
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Data-Driven Real-Time Risk Predictive Intelligence – A Use Case of Go-Arounds

Permalink
https://escholarship.org/uc/item/87453364

Author
Dai, Lu

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/87453364
https://escholarship.org
http://www.cdlib.org/

Data-Driven Real-Time Risk Predictive Intelligence

– A Use Case of Go-Arounds

By

Lu Dai

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering – Civil and Environmental Engineering

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Mark Hansen, Chair

Professor Joan Walker

Professor Maximilian Auffhammer

Spring 2022

Data-Driven Real-Time Risk Predictive Intelligence

– A Use Case of Go-Arounds

© Copyright 2022

by

Lu Dai

All rights reserved

1

Abstract

Data-Driven Real-Time Risk Predictive Intelligence

– A Use Case of Go-Arounds

by

Lu Dai

Doctor of Philosophy in Engineering – Civil and Environmental Engineering

University of California, Berkeley

Professor Mark M. Hansen, Chair

Although the National Airspace System is one of the safest and most efficient

transportation infrastructures, growing air traffic demand and the implementation of

autonomous technologies place strain on its safety and efficiency. Recent advances in

computing and artificial intelligence (AI) offer an unprecedented capability to incorporate

intelligent decision-making into a wide variety of spheres of our life, most notably for big

and practical engineering problems. In this dissertation, we develop data-driven real-time

risk predictive intelligence to provide decision support for the air transportation system,

particularly for the critical air traffic control process during flight approach and landing.

Anomalous aircraft behaviors and states are of high interest to the aviation community

and hold the keys to ensuring safe, efficient, and environmentally clean flight operations.

Through one type of flight anomaly – go-arounds (the aborted landing of an aircraft on

final approach) – this dissertation demonstrates the complex interplay between

transportation engineering and AI: from theoretical study and algorithmic development, to

the computer and software systems, and to the eventual deployment. We investigate the

concrete technical and operational challenges of building risk predictive intelligence by

integrating a blend of advances from data science, machine learning, software systems,

domain-specific sciences and engineering knowledge. While this dissertation focuses on

the aviation domain, the established methodological framework has the potential in many

other contexts to assess the risk of non-nominal events.

We first design a trajectory-based anomaly detection algorithm for identifying go-

around events from raw and noisy surveillance data. The current practice of go-around

detection mainly relies on voluntary self-reports from controllers or pilots,

unrepresentative survey/interview data, or a limited sample of simulation/training data. We

therefore propose a rigorous way of detecting go-around occurrence by analyzing historical

four-dimensional flight trajectories. This algorithm not only labels the flight in binary

responses but also annotates when and where the go-around occurred. We further validate

the detection results with another independent data source and find that our detection

2

algorithm identifies more true positive events since it can capture go-arounds initiated

farther away, and with more robust criteria.

In order to capture the heterogeneous interacting components that may affect the go-

around occurrence, feature engineering is carried out to derive a wide variety of operational

and environmental variables according to literature search, theoretical studies, interviews

with domain experts, and data mining. Among the seven categories of features derived –

aircraft characteristics, approach stability, in-trail separation, weather, airport conditions,

go-around clustering effects, and runway incursion risk, we propose a new metric termed

runway occupancy buffer (ROB) to better reflect air and surface operations interplay

during flight approach. We train machine learning models to predict this metric conditioned

on other categories of features. The predicted value not only serves as a feature input for

modeling go-arounds, but may also directly assist air traffic control in maintaining safe,

efficient buffers between successive arrivals.

With the labeled events and derived features, we then investigate the traffic and

environmental conditions that affect go-around occurrence by quantifying their underlying

contributions through principal component logistic regression and counterfactual analysis.

While previous studies have investigated various causes of go-around occurrence, none has

developed a comprehensive, quantitative assessment of the relative importance of a wide

range of factors. Our method overcomes the high dimensionality and multi-collinearity of

the original data set while preserving the ability to assess the contribution of the original

features to go-around occurrence. We find that factors in the top tier of importance include

the approach stability of the subject aircraft, its separation and speed difference from the

aircraft in front, and factors related to visibility and cloud ceiling.

While the post-event observation-driven insights help decision-making at a strategic

level, being able to predict go-around probabilities could provide tactical guidance to

foresee and perhaps prevent go-arounds. Existing models on go-around predictions are

based on a single snapshot of features in the time series process. We fill the gap by

developing machine-learning-based engines for multivariate sequential predictions of go-

around probabilities over the entire approach. The sequential models exhibit a consistent

and monotonically increasing performance as more information is preserved in the internal

state when the flight gets closer to the airport. The LSTM, in general, performs better in

predicting go-around occurrence thanks to their continuous hidden state space and ability

to learn dependencies.

To address the class imbalance issue inherent with the go-around prediction problem,

or for any rare event prediction, data augmentation is explored to generate high-fidelity

synthetic go-around sequences for improved model training. In particular, we synthesize

domain-specific insights with concurrent advances in the Generative Adversarial Networks

(GANs) literature to design a GAN architecture for the go-around use case, capable of

generating multivariate sequences with variable length and mixed data types. Empirically,

we find that this architecture improves the fidelity of the generated go-around sequences,

in terms of sequence length, feature distribution, and serial correlation. The performance

of the go-around prediction model is compared with different amounts of synthetic go-

3

arounds added to the training set. Experimental results show that models trained with 30%

go-around samples perform better. Further efforts on model development and

generalization are required for researchers to confidently use such workflows.

We additionally present the Go-Around Prediction (GAP) software service, which

encapsulates all these pieces of work into a practical application system to provide real-

time guidance to air traffic control and ease the future design of risk predictive intelligence.

To enable the GAP capabilities, we build the real-time data injection pipeline atop Apache

Software Service, ensure pre-trained models can be promptly executed in response to real-

time messages, identify suitable test scenarios for the real-time emulation demonstration,

and develop a web-based user interface to display the real-time representation of the go-

around prediction results. We demonstrate the feasibility and practicality of the GAP

service by applying it to a real-world test scenario, with the end-to-end real-time data input

and go-around detection output. The GAP software system provides a foundation for

designing, developing, and deploying a progression of capabilities that expedites the

discovery, prognosis, and mitigation of safety-related threats in transportation systems.

Together, various components of this dissertation work are closely interconnected to

enable data-driven real-time risk predictive intelligence, while at the same time, each

component offers its own contribution. The methodology framework includes the anomaly

detection algorithm to identify risky events from unlabeled data, statistical models to

uncover and quantify the factor contributions to the event occurrence, generative

adversarial networks to augment the minority class, sequential learners to continuously

monitor developing risks, and a data streaming pipeline for real-time deployment. It

advances the state-of-the-art and is the first effort in realizing a multi-domain situational

awareness, predictive, and alerting tool for go-around occurrences, therefore an end-to-end

actionable solution to practitioners. In the spirit of near-term practicality, we offer low-cost

building blocks that can be used for other real-world applications with data of similar

structure, such as risk mitigation in future transportation systems where complexity is

expected to be greater with the introduction of autonomous vehicles and urban air mobility

into the legacy infrastructure. In view of long-term applicability, the dissertation work

holds initial promise to inspire more and further research by theoreticians and practitioners

to develop data-driven real-time solutions to predictive intelligence in a broader domain.

i

To my family.

ii

Table of Contents

Table of Contents .. ii

List of Abbreviations ... vi

List of Figures .. ix

List of Tables .. xii

Acknowledgments.. xiii

1. Introduction .. 1

1.1. Safety First .. 1

1.2. Go-Arounds... 2

1.3. Learning and Decision Making ... 5

1.4. Objective and Challenges ... 6

1.5. Structure of the Dissertation ... 8

1.6. Contributions... 10

2. Literature Review ... 13

2.1. Preliminaries ... 13

2.2. Operational Anomalies During the Approach .. 13

2.3. Machine Learning Frameworks .. 16

2.3.1. Classical Machine Learning .. 16

2.3.2. Markovian models ... 17

2.3.3. Recurrent networks .. 18

2.3.4. Generative adversarial networks ... 19

3. Anomaly Detection .. 21

3.1. Go-Around Detection.. 21

3.2. Validation .. 25

4. Feature Engineering ... 28

4.1. Overview ... 28

4.2. Information Cutoff Gate ... 28

4.3. Features ... 29

4.3.1. Aircraft and Runway Characteristics ... 30

4.3.2. Approach Stability ... 30

iii

4.3.3. In-trail Separation .. 32

4.3.4. Weather .. 33

4.3.5. Airport Conditions ... 33

4.3.6. Go-Around Clustering Effect .. 34

4.3.7. Runway Incursion Risk ... 34

4.4. Feature Types .. 35

5. Runway Occupancy Buffer .. 38

5.1. Overview ... 38

5.2. Related Work .. 39

5.3. Empirical Analysis .. 40

5.3.1. Definition ... 40

5.3.2. Calculation ... 42

5.3.3. Observed statistics ... 42

5.4. Runway Occupancy Buffer Prediction ... 45

5.5. Results ... 47

5.5.1. Model Performance ... 47

5.5.2. Estimation result .. 49

5.5.3. Feature importance .. 50

6. Modeling Go-Arounds Using Principal Component Logistic Regression 53

6.1. Overview ... 53

6.2. Data Preprocessing.. 53

6.3. Standard Logit Model ... 54

6.4. Principal Component Logistic Regression (PCLR) and Interpretation 55

6.4.1. PCLR of mixed data .. 55

6.4.2. Factor Loading Analysis .. 57

6.5. Estimation Results .. 58

6.5.1. Factor Analysis and Model Result... 58

6.5.2. Transformation of coefficients .. 61

6.5.3. Counterfactual Analysis .. 63

6.6. Chapter Summary ... 66

7. Sequential Prediction of Go-Around Occurrence .. 68

7.1. Overview ... 68

7.2. Related Work .. 68

iv

7.3. Problem Formulation .. 69

7.4. Classical Machine Learning .. 70

7.5. Long Short-Term Memory .. 72

7.6. Input-Output Hidden Markov Model .. 74

7.6.1. Model architecture ... 74

7.6.2. Model specification ... 75

7.6.3. Model estimation ... 78

7.7. Model inference .. 80

7.8. Experimental Steps ... 82

7.9. Model Performance ... 83

7.10. Chapter Summary ... 85

8. Imbalanced Learning .. 89

8.1. Overview ... 89

8.2. Related Work .. 90

8.3. Downsampling .. 91

8.4. Sampling-Based Augmentation .. 92

8.5. Generative Adversarial Network .. 93

8.5.1. Problem formulation .. 93

8.5.2. Model architecture ... 93

8.5.3. Fidelity Analysis .. 96

8.5.4. Downstream Performance ... 100

9. Real-Time Risk Predictive Framework .. 104

9.1. Overview ... 104

9.2. Real-Time Data Ingestion ... 106

9.3. Offline Models .. 107

9.4. Test Scenarios ... 108

9.5. Real-Time Deployment ... 109

10. The Flight Plan ... 112

10.1. Broaden The Scope ... 112

10.2. Improve The Model .. 113

10.3. Integrate With Existing Platform .. 114

10.4. Closing The Loop ... 115

10.5. Open The Door ... 115

v

References ... 117

Appendix A: Data Sources .. 125

A.1. Asynchronous Data .. 125

A.2. Real-Time Data .. 126

vi

List of Abbreviations

AAR – Airport Arrival Rate

ADASYN – Adaptive Synthetic sampling

ADR – Airport Departure Rate

AI – Artificial Intelligence

ANSP – Air Navigation Service Providers

APTC – Airport Configuration

ASDE-X – Airport Surface Detection Equipment Model X

A-SMGCS – Advanced Surface Movement Guidance & Control System

ASOS – Automated Surface Observing System

ASPM – Aviation System Performance Metrics

ASRS – Aviation Safety Reporting System

ATC – Air Traffic Control

AV – Autonomous Vehicles

AWC – Aviation Weather Center

BPTT – Back-Propagation Through Time

CDT – Complete Disjunctive Table

CGAN – Conditional Generative Adversarial Network

DIP – Digital Information Platform

EM – Expectation Maximization

ERC – Extended Runway Centerline

ETA – Estimated Time of Arrival

FCN – Fully Convolutional Network

FN – False Negative

FP – False Positive

FSF – Flight Safety Foundation

GAN – Generative Adversarial Network

GAP – Go-Around Prediction

vii

HMM – Hidden Markov Model

IATA – International Air Transport Association

IASMS – In-Time Aviation Safety Management System

IFF – Integrated Flight Format

IFR – Instrument Flight Rules

IMC – Instrument Meteorological Conditions

IOHMM – Input Output Hidden Markov Model

ISSA – In-Time System-Wide Safety Assurance

JMS – Java Message Service

LASSO – Least Absolute Shrinkage and Selection Operator

LOS – Loss of Separation

LSTM – Long Short-Term Memory

MAPt – Missed Approach Points

METAR – Meteorological Aerodrome Report

ML – Machine Learning

MLE – Maximum Likelihood Estimation

MLP – Multi-Layer Perceptron

MSE – Mean Squared Error

NAS – National Airspace System

NASA – National Aeronautics and Space Administration

NM – Nautical Mile

NTSB – National Transportation Safety Board

OAG – Official Airline Guide

OLS – Ordinary Least Squared

PAPI – Precision Approach Path Indicator

PC – Principal Component

PCLR – Principal Component Logistic Regression

RBF – Radial Basis Function

viii

RF – Random Forest

RMSE – Root Mean Squared Error

RNN – Recurrent Neural Network

ROB – Runway Occupancy Buffer

ROT – Runway Occupancy Time

RSA – Runway Safety Area

RSS – Residual Sum-of-Squares

RTA – Remaining Time to Arrival

SDS – Skyview Data Service

SME – Subject Matter Expert

SMOTE – Synthetic Minority Oversampling Technique

SRO – Simultaneous Runway Occupancy

SVD – Singular Value Decomposition

SVM – Support Vector Machine

SWIM – System Wide Information Management

SWS – System-Wide Safety

TAAM – Total Airspace and Airport Modeler

TN – True Negative

TP – True Positive

TRACON – Terminal Radar Approach Control

UAM – Urban Air Mobility

VAE – Variational Autoencoders

VFR – Visual Flight Rules

VMC – Visual Meteorological Conditions

XAI – Explainable Artificial Intelligence

XGBoost – Extreme Gradient Boosting

ix

List of Figures

Figure 1: Percentage of fatal accidents and fatalities. Source: Statistical summary of

commercial jet airplane accidents conducted by Boeing Commercial [4].

Figure 2: Total annual go-arounds at U.S. airports.

Figure 3: Data-driven real-time risk predictive intelligence, akin to the structure of the

dissertation.

Figure 4: HMM architecture.

Figure 5: The architecture of an LSTM memory cell [61].

Figure 6: The architecture of a canonical GAN.

Figure 7: Altitude profile (black) and distance profile (blue) of a normal landing flight (left)

and a go-around flight (right).

Figure 8: Perpendicular distance [65] between the extended runway centerline 𝐿𝑖 and the

trajectory segment 𝐿𝑗.

Figure 9: JFK airport chart (left) and the runway threshold marking (right).

Figure 10: Exampled go-around flight trajectories.

Figure 11: Month-by-month cross-referenced results of the Sherlock go-around N90

reports (blue) and our go-around detection algorithm (orange).

Figure 12: Questionable go-around labeled events.

Figure 13: Information cutoff gates as shown as the vertical lines on the virtual approach

path on the left.

Figure 14: Diagram of trajectory performance features.

Figure 15: One-day traffic on the abstracted 04L/22R RSA polygon (07/02/2018).

Figure 16: Concept display of Runway Occupancy Buffer.

Figure 17: One-day ROB temporal pattern (07/05/2018 at top and 12/05/2018 at the

bottom).

Figure 18: The minimal ROB scenario visualization.

Figure 19: ROB model performance.

Figure 20: Feature importance for RF regression model.

Figure 21: Bar plot of visibility and ceiling effects.

Figure 22: Relative variable contribution in reducing go-arounds.

x

Figure 23: Predictive analytics framework.

Figure 24: IO-HMM architecture.

Figure 25: IO-HMM model estimation and inference.

Figure 26: Single-step-ahead prediction with classical machine learning (left) and

sequential models (right).

Figure 27: Multi-step-ahead prediction in a single short.

Figure 28: Multi-step-ahead prediction with autoregression.

Figure 29: Model performance, in terms of F2 score, of classical machine learning models

(left) and sequential models (right).

Figure 30: The architecture of the conventional GAN (top) and our proposed GAN

(bottom).

Figure 31: Histogram of the sequence length for real samples (blue) and synthetic samples

(orange).

Figure 32: Clockwise, distribution of the feature distribution for real go-around sequences

(blue) and synthetic go-around sequences (orange) generated by the GAN generator for

continuous features: groundspeed, crosswind speed, altitude deviation, the number of

objects on the runway; and categorical features: weight class of leading aircraft (heavy),

runway configuration change.

Figure 33: Clockwise, distribution of the feature distribution for real go-around sequences

(blue) and synthetic go-around sequences (orange) generated by the sampling-based

generator for continuous features: groundspeed, crosswind speed, altitude deviation, the

number of objects on the runway; and categorical features: weight class of leading aircraft

(heavy), runway configuration change.

Figure 34: Clockwise, autocorrelation of real go-around sequence (blue) and synthetic go-

arounds (orange) generated by GAN for features: altitude deviation, altitude difference,

groundspeed, kinetic energy height, speed difference, altitude of leading aircraft, angle

with the extended runway centerline, horizontal deviation.

Figure 35: Clockwise, autocorrelation of real go-around sequence (blue) and synthetic go-

arounds (orange) generated by sampling-based generator for features: altitude deviation,

altitude difference, groundspeed, kinetic energy height, speed difference, altitude of

leading aircraft, angle with the extended runway centerline, horizontal deviation.

Figure 36: Reconstructing a more balanced dataset with synthetic go-around samples to

augment the minority class.

Figure 37: Model performance at different information cutoff gates with the original

portion, 10%, 30% and 50% of go-arounds in the training set.

Figure 38: The proof-of-concept GAP service.

xi

Figure 39: Real-time and emulated data streams and how we prepare them for input to the

GAP processes.

Figure 40: The GAP service provides a visualization display where subject aircraft

positions and related metrics are continuously updated along with go-around predictions.

Figure 41: The overall architecture for the proof-of-concept GAP service.

Figure 42: The workflow of the backend of the GAP service.

xii

List of Tables

Table 1: Go-around detection algorithm.

Table 2: An example flight sequence data.

Table 3: Model variables and summary statistics.

Table 4: ROB, RTA, ROT calculation algorithm.

Table 5: Summary statistics of the observed ROB.

Table 6: RMSE of ROB predictive models.

Table 7: OLS estimation results (5 nm information cutoff gate).

Table 8: Standard logit model estimation results.

Table 9: Loadings of variables with above-average contributions for each PC.

Table 10: PCLR model estimation results.

Table 11: Reconstructed coefficients of original features.

Table 12: Counterfactual analysis results.

Table 13: Tuning hyperparameters.

Table 14: Go-around prediction model performance.

Table 15: The size of the full dataset and the downsampled dataset.

Table 16: Model performance at different information cutoff gates with the original portion,

10%, 30% and 50% of go-arounds in the training set.

xiii

Acknowledgments

I would like to express my deepest gratitude to my intelligent, energetic, caring,

youthful advisor, Mark Hansen, for his constant support of my research and professional

growth. His insightful advice, enthusiastic encouragement, broad vision, open-mindedness,

and continuous support are what made this dissertation research possible and enjoyable.

As a research and life advisor, and an incredibly supportive friend, Mark has always been

there for me. He sparked my interest in air transportation, introduced me to the glamorous

scientific world, offered excellent guidance on my study, directed me to proceed with my

research, kept me on the right track, took me through the darkness, helped open doors for

me, and shaped my academic trajectory. It is through his guidance that I developed

essential research skills and critical thinking abilities. It is his patience, trust,

companionship, support, and inspiration that helped me be a better person. As the song

“For Good” says, because I knew you, I have been changed for good. Mark is my rock to

be brave in facing all the hurdles in life, my harbor allowing me to show my timidity and

insecurity, and my beacon navigating me to grope for my own proud path.

I am extremely grateful to my qualifying exam and dissertation committees, Mark

Hansen, Joan Walker, Maximilian Auffhammer, and Michael Cassidy, for their inspiring

insights and invaluable feedback on this thesis work. I would like to thank Jonathan R.

Shewchuk and Sergey Levine from the computer science department for the insightful

conversations as I sought to bring machine learning into my research. I am grateful to all

Berkeley faculty members who dedicated their time and expertise with me through lectures,

talks, projects, or simply casual conversations.

I sincerely appreciate the considerable research support from NASA, FAA, Lawrence

Berkeley National Lab, and Robert P. Wadell. This dissertation work was part of the project

“SMART NAS NRA: Big Data Analytics for Aeronautics” (NNA16BE49C) supported by

the NASA Ames Research Center, and was subsequently supported by the NASA Small

Business Innovation Research program to develop the “Go-Around Prediction Service”

(80NSSC21C0097). I am grateful for the valuable inputs and feedback from the advisory

team led by Nikunj C. Oza and Robert W. Mah. Thanks to the FAA for supporting me in

investigating flight delays and traffic flow management. Thanks to the LBNL for inviting

me to examine the traffic influences on the pandemic spread. These projects have added so

much fun to my life. I also want to express my sincere appreciation to Robert P. Wadell

for his Endowed Fellowship for Civil Engineering Innovation (2019 – 2021), which funded

my PhD study and gave me the freedom to explore many important research problems.

I am also indebted to John Schade from ATAC, who has pushed tirelessly for this

dissertation research. John has been incredibly supportive of my work and has led the

whole research team towards the right direction. I would also like to thank John Schade for

his help with running the real-time software system, and Joseph Robinson for the validation

analysis of the go-around detection.

I am also thankful for Michael Hanowsky and William J. Dunlay for mentoring me at

Jacobs Engineering Group (LeighFisher Inc.) and ever since. Thanks to Ralf

xiv

Ruckelshausen and Jack Bell from the SFO Safety & Security Services office for their

motivation in analyzing go-arounds, which has made a strong start for this dissertation.

I am eternally grateful for a group of close colleagues who warmly welcome me to the

aviation community. Thanks to Michael Ball and David Lovell at UMD, Megan S. Ryerson

at UPenn, Yu Zhang at USF, Bo Zou at UIC, and Yanjun Wang at NUAA for sharing

thoughts and perspectives with me. I am also thankful for Frank Ketcham, a Captain with

Delta Airlines, who has consistently contributed operational insights into my research and

helped me ground this dissertation work in practicality.

I have been extremely fortunate to have worked and learned with my amazing

collaborators: Nikunj C. Oza, Robert W. Mah, and Paul Krois from NASA, John Schade

and Kennis Chan from ATAC, Joseph Post, Dave Knorr, Brian Bagstad, Kerry Capes,

Garry Cohen, Carlos Gonzalez, Leo Prusak, Guillermo Sotelo, and Jim Wetherly from

FAA, Eoin Brodie, Chaincy Kuo, James B. Brown, Haruko Wainwright from the Lawrence

Berkeley National Lab.

Thanks to all the wonderful staff within CEE and ITS, especially Shelley Okimoto,

who have made my PhD journey a breeze. I am grateful to the MIT community for

recognizing me as the CEE “Rising Stars” and connecting me with outstanding scholars

for scientific interactions. I am also thankful for Meta (formerly Facebook) for offering me

opportunities to meet people from diverse professions and broaden my view on AI.

I feel very fortunate to have so many friends from diverse ethnicities and backgrounds

journeyed with me, both in and outside research. I would like to thank Andrew Foertsch,

who has been one of my first friends here and the most passionate person I know, for

helping me overcome culture shock. I would like to thank Megan Ryerson, the most

optimistic and compassionate person I know, for setting a role model for me as a female

researcher in Engineering. I have tremendously enjoyed the many invigorating discussions,

refreshing perspectives, enjoyable collaborations, and unceasing explorations with Yulin

Liu and Ivan Tereshchenko on transportation, statistics, machine learning, and

optimization. I have received considerable help on predictive analytics from Mogeng Yin,

Jingchao Zhou, and Ashank Verma. I deeply appreciate the wise counsel and valuable

conversations with Chao Mao, Mengqiao Yu, Tianhao Zhang, Ruoying Xu, Yang Ju, Xize

Wang, Dounan Tang, Timothy Brathwaite, and Feras Zarwi.

I am incredibly thankful to my sweet, considerate, gentle, empathetic partner, Ke Xu,

for holding my hands from the beginning of this journey and for his love, support, and

respect that have enriched my life greatly.

Lastly, I dedicate this dissertation to my dearest grandma, Kangxiu Xian, my parents –

Changbin Dai and Defen Huang, my brother – Yijie Dai, my grandparents – Shiliang Dai,

Buzhen Zhang, Shaoxi Huang, Yongzhen Xu, and Beipin Zou, my uncles – Dehai Huang,

Yan Xu, Changping Dai, Changge Dai, and Changxu Dai, and my aunts – Fajiao Dai,

Qiuyan Dai, and Deyan Huang, who never dreamed that their names would be on a doctoral

dissertation, and whose endless love, enduring encouragement, and persistent support

made everything possible.

1

1. Introduction

1.1. Safety First

Transportation systems today have served as the backbone of civilization. They touch

the lives of 7.9 billion people and support 1.4 billion motor vehicles globally [1]. At any

given time, there are an average of 9,728 planes carrying 1 million passengers in the sky

[2]. The system is still expanding in scale, preparing to welcome new entrants such as

unmanned (aerial) vehicles, and to safely incorporate new paradigms such as autonomous

driving and urban air mobility. The transportation system is being revolutionized through

advances in automation, electrification, and new business models, while also facing

challenges posed by decarbonization, inequity, pandemic, and so on. There is a critical

need to continue ensuring the safety and efficiency of the system. Such importance is also

evident in the high societal costs associated with accidents, as well as the potential threats

to the legacy transportation infrastructures. According to the American Society of Civil

Engineers, 43% of public roads are poor or mediocre [3]. Construction delays, signage

issues, and asphalt deterioration are just a few of the things contributing to an increase in

crashes and accidents.

Although the National Airspace System (NAS) is one of the safest and most efficient

transportation infrastructures, growing air traffic demand and the implementation of

autonomous NextGen technologies place strain on NAS safety and efficiency. One of the

primary goals of all air navigation service providers (ANSPs) is to assure safety since each

aircraft operation involves human life. Safety always comes first for any airline in all

aspects of air transportation.

Indeed, nothing can ever guarantee absolute safety in a moving airplane. From birds,

to weather (e.g., wind shear, snowstorms, lightning), malfunction (e.g., engine failure,

aircraft stalling), human factors (e.g., runway incursion, miscommunication), and even

terrorism, the hurdles to safe flying can seem insurmountable. The aviation community has

spent decades of effort to reduce the risks of flying and make accidents become exceedingly

rare events. Boeing analyzed worldwide commercial flights from 1959 to 2017 and found

that the annual number of fatalities has remained fairly low and stable [4]. The total

fatalities due to aviation accidents since 1970 is 83,772. The total number of incidents is

11,164. According to the Aircraft Crashes Record Office (ACRO), aviation has been much

safer in recent years, with less than 170 incidents per year between 2009 and 2021,

compared to as many as 226 as recently as 1998 [5]. It is noteworthy that most of these

fatalities and accidents happened during the final approach and landing phases, which

account for just 16% of the airborne time (total time spent in the air). As seen in Figure 1,

from 2008 to 2017, 56% of the fatalities and 62% of the accidents happened during the

approach and landing, making this the riskiest phase of flying.

2

Figure 1. Percentage of fatal accidents and fatalities. Source: Statistical summary of

commercial jet airplane accidents conducted by Boeing Commercial [4].

The literature has devoted substantial attention to flight approach safety. Until recently,

though, it has not received much attention from data scientists. Although extensive data

from radar and surveillance systems, navigation systems, engines and sensors, text

documents, and vocal crew inputs are continually collected and stored, current analytics

for flight approach safety are reactive [6, 7, 8, 9, 10], rule-based [11, 12, 13], and narrow

in scope (considering only flightpath profile[14, 15, 16], or weather conditions [17, 18], or

human factors [19, 20, 21], etc.). Research on real-time risk predictive analytics is required

to enable proactive monitoring and prediction of anomalous flight approach procedures

that may degrade safety and efficiency, while considering a broad range of situational

measurements and dynamic environmental conditions. With the recent publishing of the

In-Time System-Wide Safety Assurance (ISSA) strategic roadmap [22] and the launch of

the NASA System-Wide Safety (SWS) project [23, 24], the aviation community has

reemphasized the commitment to safety research. A key outcome in the first decade of

ISSA-related research is improved safety through initial real-time detection and alerting

of hazards at the domain level and decision support for limited operations.

1.2. Go-Arounds

Typically, the approach-and-landing accident is triggered by an unstabilized approach

and is the consequence of a subsequent failure to initiate a go-around. Go-arounds occur

when an arrival aircraft terminates its normal approach to landing, reverses its descent by

climbing abruptly, and then circles around to attempt another landing. In other words, a

go-around is an aborted landing of an aircraft that is on the final approach when proceeding

with the landing is considered to be unsafe due to adverse conditions such as wind shear,

runway incursion, or unstabilized approach.

A running example throughout this dissertation concerns this unique maneuver – go-

arounds. Go-arounds play a special role in the final approach and landing phase as their

occurrence not only signals abnormal flying status on the final approach (pre-go-around

3

risks), but themselves are a kind of operational anomaly (go-around risks). Overall, go-

arounds or missed approaches occur at a rate of around three or four per thousand arrival

operations at major airports – see Figure 2 for a count of go-arounds at major US airports

in 2018 through 2020. Even with the drastic reduction in operations due to COVID-19 in

2020, the number of go-arounds at many major airports remained consistent with or

exceeded prior years. From 2012 to 2017, the average percentage of final approaches

leading to go-arounds was 0.4% across the core 30 U.S. airports [25].

Figure 2. Total annual go-arounds at U.S. airports.

In addition, there have been several high-profile incidents in the last few years in which

go-arounds were used as the mitigation of last resort:

At 11:56 PM on July 7, 2017, at the conclusion of the regularly scheduled international

passenger flight from Toronto to San Francisco, Air Canada Flight 759 (AC759), an Airbus

320, nearly landed on a taxiway adjacent to the designated landing runway 28R at San

Francisco International Airport (SFO). Four fully loaded and fueled aircraft waiting for

takeoff have occupied the taxiway. Five airplanes carrying over 1,000 passengers were at

imminent risk when the incident occurred. It was later estimated by National

Transportation Safety Board (NTSB) investigators that the Air Canada flight descended

below 100 feet above ground level before pulling up to execute the go-around.

0

200

400

600

800

1000

1200

1400

1600

1800

Annual Go-arounds at US Major Airports

2018 2019 2020

4

At 9:30 PM on October 24, 2017, Air Canada Flight 781, an Airbus 320, was cleared

for landing on runway 28R at SFO. Since the preceding aircraft that had landed on 28R

vacated the runway more slowly than expected, the Tower air traffic controller instructed

Air Canada 781 to go around. However, the aircraft crew of Flight 781 never responded.

Flight 781 was ordered multiple times to go around without responses. Controllers even

flashed red runway lights as a visual indication to the crew that they should abort the

landing, but Flight 781 continued the approach to 28R. Fortunately, the preceding aircraft

had managed to exit the runway just in time, averting a potentially deadly collision.

At 11:45 AM on January 9, 2018, Aero Mexico Flight 668, a Boeing 737 flying from

Mexico City to San Francisco, was cleared to land on runway 28R at SFO. Instead, the

Flight 668 aircraft lined up on the parallel runway 28L, where a Virgin America Airbus

A320 jet was waiting to take off for Kona, Hawaii. Tower air traffic controllers noticed the

inconsistency at the last minute and ordered Flight 688 to go around. Again, if not for the

vigilance of the tower controllers, a massive aviation calamity may have happened.

These near-miss incidents, while alarming in nature, are even more significant by the

fact that they all occurred at the same airport within around six months. In each of these

instances, the Tower air traffic controllers were able to issue mitigations to the developing

risk; nevertheless, these were of the “last call” variety. Catastrophe would have ensued

without prompt responses from the operators (air traffic controllers or pilots). A robust go-

around prediction and alerting capability would expand the time window for operator

action and thus provide a greater safety margin for these sorts of operational incidents.

Below, we summarize a few essential motivating aspects for studying go-arounds.

Go-arounds are associated with significant safety concerns during the final

approach, since go-arounds are emergency maneuvers intended to mitigate risk

compared to preceding the landing. For instance, some go-arounds occur due to

attempted wrong surface landings. These situations occur when aircraft align with a

taxiway rather than a runway and initiate a go-around, thus flying over the taxiway. In other

instances, aircraft attempt to land on the incorrect runway and end up executing a go-

around to avoid colliding with departing aircraft. In 2016, the FAA ATO identified wrong

surface landings as a Top 5 safety issue. Wrong surface landings are still on the FAA high

priority list. In order to improve communication and training on these incidents, and to

mitigate risk in the NAS, the FAA conducted a study and found a clear linkage between

wrong surface landing attempts and go-arounds. A technology capable of detecting go-

around risk early enough, allowing mitigation actions to prevent safety hazards such as

wrong surface landings, has yet to be developed.

In addition to pre-go-around risks, go-arounds themselves significantly disrupt

airport operations and degrade efficiency, particularly at large airports during peak

hours. To begin, even though pilots have extensive training, executing go-arounds is a

challenging maneuver. The pilot must promptly accelerate the engines to full power, adopt

a suitable climb altitude and airspeed, raise the landing gear, and retract the flaps in a short

time. Second, the outcome of a go-around can be hazardous. Around 10% of go-arounds

5

result in exceeding aircraft performance limits, or fuel emergencies [26]. Finally, a go-

around is an emergency maneuver that also leads to increasing air traffic controller

workload [27] and noise [28], while degrading airport throughput [29] and flight on-time

performance [26]. Air traffic controllers are confronted with the challenging tasks of de-

conflicting the go-around from other traffic, including traffic landing and taking off from

adjacent airports, as well as fitting the go-around aircraft back into the congested arrival

stream. This time-sensitive task increases workload and potentially results in the

development of additional dangers. Similarly, flight crews must contend with a surge in

piloting workload [30] when they may be at the end of a busy flying schedule. During

peak hours, the disruption induced by a go-around may ripple upstream into heavy inbound

flows, causing substantial holding and vectoring that lead to rapidly accumulating delays.

Any preemptive warning of an emerging go-around situation could buy the controller and

flight crew valuable time to better anticipate the actions required to handle the impending

situation more safely and efficiently.

Furthermore, making the decision to execute a go-around in a timely manner is

crucial. According to an extensive study published by Flight Safety Foundation (FSF),

delay in deciding to initiate a go-around increases the risk of this procedure [26]. The

effectiveness of cooperation between pilots and air traffic controllers in making go-around

decisions based on their anticipation of landing circumstances is of great importance and

practical significance for boosting both the safety and efficiency of the aviation system.

However, interviews indicate that the collaborative decisions on go-arounds are heavily

impacted by individual experiences and mental states, as opposed to the collective

knowledge about the complete picture of underlying situations for the go-around procedure

[26]. Predicting the probability of go-arounds may help prevent situations where an

incident occurs because a go-around was not executed. According to the research

conducted by the FSF on 16 years of runway excursions, 83% could have been avoided

with a decision to go around.

1.3. Learning and Decision Making

Individuals, businesses, and governments now have unprecedented access to intelligent

decision-making across a wide variety of domains because of the recent advancements in

computing and artificial intelligence (AI). A wide range of applications benefit from

decision support systems, from movie recommendations, to mapping services, traffic

management, and so forth. Such systems are made possible by machine learning (ML), a

field of artificial intelligence that has grown in popularity in the scientific community due

to the increased availability of data, improvements in hardware and software, and various

algorithmic breakthroughs.

In recent years, machine learning has emerged as a technique of paramount significance

in the field of transportation engineering, enabling the solution of complex and practical

engineering problems. Both ML and transportation have substantial effects on society. The

6

interaction between the two is a challenging, complex, and growingly important problem

domain for society moving forward. Much of the challenge, and art, involved in machine

learning is defining and formulating the problem. Successful machine learning applications

have been seen in a wide variety of fields, including flow prediction, scheduling, pricing,

routing, ridesharing, logistics, behavior modeling, networks, economics, and planning.

