to a set of simulated data and a set of real data, and we will do this

by comparing the mixing time of their NMI (normalized mutual information, which can be

considered as the “amount of information” obtained about one variable by observing the

other variable) and perplexity.
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CHAPTER 1

Introduction

In Natural Language Processing (NLP), a problem we often encounter is the bag-of-words

problem, where we are given a corpus with a number of documents, each containing varying

number of words, and we want to classify the documents into different groups. A machine

learning model designed for this purpose is a topic model, a type of statistical model for

discovering the abstract “topics” for a corpus, or a collection of documents. A topic model

assigns a “topic” to each document by looking at hidden semantic structures in a text body.

Intuitively, if a document is on a specific topic, then there are certain words that are likely to

appear with higher or lower frequencies, for example a document about computers are more

likely to contain words such as “CPU” and “software” while a document about automobiles

can have words “speed” and “transmission” more frequently.

There are several widely-used topic modeling methods, one of which is the Latent Dirich-

let Allocation (LDA). This is a generative model that allows sets of observations to be

explained by unobserved groups that explain why some parts of the data are similar. But

for LDA, we would have to specify the number of groups for the model. In real life, we

usually do not know the “true” number of groups, so we want a non-parametric method that

would “learn” the number of groups on its own. A good choice would be the Hierarchical

Dirichlet Process. Unlike LDA, HDP determines the “optimal” number of groups through

posterior sampling and classify each document accordingly.

But is this good enough? HDP does have a major improvement over the older LDA,

but what if we want the algorithm to be faster? There are several alternative posterior
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sampling methods proposed for HDP to increase speed, including a split-merge method and

a slice sampler algorithm. To the best of our knowledge, no literature has compared the

performance of these methods yet, so this is what we will do in this thesis. More specifically,

we will perform the following tasks:

• Generating simulated corpus data and test the performance of different HDP packages

and implementations. I will use the Normalized Mutual Information (NMI) as a mea-

sure of “accuracy”, and mixing time will be measured by the number of iterations it

takes for the NMI to converge. I am also interested in how the number of documents

in the corpus would affect the mixing time.

• Finding and implementing a reliable change point detection method to estimate the

mixing time of the NMI curve.

• Finding and implementing an algorithm to estimate the perplexity of the models as a

different measure of model performances so that we don’t need to know the true labels

to evaluate the model.

1.1 Hierarchical Dirichlet Process

Hierarchical Dirichlet Process was proposed by Teh et. al. in [Ta2005] as a non-parametric

Bayesian approach to clustering grouped data. The paper uses the Chinese restaurant fran-

chise process to describe the formulation of the HDP model and discusses its posterior sam-

pling process. The paper also includes experiments comparing the performance of HDP and

LDA models using perplexity as the evaluation metric and showed that the non-parametric

HDP is as good as the best possible LDA. Since we have to pre-specify the number of groups

for a LDA model, to find the “best possible” LDA, the experiment trained the corpus using

LDA models with different pre-specified number of topics, and the LDA model with the

best perplexity is the “best possible” LDA. In comparison, HDP automatically achieves the
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“optimal” perplexity without the need of parameter-tuning. A shorter version of the paper

can be found at [Tb2005].

As for most nonparametric Bayesian models for grouped data, exact posterior inference

is intractable for HDP, so we need to use a Monte Carlo Markove Chain sampling method

for posterior sampling. The HDP formulation by Teh et. al. uses Gibbs sampler for pos-

terior sampling, but Gibbs sampler can be slow to mix since it only allows changing the

topic status of one observed word at a time. To counter this drawback, several alternative

implementations are proposed, including the split-merge sampler and the slice sampler.

The split-merge MCMC sampler implementation is proposed by Wang et. al. in [W2012].

While mostly based on the Gibbs sampler, the split-merge sampler has an additional split-

merge step: two observations are picked at random, if the observations are in the same

component then a “split” operation is proposed, otherwise a “merge” operation is proposed,

and whether the resulting state after the “split” or “merge” operation is accepted is deter-

mined by Metropolis-Hasting. According to the paper, the implementation is more effective

for DP mixtures when the mixture models have overlapping clusters.

Amini et. al. proposed another variation of the HDP model with slice sampler for pos-

terior sampling in [AA2019]. This implementation is based on [G2009] where Slice Sampler

is used for Dirichlet process mixture models. Slice sampler has the desirable properties of

fast mixing time and potential for parallelization, so in theory the proposed implementation

should mix faster than previous HDP implementations.

1.2 Evaluating Topic Models

Now we need to decide how do we want to evaluate and compare these different implemen-

tations of HDP. First, we need a measurement of “accuracy” for the HDP models. For a

simulated corpus that has a “true” topic for each document, we can look at how closely the

predicted topics matches the “true” topics. One such measurement is the normalized mutual
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information (NMI), which can be thought of as a measurement of mutual dependence of two

variables. For real data, we do not know the true topics of each document, so instead we

will use held-out perplexity, which is a statistical measure of how well a probability model

predicts a sample. The main idea is to calculate how likely it is for each word to be in

the document in the testing set given all other words in the document and the topic-word

assignment matrix from the training set. Wallach et. al. listed some common approaches

for estimating perplexity in [W2009], including the Harmonic Means method and Chib-style

estimator, and proposed some original methods, such as the Left-to-Right method. We will

go over some of these methods in more details in later sections.

After determining the measurement of “accuracy”, we want to observe how the “accu-

racy” of the HDP models change with each iteration of posterior sampling. Let’s say we are

working with a simulated corpus and use NMI as out measurement of “accuracy”. In theory,

NMI should increase with each iteration and converge to a “final value”, and what we are

most interested in is at which iteration does the NMI converge, or “mix”. This is equivalent

to finding a single change point in the NMI series.

A widely used method for change point detection is binary segmentation, which is a

consistent estimation of the number and locations of multiple change-points in data. The

main idea of binary segmentation is to search for a single change point in the data series using

a CUSUM-like procedure, and when a change point is detected, the series is split into two

segments by the change point, and a similar search is performed in both segments, possibly

leading to further splits, until a certain criteria is satisfied. A variant of such method called

wild binary segmentation is proposed by Fryzlewicz et. al. in [F2014]. Instead of taking

the global CUSUM, wild binary segmentation randomly draw a number of subsamples and

take the CUSUM of each subsample. This method works better than binary segmentation

when the spacing between change points is short. Another version of binary segmentation

for change point detection is proposed by Padilla et. al. in [P2019].
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CHAPTER 2

Hierarchical Dirichlet Process

Hierarchical Dirichlet process (HDP) is a non-parametric Bayesian model for clustering prob-

lems involving several groups of data, with the number of classes inferred automatically by

the model. An example would be classifying each document in a copra. The hierarchical

structure ensures that different documents can share the same component distribution so

that dependencies between groups can be modeled. This chapter will talk about the basic

concepts of hierarchical Dirichlet process and different posterior sampling methods, including

posterior sampling with slice sampler.

