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Abstract 

 

Data-Driven Real-Time Risk Predictive Intelligence 

– A Use Case of Go-Arounds 

 

by 

 

Lu Dai 

 

Doctor of Philosophy in Engineering – Civil and Environmental Engineering 

 

University of California, Berkeley 

 

Professor Mark M. Hansen, Chair 

 

 

Although the National Airspace System is one of the safest and most efficient 

transportation infrastructures, growing air traffic demand and the implementation of 

autonomous technologies place strain on its safety and efficiency. Recent advances in 

computing and artificial intelligence (AI) offer an unprecedented capability to incorporate 

intelligent decision-making into a wide variety of spheres of our life, most notably for big 

and practical engineering problems. In this dissertation, we develop data-driven real-time 

risk predictive intelligence to provide decision support for the air transportation system, 

particularly for the critical air traffic control process during flight approach and landing.  

Anomalous aircraft behaviors and states are of high interest to the aviation community 

and hold the keys to ensuring safe, efficient, and environmentally clean flight operations. 

Through one type of flight anomaly – go-arounds (the aborted landing of an aircraft on 

final approach) – this dissertation demonstrates the complex interplay between 

transportation engineering and AI: from theoretical study and algorithmic development, to 

the computer and software systems, and to the eventual deployment. We investigate the 

concrete technical and operational challenges of building risk predictive intelligence by 

integrating a blend of advances from data science, machine learning, software systems, 

domain-specific sciences and engineering knowledge. While this dissertation focuses on 

the aviation domain, the established methodological framework has the potential in many 

other contexts to assess the risk of non-nominal events. 

We first design a trajectory-based anomaly detection algorithm for identifying go-

around events from raw and noisy surveillance data. The current practice of go-around 

detection mainly relies on voluntary self-reports from controllers or pilots, 

unrepresentative survey/interview data, or a limited sample of simulation/training data. We 

therefore propose a rigorous way of detecting go-around occurrence by analyzing historical 

four-dimensional flight trajectories. This algorithm not only labels the flight in binary 

responses but also annotates when and where the go-around occurred. We further validate 

the detection results with another independent data source and find that our detection 
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algorithm identifies more true positive events since it can capture go-arounds initiated 

farther away, and with more robust criteria.  

In order to capture the heterogeneous interacting components that may affect the go-

around occurrence, feature engineering is carried out to derive a wide variety of operational 

and environmental variables according to literature search, theoretical studies, interviews 

with domain experts, and data mining. Among the seven categories of features derived – 

aircraft characteristics, approach stability, in-trail separation, weather, airport conditions, 

go-around clustering effects, and runway incursion risk, we propose a new metric termed 

runway occupancy buffer (ROB) to better reflect air and surface operations interplay 

during flight approach. We train machine learning models to predict this metric conditioned 

on other categories of features. The predicted value not only serves as a feature input for 

modeling go-arounds, but may also directly assist air traffic control in maintaining safe, 

efficient buffers between successive arrivals. 

With the labeled events and derived features, we then investigate the traffic and 

environmental conditions that affect go-around occurrence by quantifying their underlying 

contributions through principal component logistic regression and counterfactual analysis. 

While previous studies have investigated various causes of go-around occurrence, none has 

developed a comprehensive, quantitative assessment of the relative importance of a wide 

range of factors. Our method overcomes the high dimensionality and multi-collinearity of 

the original data set while preserving the ability to assess the contribution of the original 

features to go-around occurrence. We find that factors in the top tier of importance include 

the approach stability of the subject aircraft, its separation and speed difference from the 

aircraft in front, and factors related to visibility and cloud ceiling.  

While the post-event observation-driven insights help decision-making at a strategic 

level, being able to predict go-around probabilities could provide tactical guidance to 

foresee and perhaps prevent go-arounds. Existing models on go-around predictions are 

based on a single snapshot of features in the time series process. We fill the gap by 

developing machine-learning-based engines for multivariate sequential predictions of go-

around probabilities over the entire approach. The sequential models exhibit a consistent 

and monotonically increasing performance as more information is preserved in the internal 

state when the flight gets closer to the airport. The LSTM, in general, performs better in 

predicting go-around occurrence thanks to their continuous hidden state space and ability 

to learn dependencies. 

To address the class imbalance issue inherent with the go-around prediction problem, 

or for any rare event prediction, data augmentation is explored to generate high-fidelity 

synthetic go-around sequences for improved model training. In particular, we synthesize 

domain-specific insights with concurrent advances in the Generative Adversarial Networks 

(GANs) literature to design a GAN architecture for the go-around use case, capable of 

generating multivariate sequences with variable length and mixed data types. Empirically, 

we find that this architecture improves the fidelity of the generated go-around sequences, 

in terms of sequence length, feature distribution, and serial correlation. The performance 

of the go-around prediction model is compared with different amounts of synthetic go-
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arounds added to the training set. Experimental results show that models trained with 30% 

go-around samples perform better. Further efforts on model development and 

generalization are required for researchers to confidently use such workflows. 

We additionally present the Go-Around Prediction (GAP) software service, which 

encapsulates all these pieces of work into a practical application system to provide real-

time guidance to air traffic control and ease the future design of risk predictive intelligence. 

To enable the GAP capabilities, we build the real-time data injection pipeline atop Apache 

Software Service, ensure pre-trained models can be promptly executed in response to real-

time messages, identify suitable test scenarios for the real-time emulation demonstration, 

and develop a web-based user interface to display the real-time representation of the go-

around prediction results. We demonstrate the feasibility and practicality of the GAP 

service by applying it to a real-world test scenario, with the end-to-end real-time data input 

and go-around detection output. The GAP software system provides a foundation for 

designing, developing, and deploying a progression of capabilities that expedites the 

discovery, prognosis, and mitigation of safety-related threats in transportation systems. 

Together, various components of this dissertation work are closely interconnected to 

enable data-driven real-time risk predictive intelligence, while at the same time, each 

component offers its own contribution. The methodology framework includes the anomaly 

detection algorithm to identify risky events from unlabeled data, statistical models to 

uncover and quantify the factor contributions to the event occurrence, generative 

adversarial networks to augment the minority class, sequential learners to continuously 

monitor developing risks, and a data streaming pipeline for real-time deployment. It 

advances the state-of-the-art and is the first effort in realizing a multi-domain situational 

awareness, predictive, and alerting tool for go-around occurrences, therefore an end-to-end 

actionable solution to practitioners. In the spirit of near-term practicality, we offer low-cost 

building blocks that can be used for other real-world applications with data of similar 

structure, such as risk mitigation in future transportation systems where complexity is 

expected to be greater with the introduction of autonomous vehicles and urban air mobility 

into the legacy infrastructure. In view of long-term applicability, the dissertation work 

holds initial promise to inspire more and further research by theoreticians and practitioners 

to develop data-driven real-time solutions to predictive intelligence in a broader domain.
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1. Introduction 

1.1. Safety First 

Transportation systems today have served as the backbone of civilization. They touch 

the lives of 7.9 billion people and support 1.4 billion motor vehicles globally [1]. At any 

given time, there are an average of 9,728 planes carrying 1 million passengers in the sky 

[2]. The system is still expanding in scale, preparing to welcome new entrants such as 

unmanned (aerial) vehicles, and to safely incorporate new paradigms such as autonomous 

driving and urban air mobility. The transportation system is being revolutionized through 

advances in automation, electrification, and new business models, while also facing 

challenges posed by decarbonization, inequity, pandemic, and so on. There is a critical 

need to continue ensuring the safety and efficiency of the system. Such importance is also 

evident in the high societal costs associated with accidents, as well as the potential threats 

to the legacy transportation infrastructures. According to the American Society of Civil 

Engineers, 43% of public roads are poor or mediocre [3]. Construction delays, signage 

issues, and asphalt deterioration are just a few of the things contributing to an increase in 

crashes and accidents. 

Although the National Airspace System (NAS) is one of the safest and most efficient 

transportation infrastructures, growing air traffic demand and the implementation of 

autonomous NextGen technologies place strain on NAS safety and efficiency. One of the 

primary goals of all air navigation service providers (ANSPs) is to assure safety since each 

aircraft operation involves human life. Safety always comes first for any airline in all 

aspects of air transportation.  

Indeed, nothing can ever guarantee absolute safety in a moving airplane. From birds, 

to weather (e.g., wind shear, snowstorms, lightning), malfunction (e.g., engine failure, 

aircraft stalling), human factors (e.g., runway incursion, miscommunication), and even 

terrorism, the hurdles to safe flying can seem insurmountable. The aviation community has 

spent decades of effort to reduce the risks of flying and make accidents become exceedingly 

rare events. Boeing analyzed worldwide commercial flights from 1959 to 2017 and found 

that the annual number of fatalities has remained fairly low and stable [4]. The total 

fatalities due to aviation accidents since 1970 is 83,772. The total number of incidents is 

11,164. According to the Aircraft Crashes Record Office (ACRO), aviation has been much 

safer in recent years, with less than 170 incidents per year between 2009 and 2021, 

compared to as many as 226 as recently as 1998 [5]. It is noteworthy that most of these 

fatalities and accidents happened during the final approach and landing phases, which 

account for just 16% of the airborne time (total time spent in the air). As seen in Figure 1, 

from 2008 to 2017, 56% of the fatalities and 62% of the accidents happened during the 

approach and landing, making this the riskiest phase of flying. 
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Figure 1. Percentage of fatal accidents and fatalities. Source: Statistical summary of 

commercial jet airplane accidents conducted by Boeing Commercial [4]. 

The literature has devoted substantial attention to flight approach safety. Until recently, 

though, it has not received much attention from data scientists. Although extensive data 

from radar and surveillance systems, navigation systems, engines and sensors, text 

documents, and vocal crew inputs are continually collected and stored, current analytics 

for flight approach safety are reactive [6, 7, 8, 9, 10], rule-based [11, 12, 13], and narrow 

in scope (considering only flightpath profile[14, 15, 16], or weather conditions [17, 18], or 

human factors [19, 20, 21], etc.). Research on real-time risk predictive analytics is required 

to enable proactive monitoring and prediction of anomalous flight approach procedures 

that may degrade safety and efficiency, while considering a broad range of situational 

measurements and dynamic environmental conditions. With the recent publishing of the 

In-Time System-Wide Safety Assurance (ISSA) strategic roadmap [22] and the launch of 

the NASA System-Wide Safety (SWS) project [23, 24], the aviation community has 

reemphasized the commitment to safety research. A key outcome in the first decade of 

ISSA-related research is improved safety through initial real-time detection and alerting 

of hazards at the domain level and decision support for limited operations. 

1.2. Go-Arounds 

Typically, the approach-and-landing accident is triggered by an unstabilized approach 

and is the consequence of a subsequent failure to initiate a go-around. Go-arounds occur 

when an arrival aircraft terminates its normal approach to landing, reverses its descent by 

climbing abruptly, and then circles around to attempt another landing. In other words, a 

go-around is an aborted landing of an aircraft that is on the final approach when proceeding 

with the landing is considered to be unsafe due to adverse conditions such as wind shear, 

runway incursion, or unstabilized approach.  

A running example throughout this dissertation concerns this unique maneuver – go-

arounds. Go-arounds play a special role in the final approach and landing phase as their 

occurrence not only signals abnormal flying status on the final approach (pre-go-around 
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risks), but themselves are a kind of operational anomaly (go-around risks). Overall, go-

arounds or missed approaches occur at a rate of around three or four per thousand arrival 

operations at major airports – see Figure 2 for a count of go-arounds at major US airports 

in 2018 through 2020. Even with the drastic reduction in operations due to COVID-19 in 

2020, the number of go-arounds at many major airports remained consistent with or 

exceeded prior years. From 2012 to 2017, the average percentage of final approaches 

leading to go-arounds was 0.4% across the core 30 U.S. airports [25]. 

 

Figure 2. Total annual go-arounds at U.S. airports. 

In addition, there have been several high-profile incidents in the last few years in which 

go-arounds were used as the mitigation of last resort: 

At 11:56 PM on July 7, 2017, at the conclusion of the regularly scheduled international 

passenger flight from Toronto to San Francisco, Air Canada Flight 759 (AC759), an Airbus 

320, nearly landed on a taxiway adjacent to the designated landing runway 28R at San 

Francisco International Airport (SFO). Four fully loaded and fueled aircraft waiting for 

takeoff have occupied the taxiway. Five airplanes carrying over 1,000 passengers were at 

imminent risk when the incident occurred. It was later estimated by National 

Transportation Safety Board (NTSB) investigators that the Air Canada flight descended 

below 100 feet above ground level before pulling up to execute the go-around. 
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At 9:30 PM on October 24, 2017, Air Canada Flight 781, an Airbus 320, was cleared 

for landing on runway 28R at SFO. Since the preceding aircraft that had landed on 28R 

vacated the runway more slowly than expected, the Tower air traffic controller instructed 

Air Canada 781 to go around. However, the aircraft crew of Flight 781 never responded. 

Flight 781 was ordered multiple times to go around without responses. Controllers even 

flashed red runway lights as a visual indication to the crew that they should abort the 

landing, but Flight 781 continued the approach to 28R.  Fortunately, the preceding aircraft 

had managed to exit the runway just in time, averting a potentially deadly collision. 

At 11:45 AM on January 9, 2018, Aero Mexico Flight 668, a Boeing 737 flying from 

Mexico City to San Francisco, was cleared to land on runway 28R at SFO. Instead, the 

Flight 668 aircraft lined up on the parallel runway 28L, where a Virgin America Airbus 

A320 jet was waiting to take off for Kona, Hawaii. Tower air traffic controllers noticed the 

inconsistency at the last minute and ordered Flight 688 to go around. Again, if not for the 

vigilance of the tower controllers, a massive aviation calamity may have happened. 

These near-miss incidents, while alarming in nature, are even more significant by the 

fact that they all occurred at the same airport within around six months.  In each of these 

instances, the Tower air traffic controllers were able to issue mitigations to the developing 

risk; nevertheless, these were of the “last call” variety. Catastrophe would have ensued 

without prompt responses from the operators (air traffic controllers or pilots). A robust go-

around prediction and alerting capability would expand the time window for operator 

action and thus provide a greater safety margin for these sorts of operational incidents. 

Below, we summarize a few essential motivating aspects for studying go-arounds. 

Go-arounds are associated with significant safety concerns during the final 

approach, since go-arounds are emergency maneuvers intended to mitigate risk 

compared to preceding the landing. For instance, some go-arounds occur due to 

attempted wrong surface landings. These situations occur when aircraft align with a 

taxiway rather than a runway and initiate a go-around, thus flying over the taxiway. In other 

instances, aircraft attempt to land on the incorrect runway and end up executing a go-

around to avoid colliding with departing aircraft. In 2016, the FAA ATO identified wrong 

surface landings as a Top 5 safety issue. Wrong surface landings are still on the FAA high 

priority list. In order to improve communication and training on these incidents, and to 

mitigate risk in the NAS, the FAA conducted a study and found a clear linkage between 

wrong surface landing attempts and go-arounds. A technology capable of detecting go-

around risk early enough, allowing mitigation actions to prevent safety hazards such as 

wrong surface landings, has yet to be developed. 

In addition to pre-go-around risks, go-arounds themselves significantly disrupt 

airport operations and degrade efficiency, particularly at large airports during peak 

hours. To begin, even though pilots have extensive training, executing go-arounds is a 

challenging maneuver. The pilot must promptly accelerate the engines to full power, adopt 

a suitable climb altitude and airspeed, raise the landing gear, and retract the flaps in a short 

time. Second, the outcome of a go-around can be hazardous. Around 10% of go-arounds 
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result in exceeding aircraft performance limits, or fuel emergencies [26]. Finally, a go-

around is an emergency maneuver that also leads to increasing air traffic controller 

workload [27] and noise [28], while degrading airport throughput [29] and flight on-time 

performance [26]. Air traffic controllers are confronted with the challenging tasks of de-

conflicting the go-around from other traffic, including traffic landing and taking off from 

adjacent airports, as well as fitting the go-around aircraft back into the congested arrival 

stream. This time-sensitive task increases workload and potentially results in the 

development of additional dangers. Similarly, flight crews must contend with a surge in 

piloting workload [30] when they may be at the end of a busy flying schedule.  During 

peak hours, the disruption induced by a go-around may ripple upstream into heavy inbound 

flows, causing substantial holding and vectoring that lead to rapidly accumulating delays. 

Any preemptive warning of an emerging go-around situation could buy the controller and 

flight crew valuable time to better anticipate the actions required to handle the impending 

situation more safely and efficiently. 

Furthermore, making the decision to execute a go-around in a timely manner is 

crucial. According to an extensive study published by Flight Safety Foundation (FSF), 

delay in deciding to initiate a go-around increases the risk of this procedure [26]. The 

effectiveness of cooperation between pilots and air traffic controllers in making go-around 

decisions based on their anticipation of landing circumstances is of great importance and 

practical significance for boosting both the safety and efficiency of the aviation system. 

However, interviews indicate that the collaborative decisions on go-arounds are heavily 

impacted by individual experiences and mental states, as opposed to the collective 

knowledge about the complete picture of underlying situations for the go-around procedure 

[26]. Predicting the probability of go-arounds may help prevent situations where an 

incident occurs because a go-around was not executed. According to the research 

conducted by the FSF on 16 years of runway excursions, 83% could have been avoided 

with a decision to go around.  

1.3. Learning and Decision Making 

Individuals, businesses, and governments now have unprecedented access to intelligent 

decision-making across a wide variety of domains because of the recent advancements in 

computing and artificial intelligence (AI). A wide range of applications benefit from 

decision support systems, from movie recommendations, to mapping services, traffic 

management, and so forth. Such systems are made possible by machine learning (ML), a 

field of artificial intelligence that has grown in popularity in the scientific community due 

to the increased availability of data, improvements in hardware and software, and various 

algorithmic breakthroughs. 

In recent years, machine learning has emerged as a technique of paramount significance 

in the field of transportation engineering, enabling the solution of complex and practical 

engineering problems. Both ML and transportation have substantial effects on society. The 
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interaction between the two is a challenging, complex, and growingly important problem 

domain for society moving forward. Much of the challenge, and art, involved in machine 

learning is defining and formulating the problem. Successful machine learning applications 

have been seen in a wide variety of fields, including flow prediction, scheduling, pricing, 

routing, ridesharing, logistics, behavior modeling, networks, economics, and planning. 

For the air transportation system to benefit from machine learning-based decision 

support, this dissertation is only a small step forward in enabling data-driven real-time risk 

predictive intelligence. We introduce one type of flight anomaly – go-arounds, develop 

anomaly detection algorithms to annotate this event from unlabeled data. Building on these 

labeled data, we devise generative adversarial networks to augment the minority class, 

sequential learners to continuously monitor developing risks, and a data streaming pipeline 

for real-time deployment. These problems have primarily been studied in isolation by 

various research communities using vastly different methodologies. Through the lens of a 

specific application – go-arounds – in the aviation field, this dissertation examines the 

intricate dynamics between all the moving elements involved in transportation engineering 

and artificial intelligence: from the theoretical and algorithmic development to the 

computer and software systems to the eventual application. 

1.4. Objective and Challenges 

Considering the pre-go-around risks, the safety of go-arounds themselves, and the 

effectiveness of decision-making for go-arounds, we would like to more fully understand 

the precursors and contributing factors to go-arounds, and provide aviation stakeholders 

(e.g., air traffic controllers and pilots) with a predictive tool to help them recover and avoid 

the need for a go-around or, if a go-around is needed, to provide them with more time to 

proactively manage the event, thereby increasing safety and the orderly management of 

traffic. The objective of the dissertation is to develop data-driven real-time risk predictive 

intelligence, through a use case of go-arounds, that brings intelligent decision support to 

the air transportation system, thereby making it safer and more efficient.  

To implement such capability, we must continuously monitor the near-airport (within 

ten nautical miles) domain, merge data from disparate sources, and identify developing 

hazards (i.e., factors leading to a go-around) to stakeholders in advance, allowing them to 

take effective risk mitigation actions. Below, we discuss several challenges that must be 

overcome to achieve this objective: 

• Annotation quality. The raw data does not explicitly designate go-around flights, 

which serve as ground truth for the study. Successful modeling is contingent upon the 

labeling process and the quality of annotated data. Finding a way to efficiently and 

reliably label go-around flights from a large set of trajectories is critical. 
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• System heterogeneity. The approach process consists of numerous heterogeneous 

interacting components, including the landing aircraft itself, other planes sharing the 

airspace, the wind, visibility, ceiling, runway conditions, etc. Each, alone or in 

combination with others, may produce different impacts on the flight approach. Careful 

feature engineering is needed to extract the information and capture the heterogeneity 

of the system. 

• Complex interactivity. Go-arounds result from the interactions of numerous disparate 

factors. For example, the visibility of the landing environment can directly affect the 

spacing between airplanes, in addition to many other factors. What methodologies and 

tools would be appropriate for studying the high dimensionality and multi-collinearity 

of the data systematically, while retaining the ability to evaluate the contribution of the 

original features to go-around occurrence? 

• Dynamical process. Air traffic control as a whole is a highly stochastic, cascading, 

nonlinear, hybrid process, in which a small change may induce complicated and 

delayed effects on the system. There are many ways in which uncertainties may be 

introduced into the prediction process due to the temporal and geographical resolution 

of the data. While building the predictors, it is crucial to ensure that the models are 

appropriately constructed, validated, and capable of capturing the complex dynamics 

of the approach sequences.  

• Class imbalance. The primary difficulty with the go-around prediction problem, or 

with any rare event prediction task, is the imbalanced class distribution of the data. The 

class imbalance would considerably degrade the performance of any learning model, 

particularly with regard to the minority class we are interested in. Additional efforts are 

required to address the class imbalance issue and further enhance the work. 

• Real-time deployment. In order to convert the developed model into a real-time tool, 

it must be combined with a real-time data ingestion mechanism. A distributed system 

is needed to offer unified, high-throughput, low-latency streaming pipelines for 

handling real-time data feeds.  

The dissertation presents research that is intended to address these challenges, with a 

use case of go-arounds in the aviation domain. Several other challenges and research areas 

of interest to data-driven real-time risk predictive intelligence are discussed in Chapter 10. 

This work will heavily rely on a blend of advancements from data science, machine 
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learning, software systems, and domain-specific sciences and engineering knowledge. A 

science and a corresponding engineering practice are needed to lead the development of a 

multi-domain situational awareness and prognostic safety awareness, prediction, and 

alerting tool for go-around occurrences, and to assure long-term desired performance. The 

capability to deal with unlabeled, imbalanced, and real-time data holds significant promise 

for the applicability of AI, as this is the crux of many real-world problems, especially in 

safety-related sectors. While this dissertation focuses on the aviation domain, the 

methodologies developed have potential in many other transport (and non-transport) 

contexts in which time series data can be employed to assess the risk of non-nominal events. 

In the spirit of near-term practicality, we aim to help Air Traffic Control (ATC) 

facilities and airport-focused personnel identify hazards in the approach domain in time for 

effective mitigation. This dissertation work has the significant potential to reduce the 

number of go-arounds at major airports and improve the operator’s situational awareness 

and overall safety margin for these types of close-call incidents, hence reducing the risk of 

an accident. The predictive analytics will alert and aid with go-around decision-making, 

therefore lowering the rate of go-around failure. Additionally, early warning of an 

oncoming go-around occurrence provides more time to salvage the approach or better cope 

with an oncoming go-around. This additional reaction time should result in a significant 

reduction in workload for both controllers and flight crews. 

1.5. Structure of the Dissertation 

This dissertation focuses on one type of flight anomaly – go-arounds, and is a first step 

toward resolving the abovementioned challenges of risk predictive intelligence, by 

developing a methodological framework for studying go-arounds. As illustrated in Figure 

3, the framework includes anomaly detection algorithms to identify go-around events from 

unlabeled data, generative adversarial networks to augment the minority class, sequential 

learners to continuously monitor developing risks, and a data streaming pipeline for real-

time deployment. The remainder of this dissertation is structured in the following manner: 

Chapter 2 introduces key concepts in the dissertation, and reviews previous research 

on go-arounds and, more broadly, operational anomalies during the flight approach. We 

focus on the research that examines how go-around decisions are made and the factors that 

trigger the occurrence of go-arounds, as well as the current practice of machine learning 

models. 

Chapter 3 presents our method for detecting go-arounds from historical surveillance 

trajectories. The detection algorithm not only labels the flight in binary responses but also 

annotates when and where the go-around occurred. We present the process of ground truth 

labeling and validate it using another independent data source: the FAA go-around report. 

The work in this chapter was published in Dai et al. [31, 32].  
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Chapter 4 details the derivation of a diverse set of operational and environmental 

features, including aircraft characteristics (weight class, operating airline, landing runway), 

flight approach features (localizer deviation, speed, flight energy), the occurrence of other 

go-arounds at about the same time, in-trail separation (loss of separation, speed difference, 

altitude difference), as well as features pertaining to surface operations, airport 

configuration, and local weather. The work in this chapter was published in Dai et al. [31, 

32, 33]. 

 

Figure 3. Data-driven real-time risk predictive intelligence, akin to the structure of the 

dissertation. 

Chapter 5 proposes a new metric – runway occupancy buffer (ROB) – to better reflect 

the interplay between air and surface operations during flight approach procedures. We 

employ different machine learning models to model the ROB. The work in this chapter was 

published in Dai et al. [31, 32, 33]. 

Chapter 6 examines how a mix of traffic and environmental conditions (i.e., derived 

features in Chapter 4) affect the go-around decisions, and quantifies their underlying factor 

contributions to go-around occurrence based on real flight observations. We employ 

statistical models and counterfactual analysis to uncover the relationships between go-

around occurrences and the derived features. With this analysis, we could answer the 

question: based on observations of historical flight operations, what are the most salient 

factors affecting go-around occurrence? This could be critical to decision-making at a 

strategic level. The work in this chapter was published in Dai et al. [31, 32]. 
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Chapter 7 provides tactical guidance to foresee and perhaps prevent go-arounds by 

building the risk predictive analytics using the go-around detection results in Chapter 3, 

features derived from Chapter 4 and Chapter 5, and post-event observation-driven insights 

in Chapter 6. We formulate the go-around prediction problem as sequential learning and 

subsample the multivariate sequences with one nautical mile spacing (from the landing 

runway threshold). Different learning algorithms are employed to make sequential 

predictions of go-around probabilities of each landing aircraft over the entire approach 

corridor. The work in this chapter was published in Dai et al. [34]. 

Chapter 8 demonstrates our exploration towards tackling the class imbalance issue for 

the go-around prediction task: downsampling, sampling-based augmentation, and GAN-

based augmentation. We propose a proof-of-concept Generative Adversarial Network 

(GAN) architecture capable of generating high-fidelity synthetic go-around sequences to 

augment the minority class. We develop metrics to assess the fidelity of the generated 

synthetic go-around sequences and further benchmark the model with a sampling-based 

method. The previously developed go-around prediction model performs better while 

augmented with GAN-generated samples.  

Chapter 9 introduces the Go-Around Prediction (GAP) service, which enables the 

practical application of the above work in a real-time setting. Many advances are needed 

to enable real-time risk predictive intelligence, including algorithmic developments, 

distributed data streaming, and a web-based interface. We demonstrate the feasibility and 

practicality of the GAP service by applying it to the airport domain use case. A proof-of-

concept demonstration is provided in a video format, with the end-to-end real-time data 

input and go-around detection output. 

Chapter 10 presents a “flight plan” of the directions for future research. We discuss the 

remaining research questions and further considerations for deploying the data-driven real-

time risk predictive intelligence for practical use.  