For the air transportation system to benefit from machine learning-based decision

support, this dissertation is only a small step forward in enabling data-driven real-time risk

predictive intelligence. We introduce one type of flight anomaly – go-arounds, develop

anomaly detection algorithms to annotate this event from unlabeled data. Building on these

labeled data, we devise generative adversarial networks to augment the minority class,

sequential learners to continuously monitor developing risks, and a data streaming pipeline

for real-time deployment. These problems have primarily been studied in isolation by

various research communities using vastly different methodologies. Through the lens of a

specific application – go-arounds – in the aviation field, this dissertation examines the

intricate dynamics between all the moving elements involved in transportation engineering

and artificial intelligence: from the theoretical and algorithmic development to the

computer and software systems to the eventual application.

1.4. Objective and Challenges

Considering the pre-go-around risks, the safety of go-arounds themselves, and the

effectiveness of decision-making for go-arounds, we would like to more fully understand

the precursors and contributing factors to go-arounds, and provide aviation stakeholders

(e.g., air traffic controllers and pilots) with a predictive tool to help them recover and avoid

the need for a go-around or, if a go-around is needed, to provide them with more time to

proactively manage the event, thereby increasing safety and the orderly management of

traffic. The objective of the dissertation is to develop data-driven real-time risk predictive

intelligence, through a use case of go-arounds, that brings intelligent decision support to

the air transportation system, thereby making it safer and more efficient.

To implement such capability, we must continuously monitor the near-airport (within

ten nautical miles) domain, merge data from disparate sources, and identify developing

hazards (i.e., factors leading to a go-around) to stakeholders in advance, allowing them to

take effective risk mitigation actions. Below, we discuss several challenges that must be

overcome to achieve this objective:

• Annotation quality. The raw data does not explicitly designate go-around flights,

which serve as ground truth for the study. Successful modeling is contingent upon the

labeling process and the quality of annotated data. Finding a way to efficiently and

reliably label go-around flights from a large set of trajectories is critical.

7

• System heterogeneity. The approach process consists of numerous heterogeneous

interacting components, including the landing aircraft itself, other planes sharing the

airspace, the wind, visibility, ceiling, runway conditions, etc. Each, alone or in

combination with others, may produce different impacts on the flight approach. Careful

feature engineering is needed to extract the information and capture the heterogeneity

of the system.

• Complex interactivity. Go-arounds result from the interactions of numerous disparate

factors. For example, the visibility of the landing environment can directly affect the

spacing between airplanes, in addition to many other factors. What methodologies and

tools would be appropriate for studying the high dimensionality and multi-collinearity

of the data systematically, while retaining the ability to evaluate the contribution of the

original features to go-around occurrence?

• Dynamical process. Air traffic control as a whole is a highly stochastic, cascading,

nonlinear, hybrid process, in which a small change may induce complicated and

delayed effects on the system. There are many ways in which uncertainties may be

introduced into the prediction process due to the temporal and geographical resolution

of the data. While building the predictors, it is crucial to ensure that the models are

appropriately constructed, validated, and capable of capturing the complex dynamics

of the approach sequences.

• Class imbalance. The primary difficulty with the go-around prediction problem, or

with any rare event prediction task, is the imbalanced class distribution of the data. The

class imbalance would considerably degrade the performance of any learning model,

particularly with regard to the minority class we are interested in. Additional efforts are

required to address the class imbalance issue and further enhance the work.

• Real-time deployment. In order to convert the developed model into a real-time tool,

it must be combined with a real-time data ingestion mechanism. A distributed system

is needed to offer unified, high-throughput, low-latency streaming pipelines for

handling real-time data feeds.

The dissertation presents research that is intended to address these challenges, with a

use case of go-arounds in the aviation domain. Several other challenges and research areas

of interest to data-driven real-time risk predictive intelligence are discussed in Chapter 10.

This work will heavily rely on a blend of advancements from data science, machine

8

learning, software systems, and domain-specific sciences and engineering knowledge. A

science and a corresponding engineering practice are needed to lead the development of a

multi-domain situational awareness and prognostic safety awareness, prediction, and

alerting tool for go-around occurrences, and to assure long-term desired performance. The

capability to deal with unlabeled, imbalanced, and real-time data holds significant promise

for the applicability of AI, as this is the crux of many real-world problems, especially in

safety-related sectors. While this dissertation focuses on the aviation domain, the

methodologies developed have potential in many other transport (and non-transport)

contexts in which time series data can be employed to assess the risk of non-nominal events.

In the spirit of near-term practicality, we aim to help Air Traffic Control (ATC)

facilities and airport-focused personnel identify hazards in the approach domain in time for

effective mitigation. This dissertation work has the significant potential to reduce the

number of go-arounds at major airports and improve the operator’s situational awareness

and overall safety margin for these types of close-call incidents, hence reducing the risk of

an accident. The predictive analytics will alert and aid with go-around decision-making,

therefore lowering the rate of go-around failure. Additionally, early warning of an

oncoming go-around occurrence provides more time to salvage the approach or better cope

with an oncoming go-around. This additional reaction time should result in a significant

reduction in workload for both controllers and flight crews.

1.5. Structure of the Dissertation

This dissertation focuses on one type of flight anomaly – go-arounds, and is a first step

toward resolving the abovementioned challenges of risk predictive intelligence, by

developing a methodological framework for studying go-arounds. As illustrated in Figure

3, the framework includes anomaly detection algorithms to identify go-around events from

unlabeled data, generative adversarial networks to augment the minority class, sequential

learners to continuously monitor developing risks, and a data streaming pipeline for real-

time deployment. The remainder of this dissertation is structured in the following manner:

Chapter 2 introduces key concepts in the dissertation, and reviews previous research

on go-arounds and, more broadly, operational anomalies during the flight approach. We

focus on the research that examines how go-around decisions are made and the factors that

trigger the occurrence of go-arounds, as well as the current practice of machine learning

models.

Chapter 3 presents our method for detecting go-arounds from historical surveillance

trajectories. The detection algorithm not only labels the flight in binary responses but also

annotates when and where the go-around occurred. We present the process of ground truth

labeling and validate it using another independent data source: the FAA go-around report.

The work in this chapter was published in Dai et al. [31, 32].

9

Chapter 4 details the derivation of a diverse set of operational and environmental

features, including aircraft characteristics (weight class, operating airline, landing runway),

flight approach features (localizer deviation, speed, flight energy), the occurrence of other

go-arounds at about the same time, in-trail separation (loss of separation, speed difference,

altitude difference), as well as features pertaining to surface operations, airport

configuration, and local weather. The work in this chapter was published in Dai et al. [31,

32, 33].

Figure 3. Data-driven real-time risk predictive intelligence, akin to the structure of the

dissertation.

Chapter 5 proposes a new metric – runway occupancy buffer (ROB) – to better reflect

the interplay between air and surface operations during flight approach procedures. We

employ different machine learning models to model the ROB. The work in this chapter was

published in Dai et al. [31, 32, 33].

Chapter 6 examines how a mix of traffic and environmental conditions (i.e., derived

features in Chapter 4) affect the go-around decisions, and quantifies their underlying factor

contributions to go-around occurrence based on real flight observations. We employ

statistical models and counterfactual analysis to uncover the relationships between go-

around occurrences and the derived features. With this analysis, we could answer the

question: based on observations of historical flight operations, what are the most salient

factors affecting go-around occurrence? This could be critical to decision-making at a

strategic level. The work in this chapter was published in Dai et al. [31, 32].

10

Chapter 7 provides tactical guidance to foresee and perhaps prevent go-arounds by

building the risk predictive analytics using the go-around detection results in Chapter 3,

features derived from Chapter 4 and Chapter 5, and post-event observation-driven insights

in Chapter 6. We formulate the go-around prediction problem as sequential learning and

subsample the multivariate sequences with one nautical mile spacing (from the landing

runway threshold). Different learning algorithms are employed to make sequential

predictions of go-around probabilities of each landing aircraft over the entire approach

corridor. The work in this chapter was published in Dai et al. [34].

Chapter 8 demonstrates our exploration towards tackling the class imbalance issue for

the go-around prediction task: downsampling, sampling-based augmentation, and GAN-

based augmentation. We propose a proof-of-concept Generative Adversarial Network

(GAN) architecture capable of generating high-fidelity synthetic go-around sequences to

augment the minority class. We develop metrics to assess the fidelity of the generated

synthetic go-around sequences and further benchmark the model with a sampling-based

method. The previously developed go-around prediction model performs better while

augmented with GAN-generated samples.

Chapter 9 introduces the Go-Around Prediction (GAP) service, which enables the

practical application of the above work in a real-time setting. Many advances are needed

to enable real-time risk predictive intelligence, including algorithmic developments,

distributed data streaming, and a web-based interface. We demonstrate the feasibility and

practicality of the GAP service by applying it to the airport domain use case. A proof-of-

concept demonstration is provided in a video format, with the end-to-end real-time data

input and go-around detection output.

Chapter 10 presents a “flight plan” of the directions for future research. We discuss the

remaining research questions and further considerations for deploying the data-driven real-

time risk predictive intelligence for practical use.

1.6. Contributions

This dissertation is a first step in enabling data-driven real-time risk predictive

intelligence, from theoretical study and algorithmic development to the computer and

software systems, to the eventual deployment. By studying a use case in the aviation field

– go-arounds, the dissertation introduces the concrete technical and operational challenges

and fills critical gaps in the state-of-the-art. This research work is directly relevant to future

aviation system safety and addresses the Technology Taxonomy area of Safe All Vehicle

Access by developing multi-domain situational awareness and prognostic safety awareness,

predictive, and alerting tools. Furthermore, it offers low-cost building blocks that can be

used for other real-world applications. The main contributions of the dissertation are as

follows:

11

First, our data collection, storage, and preprocessing pipeline, as well as the model

architecture design, allow for the continuous monitoring of the system in real time and the

fusion of diverse data sources to identify emergent anomalous behaviors.

Second, we have fused multiple datasets in order to capture a wide variety of factors

that may contribute to the go-around occurrence. We have collected features from the

dataset directly, but also derived features pertaining to approach stability, in-trail separation,

and surface operations according to literature search, theoretical studies, and interviews

with subject matter experts (SMEs) such as airport and ATC Tower operational personnel.

We also propose a new metric – runway occupancy buffer (ROB) – to better reflect air and

surface operations interplay during flight approach procedures.

Third, we design and implement a trajectory-based go-around detection algorithm and

demonstrate its use in real-world flight operations. The go-around detection algorithm

utilizes four-dimensional flight trajectories and employs multiple criteria based on

theoretical and empirical investigation, rather than relying on a single criterion. In addition,

the algorithm not only labels the flight in binary responses but also annotates when and

where the go-around occurred. Our detection method is applicable to any airport for which

the surveillance track data are available.

Fourth, we have uncovered statistical relationships between go-around occurrence and

the derived features using a principal component logistic regression (PCLR) model. This

technique enables us to overcome the high dimensionality and multi-collinearity of the

original data set while preserving the ability to assess the contribution of the original

features to go-around occurrence. The contribution analysis is critical to decision-making

at a strategic level.

Fifth, we develop novel machine learning (ML) based prediction engines using large

stores of historical data, in order to provide reliable, sequential predictions of the

probability of occurrence of potentially unsafe conditions and alert those risks to

stakeholders. From an application standpoint, the sequential prediction of go-around

occurrence could not only help in mitigating risks occurring at the pre-go-around state, but

also lessen inherent risks and uncertainty from the disruption of an airport when a go-

around is executed. The many prediction models we have experimented with establish a

baseline for predictive performance that may be improved upon in future research.

Sixth, we explore different approaches to tackle the class imbalance issue for better

training of the predictive models. Our work makes the first effort to leverage GANs to

generate synthetic flight anomalous scenarios to augment the minor class for better model

training. We empirically show that our GAN-based generated samples improve the model

performance. Lessons learned are summarized for future researchers.

Seventh, we provide the path forward to provide real-time predictive analytics. This

dissertation work is deployed for practical use in the real-time setting, with application

scenarios demonstrated in Chapter 9. This research work has the potential, for the first time,

to make detecting, interpreting, and predicting go-arounds a practical way to increase

12

terminal-area safety and throughput, while taking a comprehensive set of environmental

and operational factors into account. We demonstrate a proof-of-concept tool for a near-

term capability integrated with the NASA In-Time Aviation Safety Management System

(IASMS), allowing pilots and controllers to identify risky situations ahead of time. This

accelerates the predictive analytics for safety threats in the real-time arena. The real-time

application provides a foundation for designing, developing, and implementing a

progression of capabilities that expedites the discovery, prognosis, and mitigation of safety-

related threats in transportation systems.

Eighth, we implement an end-to-end pipeline from raw data to support the inference of

contributing factors and event occurrence prediction. The building blocks of the pipeline

can be directly applied to aviation (or non-aviation) contexts with data of similar structure.

It might help reduce system risks in future airspace systems where complexity is expected

to be greater – such as the introduction of multiple unmanned and Urban Air Mobility

(UAM) aircraft into airport operations.

13

2. Literature Review

In this chapter, we first clarify some basic concepts that are frequently used in this

dissertation, then provides an overview of prior research work on aviation safety,

particularly associated with go-arounds, and finally we present several common and

powerful machine learning frameworks used in this dissertation.

2.1. Preliminaries

Approach [35]: Begins when the crew initiates changes in aircraft configuration and/or

speeds enabling the aircraft to maneuver for the purpose of landing on a particular runway.

It ends when the aircraft is in the landing configuration and the crew is dedicated to land

on a specific runway. It may also end by the crew initiating a go-around.

Go-around [35]: Begins when either the pilot or the controller aborts the descent to the

planned landing runway during the approach phase. It ends after speed and configuration

are established at a defined maneuvering altitude or to continue the climb for the purpose

of cruise.

Note that another strict definition given by FAA is that go-arounds result in the aircraft

returning to the landing queue to attempt the landing once again [25]. We here use the

definition given by International Air Transport Association (IATA), and also extend it to

touch-and-go, stop-and-go, circling approach, missed approach and break-off approach.

Landing [35]: Begins when the aircraft is in the landing configuration and the crew is

dedicated to touch down on a specific runway. It ends when the speed permits the aircraft

to be maneuvered by means of taxiing for the purpose of arriving at a parking area. It may

also end by the crew initiating a Go-around.

Stabilized approach [36]: A stabilized approach is one in which the pilot establishes

and maintains a constant angle glidepath towards a predetermined point on the landing

runway. It is based on the pilot’s judgement of certain visual clues, and depends on the

maintenance of a constant descent airspeed and configuration.

Runway incursion [37]: Any occurrence at an aerodrome involving the incorrect

presence of an aircraft, vehicle or person on the protected area of surface designated for

the landing and take-off of aircraft.

2.2. Operational Anomalies During the Approach

The mainstream literature related to go-arounds has focused on the behavior and

performance of pilots and controllers when a go-around occurs. From the pilot’s point of

view, Causse et al. (2013) found that the negative emotional consequences attached to the

go-around – the uncertainty of a decision outcome and the reward/punishment – can

14

temporarily jeopardize pilot decision making and cognitive functioning, while Dehais et al.

[19] examined the errors in pilot’s flying performance (e.g., flightpath deviations) and

visual scanning behaviors during go-around execution. From the air traffic controller’s

point of view, Jou et al. [27] point out that controllers’ failure to maintain situational

awareness was the leading cause of Taiwan’s go-around incidents in 2010. Kennedy et al.

[38] found that controller age and expertise have significant impacts on aircraft landing

decision making during a flight simulation task.

Another area of study is criteria that should be used by controllers and or pilots for

deciding whether to initiate a go-around. The Flight Safety Foundation [26] developed

surveys and interviews to identify four groups of factors that were most influential to the

decision of a go-around: flight path profile, aircraft configuration, flight energy, and

environmental conditions. Campbell et al. [39] developed go-around criteria in terms of

airspeed, glideslope deviation, localizer deviation, and rate of descent, at different starting

altitudes from which pilots cannot successfully recover from an unstabilized approach on

full-flight simulators. They found that the airspeed and localizer deviations impact go-

around occurrence the most. To further validate their proposed go-around criteria,

Campbell et al. [40] collected objective simulation data and subjective post-simulation

written questionnaires from an experiment in which pilots were instructed to go around if

the aircraft was outside of the proposed criteria range at 300 feet, or if either pilot was

uncomfortable with the approach. The results revealed that the proposed criteria performed

well, but some minor adjustments are still needed to make pilots more comfortable with

the go-around criteria. Later Zaal et al. [41] evaluated the effects of environmental

conditions on the proposed go-around criteria using statistical tests and decision tree

analysis. Wind speed, visibility, and localizer deviation substantially affect the go-around

decision making and perception of risk. The study suggests that certain environmental

conditions might warrant altered decision thresholds of the go-around criteria. While the

criteria above suggest some of the factors that influence go-around occurrence, other

research has addressed this question through statistical analysis of historical flight data.

Shepherd et al. [42] presented an in-trail runway occupancy scenario event tree model that

accounts for the risks associated with the go-arounds due to multiple runway occupancy

and runway incursions. The go-around execution probability and the go-around failure

probability are calculated. Surveillance track data is utilized in more recent research.

Sherry et al. [43] detected go-arounds (termed as aborted approaches in the paper) using

the cumulated change of aircraft heading angles. The go-around rate of the Chicago O’Hare

International airport (ORD) airport was reported as 0.74% with some false positives

resulting from procedure turns or other normal maneuvers that meet the quantitative criteria

but are not aborted approaches. The go-around detection algorithm based on cumulative

turn angle is a valuable contribution, but may not be fully representative. Sherry et al. [43]

further reviewed 467 voluntary Aviation Safety Reporting System (ASRS) reports to

identify underlying factors leading to aborted approaches. They classified the factors as

airplane issues (48%), traffic separation issues (27%), weather (16%), runway issues (5%),

and crew-ATC interaction issues (4%). These summary statistics afford valuable insights,

15

but the ASRS reports are voluntary and are made only when there is a perceived safety

issue.

Donavalli [18] identified go-arounds by simply checking whether the approaching

aircraft crosses the end of the arrival runway. The go-around detection results were used in

two-proportion Z tests to compare the go-around rates for different weather condition

scenarios. High wind gust speeds and thunderstorms have a significant impact on go-

around occurrence. However, possibly due to the limited variability of the 18-day data set,

the Z-test did not find a significant visibility impact. The authors further developed a linear

regression model that defines the proportion of daily go-arounds as the dependent variable,

different weather factors as the independent variables. However, none of the variables were

significant, suggesting that many factors other than weather conditions also contribute to

the go-around occurrence. Without incorporating a wide range of situational conditions and

environmental measures in the feature space, models would not be appropriate for making

any concrete analysis and policy decisions.

Deshmukh et al. [44] identified go-arounds by looking at the violation of two linear

regression lines, which are specified for the bounds of normal operations in terms of

latitude, longitude, altitude, groundspeed, and aircraft energy. Each flight track is sampled

to have 60 timesteps and was truncated into two parts – the first 55-timestep track is known

information for deriving aircraft energy and separation features, and the last 5-timestep

track is used for go-around detection and provides ground truth labels for the classification

task. The paper neither considers the impacts of runway operation and weather impact, nor

explains how the classification model could serve their purpose of identifying go-around

precursors. In addition, given the truncation timestamp choice, a go-around could easily be

initiated during the 55-timestep portion of the track, resulting in artificially high-

performance evaluations. It is likely that the prediction performance would decline rapidly

if the portion of the track used for performance was reduced.

While previous studies have yielded valuable insights about various causes of and

contributors to go-around occurrence, none has developed a comprehensive, quantitative

assessment of the relative importance of a wide range of factors that affect the likelihood

of a go-around.

There is little work on predicting go-arounds in the literature. Bro [45] investigate the

utility of neural networks in predicting go-arounds using 2000 hours of general aviation

training flight data. In their work, the features are extracted to create a snapshot of an

aircraft’s parameters at 200 feet above ground level on approach. Figuet et al. [46]

predicted the probability of go-arounds for each landing aircraft at a cutoff point located

10 km in front of the runway threshold with supervised learning classifiers. However, a

flight approach procedure is a time series sequence. Prediction problems involving

sequentially structured data cannot be effectively dealt with by models which only take one

snapshot of features in the process.

16

A predictive model for go-arounds should cover the entire approach and leverage a

time series of relevant data to capture the inherent temporal structure of the flight approach.

Existing models fall short of this, as they are based on only one snapshot of features in the

time series process.

2.3. Machine Learning Frameworks

In this section, we review several common and powerful machine learning frameworks

specific to this dissertation – classifiers, Markovian models, recurrent networks, and

generative adversarial networks. Each of these frameworks has seen extensive empirical

and theoretical applications. It is important to identify when a framework is appropriate for

a problem at hand. This dissertation utilizes these disparate machine learning frameworks

to address important problems of risk predictive intelligence in the context of go-arounds.

2.3.1. Classical Machine Learning

This class of models are widespread and usually branch out into supervised learning

and unsupervised learning. They are simple to use, easy to understand, and usually do not

require a large amount of computational power. Supervised learning is the more commonly

used and more powerful tool in the real world, if data is labeled. It focuses on two types of

tasks: classification that determines the class of an object (e.g., go-around or not), and

regression that predicts a continuous value on a numerical axis (e.g., runway occupancy

buffer). For instance, K-nearest neighbor, decision tree, SVM and ensemble methods like

random forest and boosting have been commonly used to make predictions.

Logistic regression is a technique borrowed by machine learning from the field of

statistics. It is named for the function used at the core of the method – logistic function,

which also called the sigmoid function in “S” shape to map any real-valued number into a

value between 0 and 1. The logistic regression is popular for binary classification problems

to calculate or predict the probability of a certain class or binary (yes/no) event.

Unlike the objective of linear regression, SVM minimizes the sum of squared

coefficients and tries to find the optimal separating hyperplane in the multidimensional

feature space within a threshold error value (margin). A kernel function is usually used to

map the data into higher dimensional space and find the hyperplane without increasing the

computational cost. In this study, Gaussian Radial Basis Function (RBF) kernel and

polynomial kernel [47] are applied to capture potential nonlinearities.

Ensemble learning utilizes the prediction of several base models to improve robustness

over a single model. Random forest and extreme gradient boosting (XGBoost) are based

on training an ensemble of decision trees, which map the daily feature vectors to the

observed daily arrival delay in the leaf node. RF model builds shallow decision trees

independently, using a random subset of features, on various subsamples of the dataset.

Boosting models sequentially grow decision trees and tries to reduce the bias by learning

from previous iterations.

17

2.3.2. Markovian models

Hidden Markov Models are generative models that can not only be used to learn

patterns in sequences, but also to generate new sequences. They were first introduced by

Rabiner and Juang [48] as generative models to classify speech signals and have since

become a standard method for sequential predictions.

The Hidden Markov Model is a probabilistic graphical model of the representation of

the joint probability distribution. A graph of a standard HMM is shown in Figure 4, where

nodes represent variables, and edges represent transitions and dependence relationships.

Specifically, the white nodes in the figure suggest hidden states that are typically not

observed, and the blue nodes represent the visible output emitted by those hidden states.

The underlying probabilistic transitions between hidden states are termed transition

probabilities and denoted as edges between the white nodes. The transitions between

hidden states and output states are called emission probabilities and are represented by the

edges between white and blue nodes.

Figure 4. HMM architecture.

For our use case, we employ a variant of the input-output hidden Markov model (IO-

HMM), an extension to the HMM that can better capture the sequential structure inherent

in our problem to model and predict the go-around occurrence for an approaching flight.

The IO-HMM is a special graphical model and was firstly proposed by Bengio and

Frasconi [49] for learning problems involving sequentially structured data. While it

originated from HMM, it has a much more flexible architecture, which can be interpreted

as a statistical model for target propagation [50] based on the Expectation-Maximization

(EM) algorithms. HMMs adjust their parameters using unsupervised learning, whereas the

IO-HMM uses EM in a supervised fashion. Experiments on artificial tasks [51] have shown

that IO-HMM, which uses EM recurrent learning, can deal with time dependencies more

effectively than backpropagation through time and other alternative algorithms. The

IOHMM is a conditional model that predicts the labels given the features, rather than

looking at the joint probability. It can be applied to achieve our goal of fully exploiting

both input and output portions of the flight sequence data, as required by the go-around

prediction task.

18

2.3.3. Recurrent networks

Deep learning is a kind of machine learning frameworks that incorporates artificial

neural networks with representation learning. With powerful function approximators like

neural networks, deep learning has been more popular in recent years. Various applications

such as natural language processing and computer vision have offered cutting-edge

performance.

Recurrent neural networks (RNNs) are a kind of deep learning models in which the

connections between nodes form a directed or undirected graph along a temporal sequence.

Using RNNs for sequence modeling and generation has become the norm [52]. The vanilla

recurrent neural network is a feed-forward neural network with sequence memories. The

parameters are shared across time steps and thus provide two significant advantages: First,

there are a lot less parameters to deal with in a RNN compared with a fully connected

neural network when it comes to sequence learning. Second, RNNs can handle a flexible

length of sequences. We denote the forward propagation of a vanilla RNN in Equation (1)

and (2) in functional form, with the input vector 𝑥𝑡, output 𝑦𝑡, and hidden state ℎ𝑡 at the

current time step 𝑡. In order to produce the next hidden state, ℎ𝑡+1, we need some weight

matrices 𝑊, bias coefficient 𝑏, and a non-linearity activation function.

𝑦𝑡 = 𝑊𝑥𝑥𝑡 + 𝑊ℎℎ𝑡−1 + 𝑏 (1)

ℎ𝑡+1 = tanh(𝑦𝑡) (2)

In a RNN, we essentially back-propagation through time (BPTT), going forward

through the whole sequence to compute losses 𝐿 , and going backward through entire

sequence to compute gradients, as in Equation (3) and (4):

𝛿𝐿

𝛿𝑊𝑥
= ∑

𝜕𝐿𝑡

𝜕ℎ𝑡

𝑇

𝑡=0

𝑥𝑡 (3)

𝛿𝐿

𝛿𝑊ℎ
= ∑

𝜕𝐿𝑡

𝜕ℎ𝑡

𝑇

𝑡=0

ℎ𝑡−1 (4)

It is possible for the gradient to “explode” (tend to infinity) or “vanish” (ten to zero)

exponentially with respect to the sequence lengths. This is known as the

exploding/vanishing gradient problem, which results in substantial inefficiency when

training long sequences. With a proven ability to tackle the gradient issue, Long Short-

Term Memory (LSTM) has become one of the most used variations of RNNs, and is often

used to classify, process and make predictions based on time series data. A variety of

transportation-related studies have been undertaken, including work on predicting traffic

flow [53], traffic speed [54], individual locations [55], transportation mode [56], pedestrian

motion [57], as well as aircraft trajectory [57, 58, 59], and flight delay[60].

19

Figure 5. The architecture of an LSTM memory cell [61].

Figure 5 depicts the architecture of a common LSTM memory cell. The specialty of an

LSTM memory cell is that it adds an input gate 𝑖, an output gate 𝑜, and a forget gate 𝑓 for

regulating the information flow into and out of the cell 𝑐 that remembers values over

arbitrary time intervals. The forward pass of an LSTM cell is expressed as Equation (5) –

(9) in compact forms, with the operator ∘ denotes the Hadamard product (element-wise

product). The three gates are activated by the sigmoid function (𝜎), while the cell memory

and hidden state are activated by the hyperbolic tangent function (𝑡𝑎𝑛ℎ).

𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓) (5)

𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖) (6)

𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑜) (7)

𝑐𝑡 = 𝑓𝑡 ∘ 𝑐𝑡−1 + 𝑖𝑡 ∘ tanh(𝑊𝑥𝑐𝑥𝑡 + 𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐) (8)

ℎ𝑡 = 𝑜𝑡 ∘ tanh(𝑐𝑡) (9)

2.3.4. Generative adversarial networks

A generative adversarial network (GAN) is a class of machine learning frameworks

designed by Ian Goodfellow and his colleagues in 2014. Given a training set, the technique

learns to generate new data with the same statistics as the training set. Figure 6

demonstrates the concept of the GAN architecture.

GANs use an adversarial training workflow consisting of a generator and a

discriminator, which are deep models like neural networks. The generator learns to map

from a latent space (e.g., a multivariate normal distribution) to a data distribution of interest

20

and produces new data samples. The real data samples and the candidate data samples

produced by the generator from the true data distribution, are together fed into the

discriminator. The discriminator is trained to classify (or distinguish) each sample as real

or fake and the classification errors are used to train the parameters of both the generator

and discriminator through backpropagation.

Figure 6. The architecture of a canonical GAN.

The core idea of a GAN is based on the indirect, or adversarial, training of the generator

through the discriminator, which itself is also being updated dynamically. In other words,

the generator is trained to succeed in “fooling” the discriminator by producing synthetic

samples that the discriminator thinks are not synthesized, while at the same time, the

discriminator is also trained to increase its ability to distinguish the slight contrast between

the genuine (real samples) and the generated (fake samples).

Mode collapse [62] is a well-known problem in GANs where they generate only a few

modes of the underlying distribution. It is particularly exacerbated in time series use cases,

such as when we generate go-around sequences, because of the high variability in the range

of feature values. Some researchers perceive the root problem to be a weak discriminative

network that fails to notice the pattern of omission, while others assign blame to a bad

choice of objective function.

21

3. Anomaly Detection

3.1. Go-Around Detection

The raw flight trajectory data does not explicitly label go-around flights that can serve

as ground truth for the subsequent analysis. Current practice of go-around detection is

mostly based on voluntary self-reports of controllers or pilots, which are typically

unreliable and incomplete. Ref. [63] used ASRS data, which is self-reported, voluntary,

post-event data, to forecast the trends of go-around causes and counts. It requires manual

labeling, and the results fail to provide predictive information before go-around happens.

Survey or interview data from flight crew, which could be unrepresentative, was used by

Flight Safety Foundation [26] to examine go-around decision-making and the outcome of

go-arounds. 3D full-flight simulation data [64] and the training flight data help with the

analysis of go-arounds, but the size of data is insufficient.

We did not find an algorithm that rigorously detects go-around occurrence from flight

track data in the open literature. Therefore, we propose a scientific way of detecting go-

around occurrence by analyzing historical flight trajectories. The trajectory-based detection

algorithm can not only label the flight in binary responses (go-around or not), but also

identify when (timestamp) and where (3D position) the go-around occurred. Each flight

trajectory will be processed and must meet the criteria to be considered as a go-around. For

each labeled go-around flight, we treated the timestamp/trackpoint at the start of ascent as

the initial time/location for the go-around procedure, and truncated the trajectory after that

point.

Figure 7. Altitude profile (black) and distance profile (blue) of a normal landing flight

(left) and a go-around flight (right).

22

According to [35], “A go-around begins when the crew aborts the descent to the

planned landing runway during the approach phase; it ends after speed and configuration

are established at a defined maneuvering altitude or to continue the climb for the purpose

of the cruise.” Our proposed go-around detection algorithm identifies go-arounds by

analyzing historical full flight trajectories. Figure 7 compares the horizontal and vertical

profiles between a normal flight approach (left) and a typical go-around flight (right). In

these plots, the black curves show the altitude and blue curves show the horizontal distance

away from the airport. A typical go-around flight would first decrease its altitude and

distance to the landing runway threshold, then climb and fly away from the airport for

another approach and landing.

The main block of this algorithm is the change point detection using piecewise linear

regression. As discussed above and as shown in Figure 7, the trend shifts in aircraft altitude

and the distance to the airport signify go-around events in most cases. Piecewise linear

regression models are suited here to capture those changes since the models look for first-

order changes, that is, points at which the rate of change differs from one region to another.

We first define a buffer size of 5, indicating the number of data points the algorithm will

consider to find a change point. Then we compute two residual sum-of-squares (RSS) for

a piecewise linear fit, with 𝑅𝑆𝑆1 determines the sum of the RSS for the first five data points

and the RSS for the subsequent five data points, while 𝑅𝑆𝑆2 determines the RSS for the

combined set of these ten data points. The two values (𝑅𝑆𝑆1 and 𝑅𝑆𝑆2) are used to calculate

the F-statistic associated with the two fits. The F-statistic is used to evaluate if one line or

two lines would better represent the analyzed region of data, i.e., whether a change point

exists for this region. The detailed trajectory-based go-around detection algorithm is

presented in Table 1.

The trajectory-based go-around detection algorithm is designed to detect any aborted

landing behaviors – including missed approaches and go-arounds – that are initiated within

10 nm of the airport, regardless of whether the flight overflies the runway, or whether it

proceeds to the Missed Approach Points (MAPt). The definition of go-around in this study

applies to both VFR aircraft and IFR aircraft, as long as the aircraft tries again for the

landing.

Figure 8. Perpendicular distance [65] between the extended runway centerline 𝐿𝑖 and the

trajectory segment 𝐿𝑗.

23

Table 1. Go-around detection algorithm.

Algorithm: Go-around Detection Algorithm

INPUT: Four-dimensional flight track data (latitude, longitude, altitude, and time)

INITIALIZE: Coordinates of arrival runway thresholds

OUTPUT: Go-around labels and their related properties (execution time, execution altitude, etc.)

Procedure

Step 1: Data preprocessing. Apply median filtering with a sliding window size of 10 to remove noise

from the trajectory records. Remove incomplete trajectories (the altitude of the last track point is higher

than 500 feet) and define landing endpoint (the rate of descent equals 0 feet) for complete trajectories.

Step 2: Altitude check. Piecewise linear regression is applied to identify points at which the slope of

the altitude evolution curve, the black curve shown in Figure 7, is changed. Each flight trajectory is

processed and must meet the following criteria to be considered as a go-around:

• The altitude at the start of ascent is no more than ℎ𝑠𝑡𝑎𝑟𝑡 (default value of 5500 feet);

• The total altitude gain during the ascent must not be less than ∆ℎ (default value of 400 feet).

Step 3: Define the analyzed segment. For flights that pass the altitude checks in Step 2, the landing

endpoint (defined in Step 1) is updated to the point at which the altitude starts increasing. Each aircraft’s

analyzed segment is a two-minute (𝑇𝑓𝑖𝑛𝑎𝑙) trajectory segment ending at the landing endpoint.

Step 4: Calculate the landing runway. We did not directly use the landing runway information

recorded in the given dataset due to a significant number of missing and incorrect records. Instead, we

calculate the landing runway using the two-minute analyzed segment extracted from Step 3. For every

trajectory segment formed by two track points, we calculate the perpendicular distance [65] from the

extended centerlines of all the available arrival runways (by configuration) using formulas in Figure 8.

Each track segment thus votes for the closest Extended Runway Centerline (ERC) segment. The landing

runway is the one that receives the most votes from track points in the vector. This runway is also used

as one of the features in the statistical model.

Step 5: Distance check. For each track point of the two-minute analyzed flight trajectory segment,

calculate the distance to the runway threshold markings of the corresponding landing runway obtained

in Step 4. Piecewise linear regression is applied to identify points at which the slope of the curve

representing distance to landing runway threshold, the blue curve is shown in Figure 7, is changed. Each

flight trajectory is processed and must meet the following criteria to be considered as a go-around:

• When a go-around flight is within 1-nautical-mile range of the airport, its altitude does not

exceed ℎ1𝑛𝑚 (default value of 1500 feet);

• Go-around must occur within the 10-nautical-mile range of the airport, in order to distinguish

go-arounds from aircraft being vectored or in holding patterns;

• The ascending segment of a go-around trajectory must be within 10 nm of the center of the

airport.

Step 6: Multi-go-arounds. The two consecutive go-around procedures should be separated by at least

5 minutes (𝑇𝑚𝑢𝑙𝑡𝑖). The trajectory starting point for the second and subsequent flight trajectory segments

is when the previous go-around trajectory segment starts ascending.

end procedure

24

We developed our algorithm based on consultations from subject matter experts and

sensitivity analysis to determine parameters such as the altitude at the start of ascent ℎ𝑠𝑡𝑎𝑟𝑡

and the total altitude gain during the ascent ∆ℎ. We further applied it to the JFK arrival

flights except for military flights, general aviation, and helicopters. Figure 9 illustrates the

JFK airport chart and the runway threshold of runway 22L as an example. We collected

the coordinate information of the midpoint of all the runway threshold bars at JFK airport

(marked as yellow for runway 22L in Figure 9), and applied it as the input to the go-around

detection algorithm described in Table 1. In this dissertation, the “runway threshold”

specifically refers to the midpoint of the runway threshold bar.