2.1 Basic Concepts

To get started, we will first go over some basic concepts that build the foundation of the

hierarchical Dirichlet process. This section will give some technical definitions of Dirichlet

process and talk about stick-breaking process and Chinese restaurant process as representa-

tions of HDP.

2.1.1 Dirichlet Process

Dirichlet process is widely used in non-parametric Bayesian models. Let (Θ, B) be a mea-

surable space, G0 be a probability measure on the space, let α0 be a positive real number

and let (A1, A2...Ar) be any finite partition of Θ. If G is a random probability measure

distributed according to a Dirichlet process, which is written as G ∼ DP (α0, G0), we have
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the following:

(G(A1), ...G(Ar)) ∼ Dir(α0G0(A1), ...α0G0(Ar)) (2.1)

where Dir stands for the Dirichlet Distribution.

Dirichlet process is important because it is the foundation of HDP mixture models.

Consider a set of data x = (x1, ...xn) and assume each data point is exchangeable. We draw

G ∼ DP (α0, G0), then draw n latent factors independently: θi ∼ G for i = 1, ...n. Then we

draw n data points xi ∼ F (θi) where F is a distribution for i = 1, ...n. The Dirichlet process

has an important clustering property, and if there are m distinct values of θi, we would get

a Dirichlet process mixture model with m components.

2.1.2 Hierarchical Dirichlet Process

Now let’s move on to hierarchical Dirichlet process. As its name suggests, HDP uses a

hierarchy of several layers of Dirichlet processes. For simplicity we will only talk about the

two-layer HDP model. From the first layer of DP we can sample parameters for a second

layer of DP mixture models, one DP mixture model for each group of data (or document).

This ensures that the distribution of parameters is shared among all groups.

Now let’s write out the equations. We have a global probability measure G0, and for

each group j we also have a probability measure Gj. The global measure G0 is distributed

as DP (γ,H) where H is a base distribution and γ is a concentration parameter. We then

sample Gj for each group: Gj ∼ DP (α0, G0). For each group, we sample a certain number

of factors θji ∼ Gj and then sample the individual data xji ∼ F (θji). We can write out the

equations as conditional equations:
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G0 | γ,H ∼ DP (γ,H) (2.2)

Gj | α0, G0 ∼ DP (α0, G0) (2.3)

θji | Gj ∼ Gj (2.4)

xji | θji ∼ F (θji) (2.5)

For better understanding, we can think about a topic modeling scenario where we have

a corpus of k documents and each document has nj number of words. We are given a prior

distribution H and a concentration parameter γ, and we will sample the global probability

measure G0 from DP (γ,H). We can consider G0 as a distribution of probabilities, as shown

by the stick-breaking construction in the next section. Then for j = 1, ..., k, we sample a

probability measure Gj for each document from DP (α0, G0). For document j we will sample

nj words, with each word denoted as xji for i = 1, ..., nj, by first sampling θji from Gj and

then sample xji ∼ F (θji).

2.1.3 The stick-breaking construction

The stick-breaking process shows that measures drawn from a Dirichlet process are discrete,

and it is used in the construction of G0 and Gj. Suppose we have independent sequences of

i.i.d. random variables (π′k)
∞
k=1 and (φk)

∞
k=1:

π′k | α0, G0 ∼ Beta(1, α0) (2.6)

φk | α0, G0 ∼ G0 (2.7)

πk = π′k

k−1∏
l=1

(1− π′l) (2.8)

And define random measure G as:

G =
∞∑
k=1

πkδφk (2.9)
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where δφ is a probability measure concentrated at φ. For convenience we will write π ∼

GEM(α0). We can thus represent the global measure G0 and each Gj as:

G0 =
∞∑
k=1

βkδφk

Gj =
∞∑
k=1

πjkδφk

where φk ∼ H and (βk)
∞
k=1 ∼ GEM(γ).

If we want to express the above equations in words using Gj as an example, we would say

that each factor θji is distributed according to Gj and takes on the value φk with probability

πjk. Let φ = (φk)
∞
k=1 and let zji be an indicator so that θji = φzji . We can write another

representation of hierarchical Dirichlet process model based on the stick-breaking process:

β | γ ∼ GEM(γ) (2.10)

πj | α0, β ∼ DP (α0, β) (2.11)

φk | H ∼ H (2.12)

zji | πj ∼ πj (2.13)

xji | zji, φ ∼ F (φzji) (2.14)

2.1.4 Chinese Restaurant Franchise

Now we have a general idea of the basic components of the HDP, but how exactly do

we generate a HDP model? Here we will describe HDP in terms of a Chinese restaurant

franchise. The CRF view explains how to generate θji for each group j, and it can directly

lead us to an efficient Gibbs sampler for the HDP mixture models.

Consider a Chinese restaurant with an unbounded number of tables and a menu with K

dishes. The first customer sits at the first table, and subsequent customers will sit at an

occupied table with a probability proportional to the number of customers already at that

table or at the next empty table with probability proportional to α0. Each occupied table
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is assigned a dish from the menu. This is the Chinese restaurant process.

Now let’s consider a franchise of Chinese restaurants, where the franchise can be thought

of as a corpus with each restaurant representing a single document and each dish represents

a topic. All restaurants in the franchise shares the same menu, which allows the documents

to share the same set of topics. Let tji denote the table that customer i in restaurant j is

sitting at, and let ψjt denote the dish at table t of restaurant j, where ψjt is drawn from G0.

λl for l = 1, ...K denote the dishes on the menu.

Let us write out some equations. Let tji denote the table that customer i in restaurant

j sitting at and let njt be the number of customers already at table t, the conditional

distribution is as follows:

tji | tj1, ...tji−1, α0 ∼
∑
t

njt∑
t′ njt′ + α0

δt +
α0∑

t′ njt′ + α0

δtnew (2.15)

δt is the indicator that the customer sits at table t and δnew is the indicator that the customer

sits at a new table. Now we want to assign each factor θji to a dish ψjtji . Note that ψjt is

sampled from G0 and is thus distributed according to DP (γ,H), so we can perform another

CRP process here. Let kjt be the table associated with the customer having dish ψjt, let mjt

be the number of tables serving dish k in restaurant j, and we have a conditional distribution:

kjt | k11...k1n1 , k21...kjt−1, γ0 ∼
∑
t

mk∑
k′mjk′ + γ0

δk +
α0∑

k′mk′ + α0

δknew (2.16)

Finally, we draw λk as the topic assigned to table k, giving us ψjt = λkjt , thus completing

our generative process.

2.2 Posterior Inference

In this section we will discuss three Markov Chain Monte Carlo posterior sampling methods

that can be used in posterior sampling of HDP models. The first method is a Gibbs sampler

based on the Chinese restaurant franchise representation. This method is straightforward

9



and not difficult to implement, but it can also be slow to mix. The second method is the

split-merge algorithm which introduces a set of “split” and “merge” operations in addition

to the Gibbs sampler. The third method is the slice sampler.