1.6. Contributions 

This dissertation is a first step in enabling data-driven real-time risk predictive 

intelligence, from theoretical study and algorithmic development to the computer and 

software systems, to the eventual deployment. By studying a use case in the aviation field 

– go-arounds, the dissertation introduces the concrete technical and operational challenges 

and fills critical gaps in the state-of-the-art. This research work is directly relevant to future 

aviation system safety and addresses the Technology Taxonomy area of Safe All Vehicle 

Access by developing multi-domain situational awareness and prognostic safety awareness, 

predictive, and alerting tools. Furthermore, it offers low-cost building blocks that can be 

used for other real-world applications. The main contributions of the dissertation are as 

follows: 
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First, our data collection, storage, and preprocessing pipeline, as well as the model 

architecture design, allow for the continuous monitoring of the system in real time and the 

fusion of diverse data sources to identify emergent anomalous behaviors.  

Second, we have fused multiple datasets in order to capture a wide variety of factors 

that may contribute to the go-around occurrence. We have collected features from the 

dataset directly, but also derived features pertaining to approach stability, in-trail separation, 

and surface operations according to literature search, theoretical studies, and interviews 

with subject matter experts (SMEs) such as airport and ATC Tower operational personnel. 

We also propose a new metric – runway occupancy buffer (ROB) – to better reflect air and 

surface operations interplay during flight approach procedures. 

Third, we design and implement a trajectory-based go-around detection algorithm and 

demonstrate its use in real-world flight operations. The go-around detection algorithm 

utilizes four-dimensional flight trajectories and employs multiple criteria based on 

theoretical and empirical investigation, rather than relying on a single criterion. In addition, 

the algorithm not only labels the flight in binary responses but also annotates when and 

where the go-around occurred. Our detection method is applicable to any airport for which 

the surveillance track data are available. 

Fourth, we have uncovered statistical relationships between go-around occurrence and 

the derived features using a principal component logistic regression (PCLR) model. This 

technique enables us to overcome the high dimensionality and multi-collinearity of the 

original data set while preserving the ability to assess the contribution of the original 

features to go-around occurrence. The contribution analysis is critical to decision-making 

at a strategic level. 

Fifth, we develop novel machine learning (ML) based prediction engines using large 

stores of historical data, in order to provide reliable, sequential predictions of the 

probability of occurrence of potentially unsafe conditions and alert those risks to 

stakeholders. From an application standpoint, the sequential prediction of go-around 

occurrence could not only help in mitigating risks occurring at the pre-go-around state, but 

also lessen inherent risks and uncertainty from the disruption of an airport when a go-

around is executed. The many prediction models we have experimented with establish a 

baseline for predictive performance that may be improved upon in future research. 

Sixth, we explore different approaches to tackle the class imbalance issue for better 

training of the predictive models. Our work makes the first effort to leverage GANs to 

generate synthetic flight anomalous scenarios to augment the minor class for better model 

training. We empirically show that our GAN-based generated samples improve the model 

performance. Lessons learned are summarized for future researchers. 

Seventh, we provide the path forward to provide real-time predictive analytics. This 

dissertation work is deployed for practical use in the real-time setting, with application 

scenarios demonstrated in Chapter 9. This research work has the potential, for the first time, 

to make detecting, interpreting, and predicting go-arounds a practical way to increase 
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terminal-area safety and throughput, while taking a comprehensive set of environmental 

and operational factors into account. We demonstrate a proof-of-concept tool for a near-

term capability integrated with the NASA In-Time Aviation Safety Management System 

(IASMS), allowing pilots and controllers to identify risky situations ahead of time. This 

accelerates the predictive analytics for safety threats in the real-time arena. The real-time 

application provides a foundation for designing, developing, and implementing a 

progression of capabilities that expedites the discovery, prognosis, and mitigation of safety-

related threats in transportation systems.  

Eighth, we implement an end-to-end pipeline from raw data to support the inference of 

contributing factors and event occurrence prediction. The building blocks of the pipeline 

can be directly applied to aviation (or non-aviation) contexts with data of similar structure. 

It might help reduce system risks in future airspace systems where complexity is expected 

to be greater – such as the introduction of multiple unmanned and Urban Air Mobility 

(UAM) aircraft into airport operations.  
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2. Literature Review 

In this chapter, we first clarify some basic concepts that are frequently used in this 

dissertation, then provides an overview of prior research work on aviation safety, 

particularly associated with go-arounds, and finally we present several common and 

powerful machine learning frameworks used in this dissertation.  

2.1. Preliminaries 

Approach [35]: Begins when the crew initiates changes in aircraft configuration and/or 

speeds enabling the aircraft to maneuver for the purpose of landing on a particular runway. 

It ends when the aircraft is in the landing configuration and the crew is dedicated to land 

on a specific runway. It may also end by the crew initiating a go-around. 

Go-around [35]: Begins when either the pilot or the controller aborts the descent to the 

planned landing runway during the approach phase. It ends after speed and configuration 

are established at a defined maneuvering altitude or to continue the climb for the purpose 

of cruise.  

Note that another strict definition given by FAA is that go-arounds result in the aircraft 

returning to the landing queue to attempt the landing once again [25]. We here use the 

definition given by International Air Transport Association (IATA), and also extend it to 

touch-and-go, stop-and-go, circling approach, missed approach and break-off approach. 

Landing [35]: Begins when the aircraft is in the landing configuration and the crew is 

dedicated to touch down on a specific runway. It ends when the speed permits the aircraft 

to be maneuvered by means of taxiing for the purpose of arriving at a parking area. It may 

also end by the crew initiating a Go-around. 

Stabilized approach [36]: A stabilized approach is one in which the pilot establishes 

and maintains a constant angle glidepath towards a predetermined point on the landing 

runway. It is based on the pilot’s judgement of certain visual clues, and depends on the 

maintenance of a constant descent airspeed and configuration. 

Runway incursion [37]: Any occurrence at an aerodrome involving the incorrect 

presence of an aircraft, vehicle or person on the protected area of surface designated for 

the landing and take-off of aircraft. 

2.2. Operational Anomalies During the Approach 

The mainstream literature related to go-arounds has focused on the behavior and 

performance of pilots and controllers when a go-around occurs. From the pilot’s point of 

view, Causse et al. (2013) found that the negative emotional consequences attached to the 

go-around – the uncertainty of a decision outcome and the reward/punishment – can 
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temporarily jeopardize pilot decision making and cognitive functioning, while Dehais et al. 

[19] examined the errors in pilot’s flying performance (e.g., flightpath deviations) and 

visual scanning behaviors during go-around execution. From the air traffic controller’s 

point of view, Jou et al. [27] point out that controllers’ failure to maintain situational 

awareness was the leading cause of Taiwan’s go-around incidents in 2010. Kennedy et al. 

[38] found that controller age and expertise have significant impacts on aircraft landing 

decision making during a flight simulation task.  

Another area of study is criteria that should be used by controllers and or pilots for 

deciding whether to initiate a go-around. The Flight Safety Foundation [26] developed 

surveys and interviews to identify four groups of factors that were most influential to the 

decision of a go-around: flight path profile, aircraft configuration, flight energy, and 

environmental conditions. Campbell et al. [39] developed go-around criteria in terms of 

airspeed, glideslope deviation, localizer deviation, and rate of descent, at different starting 

altitudes from which pilots cannot successfully recover from an unstabilized approach on 

full-flight simulators. They found that the airspeed and localizer deviations impact go-

around occurrence the most. To further validate their proposed go-around criteria, 

Campbell et al. [40] collected objective simulation data and subjective post-simulation 

written questionnaires from an experiment in which pilots were instructed to go around if 

the aircraft was outside of the proposed criteria range at 300 feet, or if either pilot was 

uncomfortable with the approach. The results revealed that the proposed criteria performed 

well, but some minor adjustments are still needed to make pilots more comfortable with 

the go-around criteria. Later Zaal et al. [41] evaluated the effects of environmental 

conditions on the proposed go-around criteria using statistical tests and decision tree 

analysis. Wind speed, visibility, and localizer deviation substantially affect the go-around 

decision making and perception of risk. The study suggests that certain environmental 

conditions might warrant altered decision thresholds of the go-around criteria. While the 

criteria above suggest some of the factors that influence go-around occurrence, other 

research has addressed this question through statistical analysis of historical flight data. 

Shepherd et al. [42] presented an in-trail runway occupancy scenario event tree model that 

accounts for the risks associated with the go-arounds due to multiple runway occupancy 

and runway incursions. The go-around execution probability and the go-around failure 

probability are calculated. Surveillance track data is utilized in more recent research. 

Sherry et al. [43] detected go-arounds (termed as aborted approaches in the paper) using 

the cumulated change of aircraft heading angles. The go-around rate of the Chicago O’Hare 

International airport (ORD) airport was reported as 0.74% with some false positives 

resulting from procedure turns or other normal maneuvers that meet the quantitative criteria 

but are not aborted approaches. The go-around detection algorithm based on cumulative 

turn angle is a valuable contribution, but may not be fully representative. Sherry et al. [43] 

further reviewed 467 voluntary Aviation Safety Reporting System (ASRS) reports to 

identify underlying factors leading to aborted approaches. They classified the factors as 

airplane issues (48%), traffic separation issues (27%), weather (16%), runway issues (5%), 

and crew-ATC interaction issues (4%). These summary statistics afford valuable insights, 
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but the ASRS reports are voluntary and are made only when there is a perceived safety 

issue. 

Donavalli [18] identified go-arounds by simply checking whether the approaching 

aircraft crosses the end of the arrival runway. The go-around detection results were used in 

two-proportion Z tests to compare the go-around rates for different weather condition 

scenarios. High wind gust speeds and thunderstorms have a significant impact on go-

around occurrence. However, possibly due to the limited variability of the 18-day data set, 

the Z-test did not find a significant visibility impact. The authors further developed a linear 

regression model that defines the proportion of daily go-arounds as the dependent variable, 

different weather factors as the independent variables. However, none of the variables were 

significant, suggesting that many factors other than weather conditions also contribute to 

the go-around occurrence. Without incorporating a wide range of situational conditions and 

environmental measures in the feature space, models would not be appropriate for making 

any concrete analysis and policy decisions. 

Deshmukh et al. [44] identified go-arounds by looking at the violation of two linear 

regression lines, which are specified for the bounds of normal operations in terms of 

latitude, longitude, altitude, groundspeed, and aircraft energy. Each flight track is sampled 

to have 60 timesteps and was truncated into two parts – the first 55-timestep track is known 

information for deriving aircraft energy and separation features, and the last 5-timestep 

track is used for go-around detection and provides ground truth labels for the classification 

task. The paper neither considers the impacts of runway operation and weather impact, nor 

explains how the classification model could serve their purpose of identifying go-around 

precursors. In addition, given the truncation timestamp choice, a go-around could easily be 

initiated during the 55-timestep portion of the track, resulting in artificially high-

performance evaluations. It is likely that the prediction performance would decline rapidly 

if the portion of the track used for performance was reduced. 

While previous studies have yielded valuable insights about various causes of and 

contributors to go-around occurrence, none has developed a comprehensive, quantitative 

assessment of the relative importance of a wide range of factors that affect the likelihood 

of a go-around.  

There is little work on predicting go-arounds in the literature. Bro [45] investigate the 

utility of neural networks in predicting go-arounds using 2000 hours of general aviation 

training flight data. In their work, the features are extracted to create a snapshot of an 

aircraft’s parameters at 200 feet above ground level on approach. Figuet et al. [46] 

predicted the probability of go-arounds for each landing aircraft at a cutoff point located 

10 km in front of the runway threshold with supervised learning classifiers. However, a 

flight approach procedure is a time series sequence. Prediction problems involving 

sequentially structured data cannot be effectively dealt with by models which only take one 

snapshot of features in the process.  
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A predictive model for go-arounds should cover the entire approach and leverage a 

time series of relevant data to capture the inherent temporal structure of the flight approach. 

Existing models fall short of this, as they are based on only one snapshot of features in the 

time series process.  

2.3. Machine Learning Frameworks 

In this section, we review several common and powerful machine learning frameworks 

specific to this dissertation – classifiers, Markovian models, recurrent networks, and 

generative adversarial networks. Each of these frameworks has seen extensive empirical 

and theoretical applications. It is important to identify when a framework is appropriate for 

a problem at hand. This dissertation utilizes these disparate machine learning frameworks 

to address important problems of risk predictive intelligence in the context of go-arounds. 

2.3.1. Classical Machine Learning 

This class of models are widespread and usually branch out into supervised learning 

and unsupervised learning. They are simple to use, easy to understand, and usually do not 

require a large amount of computational power. Supervised learning is the more commonly 

used and more powerful tool in the real world, if data is labeled. It focuses on two types of 

tasks: classification that determines the class of an object (e.g., go-around or not), and 

regression that predicts a continuous value on a numerical axis (e.g., runway occupancy 

buffer). For instance, K-nearest neighbor, decision tree, SVM and ensemble methods like 

random forest and boosting have been commonly used to make predictions. 

Logistic regression is a technique borrowed by machine learning from the field of 

statistics. It is named for the function used at the core of the method – logistic function, 

which also called the sigmoid function in “S” shape to map any real-valued number into a 

value between 0 and 1. The logistic regression is popular for binary classification problems 

to calculate or predict the probability of a certain class or binary (yes/no) event.  

Unlike the objective of linear regression, SVM minimizes the sum of squared 

coefficients and tries to find the optimal separating hyperplane in the multidimensional 

feature space within a threshold error value (margin). A kernel function is usually used to 

map the data into higher dimensional space and find the hyperplane without increasing the 

computational cost. In this study, Gaussian Radial Basis Function (RBF) kernel and 

polynomial kernel [47] are applied to capture potential nonlinearities.  

Ensemble learning utilizes the prediction of several base models to improve robustness 

over a single model. Random forest and extreme gradient boosting (XGBoost) are based 

on training an ensemble of decision trees, which map the daily feature vectors to the 

observed daily arrival delay in the leaf node. RF model builds shallow decision trees 

independently, using a random subset of features, on various subsamples of the dataset. 

Boosting models sequentially grow decision trees and tries to reduce the bias by learning 

from previous iterations.  
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2.3.2. Markovian models 

Hidden Markov Models are generative models that can not only be used to learn 

patterns in sequences, but also to generate new sequences. They were first introduced by 

Rabiner and Juang [48] as generative models to classify speech signals and have since 

become a standard method for sequential predictions.  

The Hidden Markov Model is a probabilistic graphical model of the representation of 

the joint probability distribution. A graph of a standard HMM is shown in Figure 4, where 

nodes represent variables, and edges represent transitions and dependence relationships. 

Specifically, the white nodes in the figure suggest hidden states that are typically not 

observed, and the blue nodes represent the visible output emitted by those hidden states. 

The underlying probabilistic transitions between hidden states are termed transition 

probabilities and denoted as edges between the white nodes. The transitions between 

hidden states and output states are called emission probabilities and are represented by the 

edges between white and blue nodes.  

 

Figure 4. HMM architecture. 

For our use case, we employ a variant of the input-output hidden Markov model (IO-

HMM), an extension to the HMM that can better capture the sequential structure inherent 

in our problem to model and predict the go-around occurrence for an approaching flight. 

The IO-HMM is a special graphical model and was firstly proposed by Bengio and 

Frasconi [49] for learning problems involving sequentially structured data. While it 

originated from HMM, it has a much more flexible architecture, which can be interpreted 

as a statistical model for target propagation [50] based on the Expectation-Maximization 

(EM) algorithms. HMMs adjust their parameters using unsupervised learning, whereas the 

IO-HMM uses EM in a supervised fashion. Experiments on artificial tasks [51] have shown 

that IO-HMM, which uses EM recurrent learning, can deal with time dependencies more 

effectively than backpropagation through time and other alternative algorithms. The 

IOHMM is a conditional model that predicts the labels given the features, rather than 

looking at the joint probability. It can be applied to achieve our goal of fully exploiting 

both input and output portions of the flight sequence data, as required by the go-around 

prediction task. 
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2.3.3. Recurrent networks 

Deep learning is a kind of machine learning frameworks that incorporates artificial 

neural networks with representation learning. With powerful function approximators like 

neural networks, deep learning has been more popular in recent years. Various applications 

such as natural language processing and computer vision have offered cutting-edge 

performance.  

Recurrent neural networks (RNNs) are a kind of deep learning models in which the 

connections between nodes form a directed or undirected graph along a temporal sequence. 

Using RNNs for sequence modeling and generation has become the norm [52]. The vanilla 

recurrent neural network is a feed-forward neural network with sequence memories. The 

parameters are shared across time steps and thus provide two significant advantages: First, 

there are a lot less parameters to deal with in a RNN compared with a fully connected 

neural network when it comes to sequence learning. Second, RNNs can handle a flexible 

length of sequences. We denote the forward propagation of a vanilla RNN in Equation (1) 

and (2) in functional form, with the input vector 𝑥𝑡, output 𝑦𝑡, and hidden state ℎ𝑡 at the 

current time step 𝑡. In order to produce the next hidden state, ℎ𝑡+1, we need some weight 

matrices 𝑊, bias coefficient 𝑏, and a non-linearity activation function. 

𝑦𝑡 = 𝑊𝑥𝑥𝑡 + 𝑊ℎℎ𝑡−1 + 𝑏 (1) 

ℎ𝑡+1 = tanh(𝑦𝑡) (2) 

In a RNN, we essentially back-propagation through time (BPTT), going forward 

through the whole sequence to compute losses 𝐿 , and going backward through entire 

sequence to compute gradients, as in Equation (3) and (4): 

𝛿𝐿

𝛿𝑊𝑥
=  ∑

𝜕𝐿𝑡

𝜕ℎ𝑡

𝑇

𝑡=0

𝑥𝑡 (3) 

𝛿𝐿

𝛿𝑊ℎ
= ∑

𝜕𝐿𝑡

𝜕ℎ𝑡

𝑇

𝑡=0

ℎ𝑡−1 (4) 

It is possible for the gradient to “explode” (tend to infinity) or “vanish” (ten to zero) 

exponentially with respect to the sequence lengths. This is known as the 

exploding/vanishing gradient problem, which results in substantial inefficiency when 

training long sequences. With a proven ability to tackle the gradient issue, Long Short-

Term Memory (LSTM) has become one of the most used variations of RNNs, and is often 

used to classify, process and make predictions based on time series data. A variety of 

transportation-related studies have been undertaken, including work on predicting traffic 

flow [53], traffic speed [54], individual locations [55], transportation mode [56], pedestrian 

motion [57], as well as aircraft trajectory [57, 58, 59], and flight delay[60]. 
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Figure 5. The architecture of an LSTM memory cell [61]. 

Figure 5 depicts the architecture of a common LSTM memory cell. The specialty of an 

LSTM memory cell is that it adds an input gate 𝑖, an output gate 𝑜, and a forget gate 𝑓 for 

regulating the information flow into and out of the cell 𝑐  that remembers values over 

arbitrary time intervals. The forward pass of an LSTM cell is expressed as Equation (5) – 

(9) in compact forms, with the operator ∘ denotes the Hadamard product (element-wise 

product). The three gates are activated by the sigmoid function (𝜎), while the cell memory 

and hidden state are activated by the hyperbolic tangent function (𝑡𝑎𝑛ℎ).  

𝑓𝑡 =  𝜎(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓) (5) 

𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖) (6) 

𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑜) (7) 

𝑐𝑡 = 𝑓𝑡 ∘ 𝑐𝑡−1 + 𝑖𝑡 ∘ tanh(𝑊𝑥𝑐𝑥𝑡 + 𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐) (8) 

ℎ𝑡 = 𝑜𝑡 ∘ tanh(𝑐𝑡) (9) 

2.3.4. Generative adversarial networks 

A generative adversarial network (GAN) is a class of machine learning frameworks 

designed by Ian Goodfellow and his colleagues in 2014. Given a training set, the technique 

learns to generate new data with the same statistics as the training set. Figure 6 

demonstrates the concept of the GAN architecture.  

GANs use an adversarial training workflow consisting of a generator and a 

discriminator, which are deep models like neural networks. The generator learns to map 

from a latent space (e.g., a multivariate normal distribution) to a data distribution of interest 
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and produces new data samples. The real data samples and the candidate data samples 

produced by the generator from the true data distribution, are together fed into the 

discriminator. The discriminator is trained to classify (or distinguish) each sample as real 

or fake and the classification errors are used to train the parameters of both the generator 

and discriminator through backpropagation. 

 

Figure 6. The architecture of a canonical GAN. 

The core idea of a GAN is based on the indirect, or adversarial, training of the generator 

through the discriminator, which itself is also being updated dynamically. In other words, 

the generator is trained to succeed in “fooling” the discriminator by producing synthetic 

samples that the discriminator thinks are not synthesized, while at the same time, the 

discriminator is also trained to increase its ability to distinguish the slight contrast between 

the genuine (real samples) and the generated (fake samples).  

Mode collapse [62] is a well-known problem in GANs where they generate only a few 

modes of the underlying distribution. It is particularly exacerbated in time series use cases, 

such as when we generate go-around sequences, because of the high variability in the range 

of feature values. Some researchers perceive the root problem to be a weak discriminative 

network that fails to notice the pattern of omission, while others assign blame to a bad 

choice of objective function.  
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3. Anomaly Detection 

3.1. Go-Around Detection 

The raw flight trajectory data does not explicitly label go-around flights that can serve 

as ground truth for the subsequent analysis. Current practice of go-around detection is 

mostly based on voluntary self-reports of controllers or pilots, which are typically 

unreliable and incomplete. Ref. [63] used ASRS data, which is self-reported, voluntary, 

post-event data, to forecast the trends of go-around causes and counts. It requires manual 

labeling, and the results fail to provide predictive information before go-around happens. 

Survey or interview data from flight crew, which could be unrepresentative, was used by 

Flight Safety Foundation [26] to examine go-around decision-making and the outcome of 

go-arounds. 3D full-flight simulation data [64] and the training flight data help with the 

analysis of go-arounds, but the size of data is insufficient. 

We did not find an algorithm that rigorously detects go-around occurrence from flight 

track data in the open literature. Therefore, we propose a scientific way of detecting go-

around occurrence by analyzing historical flight trajectories. The trajectory-based detection 

algorithm can not only label the flight in binary responses (go-around or not), but also 

identify when (timestamp) and where (3D position) the go-around occurred. Each flight 

trajectory will be processed and must meet the criteria to be considered as a go-around. For 

each labeled go-around flight, we treated the timestamp/trackpoint at the start of ascent as 

the initial time/location for the go-around procedure, and truncated the trajectory after that 

point. 

 

 

Figure 7. Altitude profile (black) and distance profile (blue) of a normal landing flight 

(left) and a go-around flight (right). 
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According to [35], “A go-around begins when the crew aborts the descent to the 

planned landing runway during the approach phase; it ends after speed and configuration 

are established at a defined maneuvering altitude or to continue the climb for the purpose 

of the cruise.” Our proposed go-around detection algorithm identifies go-arounds by 

analyzing historical full flight trajectories. Figure 7 compares the horizontal and vertical 

profiles between a normal flight approach (left) and a typical go-around flight (right). In 

these plots, the black curves show the altitude and blue curves show the horizontal distance 

away from the airport. A typical go-around flight would first decrease its altitude and 

distance to the landing runway threshold, then climb and fly away from the airport for 

another approach and landing. 

The main block of this algorithm is the change point detection using piecewise linear 

regression. As discussed above and as shown in Figure 7, the trend shifts in aircraft altitude 

and the distance to the airport signify go-around events in most cases. Piecewise linear 

regression models are suited here to capture those changes since the models look for first-

order changes, that is, points at which the rate of change differs from one region to another. 

We first define a buffer size of 5, indicating the number of data points the algorithm will 

consider to find a change point. Then we compute two residual sum-of-squares (RSS) for 

a piecewise linear fit, with 𝑅𝑆𝑆1 determines the sum of the RSS for the first five data points 

and the RSS for the subsequent five data points, while 𝑅𝑆𝑆2 determines the RSS for the 

combined set of these ten data points. The two values (𝑅𝑆𝑆1 and 𝑅𝑆𝑆2) are used to calculate 

the F-statistic associated with the two fits. The F-statistic is used to evaluate if one line or 

two lines would better represent the analyzed region of data, i.e., whether a change point 

exists for this region. The detailed trajectory-based go-around detection algorithm is 

presented in Table 1. 

The trajectory-based go-around detection algorithm is designed to detect any aborted 

landing behaviors – including missed approaches and go-arounds – that are initiated within 

10 nm of the airport, regardless of whether the flight overflies the runway, or whether it 

proceeds to the Missed Approach Points (MAPt). The definition of go-around in this study 

applies to both VFR aircraft and IFR aircraft, as long as the aircraft tries again for the 

landing.  

 

 

Figure 8. Perpendicular distance [65] between the extended runway centerline 𝐿𝑖 and the 

trajectory segment 𝐿𝑗. 
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Table 1. Go-around detection algorithm. 

Algorithm: Go-around Detection Algorithm 

INPUT: Four-dimensional flight track data (latitude, longitude, altitude, and time) 

INITIALIZE: Coordinates of arrival runway thresholds 

OUTPUT: Go-around labels and their related properties (execution time, execution altitude, etc.) 

Procedure 

Step 1: Data preprocessing. Apply median filtering with a sliding window size of 10 to remove noise 

from the trajectory records. Remove incomplete trajectories (the altitude of the last track point is higher 

than 500 feet) and define landing endpoint (the rate of descent equals 0 feet) for complete trajectories. 

Step 2: Altitude check. Piecewise linear regression is applied to identify points at which the slope of 

the altitude evolution curve, the black curve shown in Figure 7, is changed. Each flight trajectory is 

processed and must meet the following criteria to be considered as a go-around: 

• The altitude at the start of ascent is no more than ℎ𝑠𝑡𝑎𝑟𝑡 (default value of 5500 feet); 

• The total altitude gain during the ascent must not be less than ∆ℎ (default value of 400 feet). 

Step 3: Define the analyzed segment. For flights that pass the altitude checks in Step 2, the landing 

endpoint (defined in Step 1) is updated to the point at which the altitude starts increasing. Each aircraft’s 

analyzed segment is a two-minute (𝑇𝑓𝑖𝑛𝑎𝑙) trajectory segment ending at the landing endpoint. 

Step 4: Calculate the landing runway. We did not directly use the landing runway information 

recorded in the given dataset due to a significant number of missing and incorrect records. Instead, we 

calculate the landing runway using the two-minute analyzed segment extracted from Step 3. For every 

trajectory segment formed by two track points, we calculate the perpendicular distance [65] from the 

extended centerlines of all the available arrival runways (by configuration) using formulas in Figure 8. 

Each track segment thus votes for the closest Extended Runway Centerline (ERC) segment. The landing 

runway is the one that receives the most votes from track points in the vector. This runway is also used 

as one of the features in the statistical model. 

Step 5: Distance check. For each track point of the two-minute analyzed flight trajectory segment, 

calculate the distance to the runway threshold markings of the corresponding landing runway obtained 

in Step 4. Piecewise linear regression is applied to identify points at which the slope of the curve 

representing distance to landing runway threshold, the blue curve is shown in Figure 7, is changed. Each 

flight trajectory is processed and must meet the following criteria to be considered as a go-around: 

• When a go-around flight is within 1-nautical-mile range of the airport, its altitude does not 

exceed ℎ1𝑛𝑚 (default value of 1500 feet); 

• Go-around must occur within the 10-nautical-mile range of the airport, in order to distinguish 

go-arounds from aircraft being vectored or in holding patterns; 

• The ascending segment of a go-around trajectory must be within 10 nm of the center of the 

airport. 