Figure 9. JFK airport chart (left) and the runway threshold marking (right).

Two of the detected go-around flight trajectories are visualized in Figure 10. The flight

in the left plot aborted the descent to the planned runway 22R, overflew the runway,

returned to the landing queue, and finally landed on runway 22L. The flight in the right

plot was planned to land on runway 4L, but it ended up landing on runway 22L (Note that

this flight is counted as a go-around and its subsequent successful landing is not

considered). In total, 433 go-arounds have been detected from July 1st to December 24th in

2018, which accounts for 0.43% of all JFK arrivals within the period. This statistic agrees

with the FAA report, which indicates that the average percentage of go-around occurrence

across the core 30 airports in the U.S. from 2012 to 2017 is 0.4% [25].

Midpoint of the
runway threshold bar

Runway Threshold Marking

25

Figure 10. Exampled go-around flight trajectories.

3.2. Validation

The other effort in this chapter involved validating actual go-around occurrences that

would serve as ground truth or label data for the models. For validation purposes, we apply

our detection algorithm on the historical trajectory data to identify a rapid reversal in

descent within 10 nm of the airport. We then compare the go-around detection results (i.e.,

labels generated for historical flights) with the Sherlock go-around reports for the New

York Terminal Radar Approach Control facility (New York TRACON, also known as

N90). The N90 report is based on business rules developed by the FAA in the Performance

Data Analysis and Reporting System (an entirely independent method).

Both methods initially exhibited a significant number of false positives due to general

aviation aircraft operating in the vicinity of JFK. A filter was created to identify and remove

go-around events involving GA aircraft. We classified jet aircraft and multi-engine

turboprop aircraft as commercial aircraft. Single-engine turboprops, all piston-engine

aircraft, and any helicopters, gliders, and tiltrotors were classified as GA aircraft. The filter

was applied to the labels produced by both methods of go-around detection.

Next, the go-around events from each methodology were cross-referenced by

comparing the aircraft identifier and the go-around event timestamp, allowing for up to

five minutes of difference in time between the methods. Then, through applying filters to

the Sherlock go-around N90 reports to exclude general aviation VFR flights and to enhance

our detection algorithm to handle operational situations like diversions, we were able to

get the methodologies to converge on a labelled data set for 2018 operations at JFK.

JFK Airport JFK Airport

26

Figure 11. Month-by-month cross-referenced results of the Sherlock go-around N90

reports (blue) and our go-around detection algorithm (orange).

Figure 11 shows the cross-referenced results of the Sherlock go-around N90 reports (in

blue) and our go-around detection algorithm results (in orange) by month. In total, our go-

around detection algorithm identifies 1,012 go-around occurrences (including multi-go-

around events), while the N90 report detects 767 go-around events. Nearly all of the go-

around events identified in the N90 report, 743 of them, were also detected by our

algorithm. We thus visually inspect the few occurrences in which the two methodologies

disagree. Among the 24 N90-only events, 17 of them are false positives, and we add the 7

true-positive events to update our labeled set. Among the 269 events detected by our

algorithm only, 255 of them are true positives, and we remove the 8 false-positive events

from our labeled set. There were still 6 occurrences detected by our algorithm but did not

appear in the N90 reports. We thought these to be questionable events and hence omitted

them from the labeled set (i.e., still in the flight data set for analysis, but labeled as non-

go-around flights). Figure 12 shows two of the questionable events, with the left aircraft

NCA159 descends to 400 feet and then climbs, but does not seem to be aligned with any

runway. On the right, the aircraft DAL405 descends and aligns with runway 31L though

there is most likely a data error.

In general, our algorithm is able to identify more true positive events because it can

capture go-arounds initiated farther away from the runway threshold, and with more robust

criteria. Additional work is required to refine this detection algorithm and to consult with

SMEs to increase the annotation quality.

27

Figure 12. Questionable go-around labeled events.

28

4. Feature Engineering

4.1. Overview

The goal of this chapter is to determine the features that may affect go-around

occurrence and how we transform them from raw data to provide useful inputs for the

following statistical analysis and machine learning applications. A feature is an attribute or

property of the system being studied (in this case the air traffic on approach to an airport)

on which analysis or prediction is to be done. Through literature search, theoretical studies,

interviews with subject matter experts (SMEs) such as airport and Air Traffic Control

Tower operational personnel, as well as the data availability, we developed seven

categories of features including aircraft characteristics, approach stability features, in-trail

separation features, weather, airport conditions, go-around clustering effect, and surface

operation features.

In this chapter, we will first introduce a concept, called information cutoff gate, to

demonstrate why and how we subsample the flight sequences for the subsequent studies.

We then summarize the process of feature extraction and derivation in categories. Among

all the features derived, we propose a new metric, called runway occupancy buffer, to

measure the surface operation conditions. We will go into more details for this feature in

Chapter 5.

4.2. Information Cutoff Gate

In the raw data, the flight trajectory data are time series of aircraft position recorded

every few seconds (roughly every 5 seconds), which constitutes a dense representation of

the trajectories in the terminal airspace. Presumably, each track point in the dataset could

be counted as one observation since the features vary. Processing such dense time series

observations in machine learning algorithms could result in overfit and increase the training

time.

In order to reduce the computational complexity while maintaining an informative

representation of trajectories, we apply linear extrapolation to subsample the flight

trajectories at every nautical mile away from the landing runways, and only kept the

trajectories within ten nautical miles of any the landing runway thresholds at the analyzed

airport (Flights beginning apparent go-arounds outside the 10 nm range will not be

considered). We hereafter define those points at every nautical mile away from the landing

runway thresholds as information cutoff gates, as shown in Figure 13. We will only derive

features and annotate go-around labels at those gates based on the information available

when the subject flight passes a certain information cutoff gate. In other words, we will

model go-around probabilities based on information available when the aircraft reaches

these gates, approximately every 15 – 30 seconds during the approach phase.

29

Another reason of identifying the information cutoff gate is to make sure that we only

consider those features that can be evaluated at a certain time prior to when the go-around

occurs – there is no point in predicting go-arounds after it already happens. The

extrapolation technique ensures that the sequential prediction will be only based on the

information available when the subject flight passes a certain information cutoff gate. Note

that this distance-driven sampling strategy also guarantees that time-varying features are

comparable for all the flights in the data set. Taking “5nm gate” as an example, (1) only

go-arounds detected within [0, 5) nm from the landing runway threshold will be considered;

(2) flights initiating go-arounds when they are more than 5nm from the threshold are not

considered; (3) we do not include any features in modeling that cannot be known when the

flight passes the 5 nm arc.

As a result, each flight approach procedure can be represented by a sequence with a

fixed number of information cutoff gates – located at 𝑑 = 10, 9, …, 1 nm from the runway

threshold. Some of the flight sequences may have a length of fewer gates if the aircraft

initiated a go-around or otherwise aborted the approach prior to concluding the approach

procedure. For these flights, we consider only those features that can be evaluated before

the initiation of a go-around. The available features thus depend on the distance of the go-

around initiation point from the runway. In this study, we assume a go-around is executed

when its altitude starts increasing during the approach procedure based on our detection

algorithm in Chapter 3.

Figure 13. Information cutoff gates as shown as the vertical lines on the virtual approach

path on the left.

4.3. Features

We conducted several interviews with subject matter experts and NASA to understand

more fully the potential factors that should be included in the go-around prediction models

from an operational standpoint. Considering the data availability, we derive the following

seven categories of features that we would use as inputs to the statistical model and

predictive models. These include: aircraft characteristics, approach stability features, in-

30

trail separation features, weather features, airport conditions, and surface operation features.

The following subsections summarize the process of feature extraction and derivation from

the raw data. The variable code and variable description can be found in Table 3 at the end

of this chapter. Though the space is limited to report the summary statistics of all the

features at all information cutoff gates, we include the summary statistics for the 5 nm

information cutoff gate in Table 3 as an illustration.

Using data described in Appendix, observations are obtained for every flight operating

during the study period with seven categories of features. After preprocessing and matching

with the ASPM dataset, the final output has up to ten distance-varying feature vectors for

each flight observation, one at each information cutoff gate. Each vector represents one

distance-stamped record. We will feed the time series feature matrix into the predictive

model presented in Chapter 7, 8, and 9, while using only one static feature matrix (at the 5

nm information cutoff gate) for statistical modeling in Chapter 6.

4.3.1. Aircraft and Runway Characteristics

We categories airlines as international and domestic carriers, because we expect that

pilots working for domestic (U.S.) airlines are more experienced with landing in JFK

airport. Aircraft type is considered by categorizing as narrow body and wide body, in order

to capture differences in separation requirements and handling characteristics. We also

identify the landing runway to capture different approach patterns. Specifically, one-hot

encoding, which creates binary columns to indicate the presence of each possible value

from the original categorical feature, is applied to create dummy variables for wide-body

aircraft (Body), international airliner (Airline), and the calculated landing runway (Runway).

4.3.2. Approach Stability

As the [36] emphasized, “If not stabilized, go around”. Continuation of an unstabilized

approach to land may result in an aircraft arriving at the runway threshold too high, too

fast, out of alignment with the runway centerline, incorrectly configured, or otherwise

unable to land safely. Accordingly, we derive altitude deviation (AltDev), groundspeed

(Speed), angle with the extended runway centerline (Angle), and Kinetic energy height

(Energy) as flight approach stability features to capture potential instability indicators that

may prompt a go-around.

Normally the optimum vertical profile to use during a landing approach is a 3-degree

glideslope path [66], which requires that the aircraft descend at about 300 feet per nautical

mile. A large deviation from the target descent rate indicates an unstable approach. Thus,

we calculate the altitude deviation from the standard 3-degree glideslope path (AltDev) to

capture the potential unstabilized approach risk:

𝐴𝑙𝑡𝐷𝑒𝑣𝑖
𝑑 = |ℎ𝑖

𝑑 − 6076.12 ∙ 𝑑 ∙ tan(3°)| (10)

where ℎ𝑖
𝑑 is aircraft 𝑖’s altitude in feet at the 𝑑 nm information cutoff gate, 1 nm = 6076.12

feet.

31

When the aircraft 𝑖 is at the 𝑑 nm information cutoff gate, its groundspeed (Speed) after

median filtering is extrapolated to capture the situation in which an aircraft approaches too

fast or too slow. We applied the median filtering as a preprocessing step to remove out-of-

range isolated noise in the trajectory data. The median filter is a smoothing technique,

which runs through the data entry by entry, replacing each entry with the median of

neighboring entries. The angle of horizontal deviation from the extended runway centerline

(Angle) is also calculated using the flight latitude and longitude information to measure the

misalignment of the standard approach path. As shown in Figure 14, the solid blue line is

the ERC of runway 31R. When a flight, represented as red dot, intercepts the distance arc

(e.g., 5nm), we record and calculate the following features at this moment: Altitude (alt)

(in 100 feet), Groundspeed (speed) (in knots), and Perpendicular distance to ERC (horiz)

(in nautical miles).

Figure 14. Diagram of trajectory performance features.

Aircraft energy management is of great importance during the approach procedure to

maintain safety. An aircraft’s energy state is the sum of potential energy and kinetic energy

per unit weight [67]. However, the calculation requires information on aircraft mass, which

depends on payload and fuel load data that are not available to the researchers. Thus, we

use the energy height metric that can be defined as the hypothetical height [68], 𝐻𝑖, at

which the aircraft 𝑖’s potential energy (𝑚𝑖𝑔𝐻𝑖) is equal to the total energy at its current

state (𝑚𝑖𝑔ℎ𝑖 +
1

2
𝑚𝑖𝑣𝑖

2), which is calculated as:

𝐻𝑖
𝑑 = ℎ𝑖

𝑑 +
(𝑣𝑖

𝑑)2

2𝑔
(11)

where 𝐻𝑖
𝑑 is the kinetic energy height to be calculated at the 𝑑 nm information cutoff gate

(Energy, in feet), ℎ𝑖
𝑑 and 𝑣𝑖

𝑑 are respectively the aircraft altitude and aircraft groundspeed

when the flight 𝑖 is at the 𝑑 nm information cutoff gate, and 𝑔 is the constant of

gravitational acceleration. This metric can be calculated for each flight during the approach

process to represent the aircraft energy-related risks using only the surveillance track data.

32

4.3.3. In-trail Separation

Separation is defined as the distance, either horizontal or vertical, between two aircraft.

Here we are interested in the distance between a given aircraft on approach the lead aircraft

(if any) landing on the same runway. The minimum required horizontal separation in this

situation depends on the relative weight class of two aircraft and meteorological conditions

(visual or instrument). A defined Loss of Separation (LOS) between airborne aircraft

occurs whenever the specified separation minima in controlled airspace are breached. In

this study, the loss of separation is calculated as the difference between the minimum

required separation from the FAA standard and the actual separation between the lead-trail

aircraft pair. We expect that a greater loss of separation (in nautical miles) increases the

probability of go-around. Therefore, to capture the separation effect, we derive four

variables that are employed in the statistical models: Loss of separation (LOS), a dummy

variable NoLead indicating the case where there was no leading aircraft for a given flight,

the speed difference (SpeedDiff) and the altitude difference (AltDiff) between leading and

trailing (subject) flight.

The algorithm for obtaining these variables requires three steps – finding leading and

trailing aircraft pair, obtaining actual separations, speed difference, and altitude difference

for the lead-trail aircraft pair, and finally calculating the loss of separation. We elaborate

on these steps below:

i. Group flights with the same (calculated) landing runway obtained from the go-

around detection algorithm in Table 1, and sort them in chronological order based

on the time that flights cross the runway threshold. For each group, we create a list

of tuples where each tuple contains two consecutive aircraft that have been sorted.

Within each tuple, if the runway threshold crossing time difference of the two

aircraft is smaller than 10 minutes, then we define them as a lead-trail aircraft pair.

Otherwise, we set a dummy variable NoLead to 1 for the trailing (subject) aircraft

to indicate the case in which, for all practical purposes, there was no leading aircraft

for a flight.

ii. For each trailing flight, we find the linearly extrapolated timestamp 𝑡 at which the

trailing (subject) flight is d nm to its landing runway. At the extrapolated timestamp

𝑡, we again extrapolate the locations (latitude, longitude, altitude) and groundspeed

of both leading and trailing aircraft. The separation between these two extrapolated

locations (in terms of latitude and longitude) is noted as 𝑆𝑡. We also calculate the

speed difference (SpeedDiff) and altitude difference (AltDiff) between leading and

trailing (subject) flight at this extrapolated timestamp 𝑡. To be specific, we subtract

the extrapolated groundspeed/altitude of the leading aircraft from the extrapolated

33

groundspeed/altitude of the trailing (subject) aircraft when the trailing flight is at

the d nm information cutoff gate.

iii. Obtain the separation minima from FAA Wake Separation Standards [69] based on

the weight class of leading and trailing aircraft under VMC (𝑆𝑚
𝑉𝑀𝐶) and IMC (𝑆𝑚

𝐼𝑀𝐶).

When the trailing flight is at 5 nm to its landing runway, if the meteorological

condition is recorded as “VMC” in the ASPM quarter-hour dataset, the standard

separation minima is 𝑆𝑚 = S𝑚
𝑉𝑀𝐶 (e.g., 1.9 nm for the Large-Large lead-trail pairs),

otherwise 𝑆𝑚 = S𝑚
𝐼𝑀𝐶 (e.g., 3.0 nm for the Large-Large lead-trail pairs). Thus, the

loss of separation (LOS) is 𝑆𝑙 = max(0, 𝑆𝑚 – 𝑆𝑡), and is directly employed as a

continuous variable in the model.

4.3.4. Weather

We expected that runway configuration change, arrival traffic, airport capacity,

visibility, ceiling, and wind condition could also trigger a go-around. To capture the

expected non-linearity of impacts of various visual conditions on go-around occurrence,

the visibility variable (in statute miles) is discretized into three continuous subsections: [0,

1], (1, 3], (3, 5], (5, 10]. Similarly, the ceiling variable (in 100 feet) is discretized into four

continuous subsections: [0, 5], (5, 10], (10, 30], (30, 100]. The intervals are based on the

criteria set for defining low IFR, IFR, marginal VFR, and VFR [70]. For example, if the

recorded ceiling equals 600 feet, the discretized ceiling variables Ceilingk are 5, 1, 0, 0.

The ASPM airport quarter-hour dataset provides surface wind speed (in knots), wind

angle (in degrees), and arrival runway configuration. For each landing aircraft, we apply

trigonometric calculations to compute the headwind/tailwind speed and crosswind speed

with the information of landing runway configuration at the airport. For the variable wind

in which the wind angle was not available, we set the headwind/tailwind speed and the

crosswind speed as √2/4 × wind speed. When the wind is a headwind, the tailwind is set

to zero, and vice versa.

4.3.5. Airport Conditions

We subtract the arrival/departure rate (counts) from the arrival/departure demand

(counts) to capture the airport traffic conditions. A negative sign in these demand-minus-

capacity variables indicates the absence of an arrival queue. The Airport Arrival/Departure

Rate (AAR/ADR) and the number of intended landing/departing aircraft (demand) are

obtained directly from the ASPM dataset on a quarter-hourly basis. For a given flight, the

change of runway configuration variable (RwyChange) is set to 1 if the used runway

configuration during the observed period is different from the preceding 15-minute period,

and 0 otherwise. As an additional indicator of operational traffic, we include daytime

dummy variables if the observed aircraft reaches 𝑑 nm information cutoff gate between 6

34

am and 6 pm in local time (Daytime). A dummy variable is also created to indicate the

Instrument Meteorological Conditions (IMC), as opposed to Visual Meteorological

Conditions (VMC).

4.3.6. Go-Around Clustering Effect

From the go-around detection results, we observed that go-arounds sometimes occur in

clusters—that is several occur in a short time interval. To capture this effect, we calculate

the time difference between when a given flight is at the 𝑑 nm information cutoff gate and

the initiation time of the latest go-around that occurred in the past 24 hours. This minimum

time difference (GaGap) among all other go-arounds in record is used as a temporal

clustering feature. If no go-arounds occurred in the past 24 hours for a given flight, we set

the GaGap to 1440 (minutes). The GaGap variable only focuses on the effect from the

previous go-around flight and such an effect weakens with time. As a second clustering

feature, we include the number of go-arounds (except the given flight if it was a go-around)

that occurred in the past 30 minutes in JFK airport when a given flight i was at 𝑑 nm from

the runway threshold (GaCnt). This variable measures the clustering effect in terms of

quantity.

4.3.7. Runway Incursion Risk

In the case where pilots or controllers anticipate a runway incursion, a common practice

would be to initiate a go-around [37]. Therefore, we have derived two variables – predicted

Runway Occupancy Buffer (𝑅𝑂�̂�) and counts of objects (both aircraft and vehicles) on the

runway (RwyCnt) - to serve as indicators of incursion risk and used them as features in our

go-around model.

One of the incursion variables is the number of aircraft or ground vehicles on the

runway (RwyCnt) when the subject flight is 𝑑 nm from its landing runway threshold. We

first define the Runway Safety Area (RSA) polygon bounded by holding position markings

painted on the taxiway or runway surface [71, 72]. When the subject aircraft reaches the 𝑑

nm information cutoff gate, we count the total number of arrivals, departures, and crossing

aircraft/vehicles that are contained in the corresponding landing RSA polygon at that

moment, using ASDE-X surface track data.

The ROB is defined as the time difference between the runway threshold crossing time

of the trailing aircraft and the runway exit time of the leading aircraft. When a trailing

aircraft reaches a certain information cutoff gate, the 𝑅𝑂�̂� is predicted using algorithms

given in the next chapter. It captures the variations in the runway threshold interarrival time

[73], landing runway occupancy time [74], and the spacing buffers routinely applied by air

traffic controllers [75]. Note that we incorporate the predicted 𝑅𝑂�̂� at each information

cutoff gate as one of the feature inputs for the following statistical modeling (Chapter 6)

and predictive analytics (Chapter 7), instead of the observed ROB. This is to reflect the

fact that the information available to controllers and pilots are limited at the time the aircraft

crosses that gate. The decision of go-arounds is largely depending on human anticipation

35

of the surface status and runway incursion risk. Such nested configuration also allows us

to explore how this predicted feature can improve model results. In Chapter 5, we will get

into details on how to obtain the feature, predicted runway occupancy buffer 𝑅𝑂�̂�. For

flights that do not have leading aircraft, this value is set 0 seconds, but with a dummy

variable, NoLead added as described above.

4.4. Feature Types

In this section, we further discuss the features and divide them into two types –

attributes and time series features. This serves as preliminary for Chapter 7 and Chapter 8

of this thesis, as different data/feature types require different handlings when we develop

the learning models (e.g., IO-HMM, and GAN).

The attributes are static features that will not change during the final approach, such as

aircraft type, weight class, operated airline, and landing runways. The time series features

are dynamic, as they will vary along with the approach. Examples include flight altitude

and ground speed. Table 2 shows an example of a go-around flight sequence in the dataset,

where rows corresponding to nautical mile distance timestamp, and columns describing

features at each timestamp.

Table 2. An example flight sequence data.

Timestamp
Distance to

threshold (nm)

Weight

class

Operated

airline

Altitude

(100 feet)

Groundspeed

(knot)
…

1 10 Large UA 26.52 128.07 …

2 9 Large UA 24.00 118.06 …

3 8 Large UA 21.99 130.41 …

4 7 Large UA 19.83 119.17 …

5 6 Large UA 17.00 76.29 …

6 5 Large UA 17.00 103.04 …

7 4 Large UA 14.00 95.85 …

8 3 Large UA 11.00 118.18 …

9 2 Large UA 7.64 123.00 …

10 1 Large UA 4.00 125.29 …

36

Table 3. Model variables and summary statistics.

Variable Category
Variable

Code
Variable Description

When flight 𝒊 is at 5 nm from

the threshold

Mean Min Max

(I) Aircraft and

Runway

Characteristics

Airline+

1 if flight 𝑖 is operated by an

international airline, 0

otherwise

0.21 0 1

Body+
1 if flight 𝑖 is wide-body

aircraft, 0 otherwise
0.24 0 1

Runway+
Dummy variable for calculated

landing runway of flight 𝑖
- 0 1

Daytime+

1 if the observed time is

between 6 am and 6 pm in

local time, 0 otherwise

0.61 0 1

(II) Approach

Stability

Angle
Angle with the Extended

Runway Centerline (in degree)
7.99 0.00 68.45

AltDev

Absolute altitude deviation

from 3-degree glideslope (in

feet)

151.92 0.00 719.12

Speed Flight groundspeed (in knots) 163.19 77.28 277.85

Energy Kinetic energy height (in feet) 2841.45 1318.72 5370.49

(III) In-trail

Separation

LOS

The loss of separation between

leading and the trailing flight 𝑖
(in nautical miles)

0.09 0.00 2.61

SpeedDiff

Groundspeed difference

between leading and the

trailing flight 𝑖 (in knots)

20.92 -86.95 144.73

AltDiff

The altitude difference between

leading and trailing flight 𝑖 (in

100 feet)

13.30 0.50 22.28

NoLead+

1 if there is no leading aircraft

in front of flight 𝑖 within 10-

minute landing sequence, 0

otherwise

0.13 0 1

(IV) Weather Wind

Wind speed where the

headwind component is

subtracted (in knots)

5.72 0 25.98

37

Variable Category
Variable

Code
Variable Description

When flight 𝒊 is at 5 nm from

the threshold

Mean Min Max

Visibilityk

Discretized visibility (k =

1,2,3; intervals are [0, 1], (1,

3], (3, 5] and (5, 10] in miles)

- 0 10

Ceilingk

Discretized ceiling (k =1, 2, 3,

4; intervals are [0, 5], (5, 10],

(10, 30], (30, 100] (in 100 feet)

- 2 100

(V) Airport

Conditions

ArrQue

Difference between airport

supplied arrival rate (AAR)

and the number of intended

landing aircraft (counts)

-2.04 -15 31

DepQue

Difference between airport

supplied departure rate (ADR)

and the number of intended

depart aircraft (counts)

1.24 -15 52

RwyChange+

1 if the used runway

configuration is changed from

the previous quarter hour,

otherwise 0

0.08 0 1

IMC+ 1 for IMC, 0 for VMC 0.15 0 1

(VI) Go-around

Clustering Effect

Features

GaGap

The minimal time interval

between the approaching time

of flight 𝑖 and the initiation

time of the latest go-around

occurred in the past 24 hours

(in minutes)

712.62 5.37 1440

GaCnt
The number of go-arounds

occurred in the past 30 minutes
0.06 0 5

(VII)Surface

Operations

𝑅𝑂�̂�
Predicted runway occupancy

buffer (in seconds)
30.60 -28.89 146.79

RwyCnt

The number of aircraft and

vehicles appearing on the

landing runway (counts)

2.04 0 9

+ Variables are one-hot encoded.

38

5. Runway Occupancy Buffer

5.1. Overview

To enable the safe and efficient integration of NextGen, the FAA Administrator’s

Strategic Priorities is moving to risk-based decision-making and places great emphasis on

finding an optimal compromise between runway safety and efficiency. As the air traffic

demand grows, how to maximize the runway throughput without compromising runway

safety levels becomes more important to Air Traffic Management and Control (ATM/ATC)

strategies. Toward this end, it would be useful for controllers and pilots to have real-time

predictions of when arriving flights will cross the runway threshold relative to the

exit/departure of the previous aircraft from the runway. Such predictions could support a

decision-support tool to assist in adjusting the arrival time to increase or reduce this time

difference as appropriate.

In this study, we introduce a new metric - Runway Occupancy Buffer (ROB) - to

unmask the interaction between air and surface operation during flight approach

procedures. For an in-trail arrival aircraft pair, the leading aircraft must clear the runway

before the trailing aircraft crosses the runway threshold to prevent Simultaneous Runway

Occupancy (SRO). The difference between these two timestamps is what we call the ROB.

During busy periods, ROBs ideally should be small in order to maximize runway

efficiency. In this case, when the leading aircraft exits the runway, the trailing aircraft will

be about to cross the runway threshold. Otherwise, large ROB indicates inefficient runway

use and may cause unnecessary delays. Conversely, ROBs that are too small (or negative)

create a risk of incursions, accidents, or incidents.

ATC would benefit from the ability to predict ROB so that actions might be taken to

achieve a safe and efficient value for this metric. Also, as explained in Chapter 4, the

predicted ROB is a useful feature for predicting go-arounds. Therefore, we focus on

applying machine learning techniques to better understand and predict the ROB metric,

which can lead to an improvement in runway safety and runway throughput. Our

motivation is three-fold. First, from a safety point of view, modeling and predicting ROBs

would feed as a predictive tool at the airport to alert air traffic controllers and flight crew

about runway operational risks and impending aircraft behaviors. Controllers can have

longer reaction times to handle unsafe situations. If the predicted ROB is much longer or

shorter than expected, controllers and pilots may coordinate to adjust the aircraft speed,

altitude, heading or execute a go-around. Second, from an efficiency perspective, the

prediction of ROB can enable the pilot to adjust speed for achieving the desired spacing

ROB, thus improving runway capacity. With longer prediction horizons, the predictability

is not only beneficial to airport performance in the terminal area but also improve

performance in the downstream and upstream. Third, as to uncertainty, the accurate

prediction of ROBs may permit a narrowing the safety margins applied by air traffic

controllers. Due to the uncertainty of actual operations, human decision-making errors still

39

exist. Reliable ROB predictions could boost controllers’ and pilots’ confidence during the

decision-making process. In sum, the capability to predict ROBs with small uncertainty

could result in a smaller buffer time that ultimately increases capacity without

compromising safety levels.

5.2. Related Work

Predictability is recognized as an important operational performance goal for ATM. Liu

et al. [76] investigates the potential benefit of the predictability in airport surface operation

system from the controllers’ perspective, flight operator’s perspective, and traffic

management perspective. They conclude that the predictability on the airfield and surface

reduces the controller’s workload surges, has the potential to better deal with off-nominal

situations, improves performance in the downstream and queue area.

Most of the research on runway safety and efficiency has focused on analyzing

operations on the surface and in the air separately. For the analysis of runway operations,

a number of advanced analytical methods have been proposed to predict Runway

Occupancy Time (ROT), which is the amount of time that a runway is occupied, or not

usable by another aircraft. Meijers et al. [77] uses the Random Forest (RF) model to

compute the feature importance of ROT for 36 major US airports based on ASDE-X radar

tracks. It was found that the runway exit, the aircraft type, the airline, the final approach

speed of the landing aircraft and the presence of the following aircraft in approach explain

over 80% of the variance of ROT. Although some predictors identified in this paper, such

as the runway exit and the exit angle, cannot be used for real-time prediction, it still

provides useful insights into the factors that contribute to ROT variability. Herrema et al.

[78] investigates the identification and prediction of abnormal runway occupancy times

only. Lasso, Multi-layer perceptron and neural networks are used to predict taxi-out time,

time to fly and true airspeed profile on the final approach. Martinez et al. [79] presents a

boosting tree framework to predict the actual ROTs and the expected exit at different

distances from the runway threshold.

For the analysis of approach procedures in the air, Tosic and Horonjeff [73] estimated

the landing runway capacity by computing the runway threshold interarrival time. It is

assumed that the system is free of errors, and the runway occupancy time is always less

than that threshold interarrival time. Substantial literature can also be found in analyzing

so-called remaining time to arrival (RTA), which is defined as the time difference between

the present time and the Estimated Time of Arrival (ETA). A neural network approach [80]

was applied to study sources of variability in flight arrival times and achieved ±4.5min

accuracy at a 95% level for the 10nm range. Levy and Bedada [81] present the results for

the real-time estimation of ETA at the runway threshold. The paper concludes that the

predictive accuracy of ±3.5 min accuracy at the 90% level should be adequate to improve

gate management.

40

Airport safety and efficiency can be optimized by improving the prediction capabilities

of ROT, flight arrival times and their uncertainty. Nikoleris and Hansen [82] point out that

the benefits of precise runway arrival times are greatly reduced when ROTs are highly

variable. We need to understand and model the relationship between precision in meeting

RTAs at the runway threshold and variability in ROTs systematically. Studies only concern

predictability in either of the two might be less beneficial due to the combination of errors

in both models. They thus consider queueing models to understand and model the

relationship between system throughput, precision in meeting RTAs at the runway

threshold, and ROTs systematically [82]. Stochastic variations in the time for leading

aircraft to clear the runway may delay trailing aircraft’s threshold crossing time if their

schedule separation does not include any excess time to absorb such variations.

Conversely, the prediction of the time for the trailing aircraft to reach the arrival runway

threshold may influence the runway exiting behavior of the leading aircraft.

With limited work to date on integrated modeling air and surface operation, our work

in this section aims to fill that gap by using historical trajectory data to model runway

safety, landing throughput, trajectory prediction and variability in ROT systematically. We

first rigorously define the ROB and provide the empirical analysis. The ROB not only

considers the runway threshold interarrival time proposed by Tosic and Horonjeff [73], but

also considers the landing occupancy time proposed by Simpson, Odoni and Salas-Roche

[83]. We then directly model the ROBs using Linear Regression (LR) models and Random

Forest (RF) regression model. Lastly, the performance of all candidate models is

investigated and compared. Model interpretation and feature importance are also discussed.

5.3. Empirical Analysis

According to the ATC safety requirement that no more than one aircraft can occupy

the runway at any time—i.e., no simultaneous runway occupancy (SRO), we define the

Runway Occupancy Buffer (ROB) to capture the interaction between ROT variability of

the leading aircraft and the predictive RTA of the trailing aircraft. In this section, we

precisely define ROB and provide more practical insights into this metric. We then

illustrate the algorithm for recognizing leading-trailing aircraft pairs and calculating ROB

from the ASDE-X surface track data. Lastly, summary statistics of ROB are presented and

discussed.

5.3.1. Definition

The Runway Occupancy Buffer (ROB) ∆𝑇, in seconds, is the time difference between

the runway threshold (abbr. thd) crossing time of the trailing aircraft 𝑡𝑡𝑟𝑎𝑖𝑙,𝑡ℎ𝑑 and the

runway exit time of the leading aircrafts 𝑡𝑙𝑒𝑎𝑑,𝑒𝑥𝑖𝑡, as shown in formula (1):

∆𝑇 = 𝑡𝑡𝑟𝑎𝑖𝑙,𝑡ℎ𝑑 − 𝑡𝑙𝑒𝑎𝑑,𝑒𝑥𝑖𝑡 (12)

41

Note that the runway exit standard we use in this study is more rigorous than the standard

used in identifying SRO. To make sure that no part of the fuselage or the tail of an aircraft

may infringe on the runway, Runway Safety Area (RSA) is defined and bounded by

holding position markings painted on the taxiway or runway surface. Generally, an aircraft

exiting a runway is not clear of the runway until all parts of the aircraft have crossed the

applicable holding position markings [84]. In line with this purpose, we create the RSA

polygon by collecting the coordinates of all the holding position markings for all the

runways in the JFK airport – 04L/22R, 04R/22L, 13L/31R, 13R/31L. Only the track points

that are contained in the analyzed RSA polygon will be analyzed. Figure 15 shows the one-

day traffic in blue on the abstracted 04L/22R RSA polygon.

Figure 15. One-day traffic on the abstracted 04L/22R RSA polygon (07/02/2018).

We visualize two pairs of in-trail arrivals (three aircraft land on the same runway) in

Figure 16 to illustrate related variables. In this figure, three colored blocks represent three

consecutive flights that arrive in-trail. They are arranged in chronological order from the

left to the right as the arrow is pointing. The left edge of the colored block 𝑖 is the runway

threshold crossing time 𝑡𝑡ℎ𝑑,𝑖, while the right edge represents the runway exit time 𝑡𝑒𝑥𝑖𝑡,𝑖.

Thus, a single block represents the time duration that the flight occupies the landing

runway, in essence, Runway Occupancy Time. As the formula (13) defines,

∆𝑇1 = 𝑡𝑡ℎ𝑑,2 − 𝑡𝑒𝑥𝑖𝑡,1; ∆𝑇2 = 𝑡𝑡ℎ𝑑,3 − 𝑡𝑒𝑥𝑖𝑡,2 (13)

The spacing between every two colored blocks is the ROB for the trailing aircraft. If

two blocks overlap, ∆𝑇 is negative. It indicates a lack of separation in time that could mean

a runway incursion. When the buffer time is large, as ∆𝑇2, it indicates a loss of runway

throughput which, when the airport is busy, could reduce airport throughput and increase

delay.

k1
k2

k3

k4
13R/31L
J

H
GG

G

F

YA
13L/31R

CFB
EE

E

Z

04L

22R

42

Figure 16. Concept display of Runway Occupancy Buffer.

If ∆𝑇 = 0 , then when the leading aircraft exits the holding position markings, the

trailing aircraft is just about to cross the runway threshold. This theoretical ideal requires

precise spacing of the arrivals which results in maximum runway throughput without

violating the SRO prohibition.

5.3.2. Calculation

We use the algorithm described as follows to calculate the RTA, ROT, and ROB from

ASDE-X dataset for each in-trail arrival. Go-around flights are detected first using the

algorithm in Chapter 3 and removed from the dataset. Military, general aviation, and

helicopter flights are also excluded from this study since they have very different approach

patterns from commercial flights.

The calculation algorithm has two steps – finding leading and trailing aircraft pairs and

calculating the RTA, ROT, and ROB. The extrapolation strategy guarantees that the RTA,

ROT, and ROB are calculated using the same standard, thus all these measurements are

comparable for all the flight observations. We emphasize that the ROB is neither the

runway threshold interarrival time [73], not the landing occupancy time [83]. The

calculation of ROB only depends on the flight track data – the timestamps at which the

subject (trailing) flight crosses the runway thresholds, and the timestamp at which its

leading flight exits the runway holding position marking.

5.3.3. Observed statistics

We only analyze in-trail arrivals identified by the algorithm described in Table 4.

Flights not having leading aircraft, and flights whose leading aircraft have already exited

the runway will not be considered for the ROB prediction. After data cleaning and

matching, there are, on average, 338 in-trail arrival flights each day in the analyzed airport

within the analysis period. Thus, we compile a dataset including 56,731 observations of

ROTs and ROBs for aircraft operating at JFK airport.