Before we get started, recall that xji are our observed data and θji are our factors. Let

θji be associated with table tji, in other words: θji = ψjtji . Recall that ψjt is an instance

of the mixture component kjt: ψjt = φkjt . Let zji = kjtji denote the mixture component

associated with xji.

Let f(· | θ) and h be the density functions for F (θ) and H respectively. For notation,

when a set of variable or a count variable has a superscript with the minus sign attached,

it means the variable corresponding to the superscripted index is removed from the set or

count. For example, x−ji = x \ xji. We will denote the conditional density of xji under

mixture component k given all data except xji as:

f
−xji
k (xji) =

∫
f(xji | φk)

∏
j′i′ 6=ji,zj′i′=k

f(xj′i′ | φk)h(φk)dφk∫ ∏
j′i′ 6=ji,zj′i′=k

f(xj′i′ | φk)h(φk)dφk
(2.17)

2.2.1 Gibbs sampler posterior sampling

What’s nice about the CRF representation is that this view directly leads us to a nice Gibbs

sampler for posterior sampling of the HDP mixture model. But rather than sampling θji

and ψji directly, sampling their indexes tji and kji is more efficient. For notations, let njtk

denote the number of customers in restaurant j table t with dish k, and let mjk denote the

number of tables in restaurant j serving dish k. f(·|θ) and h will be the density functions

for F (θ) and H respectively.

Sampling t. The conditional probability of tji is

p(tji = t | t−ji, k) ∝


α0f(xji | t−ji, tji = tnew, k) if t = tnew

n−jijt f
−xji
kjt

(xji) if t currently used

(2.18)
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where

p(xji | t−ji, tji = tnew, k) =
K∑
k=1

mk

m+ γ
f
−xji
k (xji) +

γ

m+ γ
f
−xji
knew (xji) (2.19)

Sampling k. The conditional probability of kjt is

p(kjt = k | t, k−jt) ∝


γf
−xjt
knew (xjt) if k = knew

m−jtk f
−xjt
k (xjt) if t currently used

(2.20)

A more detailed algorithm and derivation can be found at [Ta2005].

2.2.2 Split-Merge posterior sampling

A split-merge algorithm is proposed for HDP by Wang et. al. in [W2012]. The Gibbs

sampler is embellished with a split-merge operation. Two observations, which are tables

in the CRF representation, are picked at random. If the observations are in the same

component then a ”split” is proposed: all the observations associated with that observation

are divided into two new components If the observations are instead in different components,

a ”merge” is proposed: the observations from the two components are placed into the same

component. Then Metropolis-Hasting is used to determined whether the proposed split or

merge operation is accepted.

Now let’s get into more detail by looking at a split case. Let c be the current state and

csplit be the split state, and let (j, t) denote table t in document j, and kjt is the topic of the

specified table. Let S1 = {(j1, t1)}, S2 = {(j2, t2)}, and kj1t1 = k1, kj2t2 = k2. Let mk1 and

mk2 be the number of tables in S1 and S2. S1 and S2 will be receiving tables form Sc assigned

to k1 and k2, Sc is defined in algorithm 2. We then use the sequential allocation restricted

Gibbs sampling to sample kjt from a uniformly permuted Sc where (j, t) are successive table

indexes:

p(kjt = kl | S1, S2) ∝ mklf
−xjt
kl (xjt), l = 1, 2

This is a one-pass Gibs sampling restricted over k1 and k2. If k = k1, then (j, t) will be
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placed in S1, otherwise they will be placed in S2. The process is repeated until all tables in

Sc are visited. Let the realization of kjt be kjt(r), then the transition probability from c to

csplit is

q(c→ csplit) =
∏

(j,t)∈S

p(kjt = kjt(r) | S1, S2)

On the other hand, we have

q(csplit → c) = 1

This is because there is only one way to merge k1 and k2.

Whether the split or merge operation is accepted is determined by Metropolis-Hastings,

and the probability of accepting the operation is

A =
P (csplit)

P (c)

L(csplit)

L(c)

q(csplit → c)

q(c→ csplit)
(2.21)

P (csplit)

P (c)
is the prior ratio and can be calculated as:

P (csplit)

P (c)
= γ

(mk1 − 1)!(mk2 − 1)!

(mk − 1)!

L(csplit)

L(c)
is the likelihood ratio and can be calculated as:

L(csplit)

L(c)
=
fk1({xji : zji = k1})fk2({xji : zji = k2})

fk({xji : zji = k})

where zji is th topic index for word xji, and

fk({xji : zji = k}) =
Γ(V η)

Γ(nk + V η)

∏
V Γ(nVk + η)

ΓV (η)

V is the size of vocabulary, and nk is the number of words assigned to topic k in the corpus.

Algorithm 1 Split-Merge Algorithm

1: Choose two distinct tables (j1, t1) and (j2, t2) at random uniformly

2: if kj1t1 = kj2t2 = k, we perform the Split Case, as in algorithm 2

3: if (kj1t1 = k1) 6= (kj2t2 = k2), we perform the Merge Case, as in algorithm 3

4: Sample u ∼ Unif(0, 1), accept the move if u < A, otherwise reject it.
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Algorithm 2 Split Case

1: Let Sc be the set of tables whose topic is k excluding tables (j1, t1) and (j2, t2) in state

c.

2: Assign kj1t1 = k1 and kj2t2 = k2. Randomly permute Sc, then run the sequential alloca-

tion restricted Gibbs algorithm to assign tables in Sc to k1 or k2 to obtain the split state

csplit. Calculate q(c→ csplit)

3: Calculate acceptance ratio:

A =
P (csplit)

P (c)

L(csplit)

L(c)

q(csplit → c)

q(c→ csplit)

note that q(c→ csplit) = 1, since there is only one way to merge topics from csplit to c.

Algorithm 3 Merge Case

1: Let Sc be the set of tables whose topic is either k1 or k2 excluding tables (j1, t1) and

(j2, t2) in state c.

2: Randomly permute Sc, then run the sequential allocation restricted Gibbs algorithm to

assign tables in Sc to k1 or k2 to reach the original state c. Calculate q(cmerge → c)

3: Assign kj1t1 = kj2t2 = k and kjt = k for (j, t) ∈ Sc to obtain merge state cmerge.

4: Calculate acceptance ratio:

A =
P (cmerge)

P (c)

L(cmerge)

L(c)

q(cmerge → c)

q(c→ cmerge)

note that q(c→ cmerge) = 1, since there is only one way to merge topics from c to cmerge.

2.2.3 Slice Sampler posterior sampling

Exact slice sampler for HDP is proposed by Amini et. al. in [AA2019], and should mix faster

than the conventional HDP with Gibbs sampler. Let’s recall the basic idea of slice sampling:

to sample from f(x), we introduce a nonnegative variable u and look at the joint density

g(x, u) = 1{u ≤ f(x)} whose marginal over x is f(x), then we perform Gibbs sampling on
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g, and in the end we only keep the samples of x and discard those of u.