Step 6: Multi-go-arounds. The two consecutive go-around procedures should be separated by at least 

5 minutes (𝑇𝑚𝑢𝑙𝑡𝑖). The trajectory starting point for the second and subsequent flight trajectory segments 

is when the previous go-around trajectory segment starts ascending. 

end procedure 
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We developed our algorithm based on consultations from subject matter experts and 

sensitivity analysis to determine parameters such as the altitude at the start of ascent ℎ𝑠𝑡𝑎𝑟𝑡 

and the total altitude gain during the ascent ∆ℎ. We further applied it to the JFK arrival 

flights except for military flights, general aviation, and helicopters. Figure 9 illustrates the 

JFK airport chart and the runway threshold of runway 22L as an example. We collected 

the coordinate information of the midpoint of all the runway threshold bars at JFK airport 

(marked as yellow for runway 22L in Figure 9), and applied it as the input to the go-around 

detection algorithm described in Table 1. In this dissertation, the “runway threshold” 

specifically refers to the midpoint of the runway threshold bar.  

 

   

Figure 9. JFK airport chart (left) and the runway threshold marking (right). 

Two of the detected go-around flight trajectories are visualized in Figure 10. The flight 

in the left plot aborted the descent to the planned runway 22R, overflew the runway, 

returned to the landing queue, and finally landed on runway 22L. The flight in the right 

plot was planned to land on runway 4L, but it ended up landing on runway 22L (Note that 

this flight is counted as a go-around and its subsequent successful landing is not 

considered). In total, 433 go-arounds have been detected from July 1st to December 24th in 

2018, which accounts for 0.43% of all JFK arrivals within the period. This statistic agrees 

with the FAA report, which indicates that the average percentage of go-around occurrence 

across the core 30 airports in the U.S. from 2012 to 2017 is 0.4% [25]. 

Midpoint of the 
runway threshold bar

Runway Threshold Marking
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Figure 10. Exampled go-around flight trajectories. 

3.2. Validation 

The other effort in this chapter involved validating actual go-around occurrences that 

would serve as ground truth or label data for the models. For validation purposes, we apply 

our detection algorithm on the historical trajectory data to identify a rapid reversal in 

descent within 10 nm of the airport. We then compare the go-around detection results (i.e., 

labels generated for historical flights) with the Sherlock go-around reports for the New 

York Terminal Radar Approach Control facility (New York TRACON, also known as 

N90). The N90 report is based on business rules developed by the FAA in the Performance 

Data Analysis and Reporting System (an entirely independent method).  

Both methods initially exhibited a significant number of false positives due to general 

aviation aircraft operating in the vicinity of JFK. A filter was created to identify and remove 

go-around events involving GA aircraft. We classified jet aircraft and multi-engine 

turboprop aircraft as commercial aircraft. Single-engine turboprops, all piston-engine 

aircraft, and any helicopters, gliders, and tiltrotors were classified as GA aircraft. The filter 

was applied to the labels produced by both methods of go-around detection. 

Next, the go-around events from each methodology were cross-referenced by 

comparing the aircraft identifier and the go-around event timestamp, allowing for up to 

five minutes of difference in time between the methods. Then, through applying filters to 

the Sherlock go-around N90 reports to exclude general aviation VFR flights and to enhance 

our detection algorithm to handle operational situations like diversions, we were able to 

get the methodologies to converge on a labelled data set for 2018 operations at JFK.  

JFK Airport JFK Airport
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Figure 11. Month-by-month cross-referenced results of the Sherlock go-around N90 

reports (blue) and our go-around detection algorithm (orange). 

Figure 11 shows the cross-referenced results of the Sherlock go-around N90 reports (in 

blue) and our go-around detection algorithm results (in orange) by month. In total, our go-

around detection algorithm identifies 1,012 go-around occurrences (including multi-go-

around events), while the N90 report detects 767 go-around events. Nearly all of the go-

around events identified in the N90 report, 743 of them, were also detected by our 

algorithm. We thus visually inspect the few occurrences in which the two methodologies 

disagree. Among the 24 N90-only events, 17 of them are false positives, and we add the 7 

true-positive events to update our labeled set. Among the 269 events detected by our 

algorithm only, 255 of them are true positives, and we remove the 8 false-positive events 

from our labeled set. There were still 6 occurrences detected by our algorithm but did not 

appear in the N90 reports. We thought these to be questionable events and hence omitted 

them from the labeled set (i.e., still in the flight data set for analysis, but labeled as non-

go-around flights). Figure 12 shows two of the questionable events, with the left aircraft 

NCA159 descends to 400 feet and then climbs, but does not seem to be aligned with any 

runway. On the right, the aircraft DAL405 descends and aligns with runway 31L though 

there is most likely a data error.  

In general, our algorithm is able to identify more true positive events because it can 

capture go-arounds initiated farther away from the runway threshold, and with more robust 

criteria. Additional work is required to refine this detection algorithm and to consult with 

SMEs to increase the annotation quality.  
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Figure 12. Questionable go-around labeled events. 
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4. Feature Engineering 

4.1. Overview 

The goal of this chapter is to determine the features that may affect go-around 

occurrence and how we transform them from raw data to provide useful inputs for the 

following statistical analysis and machine learning applications. A feature is an attribute or 

property of the system being studied (in this case the air traffic on approach to an airport) 

on which analysis or prediction is to be done. Through literature search, theoretical studies, 

interviews with subject matter experts (SMEs) such as airport and Air Traffic Control 

Tower operational personnel, as well as the data availability, we developed seven 

categories of features including aircraft characteristics, approach stability features, in-trail 

separation features, weather, airport conditions, go-around clustering effect, and surface 

operation features.  

In this chapter, we will first introduce a concept, called information cutoff gate, to 

demonstrate why and how we subsample the flight sequences for the subsequent studies. 

We then summarize the process of feature extraction and derivation in categories. Among 

all the features derived, we propose a new metric, called runway occupancy buffer, to 

measure the surface operation conditions. We will go into more details for this feature in 

Chapter 5.  

4.2. Information Cutoff Gate 

In the raw data, the flight trajectory data are time series of aircraft position recorded 

every few seconds (roughly every 5 seconds), which constitutes a dense representation of 

the trajectories in the terminal airspace. Presumably, each track point in the dataset could 

be counted as one observation since the features vary. Processing such dense time series 

observations in machine learning algorithms could result in overfit and increase the training 

time.  

In order to reduce the computational complexity while maintaining an informative 

representation of trajectories, we apply linear extrapolation to subsample the flight 

trajectories at every nautical mile away from the landing runways, and only kept the 

trajectories within ten nautical miles of any the landing runway thresholds at the analyzed 

airport (Flights beginning apparent go-arounds outside the 10 nm range will not be 

considered). We hereafter define those points at every nautical mile away from the landing 

runway thresholds as information cutoff gates, as shown in Figure 13. We will only derive 

features and annotate go-around labels at those gates based on the information available 

when the subject flight passes a certain information cutoff gate. In other words, we will 

model go-around probabilities based on information available when the aircraft reaches 

these gates, approximately every 15 – 30 seconds during the approach phase.  
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Another reason of identifying the information cutoff gate is to make sure that we only 

consider those features that can be evaluated at a certain time prior to when the go-around 

occurs – there is no point in predicting go-arounds after it already happens. The 

extrapolation technique ensures that the sequential prediction will be only based on the 

information available when the subject flight passes a certain information cutoff gate. Note 

that this distance-driven sampling strategy also guarantees that time-varying features are 

comparable for all the flights in the data set. Taking “5nm gate” as an example, (1) only 

go-arounds detected within [0, 5) nm from the landing runway threshold will be considered; 

(2) flights initiating go-arounds when they are more than 5nm from the threshold are not 

considered; (3) we do not include any features in modeling that cannot be known when the 

flight passes the 5 nm arc. 

As a result, each flight approach procedure can be represented by a sequence with a 

fixed number of information cutoff gates – located at 𝑑 = 10, 9, …, 1 nm from the runway 

threshold. Some of the flight sequences may have a length of fewer gates if the aircraft 

initiated a go-around or otherwise aborted the approach prior to concluding the approach 

procedure. For these flights, we consider only those features that can be evaluated before 

the initiation of a go-around. The available features thus depend on the distance of the go-

around initiation point from the runway. In this study, we assume a go-around is executed 

when its altitude starts increasing during the approach procedure based on our detection 

algorithm in Chapter 3.  

 

Figure 13. Information cutoff gates as shown as the vertical lines on the virtual approach 

path on the left. 

4.3. Features 

We conducted several interviews with subject matter experts and NASA to understand 

more fully the potential factors that should be included in the go-around prediction models 

from an operational standpoint. Considering the data availability, we derive the following 

seven categories of features that we would use as inputs to the statistical model and 

predictive models. These include: aircraft characteristics, approach stability features, in-
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trail separation features, weather features, airport conditions, and surface operation features. 

The following subsections summarize the process of feature extraction and derivation from 

the raw data. The variable code and variable description can be found in Table 3 at the end 

of this chapter. Though the space is limited to report the summary statistics of all the 

features at all information cutoff gates, we include the summary statistics for the 5 nm 

information cutoff gate in Table 3 as an illustration. 

Using data described in Appendix, observations are obtained for every flight operating 

during the study period with seven categories of features. After preprocessing and matching 

with the ASPM dataset, the final output has up to ten distance-varying feature vectors for 

each flight observation, one at each information cutoff gate. Each vector represents one 

distance-stamped record. We will feed the time series feature matrix into the predictive 

model presented in Chapter 7, 8, and 9, while using only one static feature matrix (at the 5 

nm information cutoff gate) for statistical modeling in Chapter 6. 

4.3.1. Aircraft and Runway Characteristics 

We categories airlines as international and domestic carriers, because we expect that 

pilots working for domestic (U.S.) airlines are more experienced with landing in JFK 

airport. Aircraft type is considered by categorizing as narrow body and wide body, in order 

to capture differences in separation requirements and handling characteristics. We also 

identify the landing runway to capture different approach patterns. Specifically, one-hot 

encoding, which creates binary columns to indicate the presence of each possible value 

from the original categorical feature, is applied to create dummy variables for wide-body 

aircraft (Body), international airliner (Airline), and the calculated landing runway (Runway). 

4.3.2. Approach Stability 

As the [36] emphasized, “If not stabilized, go around”. Continuation of an unstabilized 

approach to land may result in an aircraft arriving at the runway threshold too high, too 

fast, out of alignment with the runway centerline, incorrectly configured, or otherwise 

unable to land safely. Accordingly, we derive altitude deviation (AltDev), groundspeed 

(Speed), angle with the extended runway centerline (Angle), and Kinetic energy height 

(Energy) as flight approach stability features to capture potential instability indicators that 

may prompt a go-around.  

Normally the optimum vertical profile to use during a landing approach is a 3-degree 

glideslope path [66], which requires that the aircraft descend at about 300 feet per nautical 

mile. A large deviation from the target descent rate indicates an unstable approach. Thus, 

we calculate the altitude deviation from the standard 3-degree glideslope path (AltDev) to 

capture the potential unstabilized approach risk: 

𝐴𝑙𝑡𝐷𝑒𝑣𝑖
𝑑 = |ℎ𝑖

𝑑 − 6076.12 ∙ 𝑑 ∙ tan(3°)| (10) 

where ℎ𝑖
𝑑 is aircraft 𝑖’s altitude in feet at the 𝑑 nm information cutoff gate, 1 nm = 6076.12 

feet. 
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When the aircraft 𝑖 is at the 𝑑 nm information cutoff gate, its groundspeed (Speed) after 

median filtering is extrapolated to capture the situation in which an aircraft approaches too 

fast or too slow. We applied the median filtering as a preprocessing step to remove out-of-

range isolated noise in the trajectory data. The median filter is a smoothing technique, 

which runs through the data entry by entry, replacing each entry with the median of 

neighboring entries. The angle of horizontal deviation from the extended runway centerline 

(Angle) is also calculated using the flight latitude and longitude information to measure the 

misalignment of the standard approach path. As shown in Figure 14, the solid blue line is 

the ERC of runway 31R. When a flight, represented as red dot, intercepts the distance arc 

(e.g., 5nm), we record and calculate the following features at this moment: Altitude (alt) 

(in 100 feet), Groundspeed (speed) (in knots), and Perpendicular distance to ERC (horiz) 

(in nautical miles).  

 

Figure 14. Diagram of trajectory performance features. 

Aircraft energy management is of great importance during the approach procedure to 

maintain safety. An aircraft’s energy state is the sum of potential energy and kinetic energy 

per unit weight [67]. However, the calculation requires information on aircraft mass, which 

depends on payload and fuel load data that are not available to the researchers. Thus, we 

use the energy height metric that can be defined as the hypothetical height [68], 𝐻𝑖, at 

which the aircraft 𝑖’s potential energy (𝑚𝑖𝑔𝐻𝑖) is equal to the total energy at its current 

state (𝑚𝑖𝑔ℎ𝑖 + 
1

2
𝑚𝑖𝑣𝑖

2), which is calculated as:  

𝐻𝑖
𝑑 = ℎ𝑖

𝑑 + 
(𝑣𝑖

𝑑)2

2𝑔
(11) 

where 𝐻𝑖
𝑑 is the kinetic energy height to be calculated at the 𝑑 nm information cutoff gate 

(Energy, in feet), ℎ𝑖
𝑑 and 𝑣𝑖

𝑑  are respectively the aircraft altitude and aircraft groundspeed 

when the flight 𝑖  is at the  𝑑  nm information cutoff gate, and 𝑔  is the constant of 

gravitational acceleration. This metric can be calculated for each flight during the approach 

process to represent the aircraft energy-related risks using only the surveillance track data. 
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4.3.3. In-trail Separation 

Separation is defined as the distance, either horizontal or vertical, between two aircraft. 

Here we are interested in the distance between a given aircraft on approach the lead aircraft 

(if any) landing on the same runway. The minimum required horizontal separation in this 

situation depends on the relative weight class of two aircraft and meteorological conditions 

(visual or instrument). A defined Loss of Separation (LOS) between airborne aircraft 

occurs whenever the specified separation minima in controlled airspace are breached. In 

this study, the loss of separation is calculated as the difference between the minimum 

required separation from the FAA standard and the actual separation between the lead-trail 

aircraft pair. We expect that a greater loss of separation (in nautical miles) increases the 

probability of go-around. Therefore, to capture the separation effect, we derive four 

variables that are employed in the statistical models: Loss of separation (LOS), a dummy 

variable NoLead indicating the case where there was no leading aircraft for a given flight, 

the speed difference (SpeedDiff) and the altitude difference (AltDiff) between leading and 

trailing (subject) flight.  

The algorithm for obtaining these variables requires three steps – finding leading and 

trailing aircraft pair, obtaining actual separations, speed difference, and altitude difference 

for the lead-trail aircraft pair, and finally calculating the loss of separation. We elaborate 

on these steps below: 

i. Group flights with the same (calculated) landing runway obtained from the go-

around detection algorithm in Table 1, and sort them in chronological order based 

on the time that flights cross the runway threshold. For each group, we create a list 

of tuples where each tuple contains two consecutive aircraft that have been sorted. 

Within each tuple, if the runway threshold crossing time difference of the two 

aircraft is smaller than 10 minutes, then we define them as a lead-trail aircraft pair. 

Otherwise, we set a dummy variable NoLead to 1 for the trailing (subject) aircraft 

to indicate the case in which, for all practical purposes, there was no leading aircraft 

for a flight. 

ii. For each trailing flight, we find the linearly extrapolated timestamp 𝑡 at which the 

trailing (subject) flight is d nm to its landing runway. At the extrapolated timestamp 

𝑡, we again extrapolate the locations (latitude, longitude, altitude) and groundspeed 

of both leading and trailing aircraft. The separation between these two extrapolated 

locations (in terms of latitude and longitude) is noted as 𝑆𝑡. We also calculate the 

speed difference (SpeedDiff) and altitude difference (AltDiff) between leading and 

trailing (subject) flight at this extrapolated timestamp 𝑡. To be specific, we subtract 

the extrapolated groundspeed/altitude of the leading aircraft from the extrapolated 
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groundspeed/altitude of the trailing (subject) aircraft when the trailing flight is at 

the d nm information cutoff gate. 

iii. Obtain the separation minima from FAA Wake Separation Standards [69] based on 

the weight class of leading and trailing aircraft under VMC (𝑆𝑚
𝑉𝑀𝐶) and IMC (𝑆𝑚

𝐼𝑀𝐶). 

When the trailing flight is at 5 nm to its landing runway, if the meteorological 

condition is recorded as “VMC” in the ASPM quarter-hour dataset, the standard 

separation minima is 𝑆𝑚 = S𝑚
𝑉𝑀𝐶 (e.g., 1.9 nm for the Large-Large lead-trail pairs), 

otherwise 𝑆𝑚 = S𝑚
𝐼𝑀𝐶  (e.g., 3.0 nm for the Large-Large lead-trail pairs). Thus, the 

loss of separation (LOS) is 𝑆𝑙 = max(0, 𝑆𝑚  – 𝑆𝑡  ), and is directly employed as a 

continuous variable in the model. 

4.3.4. Weather 

We expected that runway configuration change, arrival traffic, airport capacity, 

visibility, ceiling, and wind condition could also trigger a go-around. To capture the 

expected non-linearity of impacts of various visual conditions on go-around occurrence, 

the visibility variable (in statute miles) is discretized into three continuous subsections: [0, 

1], (1, 3], (3, 5], (5, 10]. Similarly, the ceiling variable (in 100 feet) is discretized into four 

continuous subsections: [0, 5], (5, 10], (10, 30], (30, 100]. The intervals are based on the 

criteria set for defining low IFR, IFR, marginal VFR, and VFR [70]. For example, if the 

recorded ceiling equals 600 feet, the discretized ceiling variables Ceilingk are 5, 1, 0, 0.  

The ASPM airport quarter-hour dataset provides surface wind speed (in knots), wind 

angle (in degrees), and arrival runway configuration. For each landing aircraft, we apply 

trigonometric calculations to compute the headwind/tailwind speed and crosswind speed 

with the information of landing runway configuration at the airport. For the variable wind 

in which the wind angle was not available, we set the headwind/tailwind speed and the 

crosswind speed as √2/4 × wind speed. When the wind is a headwind, the tailwind is set 

to zero, and vice versa.  

4.3.5. Airport Conditions 

We subtract the arrival/departure rate (counts) from the arrival/departure demand 

(counts) to capture the airport traffic conditions. A negative sign in these demand-minus-

capacity variables indicates the absence of an arrival queue. The Airport Arrival/Departure 

Rate (AAR/ADR) and the number of intended landing/departing aircraft (demand) are 

obtained directly from the ASPM dataset on a quarter-hourly basis. For a given flight, the 

change of runway configuration variable (RwyChange) is set to 1 if the used runway 

configuration during the observed period is different from the preceding 15-minute period, 

and 0 otherwise. As an additional indicator of operational traffic, we include daytime 

dummy variables if the observed aircraft reaches 𝑑 nm information cutoff gate between 6 
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am and 6 pm in local time (Daytime). A dummy variable is also created to indicate the 

Instrument Meteorological Conditions (IMC), as opposed to Visual Meteorological 

Conditions (VMC). 

4.3.6. Go-Around Clustering Effect 

From the go-around detection results, we observed that go-arounds sometimes occur in 

clusters—that is several occur in a short time interval. To capture this effect, we calculate 

the time difference between when a given flight is at the 𝑑 nm information cutoff gate and 

the initiation time of the latest go-around that occurred in the past 24 hours. This minimum 

time difference (GaGap) among all other go-arounds in record is used as a temporal 

clustering feature. If no go-arounds occurred in the past 24 hours for a given flight, we set 

the GaGap to 1440 (minutes). The GaGap variable only focuses on the effect from the 

previous go-around flight and such an effect weakens with time. As a second clustering 

feature, we include the number of go-arounds (except the given flight if it was a go-around) 

that occurred in the past 30 minutes in JFK airport when a given flight i was at 𝑑 nm from 

the runway threshold (GaCnt). This variable measures the clustering effect in terms of 

quantity.  

4.3.7. Runway Incursion Risk 

In the case where pilots or controllers anticipate a runway incursion, a common practice 

would be to initiate a go-around [37]. Therefore, we have derived two variables – predicted 

Runway Occupancy Buffer (𝑅𝑂𝐵̂) and counts of objects (both aircraft and vehicles) on the 

runway (RwyCnt) - to serve as indicators of incursion risk and used them as features in our 

go-around model. 

One of the incursion variables is the number of aircraft or ground vehicles on the 

runway (RwyCnt) when the subject flight is 𝑑 nm from its landing runway threshold. We 

first define the Runway Safety Area (RSA) polygon bounded by holding position markings 

painted on the taxiway or runway surface [71, 72]. When the subject aircraft reaches the 𝑑 

nm information cutoff gate, we count the total number of arrivals, departures, and crossing 

aircraft/vehicles that are contained in the corresponding landing RSA polygon at that 

moment, using ASDE-X surface track data.  

The ROB is defined as the time difference between the runway threshold crossing time 

of the trailing aircraft and the runway exit time of the leading aircraft. When a trailing 

aircraft reaches a certain information cutoff gate, the 𝑅𝑂𝐵̂ is predicted using algorithms 

given in the next chapter. It captures the variations in the runway threshold interarrival time 

[73], landing runway occupancy time [74], and the spacing buffers routinely applied by air 

traffic controllers [75]. Note that we incorporate the predicted 𝑅𝑂𝐵̂ at each information 

cutoff gate as one of the feature inputs for the following statistical modeling (Chapter 6) 

and predictive analytics (Chapter 7), instead of the observed ROB. This is to reflect the 

fact that the information available to controllers and pilots are limited at the time the aircraft 

crosses that gate. The decision of go-arounds is largely depending on human anticipation 
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of the surface status and runway incursion risk. Such nested configuration also allows us 

to explore how this predicted feature can improve model results. In Chapter 5, we will get 

into details on how to obtain the feature, predicted runway occupancy buffer 𝑅𝑂𝐵̂. For 

flights that do not have leading aircraft, this value is set 0 seconds, but with a dummy 

variable, NoLead added as described above.  

4.4. Feature Types 

In this section, we further discuss the features and divide them into two types – 

attributes and time series features. This serves as preliminary for Chapter 7 and Chapter 8 

of this thesis, as different data/feature types require different handlings when we develop 

the learning models (e.g., IO-HMM, and GAN).  

The attributes are static features that will not change during the final approach, such as 

aircraft type, weight class, operated airline, and landing runways. The time series features 

are dynamic, as they will vary along with the approach. Examples include flight altitude 

and ground speed. Table 2 shows an example of a go-around flight sequence in the dataset, 

where rows corresponding to nautical mile distance timestamp, and columns describing 

features at each timestamp.  

Table 2. An example flight sequence data. 

Timestamp 
Distance to 

threshold (nm) 

Weight 

class 

Operated 

airline 

Altitude 

(100 feet) 

Groundspeed 

(knot) 
… 

1 10 Large UA 26.52 128.07 … 

2 9 Large UA 24.00 118.06 … 

3 8 Large UA 21.99 130.41 … 

4 7 Large UA 19.83 119.17 … 

5 6 Large UA 17.00 76.29 … 

6 5 Large UA 17.00 103.04 … 

7 4 Large UA 14.00 95.85 … 

8 3 Large UA 11.00 118.18 … 

9 2 Large UA 7.64 123.00 … 

10 1 Large UA 4.00 125.29 … 
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Table 3. Model variables and summary statistics. 

Variable Category 
Variable 

Code 
Variable Description 

When flight 𝒊 is at 5 nm from 

the threshold 

Mean Min Max 

(I) Aircraft and 

Runway 

Characteristics 

Airline+ 

1 if flight 𝑖 is operated by an 

international airline, 0 

otherwise 

0.21 0 1 

Body+ 
1 if flight 𝑖 is wide-body 

aircraft, 0 otherwise 
0.24 0 1 

Runway+ 
Dummy variable for calculated 

landing runway of flight 𝑖 
- 0 1 

Daytime+ 

1 if the observed time is 

between 6 am and 6 pm in 

local time, 0 otherwise 

0.61 0 1 

(II) Approach 

Stability 

Angle 
Angle with the Extended 

Runway Centerline (in degree) 
7.99 0.00 68.45 

AltDev 

Absolute altitude deviation 

from 3-degree glideslope (in 

feet) 

151.92 0.00 719.12 

Speed Flight groundspeed (in knots) 163.19 77.28 277.85 

Energy Kinetic energy height (in feet) 2841.45 1318.72 5370.49 

(III) In-trail 

Separation 

LOS 

The loss of separation between 

leading and the trailing flight 𝑖 
(in nautical miles) 

0.09 0.00 2.61 

SpeedDiff 

Groundspeed difference 

between leading and the 

trailing flight 𝑖 (in knots) 

20.92 -86.95 144.73 

AltDiff 

The altitude difference between 

leading and trailing flight 𝑖 (in 

100 feet) 

13.30 0.50 22.28 

NoLead+ 

1 if there is no leading aircraft 

in front of flight 𝑖 within 10-

minute landing sequence, 0 

otherwise 

0.13 0 1 

(IV) Weather Wind 

Wind speed where the 

headwind component is 

subtracted (in knots) 

5.72 0 25.98 
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Variable Category 
Variable 

Code 
Variable Description 

When flight 𝒊 is at 5 nm from 

the threshold 

Mean Min Max 

Visibilityk 

Discretized visibility (k = 

1,2,3; intervals are [0, 1], (1, 

3], (3, 5] and (5, 10] in miles) 

- 0 10 

Ceilingk 

Discretized ceiling (k =1, 2, 3, 

4; intervals are [0, 5], (5, 10], 

(10, 30], (30, 100] (in 100 feet) 

- 2 100 

(V) Airport 

Conditions 

ArrQue 

Difference between airport 

supplied arrival rate (AAR) 

and the number of intended 

landing aircraft (counts) 

-2.04 -15 31 

DepQue 

Difference between airport 

supplied departure rate (ADR) 

and the number of intended 

depart aircraft (counts) 

1.24 -15 52 

RwyChange+ 

1 if the used runway 

configuration is changed from 

the previous quarter hour, 

otherwise 0 

0.08 0 1 

IMC+ 1 for IMC, 0 for VMC 0.15 0 1 

(VI) Go-around 

Clustering Effect 

Features 

GaGap 

The minimal time interval 

between the approaching time 

of flight 𝑖 and the initiation 

time of the latest go-around 

occurred in the past 24 hours 

(in minutes) 

712.62 5.37 1440 

GaCnt 
The number of go-arounds 

occurred in the past 30 minutes 
0.06 0 5 

(VII)Surface 

Operations 

𝑅𝑂𝐵̂ 
Predicted runway occupancy 

buffer (in seconds) 
30.60 -28.89 146.79 

RwyCnt 

The number of aircraft and 

vehicles appearing on the 

landing runway (counts) 

2.04 0 9 

+ Variables are one-hot encoded. 
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5. Runway Occupancy Buffer 

5.1. Overview 

To enable the safe and efficient integration of NextGen, the FAA Administrator’s 

Strategic Priorities is moving to risk-based decision-making and places great emphasis on 

finding an optimal compromise between runway safety and efficiency. As the air traffic 

demand grows, how to maximize the runway throughput without compromising runway 

safety levels becomes more important to Air Traffic Management and Control (ATM/ATC) 

strategies. Toward this end, it would be useful for controllers and pilots to have real-time 

predictions of when arriving flights will cross the runway threshold relative to the 

exit/departure of the previous aircraft from the runway. Such predictions could support a 

decision-support tool to assist in adjusting the arrival time to increase or reduce this time 

difference as appropriate. 