The ROT ranges from 45 seconds to 117 seconds. The distribution of ROT is consistent

with those reported in the literature using Automated Surface Observing System (ASOS)

data archives [77] and Advanced Surface Movement Guidance & Control System (A-

SMGCS) data [86]. The average value of the observed ROB is 85 seconds, which indicates

that, on average, the trailing aircraft crosses the runway threshold around 85 seconds after

the leading aircraft exits the runway. Nonetheless, individual observations vary widely,

with a standard deviation of 79 seconds. The maximum observed ROB is 569 seconds,

which relates to the criteria we set in the calculation algorithm (Step 4 in Table 4) to filter

43

out aircraft pairs with runway threshold crossing time differences over 600 seconds. In

addition, the magnitude of ROB is indicative of the traffic conditions in the analyzed airport.

As seen in Figure 17, ROB is small in the afternoon and evening when there is heavy arrival

traffic. ROB is generally higher when the majority of morning traffic is composed of

departures, or there is little traffic after midnight.

Table 4. ROB, RTA, ROT calculation algorithm.

Algorithm: ROB, RTA, ROT Calculation

INPUT: IFF flight track data, ASDE-X flight track data, RD summary

INITIALIZE: Coordinates of arrival runway thresholds and holding position markings in the analyzed

airport.

OUTPUT: In-trail aircraft pairs and flight’s RTA, ROT, ROB

Procedure

Step 1: Data querying. Query the track point data for each flight in the RD summary.

Step 2: Extrapolated runway threshold crossing time. For each flight, we extrapolate [latitude,

longitude, time] to acquire the timestamp at which the subject (trailing) flight crosses the runway

threshold 𝒕𝒕𝒉𝒅.

Step 3: Extrapolated runway exit time. Construct the spatial K-D tree [85] from the holding position

markings coordinates (red dots in Figure 15) in line with aircraft heading. For spatial continuity, we

also incorporate the last flight trackpoint in the KD tree search space. The K-D tree will be used to

query the runway exit for each arrival. The timestamp at which the flight crosses the runway exit is

extrapolated 𝒕𝒆𝒙𝒊𝒕.

Step 4: In-trail relationship. Group flights with the same (calculated) landing runway obtained from

Chapter 3 and sort them in chronological order by the time 𝒕𝒕𝒉𝒅 that flight intercepts the runway

threshold. For each group, we create a list of tuples where each tuple contains two consecutive aircraft

that have been sorted. We designate each tuple as a leading-trailing aircraft pair if:

● the runway threshold crossing time difference of the two aircraft is smaller than 10 minutes

𝑡𝑡ℎ𝑑,𝑡𝑟𝑎𝑖𝑙 − 𝑡𝑡ℎ𝑑,𝑙𝑒𝑎𝑑 < 600 (𝑠𝑒𝑐)

● the leading aircraft has not exited the runway 𝑡 < 𝑡𝑒𝑥𝑖𝑡

Otherwise, we remove the trailing flight from the tuple.

Step 5: Arithmetic. For each trailing flight filtered from the last step, RTA, ROT, and ROB can be

calculated at time 𝑡 when the analyzed flight passes a certain information cutoff gate during the

approach procedure:

𝑇𝑅𝑇𝐴 = 𝑡𝑡ℎ𝑑 − 𝑡 (14)

𝑇𝑅𝑂𝑇 = 𝑡𝑒𝑥𝑖𝑡 − 𝑡𝑡ℎ𝑑 (15)

∆𝑇 = 𝑡𝑡𝑟𝑎𝑖𝑙,𝑡ℎ𝑑 − 𝑡𝑙𝑒𝑎𝑑,𝑒𝑥𝑖𝑡 (16)

end procedure

44

Table 5. Summary statistics of the observed ROB.

Distance to runway

threshold (nm)
Observations

ROB (seconds)

mean std. min max

10 56,731 85.225 79.055

-35.490

569.194

9 52,283 69.176 51.474 555.832

8 49,790 61.784 34.410 535.856

7 47,924 58.821 30.838 456.775

6 44,902 54.988 27.303 176.637

5 39,745 49.781 23.513 146.791

4 31,368 42.596 19.089 137.712

3 17,044 32.644 15.047 93.605

2 2,045 18.633 11.975 57.760

Figure 17. One-day ROB temporal pattern (07/05/2018 at top and 12/05/2018 at the

bottom).

In Figure 18, we investigate in detail the in-trail arrival scenario with the minimum

ROB of -35 seconds. Both aircraft land on the 04R runway threshold shown at the right

end, and then take the high-speed runway exit FB, depicted by the red dots on the left end.

The yellow pins extrapolated from the dataset represent the aircraft positions. In the top

figure, when the trailing flight crosses the runway threshold, the leading aircraft has already

been taxing on FB but has not yet satisfied the runway exit standard of crossing the holding

position markings. After about 35 seconds, the leading aircraft (green arrow) crosses the

45

holding position markings, and the trailing flight (yellow arrow) is nearby, as shown in the

bottom figure. Note that such situations result in negative ROBs, but do not necessarily

imply a runway incursion.

Figure 18. The minimal ROB scenario visualization.

5.4. Runway Occupancy Buffer Prediction

In this section, we would like to develop predictive models based upon the above

empirical observations of runway occupancy buffer (ROB) extracted from the real-world

dataset. Regression-based machine learning algorithms are employed to learn the

relationship between the observed ROB and the relevant potential factors. As the subject

flight (trailing aircraft) approaches the airport, we seek to predict its runway occupancy

buffer time relative to the leading aircraft using the same set of features described in

Chapter 4. It is as if pilots and air traffic controllers anticipate runway conditions and assess

whether the approach environments are safe for the trailing aircraft to land.

As pointed out by Nikoleris and Hansen [82], the interdependency between RTAs (air

operations) and ROT (ground operations) likely exists, and studies only concern

predictability in either of the two might be less beneficial due to the combination of errors

in both models. A longer ROT of the leading aircraft will result in a delayed arrival time

for the trailing aircraft. Nonetheless, the converse relationship may also hold. It is

conceivable for the RTA of the trailing aircraft to affect the ROT of the leading aircraft.

For example, controllers will attempt to shorten the ROT of the leading aircraft if the

trailing aircraft landing is imminent. This provides the impetus to model and predict the

ROB explicitly with predictive algorithms to capture the interaction between RTA (air

operations) and ROT (ground operations).

46

We primarily investigate two types of machine learning algorithms for the ROB model

development: linear regression (ordinary least squares, Ridge, Lasso, Elastic Net) and

Random Forest (RF). Linear regression is carried out to estimate the ROB with the

following Equation (17):

𝑦 = 𝑋𝜷 (17)

where 𝑦 is the observed ROB, 𝑋 is the design matrix including variables in Table 3. 𝜷

is the variable coefficient vector obtained by minimizing the sum of the squares of the

residuals:

∑(𝑦𝑖 − 𝑦�̂�)
2

𝑛

𝑖=1

= ∑(𝑦𝑖 − 𝛽0 − 𝑋𝜷)2

𝑛

𝑖=1

(18)

 To avoid the risk of overfitting and improve the prediction performance, we use

regularized regression to reduce the model complexity. A set of regularized linear

regressions are investigated: LASSO regression, Ridge regression, and Elastic Net

regression. Regularization addresses concerns about variance-bias tradeoff,

multicollinearity, sparse data handling, feature selection, and the interpretability of the

output.

In ridge regression, the cost function is penalized by the square of the coefficient

magnitude ‖𝛽‖2:

∑(𝑦𝑖 − 𝑦�̂�)
2

𝑛

𝑖=1

= ∑(𝑦𝑖 − 𝛽0 − 𝑋𝜷)2

𝑛

𝑖=1

+ 𝜆𝑟‖𝜷‖2
2 (19)

where the penalty term 𝜆𝑟 regularizes the coefficients vector 𝜷. If the coefficients take

large values, the optimization function is penalized and the coefficients are shrunk in ridge

regression.

In LASSO regression, 𝑙1norm, ‖𝜷‖1, is used as the penalty, which accounts for the

absolute value of the coefficients magnitude and may result in coefficients with zero value.

Thus, Lasso regression helps in reducing overfitting and feature selection. The cost

function is denoted by the following Equation (20):

∑(𝑦𝑖 − 𝑦�̂�)
2

𝑛

𝑖=1

= ∑(𝑦𝑖 − 𝛽0 − 𝑋𝜷)2

𝑛

𝑖=1

+ 𝜆𝑙‖𝜷‖1 (20)

The Elastic Net regression is a hybrid of LASSO and Ridge regression, where the cost

function linearly combines the 𝑙1 and 𝑙2 penalties, as indicated in Equation (21). The OLS

regression is a special case of ridge regression and LASSO regression as the 𝜆 gets close

to zero.

47

∑(𝑦𝑖 − 𝑦�̂�)
2

𝑛

𝑖=1

= ∑(𝑦𝑖 − 𝛽0 − 𝑋𝜷)2

𝑛

𝑖=1

+ 𝜆𝑟‖𝜷‖2
2 + 𝜆𝑙‖𝜷‖1 (21)

Besides linear models, we train random forest regression model to learn a set of

decision trees that map all the features to the realized ROT in the leaves of trees by splitting

the dataset recursively [87]. The random forest model builds shallow decision trees

independently, using a random subset of features, on various subsamples of the dataset.

The ensemble of decision trees is built to capture possible nonlinearities between the ROB

and explanatory variables described in Table 3, and is not expanding the feature space and

yet prevent overfitting.

The performance of six models will be investigated and compared: naïve average

model, Ordinary Least Squared (OLS) model, Least Absolute Shrinkage and Selection

Operator (LASSO) regression, ridge regression, elastic net regression, and random forest

regression. We use the same feature set (except for the ROB) at each information cutoff

gate as described in Chapter 4. The same flight is used to generate 10 observations

corresponding to 10 distance-stamps. However, observations in each distance dataset,

reported in Table 5, are analyzed independently. Since we remove the in-trail aircraft pairs

if the leading aircraft has already exited the runway, the number of observations at different

distances from the runway threshold will vary as the trailing aircraft approaches the airport,

as shown in Table 5. Data is split into 80% of the training set for hyperparameter(s) tuning

and 20% of the testing set for model evaluation. A five-fold cross-validation grid search is

performed to minimize the Mean Squared Error (MSE) for selecting optimal combinations

of hyperparameters defining the model. We then fit models with selected parameters on

the entire training set (without folds) and obtain predictions of the test set.

5.5. Results

5.5.1. Model Performance

When a trailing aircraft reaches the information cutoff gate, we employ the trained

model on the acquired feature matrix to provide the prediction of the ROB value directly.

Six models – naïve average method, OLS regression, LASSO regression, Ridge regression,

Elastic Net regression, random forest regression – are tested and evaluated on the same

dataset for any particular distance segments. We also include a baseline of two-stage model

which predicts the ROB by modeling the ROT of the leading aircraft and the RTA of the

trailing aircraft separately. The performance metrics for model comparison, RMSE, are

summarized in Table 6 and visualized in Figure 19.

Predictability progressively increases as the aircraft approaches its landing runway

threshold. It is likely because the information provided is insufficient, or not informative

enough, to make a robust prediction of ROB when the aircraft is further away. The two-

stage model is superior to the Naïve average method, but inferior to other models under the

48

integrated modeling scheme. Models developed under the integrated framework perform

much better than the two-stage model by capturing the interdependence between RTA and

ROT more precisely.

Table 6. RMSE of ROB predictive models.

Dist.

(nm)
Two-stage modeling (seconds)

Integrated modeling (seconds)

Naïve Ridge LASSO Elastic Net OLS RF

2 11.0 12.0 11.2 11.2 11.2 11.2 8.8

3 14.4 15.1 12.6 12.6 12.6 12.6 9.2

4 18.0 19.1 13.2 13.2 13.3 13.2 9.6

5 19.1 23.5 13.6 13.6 13.8 13.6 9.9

6 20.1 27.3 14.0 14.0 14.2 14.0 10.1

7 22.8 30.8 15.1 15.1 15.4 15.1 11.0

8 23.2 34.4 16.6 16.6 17.0 16.6 12.0

9 33.4 51.5 29.2 29.2 29.8 29.2 15.7

10 51.0 79.1 43.6 43.6 45.3 43.6 26.7

The random forest model (magenta line) has the smallest RMSE on the test set for all

models of different distance segments, outperforming linear models, the two-stage model,

and the naïve average method. The random forest regression model predicts ROBs with an

R-squared fit of more than 90%. The performance of all linear models does not vary

appreciably. In general, the OLS model (brown line) seems to predict ROB slightly better,

especially when the aircraft is further away from the runway threshold. As the number of

observations increases, OLS is more likely to converge to the optimal solution and learn

the distribution of ROB better. When the aircraft is close to the airport, the RMSE scores

for regularized linear models are slightly higher than those for OLS.

Figure 19. ROB model performance.

49

5.5.2. Estimation result

To gain interpretability of the model estimates, we summarize the coefficient estimates

of the OLS regression model (integrated modeling) at the 5 nm information cutoff gate, in

Table 7, and illustrate the feature importance of the random forest model (integrated

modeling) at the 5 nm information cutoff gate in Figure 20.

Table 7. OLS estimation results (5 nm information cutoff gate).

Variables
Coef.

(Std. error)
Variables

Coef.

(Std. error)

Constant 18.853***(1.977) Rwy_13R 4.866 (3.866)

Speed -0.325***(0.009) Rwy_22L -3.894***(0.664)

Energy 0.003***(0.000) Rwy_22R -1.259(1.146)

Horiz -2.041*** (0.483) Rwy_31L -1.100(0.790)

Alt_dev 0.561***(0.065) Rwy_31R -1.778**(0.672)

Separation 21.820***(0.299) WC_H -9.705***(0.278)

Lead_alt -2.228***(0.087) WC_L -6.145***(0.255)

Speed_diff 0.011*(0.006) WC_S 2.818*(1.139)

Head 0.369***(0.015) WC_lead_ H 2.014***(0.293)

Tail -0.303***(0.072) WC_lead_ L 5.312*** (0.243)

Cross -0.012(0.016) WC_lead_ S 2.659*(1.053)

Var 0.374*(0.182) Terminal 1 -1.457**(0.496)

Arr_que -0.064***(0.014) Terminal 2 5.302***(0.397)

Dep_que -0.068***(0.009) Terminal 4 4.105***(0.400)

Visible -0.147***(0.043) Terminal 5 4.539***(0.403)

Ceiling 0.000(0.001) Terminal 7 0.470(0.472)

Rwy_04R -2.288***(0.664) Terminal 8 2.181***(0.413)

Rwy_13L 10.336***(1.732) Night 3.543***(0.137)

MC_V 0.014(0.258) Rwy_change -0.288 (0.228)

Adjusted R-squared: 0.681

 Variables are significant at the 0.1% level***, 1% level**, 5% level*

50

From Table 7, most of the estimates are significant and fit nicely with our understanding

of ROB. We first notice that the ROB will increase when the separation between the two

aircraft is large. Separation indicates the relative positions of the leading the trailing aircraft.

If two aircraft are further away from each other in the air, their arrivals will probably have

a large time gap. The altitude of leading aircraft is also an indicator of aircraft relative

positions from the vertical view. The higher the leading aircraft is, the closer it is to the

trailing, and the shorter the ROB. The trailing aircraft’s speed and its distance to the

extended centerline have a negative effect on ROB. Results imply a higher ROB if trail

aircraft is above the glideslope and a smaller ROB if it is below the glideslope. Pilot actions

required to reduce altitude in order to get back on the glide slope slow down the aircraft

approach. Tailwind speed has a similar negative effect on ROB as it accelerates the landing.

For the traffic conditions, longer arrival or departure queues will decrease the ROB.

ROB is introduced based on flight in-trail relationships, thus depends on continuous traffic

demand. If there is less traffic in the airspace, such as midnight, ROB will be large. When

the arriving traffic volume exceeds the runway capacity, air traffic controllers will try to

squeeze traffic and reduce ROB to improve throughput and some aircraft have to be

delayed in the air. The ROBs on 13L and 13R are larger than other runways. Assuming

aircraft’s runway threshold crossing time are the same, aircraft exit 13L and 13R earlier

and thus have less ROT than other runways.

5.5.3. Feature importance

Other than model prediction and interpretation, we are also interested in knowing which

features are most predictive of ROB. We calculate feature importance after the model is fit

on the whole training set with fine-tuned hyper-parameters. Literature commonly uses the

Gini importance to calculate the average value of the number of splits that include the

feature (across all trees), proportionally to the number of samples it splits. The Gini

importance measures how effective the feature is at reducing variance when creating

decision trees within RF. However, our dataset is a mixture of numerical variables and

categorical variables. The Gini importance is biased, in the sense that it tends to inflate the

importance of continuous variables and high-cardinality categorical variables [88]. To

obtain an accurate picture of feature importance, permutation importance [89] is performed

to directly measure feature importance by observing the effect on R-squared of randomly

shuffling each variable. To be more specific, we first record a baseline R-squared by fitting

a validation set through the RF. We then permute the column values of a variable and fit

RF on this new permuted dataset. The difference between the baseline R-squared and the

permuted R-squared is the importance of the feature of interest. Although the permutation

importance is much more computationally expensive than the Gini importance, the feature

importance measurements are more reliable.

Feature importance for the more accurate model, RF regression, is plotted in Figure 20.

These importance values will not sum up to one since the values represent the difference

in R-squared scores between baseline model and permuted model. The x-axis values can

be interpreted as relative predictive strengths of features. The separation and the altitude of

51

leading aircraft are the two strongest predictors of ROB, followed by the speed of the

subject (trailing) aircraft, headwind speed, the speed difference between leading and

trailing aircraft, and kinetic energy. The permutation importance places the airline operated

terminal dummy variables and landing runway dummy variables as less important features,

implying that there is not much difference in ROB if the subject flight lands on another

runway or uses a different terminal.

Figure 20. Feature importance for RF regression model.

Both the OLS estimation results and RF permutation importance suggest that separation

has the greatest importance in predicting ROBs, followed by the leading aircraft altitude

and trailing aircraft speed. Such prediction work could be used to help improve runway

safety and efficiency in real time. If the predicted ROB is much longer or shorter than

desired, controllers and pilots may coordinate to adjust the aircraft speed, altitude, heading

or execute a go-around to reach the targeted ROB level.

In summary, the proposed metric, ROB, functioned as expected. Its interactions with

other operational and environmental variables make sense. ATC would benefit from the

ability to predict ROB so that actions might be taken to achieve a safe and efficient value

for this metric – an immediate use is to predict go-arounds. When we implement the real-

time predictive capabilities for go-around prediction (Chapter 9), we also include the real-

time representation of the predicted ROB metric. Besides looking at the probability of go-

arounds, pilots and controllers may also refer to this metric for guidance on aircraft speed

control and traffic management during the final approach and landing procedures. The

current work can be enhanced in several ways. For example, sequential learning algorithms

52

could be applied to better model and predict the ROB metric; The analysis could be

extended to a broader scope of operational scenarios, concurrently used for both departures

and arrivals; and model generalization could be investigated by applying the trained model

to other airports.

53

6. Modeling Go-Arounds Using Principal

Component Logistic Regression

6.1. Overview

In this chapter, we investigate how the derived features in Chapter 4 impact go-around

occurrence and quantify their contributions. The motivation of this chapter is threefold.

First of all, this study can provide flight crews, air traffic controllers, and other decision

makers with better knowledge of the conditions in which a go-around is more likely to be

executed. Second, quantifying the contributing factors of go-around occurrence can help

identify countermeasures to reduce go-arounds, and more generally the conditions that give

rise to them, which may be considered anomalous states that are inherently undesirable.

Mitigation strategies can be developed to reduce the go-around occurrences through

procedure modification, pilot training, and equipment design. Finally, this work may also

inform efforts to develop a real-time tool that can identify, and perhaps remediate,

situations in which there is a substantial risk of a go-around.

We found that almost 90% of detected go-arounds in our data set occurred within five

nautical miles of the landing runway threshold. To obtain features that are proximate in

time to all go-around initiations, but without losing too many go-around observations, we

choose the 5 nm information cutoff gate for the contribution analysis. In other words, we

develop the principal component logistic regression (PCLR) model to model go-around

occurrence based only on features known when the subject flight reaches the 5 nm

information cutoff gate. We first illustrate the detailed algorithm and estimation procedures

of the PCLR model. The estimation results are then interpreted through factor loading

analysis and reconstruction of coefficients back for the original variables. Lastly, we

construct counterfactual scenarios to quantify factor contributions to go-arounds, based on

the models estimated at the cutoff gate of 5 nm.

6.2. Data Preprocessing

The dependent variable 𝑌 is set to 1 if a flight is detected as a go-around occurring

within [0, 5) nautical miles to its landing runway threshold, 0 otherwise. Flights that initiate

go-arounds more than 5 nm from the threshold are not considered. For example, a flight

that initiated go-around at 4.5 nautical miles from the runway is included in the data set,

while a flight that initiated a go-around at 5.1 nm from the runway is removed from our

analysis.

For explanatory variables, we use the linear extrapolation technique to derive the seven

categories of features (in Chapter 4) at the 5 nm information cutoff gate. Therefore, we

evaluate whether a flight initiates the go-around anywhere at [0, 5) nautical miles only

based on the information available when this flight passes the 5 nm arc. The extrapolation

54

guarantees that we do not include any information that cannot be known in the feature

space when the aircraft is at the 5 nm information cutoff gate.

Originally, 0.43% of JFK arrivals are detected as go-arounds within the period. After

data preprocessing and matching flight trajectories with the 5 nm features, our final dataset

has a total of 343 go-arounds initiated within 5 nm (5 nm is exclusive) from the landing

runway threshold, which accounts for 0.34% of JFK arrivals between July and December

of 2018.

By applying the retrospective causal inference method [90] to observational data, we

can capture the statistical relations among the go-around occurrence and features described

in Chapter 4. Toward this end, we first apply the go-around detection algorithm presented

in Chapter 3 to the JFK arrival flight track dataset in 2018. Second, we collect a large set

of features that may affect go-around occurrence, as described in Chapter 4, and build a

principal component logistic regression model (PCLR) to establish statistical relations

between the derived features and go-around occurrence. Lastly, we used the estimated

PCLR model to construct counterfactual scenarios to estimate the contributions of different

factors to go-around occurrence.

6.3. Standard Logit Model

We firstly estimated a standard binary logistic regression model to relate go-around

occurrence to contributing factors. The model specification is formulated as in Equation

(25) and Equation (26), where 𝓥 is the log-odds function, 𝑿 is a design matrix that contains

all contributing factors introduced in Chapter 4, and 𝛃 is the associated coefficient vector

estimated by employing maximum likelihood estimation (MLE).

𝓥 = 𝑿 ⋅ 𝜷 (25)

The probability of an aircraft initiating go-around 𝑃𝑟 (𝑦𝑖 = 1| 𝑿) can be written as:

Pr(𝑦𝑖 = 1|𝐗) =
1

1 + exp(−𝓥)
(26)

The estimation results are presented in Table 8. The majority of coefficients are not

significant at a 5% confidence level, and many have unexpected signs. For example, the

estimates for the visibility and ceiling variables suggest that flights landing at an airport

with good visibility and ceiling conditions would have a higher probability of go-around,

which is not plausible in practice. This is probably because many independent variables

used in the model are highly correlated. As a result of this multi-collinearity, the standard

logistic regression model fails to give us a proper understanding of the contributing effects.

To remedy this problem, we employ decorrelation techniques.

55

Table 8. Standard logit model estimation results.

Variable
Estimate

(std.)
Variable

Estimate

(std.)
Variable

Estimate

(std.)
Variable

Estimate

(std.)

Constant
-5.252***

(0.847)
Visibility1

-0.175

(0.169)
ArrQue

0.026**

(0.010)
RwyChange

-0.016

(0.206)

AltDev
0.258***

(0.035)
Visibility2

0.017

(0.079)
DepQue

0.022**

(0.007)
Rwy04R

-1.330***

(0.255)

Speed
-0.022**

(0.007)
Visibility3

-0.171*

(0.070)
RwyCnt

-0.054

(0.037)
Rwy13L

-4.156***

(0.742)

Energy
0.003***

(0.000)
Ceiling1

-0.282

(0.158)
𝑹𝑶�̂�

-0.005

(0.003)
Rwy13R

1.636**

(0.603)

Angle
0.032*

(0.013)
Ceiling2

0.010

(0.031)
IMC

0.493

(0.385)
Rwy22L

-0.996***

(0.253)

LOS
1.682***

(0.234)
Ceiling3

0.011

(0.016)
Daytime

0.080

(0.124)
Rwy22R

-1.803***

(0.348)

SpeedDiff
0.001

(0.004)
Ceiling4

-0.006**

(0.002)
AirlineIntl

0.425**

(0.162)
Rwy31L

-1.333***

(0.333)

AltDiff
-0.105***

(0.027)
GaCnt

0.546***

(0.088)
BodyWide

0.328*

(0.158)
Rwy31R

-1.390***

(0.310)

Wind
0.045**

(0.014)
GaGap

-0.000

(0.000)
NoLead

0.305

(0.278)

Log-likelihood -1721.7 Pseudo R-squared 0.222

Variables are significant at the 0.1% level***, 1% level**, 5% level*.

6.4. Principal Component Logistic Regression (PCLR) and Interpretation

To handle the multi-collinearity problem, we apply Principal Component Analysis

(PCA) to decorrelate and reduce the dimensionality of the original feature space. Instead

of regressing the dependent variable on the explanatory variables directly, the principal

components (PCs) formed by all the explanatory variables are used as covariates in the

logistic regression model.

6.4.1. PCLR of mixed data

While PCA is a mature technique to decorrelate feature vectors, it must be adapted in

our setting because our dataset contains a mixture of continuous and categorical variables.

Specifically, the design matrix (feature space) for the 5-nautical-mile model contains 28

features vectors, 21 of which are continuous and seven are categorical, including Runway

(8 levels), RwyChange (2 levels), Daytime (2 levels), Airline (2 levels), Body (2 levels),

MC (2 levels) and NoLead (2 levels). Therefore, appropriate treatment of such mixed data

56

types, especially the categorical variables, is required for PCA application. Accordingly,

we adapted and applied the PCA-mixed algorithm introduced by [91] to deal with our

mixed set of variables. The detailed notations and algorithm are described as follow.

A. Notations

Let 𝑿 = [𝑿1
𝑛×𝑝1|𝑿2

𝑛×𝑝2] denote the full design matrix, which is constructed by two

submatrices 𝑿𝟏 and 𝑿𝟐 . 𝑿𝟏 contains solely continuous variables with dimension 𝑛 by

𝑝1(𝑝1 = 21), while 𝑿𝟐 contains categorical variables with dimension 𝑛 by 𝑝2 (𝑝2 = 7).

We further denote 𝑞1, 𝑞2, … , 𝑞𝑝2
 as the number of levels for each categorical variable (e.g.,

𝑞1 = 8 for the first categorical variable, which is Runway), and 𝑚 = ∑ 𝑞𝑖
𝑝2
𝑖=1 as the total

levels for all categorical variables. Notice that the elements in 𝑿𝟐 are integers that range

from 1 to the number of levels for each variable.

B. Design Matrix Preparation

Using the above notation, we first convert 𝑿𝟐 to a complete disjunctive table (CDT)

𝒁𝟐 = [𝒛𝟏, 𝒛𝟐, … , 𝒛𝒎] ∈ 𝔹𝑛×𝑚 by employing one-hot encoding. Then we center 𝒁𝟐 by

respectively subtracting the mean of each column, denoted as 𝒁𝟐
𝒄 , and standardize 𝑿𝟏 to

zero mean and unit standard deviation, denoted as 𝑿𝟏
𝒔 . Lastly, we combine 𝑿𝟏

𝒔 and 𝒁𝟐
𝒄 to

build a new design matrix 𝒁 = [𝑿𝟏
𝒔 |𝒁𝟐

𝒄]. Notice that the rank of 𝒁 equals to 𝑟 = 𝑝1 + 𝑚 −
𝑝2.

C. Generalized Singular Value Decomposition (GSVD)

We first define a weighting matrix 𝑀 = [
𝕀𝑝1

𝟎

𝟎 𝐖
], where 𝕀𝑝1

 is an identity matrix

with dimension 𝑝1. 𝑾 = [𝑤𝑖𝑖] ∈ ℝ𝑚×𝑚 is a diagonal matrix where 𝑤𝑖𝑖 =
𝑛

𝟏T⋅𝑧𝑖
, and 𝟏 is a

vector of ones. Then we perform generalized singular value decomposition on the product

of matrices 𝒁 and 𝑴, Equation (27), where 𝑼 and 𝑽 are orthogonal matrices, and 𝚲 is a

diagonal matrix that contains singular values sorted by their values.

𝒁 ⋅ 𝑴 = 𝑼𝜦𝑽𝑻 (27)

Notice that in Equation (27), 𝑽 = [𝒗𝟏, 𝒗𝟐, … , 𝒗𝒑𝟏+𝒎] represents the principal

component directions of the matrix 𝒁 ⋅ 𝑴, and 𝜦 = diag {√𝜎1, √𝜎2,⋯ , √𝜎𝑝1+𝑚} where

𝜎𝑖’s are eigenvalues of 𝑴𝐓𝒁𝐓𝒁𝑴. Thus, we can find the principal components of 𝒁 ⋅ 𝑴,

that is 𝑭 ∈ ℝ𝑛×𝑟, by using Equation (27). 𝑭 has the same rank as 𝒁.

𝑭 = 𝒁 ⋅ 𝑴 ⋅ 𝑽 (28)

D. Derived Covariates

Common techniques to derive covariates from 𝑭 include: (a) pick the top 𝑘 columns

with the sum of explained variances that exceeds some thresholds; (b) pick the top 𝑘

columns with the smallest squared singular value (i.e., eigenvalue) exceeding some

57

threshold; and (c) pick the top 𝑘 columns with the sum of squared singular values

exceeding some threshold. However, these variance-based or singular-value-based

criterion might not always be optimal in predictive analytics. PCs with large variances are

not necessarily the best predictors [92] as principal components with low explained

variability could be highly correlated with the response variable. Therefore, the dependence

between response and predictor variables must be taken into account.

In order to choose the number of principal components 𝑘 big enough to account for the

variance in the data as much as possible, and also reduce the dimensionality of the data, we

have applied the Kaiser rule [93, 94, 95] by iteratively selecting 𝑘 PCs using the

aforementioned criteria (b) with a threshold 𝛿. When varying the threshold 𝛿 from 0.5 to

1.0 with a step of 0.1, we regress selected PCs with the response value 𝑌 using logistic

regression, and record the model’s adjusted pseudo R-squared. We determine the final 𝛿

and 𝑘 PCs with the best adjusted pseudo R-squared.

We denote the selected PCs as 𝑭𝒌, and hereafter we use 𝑭𝒌 as the final design matrix

to conduct logistic regression analysis using the same technique described in Section 6.3.

except that in Equation (25), we use the feature vectors in 𝑭𝒌 instead of 𝑿.

E. Transformation of Estimated Coefficients

While the PCLR regime gives us estimates for principal components, we eventually

desire estimated coefficients of the actual features derived in Chapter 4 (e.g., ceilings and

runway fixed effects). Let 𝛂 denote the coefficient vector for PCs, then the utility function

(3) can be rewritten as:

𝓥 = 𝑭𝒌 ⋅ 𝛂 = (𝒁 ⋅ 𝑴 ⋅ 𝑽𝒌) ⋅ 𝜶 = 𝒁 ⋅ (𝑴 ⋅ 𝑽𝒌 ⋅ 𝛂) = 𝒁 ⋅ 𝛃 (29)

where 𝑽𝒌 is the first k columns of the matrix 𝑽.

Given Equation (29), the logistic regression model with respect to 𝑭𝒌 can be

equivalently expressed in matrix form with respect to the original feature space 𝒁. Thus,

the associated coefficient vector is given by:

𝜷 = 𝑴 ⋅ 𝑽𝒌 ⋅ 𝜶 (30)

6.4.2. Factor Loading Analysis

In addition to obtaining principal components (PCs) and their associated estimates, we

are also interested in linking PCs to the original feature space in order to identify the

variables that are primarily associated with any given PC. To do so, we use factor analysis

to map PCs to groups of features quantitatively.

We first denote 𝑳 = [
𝑳𝟏

𝑳𝟐
] , 𝑳𝟏 ∈ ℝ𝑝1×𝑘 , 𝑳𝟐 ∈ ℝ𝑚×𝑘 as the loading matrix representing

the variance in features explained by PCs. The formal definition is formulated as:

𝑳 = 𝑴 ⋅ 𝑽𝒌 ⋅ 𝜦𝒌 (31)

58

where 𝑽𝒌 is the first k columns of matrix 𝑽, and 𝜦𝒌 is the kth order leading principal minors

of 𝜦. However, due to the fact that continuous variables and categorical variables are not

on the same scale, and thus we cannot compare their explained variance by PCs directly

from 𝑳. We have derived a contribution matrix 𝑪 = [
𝑪𝟏

𝑪𝟐
] ∈ ℝ+ in which each element 𝑐𝑖𝑗

describes the contribution of the ith feature to the jth PC. Specifically, a larger value of 𝑐𝑖𝑗

indicates a higher contribution of the ith feature to the jth PC. Furthermore, the 𝑪 matrix can

be decoupled into two submatrices where 𝑪𝟏 ∈ ℝ+
𝑝1×𝑘

 and 𝑪𝟐 ∈ ℝ+
𝑝2×𝑘

 respectively

correspond to the continuous and categorical contribution matrices. Equation (32)(33)(34)

illustrate the derivation of 𝑪.

𝑪𝟏 = 𝐋𝟏 ∘ 𝐋𝟏 (32)

𝑪𝟐 = 𝐇 ⋅ (𝐋𝟐 ∘ 𝐋𝟐) (33)

where ∘ denotes element-wise multiplication. 𝑯 ∈ ℝ𝑝2×𝑚 is a block diagonal matrix in

which the diagonal elements are vectors of the level frequency of the ith categorical variable,

and the off-diagonal elements are 0. 𝑞1, 𝑞2, … , 𝑞𝑝2
 are the number of levels for each

categorical variable (e.g., 𝑞1 = 8 for variable Runway), and 𝑚 = ∑ 𝑞𝑖
𝑝2
𝑖=1 is the total levels

for all categorical variables.

𝑯 =

[

 (

𝟏T ⋅ 𝑧11

𝑛

𝟏T ⋅ 𝑧12

𝑛
 ⋯

𝟏T ⋅ 𝑧1(𝒒𝟏)

𝑛
) 0 ⋯ 0

0 (
𝟏T ⋅ 𝑧21

𝑛

𝟏T ⋅ 𝑧22

𝑛
 ⋯

𝟏T ⋅ 𝑧2(𝒒𝟐)

𝑛
) ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ (
𝟏T ⋅ 𝑧𝑝21

𝑛

𝟏T ⋅ 𝑧𝑝22

𝑛
 ⋯

𝟏T ⋅ 𝑧
𝑝2(𝒒𝒑𝟐

)

𝑛
)
]

(34)

With such operations, the contribution of a categorical variable is the weighted sum of

the squared loadings of its classes in 𝑳𝟐 and therefore is equivalent to their correlation

ratios. For the contribution of a continuous variable, on the other hand, the squared loading

equals the squared correlation.

6.5. Estimation Results

Using the above Kaiser rule, the first 17 principal components with 𝛿 = 0.8 that

explain 82% of the total variance have the best adjusted pseudo R-squared. In the end, we

are left with 9 PCs after removing insignificant principal components from the estimated

logistic regression model.

6.5.1. Factor Analysis and Model Result

For the convenience of understanding the model estimated coefficients for each factor

(PC), we first need to deploy the pattern matrix 𝑳 (Equation 31) and the contribution matrix

59

𝑪 (Equation 32-34) from factor analysis to interpret the relationships between PCs and the

original features. The pattern matrix 𝑳 indicates the magnitude and sign of the correlation

between the PCs and the original variables. The contribution matrix 𝑪 transforms the

continuous variable contributions and the categorical variable contributions on the same

scale. It then describes the magnitude of the overall contribution of an individual variable

to a PC.

Table 9. Loadings of variables with above-average contributions for each PC.