Now let’s carry the idea over to HDP. To make the implementation of slice sampler easier,

we need to make some changes to the original formulation:

β | γ0 ∼ GEM(γ0), β = (βk) (2.22)

γj | α0 ∼ GEM(α0), γj = (γjt) (2.23)

kjt | β ∼ β (2.24)

tji | γj ∼ γj, i = 1, ...nj (2.25)

zji | tj, kj = kj,tji (2.26)

γjt represents the fraction of customers in restaurant j that sits at table t, and zji is a simpler

representation of ψjtji , the dish for customer i in restaurant j. The overall joint density of

the model is given below:

p(y, f, t, k, γ′, β′) =
∏
j

(
∏
i

[fkj ,tji(yji)γj,tji ]
∏
t

bα0(γ
′
kjt

)
∏
t

βkjt)
∏
k

[bγ0(β
′
k)F (fk)] (2.27)

We augment the model by adding variables uj = uji and vj = vjt. The new density

becomes:

p(y, f, t, k, γ′, β′) =
∏
j

(
∏
i

fkj ,tji(yji)1{uji ≤ γj,tji}
∏
t

bα0(γ
′
kjt

)
∏
t

1{vjt ≤ βkjt})
∏
k

[bγ0(β
′
k)F (fk)]

(2.28)

For sampling of (γ′, u), we first sample

uji | γ′, t, k, β′, v ∼ Unif(0, γj,tji) (2.29)

Then we sample γ′ from

γ′jt | γ′−jt, t, k, β′ ∼ Beta(nt(tj) + 1, n>t(tj) + α0) (2.30)

Similarly, for sampling of (β′, v), we first sample

vjt | β′, t, k, γ′, u ∼ Unif(0, βkjt) (2.31)

14



Then we sample γ′ from

β′k | γ′−k, t, k, γ′ ∼ Beta(nk(k) + 1, n>k(k) + γ) (2.32)

The sampling of t and k are shown below.

p(tji = t | t \ tji, k, θ, γ′, β′, u, v) ∝ fkjt(yji)1{uji ≤ γjt} (2.33)

p(kjt = k | t, k \ kjt, θ, γ′, β′, u, v) ∝ 1{vjt ≤ βk}
∏
i:tji=t

fk(yji) (2.34)

More details about the slice sampler can be found in [AA2019].
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CHAPTER 3

Evaluating Topic Models

Before we start our experiment, we need to find a way to evaluate HDP so that we can

compare the performance of different models. We will need to evaluate the models from

two aspects: first we want to know the best accuracy of the model, which is how close the

predicted classification of each document is to the real label. Second, we want to see how fast

the model can get us to the “optimal” accuracy, and by fast we mean in less iterations. We

also need to consider that in most cases we do not know the “real” label for each document

in real world scenarios, so we will discuss a different metric to evaluate performance on real

data, which is perplexity, and different ways to calculate it.

3.1 Measurement of Performance

In this thesis we will be using normalized mutual information as a measurement of model

performance. In probability and information theory, the mutual information (MI) of two

random variables is a measure of the mutual dependence, or agreement, between the two

variables. It quantifies the “amount of information” obtained about one random variable

through observing the other random variable. Let (X, Y ) be a pair of random variables,

with joint distribution PX,Y and marginal distributions PX and PY . The MI is defined as

I(X, Y ) = DKL(PX,Y ||PX ⊗ PY ) where DKL is the Kullback–Leibler divergence. Mutual

information can go from 0 to ∞, so to be able to compare mutual information of different

sets, we will want to use normalized mutual information (NMI), which is always between 0

and 1.
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3.2 Change Point Detection

We want to find out how many iterations it takes for our NMI curve to converge. This is

equivalent to finding a single change point in the series. A commonly used method for change

point detection is binary segmentation. Binary segmentation searches for a single change

point in the data series using a CUSUM-like procedure, and when a change point is detected,

the series is split into two segments by the change point (hence the name “binary”), and a

similar search is performed in both segments, possibly leading to further splits. The splitting

process is terminated when a certain criteria is satisfied. A limitation of the binary segmen-

tation is that there is a minimum distance requirement between change points. A solution to

this problem is the wild binary segmentation (WBS). Instead of taking the global CUSUM

from the entire data, Wild binary segmentation randomly draw a number of subsamples and

take the CUSUM of each subsample. We then maximise each CUSUM, choose the largest

maximiser over the entire collection of CUSUMs, and take it to be the first change-point

candidate to be tested against a certain threshold. If the change point is considered to be

significant, the same procedure is then repeated recursively on the left and right side.

This method works better than binary segmentation when the spacing between change

points is short, and it is computationally fast. However, since we am only looking for a single

most significant change point, we decided to implement the Binary Segmentation method

instead of the WBS. To estimate mixing time, we can first find all significant change points

using binary segmentation, then pick the one that satisfies our requirements by imposing

conditions. Here we set two thresholds, one is a upper bound on the variance of the segment

to the right of the change point, the idea is that the NMI converges after the change point

so the variance to the right of the change point should be low enough. Another threshold is

the difference between the variance to the left and to the right of the change point, because

we believe the change point should bring a sharp change in variance.

The pseudo code for binary segmentation [F2014] is shown below. Notations: T is a
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threshold for CUSUM, s is the starting point, and e is the ending point. Xb
s,e is the CUSUM

at point b with starting point s and ending point e. var(a, b) is the variance of the sequence

from point a to point b.

Algorithm 4 Binary Segmentation

1: procedure BiSeg(s, e, T ):

2: if e− s < 2 then

3: stop

4: else

5: b0 = argmaxb∈{s,...e−1}|Xb
s,e|

6: if |Xb0
s,e| > T then

7: add b0 to the set of change points

8: db0 = |var(s, b0) − var(b0 + 1, e)| is the corresponding difference-in-variance

statistic for point b0

9: BiSeg(s, b0)

10: BiSeg(b0 + 1, e)

11: else

12: stop

Usually we set s = 1 and e = index of last element. To ensure that the NMI is starting to

converge at change point p, we impose a constraint Tvar on variance so that var(p, e) < Tvar.

Any change point that does not satisfy the variance constraint will be discarded. For each

change point we get from binary segmentation, we find the corresponding dp statistic. The

mixing time occurs at p0 = argmaxp∈all change points(dp) with all p satisfying the variance

constraint.

There are some downsides to our current implementation: for this to work, the sequence

after the change point needs to converge so that the variance is small enough. If the sequence

after the change point does not converge nicely, the accuracy will drop significantly. The

accuracy is also low if the convergence transition is smooth. As stated earlier, my implemen-
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tation of binary segmentation contains a threshold for the difference in variance between the

two segments divided by the change point, so our function is more likely to correctly locate a

change point with a sharp change in NMI trend. For NMI of slice sampler, there is a distinct

point where NMI suddenly stops climbing and stabilizes, while the change points of the other

two implementations are usually nor as sharp, so our function has a better estimation of the

slice sampler outputs.