In this study, we introduce a new metric - Runway Occupancy Buffer (ROB) - to 

unmask the interaction between air and surface operation during flight approach 

procedures. For an in-trail arrival aircraft pair, the leading aircraft must clear the runway 

before the trailing aircraft crosses the runway threshold to prevent Simultaneous Runway 

Occupancy (SRO). The difference between these two timestamps is what we call the ROB. 

During busy periods, ROBs ideally should be small in order to maximize runway 

efficiency. In this case, when the leading aircraft exits the runway, the trailing aircraft will 

be about to cross the runway threshold. Otherwise, large ROB indicates inefficient runway 

use and may cause unnecessary delays. Conversely, ROBs that are too small (or negative) 

create a risk of incursions, accidents, or incidents.  

ATC would benefit from the ability to predict ROB so that actions might be taken to 

achieve a safe and efficient value for this metric.  Also, as explained in Chapter 4, the 

predicted ROB is a useful feature for predicting go-arounds. Therefore, we focus on 

applying machine learning techniques to better understand and predict the ROB metric, 

which can lead to an improvement in runway safety and runway throughput. Our 

motivation is three-fold. First, from a safety point of view, modeling and predicting ROBs 

would feed as a predictive tool at the airport to alert air traffic controllers and flight crew 

about runway operational risks and impending aircraft behaviors. Controllers can have 

longer reaction times to handle unsafe situations. If the predicted ROB is much longer or 

shorter than expected, controllers and pilots may coordinate to adjust the aircraft speed, 

altitude, heading or execute a go-around. Second, from an efficiency perspective, the 

prediction of ROB can enable the pilot to adjust speed for achieving the desired spacing 

ROB, thus improving runway capacity. With longer prediction horizons, the predictability 

is not only beneficial to airport performance in the terminal area but also improve 

performance in the downstream and upstream. Third, as to uncertainty, the accurate 

prediction of ROBs may permit a narrowing the safety margins applied by air traffic 

controllers. Due to the uncertainty of actual operations, human decision-making errors still 
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exist. Reliable ROB predictions could boost controllers’ and pilots’ confidence during the 

decision-making process. In sum, the capability to predict ROBs with small uncertainty 

could result in a smaller buffer time that ultimately increases capacity without 

compromising safety levels. 

5.2. Related Work 

Predictability is recognized as an important operational performance goal for ATM. Liu 

et al. [76] investigates the potential benefit of the predictability in airport surface operation 

system from the controllers’ perspective, flight operator’s perspective, and traffic 

management perspective. They conclude that the predictability on the airfield and surface 

reduces the controller’s workload surges, has the potential to better deal with off-nominal 

situations, improves performance in the downstream and queue area.  

Most of the research on runway safety and efficiency has focused on analyzing 

operations on the surface and in the air separately. For the analysis of runway operations, 

a number of advanced analytical methods have been proposed to predict Runway 

Occupancy Time (ROT), which is the amount of time that a runway is occupied, or not 

usable by another aircraft. Meijers et al. [77] uses the Random Forest (RF) model to 

compute the feature importance of ROT for 36 major US airports based on ASDE-X radar 

tracks. It was found that the runway exit, the aircraft type, the airline, the final approach 

speed of the landing aircraft and the presence of the following aircraft in approach explain 

over 80% of the variance of ROT. Although some predictors identified in this paper, such 

as the runway exit and the exit angle, cannot be used for real-time prediction, it still 

provides useful insights into the factors that contribute to ROT variability. Herrema et al. 

[78] investigates the identification and prediction of abnormal runway occupancy times 

only. Lasso, Multi-layer perceptron and neural networks are used to predict taxi-out time, 

time to fly and true airspeed profile on the final approach. Martinez et al. [79] presents a 

boosting tree framework to predict the actual ROTs and the expected exit at different 

distances from the runway threshold. 

For the analysis of approach procedures in the air, Tosic and Horonjeff [73] estimated 

the landing runway capacity by computing the runway threshold interarrival time. It is 

assumed that the system is free of errors, and the runway occupancy time is always less 

than that threshold interarrival time. Substantial literature can also be found in analyzing 

so-called remaining time to arrival (RTA), which is defined as the time difference between 

the present time and the Estimated Time of Arrival (ETA). A neural network approach [80] 

was applied to study sources of variability in flight arrival times and achieved ±4.5min 

accuracy at a 95% level for the 10nm range. Levy and Bedada [81] present the results for 

the real-time estimation of ETA at the runway threshold. The paper concludes that the 

predictive accuracy of ±3.5 min accuracy at the 90% level should be adequate to improve 

gate management.  
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Airport safety and efficiency can be optimized by improving the prediction capabilities 

of ROT, flight arrival times and their uncertainty. Nikoleris and Hansen [82] point out that 

the benefits of precise runway arrival times are greatly reduced when ROTs are highly 

variable. We need to understand and model the relationship between precision in meeting 

RTAs at the runway threshold and variability in ROTs systematically. Studies only concern 

predictability in either of the two might be less beneficial due to the combination of errors 

in both models. They thus consider queueing models to understand and model the 

relationship between system throughput, precision in meeting RTAs at the runway 

threshold, and ROTs systematically [82]. Stochastic variations in the time for leading 

aircraft to clear the runway may delay trailing aircraft’s threshold crossing time if their 

schedule separation does not include any excess time to absorb such variations. 

Conversely, the prediction of the time for the trailing aircraft to reach the arrival runway 

threshold may influence the runway exiting behavior of the leading aircraft. 

With limited work to date on integrated modeling air and surface operation, our work 

in this section aims to fill that gap by using historical trajectory data to model runway 

safety, landing throughput, trajectory prediction and variability in ROT systematically. We 

first rigorously define the ROB and provide the empirical analysis. The ROB not only 

considers the runway threshold interarrival time proposed by Tosic and Horonjeff [73], but 

also considers the landing occupancy time proposed by Simpson, Odoni and Salas-Roche 

[83]. We then directly model the ROBs using Linear Regression (LR) models and Random 

Forest (RF) regression model. Lastly, the performance of all candidate models is 

investigated and compared. Model interpretation and feature importance are also discussed.  

5.3. Empirical Analysis 

According to the ATC safety requirement that no more than one aircraft can occupy 

the runway at any time—i.e., no simultaneous runway occupancy (SRO), we define the 

Runway Occupancy Buffer (ROB) to capture the interaction between ROT variability of 

the leading aircraft and the predictive RTA of the trailing aircraft. In this section, we 

precisely define ROB and provide more practical insights into this metric. We then 

illustrate the algorithm for recognizing leading-trailing aircraft pairs and calculating ROB 

from the ASDE-X surface track data. Lastly, summary statistics of ROB are presented and 

discussed. 

5.3.1. Definition 

The Runway Occupancy Buffer (ROB) ∆𝑇, in seconds, is the time difference between 

the runway threshold (abbr. thd) crossing time of the trailing aircraft 𝑡𝑡𝑟𝑎𝑖𝑙,𝑡ℎ𝑑  and the 

runway exit time of the leading aircrafts 𝑡𝑙𝑒𝑎𝑑,𝑒𝑥𝑖𝑡, as shown in formula (1): 

∆𝑇 =  𝑡𝑡𝑟𝑎𝑖𝑙,𝑡ℎ𝑑 − 𝑡𝑙𝑒𝑎𝑑,𝑒𝑥𝑖𝑡 (12)  
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Note that the runway exit standard we use in this study is more rigorous than the standard 

used in identifying SRO. To make sure that no part of the fuselage or the tail of an aircraft 

may infringe on the runway, Runway Safety Area (RSA) is defined and bounded by 

holding position markings painted on the taxiway or runway surface. Generally, an aircraft 

exiting a runway is not clear of the runway until all parts of the aircraft have crossed the 

applicable holding position markings [84]. In line with this purpose, we create the RSA 

polygon by collecting the coordinates of all the holding position markings for all the 

runways in the JFK airport – 04L/22R, 04R/22L, 13L/31R, 13R/31L. Only the track points 

that are contained in the analyzed RSA polygon will be analyzed. Figure 15 shows the one-

day traffic in blue on the abstracted 04L/22R RSA polygon. 

 

Figure 15. One-day traffic on the abstracted 04L/22R RSA polygon (07/02/2018). 

We visualize two pairs of in-trail arrivals (three aircraft land on the same runway) in 

Figure 16 to illustrate related variables. In this figure, three colored blocks represent three 

consecutive flights that arrive in-trail. They are arranged in chronological order from the 

left to the right as the arrow is pointing. The left edge of the colored block 𝑖 is the runway 

threshold crossing time 𝑡𝑡ℎ𝑑,𝑖, while the right edge represents the runway exit time 𝑡𝑒𝑥𝑖𝑡,𝑖. 

Thus, a single block represents the time duration that the flight occupies the landing 

runway, in essence, Runway Occupancy Time. As the formula (13) defines,  

∆𝑇1 = 𝑡𝑡ℎ𝑑,2 − 𝑡𝑒𝑥𝑖𝑡,1; ∆𝑇2 = 𝑡𝑡ℎ𝑑,3 − 𝑡𝑒𝑥𝑖𝑡,2 (13) 

The spacing between every two colored blocks is the ROB for the trailing aircraft. If 

two blocks overlap, ∆𝑇 is negative. It indicates a lack of separation in time that could mean 

a runway incursion. When the buffer time is large, as ∆𝑇2, it indicates a loss of runway 

throughput which, when the airport is busy, could reduce airport throughput and increase 

delay. 
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Figure 16. Concept display of Runway Occupancy Buffer. 

If ∆𝑇 = 0 , then when the leading aircraft exits the holding position markings, the 

trailing aircraft is just about to cross the runway threshold. This theoretical ideal requires 

precise spacing of the arrivals which results in maximum runway throughput without 

violating the SRO prohibition. 

5.3.2. Calculation 

We use the algorithm described as follows to calculate the RTA, ROT, and ROB from 

ASDE-X dataset for each in-trail arrival. Go-around flights are detected first using the 

algorithm in Chapter 3 and removed from the dataset. Military, general aviation, and 

helicopter flights are also excluded from this study since they have very different approach 

patterns from commercial flights.  

The calculation algorithm has two steps – finding leading and trailing aircraft pairs and 

calculating the RTA, ROT, and ROB. The extrapolation strategy guarantees that the RTA, 

ROT, and ROB are calculated using the same standard, thus all these measurements are 

comparable for all the flight observations. We emphasize that the ROB is neither the 

runway threshold interarrival time [73], not the landing occupancy time [83]. The 

calculation of ROB only depends on the flight track data – the timestamps at which the 

subject (trailing) flight crosses the runway thresholds, and the timestamp at which its 

leading flight exits the runway holding position marking. 

5.3.3. Observed statistics 

We only analyze in-trail arrivals identified by the algorithm described in Table 4. 

Flights not having leading aircraft, and flights whose leading aircraft have already exited 

the runway will not be considered for the ROB prediction. After data cleaning and 

matching, there are, on average, 338 in-trail arrival flights each day in the analyzed airport 

within the analysis period. Thus, we compile a dataset including 56,731 observations of 

ROTs and ROBs for aircraft operating at JFK airport.  

The ROT ranges from 45 seconds to 117 seconds. The distribution of ROT is consistent 

with those reported in the literature using Automated Surface Observing System (ASOS) 

data archives [77] and Advanced Surface Movement Guidance & Control System (A-

SMGCS) data [86]. The average value of the observed ROB is 85 seconds, which indicates 

that, on average, the trailing aircraft crosses the runway threshold around 85 seconds after 

the leading aircraft exits the runway. Nonetheless, individual observations vary widely, 

with a standard deviation of 79 seconds. The maximum observed ROB is 569 seconds, 

which relates to the criteria we set in the calculation algorithm (Step 4 in Table 4) to filter 
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out aircraft pairs with runway threshold crossing time differences over 600 seconds. In 

addition, the magnitude of ROB is indicative of the traffic conditions in the analyzed airport. 

As seen in Figure 17, ROB is small in the afternoon and evening when there is heavy arrival 

traffic. ROB is generally higher when the majority of morning traffic is composed of 

departures, or there is little traffic after midnight. 

Table 4. ROB, RTA, ROT calculation algorithm. 

Algorithm: ROB, RTA, ROT Calculation 

INPUT: IFF flight track data, ASDE-X flight track data, RD summary 

INITIALIZE: Coordinates of arrival runway thresholds and holding position markings in the analyzed 

airport. 

OUTPUT: In-trail aircraft pairs and flight’s RTA, ROT, ROB 

Procedure 

Step 1: Data querying. Query the track point data for each flight in the RD summary. 

Step 2: Extrapolated runway threshold crossing time. For each flight, we extrapolate [latitude, 

longitude, time] to acquire the timestamp at which the subject (trailing) flight crosses the runway 

threshold 𝒕𝒕𝒉𝒅. 

Step 3: Extrapolated runway exit time. Construct the spatial K-D tree [85] from the holding position 

markings coordinates (red dots in Figure 15) in line with aircraft heading. For spatial continuity, we 

also incorporate the last flight trackpoint in the KD tree search space. The K-D tree will be used to 

query the runway exit for each arrival. The timestamp at which the flight crosses the runway exit is 

extrapolated 𝒕𝒆𝒙𝒊𝒕.  

Step 4: In-trail relationship. Group flights with the same (calculated) landing runway obtained from 

Chapter 3 and sort them in chronological order by the time 𝒕𝒕𝒉𝒅 that flight intercepts the runway 

threshold. For each group, we create a list of tuples where each tuple contains two consecutive aircraft 

that have been sorted. We designate each tuple as a leading-trailing aircraft pair if: 

● the runway threshold crossing time difference of the two aircraft is smaller than 10 minutes 

𝑡𝑡ℎ𝑑,𝑡𝑟𝑎𝑖𝑙 − 𝑡𝑡ℎ𝑑,𝑙𝑒𝑎𝑑 < 600 (𝑠𝑒𝑐)  

● the leading aircraft has not exited the runway 𝑡 <  𝑡𝑒𝑥𝑖𝑡  

Otherwise, we remove the trailing flight from the tuple. 

Step 5: Arithmetic. For each trailing flight filtered from the last step, RTA, ROT, and ROB can be 

calculated at time 𝑡  when the analyzed flight passes a certain information cutoff gate during the 

approach procedure: 

𝑇𝑅𝑇𝐴 = 𝑡𝑡ℎ𝑑 −  𝑡 (14) 

𝑇𝑅𝑂𝑇 = 𝑡𝑒𝑥𝑖𝑡 − 𝑡𝑡ℎ𝑑 (15) 

∆𝑇 = 𝑡𝑡𝑟𝑎𝑖𝑙,𝑡ℎ𝑑 − 𝑡𝑙𝑒𝑎𝑑,𝑒𝑥𝑖𝑡 (16) 

end procedure 
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Table 5. Summary statistics of the observed ROB. 

Distance to runway 

threshold (nm) 
Observations 

ROB (seconds) 

mean std. min max 

10 56,731 85.225 79.055 

-35.490 

569.194 

9 52,283 69.176 51.474 555.832 

8 49,790 61.784 34.410 535.856 

7 47,924 58.821 30.838 456.775 

6 44,902 54.988 27.303 176.637 

5 39,745 49.781 23.513 146.791 

4 31,368 42.596 19.089 137.712 

3 17,044 32.644 15.047 93.605 

2 2,045 18.633 11.975 57.760 

 

 

 

 

Figure 17. One-day ROB temporal pattern (07/05/2018 at top and 12/05/2018 at the 

bottom). 

In Figure 18, we investigate in detail the in-trail arrival scenario with the minimum 

ROB of -35 seconds. Both aircraft land on the 04R runway threshold shown at the right 

end, and then take the high-speed runway exit FB, depicted by the red dots on the left end. 

The yellow pins extrapolated from the dataset represent the aircraft positions. In the top 

figure, when the trailing flight crosses the runway threshold, the leading aircraft has already 

been taxing on FB but has not yet satisfied the runway exit standard of crossing the holding 

position markings. After about 35 seconds, the leading aircraft (green arrow) crosses the 
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holding position markings, and the trailing flight (yellow arrow) is nearby, as shown in the 

bottom figure. Note that such situations result in negative ROBs, but do not necessarily 

imply a runway incursion. 

 

 

Figure 18. The minimal ROB scenario visualization. 

5.4. Runway Occupancy Buffer Prediction 

In this section, we would like to develop predictive models based upon the above 

empirical observations of runway occupancy buffer (ROB) extracted from the real-world 

dataset. Regression-based machine learning algorithms are employed to learn the 

relationship between the observed ROB and the relevant potential factors. As the subject 

flight (trailing aircraft) approaches the airport, we seek to predict its runway occupancy 

buffer time relative to the leading aircraft using the same set of features described in 

Chapter 4. It is as if pilots and air traffic controllers anticipate runway conditions and assess 

whether the approach environments are safe for the trailing aircraft to land.  

As pointed out by Nikoleris and Hansen [82], the interdependency between RTAs (air 

operations) and ROT (ground operations) likely exists, and studies only concern 

predictability in either of the two might be less beneficial due to the combination of errors 

in both models. A longer ROT of the leading aircraft will result in a delayed arrival time 

for the trailing aircraft. Nonetheless, the converse relationship may also hold. It is 

conceivable for the RTA of the trailing aircraft to affect the ROT of the leading aircraft. 

For example, controllers will attempt to shorten the ROT of the leading aircraft if the 

trailing aircraft landing is imminent. This provides the impetus to model and predict the 

ROB explicitly with predictive algorithms to capture the interaction between RTA (air 

operations) and ROT (ground operations).  
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We primarily investigate two types of machine learning algorithms for the ROB model 

development: linear regression (ordinary least squares, Ridge, Lasso, Elastic Net) and 

Random Forest (RF). Linear regression is carried out to estimate the ROB with the 

following Equation (17): 

𝑦 = 𝑋𝜷 (17) 

where 𝑦 is the observed ROB, 𝑋 is the design matrix including variables in Table 3. 𝜷 

is the variable coefficient vector obtained by minimizing the sum of the squares of the 

residuals: 

∑(𝑦𝑖 − 𝑦𝑖̂)
2

𝑛

𝑖=1

= ∑(𝑦𝑖 − 𝛽0 − 𝑋𝜷)2

𝑛

𝑖=1

(18) 

 To avoid the risk of overfitting and improve the prediction performance, we use 

regularized regression to reduce the model complexity. A set of regularized linear 

regressions are investigated: LASSO regression, Ridge regression, and Elastic Net 

regression. Regularization addresses concerns about variance-bias tradeoff, 

multicollinearity, sparse data handling, feature selection, and the interpretability of the 

output. 

In ridge regression, the cost function is penalized by the square of the coefficient 

magnitude ‖𝛽‖2: 

∑(𝑦𝑖 − 𝑦𝑖̂)
2

𝑛

𝑖=1

= ∑(𝑦𝑖 − 𝛽0 − 𝑋𝜷)2

𝑛

𝑖=1

+ 𝜆𝑟‖𝜷‖2
2 (19) 

where the penalty term 𝜆𝑟 regularizes the coefficients vector 𝜷. If the coefficients take 

large values, the optimization function is penalized and the coefficients are shrunk in ridge 

regression.  

In LASSO regression, 𝑙1norm, ‖𝜷‖1, is used as the penalty, which accounts for the 

absolute value of the coefficients magnitude and may result in coefficients with zero value. 

Thus, Lasso regression helps in reducing overfitting and feature selection. The cost 

function is denoted by the following Equation (20): 

∑(𝑦𝑖 − 𝑦𝑖̂)
2

𝑛

𝑖=1

=  ∑(𝑦𝑖 − 𝛽0 − 𝑋𝜷)2

𝑛

𝑖=1

+ 𝜆𝑙‖𝜷‖1 (20) 

The Elastic Net regression is a hybrid of LASSO and Ridge regression, where the cost 

function linearly combines the 𝑙1 and 𝑙2 penalties, as indicated in Equation (21). The OLS 

regression is a special case of ridge regression and LASSO regression as the 𝜆 gets close 

to zero. 
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∑(𝑦𝑖 − 𝑦𝑖̂)
2

𝑛

𝑖=1

=  ∑(𝑦𝑖 − 𝛽0 − 𝑋𝜷)2

𝑛

𝑖=1

+ 𝜆𝑟‖𝜷‖2
2 + 𝜆𝑙‖𝜷‖1 (21) 

Besides linear models, we train random forest regression model to learn a set of 

decision trees that map all the features to the realized ROT in the leaves of trees by splitting 

the dataset recursively [87]. The random forest model builds shallow decision trees 

independently, using a random subset of features, on various subsamples of the dataset. 

The ensemble of decision trees is built to capture possible nonlinearities between the ROB 

and explanatory variables described in Table 3, and is not expanding the feature space and 

yet prevent overfitting. 

The performance of six models will be investigated and compared: naïve average 

model, Ordinary Least Squared (OLS) model, Least Absolute Shrinkage and Selection 

Operator (LASSO) regression, ridge regression, elastic net regression, and random forest 

regression. We use the same feature set (except for the ROB) at each information cutoff 

gate as described in Chapter 4. The same flight is used to generate 10 observations 

corresponding to 10 distance-stamps. However, observations in each distance dataset, 

reported in Table 5, are analyzed independently. Since we remove the in-trail aircraft pairs 

if the leading aircraft has already exited the runway, the number of observations at different 

distances from the runway threshold will vary as the trailing aircraft approaches the airport, 

as shown in Table 5. Data is split into 80% of the training set for hyperparameter(s) tuning 

and 20% of the testing set for model evaluation. A five-fold cross-validation grid search is 

performed to minimize the Mean Squared Error (MSE) for selecting optimal combinations 

of hyperparameters defining the model. We then fit models with selected parameters on 

the entire training set (without folds) and obtain predictions of the test set.  

5.5. Results 

5.5.1. Model Performance 

When a trailing aircraft reaches the information cutoff gate, we employ the trained 

model on the acquired feature matrix to provide the prediction of the ROB value directly. 

Six models – naïve average method, OLS regression, LASSO regression, Ridge regression, 

Elastic Net regression, random forest regression – are tested and evaluated on the same 

dataset for any particular distance segments. We also include a baseline of two-stage model 

which predicts the ROB by modeling the ROT of the leading aircraft and the RTA of the 

trailing aircraft separately. The performance metrics for model comparison, RMSE, are 

summarized in Table 6 and visualized in Figure 19. 

Predictability progressively increases as the aircraft approaches its landing runway 

threshold. It is likely because the information provided is insufficient, or not informative 

enough, to make a robust prediction of ROB when the aircraft is further away. The two-

stage model is superior to the Naïve average method, but inferior to other models under the 
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integrated modeling scheme. Models developed under the integrated framework perform 

much better than the two-stage model by capturing the interdependence between RTA and 

ROT more precisely. 

Table 6. RMSE of ROB predictive models. 

Dist. 

(nm) 
Two-stage modeling (seconds) 

Integrated modeling (seconds) 

Naïve Ridge LASSO Elastic Net OLS RF 

2 11.0 12.0 11.2 11.2 11.2 11.2 8.8 

3 14.4 15.1 12.6 12.6 12.6 12.6 9.2 

4 18.0 19.1 13.2 13.2 13.3 13.2 9.6 

5 19.1 23.5 13.6 13.6 13.8 13.6 9.9 

6 20.1 27.3 14.0 14.0 14.2 14.0 10.1 

7 22.8 30.8 15.1 15.1 15.4 15.1 11.0 

8 23.2 34.4 16.6 16.6 17.0 16.6 12.0 

9 33.4 51.5 29.2 29.2 29.8 29.2 15.7 

10 51.0 79.1 43.6 43.6 45.3 43.6 26.7 

 

The random forest model (magenta line) has the smallest RMSE on the test set for all 

models of different distance segments, outperforming linear models, the two-stage model, 

and the naïve average method. The random forest regression model predicts ROBs with an 

R-squared fit of more than 90%. The performance of all linear models does not vary 

appreciably. In general, the OLS model (brown line) seems to predict ROB slightly better, 

especially when the aircraft is further away from the runway threshold. As the number of 

observations increases, OLS is more likely to converge to the optimal solution and learn 

the distribution of ROB better. When the aircraft is close to the airport, the RMSE scores 

for regularized linear models are slightly higher than those for OLS. 

 

Figure 19. ROB model performance. 
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5.5.2. Estimation result 

To gain interpretability of the model estimates, we summarize the coefficient estimates 

of the OLS regression model (integrated modeling) at the 5 nm information cutoff gate, in 

Table 7, and illustrate the feature importance of the random forest model (integrated 

modeling) at the 5 nm information cutoff gate in Figure 20. 

 

Table 7. OLS estimation results (5 nm information cutoff gate). 

Variables 
Coef. 

(Std. error) 
Variables 

Coef. 

(Std. error) 

Constant 18.853***(1.977) Rwy_13R 4.866 (3.866) 

Speed -0.325***(0.009) Rwy_22L -3.894***(0.664) 

Energy 0.003***(0.000) Rwy_22R -1.259(1.146) 

Horiz -2.041*** (0.483) Rwy_31L -1.100(0.790) 

Alt_dev 0.561***(0.065) Rwy_31R -1.778**(0.672) 

Separation 21.820***(0.299) WC_H -9.705***(0.278) 

Lead_alt -2.228***(0.087) WC_L -6.145***(0.255) 

Speed_diff 0.011*(0.006) WC_S 2.818*(1.139) 

Head 0.369***(0.015) WC_lead_ H 2.014***(0.293) 

Tail -0.303***(0.072) WC_lead_ L 5.312*** (0.243) 

Cross -0.012(0.016) WC_lead_ S 2.659*(1.053) 

Var 0.374*(0.182) Terminal 1 -1.457**(0.496) 

Arr_que -0.064***(0.014) Terminal 2 5.302***(0.397) 

Dep_que -0.068***(0.009) Terminal 4 4.105***(0.400) 

Visible -0.147***(0.043) Terminal 5 4.539***(0.403) 

Ceiling 0.000(0.001) Terminal 7 0.470(0.472) 

Rwy_04R -2.288***(0.664) Terminal 8 2.181***(0.413) 

Rwy_13L 10.336***(1.732) Night 3.543***(0.137) 

MC_V 0.014(0.258) Rwy_change -0.288 (0.228) 

Adjusted R-squared: 0.681   

 Variables are significant at the 0.1% level***, 1% level**, 5% level* 
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From Table 7, most of the estimates are significant and fit nicely with our understanding 

of ROB. We first notice that the ROB will increase when the separation between the two 

aircraft is large. Separation indicates the relative positions of the leading the trailing aircraft. 

If two aircraft are further away from each other in the air, their arrivals will probably have 

a large time gap. The altitude of leading aircraft is also an indicator of aircraft relative 

positions from the vertical view. The higher the leading aircraft is, the closer it is to the 

trailing, and the shorter the ROB. The trailing aircraft’s speed and its distance to the 

extended centerline have a negative effect on ROB. Results imply a higher ROB if trail 

aircraft is above the glideslope and a smaller ROB if it is below the glideslope. Pilot actions 

required to reduce altitude in order to get back on the glide slope slow down the aircraft 

approach. Tailwind speed has a similar negative effect on ROB as it accelerates the landing.  

For the traffic conditions, longer arrival or departure queues will decrease the ROB. 