PC
Related

Variable (x)

Loading

(𝒍𝒊𝒋)
Semantic

Labels
PC

Related

Variable (x)

Loading

(𝒍𝒊𝒋)
Semantic

Labels

1

Visibility1 -0.715

Meteorological

conditions

5

ArrQue 0.592

Traffic

conditions

Visibility2 -0.817 DepQue 0.586

Visibility3 -0.821 GaGap -0.399

Ceiling1 -0.643 GaCnt 0.210

Ceiling2 -0.823 RwyCnt 0.307

Ceiling3 -0.838 Rwy22R 1.726

Ceiling4 -0.616
6

AirlineIntl 1.396 Aircraft

characteristics IMC 2.000 BodyWide 1.293

2

AltDiff 0.724

Lead-trail

spacing

7
Rwy13R 0.975 Approach

pattern Energy 0.719 Rwy31L -1.136

𝑅𝑂�̂� -0.411
8

Wind 0.623 Wind and

daytime

effect SpeedDiff 0.220 Daytime 0.689

NoLead -1.232

13

RwyChange 1.172

Approach

pattern

4

Angle 0.618

Approach

procedure

features

Rwy13L -1.415

AltDev 0.457 Rwy31R 0.606

Speed 0.430 15 LOS 0.812
Loss of

separation

Rwy04R -0.781

Rwy22L -0.682

The first and second columns of Table 9 are determined by finding which variable(s) –

either continuous or categorical – make above-average contribution(s) to each PC based on

contribution matrix 𝑪. The average contribution is the value when all variables have the

60

same contributions (i.e., 100% divided by the total number of variables). In the case of

categorical variables, which may make an above-average contribution to more than one PC,

we base the assignment on the maximum loading. We present the loading value – either

positive or negative – of the ith variable to the assigned jth PC (from pattern matrix 𝑳) in the

third column. To save space, we only show the loading (𝑙𝑖𝑗) of the ith variable to the

assigned jth PC in Table 9 rather than the whole pattern matrix 𝑳 and the whole contribution

matrix 𝑪. Note that variables may have high loading values on just one or two PCs, or have

a balanced spread with small loading values across more PCs. According to the allocation

result, we assign semantic labels for each PC in the fourth column and use them to interpret

the estimation results of the PCLR model in Table 9.

Turning to Table 10, we note that PC1 has a highly significant, positive coefficient

estimate. From Table 9, we see that the visibility and ceiling variables are loaded in the

opposite direction with PC1, while the IMC indicator variable is loaded in the same

direction. Thus, the PC1 result indicates that adverse meteorological conditions (low

visibility and ceiling, or IMC condition) increase the probability of the go-around

occurrence.

The coefficient estimate of PC2 indicates that the threat of the lead and trail aircraft

simultaneously occupying the runway increases the likelihood of a go-around. A small

runway occupancy buffer (𝑅𝑂�̂�), or the trailing aircraft approaching with high energy

(Energy), or the trailing aircraft chasing too close to its leading flight (SpeedDiff) increases

this threat, while the absence of a lead aircraft (NoLead) clearly reduces it. Similarly, the

positive coefficient on PC15 implies that a higher loss of separation compared to FAA

standards increases the probability of go-around.

Table 10. PCLR model estimation results.

Dimension Est./Std. Dimension Est./Std. Dimension Est./Std.

Constant
-6.560***

(0.088)

PC1
0.252***

(0.018) PC5
0.152***

(0.036)
PC8

0.177***

(0.046)

PC2
0.207***

(0.039) PC6
0.407***

(0.040)
PC13

0.453***

(0.036)

PC4
0.149***

(0.043) PC7
0.144***

(0.033)
PC15

0.180***

(0.022)

 Variables are significant at the 0.1% level***, 1% level**, 5% level*.

The PC4 captures the effect of approach procedure deviations. The positive coefficients

PC4 in Table 10 implies that flights that are deviated from the optimum approach procedure

(3-degree glideslope, runway alignment, proper speed control) are more likely to initiate

go-arounds. The landing runway indicators 04R and 22L are also captured in this PC,

61

perhaps indicating that approaches to these two runways are correlated with the other PC4

covariates. It suggests that flights landing on runway 04R/22L would be less likely to

initiate go-arounds than other runways, perhaps because 04R/22L has the most advanced

landing aids of the JFK runways. As reported by [96], Runway 4R is a Category IIIB ILS

runway, permitting landings with as little as 600 feet of visibility; Runway 22L is equipped

with a Precision Approach Path Indicator (PAPI) and allows landings down to visibility of

less than a half-mile (2640 feet), while other runways at JFK require more than half-mile

visibility for landing. These technologies make it easier for pilots to land, alleviate the

operational risks, and avert go-arounds.

The arrival queue, departure queue, go-around clustering effect, and the number of

objects occupying the runway during the landing process are captured by PC5, which has

a positive impact on the go-around occurrence. This may indicate that increased controller

workload or pressure to maximize throughput increases the go-around probability. PC5

also picks up the clustering effect whereby go-arounds are more likely in the time period

surrounding a given go-around.

The PC6 captures the aircraft characteristics – fixed effects of international airliners

and wide-body aircraft, which is found a significant positive impact on go-around

occurrence. The daytime operations and strong winds (PC8) increases the likelihood of go-

around occurrences, as does a change of runway configuration (PC13). This could reflect

how the configuration change interrupts traffic patterns, increasing pilot and controller

workload.

Besides the landing runway 04R/22L loaded by PC4, the fixed effects of other landing

runway variables for capturing different approach patterns are loaded in different PCs –

22R in PC5, 13R/31L in PC7, and 13L/31R in PC13. All of these PCs are statistically

significant which suggests that, all else equal, this is a greater proclivity toward go-arounds

in certain landing runways, but further investigation is required to interpret the relationship

between runway configuration and go-around occurrence.

6.5.2. Transformation of coefficients

In the above section, we interpret how the original derived features impact go-around

occurrence using the assigned semantic labels for each PC based on factor analysis. This

section further quantifies the impacts of the original derived features by reconstructing their

estimates using Equation (30). The results are presented in Table 11. The coefficient

estimates of the original features are based on the assumption that the features affect go-

around occurrence through their effects on the factors included in the model. Compared to

the standard logit model estimation results in Table 8, the coefficients in Table 11 are quite

different, and the standard errors of the coefficient estimates are much lower. Nearly all

the coefficients become statistically significant at the 1% confidence level and have

expected signs. The PCLR model removes collinearity without eliminating any of the

original variables and reduces the variance of the estimated coefficients. The majority of

the estimates (𝛽) are consistent with the discussions in the factor loading analysis. Note,

62

however, that individual coefficient estimates are biased and the main value of the PCLR

method is in the estimates of the latent variable coefficients. Practice [97] has shown that

strong collinearity induces the conditions under which the PCLR method is beneficial, in

that the PCLR allows for minor bias for the sake of substantially smaller variance and

improved model interpretability [98].

Table 11. Reconstructed coefficients of original features.

Variable
Reconstructed

Coef. 𝜷 (std.)
Variable

Reconstructed

Coef. 𝜷 (std.)
Variable

Reconstructed

Coef. 𝜷 (std.)
Variable

Reconstructed

Coef. 𝜷 (std.)

Constant
-6.560***

(0.088) Visibility1
-0.164***

(0.030)
ArrQue

0.016***

(0.003)
RwyChange

0.562***

(0.004)

AltDev
0.015***

(0.006)
Visibility2

-0.061***

(0.005)
DepQue

0.013***

(0.002)
Rwy04R

-0.036

(0.029)

Speed
0.010***

(0.001)
Visibility3

-0.052***

(0.005)
RwyCnt

0.011

(0.008)
Rwy13L

-0.209**

(0.073)

Energy
0.001***

(0.000)
Ceiling1

-0.190***

(0.038)
𝑹𝑶�̂�

-0.005***

(0.001)
Rwy13R

2.758***

(0.180)

Angle
0.001**

(0.000) Ceiling2
-0.040***

(0.003)
IMC

0.244***

(0.006)
Rwy22L

-0.094**

(0.035)

LOS
2.101***

(0.215)
Ceiling3

-0.008***

(0.001)
Daytime

0.201***

(0.023)
Rwy22R

0.383***

(0.068)

SpeedDiff
0.004***

(0.000)
Ceiling4

-0.001**

(0.000)
AirlineIntl

0.463***

(0.014) Rwy31L
-0.420***

(0.049)

AltDiff
0.023***

(0.005)
GaCnt

0.549***

(0.046)
BodyWide

0.445***

(0.015) Rwy31R
0.107

(0.070)

Wind
0.058***

(0.007)
GaGap

-0.001***

(0.000)
NoLead

-0.473***

(0.005)

 Variables are significant at the 0.1% level***, 1% level**, 5% level*.

We here plot the coefficients of different visibility and ceiling discretized variables in

Figure 21. The green bar represents visibility (in statute miles), and the blue bar represents

the ceiling (in 100 feet). We observe that go around occurrence is more sensitive to

visibility and ceiling variation when these values are less than 3 statute miles and less than

500 feet, respectively, and that this sensitivity declines markedly as these conditions

improve.

63

Figure 21. Bar plot of visibility and ceiling effects.

6.5.3. Counterfactual Analysis

In this section, we directly measure the contributions of different factors to the go-

around occurrence by conducting a counterfactual analysis. Each counterfactual scenario

is constructed by setting a particular feature to its “best” value while leaving the other

features unchanged. For example, model estimates suggested that the ceiling has a negative

effect on go-around occurrence. To construct the counterfactual scenario for ceiling, we

set the ceiling to 10,000 feet for each observation in the data set. Based on this assumption

we reset the values of the various ceiling-related valuables, while leaving all other values

unchanged. Then, we use the estimated PCLR model to predict the corresponding go-

around probability for each flight. The variable contribution is calculated by measuring the

percentage reduction between the baseline go-around rate and the expected go-around rate

using Equation (35). Note that we assume individual feature does not directly impact go-

around occurrence but via their effects on the PCA factor scores 𝐹.

%𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =
𝑃𝐺𝐴 − 𝐸(𝑃𝐺𝐴|𝑋′)

𝑃𝐺𝐴
× 100% (35)

where 𝐸(𝑃𝐺𝐴|𝑋′) is the expected go-around rate given the counterfactual input 𝑋′; 𝑃𝐺𝐴 is

the baseline go-around rate.

Table 12 reports the scenario value for each variable, that is the value found in the data

that, based on the sign of its coefficient, would minimize go-around occurrence (labeled

“Expected GA%”), and the percentage reduction in go-around occurrence relative to the

observed baseline of 0.343%.

-0.001

-0.008

-0.040

-0.190

-0.200 -0.150 -0.100 -0.050 0.000

Coefficient Estimates

Ceiling (100 feet)

[0, 5]

(5, 10]

(10, 30]

(30, 100]

64

Table 12. Counterfactual analysis results.

Baseline go-around rate: 0.343%

Variable Scenario value Expected GA% % Reduction in GA’s under scenario

AltDev 0

0.240% 29.97%
Speed 77.28

Energy 1318.72

Angle 0

LOS 0
0.248% 27.59%

SpeedDiff -86.95

DepQue -15 0.256% 25.46%

Ceiling1 5

0.257% 25.12%
Ceiling2 10

Ceiling3 30

Ceiling4 100

MC VMC 0.258% 24.86%

Body Narrow 0.259% 24.60%

Visibility1 3

0.272% 20.62% Visibility2 5

Visibility3 10

Wind 0 0.273% 20.47%

NoLead 1 0.276% 19.47%

𝑹𝑶�̂� 146.79 0.277% 19.39%

ArrQue -15 0.290% 15.51%

RwyChange 0 0.306% 10.86%

GaGap 1440
0.307% 10.41%

GaCnt 0

AirlineIntl 0 0.310% 9.52%

RwyCnt 0 0.313% 8.88%

65

The relative importance of the variables on the reduction of go-around probability is

shown in Figure 22, where each row represents one variable. The length of the color bar

indicates the variable contribution in percentage. The stability of an approach, flight lead-

trail spacing, departing traffic and airport ceiling are the most important factors of go-

around occurrence. If the flight aligns the extended runway centerline properly at 5 nm,

strictly follows the 3-degree glideslope, and maintains the effective speed control and

energy management, the go-around rate would potentially decline about 30%. For aircraft

forming in-trail relationships, the go-around rate would also decline by about 28% by

maintaining appropriate following speed and keeping safe spatial separation, while the

absence of a lead aircraft (NoLead) would result in a 19% drop of the go-around rate.

Managing and optimizing the departure queue seems to have a more substantial

contribution to decreasing go-around rates (25%) than reducing the arrival queue (16%).

The go-around rate would drop by more than 25% if the airport ceiling were set to its ideal

scenario value, and 21% if there were high visibility. If all the flights in the observation

dataset are narrow-body aircraft or operated by domestic airliners, the go-around rate

decreases by 25% and 9%, respectively. The wind speed effect contributes 20% to the

reduction of go-around occurrence. Ensuring that there are no aircraft or vehicles on the

runway safety area when a flight is 5 nm from its landing runway threshold, would result

in a 9% reduction of go-around occurrence. Finally, eliminating the clustering effect would

reduce the go-around occurrence by 10%.

Figure 22. Relative variable contribution in reducing go-arounds.

8.88%

9.52%

10.41%

10.86%

15.51%

19.39%

19.47%

20.47%

20.62%

24.60%

24.86%

25.12%

25.46%

27.59%

29.97%

0% 5% 10% 15% 20% 25% 30% 35%

RwyCnt

Airline=US

GaCnt, GaGap

RwyChange

ArrQue

ROB

NoLead

Wind

Visibility

Body=Narrow

MC=V

Ceiling

DepQue

LOS, SpeedDiff

AltDev, Speed, Energy, Angle

% Reduction

66

6.6. Chapter Summary

In this section, we develop the principal component logistic regression model to

quantify the contribution of a wide range of factors to go-around occurrence. Specifically,

we have designed a trajectory-based go-around detection algorithm and applied it to JFK

arrival flights in 2018. Multiple datasets have been fused to capture features that may

influence flight approach procedures and therefore help understand the causes of go-around

occurrence. In developing the feature engineering, we have collected features from the

dataset directly, and used domain knowledge to derive features, such as loss of separation

and runway occupancy buffer. We then established statistical relationships between go-

around occurrence with those derived features and estimated their effects using PCLR

model and factor loading analysis. Lastly, we quantify the contribution of various features

to go-around occurrence through counterfactual analysis. Conclusions are in line with

research using full-flight simulator trials [64], interviews with ATC controllers and pilots

[26], and a realized trajectory dataset [16].

As far as the authors know, this is the first work to detect, model, and interpret go-

around occurrence from surveillance data, considering a broad set of environmental and

operational variables. This enables us to assess the relative importance of a wide range of

factors in determining go-around probability. We find that there is no single dominant

factor. Factors in the top tier of importance include the state of the subject aircraft, its

separation and speed difference from the aircraft in front, and factors related to visibility,

cloud ceiling, and the subject aircraft type. Among these factors the first two are, in

principle, subject to improvement through pilot and controller training, and thus inviting

targets for initiatives to reduce go-arounds. These conclusions must be qualified by the

strong assumption that individual features influence go-around occurrence via their

contributions to factors. Larger data sets are required to overcome the multi-collinearity

between features so that feature coefficients can be estimated directly rather than through

principal components.

In addition to the scientific contribution, it has a variety of practical applications. This

research could lead to a real-time monitoring tool that can anticipate, and perhaps

remediate, situations in which there is a substantial risk of go-arounds (Chapter 7). The

model can also supply tactical instructions for controllers and pilots about the probability

of go-arounds under varying conditions during approach procedures. It would be helpful

for decision support monitoring and prediction-based alerting in advance to improve flight

approach safety and airport efficiency. Our results can also inform strategies to reduce go-

arounds by identifying the most salient contributing factors, some of which may be

mitigated. Also, by summarizing historical patterns of go-around occurrence, our study can

augment the limited individual experience of air traffic controllers and pilots, and this

informs their judgment about whether a go-around is warranted.

Several improvements can be built upon the presented work. As noted above, one

important direction is to overcome multi-collinearity among different features, presumably

by employing a larger data set across multiple airports. Another interesting extension is to

67

develop models at other distances and explore the evolutionary impacts of feature

contributions on go-around occurrence. In this manuscript, the PCLR model is based on

the features that are available when a flight is at 5 nm from its landing runway threshold.

The algorithms and the estimation procedures can be applied to features spaces defined at

different information cutoff gates from 10 nm to 1 nm. Thirdly, our methods can be

extended to other types of atypical flight approach events, such as the unstabilized

approach, short approach, dogleg approach, etc. Lastly, other contributing factors, such as

crew-controller communications [99] and commercial pressure to maintain flight schedules,

may be considered in future work.

68

7. Sequential Prediction of Go-Around

Occurrence

7.1. Overview

While the contribution analysis in Chapter 6 helps decision-making at a strategic level,

being able to predict go-around probabilities for each landing aircraft over the entire

approach could provide tactical guidance to foresee and perhaps prevent go-arounds. If the

probability of a go-around can be predicted in advance and be imparted to operators (e.g.,

air traffic controllers and pilots) in time, more proactive mitigations can be taken to

alleviate the operational risks and increase airport efficiency as go-arounds might be

averted. Toward this end, in this chapter, we leverage the go-around detection results in

Chapter 3, derived features in Chapter 4 and Chapter 5, and observation-driven insights

from Chapter 6 to develop machine learning models from making sequential predictions of

go-around probabilities of individual flights as they approach the airport.

This chapter aims to develop predictors that can incorporate the operational conditions

and environmental measures for the real-time prediction of go-arounds. This work enables

a real-time system-wide safety assurance (Chapter 9) that establishes a practical safety-

enhancing risk detection tool for ANSPs, airports, airlines, and other stakeholders.

7.2. Related Work

There are two common approaches to sequence prediction: one is to use snapshot (point)

features extracted from the sequence to build multiple static supervised learning models at

every timestamp; The other is to use time series of relevant data for temporal models that

can learn the inherent temporal structures of the entire sequence.

For the applications of using snapshot features, Martinez et al. [100] apply gradient

boosting methods to predict the runway occupancy times at Vienna airport. For each flight

sequence, the instant in which the prediction is made has been set at [10, 9.5, 9, …, 2.5, 2]

nautical miles before the landing runway threshold – every 0.5 nm between the landing

runway threshold and 10 nm from that. In Chapter 5, we also apply the similar regime to

train several machine learning models to predict the ROB, when the trailing aircraft is at

[10, 9, …, 3, 2] nm from the landing runway threshold.

Temporal models capture the temporal dynamics in a more flexible way and allow a

“memory” of the previous inputs to persist in the internal hidden units, which then

influences the prediction result. Markovian models and recurrent networks, in which the

structure is a directed acyclic graph, are often employed to learn the inherent temporal

dependence structure of the sequence. Both methods have shown promise in the aviation

field, especially when dealing with flight trajectory data. HMM has gained more attention

69

in recent years, particularly for predicting flight trajectories. Ayhan and Samet [58] propose

an HMM to predict full four-dimensional trajectories, given the observed weather cube

sequence (temperature and wind). In this model, the positions of the aircraft are regarded

as hidden states, and the weather cube observed around the track point is a realization of

the hidden states. To evaluate airport system operational behavior for safety control,

Rodriguez-Sanz et al. [101] have applied the HMM framework to access airspace-airside

turnaround operations. This paper defines hidden states with performance thresholds (e.g.,

delay, throughput) and expert knowledge, but does not undertake sensitivity analysis on

the selected threshold values to ensure model robustness. Liu and Hansen [59] developed

an encoder-decoder LSTM network for four-dimensional aircraft trajectory prediction in a

real-time setting. The model is applied to a dataset including 1,679 flight trajectories and

achieves good predictability.

7.3. Problem Formulation

For each flight approaching the airport, our goal is to predict whether or not the flight

will initiate a go-around during the remainder of its approach, given the sequence of the

realized track points and their associated feature vectors (currently available information)

gleaned from the datasets at a certain point in time. The underlying question we seek to

answer is that, by solely observing the current flight status and its surrounding traffic and

weather environment, how well do the predictive models learn to predict the probability of

go-around initiation, after the flight passes a certain information cutoff gate?

This task can, therefore, be viewed as a “many-to-many” sequential prediction problem,

with the first “many” implying that the observed feature space could involve more than

one input time step, and the second “many” indicating that our final prediction will consist

of labels at one or more time steps based on a sequence of recent observations. Notably,

the number of input time steps (the first “many”) does not have to match the number of

output time steps (the second “many”). We treat the flight approach procedure as a

stochastic process, and model the complex dynamical flight approach procedures in a

recurrent processing style.

Recall from Section 4.2 that we applied linear extrapolation to discretize the flight

trajectories at information cutoff gates, and we will only derive features at those gates. For

each labeled go-around flight, we treated the timestamp/trackpoint at the start of ascent as

the initial time/location for the go-around procedure, and further truncated the trajectory

after that point. Therefore, each flight trajectory considered to be a go-around can be

represented by at most ten track points, which end before the flight altitude increases.

Before a go-around is initiated, all the go-around labels 𝐺𝑖,𝑑 for flight 𝑖 at the information

cutoff gate 𝑑 will be set to 0. Afterward, only the last closest information cutoff gate is

labeled as 𝐺𝑖,𝑑 = 1. For example, consider a flight that initiated a go-around at 5.3 nm from

the landing runway threshold. This flight sequence spans 10 nm to 6 nm, meaning that 6-

70

nautical-mile to 10-nautical-mile information cutoff gates will be considered for feature

engineering. Information for gates between 1 nm and 5 nm will not be considered.

After data cleaning and matching, there were 100,032 arrivals at JFK airport during the

analysis period. We identified and validated 371 go-arounds within the period, accounting

for 0.371% of all JFK arrivals. All the features discussed in Chapter 4 are derived for every

nautical mile from the landing runway threshold (10, 9, 8, …, 1 nm). Features are of two

types – attributes and time series features – as defined in Section 4.4. In addition,

continuous features are standardized to alleviate variation in magnitudes of the feature

values and improve the convergence speed of the models.

In this chapter, we seek to investigate several methodologies for predicting the

occurrence of a go-around at each timestamp of a landing aircraft sequence, using the

realized trajectory data and its surrounding environment information available at different

times of the approach. The go-around prediction is formulated as a transformation of

multivariate sequences in the feature space into a sequence of go-around probabilities at

each timestamp. The methodological framework, including data processing, modeling, and

performance evaluation, is presented in Figure 23. In the remainder of this chapter, we will

discuss three modeling approaches – classical machine learning models trained

independently at different timestamps, a recurrent network model, and a Markovian model

trained on sequential data. We then demonstrate the performance evaluation of the single-

step-ahead prediction and the multi-step-ahead prediction and show the experimental

results of the go-around prediction with a real-world dataset.

Figure 23. Predictive analytics framework.

7.4. Classical Machine Learning

One issue with using the classical machine learning models for the go-around

sequential prediction task is that the training data consist of sequences of feature-response

71

pairs, which exhibit significant sequential correlation and do not quite fit the classical

machine learning paradigm. Therefore, we employ the divide-and-conquer strategy and

sliding window method to partition the overall sequential learning problem (i.e., predicting

the go-around labeling sequence 𝑮𝒊 of flight 𝑖 given feature sequences 𝑭𝒊) into

subproblems (i.e., predicting individual output labels 𝐺𝑖,𝑑 of flight 𝑖 at the information

cutoff gate 𝑑 given subsets of information from 𝑭𝒊).

Table 13. Tuning hyperparameters.

Model Hyperparameter Search Range

Logistic

Regression
Penalty term for the 𝑙2 regularization

[10-3, 10-2, 10-1, 1,

10, 100]

SVM Penalty term for the 𝑙2 regularization
[10-3, 10-2, 10-1, 1,

10, 100]

Random

Forest

The maximal depth of the tree [5, 10, 15, 20]

The minimal number of samples required to split an internal

node
[2, 5, 10, 15, 20]

The number of features to consider when looking for the best

split
[sqrt, log2]

XGBoost

Learning rate
[10-6,10-5,10-4, 10-3,

10-2, 10-1, 0.3, 0.8]

Minimum loss reduction required to make a further partition

on a leaf node of the tree
[1, 3, 5, 10, 15, 20]

Maximum depth of a tree [6, 10, 15, 20]

The maximum number of steps we allow each leaf output to

be. It might help when class is extremely imbalanced
[2, 6, 10, 15, 20]

𝑙2 regularization term on weights
[10-3, 10-2, 10-1, 1,

10, 100]

Subsample ratio of the training instances
[0.2, 0.4, 0.6, 0.8,

0.9, 1]

IO-HMM

The l2 regularized term in linear regression
[10-3, 10-2, 10-1, 1,

10, 100]

The l2 regularized term in logistic regression
[10-3, 10-2, 10-1, 1,

10, 100]

The number of hidden states [2, 3, 4, 5, 6]

The sliding window method enables any classical machine learning algorithms to be

applied to sequential prediction problems since it retains the information from previous

72

timestamps by stacking the feature spaces with a sliding window. It is predicated on the

assumptions that (1) the training samples are drawn independently and identically from

joint distributions 𝑃(𝑭,𝐺) specific to each information cutoff gate, and (2) only a fixed-

sized window of features is relevant for predicting output values at each gate. In the current

stage, we assume a sliding window size of one, in which the lag-one features from the last

information cutoff gate will be included to predict 𝐺𝑖,𝑑 given 𝑭𝒊,𝒅, 𝑭𝒊,𝒅−𝟏. A longer-range

interaction might not be necessary as the effects yielded long ago are mostly manifested in

the flight status from the previous gate already. In future work, we will investigate the

sliding window size by subsampling the flight sequences with a more refined frequency to

have more information cutoff gates or by expanding the prediction horizons.

Following a similar modeling regime and experimental processes as [102], we train and

compare four kinds of classical machine learning classifiers: logistic regression, kernelized

support vector machine (SVM), random forest (RF), and extreme gradient boosting

(XGBoost). Specifically, for each type of classical machine learning algorithm, we train

eight models to predict 𝐺𝑖,𝑑 for each information cutoff gate, given varying feature

matrices that are known when the flight reaches each information cutoff gate. The gate-

specific predictions are then concatenated to form the predicted go-around label sequence

𝑮𝒊 = [𝐺𝑖,9, 𝐺𝑖,8, 𝐺𝑖,7, 𝐺𝑖,6, 𝐺𝑖,5, 𝐺𝑖,4, 𝐺𝑖,3, 𝐺𝑖,2] for flight 𝑖. To balance bias and variance, we

have fine-tuned the hyper-parameters for each model using five-fold cross-validation.

Table 13 summarizes the descriptions of hyper-parameters and their tuning ranges.

7.5. Long Short-Term Memory

Although using classical machine learning algorithms is straightforward and elegant, it

is not well-suited for the current setting because: (1) the training data comprises sequences

of feature-label pairs (𝑭,𝐺) with temporal correlations that may not be effectively

represented by simple stacking. (2) The classical machine learning approach is also

computationally expensive since each type of classifier must be trained and fine-tuned for

each distance-variant dataset. (3) In addition, the classical machine learning algorithms can

only make single-step, single-output predictions one time step into the future based on the

current conditions. Without the feature vectors for the following timestamp(s), we cannot

obtain the probabilities of go-arounds further in the future.

In our use case, we want the model to provide a range of predicted probabilities of go-

around occurrence in the future (e.g., at 5, 4, …, 1 nm), given a certain length of inputs

(e.g., information at 10, 9, …, 6 nm is known). Unlike classical machine learning

algorithms, which can only predict a single future value, the model needs to learn to predict

a sequence of future values. Recurrent models, which can learn to make predictions in the

future based on a lengthy history of inputs, are well-suited to our case. RNNs process a

time series step-by-step, keeping an internal state from timestamp to timestamp. In this

study, we will employ a variant of RNNs, called Long Short-Term Memory (LSTM), to

map the multivariate input sequence to the output sequence. LSTM networks have been

73

shown to be an effective tool for learning representations from sequential data with

temporal dependencies [103].

Since our flight sequences are of varying lengths, we first pad the samples to ensure

that all the sequences are consistent in length and can be encoded into contiguous batches.

A masking layer is then added to inform the model (i.e., the subsequent sequence-

processing layers) what part of the input data is actually padding and should be skipped

while processing the data or computing the loss. Under the hood, the masking layers will

create a boolean tensor which will be propagated through the network for downstream

layers. Each individual “False” entry specifies that the masked timestamp corresponding

to it should be ignored during processing. Then, a two-layer LSTM network learns to map

the given padded and masked input sequence to a sequence of hidden states that function

as a summary/representation of the input sequence. The hidden states at each timestamp

are learned by the LSTM network with weights and bias (parameters). Finally, we use the

fully connected dense layer with sigmoid activation to transform the outputs from the

LSTM layer to model predictions.

We use the Adam optimizer [104] with early stopping [105] to train our networks. All

the parameters (weights and bias) of the network are learned by optimizing the binary focal

cross entropy loss function [106] proposed by Facebook AI Research in 2018. For

comparison, Equation (36) and (37) denote the commonly used binary cross entropy loss

and the binary focal cross entropy loss, respectively, between the true go-around labels 𝐺

and predictions �̂�.

𝐿(𝐺, �̂�) = −𝐺𝑙𝑛(�̂�) − (1 − 𝐺)𝑙𝑛(1 − �̂�) (36)

𝐿(𝐺, �̂�) = −𝐺(1 − �̂�)
𝛾
𝑙𝑛(�̂�) − (1 − 𝐺)�̂�𝛾𝑙𝑛(1 − �̂�) (37)

Where 𝐺 ∈ {0, 1} is the binary class label obtained from the anomaly detection

algorithm in Chapter 3; �̂� ∈ (0, 1) is a probability estimate for the positive class (i.e., go-

arounds). The focal loss function adds a factor of (1 − �̂�)
𝛾
 to the standard form of cross

entropy loss. With the focusing parameter 𝛾 set to be positive, the focal cross entropy

reduces the relative loss for well-classified samples (majority class), allowing the model to

place a greater emphasis on difficult, misclassified samples. In other words, the

conventional form of binary cross entropy loss requires the model to be confident in its

predictions, while the focal cross entropy loss gives the model a bit more freedom to take

some risks when making predictions. We currently set 𝛾 = 2 as recommended in the

original paper on focal loss [106]. In addition, we weight the samples by the inverse of the

class frequency for the class to which they belong, for penalizing the misclassification of

the minority class by an amount proportionate to its underrepresentation. These two

strategies are particularly useful in our case, where there is a highly imbalanced dataset.

74

7.6. Input-Output Hidden Markov Model

In this section, we develop the Markovian model to examine its ability of predicting

go-around occurrence, as compared to the classical machine learning methods and the

recurrent neural networks. The Markovian model relies on statistics and distributions, and

therefore likelihood maximization. It is fundamentally different from the two methods that

we presented in the previous sections – classical machine learning and recurrent neural

networks, which do loss minimization.

For our use case, we employ a variant of the input-output hidden Markov model (IO-

HMM), an extension to the HMM that can better capture the sequential structure inherent

in our problem to model and predict the go-around occurrence for an approaching flight.

Experiments on artificial tasks [51] have shown that IO-HMM, which uses EM recurrent

learning, can deal with time dependencies more effectively than backpropagation through

time and other alternative algorithms. It can be applied to achieve our goal of fully

exploiting both input and output portions of the flight sequence data, as required by the go-

around prediction task.

7.6.1. Model architecture

In order to deal with the go-around prediction problem, we regard the flight approach

procedure as a discrete state dynamical process based on the following state-space

description:

𝑧𝑑 = 𝒻(𝑧𝑑−1, 𝒖𝒅, 𝒙𝒅−𝟏) (38)

[𝒙𝒅, 𝐺𝑑] = ℊ(𝑧𝑑 , 𝒖𝒅, 𝒙𝒅−𝟏) (39)

Equation (38) describes the transition function between different states, where 𝑧𝑑 ∈
 {1, 2,… , 𝑠} is a discrete hidden state variable that encodes symbols representing flight

approach status (locations, speeds, etc.), 𝑠 is the total number of hidden states, which is set

a priori for IO-HMM. Researchers typically associate those hidden states with semantics.

In our specific context, those hidden states those hidden states may be representations of

how stable the flight approaches are, but the semantic interpretation is not critical; rather

they provide a means of capturing patterns of evolution of the output variables.

𝒖𝒅 is the input variable at the information cutoff gate 𝑑 , including contextual

information that can be known before the aircraft reaches the information gate 𝑑, such as

flight-specific characteristics (e.g., operated airline, aircraft type, landing runway), weather

conditions (e.g., visibility, ceiling, wind speed), and airport information (e.g., airport

arrival rate, runway configuration change). The unique advantage of the IO-HMM is that

it incorporates the input vector, allowing contextual variables to affect transition

probabilities and emission variables. In other words, flight sequences with similar input

vectors—i.e., having similar contextual variables--will have similar estimated parameters,

and thus a high probability of being “clustered” in the same latent state.

75

Equation (39) describes the emission function relating the output variables [𝒙𝒅, 𝐺𝑑] and

the state variables 𝑧𝑑. To be more specific, in the equation, [𝒙𝒅, 𝐺𝑑] are both the output

variables at the information cutoff gate 𝑑. 𝒙𝒅 contains dynamic features described in Table

3, such as flight altitude and loss of separation. 𝐺𝑑 is the go-around label obtained from the

go-around detection algorithm in Chapter 3. According to Equation (39), the 𝐺𝑑 is

determined by the current state of the system 𝑧𝑑, input features at the current information

cutoff gate 𝒖𝒅and the lag-one output features in the previous information cutoff gate 𝒙𝒅−𝟏.

The output variables are available only after the aircraft passes the information cutoff gate

𝑑.

In contrast to the input variables, the output variables contain information that is not

available at the transition to a new approach state. In other words, output variables can be

observed when training the models but must be inferred when we predict the go-around

probability. As dynamic features from the previous information cutoff gates also contribute

to part of the context information for predicting what will happen to the aircraft in the

following information cutoff gates, we link the lag-one output variables 𝒙𝒅−𝟏 to the next

information gate by incorporating 𝒙𝒅−𝟏 in the input vector layer.

Figure 24. IO-HMM architecture.

Such discrete state dynamical system defined by Equation (38) (39) can be modeled by

the graph depicted in Figure 25, in which the white nodes represent hidden state variables

𝑧𝑑 , the green nodes represent observed input variables 𝒖𝒅, and the blue nodes contain

output variables 𝒙𝒅 and 𝐺𝑑.

7.6.2. Model specification

We assume a multinomial distribution for the state variable 𝑧𝑑 and use a Bayesian

network to characterize the probabilistic dependencies among these state variables, input

variables, and output variables. The IO-HMM captures the dynamics of the Markovian

chain by using the current inputs and current state distribution to estimate the state variable

and the output variable distributions for the next information cutoff gate. According to the

connections shown in the IO-HMM graph shown in Figure 25, three probability models

need to be specified: an initial probability model which outputs a vector of initial state

probabilities at the start of the sequence, a transition probability model conditioned on the

input sequence which outputs a square matrix of state transition probabilities at each

76

information cutoff gate, and an emission probability (a.k.a. output probability) model

governing the distribution of the output variables – including go-around probability – at a

particular time given the hidden state and input features. Model details and formulas are

described in the following sections.

A. Initial model

We develop a multinomial logistic regression model to estimate the initial probability

parameters �̂�𝒊𝒏𝒊𝒕𝒊𝒂𝒍.

𝑃(𝑧1 = 𝑖 | 𝒖𝟏; 𝜽𝒊𝒏𝒊𝒕𝒊𝒂𝒍) =
exp(𝜃𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖

∙ 𝒖𝟏)

∑ exp(𝜃𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑘
∙ 𝒖𝟏)

𝑠
𝑘

(40)

where 𝑖 is the state label at the initial (𝑑 = 1 represents the first information cutoff gate

of the sequence, which is 9 nm before the landing threshold) information cutoff gate; 𝑠 is

the total number of hidden states.

B. Transition model

At the information gate 𝑑, the hidden state 𝒛𝒅 is related to the input features 𝒖𝒅, lag-

one output features 𝒙𝒅−𝟏, and the previous hidden state 𝒛𝒅−𝟏, subject to some Gaussian

noise. The multinomial logistic regression model is used to estimate the transition

probability parameters �̂�𝒕𝒓𝒂𝒏𝒔.