3.3 Estimating Perplexity for Real Data

For simulated data, since we have a ”true” label for each generated document, we are able to

calculate the accuracy. But for real data, we usually do not know the real topic of documents,

so we will need another metric to measure the performance of the model. One such metric

is perplexity.

Perplexity is probably the most widely-used metric in evaluating topic modeling. In most

cases, we calculate the perplexity of some held-out documents: that is, we divide the data

into a training set and a testing set. Then we train a HDP model on the training set and uses

the topic-word distribution from the training set to estimate the perplexity, or likelihood, of

the testing set. To put this in equation, perplexity of a held-out abstract with words w1, ...wI

is defined to be:

exp
(
− 1

I
log p(w1, ...wI | training corpus)

)
(3.1)

The likelihood for a single document can be written as:

p(w, z, θ | Φ, αm) = p(w | z,Φ, αm)p(z | θ)p(θ) (3.2)

By marginalizing θ, we have the probability of obtaining topic z for each document w as
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shown in the equation below:

P (zi = t | w, z−i,Φ, αm) ∝ P (wi | zi = t,Φ)P (zi = t | z−i, αm) (3.3)

∝ φwi | t
{Nt}−i + αmt

N − 1 + α
(3.4)

where {Nt}−i is the number of times topic t occurs in the current document excluding

position i and αm is the Dirichlet prior parameters for the data. If we run Gibbs sampler

until it mixes, we can have access to the samples from P (z | w,Φ,m).

For the predictive density when given training set, let’s denote words from training set

as w′ and words from the held-out set as w, and the same goes for z′ and θ′. The predictive

density can be written as:

P (w, z, θ | w′) =

∫
P (w, z, θ | Φ, αm)P (Φ, αm | w′)dΦdαdm (3.5)

where Φ is the word-topic distribution. Usually we use m = 1T/T where T is the number

of topics and 1T is a vector of 1 with length T. We can marginalize this equation further to

obtain

P (w, z | w′) =

∫
P (w, z | Φ, αm)P (Φ, αm | w′)dΦdαdm

P (w | w′) =

∫
P (w | Φ, αm)P (Φ, αm | w′)dΦdαdm

Finding P (w | w′) is the key to estimating perplexity. We have access to P (Φ, αm | w′)

from the training set, the difficulty is finding P (w | Φ, αm). Wallach et. al. listed several

methods for estimating P (w | Φ, αm) to evaluate perplexity for LDA topic models in [W2009].

For the rest of this section, we will refer to the current document as w, its latent topic

assignment as z, and its document-specific topic distribution as θ.

But the methods and equations listed by Wallach et. al. are meant for LDA models. If

we want to find the perplexity of HDP models, we will have to make some changes. For the

HDP models we will use π instead of θ, and the likelihood equation is shown below:

p(w, z, π | β,Φ, αm) = p(w | z,Φ, αm)p(z | π)p(π | β)
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Note that we have p(π | β) instead of p(θ), which adds to the complexity. We want to figure

out the density of p(π | β).

Remember that while LDA has only a fixed number of topics, HDP can generate up to

infinite number of topics, so we will need to truncate β to its first K elements for a large

enough K. By the definition of Dirichlet process and stick-breaking process, we have

(π1, π2, ...πK−1,
∞∑
k=K

πk) | β ∼ Dir(α0β1, ...α0βK−1, α0

∞∑
k=K

βk)

Let’s redefine θ = (π1, π2, ...πK−1,
∑∞

k=K πk) and let m = (mk) where

mk = βk for k = 1, ...K − 1,mK =
∞∑
k=K

βk

Then we have θ | β ∼ Dir(α0m) and this is similar to LDA. That is, we can approximate

HDP by the LDA by merging all clusters with k ≤ K for m.

But in most cases we do not have access to β, so we can approximate β using the property

that E[π] = β for HDP models. Remember that π is the document-topic distribution. So

we can use π′ from training data:

β ≈ 1

J

J∑
j=1

[π′]j (3.6)

Note that since the HDP output is naturally truncated and has only a finite number of

topics, we do not need to truncate β.

In this paper, the harmonic means method is implemented to estimate perplexity. Besides

the harmonic means methods, we will also talk about some of the other methods listed in

[W2009].

3.3.1 Harmonic Means

Harmonic means method is based on the following unbiased estimator:

1

P (w)
=
∑
z

P (z | w)

P (w | z)
≈ 1

S

∑
s

1

P (w | z(s))
(3.7)

21



where z(s) is drawn from P (z|w). And we get the following:

P (w | Φ, αm) ≈ 1
1
S

∑
s

1
P (w | z(s),Φ)

(3.8)

= HM({P (w | z(s),Φ)}Ss=1) (3.9)

In the equation above, z(s) ∼ P (z | w,Φ, αm) and HM() is the harmonic means.

Many have expressed reservations regarding the harmonic means, nor is it the fastest way

to find likelihood. But harmonic means is still widely used due to its ease of implementation

and relative computational efficiency. We also decided to use harmonic means for estimating

perplexity in my thesis. The algorithm to implement harmonic means is shown in 5. For the

notations, words is a vector of words from the testing set, topics is the topic-word matrix

from the training model, prior is a vector of prior probabilities for the topics, and α s a

smoothing term. There are T0 topics and V0 words n total, and Nd is the number of words

in the document.

The algorithm listed above gives us the likelihood of a single document at one iteration.

To find the likelihood of the whole corpus, we simply add up the log likelihood of each

document. This means if we want to find out how perplexity change over time, we have to

iterate Harmonic means over all iterations and for each iteration we also have to iterate over

all documents, which can be time consuming.

3.3.2 Chib-style Estimation

For any set of ”special” latent topic assignments z∗, the following holds by Bayes’ rule:

P (w | Φ, αm) =
P (z∗, w | Φ, αm)

P (z∗ | w,Φ, αm)
(3.10)

Chib-style estimation introduces a family of estimators that first pick a z∗ and then

estimate the denominator and numerator respectively. Any choice of ”special state” z∗ is

valid. z∗ is set by iteratively maximizing 3.3 for positions 1, . . . , N after a few iterations of

Gibbs sampling. The algorithm is listed in Algorithm 6.
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Algorithm 5 Harmonic Means

1: procedure HM(words, topics, prior, iters, α):

2: initialize Nz, a vector to keep track of topics

3: initialize zz, a vector to keep track of words in the document

4: for each word in document do

5: probability of each topic = the column of topics corresponding to current word

× prior

6: A topic is picked according to the calculated probabilities

7: Nz[topic picked] = Nz[topic picked] + 1

8: for each iteration do

9: loglik = 0

10: for each word in document do

11: Nz[topic of word] = Nz[topic of word] + 1

12: probability of each topic = the column of topics corresponding to current word