ROB is introduced based on flight in-trail relationships, thus depends on continuous traffic 

demand. If there is less traffic in the airspace, such as midnight, ROB will be large. When 

the arriving traffic volume exceeds the runway capacity, air traffic controllers will try to 

squeeze traffic and reduce ROB to improve throughput and some aircraft have to be 

delayed in the air. The ROBs on 13L and 13R are larger than other runways. Assuming 

aircraft’s runway threshold crossing time are the same, aircraft exit 13L and 13R earlier 

and thus have less ROT than other runways. 

5.5.3. Feature importance 

Other than model prediction and interpretation, we are also interested in knowing which 

features are most predictive of ROB. We calculate feature importance after the model is fit 

on the whole training set with fine-tuned hyper-parameters. Literature commonly uses the 

Gini importance to calculate the average value of the number of splits that include the 

feature (across all trees), proportionally to the number of samples it splits. The Gini 

importance measures how effective the feature is at reducing variance when creating 

decision trees within RF. However, our dataset is a mixture of numerical variables and 

categorical variables. The Gini importance is biased, in the sense that it tends to inflate the 

importance of continuous variables and high-cardinality categorical variables [88]. To 

obtain an accurate picture of feature importance, permutation importance [89] is performed 

to directly measure feature importance by observing the effect on R-squared of randomly 

shuffling each variable. To be more specific, we first record a baseline R-squared by fitting 

a validation set through the RF. We then permute the column values of a variable and fit 

RF on this new permuted dataset. The difference between the baseline R-squared and the 

permuted R-squared is the importance of the feature of interest. Although the permutation 

importance is much more computationally expensive than the Gini importance, the feature 

importance measurements are more reliable. 

Feature importance for the more accurate model, RF regression, is plotted in Figure 20. 

These importance values will not sum up to one since the values represent the difference 

in R-squared scores between baseline model and permuted model. The x-axis values can 

be interpreted as relative predictive strengths of features. The separation and the altitude of 
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leading aircraft are the two strongest predictors of ROB, followed by the speed of the 

subject (trailing) aircraft, headwind speed, the speed difference between leading and 

trailing aircraft, and kinetic energy. The permutation importance places the airline operated 

terminal dummy variables and landing runway dummy variables as less important features, 

implying that there is not much difference in ROB if the subject flight lands on another 

runway or uses a different terminal.  

 

Figure 20. Feature importance for RF regression model. 

Both the OLS estimation results and RF permutation importance suggest that separation 

has the greatest importance in predicting ROBs, followed by the leading aircraft altitude 

and trailing aircraft speed. Such prediction work could be used to help improve runway 

safety and efficiency in real time. If the predicted ROB is much longer or shorter than 

desired, controllers and pilots may coordinate to adjust the aircraft speed, altitude, heading 

or execute a go-around to reach the targeted ROB level. 

In summary, the proposed metric, ROB, functioned as expected. Its interactions with 

other operational and environmental variables make sense. ATC would benefit from the 

ability to predict ROB so that actions might be taken to achieve a safe and efficient value 

for this metric – an immediate use is to predict go-arounds. When we implement the real-

time predictive capabilities for go-around prediction (Chapter 9), we also include the real-

time representation of the predicted ROB metric. Besides looking at the probability of go-

arounds, pilots and controllers may also refer to this metric for guidance on aircraft speed 

control and traffic management during the final approach and landing procedures. The 

current work can be enhanced in several ways. For example, sequential learning algorithms 
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could be applied to better model and predict the ROB metric; The analysis could be 

extended to a broader scope of operational scenarios, concurrently used for both departures 

and arrivals; and model generalization could be investigated by applying the trained model 

to other airports.  



53 

 

 

6. Modeling Go-Arounds Using Principal 

Component Logistic Regression 

6.1. Overview 

In this chapter, we investigate how the derived features in Chapter 4 impact go-around 

occurrence and quantify their contributions. The motivation of this chapter is threefold. 

First of all, this study can provide flight crews, air traffic controllers, and other decision 

makers with better knowledge of the conditions in which a go-around is more likely to be 

executed. Second, quantifying the contributing factors of go-around occurrence can help 

identify countermeasures to reduce go-arounds, and more generally the conditions that give 

rise to them, which may be considered anomalous states that are inherently undesirable. 

Mitigation strategies can be developed to reduce the go-around occurrences through 

procedure modification, pilot training, and equipment design. Finally, this work may also 

inform efforts to develop a real-time tool that can identify, and perhaps remediate, 

situations in which there is a substantial risk of a go-around. 

We found that almost 90% of detected go-arounds in our data set occurred within five 

nautical miles of the landing runway threshold. To obtain features that are proximate in 

time to all go-around initiations, but without losing too many go-around observations, we 

choose the 5 nm information cutoff gate for the contribution analysis. In other words, we 

develop the principal component logistic regression (PCLR) model to model go-around 

occurrence based only on features known when the subject flight reaches the 5 nm 

information cutoff gate. We first illustrate the detailed algorithm and estimation procedures 

of the PCLR model. The estimation results are then interpreted through factor loading 

analysis and reconstruction of coefficients back for the original variables. Lastly, we 

construct counterfactual scenarios to quantify factor contributions to go-arounds, based on 

the models estimated at the cutoff gate of 5 nm. 

6.2. Data Preprocessing 

The dependent variable 𝑌 is set to 1 if a flight is detected as a go-around occurring 

within [0, 5) nautical miles to its landing runway threshold, 0 otherwise. Flights that initiate 

go-arounds more than 5 nm from the threshold are not considered. For example, a flight 

that initiated go-around at 4.5 nautical miles from the runway is included in the data set, 

while a flight that initiated a go-around at 5.1 nm from the runway is removed from our 

analysis.  

For explanatory variables, we use the linear extrapolation technique to derive the seven 

categories of features (in Chapter 4) at the 5 nm information cutoff gate. Therefore, we 

evaluate whether a flight initiates the go-around anywhere at [0, 5) nautical miles only 

based on the information available when this flight passes the 5 nm arc. The extrapolation 
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guarantees that we do not include any information that cannot be known in the feature 

space when the aircraft is at the 5 nm information cutoff gate.  

Originally, 0.43% of JFK arrivals are detected as go-arounds within the period. After 

data preprocessing and matching flight trajectories with the 5 nm features, our final dataset 

has a total of 343 go-arounds initiated within 5 nm (5 nm is exclusive) from the landing 

runway threshold, which accounts for 0.34% of JFK arrivals between July and December 

of 2018.  

By applying the retrospective causal inference method [90] to observational data, we 

can capture the statistical relations among the go-around occurrence and features described 

in Chapter 4. Toward this end, we first apply the go-around detection algorithm presented 

in Chapter 3 to the JFK arrival flight track dataset in 2018. Second, we collect a large set 

of features that may affect go-around occurrence, as described in Chapter 4, and build a 

principal component logistic regression model (PCLR) to establish statistical relations 

between the derived features and go-around occurrence. Lastly, we used the estimated 

PCLR model to construct counterfactual scenarios to estimate the contributions of different 

factors to go-around occurrence.  

6.3. Standard Logit Model 

We firstly estimated a standard binary logistic regression model to relate go-around 

occurrence to contributing factors. The model specification is formulated as in Equation 

(25) and Equation (26), where 𝓥 is the log-odds function, 𝑿 is a design matrix that contains 

all contributing factors introduced in Chapter 4, and 𝛃 is the associated coefficient vector 

estimated by employing maximum likelihood estimation (MLE).  

𝓥 = 𝑿 ⋅ 𝜷 (25) 

The probability of an aircraft initiating go-around 𝑃𝑟 (𝑦𝑖 = 1| 𝑿) can be written as: 

Pr(𝑦𝑖 = 1|𝐗) =
1

1 + exp(−𝓥)
(26) 

The estimation results are presented in Table 8. The majority of coefficients are not 

significant at a 5% confidence level, and many have unexpected signs. For example, the 

estimates for the visibility and ceiling variables suggest that flights landing at an airport 

with good visibility and ceiling conditions would have a higher probability of go-around, 

which is not plausible in practice. This is probably because many independent variables 

used in the model are highly correlated.  As a result of this multi-collinearity, the standard 

logistic regression model fails to give us a proper understanding of the contributing effects. 

To remedy this problem, we employ decorrelation techniques. 
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Table 8. Standard logit model estimation results. 

Variable 
Estimate 

(std.) 
Variable 

Estimate 

(std.) 
Variable 

Estimate 

(std.) 
Variable 

Estimate 

(std.) 

Constant 
-5.252*** 

(0.847) 
Visibility1 

-0.175 

(0.169) 
ArrQue 

0.026** 

(0.010) 
RwyChange 

-0.016 

(0.206) 

AltDev 
0.258*** 

(0.035) 
Visibility2 

0.017 

(0.079) 
DepQue 

0.022** 

(0.007) 
Rwy04R 

-1.330*** 

(0.255) 

Speed 
-0.022** 

(0.007) 
Visibility3 

-0.171* 

(0.070) 
RwyCnt 

-0.054 

(0.037) 
Rwy13L 

-4.156*** 

(0.742) 

Energy 
0.003*** 

(0.000) 
Ceiling1 

-0.282 

(0.158) 
𝑹𝑶𝑩̂ 

-0.005 

(0.003) 
Rwy13R 

1.636** 

(0.603) 

Angle 
0.032* 

(0.013) 
Ceiling2 

0.010 

(0.031) 
IMC 

0.493 

(0.385) 
Rwy22L 

-0.996*** 

(0.253) 

LOS 
1.682*** 

(0.234) 
Ceiling3 

0.011 

(0.016) 
Daytime 

0.080 

(0.124) 
Rwy22R 

-1.803*** 

(0.348) 

SpeedDiff 
0.001 

(0.004) 
Ceiling4 

-0.006** 

(0.002) 
AirlineIntl 

0.425** 

(0.162) 
Rwy31L 

-1.333*** 

(0.333) 

AltDiff 
-0.105*** 

(0.027) 
GaCnt 

0.546*** 

(0.088) 
BodyWide 

0.328* 

(0.158) 
Rwy31R 

-1.390*** 

(0.310) 

Wind 
0.045** 

(0.014) 
GaGap 

-0.000 

(0.000) 
NoLead 

0.305 

(0.278) 
  

Log-likelihood -1721.7  Pseudo R-squared 0.222  

Variables are significant at the 0.1% level***, 1% level**, 5% level*. 

6.4. Principal Component Logistic Regression (PCLR) and Interpretation 

To handle the multi-collinearity problem, we apply Principal Component Analysis 

(PCA) to decorrelate and reduce the dimensionality of the original feature space. Instead 

of regressing the dependent variable on the explanatory variables directly, the principal 

components (PCs) formed by all the explanatory variables are used as covariates in the 

logistic regression model.  

6.4.1.  PCLR of mixed data  

While PCA is a mature technique to decorrelate feature vectors, it must be adapted in 

our setting because our dataset contains a mixture of continuous and categorical variables. 

Specifically, the design matrix (feature space) for the 5-nautical-mile model contains 28 

features vectors, 21 of which are continuous and seven are categorical, including Runway 

(8 levels), RwyChange (2 levels), Daytime (2 levels), Airline (2 levels), Body (2 levels), 

MC (2 levels) and NoLead (2 levels). Therefore, appropriate treatment of such mixed data 
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types, especially the categorical variables, is required for PCA application. Accordingly, 

we adapted and applied the PCA-mixed algorithm introduced by [91] to deal with our 

mixed set of variables. The detailed notations and algorithm are described as follow. 

A. Notations 

Let 𝑿 = [𝑿1
𝑛×𝑝1|𝑿2

𝑛×𝑝2] denote the full design matrix, which is constructed by two 

submatrices 𝑿𝟏  and 𝑿𝟐 . 𝑿𝟏  contains solely continuous variables with dimension 𝑛  by 

𝑝1(𝑝1 = 21), while 𝑿𝟐  contains categorical variables with dimension 𝑛 by 𝑝2 (𝑝2 = 7). 

We further denote 𝑞1, 𝑞2, … , 𝑞𝑝2
 as the number of levels for each categorical variable (e.g., 

𝑞1 = 8 for the first categorical variable, which is Runway), and 𝑚 = ∑ 𝑞𝑖
𝑝2
𝑖=1  as the total 

levels for all categorical variables. Notice that the elements in 𝑿𝟐 are integers that range 

from 1 to the number of levels for each variable.  

B. Design Matrix Preparation 

Using the above notation, we first convert 𝑿𝟐 to a complete disjunctive table (CDT) 

𝒁𝟐 = [𝒛𝟏, 𝒛𝟐, … , 𝒛𝒎] ∈ 𝔹𝑛×𝑚  by employing one-hot encoding. Then we center 𝒁𝟐  by 

respectively subtracting the mean of each column, denoted as 𝒁𝟐
𝒄 , and standardize 𝑿𝟏 to 

zero mean and unit standard deviation, denoted as 𝑿𝟏
𝒔 . Lastly, we combine 𝑿𝟏

𝒔  and 𝒁𝟐
𝒄  to 

build a new design matrix 𝒁 =  [𝑿𝟏
𝒔 |𝒁𝟐

𝒄]. Notice that the rank of 𝒁 equals to 𝑟 =  𝑝1 + 𝑚 −
𝑝2. 

C. Generalized Singular Value Decomposition (GSVD) 

We first define a weighting matrix 𝑀 = [ 
𝕀𝑝1

𝟎

𝟎 𝐖
], where 𝕀𝑝1

 is an identity matrix 

with dimension 𝑝1. 𝑾 = [𝑤𝑖𝑖] ∈ ℝ𝑚×𝑚 is a diagonal matrix where 𝑤𝑖𝑖 =
𝑛

𝟏T⋅𝑧𝑖
, and 𝟏 is a 

vector of ones. Then we perform generalized singular value decomposition on the product 

of matrices 𝒁 and 𝑴, Equation (27), where 𝑼 and 𝑽 are orthogonal matrices, and 𝚲 is a 

diagonal matrix that contains singular values sorted by their values. 

𝒁 ⋅ 𝑴 = 𝑼𝜦𝑽𝑻 (27) 

Notice that in Equation (27), 𝑽 = [𝒗𝟏, 𝒗𝟐, … , 𝒗𝒑𝟏+𝒎]  represents the principal 

component directions of the matrix 𝒁 ⋅ 𝑴, and 𝜦 = diag {√𝜎1, √𝜎2,⋯ , √𝜎𝑝1+𝑚} where 

𝜎𝑖’s are eigenvalues of 𝑴𝐓𝒁𝐓𝒁𝑴. Thus, we can find the principal components of 𝒁 ⋅ 𝑴, 

that is 𝑭 ∈ ℝ𝑛×𝑟, by using Equation (27). 𝑭 has the same rank as 𝒁. 

𝑭 = 𝒁 ⋅ 𝑴 ⋅ 𝑽 (28) 

D. Derived Covariates 

Common techniques to derive covariates from 𝑭 include: (a) pick the top 𝑘 columns 

with the sum of explained variances that exceeds some thresholds; (b) pick the top 𝑘 

columns with the smallest squared singular value (i.e., eigenvalue) exceeding some 
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threshold; and (c) pick the top 𝑘  columns with the sum of squared singular values 

exceeding some threshold. However, these variance-based or singular-value-based 

criterion might not always be optimal in predictive analytics. PCs with large variances are 

not necessarily the best predictors [92] as principal components with low explained 

variability could be highly correlated with the response variable. Therefore, the dependence 

between response and predictor variables must be taken into account. 

In order to choose the number of principal components 𝑘 big enough to account for the 

variance in the data as much as possible, and also reduce the dimensionality of the data, we 

have applied the Kaiser rule [93, 94, 95] by iteratively selecting 𝑘  PCs using the 

aforementioned criteria (b) with a threshold 𝛿. When varying the threshold 𝛿 from 0.5 to 

1.0 with a step of 0.1, we regress selected PCs with the response value 𝑌 using logistic 

regression, and record the model’s adjusted pseudo R-squared. We determine the final 𝛿 

and 𝑘 PCs with the best adjusted pseudo R-squared.  

We denote the selected PCs as 𝑭𝒌, and hereafter we use 𝑭𝒌 as the final design matrix 

to conduct logistic regression analysis using the same technique described in Section 6.3. 

except that in Equation (25), we use the feature vectors in 𝑭𝒌 instead of 𝑿. 

E. Transformation of Estimated Coefficients 

While the PCLR regime gives us estimates for principal components, we eventually 

desire estimated coefficients of the actual features derived in Chapter 4 (e.g., ceilings and 

runway fixed effects). Let 𝛂 denote the coefficient vector for PCs, then the utility function 

(3) can be rewritten as: 

𝓥 = 𝑭𝒌 ⋅ 𝛂 = (𝒁 ⋅ 𝑴 ⋅ 𝑽𝒌) ⋅ 𝜶 = 𝒁 ⋅ (𝑴 ⋅ 𝑽𝒌 ⋅ 𝛂) =  𝒁 ⋅ 𝛃 (29) 

where 𝑽𝒌 is the first k columns of the matrix 𝑽. 

Given Equation (29), the logistic regression model with respect to 𝑭𝒌  can be 

equivalently expressed in matrix form with respect to the original feature space 𝒁. Thus, 

the associated coefficient vector is given by: 

𝜷 =  𝑴 ⋅ 𝑽𝒌 ⋅ 𝜶 (30) 

6.4.2.  Factor Loading Analysis 

In addition to obtaining principal components (PCs) and their associated estimates, we 

are also interested in linking PCs to the original feature space in order to identify the 

variables that are primarily associated with any given PC. To do so, we use factor analysis 

to map PCs to groups of features quantitatively. 

We first denote 𝑳 = [
𝑳𝟏

𝑳𝟐
] , 𝑳𝟏 ∈ ℝ𝑝1×𝑘 , 𝑳𝟐 ∈ ℝ𝑚×𝑘 as the loading matrix representing 

the variance in features explained by PCs. The formal definition is formulated as: 

𝑳 = 𝑴 ⋅ 𝑽𝒌 ⋅ 𝜦𝒌 (31) 
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where 𝑽𝒌 is the first k columns of matrix 𝑽, and 𝜦𝒌 is the kth order leading principal minors 

of 𝜦. However, due to the fact that continuous variables and categorical variables are not 

on the same scale, and thus we cannot compare their explained variance by PCs directly 

from 𝑳. We have derived a contribution matrix 𝑪 = [
𝑪𝟏

𝑪𝟐
] ∈ ℝ+ in which each element 𝑐𝑖𝑗 

describes the contribution of the ith feature to the jth PC. Specifically, a larger value of 𝑐𝑖𝑗 

indicates a higher contribution of the ith feature to the jth PC. Furthermore, the 𝑪 matrix can 

be decoupled into two submatrices where 𝑪𝟏 ∈ ℝ+
𝑝1×𝑘

 and 𝑪𝟐 ∈ ℝ+
𝑝2×𝑘

 respectively 

correspond to the continuous and categorical contribution matrices. Equation (32)(33)(34) 

illustrate the derivation of 𝑪. 

𝑪𝟏 =  𝐋𝟏 ∘ 𝐋𝟏 (32) 

𝑪𝟐 =  𝐇 ⋅ (𝐋𝟐 ∘ 𝐋𝟐) (33) 

where ∘ denotes element-wise multiplication. 𝑯 ∈ ℝ𝑝2×𝑚  is a block diagonal matrix in 

which the diagonal elements are vectors of the level frequency of the ith categorical variable, 

and the off-diagonal elements are 0. 𝑞1, 𝑞2, … , 𝑞𝑝2
 are the number of levels for each 

categorical variable (e.g., 𝑞1 = 8 for variable Runway), and 𝑚 = ∑ 𝑞𝑖
𝑝2
𝑖=1  is the total levels 

for all categorical variables. 

𝑯 = 

[
 
 
 
 
 
 
 (

𝟏T ⋅ 𝑧11

𝑛

𝟏T ⋅ 𝑧12

𝑛
     ⋯

𝟏T ⋅ 𝑧1(𝒒𝟏)

𝑛
) 0 ⋯ 0

0 (
𝟏T ⋅ 𝑧21

𝑛

𝟏T ⋅ 𝑧22

𝑛
 ⋯

𝟏T ⋅ 𝑧2(𝒒𝟐)

𝑛
) ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯  (
𝟏T ⋅ 𝑧𝑝21

𝑛

𝟏T ⋅ 𝑧𝑝22

𝑛
 ⋯

𝟏T ⋅ 𝑧
𝑝2(𝒒𝒑𝟐

)

𝑛
)
]
 
 
 
 
 
 
 

(34) 

With such operations, the contribution of a categorical variable is the weighted sum of 

the squared loadings of its classes in 𝑳𝟐 and therefore is equivalent to their correlation 

ratios. For the contribution of a continuous variable, on the other hand, the squared loading 

equals the squared correlation. 

6.5. Estimation Results 

Using the above Kaiser rule, the first 17 principal components with 𝛿 = 0.8  that 

explain 82% of the total variance have the best adjusted pseudo R-squared. In the end, we 

are left with 9 PCs after removing insignificant principal components from the estimated 

logistic regression model. 

6.5.1.  Factor Analysis and Model Result 

For the convenience of understanding the model estimated coefficients for each factor 

(PC), we first need to deploy the pattern matrix 𝑳 (Equation 31) and the contribution matrix 
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𝑪 (Equation 32-34) from factor analysis to interpret the relationships between PCs and the 

original features. The pattern matrix 𝑳 indicates the magnitude and sign of the correlation 

between the PCs and the original variables. The contribution matrix 𝑪  transforms the 

continuous variable contributions and the categorical variable contributions on the same 

scale. It then describes the magnitude of the overall contribution of an individual variable 

to a PC.   

Table 9. Loadings of variables with above-average contributions for each PC. 

PC 
Related 

Variable (x) 

Loading 

(𝒍𝒊𝒋) 
Semantic 

Labels 
PC 

Related 

Variable (x) 

Loading 

(𝒍𝒊𝒋) 
Semantic 

Labels 

1 

Visibility1 -0.715 

Meteorological 

conditions 

5 

ArrQue 0.592 

Traffic 

conditions  

Visibility2 -0.817 DepQue 0.586 

Visibility3 -0.821 GaGap -0.399 

Ceiling1 -0.643 GaCnt 0.210 

Ceiling2 -0.823 RwyCnt 0.307 

Ceiling3 -0.838 Rwy22R 1.726 

Ceiling4 -0.616 
6 

AirlineIntl 1.396 Aircraft 

characteristics IMC 2.000 BodyWide 1.293 

2 

AltDiff 0.724 

Lead-trail 

spacing 

7 
Rwy13R 0.975 Approach 

pattern Energy 0.719 Rwy31L -1.136 

𝑅𝑂𝐵̂ -0.411 
8 

Wind 0.623 Wind and 

daytime 

effect SpeedDiff 0.220 Daytime 0.689 

NoLead -1.232 

13 

RwyChange 1.172 

Approach 

pattern 

4 

Angle 0.618 

Approach 

procedure 

features 

Rwy13L -1.415 

AltDev 0.457 Rwy31R 0.606 

Speed 0.430 15 LOS 0.812 
Loss of 

separation 

Rwy04R -0.781     

Rwy22L -0.682     

 

The first and second columns of Table 9 are determined by finding which variable(s) – 

either continuous or categorical – make above-average contribution(s) to each PC based on 

contribution matrix 𝑪. The average contribution is the value when all variables have the 
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same contributions (i.e., 100% divided by the total number of variables). In the case of 

categorical variables, which may make an above-average contribution to more than one PC, 

we base the assignment on the maximum loading. We present the loading value – either 

positive or negative – of the ith variable to the assigned jth PC (from pattern matrix 𝑳) in the 

third column. To save space, we only show the loading (𝑙𝑖𝑗) of the ith variable to the 

assigned  jth PC in Table 9 rather than the whole pattern matrix 𝑳 and the whole contribution 

matrix 𝑪. Note that variables may have high loading values on just one or two PCs, or have 

a balanced spread with small loading values across more PCs. According to the allocation 

result, we assign semantic labels for each PC in the fourth column and use them to interpret 

the estimation results of the PCLR model in Table 9. 

Turning to Table 10, we note that PC1 has a highly significant, positive coefficient 

estimate. From Table 9, we see that the visibility and ceiling variables are loaded in the 

opposite direction with PC1, while the IMC indicator variable is loaded in the same 

direction. Thus, the PC1 result indicates that adverse meteorological conditions (low 

visibility and ceiling, or IMC condition) increase the probability of the go-around 

occurrence. 

The coefficient estimate of PC2 indicates that the threat of the lead and trail aircraft 

simultaneously occupying the runway increases the likelihood of a go-around. A small 

runway occupancy buffer (𝑅𝑂𝐵̂), or the trailing aircraft approaching with high energy 

(Energy), or the trailing aircraft chasing too close to its leading flight (SpeedDiff) increases 

this threat, while the absence of a lead aircraft (NoLead) clearly reduces it. Similarly, the 

positive coefficient on PC15 implies that a higher loss of separation compared to FAA 

standards increases the probability of go-around. 

Table 10. PCLR model estimation results. 

Dimension Est./Std. Dimension Est./Std. Dimension Est./Std. 

Constant 
-6.560*** 

(0.088)   
  

PC1 
0.252*** 

(0.018) PC5 
0.152*** 

(0.036) 
PC8 

0.177*** 

(0.046) 

PC2 
0.207*** 

(0.039) PC6 
0.407*** 

(0.040) 
PC13 

0.453*** 

(0.036) 

PC4 
0.149*** 

(0.043) PC7 
0.144*** 

(0.033) 
PC15 

0.180*** 

(0.022) 

 Variables are significant at the 0.1% level***, 1% level**, 5% level*. 

 

The PC4 captures the effect of approach procedure deviations. The positive coefficients 

PC4 in Table 10 implies that flights that are deviated from the optimum approach procedure 

(3-degree glideslope, runway alignment, proper speed control) are more likely to initiate 

go-arounds. The landing runway indicators 04R and 22L are also captured in this PC, 
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perhaps indicating that approaches to these two runways are correlated with the other PC4 

covariates. It suggests that flights landing on runway 04R/22L would be less likely to 

initiate go-arounds than other runways, perhaps because 04R/22L has the most advanced 

landing aids of the JFK runways. As reported by [96], Runway 4R is a Category IIIB ILS 

runway, permitting landings with as little as 600 feet of visibility; Runway 22L is equipped 

with a Precision Approach Path Indicator (PAPI) and allows landings down to visibility of 

less than a half-mile (2640 feet), while other runways at JFK require more than half-mile 

visibility for landing. These technologies make it easier for pilots to land, alleviate the 

operational risks, and avert go-arounds. 

The arrival queue, departure queue, go-around clustering effect, and the number of 

objects occupying the runway during the landing process are captured by PC5, which has 

a positive impact on the go-around occurrence. This may indicate that increased controller 

workload or pressure to maximize throughput increases the go-around probability. PC5 

also picks up the clustering effect whereby go-arounds are more likely in the time period 

surrounding a given go-around. 

The PC6 captures the aircraft characteristics – fixed effects of international airliners 

and wide-body aircraft, which is found a significant positive impact on go-around 

occurrence. The daytime operations and strong winds (PC8) increases the likelihood of go-

around occurrences, as does a change of runway configuration (PC13). This could reflect 

how the configuration change interrupts traffic patterns, increasing pilot and controller 

workload.  