𝑃(𝑧𝑑 = 𝑗 | 𝑧𝑑−1 = 𝑖, 𝒖𝒅, 𝒙𝒅−𝟏; 𝜽𝒕𝒓𝒂𝒏𝒔) =

exp(𝜃𝑡𝑟𝑎𝑛𝑠𝑖
𝑗 ∙)

∑ exp (𝜃𝑡𝑟𝑎𝑛𝑠𝑖
𝑘 ∙ [

𝒖𝒅

𝒙𝒅−𝟏
])𝑠

𝑘

(41)

where 𝑖 is the state label at the previous information cutoff gate 𝑑 − 1, 𝑗 is the state

label at the current information cutoff gate 𝑑; s is the total number of hidden states. The

estimated �̂�𝒕𝒓𝒂𝒏𝒔 = [

𝜃𝑡𝑟𝑎𝑛𝑠1
1 ⋯ 𝜃𝑡𝑟𝑎𝑛𝑠1

𝑠

⋮ ⋱ ⋮
𝜃𝑡𝑟𝑎𝑛𝑠𝑠

1 ⋯ 𝜃𝑡𝑟𝑎𝑛𝑠𝑠
𝑠
] , �̂�𝒕𝒓𝒂𝒏𝒔 ∈ ℝ𝑠×𝑠 is the transition probability

matrix for the approach state transited from the previous state. The transition probabilities

are heterogeneous and depend on contextual information 𝑢𝑑 . This can improve the

accuracy of state inference.

C. Emission model

To gain interpretability, we choose linear models for continuous outputs represented as

Gaussian random variables (𝒙𝒅), thus:

77

𝑃(𝒙𝒅| 𝑧𝑑 = 𝑗, 𝒖𝒅 , 𝒙𝒅−𝟏; 𝜽𝒆𝒎𝒊𝒔
𝒄) =

1

√2𝜋𝜎𝑗

exp(−
(𝒙𝒅 − 𝜽𝒆𝒎𝒊𝒔

𝒄
𝒋
∙ [

𝒖𝒅

𝒙𝒅−𝟏
])

2

2𝜎𝑗
2) (42)

where 𝑗 is the state label at the current information cutoff gate 𝑑 . The estimated

�̂�𝒆𝒎𝒊𝒔
𝒄 = [�̂�𝒆𝒎𝒊𝒔

𝒄
𝟏

⋯ �̂�𝒆𝒎𝒊𝒔
𝒄

𝒔], �̂�𝒆𝒎𝒊𝒔
𝒄 ∈ ℝ𝑚×𝑠 is the emission coefficient matrix where

its column 𝜽𝒆𝒎𝒊𝒔
𝒄

𝒋
 denotes the coefficients of 𝑚 output variables in the linear model when

the hidden state is 𝑗. 𝜎𝑗 represents the standard deviation of the linear model when the

hidden state is 𝑗. Therefore, the number of coefficients to be estimated in the emission

probability model is equal to the product of the number of hidden states 𝑠 and the number

of output variables 𝑚.

For binary random variable 𝐺𝑑 , the logistic regression model is used as the output

emission model. The probability is as follows:

𝑃(𝐺𝑑 = 1| 𝑧𝑑 = 𝑗, 𝒖𝒅 , 𝒙𝒅−𝟏; 𝜽𝒆𝒎𝒊𝒔
𝑮) =

1

1 + exp (−𝜽𝒆𝒎𝒊𝒔
𝑮

𝑗
∙ [

𝒖𝒅

𝒙𝒅−𝟏
])

(43)

When implementing the maximum likelihood method, a Gaussian may be fit onto a

single data point and lead to a singular covariance matrix. Whenever the covariance matrix

is singular, the log-likelihood function will go to infinity. Thus, the maximization of the

log-likelihood function is ill-posed. Ridge regularization [107] is employed to objective

functions of both linear and logistic regression. The regularized term 𝐶𝑜𝑙𝑠, 𝐶𝑙𝑜𝑔𝑖𝑡 will be

fine-tuned from the range specified in Table 13 using five-fold cross-validation.

Based on the model architecture and model specifications, the likelihood of a sequence

in our IO-HMM can be written as:

ℒ(𝜽, 𝒙, 𝒖) = ∑ [
𝑠

𝑃(𝑧1 | 𝒖𝟏; 𝜽𝒊𝒏𝒊𝒕𝒊𝒂𝒍) ∙

∏𝑃(𝑧𝑑 | 𝑧𝑑−1, 𝒖𝒅, 𝒙𝒅−𝟏; 𝜽𝒕𝒓𝒂𝒏𝒔)

𝐷

𝑑=2

∙

∏𝑃(𝒙𝒅| 𝑧𝑑 , 𝒖𝒅 , 𝒙𝒅−𝟏; 𝜽𝒆𝒎𝒊𝒔
𝒄)

𝐷

𝑑=1

∙

𝑃(𝐺𝑑 = 1| 𝑧𝑑 , 𝒖𝒅 , 𝒙𝒅−𝟏; 𝜽𝒆𝒎𝒊𝒔
𝑮)] (44)

The temporal dependency is captured by the transitions between the hidden approach

states 𝒛. The direct dependency between input features and output features can capture

78

relationships that are not fully mediated by the hidden state learned for the current

timestamp.

7.6.3. Model estimation

As illustrated in the previous section, the IO-HMM includes three groups of unknown

parameters to be estimated: initial probability parameters 𝜽𝒊𝒏𝒊𝒕𝒊𝒂𝒍, transition probability

parameters 𝜽𝒕𝒓𝒂𝒏𝒔, and emission probability parameters 𝜽𝒆𝒎𝒊𝒔. In this study, we implement

the Expectation-Maximization (EM) algorithm to optimize the parameter set. Explicitly, in

the E-step, we compute the expected value of the complete log-likelihood as in Equation

(45), given the observed data and parameters estimated (or initialized) at the previous (or

initialization) step. In the M-step, parameters are updated to maximize the expected data

log-likelihood.

𝒬(𝜽, 𝜽𝒓) = ∑𝛾𝑖,1𝑙𝑛 𝑃(𝑧1 = 𝑖 | 𝒖𝟏; 𝜽𝒊𝒏𝒊𝒕𝒊𝒂𝒍)

𝑠

𝑖=1

+

∑ ∑∑ 𝜉𝑖𝑗,𝑑

𝑠

𝑗=1

ln P(𝑧𝑑 = 𝑗 | 𝑧𝑑−1 = 𝑖, 𝒖𝒅, 𝒙𝒅−𝟏; 𝜽𝒕𝒓𝒂𝒏𝒔)

𝑠

𝑖=1

𝐷

𝑑=2

+ ∑ ∑𝛾𝑖,𝑑

𝑠

𝑖=1

[

𝐷

𝑑=1

ln 𝑃(𝒙𝒅| 𝑧𝑑 = 𝑗, 𝒖𝒅 , 𝒙𝒅−𝟏; 𝜽𝒆𝒎𝒊𝒔
𝒄)

+ ln 𝑃(𝐺𝑑 = 1| 𝑧𝑑 = 𝑗, 𝒖𝒅 , 𝒙𝒅−𝟏; 𝜽𝒆𝒎𝒊𝒔
𝑮)] (45)

where 𝑟 represents the iteration; 𝑠 is the total number of hidden states; 𝐷 is the total

number of information cutoff gates in each flight sequence; 𝒖𝒅, 𝒙𝒅−𝟏, 𝒙𝒅, 𝐺𝑑, and 𝑧𝑑 are

the input variables, lag-one output variables, output variables, go-around binary labels and

hidden state variables at information cutoff gate 𝑑, which were introduced in Section 7.6.1;

𝜽𝒊𝒏𝒊𝒕𝒊𝒂𝒍, 𝜽𝒕𝒓𝒂𝒏𝒔, 𝜽𝒆𝒎𝒊𝒔
𝒄 , 𝜽𝒆𝒎𝒊𝒔

𝑮 are parameters to be estimated in initial probability model,

transition probability model, and emission probability model which were discussed in

Section 7.6.2.

𝜉𝑖𝑗,𝑑 is the posterior transition probability, which defines the probability of being in

state 𝑖 at the information cutoff gate 𝑑 and state 𝑗 at the information cutoff gate 𝑑 + 1. 𝛾𝑖,𝑑

is the posterior state probability for state 𝑖 at the information cutoff gate 𝑑. 𝜉𝑖𝑗,𝑑 and 𝛾𝑖,𝑑

are computed from forward probability 𝛼 and backward probability 𝛽 under the forward-

backward algorithm [108], which involves three steps:

• Computing the forward probability which provides the probability of ending up in any
particular state 𝑖 given the first 𝑑 observations in the sequence;

• Computing the backward probability which provides the probability of seeing the
observations from information cutoff gate 𝑑 + 1 to the end given we are in a particular
state at the time;

79

• These two sets of probabilistic distributions can then be combined to obtain the
distribution over states at any specific point 𝑑 ∈ {1,⋯ , 𝐷} given the entire observations
sequence.

𝜉𝑖𝑗,𝑑 = 𝑃(𝑧𝑑 = 𝑖 | 𝑧𝑑−1 = 𝑗, 𝒖𝒅, 𝒙𝒅−𝟏; 𝜽𝒕𝒓𝒂𝒏𝒔) ∙ 𝛼𝑖,𝑑 ∙ 𝛽𝑗,𝑑 ∙

𝑃(𝒙𝒅| 𝑧𝑑 = 𝑗, 𝒖𝒅 , 𝒙𝒅−𝟏; 𝜽𝒆𝒎𝒊𝒔
𝒄) ∙

𝑃(𝐺𝑑 = 1| 𝑧𝑑 = 𝑘, 𝒖𝒅, 𝒙𝒅−𝟏; 𝜽𝒆𝒎𝒊𝒔
𝑮)/ℒ(𝜽, 𝒙, 𝒖) (46)

𝛾𝑖,𝑑 =
𝛼𝑖,𝑑𝛽𝑖,𝑑

ℒ(𝜽, 𝒙, 𝒖)
(47)

The whole estimation and inference process is summarized in Figure 25. The forward-

backward algorithm starts with some initial estimates of the IO-HMM parameters 𝜽𝟎. We

then iteratively run the Expectation-step and the Maximization-step. In the E-step, we

compute the expected value of the complete data log-likelihood, the posterior state

probability 𝛾𝑖,𝑑 , and the posterior transition probability 𝜉𝑖𝑗,𝑑 for each training sequence,

given the entire observed data sequence and parameters estimated at the previous (or

initialized) step. In the M-step, we use the computed distribution over states to update the

transition probability matrix and the emission likelihood matrix for maximizing the

expected data likelihood.

During the inference time, we apply the estimated parameters on unseen data in the test

set. It is intuitive to imagine the inference process in this way: as an aircraft approaches to

its landing runway, it will experience different states during the approach procedure.

Before the flight reaches the next nautical-mile point, we can obtain context information

𝑢𝑡 such as aircraft type, weather conditions in advance. Given the input features available

at the moment, the heterogeneous transition probability matrix dependent on input features

is calculated. We can thus infer which state the flight will be transited to in the next 1-

nautical-mile according to the highest posterior state probability among all candidate states.

Based on the input layer and the hidden state layer, all the variables in the output layer can

be predicted via 𝜃𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

 of the selected state, including the go-around probability. During

flight approach procedure, the relevant context information 𝑢𝑡 will be updated, and the next

approach state will be selected given the newly obtained transition probability matrix. This

process continues until the full sequence of approached states has been inferred. Under this

mechanism, the sequential probability of go-arounds can be predicted for any flight

approach procedures given known features prior to a certain time.

80

Figure 25. IO-HMM model estimation and inference.

7.7. Model inference

The goal of this section is to predict the dynamic probability of go-arounds in the output

layer as the flight approaches its landing runway, given the known input features at a certain

time prior to the go-around. Once the models are trained, we will use them to generate

predictions against previously unseen data and evaluate the model performance. With pre-

trained models, the inference process can be completed in constant time for each flight.

Models can also be re-trained, if needed, with newly available observations.

The simplest way is just to predict a single value (one step ahead) in the future, and no

feedback is used to continue the prediction. We call this the single-step-ahead prediction.

The feature space must be updated with the most recent information in order to predict the

values in the next step. Figure 26 shows a simplified version of the single-step-ahead

prediction procedure when the flight passes the 6 nm information cutoff gate (i.e., the flight

is 6 nm away from the landing runway threshold). The feature vectors are available at 10,

9, …, 6 nm (𝑭𝟏𝟎, 𝑭𝟗, 𝑭𝟖, 𝑭𝟕, 𝑭𝟔). The model is trying to predict the go-around probability

in the next gate. The classical machine learning models (left figure) only utilize the

information at the current timestamp and the lag-one step to make a prediction. the models

trained for every timestamp are completely independent of one another. Without knowing

the features at 5 nm 𝑭𝟓, we cannot produce predictions at 4 nm, and hence cannot predict

the probability of go-arounds before the flight passes the 5 nm gate, so on for the

succeeding timestamps.

81

Figure 26. Single-step-ahead prediction with classical machine learning (left) and

sequential models (right).

The other prediction procedure is termed multi-step-ahead prediction, which provides

the outcomes of the rest of the steps or multiple steps ahead in a single shot or in an

autoregressive way. We demonstrate the difference between these two approaches in

Figure 27 and Figure 28 below using an example of predictions made when the flight just

passes the 6 nm information cutoff gate. For multi-step-ahead prediction, we are trying to

answer the questions like: if we know all required information (features) at 10, 9, …, 6 nm

gates, what are the probabilities of go-around occurrence at 5, 4, …, 1 nm will be? After

accumulating the internal state for 10 to 6 nm, the LSTM networks produce the output

sequence for the remaining information cutoff gates in a single shot. The IO-HMM makes

autoregressive predictions, in which the model makes single-step predictions of both input

and output sequences, and then feeds them forward as input to make further predictions

conditioned on the previous one for the required number of output timestamps.

Figure 27. Multi-step-ahead prediction in a single short.

82

Figure 28. Multi-step-ahead prediction with autoregression.

Assuming that we are able to constantly update the observed information at the

previous 1 nm in real time, each time the flight reaches a certain gate 𝑑, we will acquire a

sequence of predictions for the subsequent steps 𝑑 − 1, 𝑑 − 2,… , 1 , �̂�𝒅 =

[�̂�𝑑−1
𝑑 , �̂�𝑑−2

𝑑 , … , �̂�1
𝑑] . Note that we will obtain another new sequence of go-around

predictions once the flight passes the next gate, and more information becomes available.

For example, after the flight passes the 5-nm gate, we obtain the sequence of go-around

predictions �̂�𝟓 = [�̂�4
5, �̂�3

5, �̂�2
5, �̂�1

5] . A new sequence of go-around predictions �̂�𝟒 =

[�̂�3
4, �̂�2

4, �̂�1
4] is produced once the flight passes the next 4 nm gate. To facilitate model

comparison and practical use, we adopt the complement rule of probability to transform a

sequence of go-around probabilities at a certain gate 𝑑, �̂�𝒅, into a single probability �̂�𝑑𝑚𝑢𝑙𝑡𝑖:

�̂�𝑑𝑚𝑢𝑙𝑡𝑖 = 1 − ∏ (1 − �̂�𝑟
𝑑)

𝑑−1

𝑟=1
(48)

As a result, every time the flight passes through a particular information cutoff gate 𝑑,

we obtain a single value prediction �̂�𝑑𝑠𝑖𝑛𝑔𝑙𝑒 from the single-step-ahead prediction, and

another single value prediction �̂�𝑑𝑚𝑢𝑙𝑡𝑖 converted from a sequence of predicted go-around

probabilities using multi-step-ahead prediction and Equation (48). The single-step

prediction �̂�𝑑𝑠𝑖𝑛𝑔𝑙𝑒 represents the probability of go-around prior to the next nautical mile,

while the multi-step prediction �̂�𝑑𝑚𝑢𝑙𝑡𝑖 can represent the probability of go-around prior to

landing. These two go-around probabilities will be updated accordingly and can be

transmitted to pilots or controllers as a signal or alert for go-around occurrence during the

approach and landing phase.

7.8. Experimental Steps

The three methods – classical machine learning, LSTM, and IO-HMM – were applied

to a historical dataset that contains 371 go-arounds out of 100,032 arrival flights at JFK

airport in the second half-year of 2018. We first split the data into a training set (80%) and

a testing set (20%), respecting to the class distribution. Then, we train, validate, and test

83

the aforementioned models on these datasets. The experimental steps and model selection

process follow a similar regime in [102], including data processing, parameter tuning, and

performance evaluation with statistical hypothesis tests. For classical machine learning,

each kind of model is trained eight times separately over different distant-specific datasets,

using only features up to the present information cutoff gate. For the sequential models,

the LSTM and IO-HMM are trained once for all the flight sequences.

In addition, we observe that the dataset is extremely imbalanced, with go-around flights

significantly less than those non-go-around flights - only 0.3% of arrivals are go-around

flights. With so few go-arounds relative to non-go-arounds, the learning algorithm often

struggles to generalize the behavior of the go-around flights well, and tends to classify all

observations as majority class; hence the algorithm performs poorly on the minority class.

Therefore, the loss functions of all the above models are modified to deal with the class

imbalance issues – penalizing the misclassification of the minority class by an amount

proportional to how under-represented it is.

We report five metrics to evaluate the performance of the models: F2 score, the area

under the receiver operating characteristic curve (AUC), precision, recall, and accuracy. F-

score, which is the weighted harmonic mean of the precision and recall, is chosen to be the

evaluation criteria through the experiments. Based on the accuracy measures in the

confusion matrix [109], 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 and 𝑟𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
 are defined (TP: true

positive, FP: false positive, TN: true negative, FN: false negative). We want to have high

confidence that observations predicted as go-arounds are actually correct (high precision),

as well as a high detection rate of the go-arounds (high recall). However, high precision

comes at the cost of the low recall and vice versa. Referring to [29] that the cost of not

detecting a go-around highly outweighs the cost of getting a false alarm warning in the

system, we set the parameter, which determines the weight of recall in the F-score, as 2. In

the inference process, we empirically select the threshold that maximizes the F2 score on

the test set.

𝐹2 =
(1 + 22) ∙ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

22 ∙ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
(49)

7.9. Model Performance

Figure 29 shows the F2 score at each timestamp for the four classical machine learning

algorithms and the two sequential models of LSTM and IO-HMM. Table 14 reports the

five metrics obtained on the testing set for these different models. We include the single-

step prediction of the two sequential models in comparison with the classical machine

learning models. The corresponding metrics scores are comparable across different models,

for a specific information cutoff gate, in the same dataset.

84

The sequential models consistently outperform the classical machine learning models

except for the early stage of the flight approach. This suggests that incorporating temporal

structures in the model can improve go-around prediction performance. With multi-step

predictions, the IO-HMM slightly improves over the single-step predictions for every

distance-variant dataset in terms of F2 score, precision, recall, and AUC, while the LSTM

improves significantly. As for the classical machine learning models, the random forest

model is comparable to the IO-HMM, yet it still slightly falls behind the IO-HMM,

especially during the later stage of a flight approach process.

Figure 29. Model performance, in terms of F2 score, of classical machine learning models

(left) and sequential models (right).

We also notice that sequential models (LSTM, IO-HMM) exhibit a consistent and

monotonically increasing performance, in terms of F2 score, as the approach progresses,

while other models do not. The prediction performance improves as the flight gets closer

to the airport. The main reason for this may be that most go-arounds happen closer to the

airport, and these sequential models can maintain more information in their internal state

as the given input sequence gets longer (flights getting closer to the airport). In other words,

more information in the temporal sequences is preserved, and the feature space used for

multi-step predictions becomes more reliable. The classical machine learning models are

trained separately using independent input features, and are thus incapable of learning a

whole flight sequence that inherently captures the temporal dependency. For the LSTM,

the most confident prediction is achieved when the flight is at 2 nm before the runway

threshold, with a recall score of 0.59 and a precision score of 0.39, suggesting that 59% of

go-arounds are correctly identified, and 39% of the go-arounds predicted by the model are

correct. LSTM is capable of automatically extracting features from past events and is able

to apply point-wise nonlinearities to the output at every timestamp, which Markovian

models do not. This is why the LSTM model is more expressive and adaptive to learning

from real-world data.

85

7.10. Chapter Summary

In this chapter, we have shown how go-around prediction can be addressed as a

multivariate sequential prediction problem. We view it as a sequence classification

problem and compare different learning algorithms with two prediction strategies. A set of

supervised learning models serve as the benchmarks of the go-around prediction task. The

experiments were also carried out with the IO-HMM designed to evolve model estimates

(learned weights) through discrete state space. It was found that the both the LSTM and

IO-HMM can capture the dependency structure in the flight sequence, and the multi-step

prediction strategy achieves better prediction performance. LSTM is capable of

automatically extracting features from past events and is able to apply point-wise

nonlinearities to the output at every timestamp, which Markovian models do not. This is

why the LSTM model is more expressive and adaptive to learn from real-world data.

Further research performed with more real-world datasets and additional sequential models

is required to generalize and improve the results. A major challenge of go-around

prediction is the imbalanced class distribution of the data. The go-around rate is (thankfully)

very low – FAA reports that the average go-around occurrence across the core 30 airports

in the US from 2012 to 2018 is at a rate of 0.4% [25]—but the resulting class imbalance in

go-around data sets makes predictive modelling difficult. In the next chapter, we will

investigate different techniques to address the class imbalance issue.

Aside from prediction, another product of the IO-HMM model is the pattern

recognition capability. The hidden state variables 𝒛 inferred from data are categorical

labels corresponding to unobserved activity patterns, or flight approach types, or other

semantic meanings that can be associated to it following an in-depth analysis. First, a set

of decision rules based on the spatial-temporal representations of features (e.g.,

speed/altitude profile) need to be designed to identify the latent semantics of each of the

hidden state variables. Second, we would need to compare the annotated activity patterns

with additional data sources (e.g., ground truth or simulated approach patterns identified

by domain experts via manual inspection), that are independent of the in-use dataset, to

validate the pattern recognition results and the activity transition chains. Although it may

prove to be difficult in light of the highly specialized nature of the aviation domain (as

compared, for example, with urban activity modeling), the pattern recognition capability

can help “annotate” flight activity types (in the approach phase, for this work), which may

simplify scenario evaluation for aviation operators, and thus improve the safety and

efficiency of air traffic control.

Table 14. Go-around prediction model performance.

86

After the flight passes gate Model F2 Precision Recall AUC Accuracy

9

Logistic 0.151 0.064 0.227 0.848 0.985

SVM 0.143 0.062 0.213 0.829 0.985

XGBoost 0.164 0.085 0.213 0.860 0.988

RF 0.165 0.073 0.240 0.841 0.986

IO-HMM (single) 0.148 0.067 0.213 0.777 0.978

LSTM (single) 0.057 0.013 0.321 0.826 0.953

IO-HMM (multi) 0.166 0.049 0.410 0.817 0.968

LSTM (multi) 0.086 0.028 0.179 0.780 0.973

8

Logistic 0.152 0.167 0.149 0.843 0.994

SVM 0.146 0.056 0.243 0.814 0.982

XGBoost 0.165 0.047 0.446 0.846 0.964

RF 0.156 0.054 0.297 0.846 0.978

IO-HMM (single) 0.149 0.062 0.230 0.711 0.984

LSTM (single) 0.069 0.022 0.146 0.820 0.985

IO-HMM (multi) 0.176 0.070 0.282 0.815 0.983

LSTM (multi) 0.137 0.058 0.205 0.824 0.985

7

Logistic 0.156 0.071 0.222 0.857 0.987

SVM 0.185 0.066 0.333 0.828 0.981

XGBoost 0.180 0.063 0.333 0.856 0.980

RF 0.180 0.052 0.472 0.864 0.967

IO-HMM (single) 0.153 0.077 0.203 0.728 0.988

LSTM (single) 0.109 0.031 0.308 0.803 0.961

IO-HMM (multi) 0.190 0.216 0.188 0.903 0.999

LSTM (multi) 0.200 0.158 0.215 0.897 0.995

6

Logistic 0.184 0.063 0.352 0.862 0.979

SVM 0.228 0.091 0.366 0.854 0.985

XGBoost 0.177 0.068 0.296 0.851 0.983

RF 0.210 0.091 0.310 0.860 0.987

87

After the flight passes gate Model F2 Precision Recall AUC Accuracy

IO-HMM (single) 0.230 0.092 0.368 0.808 0.985

LSTM (single) 0.160 0.064 0.256 0.845 0.983

IO-HMM (multi) 0.286 0.142 0.385 0.867 0.989

LSTM (multi) 0.248 0.096 0.410 0.882 0.983

5

Logistic 0.195 0.065 0.391 0.862 0.978

SVM 0.226 0.146 0.261 0.855 0.992

XGBoost 0.195 0.073 0.333 0.863 0.983

RF 0.247 0.122 0.333 0.856 0.989

IO-HMM (single) 0.255 0.100 0.417 0.828 0.986

LSTM (single) 0.199 0.062 0.449 0.908 0.981

IO-HMM (multi) 0.297 0.155 0.385 0.926 0.990

LSTM (multi) 0.318 0.089 0.897 0.947 0.965

4

Logistic 0.226 0.080 0.413 0.891 0.983

SVM 0.270 0.153 0.333 0.884 0.992

XGBoost 0.220 0.088 0.349 0.874 0.987

RF 0.282 0.131 0.397 0.854 0.990

IO-HMM (single) 0.291 0.117 0.463 0.836 0.989

LSTM (single) 0.254 0.118 0.359 0.947 0.987

IO-HMM (multi) 0.333 0.097 0.846 0.925 0.970

LSTM (multi) 0.398 0.257 0.462 0.964 0.993

3

Logistic 0.262 0.127 0.357 0.861 0.991

SVM 0.299 0.129 0.446 0.862 0.990

XGBoost 0.265 0.205 0.286 0.874 0.995

RF 0.304 0.410 0.286 0.877 0.997

IO-HMM (single) 0.307 0.141 0.435 0.839 0.990

LSTM (single) 0.318 0.089 0.897 0.947 0.965

IO-HMM (multi) 0.358 0.239 0.410 0.938 0.993

88

After the flight passes gate Model F2 Precision Recall AUC Accuracy

LSTM (multi) 0.494 0.295 0.590 0.957 0.993

2

Logistic 0.278 0.115 0.429 0.873 0.989

SVM 0.270 0.102 0.457 0.878 0.989

XGBoost 0.253 0.151 0.304 0.867 0.994

RF 0.284 0.126 0.413 0.848 0.992

IO-HMM (single) 0.312 0.155 0.417 0.861 0.990

LSTM (single) 0.395 0.191 0.538 0.944 0.990

IO-HMM (multi) 0.414 0.214 0.538 0.924 0.991

LSTM (multi) 0.535 0.390 0.590 0.930 0.995

89

8. Imbalanced Learning

8.1. Overview

A major challenge of the go-around prediction problem, or for any rare event prediction,

is the imbalanced class distribution of the data. The capability to deal with imbalanced data

holds significant promise for the applicability of AI, as this is the crux of many real-world

problems, especially in the safety-related fields. The go-around prediction task is a

canonical example of imbalanced data problems, which often results in increased difficulty

in classification as many learning algorithms are best suited for a balanced dataset. The go-

around rate is often very low, with only 0.3% of arrivals being go-arounds in our case. The

ensuing class imbalance would significantly degrade the performance of any learning

model, specifically with regard to the minority class we are interested in. With so few go-

arounds relative to non-go-arounds, the learning algorithm is often unable to generalize the

behavior of the go-around flights well, and thus tends to classify minority class

observations as majority class.

In the models presented in Chapter 7, we have modified the loss function to penalize

the misclassifications of minority class by an amount proportional to how under-

represented it is, and picked the performance metric in a way that emphasizes the recall

score of the minority class (details are in Section 7.8). The other approach to mitigate the

class imbalance problem is to augment the data samples for the minority class, either by

resampling the data or generating synthetic samples in the training set. The change to the

class distribution is only applied to the training set, intending to influence the model fit

(estimated/learned parameters). This motivates this part of thesis research to explore

several strategies for minority class augmentation in order to tackle the issue of imbalanced

learning. While the minority class augmentation will be employed specifically for go-

arounds in this study, it is a promising technique for many other transport (and non-

transport) safety threats in which sequential data is employed to identify the risk of non-

nominal event occurrence.

The overarching question for the work in this chapter is: can we generate high-fidelity

synthetic go-around sequences to augment the minority class, and employ these synthetic

sequences to train models that are better at predicting go-around occurrence? Following a

review of existing methods for tackling this problem in Section 8.2, we develop a GAN

model (Section 8.5) that can satisfy the requirements of generating multivariate sequence

data with variable length and mixed data types. Furthermore, we benchmark this model

against the simple downsampling method (Section 8.3) and the autoencoder method with

ADASYN (Section 8.4). The performance of the go-around prediction model is also

compared with various proportions of synthetic go-arounds added to the training data.

90

8.2. Related Work

The two main approaches to augmenting the minority class are to delete samples from

the majority class, referred to as downsampling, and add more minority samples, referred

to as oversampling. The random sampling method takes the original training set and

resamples it to obtain a more balanced distribution of the minority and majority classes.

While this simple strategy changes the data sizes of the minority and majority samples,

generating synthetic samples based on the original training data could further increase the

data variety and might lead to better model performance. In our case, sequential data

generation is typically more challenging than non-sequential data generation, since

sequential data has time dependencies. Furthermore, our data is multivariate, with multiple

features at each time point. This adds additional complexity to synthetic data generation as

we not only need to generate reasonable values for features at different timestamps, but

also need to reproduce similar sequence lengths, temporal dependencies, and feature

correlations.

There are three common ways to generate synthetic data – simulation approach,

sampling-based approach and deep generative models. The simulation approach generates

data samples by developing a simulator that replicates the behavior of a real system and

event occurrence. For example, Total Airspace and Airport Modeler (TAAM) is a widely

used fast-time, gate-to-gate simulation tool for analyzing aviation operations both in the

airspace and on the airport surface. If the simulator is highly similar to real systems, the

simulation approach has a high degree of fidelity. In practice, however, configuring the

settings to simulate a specific target dataset is often difficult and expensive. While several

data-driven approaches to parameter configuration have been presented recently [110, 111,

112], it remains challenging to ensure that the simulator generalizes all possible scenarios.

The sampling-based methods are straightforward, but the situations they can be applied

are limited. SMOTE (Synthetic Minority Oversampling TEchnique) [113] is a frequently

used technique for oversampling minority samples by interpolating between their nearest

neighbors. However, it does not account for the sequential dimension. One extension to

SMOTE is the ADASYN (ADAptive SYNthetic) sampling algorithm [114], which

investigates the composition of the nearest neighbors and adaptively shifts the

classification decision boundary toward the minority samples. Neither SMOTE nor

ADASYN captures the sequential correlation in time because they generate synthetic

feature vectors by interpolating between the real data points at each timestamp

independently. Recently, autoencoders have been utilized to learn representations of the

input sequence, allowing for the application of these sampling methods in the latent space

to capture the structure of the sequence [115].

Another approach, generative adversarial networks (GANs), have been widely used to

oversample image data [116, 117, 118, 119, 120], and has recently become an active

research topic for oversampling sequence data [121, 122, 123, 124, 125]. We consider

leveraging recent advances in GANs to generate synthetic go-around sequences. In

comparison to the preceding two approaches, GANs, when appropriately developed,

91

provide three significant advantages. First, the discriminator acts as a universal agent

responsible for accessing the authenticity of generated samples. Thus, the discriminator

requires only the realistic samples and no further information about the system producing

the samples. Second, GANs can be used to generate both static and time series features

with mixed data types, as well as their cross-correlations. Finally, GANs are capable of

capturing the complicated structure of the data, as evidenced by their applications in the

generation of images [126, 127], texts [125, 128, 129], and music [130, 131].

However, canonical GANs often perform badly when it comes to extracting temporal

dependencies and the correlations among multiple features with mixed data types.

Additionally, Mode collapse [62] is a well-known issue in GANs where they generate only

a few modes from the underlying distribution. It is compounded further in time series

applications, such as when we generate go-around sequences, because of the wide range of

feature values. In this study, we will synthesize domain-specific insights with concurrent

advances in the GAN literature to design a proof-of-concept GAN architecture for our go-

around use case. RCGAN [121], TimeGAN [122] and DoppelGANger (DG) [123] are the

three most relevant studies we refer to. RCGAN generates time series using RNNs, but

does not evaluate the correlations among features. As with RCGAN, TimeGAN uses RNNs

for both the generator and discriminator. However, TimeGAN further trains an additional

neural network that maps time series to vector embeddings, such that the generator

produces sequences of embeddings rather than original features. It is usual to learn to

generate transformed or embedded time series, both using GANs and using a different class

of generative models such as variational autoencoders (VAE) [132]. An extension of the

TimeGAN, DG is proposed to deal with network data generation. The innovative part of

this GAN architecture is that it introduces an auxiliary discriminator for the generation of

static features (i.e., attributes), which are then conditioned by the generation of time series

features.

8.3. Downsampling

Considering the size of the data and computational complexity, we choose to

downsample the majority class in the training set before learning a classifier. The

assumption behind this strategy is that there are many redundant observations in the

majority class, and that randomly removing some of them does not affect the estimation of

the within-class distribution [133].

Specifically, the downsampling will be utilized as a pre-processing step to rebalance

the two classes before any algorithm is applied. For each distance-variant dataset, we first

split the data into a training set (80%) and a testing set (20%), corresponding to the second

and third sub-columns in Table 15. Second, while the number of go-arounds remains

unchanged in both the training set and the testing set, we randomly sample the non-go-

around flights without replacement until the ratio of non-go-arounds to go-arounds ratio is

10 to 1 (269:1 in the full dataset). We do not set the two classes equally balanced; otherwise,

92

models would be prone to overfitting and be much more sensitive to outliers owing to the

small number of data samples. After merging the downsampled majority class with the

original minority class, we obtain the balanced dataset, reported as the fourth and fifth sub-

columns in Table 15. We train, validate, and test the aforementioned models on the full

dataset and the downsampled dataset separately. We also apply the same treatment to deal

with these two imbalanced datasets – penalizing the misclassification of the minority class

by an amount proportional to how under-represented it is.

Table 15. The size of the full dataset and the downsampled dataset.

Dist.

(nm)

Full dataset

(G-A / arrivals)

Downsampled set

(G-A / arrivals)

Train (80%) Test (20%) Train Test

9 296 / 80,025 75 / 20,007 296 / 3,256 75 / 825

8 293 / 80,022 74 / 20,006 293 / 3,223 74 / 814

7 287 / 80,016 72 / 20,004 287 / 3,157 72 / 792

6 281 / 80,010 71 / 20,003 281 / 3,091 71 / 781

5 273 / 80,002 69 / 20,001 273 / 3,003 69 / 759

4 252 / 79,981 63 / 19,995 252 / 2,772 63 / 693

3 221 / 79,950 56 / 19,988 221 / 2,431 56 / 616

2 180 / 79,909 46 / 19,978 180 / 1,980 46 / 506

With a less imbalanced dataset, all the models have better predictability regarding F2

score, precision, recall, and AUC. Nevertheless, no universal model performs best for all

distance-variant datasets. The performance of IO-HMM is poorer, probably due to the

small size of the training data. Other research work [134] has found that the larger the

training data, the more accurate the estimation of the probability models (especially for the

transition matrix) of the IO-HMM, and the smaller the bias in the Markovian predicted

residuals. Even though IO-HMM learns temporal structures, the small training data makes

it incapable of learning a hidden state effective for go-around prediction.

8.4. Sampling-Based Augmentation

As discussed in Section 8.2, the sampling-based approach (e.g., SMOTE, ADASYN)

does not capture the sequential correlation in time because they generate synthetic feature

vectors by interpolating between the real data points at each timestamp independently. In

order to use the sampling-based approaches, we implement an extended ADASYN with

autoencoder to capture the representation of multi-dimensional go-around sequences, such

that the oversampling is done in a lower dimension space.

The original go-around data is first used to train an autoencoder. After the data

representation is learned in a lower dimension space, the ADASYN algorithm is run to

generate more (synthetic) go-around samples in the lower dimensional space. Finally, the

93

decoder is used to lift the generated samples back to the dimensional space of the original

data. In this way, the encoded minority data captures the structure of the sequence. This

sampling-based augmentation method serves as a baseline for the GAN-based

augmentation that we will discuss in the next section. We found that the GAN-based

augmentation is superior to the sampling-based augmentation in terms of the fidelity of

generated samples. We thus do not retrain predictors on these sampling-based augmented

samples.