× prior

13: A topic is picked according to the calculated probabilities

14: Nz[new topic] = Nz[new topic] + 1

15: loglik = loglik + log(topics[word, newtopic])

16: perplexity = − log(
∑

exp(loglik for each iteration))
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Algorithm 6 Chib-style Estimation

1: initialize z∗ to a high posterior probability state

2: sample s uniformly form 1,...S

3: sample z(s) ∼ T̃ (z(s) ← z∗)

4: for s′ = (s+ 1) : S do

5: sample z(s′) ∼ T (z(s′) ← z(s′−1))

6: for s′ = (s− 1) : −1 : 1 do

7: sample z(s′) ∼ T̃ (z(s′) ← z(s′+1))

8: P (w | Φ, αm) ≈ P (w, z∗ | Φ, αm)/ 1
S

∑
s′ T (z∗ ← z(s))

Here T is any Markov chain operator, including the Gibbs sampler. We refer to T as

the forward operation transition and it satisfies

P (z∗ | w,Φ, αm) =
∑
z

T (z∗ ← z)P (z | w,Φ, αm) (3.11)

We can think of T as sequentially applying (3.3) for positions 1 to N, and the reserve operator

T̃ can be constructed by applying (3.3) backwards, and the definition is as follows:

T̃ (z∗ ← z) = T (z ← z∗)
P (z∗)

P (z)
(3.12)

3.3.3 “Left-to-Right” Algorithm

This approach is proposed by Wallach et. al. The main idea is to decompose P (w | Φ, αm)

as:

P (w | Φ, αm) =
∏
n

P (wn | w<n,Φ, αm) (3.13)

=
∏
n

∑
z≤z

P (wn, z≤z | w<n,Φ, αm) (3.14)

Each sum over z≤z can be approximated using an approach inspired by sequential Monte

Carlo methods as detailed in Algorithm 7:
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Algorithm 7 Left-to-Right

1: initialize l := 0

2: for each position n in w do

3: initialize pn := 0

4: for each particle r = 1 : R do

5: for n′ < n do

6: sample z
(r)
n′ ∼ P (z

(r)
n′ |wn′ , {z

(r)
<n}−n′ ,Φ, αm)

7: pn := pn +
∑

t P (wn, z
(r)
n = t|z(r)

<n,Φ, αm)

8: sample z
(r)
<n ∼ P (z

(r)
n |wn, z(r)

<n,Φ, αm)

9: pn := pn
R

10: l := l + log(pn)

11: log(P (w | Φ, αm)) ≈ l
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CHAPTER 4

Experiments

We want to compare the performance of HDP with slice sampler to existing methods. In

this chapter, we will talk about the different packages we used and how to run them in R.

Then we will test the packages on simulated data and real data.

4.1 Packages and Implementations

We will briefly talk about the packages we have used for comparison and discuss how to run

them. Since there lack packages for HDP in R or python, the packages we are using are

mostly taken directly from Github. These code are mostly not perfect and can be difficult

to compile or run, so in this section we will go over the implementations and packages I have

used and briefly talk about how to use them. I am using a Windows laptop with Ubuntu

terminal installed.

4.1.1 Exact Slice Sampler

This package is written by Amini et. al. and implements the algorithm proposed in [AA2019].

The code can be found at [AA]. The code is written in R and relatively easy to run. The

function hdp-slice-samplerC runs the posterior inference. The input is a list object where

each element is a vector representing the words in each document. The vectors can be

numeric or characters. The output is also a list of equal length, where each element is a

vector representing the topic assigned to each word for each document. This allows for easy
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computation of NMI and perplexity.

4.1.2 Nicola Roberts

The package implements the HDP from [Ta2005] and can be found at [NR], along with

instructions on installation. For posterior inference, we will need to first run hdp-quick-init

to create a Chain object, then run hdp-posterior with the Chain object as input, and we

will get a Posterior object. The input for hdp-quick-init is a matrix object with each row

representing a document and each column representing a word. To find the topic assigned

to each document, we need to use the clust-dp-counts attribute of the Posterior class, which

is a table with each row as a document and each column as topic. Note that the first row of

the table does not represent any document and will not be evaluated.

A word of caution is that hdp-posterior function can only run in a Linux environment,

such as Mac OS or Ubuntu. If run in a Windows environment, the function will cause

Rstudio to abort the R session. Also, the posterior class object does not provide information

on the topic assignment for each single word in the trained model, so we cannot obtain

the topic-word matrix for each iteration and thus cannot calculate the perplexity of Nicola

Roberts models.

4.1.3 Split-Merge Algorithm

This package is written by Chong Wang et. al. implementing the Split-Merge algorithm from

[W2012] and can be found at [DB]. The code is written mostly in C++ and requires the GSL

or GNU scientific library, and it has to be compiled and run under a Linux environment. I

used the Ubuntu terminal on Windows to run this package. The package files contain a hdp

folder which includes all necessary code to run HDP and a Makefile for compiling the code.

To compile the code on my laptop, I added the command .PHONY: hdp as the first line of

the Makefile.
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The input files have to be in ldac format, and we can transform txt files to ldac file using

the python file text2ldac.py. This file is not included in the package and can be found at

[TL]. First we need to create a folder as corpus with each txt file representing a document

in the corpus. The txt file includes all words in the document. We then pass the folder to

text2ldac.py, which gives us the desired ldac format input in the .dat file. The command

used is python text2ldac.py input-folder.

Then we want to train our HDP model using the ldac file. This can be done using the

./hdp –algorithm train –data input.dat –directory training-directory command where –data

is the input file in ldac format and –directory is the directory we want to save the output

files. Additional arguments of the training function include –max iter that allows us to

set the maximum iterations of posterior MCMC samplings to perform and –save lag that

specifies the number of iterations lapsed before the output for a iteration is saved into our

pre-specified directory. For example, if –save lag is set to be 2, then only the output of every

other iteration will be saved. Another important argument is –split merge, which allows us

to choose whether to do the Split-Merge sampling or just the normal Gibbs sampling.

For the output, the package outputs three files for each iteration: a topics.dat file, a word-

assignments.dat file, and a .bin file. The word-assignments.dat file is the most useful for us.

The file contains a table with 4 attributes for every single word in the corpus: document

id, word id, table id and topic id. We can infer from this table the topic assigned to each

document. There is also a state.log file from the output that records the likelihood for each

iteration.

There is one major problem with the package: the output files and input files does not

have the same order for words and documents. For example, the first input document (file)

in the folder might be indexed 11 in the output word-assignments.dat file. If we cannot

reorder the output file index to match with the input, we won’t be able to calculate NMI.