Besides the landing runway 04R/22L loaded by PC4, the fixed effects of other landing 

runway variables for capturing different approach patterns are loaded in different PCs – 

22R in PC5, 13R/31L in PC7, and 13L/31R in PC13. All of these PCs are statistically 

significant which suggests that, all else equal, this is a greater proclivity toward go-arounds 

in certain landing runways, but further investigation is required to interpret the relationship 

between runway configuration and go-around occurrence.  

6.5.2.  Transformation of coefficients 

In the above section, we interpret how the original derived features impact go-around 

occurrence using the assigned semantic labels for each PC based on factor analysis. This 

section further quantifies the impacts of the original derived features by reconstructing their 

estimates using Equation (30). The results are presented in Table 11. The coefficient 

estimates of the original features are based on the assumption that the features affect go-

around occurrence through their effects on the factors included in the model. Compared to 

the standard logit model estimation results in Table 8, the coefficients in Table 11 are quite 

different, and the standard errors of the coefficient estimates are much lower. Nearly all 

the coefficients become statistically significant at the 1% confidence level and have 

expected signs. The PCLR model removes collinearity without eliminating any of the 

original variables and reduces the variance of the estimated coefficients. The majority of 

the estimates (𝛽) are consistent with the discussions in the factor loading analysis. Note, 
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however, that individual coefficient estimates are biased and the main value of the PCLR 

method is in the estimates of the latent variable coefficients. Practice [97] has shown that 

strong collinearity induces the conditions under which the PCLR method is beneficial, in 

that the PCLR allows for minor bias for the sake of substantially smaller variance and 

improved model interpretability [98]. 

Table 11. Reconstructed coefficients of original features.  

Variable 
Reconstructed 

Coef. 𝜷 (std.) 
Variable 

Reconstructed 

Coef. 𝜷 (std.) 
Variable 

Reconstructed 

Coef. 𝜷 (std.) 
Variable 

Reconstructed 

Coef. 𝜷 (std.) 

Constant 
-6.560*** 

(0.088) Visibility1 
-0.164*** 

(0.030) 
ArrQue 

0.016*** 

(0.003) 
RwyChange 

0.562*** 

(0.004) 

AltDev 
0.015*** 

(0.006) 
Visibility2 

-0.061*** 

(0.005) 
DepQue 

0.013*** 

(0.002) 
Rwy04R 

-0.036 

(0.029) 

Speed 
0.010*** 

(0.001) 
Visibility3 

-0.052*** 

(0.005) 
RwyCnt 

0.011 

(0.008) 
Rwy13L 

-0.209** 

(0.073) 

Energy 
0.001*** 

(0.000) 
Ceiling1 

-0.190*** 

(0.038) 
𝑹𝑶𝑩̂ 

-0.005*** 

(0.001) 
Rwy13R 

2.758*** 

(0.180) 

Angle 
0.001** 

(0.000) Ceiling2 
-0.040*** 

(0.003) 
IMC 

0.244*** 

(0.006) 
Rwy22L 

-0.094** 

(0.035) 

LOS 
2.101*** 

(0.215) 
Ceiling3 

-0.008*** 

(0.001) 
Daytime 

0.201*** 

(0.023) 
Rwy22R 

0.383*** 

(0.068) 

SpeedDiff 
0.004*** 

(0.000) 
Ceiling4 

-0.001** 

(0.000) 
AirlineIntl 

0.463*** 

(0.014) Rwy31L 
-0.420*** 

(0.049) 

AltDiff 
0.023*** 

(0.005) 
GaCnt 

0.549*** 

(0.046) 
BodyWide 

0.445*** 

(0.015) Rwy31R 
0.107 

(0.070) 

Wind 
0.058*** 

(0.007) 
GaGap 

-0.001*** 

(0.000) 
NoLead 

-0.473*** 

(0.005)   

 Variables are significant at the 0.1% level***, 1% level**, 5% level*. 

We here plot the coefficients of different visibility and ceiling discretized variables in 

Figure 21. The green bar represents visibility (in statute miles), and the blue bar represents 

the ceiling (in 100 feet). We observe that go around occurrence is more sensitive to 

visibility and ceiling variation when these values are less than 3 statute miles and less than 

500 feet, respectively, and that this sensitivity declines markedly as these conditions 

improve. 
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Figure 21. Bar plot of visibility and ceiling effects. 

6.5.3. Counterfactual Analysis 

In this section, we directly measure the contributions of different factors to the go-

around occurrence by conducting a counterfactual analysis. Each counterfactual scenario 

is constructed by setting a particular feature to its “best” value while leaving the other 

features unchanged. For example, model estimates suggested that the ceiling has a negative 

effect on go-around occurrence. To construct the counterfactual scenario for ceiling, we 

set the ceiling to 10,000 feet for each observation in the data set. Based on this assumption 

we reset the values of the various ceiling-related valuables, while leaving all other values 

unchanged. Then, we use the estimated PCLR model to predict the corresponding go-

around probability for each flight. The variable contribution is calculated by measuring the 

percentage reduction between the baseline go-around rate and the expected go-around rate 

using Equation (35). Note that we assume individual feature does not directly impact go-

around occurrence but via their effects on the PCA factor scores 𝐹. 

%𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =  
𝑃𝐺𝐴 − 𝐸(𝑃𝐺𝐴|𝑋′)

𝑃𝐺𝐴
× 100% (35) 

where 𝐸(𝑃𝐺𝐴|𝑋′) is the expected go-around rate given the counterfactual input 𝑋′; 𝑃𝐺𝐴 is 

the baseline go-around rate. 

Table 12 reports the scenario value for each variable, that is the value found in the data 

that, based on the sign of its coefficient, would minimize go-around occurrence (labeled 

“Expected GA%”), and the percentage reduction in go-around occurrence relative to the 

observed baseline of 0.343%. 
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Table 12. Counterfactual analysis results. 

Baseline go-around rate: 0.343% 

Variable Scenario value Expected GA% % Reduction in GA’s under scenario 

AltDev 0 

0.240% 29.97% 
Speed 77.28 

Energy 1318.72 

Angle 0 

LOS 0 
0.248% 27.59% 

SpeedDiff -86.95 

DepQue -15 0.256% 25.46% 

Ceiling1 5 

0.257% 25.12% 
Ceiling2 10 

Ceiling3 30 

Ceiling4 100 

MC VMC 0.258% 24.86% 

Body Narrow 0.259% 24.60% 

Visibility1 3 

0.272% 20.62% Visibility2 5 

Visibility3 10 

Wind 0 0.273% 20.47% 

NoLead 1 0.276% 19.47% 

𝑹𝑶𝑩̂ 146.79 0.277% 19.39% 

ArrQue -15 0.290% 15.51% 

RwyChange 0 0.306% 10.86% 

GaGap 1440 
0.307% 10.41% 

GaCnt 0 

AirlineIntl 0 0.310% 9.52% 

RwyCnt 0 0.313% 8.88% 
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The relative importance of the variables on the reduction of go-around probability is 

shown in Figure 22, where each row represents one variable. The length of the color bar 

indicates the variable contribution in percentage. The stability of an approach, flight lead-

trail spacing, departing traffic and airport ceiling are the most important factors of go-

around occurrence. If the flight aligns the extended runway centerline properly at 5 nm, 

strictly follows the 3-degree glideslope, and maintains the effective speed control and 

energy management, the go-around rate would potentially decline about 30%. For aircraft 

forming in-trail relationships, the go-around rate would also decline by about 28% by 

maintaining appropriate following speed and keeping safe spatial separation, while the 

absence of a lead aircraft (NoLead) would result in a 19% drop of the go-around rate. 

Managing and optimizing the departure queue seems to have a more substantial 

contribution to decreasing go-around rates (25%) than reducing the arrival queue (16%). 

The go-around rate would drop by more than 25% if the airport ceiling were set to its ideal 

scenario value, and 21% if there were high visibility. If all the flights in the observation 

dataset are narrow-body aircraft or operated by domestic airliners, the go-around rate 

decreases by 25% and 9%, respectively. The wind speed effect contributes 20% to the 

reduction of go-around occurrence. Ensuring that there are no aircraft or vehicles on the 

runway safety area when a flight is 5 nm from its landing runway threshold, would result 

in a 9% reduction of go-around occurrence. Finally, eliminating the clustering effect would 

reduce the go-around occurrence by 10%. 

 

Figure 22. Relative variable contribution in reducing go-arounds. 
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6.6. Chapter Summary 

In this section, we develop the principal component logistic regression model to 

quantify the contribution of a wide range of factors to go-around occurrence. Specifically, 

we have designed a trajectory-based go-around detection algorithm and applied it to JFK 

arrival flights in 2018. Multiple datasets have been fused to capture features that may 

influence flight approach procedures and therefore help understand the causes of go-around 

occurrence. In developing the feature engineering, we have collected features from the 

dataset directly, and used domain knowledge to derive features, such as loss of separation 

and runway occupancy buffer. We then established statistical relationships between go-

around occurrence with those derived features and estimated their effects using PCLR 

model and factor loading analysis. Lastly, we quantify the contribution of various features 

to go-around occurrence through counterfactual analysis. Conclusions are in line with 

research using full-flight simulator trials [64], interviews with ATC controllers and pilots 

[26], and a realized trajectory dataset [16]. 

As far as the authors know, this is the first work to detect, model, and interpret go-

around occurrence from surveillance data, considering a broad set of environmental and 

operational variables. This enables us to assess the relative importance of a wide range of 

factors in determining go-around probability. We find that there is no single dominant 

factor. Factors in the top tier of importance include the state of the subject aircraft, its 

separation and speed difference from the aircraft in front, and factors related to visibility, 

cloud ceiling, and the subject aircraft type. Among these factors the first two are, in 

principle, subject to improvement through pilot and controller training, and thus inviting 

targets for initiatives to reduce go-arounds. These conclusions must be qualified by the 

strong assumption that individual features influence go-around occurrence via their 

contributions to factors. Larger data sets are required to overcome the multi-collinearity 

between features so that feature coefficients can be estimated directly rather than through 

principal components. 

In addition to the scientific contribution, it has a variety of practical applications. This 

research could lead to a real-time monitoring tool that can anticipate, and perhaps 

remediate, situations in which there is a substantial risk of go-arounds (Chapter 7). The 

model can also supply tactical instructions for controllers and pilots about the probability 

of go-arounds under varying conditions during approach procedures. It would be helpful 

for decision support monitoring and prediction-based alerting in advance to improve flight 

approach safety and airport efficiency. Our results can also inform strategies to reduce go-

arounds by identifying the most salient contributing factors, some of which may be 

mitigated. Also, by summarizing historical patterns of go-around occurrence, our study can 

augment the limited individual experience of air traffic controllers and pilots, and this 

informs their judgment about whether a go-around is warranted.  

Several improvements can be built upon the presented work. As noted above, one 

important direction is to overcome multi-collinearity among different features, presumably 

by employing a larger data set across multiple airports.  Another interesting extension is to 
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develop models at other distances and explore the evolutionary impacts of feature 

contributions on go-around occurrence. In this manuscript, the PCLR model is based on 

the features that are available when a flight is at 5 nm from its landing runway threshold. 

The algorithms and the estimation procedures can be applied to features spaces defined at 

different information cutoff gates from 10 nm to 1 nm. Thirdly, our methods can be 

extended to other types of atypical flight approach events, such as the unstabilized 

approach, short approach, dogleg approach, etc. Lastly, other contributing factors, such as 

crew-controller communications [99] and commercial pressure to maintain flight schedules, 

may be considered in future work. 
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7. Sequential Prediction of Go-Around 

Occurrence 

7.1. Overview 

While the contribution analysis in Chapter 6 helps decision-making at a strategic level, 

being able to predict go-around probabilities for each landing aircraft over the entire 

approach could provide tactical guidance to foresee and perhaps prevent go-arounds. If the 

probability of a go-around can be predicted in advance and be imparted to operators (e.g., 

air traffic controllers and pilots) in time, more proactive mitigations can be taken to 

alleviate the operational risks and increase airport efficiency as go-arounds might be 

averted. Toward this end, in this chapter, we leverage the go-around detection results in 

Chapter 3, derived features in Chapter 4 and Chapter 5, and observation-driven insights 

from Chapter 6 to develop machine learning models from making sequential predictions of 

go-around probabilities of individual flights as they approach the airport.  

This chapter aims to develop predictors that can incorporate the operational conditions 

and environmental measures for the real-time prediction of go-arounds. This work enables 

a real-time system-wide safety assurance (Chapter 9) that establishes a practical safety-

enhancing risk detection tool for ANSPs, airports, airlines, and other stakeholders. 

7.2. Related Work 

There are two common approaches to sequence prediction: one is to use snapshot (point) 

features extracted from the sequence to build multiple static supervised learning models at 

every timestamp; The other is to use time series of relevant data for temporal models that 

can learn the inherent temporal structures of the entire sequence.  

For the applications of using snapshot features, Martinez et al. [100] apply gradient 

boosting methods to predict the runway occupancy times at Vienna airport. For each flight 

sequence, the instant in which the prediction is made has been set at [10, 9.5, 9, …, 2.5, 2] 

nautical miles before the landing runway threshold – every 0.5 nm between the landing 

runway threshold and 10 nm from that. In Chapter 5, we also apply the similar regime to 

train several machine learning models to predict the ROB, when the trailing aircraft is at 

[10, 9, …, 3, 2] nm from the landing runway threshold.  

Temporal models capture the temporal dynamics in a more flexible way and allow a 

“memory” of the previous inputs to persist in the internal hidden units, which then 

influences the prediction result. Markovian models and recurrent networks, in which the 

structure is a directed acyclic graph, are often employed to learn the inherent temporal 

dependence structure of the sequence. Both methods have shown promise in the aviation 

field, especially when dealing with flight trajectory data. HMM has gained more attention 
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in recent years, particularly for predicting flight trajectories. Ayhan and Samet [58] propose 

an HMM to predict full four-dimensional trajectories, given the observed weather cube 

sequence (temperature and wind). In this model, the positions of the aircraft are regarded 

as hidden states, and the weather cube observed around the track point is a realization of 

the hidden states. To evaluate airport system operational behavior for safety control, 

Rodriguez-Sanz et al. [101] have applied the HMM framework to access airspace-airside 

turnaround operations. This paper defines hidden states with performance thresholds (e.g., 

delay, throughput) and expert knowledge, but does not undertake sensitivity analysis on 

the selected threshold values to ensure model robustness. Liu and Hansen [59] developed 

an encoder-decoder LSTM network for four-dimensional aircraft trajectory prediction in a 

real-time setting. The model is applied to a dataset including 1,679 flight trajectories and 

achieves good predictability. 

7.3. Problem Formulation 

For each flight approaching the airport, our goal is to predict whether or not the flight 

will initiate a go-around during the remainder of its approach, given the sequence of the 

realized track points and their associated feature vectors (currently available information) 

gleaned from the datasets at a certain point in time. The underlying question we seek to 

answer is that, by solely observing the current flight status and its surrounding traffic and 

weather environment, how well do the predictive models learn to predict the probability of 

go-around initiation, after the flight passes a certain information cutoff gate? 

This task can, therefore, be viewed as a “many-to-many” sequential prediction problem, 

with the first “many” implying that the observed feature space could involve more than 

one input time step, and the second “many” indicating that our final prediction will consist 

of labels at one or more time steps based on a sequence of recent observations. Notably, 

the number of input time steps (the first “many”) does not have to match the number of 

output time steps (the second “many”). We treat the flight approach procedure as a 

stochastic process, and model the complex dynamical flight approach procedures in a 

recurrent processing style. 

Recall from Section 4.2 that we applied linear extrapolation to discretize the flight 

trajectories at information cutoff gates, and we will only derive features at those gates. For 

each labeled go-around flight, we treated the timestamp/trackpoint at the start of ascent as 

the initial time/location for the go-around procedure, and further truncated the trajectory 

after that point. Therefore, each flight trajectory considered to be a go-around can be 

represented by at most ten track points, which end before the flight altitude increases. 

Before a go-around is initiated, all the go-around labels 𝐺𝑖,𝑑 for flight 𝑖 at the information 

cutoff gate 𝑑 will be set to 0. Afterward, only the last closest information cutoff gate is 

labeled as 𝐺𝑖,𝑑 = 1. For example, consider a flight that initiated a go-around at 5.3 nm from 

the landing runway threshold. This flight sequence spans 10 nm to 6 nm, meaning that 6-
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nautical-mile to 10-nautical-mile information cutoff gates will be considered for feature 

engineering. Information for gates between 1 nm and 5 nm will not be considered.  

After data cleaning and matching, there were 100,032 arrivals at JFK airport during the 

analysis period. We identified and validated 371 go-arounds within the period, accounting 

for 0.371% of all JFK arrivals. All the features discussed in Chapter 4 are derived for every 

nautical mile from the landing runway threshold (10, 9, 8, …, 1 nm). Features are of two 

types – attributes and time series features – as defined in Section 4.4. In addition, 

continuous features are standardized to alleviate variation in magnitudes of the feature 

values and improve the convergence speed of the models. 

In this chapter, we seek to investigate several methodologies for predicting the 

occurrence of a go-around at each timestamp of a landing aircraft sequence, using the 

realized trajectory data and its surrounding environment information available at different 

times of the approach. The go-around prediction is formulated as a transformation of 

multivariate sequences in the feature space into a sequence of go-around probabilities at 

each timestamp. The methodological framework, including data processing, modeling, and 

performance evaluation, is presented in Figure 23. In the remainder of this chapter, we will 

discuss three modeling approaches – classical machine learning models trained 

independently at different timestamps, a recurrent network model, and a Markovian model 

trained on sequential data. We then demonstrate the performance evaluation of the single-

step-ahead prediction and the multi-step-ahead prediction and show the experimental 

results of the go-around prediction with a real-world dataset.  

 

Figure 23. Predictive analytics framework. 

7.4. Classical Machine Learning 

One issue with using the classical machine learning models for the go-around 

sequential prediction task is that the training data consist of sequences of feature-response 
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pairs, which exhibit significant sequential correlation and do not quite fit the classical 

machine learning paradigm. Therefore, we employ the divide-and-conquer strategy and 

sliding window method to partition the overall sequential learning problem (i.e., predicting 

the go-around labeling sequence 𝑮𝒊  of flight 𝑖  given feature sequences 𝑭𝒊 ) into 

subproblems (i.e., predicting individual output labels 𝐺𝑖,𝑑  of flight 𝑖  at the information 

cutoff gate 𝑑 given subsets of information from 𝑭𝒊).  

Table 13. Tuning hyperparameters. 

Model Hyperparameter Search Range 

Logistic 

Regression 
Penalty term for the 𝑙2 regularization 

[10-3, 10-2, 10-1, 1, 

10, 100] 

SVM Penalty term for the  𝑙2 regularization 
[10-3, 10-2, 10-1, 1, 

10, 100] 

Random 

Forest 

The maximal depth of the tree [5, 10, 15, 20] 

The minimal number of samples required to split an internal 

node 
[2, 5, 10, 15, 20] 

The number of features to consider when looking for the best 

split 
[sqrt, log2] 

XGBoost 

Learning rate 
[10-6,10-5,10-4, 10-3, 

10-2, 10-1, 0.3, 0.8] 

Minimum loss reduction required to make a further partition 

on a leaf node of the tree 
[1, 3, 5, 10, 15, 20] 

Maximum depth of a tree [6, 10, 15, 20] 

The maximum number of steps we allow each leaf output to 

be. It might help when class is extremely imbalanced 
[2, 6, 10, 15, 20] 

𝑙2 regularization term on weights 
[10-3, 10-2, 10-1, 1, 

10, 100] 

Subsample ratio of the training instances 
[0.2, 0.4, 0.6, 0.8, 

0.9, 1] 

IO-HMM 

The l2 regularized term in linear regression 
[10-3, 10-2, 10-1, 1, 

10, 100] 

The l2 regularized term in logistic regression 
[10-3, 10-2, 10-1, 1, 

10, 100] 

The number of hidden states [2, 3, 4, 5, 6] 

 

The sliding window method enables any classical machine learning algorithms to be 

applied to sequential prediction problems since it retains the information from previous 
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timestamps by stacking the feature spaces with a sliding window. It is predicated on the 

assumptions that (1) the training samples are drawn independently and identically from 

joint distributions 𝑃(𝑭,𝐺) specific to each information cutoff gate, and (2) only a fixed-

sized window of features is relevant for predicting output values at each gate. In the current 

stage, we assume a sliding window size of one, in which the lag-one features from the last 

information cutoff gate will be included to predict 𝐺𝑖,𝑑 given 𝑭𝒊,𝒅, 𝑭𝒊,𝒅−𝟏. A longer-range 

interaction might not be necessary as the effects yielded long ago are mostly manifested in 

the flight status from the previous gate already. In future work, we will investigate the 

sliding window size by subsampling the flight sequences with a more refined frequency to 

have more information cutoff gates or by expanding the prediction horizons. 

Following a similar modeling regime and experimental processes as [102], we train and 

compare four kinds of classical machine learning classifiers: logistic regression, kernelized 

support vector machine (SVM), random forest (RF), and extreme gradient boosting 

(XGBoost). Specifically, for each type of classical machine learning algorithm, we train 

eight models to predict 𝐺𝑖,𝑑  for each information cutoff gate, given varying feature 

matrices that are known when the flight reaches each information cutoff gate. The gate-

specific predictions are then concatenated to form the predicted go-around label sequence 

𝑮𝒊 = [𝐺𝑖,9, 𝐺𝑖,8, 𝐺𝑖,7, 𝐺𝑖,6, 𝐺𝑖,5, 𝐺𝑖,4, 𝐺𝑖,3, 𝐺𝑖,2] for flight 𝑖. To balance bias and variance, we 

have fine-tuned the hyper-parameters for each model using five-fold cross-validation. 

Table 13 summarizes the descriptions of hyper-parameters and their tuning ranges. 

7.5. Long Short-Term Memory 

Although using classical machine learning algorithms is straightforward and elegant, it 

is not well-suited for the current setting because: (1) the training data comprises sequences 

of feature-label pairs (𝑭,𝐺)  with temporal correlations that may not be effectively 

represented by simple stacking. (2) The classical machine learning approach is also 

computationally expensive since each type of classifier must be trained and fine-tuned for 

each distance-variant dataset. (3) In addition, the classical machine learning algorithms can 

only make single-step, single-output predictions one time step into the future based on the 

current conditions. Without the feature vectors for the following timestamp(s), we cannot 

obtain the probabilities of go-arounds further in the future.  

In our use case, we want the model to provide a range of predicted probabilities of go-

around occurrence in the future (e.g., at 5, 4, …, 1 nm), given a certain length of inputs 

(e.g., information at 10, 9, …, 6 nm is known). Unlike classical machine learning 

algorithms, which can only predict a single future value, the model needs to learn to predict 

a sequence of future values. Recurrent models, which can learn to make predictions in the 

future based on a lengthy history of inputs, are well-suited to our case. RNNs process a 

time series step-by-step, keeping an internal state from timestamp to timestamp. In this 

study, we will employ a variant of RNNs, called Long Short-Term Memory (LSTM), to 

map the multivariate input sequence to the output sequence. LSTM networks have been 
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shown to be an effective tool for learning representations from sequential data with 

temporal dependencies [103]. 

Since our flight sequences are of varying lengths, we first pad the samples to ensure 

that all the sequences are consistent in length and can be encoded into contiguous batches. 

A masking layer is then added to inform the model (i.e., the subsequent sequence-

processing layers) what part of the input data is actually padding and should be skipped 

while processing the data or computing the loss. Under the hood, the masking layers will 

create a boolean tensor which will be propagated through the network for downstream 

layers. Each individual “False” entry specifies that the masked timestamp corresponding 

to it should be ignored during processing. Then, a two-layer LSTM network learns to map 

the given padded and masked input sequence to a sequence of hidden states that function 

as a summary/representation of the input sequence. The hidden states at each timestamp 

are learned by the LSTM network with weights and bias (parameters). Finally, we use the 

fully connected dense layer with sigmoid activation to transform the outputs from the 

LSTM layer to model predictions. 

We use the Adam optimizer [104] with early stopping [105] to train our networks. All 

the parameters (weights and bias) of the network are learned by optimizing the binary focal 

cross entropy loss function [106] proposed by Facebook AI Research in 2018. For 

comparison, Equation (36) and (37) denote the commonly used binary cross entropy loss 

and the binary focal cross entropy loss, respectively, between the true go-around labels 𝐺 

and predictions 𝐺̂. 

𝐿(𝐺, 𝐺̂) = −𝐺𝑙𝑛(𝐺̂) − (1 − 𝐺)𝑙𝑛(1 − 𝐺̂) (36) 

𝐿(𝐺, 𝐺̂) = −𝐺(1 − 𝐺̂)
𝛾
𝑙𝑛(𝐺̂) − (1 − 𝐺)𝐺̂𝛾𝑙𝑛(1 − 𝐺̂) (37) 

Where 𝐺 ∈ {0, 1}  is the binary class label obtained from the anomaly detection 

algorithm in Chapter 3; 𝐺̂ ∈ (0, 1) is a probability estimate for the positive class (i.e., go-

arounds). The focal loss function adds a factor of (1 − 𝐺̂)
𝛾
 to the standard form of cross 

entropy loss. With the focusing parameter 𝛾  set to be positive, the focal cross entropy 

reduces the relative loss for well-classified samples (majority class), allowing the model to 

place a greater emphasis on difficult, misclassified samples. In other words, the 

conventional form of binary cross entropy loss requires the model to be confident in its 

predictions, while the focal cross entropy loss gives the model a bit more freedom to take 

some risks when making predictions. We currently set 𝛾 = 2  as recommended in the 

original paper on focal loss [106]. In addition, we weight the samples by the inverse of the 

class frequency for the class to which they belong, for penalizing the misclassification of 

the minority class by an amount proportionate to its underrepresentation. These two 

strategies are particularly useful in our case, where there is a highly imbalanced dataset.  
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7.6. Input-Output Hidden Markov Model 

In this section, we develop the Markovian model to examine its ability of predicting 

go-around occurrence, as compared to the classical machine learning methods and the 

recurrent neural networks. The Markovian model relies on statistics and distributions, and 

therefore likelihood maximization. It is fundamentally different from the two methods that 

we presented in the previous sections – classical machine learning and recurrent neural 

networks, which do loss minimization. 

For our use case, we employ a variant of the input-output hidden Markov model (IO-

HMM), an extension to the HMM that can better capture the sequential structure inherent 

in our problem to model and predict the go-around occurrence for an approaching flight. 

Experiments on artificial tasks [51] have shown that IO-HMM, which uses EM recurrent 

learning, can deal with time dependencies more effectively than backpropagation through 

time and other alternative algorithms. It can be applied to achieve our goal of fully 

exploiting both input and output portions of the flight sequence data, as required by the go-

around prediction task. 

7.6.1. Model architecture 

In order to deal with the go-around prediction problem, we regard the flight approach 

procedure as a discrete state dynamical process based on the following state-space 

description: 

𝑧𝑑 = 𝒻(𝑧𝑑−1, 𝒖𝒅, 𝒙𝒅−𝟏) (38) 

[𝒙𝒅, 𝐺𝑑] = ℊ(𝑧𝑑 , 𝒖𝒅, 𝒙𝒅−𝟏) (39) 

Equation (38) describes the transition function between different states, where 𝑧𝑑 ∈
 {1, 2,… , 𝑠} is a discrete hidden state variable that encodes symbols representing flight 

approach status (locations, speeds, etc.), 𝑠 is the total number of hidden states, which is set 

a priori for IO-HMM. Researchers typically associate those hidden states with semantics. 