8.5. Generative Adversarial Network

8.5.1. Problem formulation

For our go-around use case, the goal is to develop a GAN model capable of generating

variable-length, multi-dimensional sequences with mixed data types. Following the

notation from Chapter 7, the GAN takes part of the original dataset 𝒟 as input and learns

a model (generator) that can generate a new dataset 𝒟′ as output. The synthetic dataset 𝒟′

preserves trends and feature distributions as the original data with enough fidelity that a

predictor trained on synthetic data 𝒟′ can still make meaningful predictions on real data

(in the test set). Each sample 𝑖 in the input dataset 𝒟, is a multi-dimensional go-around

sequence with label 𝐺 = 1 , and features 𝑭𝒅 representing the feature vectors

available/known after the flight passes the information cutoff gate 𝑑, including both the

static features 𝒖 and dynamic features 𝒙𝒅.

8.5.2. Model architecture

The primary difficulties encountered when applying existing GAN architectures to our

go-around use case are: the complex correlations among multiple features with mixed data

types, the temporal dependencies within sequences that are not present in images, and the

variable sequence lengths associated with the abnormality of the multivariate distributions.

While these difficulties specifically stem from our attempts in using GANs to generate go-

around sequences, they are broadly applicable to other use cases as well.

To tackle these challenges, we synthesize domain-specific insights with concurrent

advances in the GAN literature [121, 122, 123] to design a proof-of-concept GAN

architecture shown at the bottom of Figure 30. We also present the conventional GAN

architecture on the top to illustrate how our model architecture compares to it. Empirically,

we find that this architecture improves the fidelity of our generated go-around data samples

significantly.

First, to better capture the correlations among multi-dimensional features with mixed

data types (i.e., attributes and time series features), we decouple the generation of attributes

(e.g., aircraft type, airline) and time series features (e.g., groundspeed, altitude), each using

a dedicated generator. In our go-around use case, attributes can strongly influence the time

series features. For example, aircraft of different types would have different approach

94

speed/altitude profiles; flight approaches also vary under different visibility conditions.

Therefore, we need a mechanism to model the joint distribution between dynamic time

series features and static attributes. We found that the typical strategy of concurrently

generating attributes and time series features using a single generator is ineffective in

learning the correlations between these two types of data. Several studies have addressed

this issue by training a variant of GANs, called conditional GANs (CGANs) [135], which

learns to generate data in response to a user-defined input label. For example, earlier works

[121, 136] develop a conditional model where the user specifies the desired attributes, and

the GAN generates time series features conditioned on the attributes. Our approach is

conceptually similar to this idea, but rather than conditioning on the manual process of

user-specified inputs, we obtain such “user-specified inputs” (attributes) using a standard

multi-layer perceptron (MLP) network.

Figure 30. The architecture of the conventional GAN (top) and our proposed GAN

(bottom).

Second, to better capture the temporal dependencies of the series, we employ a variant

of RNNs, long short-term memory (LSTM), as the generator for time series features. The

conventional GAN generator is a fully connected multi-layer perceptron (MLP), which is

unsuitable for time series. A preferable option is to use RNNs, which are intended to model

time series and have been extensively used to produce time series in the GAN literature

[121, 122, 123]. At a high level, instead of producing the whole time series at once, RNNs

95

generate one record 𝑭𝒅 (i.e., features at 𝑑 nm information cutoff gate) at a time, and then

run multiple passes (equals to the sequence length) to construct the entire time series step

by step. RNNs can also learn correlations across the dimensions of a time series and

produce multi-dimensional output. The critical distinction between RNNs and classic

neural networks is that RNNs contain an internal state that implicitly encodes all past states

of the signal. Thus, when generating 𝑭𝒅, the RNN unit can incorporate the patterns from

all the previous records 𝑭𝟏𝟎, 𝑭𝟗, … , 𝑭𝒅−𝟏. At each timestamp, the generated attributes from

the MLP network are added as an input to the LSTM network in order to retain the hidden

relationships between the attributes and time series.

Third, we add another MLP generator to implement an auto-normalization heuristic to

mitigate the problem of mode collapse, in which the GAN produces homogeneous samples

while being trained on a diverse dataset. Mode collapse mitigation is a hot issue of study

in the GAN community. Unlike image or medical data, which often displays similar value

ranges across samples, our go-around sequential data exhibits much more range variability.

Datasets with a more extensive value range tend to exacerbate mode collapse by having a

more diversified variety of modes, making the data more difficult to be learned by GANs.

In addition, due to the anomalous nature of the go-around sequence, some flight sequence

samples may have extreme values that are beyond the typical rage. A standard

normalization approach, which simply normalizes the data sequence by the global

minimum and maximum values, may not be well-suited for the go-around use case. The

mode collapse continues to occur since GAN learns basically the same thing - just scaling

and shifting the feature values by a constant. This motivates us to normalize each time

series individually [123], rather than normalizing over the entire dataset. The maximum

and minimum values of each time series are considered as random variables (i.e., static

features or attributes) to be learned by GAN. Thus, the GAN first learns to generate the

maximum and minimum values defining the range for each time series individually, then

rescales the sequence features generated by the LSTM network to fit inside this range. In

this way, all the time series have their own range during generation, which alleviates the

mode collapse issue.

Putting it all together, we generate all the features in the following three steps:

(1) Generate attributes using the MLP generator.

(2) With the generated attributes as inputs, generate the maximum and minimum values

defining the range for each time series individually using another MLP generator.

(3) With the generated attributes and the maximum and minimum values as inputs,

generate the time series features using the LSTM network.

Along with the primary discriminator, we introduce an auxiliary discriminator that

discriminates only on attributes. A tunable weighting parameter is used to combine the

Wasserstein losses [137] of two discriminators. The generator effectively learns from this

96

auxiliary discriminator to generate attributes with high fidelity. Further, with the help of

the original discriminator, the generator can learn to generate time series features well.

8.5.3. Fidelity Analysis

Evaluating the fidelity of the generated samples is notoriously difficult. The most

widely accepted metrics were developed for image pixels [138, 139, 140] and hence cannot

be used in our datasets. In line with the recommendations of Lin et al. [123], we will assess

the fidelity of the generated synthetic go-arounds in terms of sequence length, feature

distributions, and serial correlation. These are also the criteria through which we select the

model. Once the model is picked, we will apply the trained model to generate synthetic go-

arounds and evaluate the go-around prediction model performance with varying fractions

of synthetic samples added to the training set in the next section.

For each GAN model that is converged, we use the generator to “create” the same

number (371) of synthetic go-around sequences. Below we present some comparisons

between the 371 synthetic go-around sequences and the 371 real go-around sequences in

order to evaluate the fidelity of the model. We benchmark this GAN-based data generation

technique against the autoencoder sampling-based approach in Section 8.4.

A. Sequence Length

One aspect of evaluating the fidelity of data is to examine whether the algorithm

generates time series of the appropriate length, particularly for our variable-length go-

around sequences. In real-world scenarios, a go-around might occur near the airport (with

a full sequence length of 9 timestamps in our analysis), or in the middle of the final

approach. Our GAN model should be able to capture such a masking effect and generate

synthetic go-around sequences of similar lengths. The side-by-side histogram in Figure 31

below compares the real go-around sequence length in blue, and the synthetic sequence

length in orange. Compared to the distribution of sequence length for the real go-around

sequences, the GAN generates most of the go-around sequences with nine timestamps, but

also a considerable number of shorter sequences.

Note that the sampling-based generator can only generate time series of fixed length.

Presumably, we could further truncate the generated sequences according to the empirical

length distribution and compare them to the GAN-generated sequences. However, such a

comparison is meaningless - the generated sequential data would perfectly reproduce the

real length distribution, but it results from our human intervention, and not because of the

algorithm learning to reproduce time series lengths. Hence, we only show the comparison

between the GAN-generated sequences and the real sequences.

97

Figure 31. Histogram of the sequence length for real samples (blue) and synthetic samples

(orange).

B. Feature Distribution

In this section, we will evaluate how well the generators learn to generate reasonable

feature values. For every feature of each sequence, we calculate the representative values

of the feature of the sequence as (max + min) / 2. The distribution of this value over all the

synthetic sequences implicitly reflects how well the generator reproduces the range of time

series values in the dataset. Instead of visually inspecting the histograms, we conduct the

non-parametric test to determine whether the two data samples (real vs. synthetic) are

drawn from the same distribution. The Kolmogorov-Smirnov test (K-S test) quantifies the

distance between the empirical distribution functions of two samples with the null

distribution stating that both samples are drawn from the same distribution. The K-S test is

sensitive to differences in both location and shape of the empirical cumulative distribution

functions of the two samples. We consider the two distributions to be the same if the K-S

statistic is small or the p-value is above 0.05, where we fail to reject the null hypothesis at

a 95% confidence level.

The figures below depict the distribution of the representative values for some features

for the real go-around sequences and the synthetic go-around sequences, using the GAN

generator (Figure 32) and the sampling-based generator (Figure 33), respectively. Both

continuous features and categorical features are investigated. We observe that GAN much

more closely mirrors the true feature distribution compared to the sampling-based approach,

particularly in the tails of the true distribution. The figure title includes the p-values of the

K-S test. Among the 46 features (including on-hot encoding dummy variables), 33 features

generated by GAN have the same distributions as the real feature value distribution. In

comparison, only 8 features generated by the sampling generator pass the K-S test. The

GAN generator can learn to generate features well, and significantly improves the fidelity

of the generated distributions.

98

Figure 32. Clockwise, distribution of the feature distribution for real go-around sequences

(blue) and synthetic go-around sequences (orange) generated by the GAN

generator for continuous features: groundspeed, crosswind speed, altitude

deviation, the number of objects on the runway; and categorical features:

weight class of leading aircraft (heavy), runway configuration change.

Figure 33. Clockwise, distribution of the feature distribution for real go-around sequences

(blue) and synthetic go-around sequences (orange) generated by the sampling-

based generator for continuous features: groundspeed, crosswind speed,

altitude deviation, the number of objects on the runway; and categorical

features: weight class of leading aircraft (heavy), runway configuration change.

99

C. Temporal Dependency

The specialty of sequential data is the time dependence between timestamps. In order

to validate how the generators capture temporal correlations of the sequential data, we

calculate the autocorrelation for each synthetic sequence for each feature. Autocorrelation,

also known as serial correlation, is the correlation of a time series with a delayed copy of

itself as a function of time lag. Informally, it is the similarity between observations as a

function of the time lag between them. The figures below shows the autocorrelation for the

real go-around sequences in blue and the learned autocorrelation for the synthetic go-

around sequences in orange, for each selected feature. By comparing the serial correlation

curves generated by GAN (Figure 34) to those generated by the sampling-based generator

(Figure 35), the GAN model is capable of capturing the variant time dependence and not

just simply generate the average scenarios. This is most likely due to the RNNs module we

implemented in the GAN generator networks. All of the synthetic go-around sequences

generated by the sampling-based generator exhibit the exact same serial correlation, which

is shown in the Figure 35 as a single overlapping orange line. This may be because the

autoencoder included in the sampling-based generator learns about time dependency in the

latent space, but incorporates too little randomness, causing it to generate simplified

correlations.

Figure 34. Clockwise, autocorrelation of real go-around sequence (blue) and synthetic go-

arounds (orange) generated by GAN for features: altitude deviation, altitude

difference, groundspeed, kinetic energy height, speed difference, altitude of

leading aircraft, angle with the extended runway centerline, horizontal

deviation.

100

Figure 35. Clockwise, autocorrelation of real go-around sequence (blue) and synthetic go-

arounds (orange) generated by sampling-based generator for features: altitude

deviation, altitude difference, groundspeed, kinetic energy height, speed

difference, altitude of leading aircraft, angle with the extended runway

centerline, horizontal deviation.

8.5.4. Downstream Performance

The question to be answered in this section is that, with the high-fidelity synthetic go-

around sequences generated to augment the minority class for model training, how the

models trained on the synthetic data improve on the baseline models, and what will be the

appropriate portions of synthetic data should be added for model training?

We utilize the generated data samples for the go-around prediction task, handling the

class imbalance issue, and validating that models trained on synthetic data are generalizable

to real data. As seen in Figure 36, we begin by reconstructing our dataset. Initially, we only

have 0.3% of the go-arounds in the training set. We train the GAN networks on all the go-

around flights, and then employ the model to generate synthetic go-around samples (in

blue). Then, the original go-around and non-go-around samples (in green), together with

the synthetic go-around samples (in blue) are formed to be a nearly class-balanced training

set for predictors – depending on how many synthetic go-around sequences are generated.

We apply the trained GAN model to generate 8854 go-around sequences combined with

the 371 real go-arounds to increase the minority class in the training set to 10% of the total

flight sequences, and generate 79,392 go-around sequences in addition to the 371 real go-

arounds to increase the minority class in training set to 50% of the total flight sequences.

Finally, we evaluate the model performance on a collection of metrics, including F2 score,

recall score, precision score, and accuracy.

101

Figure 36. Reconstructing a more balanced dataset with synthetic go-around samples to

augment the minority class.

In order to provide a pure comparison of the real and synthetic training set (without

introducing effects produced from different predictors), we pick the LSTM model with

multi-step-ahead prediction over the entire approach, suggested as the best predictor in

Chapter 7, to train on different datasets. The following Table 16 summarizes the testing

results of the LSTM predictor when trained on three different datasets (10%, 30%, and 50%

of go-arounds) and tested on the same real data. As illustrated in Figure 37, F2 score is

generally higher for the training set with 30% go-arounds. This is most likely because the

class imbalance issue is eased by the additional amount of minority class samples added

for training. The model trained on 50% synthetic go-arounds underperforms the models

trained on 10% and 30% go-arounds, most likely due to the model learning an excessive

number of “fake” samples. Future work is needed to determine the appropriate portions of

synthetic data for training.

Figure 37. Model performance at different information cutoff gates with the original

portion, 10%, 30% and 50% of go-arounds in the training set.

102

While we have demonstrated a promising path towards augmenting the minority class

for imbalanced learning, further efforts on model development and generalization are

required for researchers to confidently use such workflows. Dealing with imbalanced

datasets is the crux of many real-world classification problems, especially in safety-related

fields. The capability to generate complex multivariate time series data with variable length

to augment the minority class not only benefits the go-around prediction in this study, but

more generally, would be helpful for other problems that require the augmentation of rare

events. We hope that such initial promise and open questions inspire more and further

research by theoreticians and practitioners to help break the impasse in imbalanced learning.

Table 16. Model performance at different information cutoff gates with the original

portion, 10%, 30% and 50% of go-arounds in the training set.

After the flight passes gate Model F2 Precision Recall AUC Accuracy

9

LSTM_Multi 0.086 0.028 0.179 0.973 0.780

10%GA 0.086 0.028 0.179 0.780 0.973

30%GA 0.075 0.022 0.195 0.768 0.982

50%GA 0.018 0.005 0.044 0.701 0.983

8

LSTM_Multi 0.137 0.058 0.205 0.985 0.824

10%GA 0.099 0.087 0.103 0.720 0.993

30%GA 0.189 0.092 0.256 0.823 0.988

50%GA 0.024 0.005 0.238 0.723 0.905

7

LSTM_Multi 0.200 0.158 0.215 0.995 0.897

10%GA 0.125 0.030 0.587 0.927 0.941

30%GA 0.220 0.089 0.349 0.927 0.988

50%GA 0.029 0.006 0.414 0.760 0.845

6

LSTM_Multi 0.248 0.096 0.410 0.983 0.882

10%GA 0.112 0.031 0.308 0.796 0.962

30%GA 0.310 0.144 0.436 0.844 0.988

50%GA 0.038 0.008 0.432 0.797 0.872

5

LSTM_Multi 0.318 0.089 0.897 0.965 0.947

10%GA 0.143 0.046 0.308 0.826 0.973

30%GA 0.394 0.283 0.436 0.922 0.994

50%GA 0.047 0.010 0.467 0.832 0.881

103

After the flight passes gate Model F2 Precision Recall AUC Accuracy

4

LSTM_Multi 0.398 0.257 0.462 0.993 0.964

10%GA 0.195 0.081 0.299 0.896 0.989

30%GA 0.412 0.212 0.538 0.935 0.991

50%GA 0.066 0.014 0.605 0.869 0.885

3

LSTM_Multi 0.494 0.295 0.590 0.993 0.957

10%GA 0.363 0.246 0.410 0.953 0.993

30%GA 0.526 0.420 0.538 0.911 0.995

50%GA 0.121 0.028 0.714 0.914 0.924

2

LSTM_Multi 0.535 0.390 0.590 0.995 0.930

10%GA 0.455 0.358 0.487 0.938 0.995

30%GA 0.576 0.421 0.615 0.951 0.995

50%GA 0.504 0.293 0.615 0.952 0.993

104

9. Real-Time Risk Predictive Framework

9.1. Overview

In this chapter, we introduce the Go-Around Prediction (GAP) software service and

demonstrate its ultimate feasibility and practicality by testing it on real-time emulated

traffic scenarios. The GAP service encapsulates the work developed in previous Chapters

into the form of a software system, enabling stakeholders to readily assess the go-around

probability in real-time during actual arrival operations in the NAS. Potential environments

for the use of GAP include air traffic terminal automation systems, pilot displays, and

NASA capabilities such as the In-Time Aviation Safety Management System (IASMS) and

Digital Information Platform (DIP). Through the combination of a real-time data input

stream and ML-based predictive models, the service allows for the continuous computation

of the probability of a go-round. As each arrival flight approaches the airport, the prediction

results can be updated and displayed to operators (i.e., air traffic controllers and pilots).

This additional information will give operators enhanced situational awareness throughout

the approach phase of flight, allowing them to mitigate growing risks earlier and, if needed,

provide more time to safely execute go-arounds.

The GAP service provides ANSPs, airports, airlines, and other ISSA stakeholders with

a practical risk detection tool that enhances safety. Specifically, we would like to develop

a proof-of-concept tool that can be distributed to Air Traffic Control facilities and airport-

focused personnel with the goal of identifying the probability of a go-around due to hazards

in the approach domain in time for effective mitigation. Figure 38 depicts the overall

concept and architecture of the GAP service. As seen in the figure, the GAP service is

composed of two primary components: (1) on the left side of the figure is the machine

learning model, having been trained on historical data, and (2) on the right side, the real-

time data stream injects live air traffic positions, weather, and other data sources into the

service, computes the probability of a go-around, and outputs that information from the

service. In summary, the GAP service performs the following functions:

• It continuously monitors the arrival domain of the NAS and fuses disparate data to

identify risk.

• It makes use of several novel machine learning techniques to predict the occurrence

of a go-around or missed approach.

• It combines custom data collection capabilities with existing data dissemination

frameworks to feed real-time data into state-of-the-art machine learning methods

to provide real-time warnings.

105

Figure 38. The proof-of-concept GAP service.

In the current stage, we will use real-time emulation data to demonstrate the ability to

reliably predict the likelihood of go-arounds ahead of time. The prediction could help in

risk mitigation at the pre-go-around stage and lessen inherent risks and uncertainties

associated with the disruption of an airport when a go-around is executed. In order to

achieve this capability, we identify the following requirements for the GAP service

components, which will be discussed in further depth in the following subsections:

• There is a need to emulate the real-time data feed using historical data so we

can effectively test the service on go-around situations. It is for demonstration

purposes to assure that a go-around occurred during the model run.

• The models would need to be saved in order to be promptly called, accessed,

and executed in response to real-time messages.

• The web interface tool should include a moving map display and indicators of

go-around probability, as well as supplement information that might be helpful

for decision making, such as predicted runway occupancy buffer, separation,

wind speed.

• Several test scenarios of go-arounds need to be identified to demonstrate the

proof-of-concept.

106

9.2. Real-Time Data Ingestion

The first key module of the GAP system is the real-time data injection mechanism. The

GAP system requires key messages like trajectory messages from the FAA’s SWIM feeds.

Alternatively, this information can also come from an upstream source such as NASA’s

ATD-2/DIP Fuser, which fuses various inputs into a data stream ready for analysis. For our

purposes, we introduced two additional processes providing further data curation as well

as a real-time filtering layer that narrows the emphasis of the incoming data on the domain

for GAP (within approximately 10 nm from the airport). The system can be operated in

one of the two modes, as shown in Figure 39. The upper mode enables the process to be

performed on actual live data coming from the data sources. The bottom emulated data

stream is for demonstration purposes to assure that a go-around occurred during our model

run. The modular architecture of the data injection components is a technically sound

approach that facilitates easier integration with other systems.

Figure 39. Real-time and emulated data streams and how we prepare them for input to the

GAP processes.

Our real-time data pipeline is built on top of the Java Message Service (JMS, a Java

API that enables applications to create, send, receive, and read messages) and Apache

Software Service, which includes Apache Kafka (a distributed event streaming platform

for handling real-time data feeds), Apache Flink (a stream processing framework with

stream- and batch-processing capabilities), Apache ZooKeeper (a centralized service for

maintaining configuration information, naming, providing distributed synchronization and

group service), Apache NiFi (an integrated data logistics platform for automating the flow

of data between software systems), and Apache ActiveMQ (a message broker written in

Java to send messages between different applications).

To begin, the SWIM/DIP fuser or the historical data files are put in a designated

repository in preparation for data ingestion into Kafka. Before launching the Kafka server,

107

we run the ZooKeeper instance that will keep track of the status of the Kafka cluster nodes,

topics, partitions, etc. When Kafka is ready, we connect it to Flink clusters and create

needed topics for storing, organizing, and messaging the input and output data.

Second, after the environment is set up, we initialize ActiveMQ and NiFi. We use the

ActiveMQ source connector to read messages and write them to the created Kafka topics.

NiFi is needed to publish and consume messages to and from ActiveMQ queues.

Additionally, we configure two JMS processors – TapClient and TapProducer – to make

this process more efficient.

Third, Flink will subscribe to the topics and consume data from the Kafka stream once

everything is up and running. We let Flink periodically print out the number of messages

published to the output Kafka topics. As long as messages are printed out, the emulation is

working properly.

9.3. Offline Models

Due to the relative rarity of go-around operations, it is challenging to accumulate large

enough samples set for reliable training of an online machine learning model. We thus opt

for offline training, which requires saving all the models so they can be called and executed

when new observations arrive. All the models have already been built, trained, and fine-

tuned on a large store of historical datasets for production use, and they can be retrained

periodically as needed.

There are two kinds of models we need to save for the GAP service – distance-variant

models to predict ROB at each information cutoff gate, and the model to predict go-around

occurrence. While the features remain the same, the coding frameworks used to derive

them need to be adjusted to operate with the real-time data sources. In the current

development stage, we retrain the ROB model with the XGBoost algorithm, and retrain the

go-around prediction model using IO-HMM. In addition, we alter the sampling rate of the

information cutoff gates with 0.5 nm spacing and rederive the features in order to train a

more refined model capable of providing predictions at every 0.5 nm. The whole year of

2018 operations at the JFK airport are used for model training, albeit two months (April

27th – June 27th) are excluded from the analysis due to missing data in the APTC profile.

With the same feature space as we derived before, we retrain the XGBoost algorithm

with the new dataset to model ROB at every 0.5 nautical miles. In total, 20 models are

trained independently, each with its own training and testing set. These 20 models are then

used to generate predicted ROB values (𝑅𝑂�̂�) as one of the features for the go-around

prediction model for the GAP service to provide the probability of go-around occurrence

as the flight approaches the airport. In general, 27% – 70% of go-arounds are correctly

classified by the model, and 4% – 20% of predicted go-arounds are correct. As the flight

gets closer to the airport, the prediction becomes more reliable.

108

9.4. Test Scenarios

In order to identify suitable test scenarios for the real-time emulation demonstration,

we undertook an exploratory analysis of historical go-around data at JFK. We defined two

types of scenarios: clusters, where multiple go-around events occur in one hour, and

isolated events, where only one go-around event occurs in at least an hour. Go-around

clusters were detected by calculating the cluster density for each go-around event. Cluster

density is the number of go-arounds that occur from 30 minutes before to 30 minutes after

the event in question. According to these two types of scenarios, specific go-around events

were chosen and investigated further.

We filter out some go-around events from testing consideration due to the current

constraints imposed by our GAP service at this early stage of development. First, go-

arounds at runways 13L and 13R were omitted due to the present limitations of the inferred

runway algorithm (a critical component of the go-around prediction model). Second, the

scenarios involving mixed-use runways are less desirable for test scenarios because the

ROB prediction presently only considers arrivals. We further utilize the airport runway

configuration data and historical departure data to determine if any of the runways in

question were mixed-use, which means they were used concurrently for both departures

and arrivals. Finally, by visually inspecting a replay of the trajectories, we validate that all

selected go-around events were confirmed to be true positives.

A web-based user interface is developed for the GAP service to display the results of

the go-around prediction. We can employ a centralized collection and processing

infrastructure for both real-time operational data and predictive models through the web-

based interface. In addition, the web interface is developed using open-source software

tools, which enable potential customers to freely use the GAP capabilities during proof-of-

concept demonstrations, as well as on a more regular basis once the capability is ready for

commercial use. Figure 40 below shows a snapshot of the GAP viewer. In addition to the

probability prediction, the display has the real-time representation of the actual operational

traffic within the vicinity of the airport, including arrival, departure, and surface operations.

109

Figure 40. The GAP service provides a visualization display where subject aircraft

positions and related metrics are continuously updated along with go-around

predictions.

9.5. Real-Time Deployment

We integrate all the technical components and modules presented above to create a

proof-of-concept GAP service demonstration that can be illustrated via the viewer and

emulated using historical data. The overall architecture for the proof-of-concept GAP

service is shown in Figure 41. The top set of processes (above the horizontal dashed lines)

encompasses the training of the model on historical flights. The bottom set of processes

illustrates the components required for the real-time prediction and outcome display.

As an example, we choose a test scenario in early April 2018 to demonstrate the end-

to-end capability of the GAP service by emulating the historical data sets into real-time

data streams. On this date, AAL164 is on approach to JFK runway 31R. The meteorological

conditions include high wind gusts over 30 knots. A link to the video of the GAP software

system in action for this scenario can be found at https://youtu.be/EVjPvEyp3g0. In order

to construct this proof-of-concept demonstration, a number of processes are executed on

the emulated data stream behind the scenes. We end this section by summarizing the whole

workflow of the backend of the demonstration for the GAP capability, as demonstrated in

Figure 42.

https://youtu.be/EVjPvEyp3g0

110

Figure 41. The overall architecture for the proof-of-concept GAP service.

After the models are well-trained on historical data, we save the models and leverage

the real-time data pipeline which is built on top of JMS and Apache software service to

obtain the real-time prediction of go-around occurrence. Specifically, when the JMS

TapClient serializes real-time data streams (trajectory data, etc.) and publishes them to the

Kafka server as topics, we are able to decode the messages using the Avro Schema and

transform them to the desired data format. We set a few seconds (5 seconds in the current

setting) of sleep time to allow for the accumulation of incoming data. The data acquired

throughout the time window, in conjunction with the logging information kept in memory

(if any), will be used to project the landing runway first and decide which information

cutoff gate to be analyzed and predicted. Next, the Python scripts for deriving all of the

required features will be executed. Once we obtain the predicted runway occupancy buffer

(ROB) using the pre-trained model at the corresponding information cutoff gate, we

include this additional feature into the design matrix, and use it for the go-around prediction.

The predicted go-around probability, along with any other information that may be useful

for operators (e.g., runway occupancy buffer, separation), will be displayed on the

visualization platform. The whole workflow (except for the display service) has been tested

on a Windows-x64 10 computer (256 GB RAM, Intel Xeon E5-2643v4 3.40 GHz) running

Python 3.7.6, JAVA 1.8.0, and all supporting packages installed. The average running time

for getting the go-around probability result for 5-second collected data is 0.839 seconds.

This suggests that it is feasible to use the trained models to provide real-time guidance.

111

Figure 42. The workflow of the backend of the GAP service.

112

10. The Flight Plan

We close now with a “flight plan” outlining future research paths. Drawing on the

present dissertation endeavor, we see great opportunities to leverage modern advances in

AI for the study of go-arounds, or other application domains. As such, we discuss specific

directions of promising research in the following areas.

(1) Complement the modules required to enhance the GAP service to handle more

complex traffic situations and operations at various airports, thereby broadening the scope

of scenarios covered by the developed framework.

(2) Overhaul the machine learning models at the core of the go-around prediction in

order to improve their accuracy and reduce potential false positives. This enhances the

value proposition of GAP to the airlines, FAA, and other stakeholders by enabling them to

not only achieve increased situational awareness during the crucial approach phase of flight,

but also to prevent the go-around from occurring in the first place resulting in reduced

workload and efficiency gains.

(3) Integrate the GAP software service with several currently used operating platforms,

including NASA’s IASMS and DIP capabilities, to offer an easy access point for system

users.

(4) Refine the use cases and conduct a deeper examination of the value created by the

technology to narrow the problem space and enable us to focus on challenges faced by

ISSA, such as real-time predictive analytics and how it translates to increased safety

margins and economic benefit for operators.

(5) Extend the work beyond the identified use cases and re-prototype for other safety-

related areas, such as autonomous driving and urban air mobility (UAM), leveraging its

design principles and methods for studying rare events in a real-time arena.

10.1. Broaden The Scope

Thus far, the dissertation work has demonstrated a proof-of-concept containing an end-

to-end process flow that combines a real-time data stream with machine learning models

to achieve prediction results. We successfully built the GAP service for arrival operations

at JFK airport. However, due to resource limitations, several operational scenarios were

omitted. The operational envelope of the present proof-of-concept was limited in scope and

operational complexity. In the future, generalization to other airports and the addition of

mixed-use runway operations will broaden the breadth of operating coverage with the GAP

service.

This work may also be extended to other atypical flight approach procedures, such as

(1) Unstabilized Approach, in which an aircraft does not maintain an appropriate speed,

descent rate, vertical/lateral flight path, or landing configuration; (2) Short Approach, in

113

which an aircraft shortens its downwind leg and turns earlier than normal for the base leg;

(3) Dogleg Approach, in which an aircraft establishes its approach on the radar base leg for

an ILS approach, to name a few.

Relevant to this opportunity area, the following questions need to be considered: (1)

What additional data sources or processing steps are required to accommodate increased

operational complexities such as mixed-use runway operations? (2) How can we make the

system more adaptable so that we can shorten the amount of time and decrease the level of

effort required to implement the system at a new airport? (3) What types of airports are

candidates for expansion? (4) Will the increased complexity have a detrimental effect on

the machine learning model and predictive performance, and if so, how can this problem

be mitigated?

10.2. Improve The Model

We have developed predictive models that can regularly update the go-around

probability as the flight continues along with its approach to the airport. Specifically, for

each flight, using information from the realized own-flight and leading flight, airport

surface traffic, and weather, we extract and derive associated feature vectors and use them

to predict whether the flight will initiate a go-around before landing. This sequential

prediction problem requires the extraction and fusing of multiple diverse data sources

(flight trajectory, air traffic control, weather, surface conditions, etc.) in order to train a

model and then use it in real time. In addition, we have been able to extract real-time

information from the Kafka server and derive features fed into the pre-trained predictive

model to estimate the probability of go-around occurrence in real time. Building on the

current research effort, further improvements are needed:

(1) From the labeling perspective, unsupervised (clustering) methods can be leveraged

to improve the model labeling scheme for better training. Instead of labeling the flight

sequences with a binary response (go-around or not), flight activity sequences might be

classified/clustered by unsupervised learning with multiple labels/classes. Transformer

encoder model can be considered to learn the latent representation of the observed

sequential data, and cluster the latent representation to construct an informative flight

activity sequence for each aircraft. This may help ease the class imbalance issue and help

with the understanding of different states of the flight sequences.

(2) From the feature engineering perspective, other than adding more features and

deriving more robust signatures of the real-world scenarios, feature learning-based

methods can be employed for dealing with the imbalanced pattern classification. The idea

is to train an autoencoder to project the input feature space onto a learned feature space

with better representation. Two or more autoencoders can be stacked together to provide

more robust representations for different sets of features, and with different activation

functions. Samples are then classified in the new feature space leaned in this manner

instead of the original input space. Experimental results show that the autoencoder feature

114

learning method yields statistically significant improvement compared to resampling-

based and feature projection methods for dealing with the imbalanced pattern classification

problems.

(3) From the model architecture perspective, efforts could be put into designing other

sequential models that outperform the current models with fewer false alarms without

impacting the response time of the prediction, such as combining the generative Input-

Output Hidden Markov Model with discriminative neural networks, the LSTM Fully

Convolutional Network (LSTM-FCN) which works efficiently on multivariate time series

classification tasks.

(4) From the model interpretability perspective, explore the possibility of root-causing

the go-around occurrence. In addition to the evolving go-around probability conveyed to

aviation stakeholders during the operations, one could take one step further to leverage

Explainable AI (XAI) techniques to find the potential root causes (risk factors) for the high

value of go-around prediction. While the prediction of go-around probability can enhance

situational awareness, the root cause analysis can help uncover hidden connections and

causalities behind the prediction, and thus support human decisions. The difficulty for this

subtask would be that the scalability and real-time reaction need to be underpinned by

automated RCA of the complex aviation system in order for them to be genuinely viable.

There is a broad spectrum of techniques with the usual trade-off between tractability and

expressiveness. Once the GAP service model is sufficiently mature, finding appropriate

mechanisms to infer root causes of the go-around prediction in real time based on the

resulting model is a promising direction to explore.

10.3. Integrate With Existing Platform

The objective is to operationalize the fundamental GAP predictive capabilities for the

stakeholder application(s) with the greatest potential to affect system-wide safety or value

proposition to the stakeholders. To accomplish this, GAP components should be improved

to make them cloud-ready, allowing for integration with existing platforms like NASA’s

IASMS, DIP platform, and Skyview Data Services (SDS) platform. The integration efforts

will eventually enable the GAP services to be supplied more efficiently to stakeholders,

providing more robust solutions that realize benefits in safety and performance in the next-

generation aerospace systems. This requires adapting the GAP services to operate with

near-real-time streams coming into these platforms received through the FAA SWIM feeds

and disseminating to stakeholders the GAP predictions based on this near real-time data.

The following research questions should be addressed: (1) What are the APIs or other

interface mechanisms for the various platforms to be integrated with? (2) Do the platforms

have access to the appropriate real-time data streams required for GAP to make accurate

predictions? (3) When will these platforms be accessible for integration? (4) How will the

GAP information be connected end-to-end with stakeholder systems? (5) How will they

utilize it to enhance the safety and efficiency of the operation?

115

10.4. Closing The Loop

Closing the loop entails collaborating closely with domain experts in order to conduct

a thorough evaluation of the software service. Human behavior and reasoning, as well as

their interactions with the go-around decision-making assistance, are difficult to model.

The difficulty is worsened further in settings where people have not yet experienced this

tool. The objectives of this opportunity area are: (1) Identifying the most compelling use

cases for potential users from a value proposition standpoint; (2) Comprehending how the

aviation stakeholders will use the GAP service; (3) Deriving high-level requirements from

stakeholder feedback in order to identify which specific technical components will need to

be developed and/or enhanced. (4) Identifying other high-priority enhancements to be

made to bring present methods up to date.

Before deploying the GAP software service for real-world applications, we will need

to interview stakeholders, including airlines, to understand how the go-around prediction

can benefit their operations in terms of both safety and efficiency. The effort is required to

improve risk quantification—the estimation of the likely frequency of occurrence against

the likely magnitude of impact if the risk led to an accident. Additionally, field tests in both

emulations and real-world airport environments will aid in bridging the online-offline gap

and establishing a fundamental understanding of which strategies perform effectively and

why. The stakeholder feedback and emulation/testing data acquired during trials can be

utilized to evaluate the potential for broader adoption of the GAP service for different kinds

of flight anomalies and at other airports.

For this opportunity area, we seek answers to the following questions: (1) What is the

value proposition of go-around prediction to each organization (e.g., airports, airlines,

NASA, FAA, and other stakeholders)? (2) How much value is generated by avoiding a go-

around occurrence? (3) What are the highest-priority areas for risk reduction related to go-

arounds? (4) How should the information be displayed to optimize the advantages of safety

and efficiency benefits? (5) How long in advance does the go-around prediction need to

occur to be helpful to stakeholders? (6) How tolerant are stakeholders of false positives?

10.5. Open The Door

This opportunity area considers other potential applications and their markets beyond

the identified use cases and creates an initial commercialization plan with government and

industry stakeholders. The developed risk predictive intelligence can be prototyped and

tested for use in other safety-related areas of transportation systems, such as autonomous

vehicles (AV) and urban air mobility (UAM). The new application research can leverage

the design principles and methodologies of the dissertation work so far for predicting rare

event occurrences in a real-time arena, in order to improve the safety and efficiency of the

system. However, when adopting this data-driven real-time risk predictive framework to

other mobility settings, two significant paradigm shifts in data handling and prediction

strategies need to be considered.