To do that, we can match the input and output files by looking at the frequencies of words

in each document. An algorithm is proposed below in Algoritm 8:
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Algorithm 8 Word match

1: procedure rematch(lin, lout, T ):

2: for 1 to 5 do

3: for n from 1 to 15 do

4: match words with unique frequency from Tin(n) and Tout(n)

5: remove matched words from lin and lout

6: for 1 to 5 do

7: for each document in lin do

8: if only one unmatched word in document then

9: match word by matching corresponding document in lout

Luckily, the ordering is not totally random. For example, when the number of documents

and words are fixed, the ordering pattern is the same, so we do not have to perform the

matching process for every single corpus.

4.1.4 DAI Python Implementation

The DAI python code also implements HDP from [Ta2005] using direct assignment inference,

and can be found at [DAI]. The code are contained in just two files, HDPcodeup.py and

vocabulary.py, and to run the code we only need to download the two files and does not

require compilation. The python implementation reads a txt file as input where the txt file

represents a corpus, and each row of words represents a document. The output is a CSV

files, where the row represents iterations and the column represents each document. The

entry is thus the topic assigned to each document at each iteration.

To run the code in R, you will need the reticulate package, but some functions from the

reticulate package, such as source.python, can change some functionalities in R and result in

errors, so we decide to not use this implementation for testing.

29



4.2 Simulated Data

Now we want to generate some simulated data sets to test the performance of our models.

We are not only interested in comparing different implementations, we also want to see if

changing the number of documents in the corpus will affect the mixing time of HDP.

4.2.1 Design

We generate corpus with different number of documents, denoted J, and W different words

choices, with each word choice representing a different topic. Each document in the corpus

contains 300 words, and each word is generated so that it has a true ”latent” topic and a

observed topic. The observed topic can be the same as the true topic. The topic of each

document is determined by majority vote of the true word topics in the document.

We choose to test the performance on data with J = 100, 75, 50, 25, 20. For each value

of J, we generate 10 different sets of corpus, and for each corpus we perform 5 posterior

samplings and find the mean NMI curve. We then apply our Binary Segmentation algorithm

to find the mixing time for each corpus and compare the distribution of mixing time for

different J or W using box plots.

4.2.2 Tuning Parameter for Slice Sampler

In chapter 2, we discussed an alternative formulation of the HDP model for ease of implemen-

tation of slice sampler for posterior sampling. As shown in equation (2.22), the parameters

α0 and γ0 will affect the distributions of β and γj respectively. Before we start, we want to

know how changing the shape of distributions of β and γj can affect the shape of the NMI

curves.

Let’s do a quick recap of the structure of an HDP model. The HDP is characterized by

a hierarchy of Dirichlet Processes, and in our case it is a two-layer structure. In equations
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(2.22), the Dirichlet processes are characterized by stick-breaking processes, and we can

see that the first layer of stick-breaking process generates a discrete distribution for β and

the second layer generates discrete distributions γj for each document j. In the original

HDP formulation from [Ta2005] as shown in equation (2.10), β is the base distribution for

the Dirichlet process of the second layer, whereas in the formulation for slice sampling β

becomes a distribution for kjt, the dish at table t from restaurant in the CRF view, and γj

is the distribution of tji, the table that customer i from restaurant j is sitting at.

Now that we know that γ0 and α0 does in the model, we want to know how tuning these

two parameters will affect the performance of HDP. In our case, we want to see how different

combinations of γ0 and α0 will affect the NMI curve of the HDP classifications. For this

purpose we perform the following experiment where we generate 6 corpus as described in

the previous subsection with J = 50,W = 20. For each combination of γ0 = 0.5, 1, 3, 5 and

α0 = 0.5, 1, 3, 5, we will perform the HDP with slice sampler on each corpus and calculate

the mean NMI curve.

Figure 4.1: NMI curve for different γ0 using slice sampler with α0 = 3, J = 50
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Figure 4.2: NMI curve for different α0 using slice sampler with γ0 = 3, J = 50

Our results show that changing γ0 has a relatively large effect on the NMI curve, as

shown in Figure 4.1. It is clear that NMI curves with smaller γ0 value lies below the ones

with higher γ0 value, which means lower performance. When γ0 is less than 3, a smaller

γ0 will result in lower NMI and a longer mixing time, but increasing γ0 while γ0 ≥ 3 does

not result in significant improvements in the NMI curve. On the other hand, changing α0

does not result in much difference in the NMI curve given that γ0 remains the same. This

is shown in Figure 4.2, where we set γ0 = 3. We can see that the NMI curve of different α0

does not differ significantly. So in our experiments later on, we set γ0 = 3 and α0 = 3 for

our HDP model with slice sampler.

4.2.3 Mixing Time and Number of Words

First we want to explore how changing W, the number of different word topics, will af-

fect mixing time. We set J = 30, which is 30 documents in the corpus, and set W =

10, 20, 30, 50, 70, 100, then we use the Nicola Roberts package and slice sampler HDP for
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posterior inference. The resulting box plots for the Nicola Roberts package is shown in

Figure 4.3, and the box plots for slice sampler HDP is shown in Figure 4.4.

Figure 4.3: Mixing time for different W with Nicola Roberts package, J = 50

Here are some observations:

First, the slice sampler implementation mixes significantly faster. We will get more time

to talk about this later. Second, there does not seem to be a significant change in mixing

time for the Nicola Roberts package as W increases. The mixing time for the slice sampler

implementation does seem to have a slight upward trend as W increases.

Let us try another set of data. This time we set J = 50. The box plots for the Nicola

Roberts package is shown in Figure 4.5, and the box plots for slice sampler HDP is shown

in Figure 4.6.

There does not seem to be any trends for either implementation. The mixing time for

slice sampler might seem to increase slightly with W, but that is because the mixing time

or W = 10 is significantly lower than other W. We can conclude that increasing the number

of word topics does not lead to significant changes in mixing time, so we will only focus on
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Figure 4.4: Mixing time for different W with slice sampler HDP, J = 50

changing J in the following sections.

4.2.4 Mixing Time and Number of Topics

Now we want to see how changing the number of documents in the corpus can affect the

mixing time. We set W = 20, meaning that there are in theory 20 topics for each document.

The estimated mixing time for the Nicola Roberts package and slice sampler are shown in

Figure 4.8, but since it is hard to read the distribution of mixing time for slice sampler,

Figure 4.7 is made separately for slice sampler.

Figure 4.8 shows that the mixing time steadily decreases as J increases, and begins to

stabilize at around J = 50. The stabilizes mixing time is around 120 iterations. The mixing

time distribution for smaller J, such as J = 5, 10, have larger variance. This is largely due to

the drawbacks of out Binary segmentation mentioned before. Also, the NMI curve becomes

more unstable with small J and occasionally the NMI would not converge. In fact, we do

not think it’s a good idea to apply the Nicola Roberts package to corpus with less than 20
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Figure 4.5: Mixing time for different W with Nicola Roberts package, J = 50

documents due to the poor performance.

Figure 4.7 shows that the mixing time increases as J increases, and stabilizes when J = 50.