In our specific context, those hidden states those hidden states may be representations of 

how stable the flight approaches are, but the semantic interpretation is not critical; rather 

they provide a means of capturing patterns of evolution of the output variables. 

𝒖𝒅  is the input variable at the information cutoff gate 𝑑 , including contextual 

information that can be known before the aircraft reaches the information gate 𝑑, such as 

flight-specific characteristics (e.g., operated airline, aircraft type, landing runway), weather 

conditions (e.g., visibility, ceiling, wind speed), and airport information (e.g., airport 

arrival rate, runway configuration change). The unique advantage of the IO-HMM is that 

it incorporates the input vector, allowing contextual variables to affect transition 

probabilities and emission variables.  In other words, flight sequences with similar input 

vectors—i.e., having similar contextual variables--will have similar estimated parameters, 

and thus a high probability of being “clustered” in the same latent state.  
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Equation (39) describes the emission function relating the output variables [𝒙𝒅, 𝐺𝑑] and 

the state variables 𝑧𝑑. To be more specific, in the equation, [𝒙𝒅, 𝐺𝑑] are both the output 

variables at the information cutoff gate 𝑑. 𝒙𝒅 contains dynamic features described in Table 

3, such as flight altitude and loss of separation. 𝐺𝑑 is the go-around label obtained from the 

go-around detection algorithm in Chapter 3. According to Equation (39), the 𝐺𝑑  is 

determined by the current state of the system 𝑧𝑑, input features at the current information 

cutoff gate 𝒖𝒅and the lag-one output features in the previous information cutoff gate 𝒙𝒅−𝟏. 

The output variables are available only after the aircraft passes the information cutoff gate 

𝑑.  

In contrast to the input variables, the output variables contain information that is not 

available at the transition to a new approach state. In other words, output variables can be 

observed when training the models but must be inferred when we predict the go-around 

probability. As dynamic features from the previous information cutoff gates also contribute 

to part of the context information for predicting what will happen to the aircraft in the 

following information cutoff gates, we link the lag-one output variables 𝒙𝒅−𝟏 to the next 

information gate by incorporating 𝒙𝒅−𝟏 in the input vector layer. 

 

Figure 24. IO-HMM architecture. 

Such discrete state dynamical system defined by Equation (38) (39) can be modeled by 

the graph depicted in Figure 25, in which the white nodes represent hidden state variables 

𝑧𝑑 , the green nodes represent observed input variables 𝒖𝒅, and the blue nodes contain 

output variables 𝒙𝒅 and 𝐺𝑑. 

7.6.2. Model specification 

We assume a multinomial distribution for the state variable 𝑧𝑑  and use a Bayesian 

network to characterize the probabilistic dependencies among these state variables, input 

variables, and output variables. The IO-HMM captures the dynamics of the Markovian 

chain by using the current inputs and current state distribution to estimate the state variable 

and the output variable distributions for the next information cutoff gate. According to the 

connections shown in the IO-HMM graph shown in Figure 25, three probability models 

need to be specified: an initial probability model which outputs a vector of initial state 

probabilities at the start of the sequence, a transition probability model conditioned on the 

input sequence which outputs a square matrix of state transition probabilities at each 
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information cutoff gate, and an emission probability (a.k.a. output probability) model 

governing the distribution of the output variables – including go-around probability – at a 

particular time given the hidden state and input features. Model details and formulas are 

described in the following sections. 

A. Initial model 

We develop a multinomial logistic regression model to estimate the initial probability 

parameters 𝜽̂𝒊𝒏𝒊𝒕𝒊𝒂𝒍. 

𝑃(𝑧1 = 𝑖 | 𝒖𝟏; 𝜽𝒊𝒏𝒊𝒕𝒊𝒂𝒍) =  
exp(𝜃𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖

∙ 𝒖𝟏)

∑ exp(𝜃𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑘
∙ 𝒖𝟏)

𝑠
𝑘

(40) 

where 𝑖 is the state label at the initial (𝑑 = 1 represents the first information cutoff gate 

of the sequence, which is 9 nm before the landing threshold) information cutoff gate; 𝑠 is 

the total number of hidden states. 

B. Transition model 

At the information gate 𝑑, the hidden state 𝒛𝒅 is related to the input features 𝒖𝒅, lag-

one output features 𝒙𝒅−𝟏, and the previous hidden state 𝒛𝒅−𝟏, subject to some Gaussian 

noise. The multinomial logistic regression model is used to estimate the transition 

probability parameters 𝜽̂𝒕𝒓𝒂𝒏𝒔.  

𝑃(𝑧𝑑 = 𝑗 | 𝑧𝑑−1 = 𝑖, 𝒖𝒅, 𝒙𝒅−𝟏; 𝜽𝒕𝒓𝒂𝒏𝒔) = 

exp(𝜃𝑡𝑟𝑎𝑛𝑠𝑖
𝑗 ∙)

∑ exp (𝜃𝑡𝑟𝑎𝑛𝑠𝑖
𝑘 ∙ [

𝒖𝒅

𝒙𝒅−𝟏
])𝑠

𝑘

(41) 

where 𝑖 is the state label at the previous information cutoff gate 𝑑 − 1, 𝑗 is the state 

label at the current information cutoff gate 𝑑; s is the total number of hidden states. The 

estimated 𝛉̂𝒕𝒓𝒂𝒏𝒔 = [

𝜃𝑡𝑟𝑎𝑛𝑠1
1 ⋯ 𝜃𝑡𝑟𝑎𝑛𝑠1

𝑠

⋮ ⋱ ⋮
𝜃𝑡𝑟𝑎𝑛𝑠𝑠

1 ⋯ 𝜃𝑡𝑟𝑎𝑛𝑠𝑠
𝑠
] , 𝛉̂𝒕𝒓𝒂𝒏𝒔 ∈ ℝ𝑠×𝑠 is the transition probability 

matrix for the approach state transited from the previous state. The transition probabilities 

are heterogeneous and depend on contextual information 𝑢𝑑 . This can improve the 

accuracy of state inference. 

C. Emission model 

To gain interpretability, we choose linear models for continuous outputs represented as 

Gaussian random variables (𝒙𝒅), thus: 
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𝑃(𝒙𝒅| 𝑧𝑑 = 𝑗,  𝒖𝒅 , 𝒙𝒅−𝟏; 𝜽𝒆𝒎𝒊𝒔
𝒄 ) =

1

√2𝜋𝜎𝑗

exp(−
(𝒙𝒅 − 𝜽𝒆𝒎𝒊𝒔

𝒄
𝒋
∙ [

𝒖𝒅

𝒙𝒅−𝟏
])

2

2𝜎𝑗
2 ) (42)

 

where 𝑗  is the state label at the current information cutoff gate 𝑑 . The estimated 

𝜽̂𝒆𝒎𝒊𝒔
𝒄 =  [𝜽̂𝒆𝒎𝒊𝒔

𝒄
𝟏

⋯ 𝜽̂𝒆𝒎𝒊𝒔
𝒄

𝒔], 𝜽̂𝒆𝒎𝒊𝒔
𝒄 ∈ ℝ𝑚×𝑠 is the emission coefficient matrix where 

its column 𝜽𝒆𝒎𝒊𝒔
𝒄

𝒋
 denotes the coefficients of 𝑚 output variables in the linear model when 

the hidden state is 𝑗. 𝜎𝑗  represents the standard deviation of the linear model when the 

hidden state is 𝑗. Therefore, the number of coefficients to be estimated in the emission 

probability model is equal to the product of the number of hidden states 𝑠 and the number 

of output variables 𝑚. 

For binary random variable 𝐺𝑑 , the logistic regression model is used as the output 

emission model. The probability is as follows: 

𝑃(𝐺𝑑 = 1| 𝑧𝑑 = 𝑗,  𝒖𝒅 , 𝒙𝒅−𝟏; 𝜽𝒆𝒎𝒊𝒔
𝑮 ) = 

1

1 + exp (−𝜽𝒆𝒎𝒊𝒔
𝑮

𝑗
∙ [

𝒖𝒅

𝒙𝒅−𝟏
])

(43) 

When implementing the maximum likelihood method, a Gaussian may be fit onto a 

single data point and lead to a singular covariance matrix. Whenever the covariance matrix 

is singular, the log-likelihood function will go to infinity. Thus, the maximization of the 

log-likelihood function is ill-posed. Ridge regularization [107] is employed to objective 

functions of both linear and logistic regression. The regularized term 𝐶𝑜𝑙𝑠, 𝐶𝑙𝑜𝑔𝑖𝑡  will be 

fine-tuned from the range specified in Table 13 using five-fold cross-validation. 

Based on the model architecture and model specifications, the likelihood of a sequence 

in our IO-HMM can be written as: 

ℒ(𝜽, 𝒙, 𝒖) = ∑ [
𝑠

𝑃(𝑧1 | 𝒖𝟏; 𝜽𝒊𝒏𝒊𝒕𝒊𝒂𝒍) ∙

∏𝑃(𝑧𝑑  | 𝑧𝑑−1, 𝒖𝒅, 𝒙𝒅−𝟏; 𝜽𝒕𝒓𝒂𝒏𝒔)

𝐷

𝑑=2

∙

∏𝑃(𝒙𝒅| 𝑧𝑑 ,  𝒖𝒅 , 𝒙𝒅−𝟏; 𝜽𝒆𝒎𝒊𝒔
𝒄 )

𝐷

𝑑=1

∙

𝑃(𝐺𝑑 = 1| 𝑧𝑑 ,  𝒖𝒅 , 𝒙𝒅−𝟏; 𝜽𝒆𝒎𝒊𝒔
𝑮 )] (44)

 

The temporal dependency is captured by the transitions between the hidden approach 

states 𝒛. The direct dependency between input features and output features can capture 
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relationships that are not fully mediated by the hidden state learned for the current 

timestamp. 

7.6.3. Model estimation 

As illustrated in the previous section, the IO-HMM includes three groups of unknown 

parameters to be estimated: initial probability parameters 𝜽𝒊𝒏𝒊𝒕𝒊𝒂𝒍, transition probability 

parameters 𝜽𝒕𝒓𝒂𝒏𝒔, and emission probability parameters 𝜽𝒆𝒎𝒊𝒔. In this study, we implement 

the Expectation-Maximization (EM) algorithm to optimize the parameter set. Explicitly, in 

the E-step, we compute the expected value of the complete log-likelihood as in Equation 

(45), given the observed data and parameters estimated (or initialized) at the previous (or 

initialization) step. In the M-step, parameters are updated to maximize the expected data 

log-likelihood. 

𝒬(𝜽,  𝜽𝒓) =  ∑𝛾𝑖,1𝑙𝑛 𝑃(𝑧1 = 𝑖 | 𝒖𝟏; 𝜽𝒊𝒏𝒊𝒕𝒊𝒂𝒍)

𝑠

𝑖=1

+

∑ ∑∑ 𝜉𝑖𝑗,𝑑

𝑠

𝑗=1

ln P(𝑧𝑑 = 𝑗 | 𝑧𝑑−1 = 𝑖, 𝒖𝒅, 𝒙𝒅−𝟏; 𝜽𝒕𝒓𝒂𝒏𝒔)  

𝑠

𝑖=1

𝐷

𝑑=2

+ ∑ ∑𝛾𝑖,𝑑

𝑠

𝑖=1

[

𝐷

𝑑=1

ln 𝑃(𝒙𝒅| 𝑧𝑑 = 𝑗,  𝒖𝒅 , 𝒙𝒅−𝟏; 𝜽𝒆𝒎𝒊𝒔
𝒄 )

+ ln 𝑃(𝐺𝑑 = 1| 𝑧𝑑 = 𝑗,  𝒖𝒅 , 𝒙𝒅−𝟏; 𝜽𝒆𝒎𝒊𝒔
𝑮 )] (45)

 

where 𝑟 represents the iteration; 𝑠 is the total number of hidden states; 𝐷 is the total 

number of information cutoff gates in each flight sequence; 𝒖𝒅, 𝒙𝒅−𝟏, 𝒙𝒅, 𝐺𝑑, and 𝑧𝑑 are 

the input variables, lag-one output variables, output variables, go-around binary labels and 

hidden state variables at information cutoff gate 𝑑, which were introduced in Section 7.6.1; 

𝜽𝒊𝒏𝒊𝒕𝒊𝒂𝒍, 𝜽𝒕𝒓𝒂𝒏𝒔, 𝜽𝒆𝒎𝒊𝒔
𝒄 , 𝜽𝒆𝒎𝒊𝒔

𝑮  are parameters to be estimated in initial probability model, 

transition probability model, and emission probability model which were discussed in 

Section 7.6.2. 

𝜉𝑖𝑗,𝑑 is the posterior transition probability, which defines the probability of being in 

state 𝑖 at the information cutoff gate 𝑑 and state 𝑗 at the information cutoff gate 𝑑 + 1.  𝛾𝑖,𝑑 

is the posterior state probability for state 𝑖 at the information cutoff gate 𝑑. 𝜉𝑖𝑗,𝑑 and 𝛾𝑖,𝑑 

are computed from forward probability 𝛼 and backward probability 𝛽 under the forward-

backward algorithm [108], which involves three steps: 

• Computing the forward probability which provides the probability of ending up in any 
particular state 𝑖 given the first 𝑑 observations in the sequence; 

• Computing the backward probability which provides the probability of seeing the 
observations from information cutoff gate 𝑑 + 1 to the end given we are in a particular 
state at the time; 
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• These two sets of probabilistic distributions can then be combined to obtain the 
distribution over states at any specific point 𝑑 ∈  {1,⋯ , 𝐷} given the entire observations 
sequence. 

𝜉𝑖𝑗,𝑑 = 𝑃(𝑧𝑑 = 𝑖 | 𝑧𝑑−1 = 𝑗, 𝒖𝒅, 𝒙𝒅−𝟏; 𝜽𝒕𝒓𝒂𝒏𝒔) ∙ 𝛼𝑖,𝑑 ∙ 𝛽𝑗,𝑑 ∙

𝑃(𝒙𝒅| 𝑧𝑑 = 𝑗,  𝒖𝒅 , 𝒙𝒅−𝟏; 𝜽𝒆𝒎𝒊𝒔
𝒄 ) ∙

𝑃(𝐺𝑑 = 1| 𝑧𝑑 = 𝑘,  𝒖𝒅, 𝒙𝒅−𝟏; 𝜽𝒆𝒎𝒊𝒔
𝑮 )/ℒ(𝜽, 𝒙, 𝒖) (46)

 

𝛾𝑖,𝑑 =
𝛼𝑖,𝑑𝛽𝑖,𝑑

ℒ(𝜽, 𝒙, 𝒖)
(47) 

The whole estimation and inference process is summarized in Figure 25. The forward-

backward algorithm starts with some initial estimates of the IO-HMM parameters 𝜽𝟎. We 

then iteratively run the Expectation-step and the Maximization-step. In the E-step, we 

compute the expected value of the complete data log-likelihood, the posterior state 

probability 𝛾𝑖,𝑑 , and the posterior transition probability 𝜉𝑖𝑗,𝑑  for each training sequence, 

given the entire observed data sequence and parameters estimated at the previous (or 

initialized) step. In the M-step, we use the computed distribution over states to update the 

transition probability matrix and the emission likelihood matrix for maximizing the 

expected data likelihood.  

During the inference time, we apply the estimated parameters on unseen data in the test 

set. It is intuitive to imagine the inference process in this way: as an aircraft approaches to 

its landing runway, it will experience different states during the approach procedure. 

Before the flight reaches the next nautical-mile point, we can obtain context information 

𝑢𝑡 such as aircraft type, weather conditions in advance. Given the input features available 

at the moment, the heterogeneous transition probability matrix dependent on input features 

is calculated. We can thus infer which state the flight will be transited to in the next 1-

nautical-mile according to the highest posterior state probability among all candidate states. 

Based on the input layer and the hidden state layer, all the variables in the output layer can 

be predicted via 𝜃𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 

 of the selected state, including the go-around probability. During 

flight approach procedure, the relevant context information 𝑢𝑡 will be updated, and the next 

approach state will be selected given the newly obtained transition probability matrix. This 

process continues until the full sequence of approached states has been inferred. Under this 

mechanism, the sequential probability of go-arounds can be predicted for any flight 

approach procedures given known features prior to a certain time.  
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Figure 25. IO-HMM model estimation and inference. 

7.7. Model inference 

The goal of this section is to predict the dynamic probability of go-arounds in the output 

layer as the flight approaches its landing runway, given the known input features at a certain 

time prior to the go-around. Once the models are trained, we will use them to generate 

predictions against previously unseen data and evaluate the model performance. With pre-

trained models, the inference process can be completed in constant time for each flight. 

Models can also be re-trained, if needed, with newly available observations.  

The simplest way is just to predict a single value (one step ahead) in the future, and no 

feedback is used to continue the prediction. We call this the single-step-ahead prediction. 

The feature space must be updated with the most recent information in order to predict the 

values in the next step. Figure 26 shows a simplified version of the single-step-ahead 

prediction procedure when the flight passes the 6 nm information cutoff gate (i.e., the flight 

is 6 nm away from the landing runway threshold). The feature vectors are available at 10, 

9, …, 6 nm (𝑭𝟏𝟎, 𝑭𝟗, 𝑭𝟖, 𝑭𝟕, 𝑭𝟔). The model is trying to predict the go-around probability 

in the next gate. The classical machine learning models (left figure) only utilize the 

information at the current timestamp and the lag-one step to make a prediction. the models 

trained for every timestamp are completely independent of one another. Without knowing 

the features at 5 nm 𝑭𝟓, we cannot produce predictions at 4 nm, and hence cannot predict 

the probability of go-arounds before the flight passes the 5 nm gate, so on for the 

succeeding timestamps.  
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Figure 26. Single-step-ahead prediction with classical machine learning (left) and 

sequential models (right). 

The other prediction procedure is termed multi-step-ahead prediction, which provides 

the outcomes of the rest of the steps or multiple steps ahead in a single shot or in an 

autoregressive way. We demonstrate the difference between these two approaches in 

Figure 27 and Figure 28 below using an example of predictions made when the flight just 

passes the 6 nm information cutoff gate. For multi-step-ahead prediction, we are trying to 

answer the questions like: if we know all required information (features) at 10, 9, …, 6 nm 

gates, what are the probabilities of go-around occurrence at 5, 4, …, 1 nm will be? After 

accumulating the internal state for 10 to 6 nm, the LSTM networks produce the output 

sequence for the remaining information cutoff gates in a single shot. The IO-HMM makes 

autoregressive predictions, in which the model makes single-step predictions of both input 

and output sequences, and then feeds them forward as input to make further predictions 

conditioned on the previous one for the required number of output timestamps.  

 

Figure 27. Multi-step-ahead prediction in a single short. 
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Figure 28. Multi-step-ahead prediction with autoregression. 

Assuming that we are able to constantly update the observed information at the 

previous 1 nm in real time, each time the flight reaches a certain gate 𝑑, we will acquire a 

sequence of predictions for the subsequent steps 𝑑 − 1, 𝑑 − 2,… , 1 , 𝑮̂𝒅 =

[𝐺̂𝑑−1
𝑑 , 𝐺̂𝑑−2

𝑑 , … , 𝐺̂1
𝑑] . Note that we will obtain another new sequence of go-around 

predictions once the flight passes the next gate, and more information becomes available. 

For example, after the flight passes the 5-nm gate, we obtain the sequence of go-around 

predictions 𝑮̂𝟓 = [𝐺̂4
5, 𝐺̂3

5, 𝐺̂2
5, 𝐺̂1

5] . A new sequence of go-around predictions 𝑮̂𝟒 =

[𝐺̂3
4, 𝐺̂2

4, 𝐺̂1
4] is produced once the flight passes the next 4 nm gate. To facilitate model 

comparison and practical use, we adopt the complement rule of probability to transform a 

sequence of go-around probabilities at a certain gate 𝑑, 𝑮̂𝒅, into a single probability 𝐺̂𝑑𝑚𝑢𝑙𝑡𝑖: 

𝐺̂𝑑𝑚𝑢𝑙𝑡𝑖 = 1 − ∏ (1 − 𝐺̂𝑟
𝑑)

𝑑−1

𝑟=1
(48) 

As a result, every time the flight passes through a particular information cutoff gate 𝑑, 

we obtain a single value prediction 𝐺̂𝑑𝑠𝑖𝑛𝑔𝑙𝑒  from the single-step-ahead prediction, and 

another single value prediction 𝐺̂𝑑𝑚𝑢𝑙𝑡𝑖  converted from a sequence of predicted go-around 

probabilities using multi-step-ahead prediction and Equation (48). The single-step 

prediction 𝐺̂𝑑𝑠𝑖𝑛𝑔𝑙𝑒 represents the probability of go-around prior to the next nautical mile, 

while the multi-step prediction 𝐺̂𝑑𝑚𝑢𝑙𝑡𝑖  can represent the probability of go-around prior to 

landing. These two go-around probabilities will be updated accordingly and can be 

transmitted to pilots or controllers as a signal or alert for go-around occurrence during the 

approach and landing phase. 

7.8. Experimental Steps 

The three methods – classical machine learning, LSTM, and IO-HMM – were applied 

to a historical dataset that contains 371 go-arounds out of 100,032 arrival flights at JFK 

airport in the second half-year of 2018. We first split the data into a training set (80%) and 

a testing set (20%), respecting to the class distribution. Then, we train, validate, and test 
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the aforementioned models on these datasets. The experimental steps and model selection 

process follow a similar regime in [102], including data processing, parameter tuning, and 

performance evaluation with statistical hypothesis tests. For classical machine learning, 

each kind of model is trained eight times separately over different distant-specific datasets, 

using only features up to the present information cutoff gate. For the sequential models, 

the LSTM and IO-HMM are trained once for all the flight sequences. 

In addition, we observe that the dataset is extremely imbalanced, with go-around flights 

significantly less than those non-go-around flights - only 0.3% of arrivals are go-around 

flights. With so few go-arounds relative to non-go-arounds, the learning algorithm often 

struggles to generalize the behavior of the go-around flights well, and tends to classify all 

observations as majority class; hence the algorithm performs poorly on the minority class. 

Therefore, the loss functions of all the above models are modified to deal with the class 

imbalance issues – penalizing the misclassification of the minority class by an amount 

proportional to how under-represented it is. 

We report five metrics to evaluate the performance of the models: F2 score, the area 

under the receiver operating characteristic curve (AUC), precision, recall, and accuracy. F-

score, which is the weighted harmonic mean of the precision and recall, is chosen to be the 

evaluation criteria through the experiments. Based on the accuracy measures in the 

confusion matrix [109], 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 and 𝑟𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃+𝐹𝑁
 are defined (TP: true 

positive, FP: false positive, TN: true negative, FN: false negative). We want to have high 

confidence that observations predicted as go-arounds are actually correct (high precision), 

as well as a high detection rate of the go-arounds (high recall). However, high precision 

comes at the cost of the low recall and vice versa. Referring to [29] that the cost of not 

detecting a go-around highly outweighs the cost of getting a false alarm warning in the 

system, we set the parameter, which determines the weight of recall in the F-score, as 2. In 

the inference process, we empirically select the threshold that maximizes the F2 score on 

the test set. 

𝐹2 = 
(1 + 22) ∙ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

22  ∙ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
(49) 

7.9. Model Performance 

Figure 29 shows the F2 score at each timestamp for the four classical machine learning 

algorithms and the two sequential models of LSTM and IO-HMM. Table 14 reports the 

five metrics obtained on the testing set for these different models. We include the single-

step prediction of the two sequential models in comparison with the classical machine 

learning models. The corresponding metrics scores are comparable across different models, 

for a specific information cutoff gate, in the same dataset.  
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The sequential models consistently outperform the classical machine learning models 

except for the early stage of the flight approach. This suggests that incorporating temporal 

structures in the model can improve go-around prediction performance. With multi-step 

predictions, the IO-HMM slightly improves over the single-step predictions for every 

distance-variant dataset in terms of F2 score, precision, recall, and AUC, while the LSTM 

improves significantly. As for the classical machine learning models, the random forest 

model is comparable to the IO-HMM, yet it still slightly falls behind the IO-HMM, 

especially during the later stage of a flight approach process.  

 

Figure 29. Model performance, in terms of F2 score, of classical machine learning models 

(left) and sequential models (right). 

We also notice that sequential models (LSTM, IO-HMM) exhibit a consistent and 

monotonically increasing performance, in terms of F2 score, as the approach progresses, 

while other models do not. The prediction performance improves as the flight gets closer 

to the airport. The main reason for this may be that most go-arounds happen closer to the 

airport, and these sequential models can maintain more information in their internal state 

as the given input sequence gets longer (flights getting closer to the airport). In other words, 

more information in the temporal sequences is preserved, and the feature space used for 

multi-step predictions becomes more reliable. The classical machine learning models are 

trained separately using independent input features, and are thus incapable of learning a 

whole flight sequence that inherently captures the temporal dependency. For the LSTM, 

the most confident prediction is achieved when the flight is at 2 nm before the runway 

threshold, with a recall score of 0.59 and a precision score of 0.39, suggesting that 59% of 

go-arounds are correctly identified, and 39% of the go-arounds predicted by the model are 

correct. LSTM is capable of automatically extracting features from past events and is able 

to apply point-wise nonlinearities to the output at every timestamp, which Markovian 

models do not. This is why the LSTM model is more expressive and adaptive to learning 

from real-world data. 
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7.10. Chapter Summary 

In this chapter, we have shown how go-around prediction can be addressed as a 

multivariate sequential prediction problem. We view it as a sequence classification 

problem and compare different learning algorithms with two prediction strategies. A set of 

supervised learning models serve as the benchmarks of the go-around prediction task. The 

experiments were also carried out with the IO-HMM designed to evolve model estimates 

(learned weights) through discrete state space. It was found that the both the LSTM and 

IO-HMM can capture the dependency structure in the flight sequence, and the multi-step 

prediction strategy achieves better prediction performance. LSTM is capable of 

automatically extracting features from past events and is able to apply point-wise 

nonlinearities to the output at every timestamp, which Markovian models do not. This is 

why the LSTM model is more expressive and adaptive to learn from real-world data. 

Further research performed with more real-world datasets and additional sequential models 

is required to generalize and improve the results. A major challenge of go-around 

prediction is the imbalanced class distribution of the data. The go-around rate is (thankfully) 

very low – FAA reports that the average go-around occurrence across the core 30 airports 

in the US from 2012 to 2018 is at a rate of 0.4% [25]—but the resulting class imbalance in 

go-around data sets makes predictive modelling difficult. In the next chapter, we will 

investigate different techniques to address the class imbalance issue.  

Aside from prediction, another product of the IO-HMM model is the pattern 

recognition capability. The hidden state variables 𝒛  inferred from data are categorical 

labels corresponding to unobserved activity patterns, or flight approach types, or other 

semantic meanings that can be associated to it following an in-depth analysis. First, a set 

of decision rules based on the spatial-temporal representations of features (e.g., 

speed/altitude profile) need to be designed to identify the latent semantics of each of the 

hidden state variables. Second, we would need to compare the annotated activity patterns 

with additional data sources (e.g., ground truth or simulated approach patterns identified 

by domain experts via manual inspection), that are independent of the in-use dataset, to 

validate the pattern recognition results and the activity transition chains. Although it may 

prove to be difficult in light of the highly specialized nature of the aviation domain (as 

compared, for example, with urban activity modeling), the pattern recognition capability 

can help “annotate” flight activity types (in the approach phase, for this work), which may 

simplify scenario evaluation for aviation operators, and thus improve the safety and 

efficiency of air traffic control. 