116

First, the primary obstacle is the lack of operational data to populate the risk predictive

framework, since the unmanned systems are still in their early development stages. For

autonomous driving, realized data from manned driving operations or AV testing offers an

alternative and suitable approximations for model learning while overcoming the

limitations of lacking empirical data from fully autonomous vehicles. Moreover, the

insufficiency of accident/pre-crash data can be further compensated by synthetic off-

normal scenarios generated by GANs, as we did in the go-around study – generating

synthetic samples to augment the presence of anomalous events for better training and

model generalization. In the aviation field, however, manned aircraft operations do not

provide an adequate baseline for UAV operations due to the vast configuration differences

and the varying operational context. While simulation data may be employed due to its

scalability and convenience, the gap between simulation data and reality must be

considered. Transfer Learning is a promising direction worth exploring since it has the

potential to transfer the learned knowledge from simulated data to the real-world process.

Second, the current risk predictive analytics can be extended to an end-to-end

interactive motion planner. The present study employs a non-interactive prediction

paradigm, which typically performs acceptably in sparse traffic scenarios like commercial

aircraft landing but can easily fail in dense traffic scenarios. Vehicles, pedestrians, and

UAVs need to be modeled as active agents capable of not just capturing motion history and

current interactions with other agents, but also reasoning about how other agents will react

to their future behaviors. Specifically, while the sequential models (e.g., IOHMM, LSTM)

are maintained for predicting the behaviors of individual agents using historical and current

information, their output predictions of corresponded agents can be fed to another network

layer with weights for joint training. All model parameters will be optimized

simultaneously by considering the individual sequential models and their prediction

interactions among multiple agents at the same time. Other interactive prediction and

planning approaches such as game-theoretic planning and reinforcement learning should

also be investigated.

117

References
[1] Doubiago, T. Decarbonizing Road Transportation: Past the Tipping Point. 2022.

[2] Waldek, S. Here's How Many Planes Are in the Air at Any Given Moment. 2022.

[3] Engineers, A.S.o.C. America's Infrastructure Report Card.
https://infrastructurereportcard.org/#:~:text=Growing%20wear%20and%20tear%20on,ov

er%20the%20past%20several%20years., 2021.

[4] Boeing Commercial, A. Statistical summary of commercial jet airplane accidents. 2020:

Worldwide Operations.

[5] Office, A.C.R. Bureau of Aircraft Accidents Archives.
[6] Jarry, G., D. Delahaye, F. Nicol, and E. Féron. Aircraft Atypical Approach Detection using

Functional Principal Component Analysis. in SESAR Innovations Days 2018. 2018.

Salzburg, Austria.

[7] Oster, C.V., J.S. Strong, and C.K. Zorn. Analyzing aviation safety: Problems, challenges,

opportunities. Research in Transportation Economics, 2013. 43(1): p. 148-164.

[8] Li, L., R.J. Hansman, R. Palacios, and R. Welsch. Anomaly detection via a Gaussian

Mixture Model for flight operation and safety monitoring. Transportation Research Part C:

Emerging Technologies, 2016. 64: p. 45-57.

[9] Das, S., B.L. Matthews, A.N. Srivastava, and N.C. Oza. Multiple kernel learning for

heterogeneous anomaly detection: algorithm and aviation safety case study, in

Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery

and data mining. 2010, ACM: Washington, DC, USA. p. 47-56.

[10] Dutta, S. and J.S. Green. Flight Mechanics Modeling and Post-Flight Analysis of ADEPT
SR-1, in AIAA Aviation 2019 Forum. 2019, AIAA AVIATION Forum Dallas, Texas.

[11] Hale, A. and D. Borys. Working to rule or working safely? Part 2: The management of
safety rules and procedures. Safety Science, 2013. 55: p. 222-231.

[12] Zolghadri, A. Early warning and prediction of flight parameter abnormalities for improved
system safety assessment. Reliability Engineering & System Safety, 2002. 76(1): p. 19-27.

[13] Li, G., Z. Zhou, C. Hu, L. Chang, Z. Zhou, and F. Zhao. A new safety assessment model

for complex system based on the conditional generalized minimum variance and the belief
rule base. Safety Science, 2017. 93: p. 108-120.

[14] Leiden, K., S. Priess, P. Harrison, R. Stone, P. Strande, and M. Palmer. Paired approach
flight demonstration: Planning and development activities. in 2018 Integrated

Communications, Navigation, Surveillance Conference (ICNS). 2018.

[15] Wang, Z., L. Sherry, and J. Shortle. Airspace risk management using surveillance track
data: Stabilized approaches. in 2015 Integrated Communication, Navigation and

Surveillance Conference (ICNS). 2015.

[16] Wang, Z., L. Sherry, and J. Shortle. Feasibility of using historical flight track data to

nowcast unstable approaches. in 2016 Integrated Communications Navigation and

Surveillance (ICNS). 2016.

[17] Baomar, H. and P.J. Bentley. Autonomous landing and go-around of airliners under severe

weather conditions using Artificial Neural Networks. in 2017 Workshop on Research,
Education and Development of Unmanned Aerial Systems (RED-UAS). 2017.

[18] Donavalli, B. Impact of weather factors on go-around occurrence, in Civil Engineering.

2016, The University of Texas at Arlington.

[19] Dehais, F., J. Behrend, V. Peysakhovich, M. Causse, and C.D. Wickens. Pilot Flying and

Pilot Monitoring’s Aircraft State Awareness During Go-Around Execution in Aviation: A

https://infrastructurereportcard.org/#:~:text=Growing%20wear%20and%20tear%20on,over%20the%20past%20several%20years
https://infrastructurereportcard.org/#:~:text=Growing%20wear%20and%20tear%20on,over%20the%20past%20several%20years

118

Behavioral and Eye Tracking Study. The International Journal of Aerospace Psychology,

2017. 27(1-2): p. 15-28.

[20] Chang, Y.-H., H.-H. Yang, and Y.-J. Hsiao. Human risk factors associated with pilots in

runway excursions. Accident Analysis & Prevention, 2016. 94: p. 227-237.

[21] Ross, G.E. Human Factors Contributing to Unstabilized Approaches and Landings in

Commercial Aviation Incidents: An Analysis of ASRS Reports, in Aeronautical Science.

2018, Embry-Riddle Aeronautical University.

[22] Ellis, K., J. Koelling, M. Davies, and P. Krois. In-time System-wide Safety Assurance (ISSA)
Concept of Operations and Design Considerations for Urban Air Mobility (UAM).

NASA/TM-2020-5003981, 2020.

[23] Mogford, R.H. and P. Munro. NASA System Wide Safety (SWS) Project: Safety Metrics
Research. 2018.

[24] Ellis, K.K.E. In-Time Terminal Area Risk Management. 2022.

[25] FAA. Air traffic by the numbers, in FAA Report. 2019.

[26] Blajev, T. and C.W. Curtis. Go-Around Decision-Making and Execution Project. 2017,

Flight Safety Foundation.

[27] Jou, R.-C., C.-W. Kuo, and M.-L. Tang. A study of job stress and turnover tendency among

air traffic controllers: The mediating effects of job satisfaction. Transportation Research

Part E: Logistics and Transportation Review, 2013. 57: p. 95-104.

[28] Prats, X., V. Puig, J. Quevedo, and F. Nejjari. Multi-objective optimisation for aircraft

departure trajectories minimising noise annoyance. Transportation Research Part C:

Emerging Technologies, 2010. 18(6): p. 975-989.

[29] Shortle, J. and L. Sherry. A Model for Investigating the Interaction Between Go-Arounds
and Runway Throughput, in 2013 Aviation Technology, Integration, and Operations

Conference. 2013, American Institute of Aeronautics and Astronautics.

[30] Dahlstrom, N. and S. Nahlinder. Mental workload in aircraft and simulator during basic

civil aviation training. The International journal of aviation psychology, 2009. 19(4): p.

309-325.

[31] Dai, L., Y. Liu, and M. Hansen. Modeling Go-around Occurrence. in Thirteenth

USA/Europe Air Traffic Management Research and Development Seminar (ATM2019).

2019.

[32] Dai, L., Y. Liu, and M. Hansen. Modeling go-around occurrence using principal

component logistic regression. Transportation Research Part C: Emerging Technologies,

2021. 129: p. 103262.

[33] Dai, L. and M. Hansen. Real-Time Prediction of Runway Occupancy Buffers. in 2020
International Conference on Artificial Intelligence and Data Analytics for Air

Transportation (AIDA-AT). 2020. IEEE.

[34] Dai, L., Y. Liu, and M. Hansen. Predicting Go-around Occurrence with Input-Output
Hidden Markov Model. 2020, ICRAT.

[35] IATA. Unstable Approaches: Risk Mitigation Policies, Procedures and Best Practices.

2016, International Air Transport Association.

[36] FAA. Stabilized Approach and Go-around. 2018: FAA Safety Briefing.

[37] FAA. Runway Safety - Runway Incursions. 2015 [cited 2015 07-29-2019].

[38] Kennedy, Q., J.L. Taylor, G. Reade, and J.A. Yesavage. Age and expertise effects in

aviation decision making and flight control in a flight simulator. Aviation, space, and

environmental medicine, 2010. 81(5): p. 489-497.

119

[39] Campbell, A., P. Zaal, J.A. Schroeder, and S. Shah. Development of Possible Go-Around
Criteria for Transport Aircraft, in 2018 Aviation Technology, Integration, and Operations

Conference. 2018, American Institute of Aeronautics and Astronautics.

[40] Campbell, A., P. Zaal, S. Shah, and J.A. Schroeder. Pilot Evaluation of Proposed Go-

Around Criteria for Transport Aircraft, in AIAA Aviation 2019 Forum. 2019, American

Institute of Aeronautics and Astronautics.

[41] Zaal, P., A. Campbell, J.A. Schroeder, and S. Shah. Validation of Proposed Go-Around

Criteria Under Various Environmental Conditions, in AIAA Aviation 2019 Forum. 2019,

American Institute of Aeronautics and Astronautics.

[42] Shepherd, R., R. Cassell, R. Thapa, and D. Lee. A reduced aircraft separation risk

assessment model. 1997.

[43] Sherry, L., Z. Wang, H. Kerkoub Kourdali, and J. Shortle. Big data analysis of irregular

operations: Aborted approaches and their underlying factors. 2013. 1-10.

[44] Deshmukh, R., D. Sun, and I. Hwang. Data-Driven Precursor Detection Algorithm for

Terminal Airspace Operations, in Thirteenth USA/Europe Air Traffic Management

Research and Development Seminar (ATM2019). 2019: Vienna, Austria.

[45] Bro, J. FDM Machine Learning: An investigation into the utility of neural networks as a

predictive analytic tool for go around decision making. Journal of Applied Sciences and

Arts, 2017.

[46] Figuet, B., R. Monstein, M. Waltert, and S. Barry. Predicting airplane go-arounds using

machine learning and open-source data. in Multidisciplinary Digital Publishing Institute
Proceedings. 2020.

[47] Soentpiet, R. Advances in kernel methods: support vector learning. 1999: MIT press.

[48] Rabiner, L. and B. Juang. An introduction to hidden Markov models. ieee assp magazine,

1986. 3(1): p. 4-16.

[49] Bengio, Y. and P. Frasconi. An Input Output HMM Architecture 1995.

[50] Lee, D.-H., S. Zhang, A. Fischer, and Y. Bengio. Difference target propagation. in Joint

european conference on machine learning and knowledge discovery in databases. 2015.

Springer.

[51] Bengio, Y. and P. Frasconi. Credit assignment through time: Alternatives to
backpropagation. in Advances in Neural Information Processing Systems. 1994.

[52] Lipton, Z.C., J. Berkowitz, and C. Elkan. A critical review of recurrent neural networks

for sequence learning. arXiv preprint arXiv:1506.00019, 2015.

[53] Zhao, Z., W. Chen, X. Wu, P.C. Chen, and J. Liu. LSTM network: a deep learning

approach for short-term traffic forecast. IET Intelligent Transport Systems, 2017. 11(2):

p. 68-75.

[54] Ma, X., Z. Tao, Y. Wang, H. Yu, and Y. Wang. Long short-term memory neural network

for traffic speed prediction using remote microwave sensor data. Transportation Research

Part C: Emerging Technologies, 2015. 54: p. 187-197.

[55] Kong, D. and F. Wu. HST-LSTM: A hierarchical spatial-temporal long-short term memory
network for location prediction. in IJCAI. 2018.

[56] Jeyakumar, J.V., E.S. Lee, Z. Xia, S.S. Sandha, N. Tausik, and M. Srivastava. Deep

convolutional bidirectional LSTM based transportation mode recognition. in Proceedings
of the 2018 ACM International Joint Conference and 2018 International Symposium on

Pervasive and Ubiquitous Computing and Wearable Computers. 2018.

[57] Zhang, P., W. Ouyang, P. Zhang, J. Xue, and N. Zheng. Sr-lstm: State refinement for lstm

towards pedestrian trajectory prediction. in Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition. 2019.

120

[58] Ayhan, S. and H. Samet. Aircraft trajectory prediction made easy with predictive analytics.

in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining. 2016.

[59] Liu, Y. and M. Hansen. Predicting aircraft trajectories: a deep generative convolutional

recurrent neural networks approach. arXiv preprint arXiv:1812.11670, 2018.

[60] Gui, G., F. Liu, J. Sun, J. Yang, Z. Zhou, and D. Zhao. Flight delay prediction based on
aviation big data and machine learning. IEEE Transactions on Vehicular Technology,

2019. 69(1): p. 140-150.

[61] Fan, H., M. Jiang, L. Xu, H. Zhu, J. Cheng, and J. Jiang. Comparison of long short term

memory networks and the hydrological model in runoff simulation. Water, 2020. 12(1): p.

175.

[62] Srivastava, A., L. Valkov, C. Russell, M.U. Gutmann, and C. Sutton. Veegan: Reducing

mode collapse in gans using implicit variational learning. Advances in neural information

processing systems, 2017. 30.

[63] Subramanian, S.V. and A.H. Rao. Deep-learning based Time Series Forecasting of Go-

around Incidents in the National Airspace System, in AIAA Modeling and Simulation

Technologies Conference. 2018, AIAA SciTech Forum: Kissimmee, Florida.

[64] Campbell, A.M., P.M.T. Zaal, J.A. Schroeder, and S.R. Shah. Development of possible go-
around criteria for transport aircraft, in Aviation Technology, Integration, and Operations

Conference. 2018, AIAA AVIATION Forum: Atlanta, Georgia.

[65] Lee, J.-G., J. Han, and K.-Y. Whang. Trajectory clustering: a partition-and-group
framework, in Proceedings of the 2007 ACM SIGMOD international conference on

Management of data. 2007, ACM: Beijing, China. p. 593-604.

[66] Kim, J., S.A. Palmisano, A. Ash, and R.S. Allison. Pilot gaze and glideslope control. ACM

Trans. Appl. Percept., 2008. 7(3): p. 1-18.

[67] Amelink, M.H.J., M. Mulder, M.M. van Paassen, and J. Flach. Theoretical Foundations

for a Total Energy-Based Perspective Flight-Path Display. The International Journal of

Aviation Psychology, 2005. 15(3): p. 205-231.

[68] Gluck, J., A. Tyagi, A. Grushin, D. Miller, S. Voronin, J. Nanda, and N.C. Oza. Too fast,

too low, and too close: improved real time safety assurance of the national airspace using
Long Short Term Memory. in AIAA Scitech 2019 Forum. 2019.

[69] FAA. Airport Capacity and Delay Analyses, in FAA Technical Center Report. 1991, FAA:

FAA Technical Center Report.

[70] FAA. Aeronautical information manual. 2011, US Department of Transportation

Washington, DC.

[71] Dai, L. and M. Hansen. Real-time Prediction of Runway Occupancy Buffer. in

International Conference on Artificial Intelligence and Data Analytics for Air

Transportation. 2020. Singapore: IEEE Xplore Digital Library and Scopus.

[72] FAA. Runway Safety Area Improvements in the United States. 2007, International Civil

Aviation Organization

[73] Tosic, V. and R. Horonjeff. Effect of multiple path approach procedures on runway landing

capacity. Transportation research, 1976. 10(5): p. 319-329.

[74] Simpson, R.W. Potential impacts of advanced technologies on the ATC capacity on high-
density terminal areas [microform] / Robert W. Simpson, Amedeo R. Odoni, and Francisco

Salas-Roche. NASA contractor report ; 4024., ed. A.R. Odoni, et al. 1986, [Washington,

D.C.] : [Springfield, Va: National Aeronautics and Space Administration, Scientific and

Technical Information Branch ; For sale by the National Technical Information Service].

121

[75] Ruiz, S., M.A. Piera, and I. Del Pozo. A Medium Term Conflict Detection and Resolution
system for Terminal Maneuvering Area based on Spatial Data Structures and 4D

Trajectories. Transportation Research Part C: Emerging Technologies, 2013. 26: p. 396-

417.

[76] Liu, Y., M. Hansen, G. Gupta, W. Malik, and Y. Jung. Predictability impacts of airport

surface automation. Transportation Research Part C: Emerging Technologies, 2014. 44: p.

128-145.

[77] Meijers, N.P. and R.J. Hansman. A data-driven approach to understanding runway
occupancy time. in AIAA Aviation 2019 Forum. 2019.

[78] Herrema, H.F., B.D. Treve, R. Curran, and H.G. Visser. A novel machine learning model

to predict abnormal Runway Occupancy Times and observe related precursors. 2017.

[79] Herrema, F., V. Treve, B. Desart, R. Curran, and D. Visser. A novel machine learning

model to predict abnormal Runway Occupancy Times and observe related precursors. in

12th USA/Europe Air Traffic Management Research and Development Seminar. 2017.

[80] Legge, J. Designing a real-time ramp arrival prediction tool. in The 23rd Digital Avionics

Systems Conference (IEEE Cat. No.04CH37576). 2004.

[81] Levy, B.S. and S. Bedada. A real-time ETA-to-threshold prediction tool. in 2006 ieee/aiaa

25TH Digital Avionics Systems Conference. 2006. IEEE.

[82] Nikoleris, T. and M. Hansen. Effect of Trajectory Prediction and Stochastic Runway

Occupancy Times on Aircraft Delays. Transportation Science, 2015. 50(1): p. 110-119.

[83] Simpson, R.W., A.R. Odoni, and F. Salas-Roche. Potential impacts of advanced
technologies on the ATC capacity of high-density terminal areas. 1986.

[84] Kolos-Lakatos, T. The influence of runway occupancy time and wake vortex separation
requirements on runway throughput, in Massachusetts Institute of Technology.

Department of Aeronautics and Astronautics. 2013, Massachusetts Institute of Technology:

Massachusetts Institute of Technology.

[85] Zhou, K., Q. Hou, R. Wang, and B. Guo. Real-time KD-tree construction on graphics

hardware. ACM Trans. Graph., 2008. 27(5): p. 1-11.

[86] Friso, H.F., C. Richard, H.G. Visser, T. Vincent, and D. Bruno. Predicting abnormal

runway occupancy times and observing related precursors. Journal of Aerospace

Information Systems, 2018. 15(1): p. 10-21.

[87] Breiman, L. Random forests. Machine learning, 2001. 45(1): p. 5-32.

[88] Strobl, C., A.-L. Boulesteix, A. Zeileis, and T. Hothorn. Bias in random forest variable
importance measures: Illustrations, sources and a solution. BMC Bioinformatics, 2007.

8(1): p. 25.

[89] Altmann, A., L. Toloşi, O. Sander, and T. Lengauer. Permutation importance: a corrected

feature importance measure. Bioinformatics, 2010. 26(10): p. 1340-1347.

[90] Holland, P.W. and D.B. Rubin. CAUSAL INFERENCE IN RETROSPECTIVE STUDIES.
ETS Research Report Series, 1987. 1987(1): p. 203-231.

[91] Chavent, M., V. Kuentz-Simonet, A. Labenne, and J. Saracco. Multivariate Analysis of
Mixed Data: The R Package PCAmixdata. 2017.

[92] Aguilera, A.M., M. Escabias, and M.J. Valderrama. Using principal components for

estimating logistic regression with high-dimensional multicollinear data. Computational

Statistics & Data Analysis, 2006. 50(8): p. 1905-1924.

[93] Kaiser, H.F. Coefficient Alpha for a Principal Component and the Kaiser-Guttman Rule.
Psychological Reports, 1991. 68(3): p. 855-858.

122

[94] Carter Hill, R., T.B. Fomby, and S.R. Johnson. Component selection norms for principal
components regression. Communications in Statistics - Theory and Methods, 1977. 6(4):

p. 309-334.

[95] Longman, R.S., A.A. Cota, R.R. Holden, and G.C. Fekken. A Regression Equation for the

Parallel Analysis Criterion in Principal Components Analysis: Mean and 95th Percentile

Eigenvalues. Multivariate Behavioral Research, 1989. 24(1): p. 59-69.

[96] The Port Authority of New York & New Jersey. Runways at John F. Kennedy International

Airport, T.P.A.o.N.Y.N. Jersey, Editor. 2020.

[97] Mason, R.L. and R.F. Gunst. Selecting principal components in regression. Statistics &

probability letters, 1985. 3(6): p. 299-301.

[98] Jolliffe, I.T. Principal components in regression analysis, in Principal component analysis.

1986, Springer. p. 129-155.

[99] Dai, L., Y. Liu, and M. Hansen. In Search of the Upper Limit to Air Traffic Control
Communication, in International Conference for Research in Air Transportation. 2018:

Barcelona, Spain.

[100] Martinez, D., S. Belkoura, S. Cristobal, F. Herrema, and P. Wachter. A Boosted Tree

Framework for Runway Occupancy and Exit Prediction, in Eighth SESAR Innovation Days.

2018.

[101] Rodríguez-Sanz, Á., J.M. Cordero, B.R. Fernández, F. Gómez, Comendador, and R.A.

Valdés. Assessment of the Airport Operational Dynamics Using a Multistate System

Approach, in USA/Europe Air Traffic Management Research and Development Seminar.

2019: Vienna, Austria.

[102] Dai, L., M. Hansen, M.O. Ball, and D.J. Lovell. Having a Bad Day? Predicting High Delay
Days in the National Airspace System.

[103] Hochreiter, S. and J. Schmidhuber. Long short-term memory. Neural computation, 1997.

9(8): p. 1735-1780.

[104] Kingma, D.P. and J. Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

[105] Prechelt, L. Early stopping-but when?, in Neural Networks: Tricks of the trade. 1998,

Springer. p. 55-69.

[106] Lin, T.-Y., P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for dense object

detection. in Proceedings of the IEEE international conference on computer vision. 2017.

[107] Thisted, R.A. Ridge regression, minimax estimation, and empirical Bayes methods. 1976:

Department of Statistics, Stanford University.

[108] Yu, S.-Z. and H. Kobayashi. An efficient forward-backward algorithm for an explicit-
duration hidden Markov model. IEEE signal processing letters, 2003. 10(1): p. 11-14.

[109] Townsend, J.T. Theoretical analysis of an alphabetic confusion matrix. Perception &

Psychophysics, 1971. 9(1): p. 40-50.

[110] Cavalcante, I.M., E.M. Frazzon, F.A. Forcellini, and D. Ivanov. A supervised machine

learning approach to data-driven simulation of resilient supplier selection in digital
manufacturing. International Journal of Information Management, 2019. 49: p. 86-97.

[111] Goodall, P., R. Sharpe, and A. West. A data-driven simulation to support remanufacturing

operations. Computers in Industry, 2019. 105: p. 48-60.

[112] Holden, D., B.C. Duong, S. Datta, and D. Nowrouzezahrai. Subspace neural physics: Fast

data-driven interactive simulation. in Proceedings of the 18th annual ACM
SIGGRAPH/Eurographics Symposium on Computer Animation. 2019.

123

[113] Chawla, N.V., K.W. Bowyer, L.O. Hall, and W.P. Kegelmeyer. SMOTE: synthetic
minority over-sampling technique. Journal of artificial intelligence research, 2002. 16: p.

321-357.

[114] He, H., Y. Bai, E.A. Garcia, and S. Li. ADASYN: Adaptive synthetic sampling approach

for imbalanced learning. in 2008 IEEE international joint conference on neural networks

(IEEE world congress on computational intelligence). 2008. IEEE.

[115] Islam, Z., M. Abdel-Aty, Q. Cai, and J. Yuan. Crash data augmentation using variational

autoencoder. Accident Analysis & Prevention, 2021. 151: p. 105950.

[116] Roy, S.K., J.M. Haut, M.E. Paoletti, S.R. Dubey, and A. Plaza. Generative Adversarial

Minority Oversampling for Spectral–Spatial Hyperspectral Image Classification. IEEE

Transactions on Geoscience and Remote Sensing, 2021. 60: p. 1-15.

[117] Mariani, G., F. Scheidegger, R. Istrate, C. Bekas, and C. Malossi. Bagan: Data

augmentation with balancing gan. arXiv preprint arXiv:1803.09655, 2018.

[118] Andresini, G., A. Appice, L. De Rose, and D. Malerba. GAN augmentation to deal with

imbalance in imaging-based intrusion detection. Future Generation Computer Systems,

2021. 123: p. 108-127.

[119] Huang, G. and A.H. Jafari. Enhanced balancing GAN: Minority-class image generation.

Neural Computing and Applications, 2021: p. 1-10.

[120] Dumagpi, J.K. and Y.-J. Jeong. Evaluating gan-based image augmentation for threat

detection in large-scale xray security images. Applied Sciences, 2020. 11(1): p. 36.

[121] Esteban, C., S.L. Hyland, and G. Rätsch. Real-valued (medical) time series generation with
recurrent conditional gans. arXiv preprint arXiv:1706.02633, 2017.

[122] Yoon, J., D. Jarrett, and M. Van der Schaar. Time-series generative adversarial networks.
Advances in Neural Information Processing Systems, 2019. 32.

[123] Lin, Z., A. Jain, C. Wang, G. Fanti, and V. Sekar. Using GANs for sharing networked time
series data: Challenges, initial promise, and open questions. in Proceedings of the ACM

Internet Measurement Conference. 2020.

[124] Yu, L., W. Zhang, J. Wang, and Y. Yu. Seqgan: Sequence generative adversarial nets with

policy gradient. in Proceedings of the AAAI conference on artificial intelligence. 2017.

[125] Fedus, W., I. Goodfellow, and A.M. Dai. Maskgan: better text generation via filling in
the_. arXiv preprint arXiv:1801.07736, 2018.

[126] Brock, A., J. Donahue, and K. Simonyan. Large scale GAN training for high fidelity

natural image synthesis. arXiv preprint arXiv:1809.11096, 2018.

[127] Frid-Adar, M., I. Diamant, E. Klang, M. Amitai, J. Goldberger, and H. Greenspan. GAN-

based synthetic medical image augmentation for increased CNN performance in liver
lesion classification. Neurocomputing, 2018. 321: p. 321-331.

[128] Zhang, Y., Z. Gan, K. Fan, Z. Chen, R. Henao, D. Shen, and L. Carin. Adversarial feature

matching for text generation. in International Conference on Machine Learning. 2017.

PMLR.

[129] Wang, K. and X. Wan. SentiGAN: Generating Sentimental Texts via Mixture Adversarial
Networks. in IJCAI. 2018.

[130] Mogren, O. C-RNN-GAN: Continuous recurrent neural networks with adversarial training.

arXiv preprint arXiv:1611.09904, 2016.

[131] Li, S., S. Jang, and Y. Sung. Automatic melody composition using enhanced GAN.

Mathematics, 2019. 7(10): p. 883.

[132] Doersch, C. Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908, 2016.

124

[133] Liu, X.-Y., J. Wu, and Z.-H. Zhou. Exploratory undersampling for class-imbalance
learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),

2008. 39(2): p. 539-550.

[134] Alshraideh, H. and G. Runger. Process monitoring using hidden Markov models. Quality

and Reliability Engineering International, 2014. 30(8): p. 1379-1387.

[135] Mirza, M. and S. Osindero. Conditional generative adversarial nets. arXiv preprint

arXiv:1411.1784, 2014.

[136] Fu, R., J. Chen, S. Zeng, Y. Zhuang, and A. Sudjianto. Time series simulation by
conditional generative adversarial net. arXiv preprint arXiv:1904.11419, 2019.

[137] Frogner, C., C. Zhang, H. Mobahi, M. Araya, and T.A. Poggio. Learning with a

Wasserstein loss. Advances in neural information processing systems, 2015. 28.

[138] Larsen, A.B.L., S.K. Sønderby, H. Larochelle, and O. Winther. Autoencoding beyond

pixels using a learned similarity metric. in International conference on machine learning.

2016. PMLR.

[139] Heusel, M., H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. Gans trained by a

two time-scale update rule converge to a local nash equilibrium. Advances in neural

information processing systems, 2017. 30.

[140] Salimans, T., I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved
techniques for training gans. Advances in neural information processing systems, 2016.

29.

125

Appendix A: Data Sources

A.1. Asynchronous Data

We leverage large stores of historical data, including NASA’s Sherlock ATM Data

Warehouse, to provide training sets for model development. We limit the scope of the study

to JFK airport due to a number of factors including the frequency of go-arounds, the mix

of international and domestic traffic, and the complexity of arrival operations in the New

York area. Our datasets range from July 1st to December 24th in 2018 at the John F.

Kennedy (JFK) airport, except for four days with defective data. After data cleaning and

matching, there are on average 525 arrival flights per day in the analyzed airport within the

analysis period.

The first dataset is retrieved from the Integrated Flight Format (IFF) and Reduced Data

(RD) summary of the NASA Sherlock Data Warehouse, which are gathered from 76 FAA

facilities and formatted by ATAC corporation. Fields of interest include flight summary

(e.g., time, aircraft type, origin, destination, operation type), trajectory information

(timestamp, latitude, longitude, altitude, groundspeed, course, rate of climb, etc.), and

landing information (e.g., runway threshold crossing time). Arrival trajectories have been

filtered to 400 nautical miles centered on the analyzed airport for each flight. The RD

summary includes the information of takeoff / landing runway and runway threshold

crossing time. The RD summary and the IFF data have been further processed and merged

on a daily basis for each flight arriving at JFK. This dataset is used to derive flight-specific

characteristics (Section 4.3.1), approach stability features (Section 4.3.2), and in-trail

separation features (Section 4.3.3)

The second dataset, airport surface detection equipment Model X (ASDE-X) data,

allows us to determine the position of aircraft and ground support equipment in the airport

surface area. Each record of raw surface track data contains the timestamp, latitude,

longitude, altitude, and groundspeed. This dataset is useful in identifying key metrics for

airport surface operations, which we will discuss in detail in Chapter 5.

The third dataset, which comes from the FAA aviation system performance metrics

(ASPM) database, provides airport level configuration and weather information every

quarter-hour. The dataset includes count of Official Airline Guide (OAG) scheduled

arrivals/departures, airport arrival/departure rate (AAR/ADR, which measure airport

arrival and departure throughput capacity), meteorological conditions flag (instrument or

visual, reflecting whether conditions allow for pilots to operate without instruments),

ceiling (in feet), visibility (in statute miles), wind angle from magnetic north (degree), wind

speed (in knots), and airport supplied runway configuration. We use this dataset to derive

the airport and weather features by matching flight-level operation with the 15-minute

interval weather information according to the time at which the aircraft reaches a certain

distance from the landing runway threshold.

126

A.2. Real-Time Data

With the advent of the FAA’s System Wide Information Management (SWIM) system

for dissemination of high-definition trajectory and air traffic control automation data, we

are able to provide the path forward to provide real-time predictive analytics. Below are

the data sources available in real-time and that can replace the asynchronous datasets

during the development of real-time application software systems for go-around

predictions.

The Aviation Weather Center (AWC) METeorological Aerodrome Reports (METARs)

is used to replace the ASPM dataset to provide airport level weather information updates

every hour. We validate the historical records between METARs and ASPM. It is found

that these two datasets are not consistent during periods when daylight saving time is

observed due to the conversion error of the ASPM dataset. We use this dataset to derive

weather related features such as wind, visibility, and ceiling by matching each flight with

the most-updated information (i.e., record that is available in the latest hour).

The Airport Configuration (APTC) profile provides the real-time data stream of runway

configuration, airport arrival/departure rate (AAR/ADR), and meteorological conditions at

the airport. The data comes from the FAA SWIM’s Flight Information Service (AFIS),

which provides timely and specific information on individual flights from the operators.

The ASDE-X dataset is substituted with the EV database. The EV database provides

runway threshold crossing time and the runway exit time. We thus can calculate the metric

we need (i.e., runway occupancy buffer that we will introduce in Chapter 5.) in a more

convenient way, without inferring from the trajectory and airport surface configuration.

	Table of Contents
	List of Abbreviations
	List of Figures
	List of Tables
	Acknowledgments
	1. Introduction
	1.1. Safety First
	1.2. Go-Arounds
	1.3. Learning and Decision Making
	1.4. Objective and Challenges
	1.5. Structure of the Dissertation
	1.6. Contributions

	2. Literature Review
	2.1. Preliminaries
	2.2. Operational Anomalies During the Approach
	2.3. Machine Learning Frameworks
	2.3.1. Classical Machine Learning
	2.3.2. Markovian models
	2.3.3. Recurrent networks
	2.3.4. Generative adversarial networks

	3. Anomaly Detection
	3.1. Go-Around Detection
	3.2. Validation

	4. Feature Engineering
	4.1. Overview
	4.2. Information Cutoff Gate
	4.3. Features
	4.3.1. Aircraft and Runway Characteristics
	4.3.2. Approach Stability
	4.3.3. In-trail Separation
	4.3.4. Weather
	4.3.5. Airport Conditions
	4.3.6. Go-Around Clustering Effect
	4.3.7. Runway Incursion Risk

	4.4. Feature Types

	5. Runway Occupancy Buffer
	5.1. Overview
	5.2. Related Work
	5.3. Empirical Analysis
	5.3.1. Definition
	5.3.2. Calculation
	5.3.3. Observed statistics

	5.4. Runway Occupancy Buffer Prediction
	5.5. Results
	5.5.1. Model Performance
	5.5.2. Estimation result
	5.5.3. Feature importance

	6. Modeling Go-Arounds Using Principal Component Logistic Regression
	6.1. Overview
	6.2. Data Preprocessing
	6.3. Standard Logit Model
	6.4. Principal Component Logistic Regression (PCLR) and Interpretation
	6.4.1. PCLR of mixed data
	A. Notations
	B. Design Matrix Preparation
	C. Generalized Singular Value Decomposition (GSVD)
	D. Derived Covariates
	E. Transformation of Estimated Coefficients

	6.4.2. Factor Loading Analysis

	6.5. Estimation Results
	6.5.1. Factor Analysis and Model Result
	6.5.2. Transformation of coefficients
	6.5.3. Counterfactual Analysis

	6.6. Chapter Summary

	7. Sequential Prediction of Go-Around Occurrence
	7.1. Overview
	7.2. Related Work
	7.3. Problem Formulation
	7.4. Classical Machine Learning
	7.5. Long Short-Term Memory
	7.6. Input-Output Hidden Markov Model
	7.6.1. Model architecture
	7.6.2. Model specification
	A. Initial model
	B. Transition model
	C. Emission model

	7.6.3. Model estimation

	7.7. Model inference
	7.8. Experimental Steps
	7.9. Model Performance
	7.10. Chapter Summary

	8. Imbalanced Learning
	8.1. Overview
	8.2. Related Work
	8.3. Downsampling
	8.4. Sampling-Based Augmentation
	8.5. Generative Adversarial Network
	8.5.1. Problem formulation
	8.5.2. Model architecture
	8.5.3. Fidelity Analysis
	A. Sequence Length
	B. Feature Distribution
	C. Temporal Dependency

	8.5.4. Downstream Performance

	9. Real-Time Risk Predictive Framework
	9.1. Overview
	9.2. Real-Time Data Ingestion
	9.3. Offline Models
	9.4. Test Scenarios
	9.5. Real-Time Deployment

	10. The Flight Plan
	10.1. Broaden The Scope
	10.2. Improve The Model
	10.3. Integrate With Existing Platform
	10.4. Closing The Loop
	10.5. Open The Door
	References
	Appendix A: Data Sources
	A.1. Asynchronous Data
	A.2. Real-Time Data