The final mixing time is around 17 iterations. Unlike the Nicola Roberts package, the slice

sampler performs well on corpus with small number of documents.

Now let’s add the implementations from Blei’s package to the comparison, which includes

an implementation using just the Gibbs sampler and an implementation of the split-merge

algorithm. The mixing times of the Blei package is compared with those of Nicola Roberts

package and slice sampler HDP in Figure 4.8.

We can see that the slice sampler does have shorter mixing time for all J. The two imple-

mentations from the Blei package, labeled ”non-split” for normal Gibbs sampler and ”split”

for Split-Merge algorithm in the plot, have roughly the same performance as the Nicola

Roberts package, and the mixing time also decreases as J increases and stabilizes at around

J = 25. It seems that the main purpose of the Split-Merge algorithm is not to improve the

mixing time. Also note that the graph seems to suggest that the Blei package implementa-
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Figure 4.6: Mixing time for different W with slice sampler HDP, J = 50

tions perform better than the Nicola Roberts package in terms of mixing time variance for

smaller J, but looking at the original NMI output suggests that the Blei implementations

does not perform well for small number of documents either. Also, it is worth noting that the

NMI have high starting positions for the Blei implementations. For Nicola Roberts package

and slice sampler HDP, the NMI would start at arounf 0.4 to 0.5, and then converge between

0.9 to 1. The Blei implementations would have NMI starting at around 0.7 or even as high

as 0.8, and this is more significant with small J. So here we express reservations on the Blei

package as well as our estimated mixing time for both split and non-split.

4.3 Real Data

We are not satisfied with only testing on the simulated data. We want to see how HDP

with slice sampler and other posterior sampling methods perform on real data by comparing

their perplexity. In this section we will compare the perplexity of slice sampler and the two

Blei methods (one with split-merge, the other with normal Gibbs sampler). We are unable
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Figure 4.7: Mixing time for different J with slice sampler HDP

to evaluate the output of the Nicola-Roberts package since it does not give the assignment

of topic to each word, which are needed for building doc-topic assignment matrices for

estimating perplexity.

4.3.1 Design

The data we will be using is a corpus of NSF research award abstracts from 1990 to 1994

and can be found in [BoW]. The corpus consists of 49074 documents, each representing

an abstract from a award-wining paper, and 30797 distinct words. However, as mentioned

earlier, we have to match the document and word from the Blei package outputs to the

original input, and our matching algorithm cannot handle too many documents or words,

so we have to take a subset of the data for evaluation. First we want to cut down on the

number of words, and from our observation words that are less than 4 characters are either

trivial words that can be considered as stop words or words that does not make sense (such

as aaa), so we drop all words less than 4 characters from the data. Then we take a subset
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Figure 4.8: Mixing time for different J with all 4 samplers

of 2000 words, and sample 200 documents from the data. This gives us a corpus with 200

documents and 377 distinct words.

We will do a cross-validation to estimate perplexity. The corpus is divided into 4 parti-

tions, each time we train our HDP model using 3 partitions and estimate the perplexity using

the remaining partition as the test data. Then we will take the average of the 4 perplexity

curves as our final perplexity curve.
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4.3.2 Perplexity vs NMI

Before we apply our methods to real data, we want to make sure that our implementation of

Harmonic Means for estimating perplexity is accurate. To test that, we will perform a cross

validation on out simulated data using Slice Sampler HDP, estimate the perplexity for each

cross validation, find the mixing time by finding the change point in the perplexity curve

and then compare the perplexity mixing time to the NMI mixing time.

Here’s how we will perform our cross validation: for each corpus, we split the documents

into 5 sets, that means we will perform 5 cross validations and each time we use 4 sets of

documents to train our HDP model and obtain the word-topic distribution, while the 1 set

of documents left will be used as testing set for perplexity estimation. We will use the 10

corpus generated earlier for J = 100, 75, 50, 25, 20, and for each corpus we calculate the mean

perplexity for mixing time estimation. We compare the mixing time estimation using NMI

curves to those estimated using perplexity in Figure 4.9.

Figure 4.9: Mixing time of NMI and Perplexity for slice sampler
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We can see that although there are some variations, the mixing time for both methods

does not have significant differences for each J value. This should be able to show that our

Harmonic means implementation for perplexity estimation is reasonable and safe to use.

4.3.3 Perplexity Comparison

The perplexity curves of the different HDP models are displayed in Figure 4.10. For better

visual, the perplexity curve of the Blei methods are pictured in Figure 4.11. Contrary to our

conclusion by comparing NMI curves, slice sampler does not mix significantly faster than

the Blei implementations, all three methods mix at about the 20th iteration.

Figure 4.10: Mean perplexity of real data

However, it is interesting how the perplexity for slice sampler converges to a much bigger

value than the perplexity of the Blei methods. The likelihood of slice sampler converges at

around -11000, and the likelihood of both Blei models converges at around -19000. There
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Figure 4.11: Mean perplexity of real data for Blei methods

is almost no difference between perplexity curve of the split-merge and non split-merge

methods from the Blei package. Also note that the change in likelihood is much larger for

slice sampler. I think it is fair to say that by comparing the perplexity, the slice sampler

performs better, but there is no evidence showing that it mixes faster than other methods.
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CHAPTER 5

Conclusion

In this thesis, I have discussed hierarchical Dirichlet process and its different posterior sam-

pling methods, including the original Gibbs sampling method, the split-merge method which

can be considered as an extension of the Gibbs method, and the Slice sampling method. I

then tested three different packages, the Nicola Roberts package that implements Gibbs

sampling method, the Blei package that implements both Gibbs sampling and split-merge

method, and Amini’s package for slice sampling, on simulated corpus with different number

of documents. The performance of the different implementations are evaluated by finding

and comparing the distribution of the mixing times of the NMI curves, and our result shows

that slice sampler mixes faster than both the Gibbs sampling method and the split-merge

method. We also found that as the number of documents increases, the mixing time for

Gibbs sampling method and split-serge method will decrease and the mixing time for slice

sampling method will increase, and both will stabilizing after the number of documents reach

50-75.

I also compared the performance of slice sampling method and the two methods (split-

merge and Gibbs) from Blei package by estimating and comparing their held-out perplexity

curve. The Nicola-Roberts package is not used since it does not produce the necessary

outputs needed for perplexity estimation. The slice sampler method has better perplexity

but shows no evidence of faster mixing, contrary to the results we get from the simulated

data. This can be due to the fact that there are more words than documents in our real

corpus: in out simulated data, there are always more words than documents in the corpus.
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So we cannot make the conclusion that HDP with slice sampler mixes faster than other HDP

implementations.

There are several parts of this work that can be improved in future studies. First, I am

assuming that the packages are implementing the HDP algorithms correctly. Also, the Blei

package has NMI that starts off at high level, so I do express reservations on the estimated

mixing time from the Blei package. The last thing is that our data generation process is not

very straightforward: a better way might be specifying the topic of the document first and

then generate the words in the document.
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