 

 

Table 14.  Go-around prediction model performance. 
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After the flight passes gate Model F2 Precision Recall AUC Accuracy  

9 

Logistic 0.151 0.064 0.227 0.848 0.985  

SVM 0.143 0.062 0.213 0.829 0.985  

XGBoost 0.164 0.085 0.213 0.860 0.988  

RF 0.165 0.073 0.240 0.841 0.986  

IO-HMM (single) 0.148 0.067 0.213 0.777 0.978  

LSTM (single) 0.057 0.013 0.321 0.826 0.953  

IO-HMM (multi) 0.166 0.049 0.410 0.817 0.968  

LSTM (multi) 0.086 0.028 0.179 0.780 0.973  

8 

Logistic 0.152 0.167 0.149 0.843 0.994  

SVM 0.146 0.056 0.243 0.814 0.982  

XGBoost 0.165 0.047 0.446 0.846 0.964  

RF 0.156 0.054 0.297 0.846 0.978  

IO-HMM (single) 0.149 0.062 0.230 0.711 0.984  

LSTM (single) 0.069 0.022 0.146 0.820 0.985  

IO-HMM (multi) 0.176 0.070 0.282 0.815 0.983  

LSTM (multi) 0.137 0.058 0.205 0.824 0.985  

7 

Logistic 0.156 0.071 0.222 0.857 0.987  

SVM 0.185 0.066 0.333 0.828 0.981  

XGBoost 0.180 0.063 0.333 0.856 0.980  

RF 0.180 0.052 0.472 0.864 0.967  

IO-HMM (single) 0.153 0.077 0.203 0.728 0.988  

LSTM (single) 0.109 0.031 0.308 0.803 0.961  

IO-HMM (multi) 0.190 0.216 0.188 0.903 0.999  

LSTM (multi) 0.200 0.158 0.215 0.897 0.995  

6 

Logistic 0.184 0.063 0.352 0.862 0.979  

SVM 0.228 0.091 0.366 0.854 0.985  

XGBoost 0.177 0.068 0.296 0.851 0.983  

RF 0.210 0.091 0.310 0.860 0.987  
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After the flight passes gate Model F2 Precision Recall AUC Accuracy  

IO-HMM (single) 0.230 0.092 0.368 0.808 0.985  

LSTM (single) 0.160 0.064 0.256 0.845 0.983  

IO-HMM (multi) 0.286 0.142 0.385 0.867 0.989  

LSTM (multi) 0.248 0.096 0.410 0.882 0.983  

5 

Logistic 0.195 0.065 0.391 0.862 0.978  

SVM 0.226 0.146 0.261 0.855 0.992  

XGBoost 0.195 0.073 0.333 0.863 0.983  

RF 0.247 0.122 0.333 0.856 0.989  

IO-HMM (single) 0.255 0.100 0.417 0.828 0.986  

LSTM (single) 0.199 0.062 0.449 0.908 0.981  

IO-HMM (multi) 0.297 0.155 0.385 0.926 0.990  

LSTM (multi) 0.318 0.089 0.897 0.947 0.965  

4 

Logistic 0.226 0.080 0.413 0.891 0.983  

SVM 0.270 0.153 0.333 0.884 0.992  

XGBoost 0.220 0.088 0.349 0.874 0.987  

RF 0.282 0.131 0.397 0.854 0.990  

IO-HMM (single) 0.291 0.117 0.463 0.836 0.989  

LSTM (single) 0.254 0.118 0.359 0.947 0.987  

IO-HMM (multi) 0.333 0.097 0.846 0.925 0.970  

LSTM (multi) 0.398 0.257 0.462 0.964 0.993  

3 

Logistic 0.262 0.127 0.357 0.861 0.991  

SVM 0.299 0.129 0.446 0.862 0.990  

XGBoost 0.265 0.205 0.286 0.874 0.995  

RF 0.304 0.410 0.286 0.877 0.997  

IO-HMM (single) 0.307 0.141 0.435 0.839 0.990  

LSTM (single) 0.318 0.089 0.897 0.947 0.965  

IO-HMM (multi) 0.358 0.239 0.410 0.938 0.993  
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After the flight passes gate Model F2 Precision Recall AUC Accuracy  

LSTM (multi) 0.494 0.295 0.590 0.957 0.993  

2 

Logistic 0.278 0.115 0.429 0.873 0.989  

SVM 0.270 0.102 0.457 0.878 0.989  

XGBoost 0.253 0.151 0.304 0.867 0.994  

RF 0.284 0.126 0.413 0.848 0.992  

IO-HMM (single) 0.312 0.155 0.417 0.861 0.990  

LSTM (single) 0.395 0.191 0.538 0.944 0.990  

IO-HMM (multi) 0.414 0.214 0.538 0.924 0.991  

LSTM (multi) 0.535 0.390 0.590 0.930 0.995  
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8. Imbalanced Learning 

8.1. Overview 

A major challenge of the go-around prediction problem, or for any rare event prediction, 

is the imbalanced class distribution of the data. The capability to deal with imbalanced data 

holds significant promise for the applicability of AI, as this is the crux of many real-world 

problems, especially in the safety-related fields. The go-around prediction task is a 

canonical example of imbalanced data problems, which often results in increased difficulty 

in classification as many learning algorithms are best suited for a balanced dataset. The go-

around rate is often very low, with only 0.3% of arrivals being go-arounds in our case. The 

ensuing class imbalance would significantly degrade the performance of any learning 

model, specifically with regard to the minority class we are interested in. With so few go-

arounds relative to non-go-arounds, the learning algorithm is often unable to generalize the 

behavior of the go-around flights well, and thus tends to classify minority class 

observations as majority class.  

In the models presented in Chapter 7, we have modified the loss function to penalize 

the misclassifications of minority class by an amount proportional to how under-

represented it is, and picked the performance metric in a way that emphasizes the recall 

score of the minority class (details are in Section 7.8). The other approach to mitigate the 

class imbalance problem is to augment the data samples for the minority class, either by 

resampling the data or generating synthetic samples in the training set. The change to the 

class distribution is only applied to the training set, intending to influence the model fit 

(estimated/learned parameters). This motivates this part of thesis research to explore 

several strategies for minority class augmentation in order to tackle the issue of imbalanced 

learning. While the minority class augmentation will be employed specifically for go-

arounds in this study, it is a promising technique for many other transport (and non-

transport) safety threats in which sequential data is employed to identify the risk of non-

nominal event occurrence.  

The overarching question for the work in this chapter is: can we generate high-fidelity 

synthetic go-around sequences to augment the minority class, and employ these synthetic 

sequences to  train models that are better at predicting go-around occurrence? Following a 

review of existing methods for tackling this problem in Section 8.2, we develop a GAN 

model (Section 8.5) that can satisfy the requirements of generating multivariate sequence 

data with variable length and mixed data types. Furthermore, we benchmark this model 

against the simple downsampling method (Section 8.3) and the autoencoder method with 

ADASYN (Section 8.4). The performance of the go-around prediction model is also 

compared with various proportions of synthetic go-arounds added to the training data.  
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8.2. Related Work 

The two main approaches to augmenting the minority class are to delete samples from 

the majority class, referred to as downsampling, and add more minority samples, referred 

to as oversampling. The random sampling method takes the original training set and 

resamples it to obtain a more balanced distribution of the minority and majority classes. 

While this simple strategy changes the data sizes of the minority and majority samples, 

generating synthetic samples based on the original training data could further increase the 

data variety and might lead to better model performance. In our case, sequential data 

generation is typically more challenging than non-sequential data generation, since 

sequential data has time dependencies. Furthermore, our data is multivariate, with multiple 

features at each time point. This adds additional complexity to synthetic data generation as 

we not only need to generate reasonable values for features at different timestamps, but 

also need to reproduce similar sequence lengths, temporal dependencies, and feature 

correlations.  

There are three common ways to generate synthetic data – simulation approach, 

sampling-based approach and deep generative models. The simulation approach generates 

data samples by developing a simulator that replicates the behavior of a real system and 

event occurrence. For example, Total Airspace and Airport Modeler (TAAM) is a widely 

used fast-time, gate-to-gate simulation tool for analyzing aviation operations both in the 

airspace and on the airport surface. If the simulator is highly similar to real systems, the 

simulation approach has a high degree of fidelity. In practice, however, configuring the 

settings to simulate a specific target dataset is often difficult and expensive. While several 

data-driven approaches to parameter configuration have been presented recently [110, 111, 

112], it remains challenging to ensure that the simulator generalizes all possible scenarios.  

The sampling-based methods are straightforward, but the situations they can be applied 

are limited. SMOTE (Synthetic Minority Oversampling TEchnique) [113] is a frequently 

used technique for oversampling minority samples by interpolating between their nearest 

neighbors. However, it does not account for the sequential dimension. One extension to 

SMOTE is the ADASYN (ADAptive SYNthetic) sampling algorithm [114], which 

investigates the composition of the nearest neighbors and adaptively shifts the 

classification decision boundary toward the minority samples. Neither SMOTE nor 

ADASYN captures the sequential correlation in time because they generate synthetic 

feature vectors by interpolating between the real data points at each timestamp 

independently. Recently, autoencoders have been utilized to learn representations of the 

input sequence, allowing for the application of these sampling methods in the latent space 

to capture the structure of the sequence [115].  

Another approach, generative adversarial networks (GANs), have been widely used to 

oversample image data [116, 117, 118, 119, 120], and has recently become an active 

research topic for oversampling sequence data [121, 122, 123, 124, 125]. We consider 

leveraging recent advances in GANs to generate synthetic go-around sequences. In 

comparison to the preceding two approaches, GANs, when appropriately developed, 
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provide three significant advantages. First, the discriminator acts as a universal agent 

responsible for accessing the authenticity of generated samples. Thus, the discriminator 

requires only the realistic samples and no further information about the system producing 

the samples. Second, GANs can be used to generate both static and time series features 

with mixed data types, as well as their cross-correlations. Finally, GANs are capable of 

capturing the complicated structure of the data, as evidenced by their applications in the 

generation of images [126, 127], texts [125, 128, 129], and music [130, 131].  

However, canonical GANs often perform badly when it comes to extracting temporal 

dependencies and the correlations among multiple features with mixed data types. 

Additionally, Mode collapse [62] is a well-known issue in GANs where they generate only 

a few modes from the underlying distribution. It is compounded further in time series 

applications, such as when we generate go-around sequences, because of the wide range of 

feature values. In this study, we will synthesize domain-specific insights with concurrent 

advances in the GAN literature to design a proof-of-concept GAN architecture for our go-

around use case. RCGAN [121], TimeGAN [122] and DoppelGANger (DG) [123] are the 

three most relevant studies we refer to. RCGAN generates time series using RNNs, but 

does not evaluate the correlations among features. As with RCGAN, TimeGAN uses RNNs 

for both the generator and discriminator. However, TimeGAN further trains an additional 

neural network that maps time series to vector embeddings, such that the generator 

produces sequences of embeddings rather than original features. It is usual to learn to 

generate transformed or embedded time series, both using GANs and using a different class 

of generative models such as variational autoencoders (VAE) [132]. An extension of the 

TimeGAN, DG is proposed to deal with network data generation. The innovative part of 

this GAN architecture is that it introduces an auxiliary discriminator for the generation of 

static features (i.e., attributes), which are then conditioned by the generation of time series 

features.  

8.3. Downsampling 

Considering the size of the data and computational complexity, we choose to 

downsample the majority class in the training set before learning a classifier. The 

assumption behind this strategy is that there are many redundant observations in the 

majority class, and that randomly removing some of them does not affect the estimation of 

the within-class distribution [133]. 

Specifically, the downsampling will be utilized as a pre-processing step to rebalance 

the two classes before any algorithm is applied. For each distance-variant dataset, we first 

split the data into a training set (80%) and a testing set (20%), corresponding to the second 

and third sub-columns in Table 15. Second, while the number of go-arounds remains 

unchanged in both the training set and the testing set, we randomly sample the non-go-

around flights without replacement until the ratio of non-go-arounds to go-arounds ratio is 

10 to 1 (269:1 in the full dataset). We do not set the two classes equally balanced; otherwise, 
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models would be prone to overfitting and be much more sensitive to outliers owing to the 

small number of data samples. After merging the downsampled majority class with the 

original minority class, we obtain the balanced dataset, reported as the fourth and fifth sub-

columns in Table 15. We train, validate, and test the aforementioned models on the full 

dataset and the downsampled dataset separately. We also apply the same treatment to deal 

with these two imbalanced datasets – penalizing the misclassification of the minority class 

by an amount proportional to how under-represented it is. 

 

Table 15. The size of the full dataset and the downsampled dataset. 

Dist. 

(nm) 

Full dataset 

(G-A / arrivals) 

Downsampled set 

(G-A / arrivals) 

Train (80%) Test (20%) Train Test 

9 296 / 80,025 75 / 20,007 296 / 3,256 75 / 825 

8 293 / 80,022 74 / 20,006 293 / 3,223 74 / 814 

7 287 / 80,016 72 / 20,004 287 / 3,157 72 / 792 

6 281 / 80,010 71 / 20,003 281 / 3,091 71 / 781 

5 273 / 80,002 69 / 20,001 273 / 3,003 69 / 759 

4 252 / 79,981 63 / 19,995 252 / 2,772 63 / 693 

3 221 / 79,950 56 / 19,988 221 / 2,431 56 / 616 

2 180 / 79,909 46 / 19,978 180 / 1,980 46 / 506 

 

With a less imbalanced dataset, all the models have better predictability regarding F2 

score, precision, recall, and AUC. Nevertheless, no universal model performs best for all 

distance-variant datasets. The performance of IO-HMM is poorer, probably due to the 

small size of the training data. Other research work [134] has found that the larger the 

training data, the more accurate the estimation of the probability models (especially for the 

transition matrix) of the IO-HMM, and the smaller the bias in the Markovian predicted 

residuals. Even though IO-HMM learns temporal structures, the small training data makes 

it incapable of learning a hidden state effective for go-around prediction. 

8.4. Sampling-Based Augmentation 

As discussed in Section 8.2, the sampling-based approach (e.g., SMOTE, ADASYN) 

does not capture the sequential correlation in time because they generate synthetic feature 

vectors by interpolating between the real data points at each timestamp independently. In 

order to use the sampling-based approaches, we implement an extended ADASYN with 

autoencoder to capture the representation of multi-dimensional go-around sequences, such 

that the oversampling is done in a lower dimension space. 

The original go-around data is first used to train an autoencoder. After the data 

representation is learned in a lower dimension space, the ADASYN algorithm is run to 

generate more (synthetic) go-around samples in the lower dimensional space. Finally, the 
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decoder is used to lift the generated samples back to the dimensional space of the original 

data. In this way, the encoded minority data captures the structure of the sequence. This 

sampling-based augmentation method serves as a baseline for the GAN-based 

augmentation that we will discuss in the next section. We found that the GAN-based 

augmentation is superior to the sampling-based augmentation in terms of the fidelity of 

generated samples. We thus do not retrain predictors on these sampling-based augmented 

samples.  

8.5. Generative Adversarial Network 

8.5.1. Problem formulation 

For our go-around use case, the goal is to develop a GAN model capable of generating 

variable-length, multi-dimensional sequences with mixed data types. Following the 

notation from Chapter 7, the GAN takes part of the original dataset 𝒟 as input and learns 

a model (generator) that can generate a new dataset 𝒟′ as output. The synthetic dataset 𝒟′ 

preserves trends and feature distributions as the original data with enough fidelity that a 

predictor trained on synthetic data 𝒟′ can still make meaningful predictions on real data 

(in the test set). Each sample 𝑖 in the input dataset 𝒟, is a multi-dimensional go-around 

sequence with label 𝐺 = 1 , and features 𝑭𝒅  representing the feature vectors 

available/known after the flight passes the information cutoff gate 𝑑, including both the 

static features 𝒖 and dynamic features 𝒙𝒅.  

8.5.2. Model architecture 

The primary difficulties encountered when applying existing GAN architectures to our 

go-around use case are: the complex correlations among multiple features with mixed data 

types, the temporal dependencies within sequences that are not present in images, and the 

variable sequence lengths associated with the abnormality of the multivariate distributions. 

While these difficulties specifically stem from our attempts in using GANs to generate go-

around sequences, they are broadly applicable to other use cases as well. 

To tackle these challenges, we synthesize domain-specific insights with concurrent 

advances in the GAN literature [121, 122, 123] to design a proof-of-concept GAN 

architecture shown at the bottom of  Figure 30. We also present the conventional GAN 

architecture on the top to illustrate how our model architecture compares to it. Empirically, 

we find that this architecture improves the fidelity of our generated go-around data samples 

significantly.  

First, to better capture the correlations among multi-dimensional features with mixed 

data types (i.e., attributes and time series features), we decouple the generation of attributes 

(e.g., aircraft type, airline) and time series features (e.g., groundspeed, altitude), each using 

a dedicated generator. In our go-around use case, attributes can strongly influence the time 

series features. For example, aircraft of different types would have different approach 
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speed/altitude profiles; flight approaches also vary under different visibility conditions. 

Therefore, we need a mechanism to model the joint distribution between dynamic time 

series features and static attributes. We found that the typical strategy of concurrently 

generating attributes and time series features using a single generator is ineffective in 

learning the correlations between these two types of data. Several studies have addressed 

this issue by training a variant of GANs, called conditional GANs (CGANs) [135], which 

learns to generate data in response to a user-defined input label. For example, earlier works 

[121, 136] develop a conditional model where the user specifies the desired attributes, and 

the GAN generates time series features conditioned on the attributes. Our approach is 

conceptually similar to this idea, but rather than conditioning on the manual process of 

user-specified inputs, we obtain such “user-specified inputs” (attributes) using a standard 

multi-layer perceptron (MLP) network. 

 
 

Figure 30. The architecture of the conventional GAN (top) and our proposed GAN 

(bottom). 

Second, to better capture the temporal dependencies of the series, we employ a variant 

of RNNs, long short-term memory (LSTM), as the generator for time series features. The 

conventional GAN generator is a fully connected multi-layer perceptron (MLP), which is 

unsuitable for time series. A preferable option is to use RNNs, which are intended to model 

time series and have been extensively used to produce time series in the GAN literature 

[121, 122, 123]. At a high level, instead of producing the whole time series at once, RNNs 
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generate one record 𝑭𝒅 (i.e., features at 𝑑 nm information cutoff gate) at a time, and then 

run multiple passes (equals to the sequence length) to construct the entire time series step 

by step. RNNs can also learn correlations across the dimensions of a time series and 

produce multi-dimensional output. The critical distinction between RNNs and classic 

neural networks is that RNNs contain an internal state that implicitly encodes all past states 

of the signal. Thus, when generating 𝑭𝒅, the RNN unit can incorporate the patterns from 

all the previous records 𝑭𝟏𝟎, 𝑭𝟗, … , 𝑭𝒅−𝟏. At each timestamp, the generated attributes from 

the MLP network are added as an input to the LSTM network in order to retain the hidden 

relationships between the attributes and time series. 

Third, we add another MLP generator to implement an auto-normalization heuristic to 

mitigate the problem of mode collapse, in which the GAN produces homogeneous samples 

while being trained on a diverse dataset. Mode collapse mitigation is a hot issue of study 

in the GAN community. Unlike image or medical data, which often displays similar value 

ranges across samples, our go-around sequential data exhibits much more range variability. 

Datasets with a more extensive value range tend to exacerbate mode collapse by having a 

more diversified variety of modes, making the data more difficult to be learned by GANs. 

In addition, due to the anomalous nature of the go-around sequence, some flight sequence 

samples may have extreme values that are beyond the typical rage. A standard 

normalization approach, which simply normalizes the data sequence by the global 

minimum and maximum values, may not be well-suited for the go-around use case. The 

mode collapse continues to occur since GAN learns basically the same thing - just scaling 

and shifting the feature values by a constant. This motivates us to normalize each time 

series individually [123], rather than normalizing over the entire dataset. The maximum 

and minimum values of each time series are considered as random variables (i.e., static 

features or attributes) to be learned by GAN. Thus, the GAN first learns to generate the 

maximum and minimum values defining the range for each time series individually, then 

rescales the sequence features generated by the LSTM network to fit inside this range. In 

this way, all the time series have their own range during generation, which alleviates the 

mode collapse issue. 

Putting it all together, we generate all the features in the following three steps: 

(1) Generate attributes using the MLP generator. 

(2) With the generated attributes as inputs, generate the maximum and minimum values 

defining the range for each time series individually using another MLP generator. 

(3) With the generated attributes and the maximum and minimum values as inputs, 

generate the time series features using the LSTM network. 

Along with the primary discriminator, we introduce an auxiliary discriminator that 

discriminates only on attributes. A tunable weighting parameter is used to combine the 

Wasserstein losses [137] of two discriminators. The generator effectively learns from this 
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auxiliary discriminator to generate attributes with high fidelity. Further, with the help of 

the original discriminator, the generator can learn to generate time series features well.  

8.5.3. Fidelity Analysis 

Evaluating the fidelity of the generated samples is notoriously difficult. The most 

widely accepted metrics were developed for image pixels [138, 139, 140] and hence cannot 

be used in our datasets. In line with the recommendations of Lin et al. [123], we will assess 

the fidelity of the generated synthetic go-arounds in terms of sequence length, feature 

distributions, and serial correlation. These are also the criteria through which we select the 

model. Once the model is picked, we will apply the trained model to generate synthetic go-

arounds and evaluate the go-around prediction model performance with varying fractions 

of synthetic samples added to the training set in the next section. 

For each GAN model that is converged, we use the generator to “create” the same 

number (371) of synthetic go-around sequences. Below we present some comparisons 

between the 371 synthetic go-around sequences and the 371 real go-around sequences in 

order to evaluate the fidelity of the model. We benchmark this GAN-based data generation 

technique against the autoencoder sampling-based approach in Section 8.4. 

A. Sequence Length 

One aspect of evaluating the fidelity of data is to examine whether the algorithm 

generates time series of the appropriate length, particularly for our variable-length go-

around sequences. In real-world scenarios, a go-around might occur near the airport (with 

a full sequence length of 9 timestamps in our analysis), or in the middle of the final 

approach. Our GAN model should be able to capture such a masking effect and generate 

synthetic go-around sequences of similar lengths. The side-by-side histogram in Figure 31 

below compares the real go-around sequence length in blue, and the synthetic sequence 

length in orange. Compared to the distribution of sequence length for the real go-around 

sequences, the GAN generates most of the go-around sequences with nine timestamps, but 

also a considerable number of shorter sequences.  

Note that the sampling-based generator can only generate time series of fixed length. 

Presumably, we could further truncate the generated sequences according to the empirical 

length distribution and compare them to the GAN-generated sequences. However, such a 

comparison is meaningless - the generated sequential data would perfectly reproduce the 

real length distribution, but it results from our human intervention, and not because of the 

algorithm learning to reproduce time series lengths. Hence, we only show the comparison 

between the GAN-generated sequences and the real sequences.  
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Figure 31. Histogram of the sequence length for real samples (blue) and synthetic samples 

(orange). 

B. Feature Distribution 

In this section, we will evaluate how well the generators learn to generate reasonable 

feature values. For every feature of each sequence, we calculate the representative values 

of the feature of the sequence as (max + min) / 2. The distribution of this value over all the 

synthetic sequences implicitly reflects how well the generator reproduces the range of time 

series values in the dataset. Instead of visually inspecting the histograms, we conduct the 

non-parametric test to determine whether the two data samples (real vs. synthetic) are 

drawn from the same distribution. The Kolmogorov-Smirnov test (K-S test) quantifies the 

distance between the empirical distribution functions of two samples with the null 

distribution stating that both samples are drawn from the same distribution. The K-S test is 

sensitive to differences in both location and shape of the empirical cumulative distribution 

functions of the two samples. We consider the two distributions to be the same if the K-S 

statistic is small or the p-value is above 0.05, where we fail to reject the null hypothesis at 

a 95% confidence level. 

The figures below depict the distribution of the representative values for some features 

for the real go-around sequences and the synthetic go-around sequences, using the GAN 

generator (Figure 32) and the sampling-based generator (Figure 33), respectively. Both 

continuous features and categorical features are investigated. We observe that GAN much 

more closely mirrors the true feature distribution compared to the sampling-based approach, 

particularly in the tails of the true distribution. The figure title includes the p-values of the 

K-S test. Among the 46 features (including on-hot encoding dummy variables), 33 features 

generated by GAN have the same distributions as the real feature value distribution. In 

comparison, only 8 features generated by the sampling generator pass the K-S test. The 

GAN generator can learn to generate features well, and significantly improves the fidelity 

of the generated distributions.  
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Figure 32. Clockwise, distribution of the feature distribution for real go-around sequences 

(blue) and synthetic go-around sequences (orange) generated by the GAN 

generator for continuous features: groundspeed, crosswind speed, altitude 

deviation, the number of objects on the runway; and categorical features: 

weight class of leading aircraft (heavy), runway configuration change. 

 

 

Figure 33. Clockwise, distribution of the feature distribution for real go-around sequences 

(blue) and synthetic go-around sequences (orange) generated by the sampling-

based generator for continuous features: groundspeed, crosswind speed, 

altitude deviation, the number of objects on the runway; and categorical 

features: weight class of leading aircraft (heavy), runway configuration change. 
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C. Temporal Dependency 

The specialty of sequential data is the time dependence between timestamps. In order 

to validate how the generators capture temporal correlations of the sequential data, we 

calculate the autocorrelation for each synthetic sequence for each feature. Autocorrelation, 

also known as serial correlation, is the correlation of a time series with a delayed copy of 

itself as a function of time lag. Informally, it is the similarity between observations as a 

function of the time lag between them. The figures below shows the autocorrelation for the 

real go-around sequences in blue and the learned autocorrelation for the synthetic go-

around sequences in orange, for each selected feature. By comparing the serial correlation 

curves generated by GAN (Figure 34) to those generated by the sampling-based generator 

(Figure 35), the GAN model is capable of capturing the variant time dependence and not 

just simply generate the average scenarios. This is most likely due to the RNNs module we 

implemented in the GAN generator networks. All of the synthetic go-around sequences 

generated by the sampling-based generator exhibit the exact same serial correlation, which 

is shown in the Figure 35 as a single overlapping orange line. This may be because the 

autoencoder included in the sampling-based generator learns about time dependency in the 

latent space, but incorporates too little randomness, causing it to generate simplified 

correlations.  

 

 

Figure 34. Clockwise, autocorrelation of real go-around sequence (blue) and synthetic go-

arounds (orange) generated by GAN for features: altitude deviation, altitude 

difference, groundspeed, kinetic energy height, speed difference, altitude of 

leading aircraft, angle with the extended runway centerline, horizontal 

deviation. 
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Figure 35. Clockwise, autocorrelation of real go-around sequence (blue) and synthetic go-

arounds (orange) generated by sampling-based generator for features: altitude 

deviation, altitude difference, groundspeed, kinetic energy height, speed 

difference, altitude of leading aircraft, angle with the extended runway 

centerline, horizontal deviation. 

8.5.4. Downstream Performance 

The question to be answered in this section is that, with the high-fidelity synthetic go-

around sequences generated to augment the minority class for model training, how the 

models trained on the synthetic data improve on the baseline models, and what will be the 

appropriate portions of synthetic data should be added for model training?  

We utilize the generated data samples for the go-around prediction task, handling the 

class imbalance issue, and validating that models trained on synthetic data are generalizable 

to real data. As seen in Figure 36, we begin by reconstructing our dataset. Initially, we only 

have 0.3% of the go-arounds in the training set. We train the GAN networks on all the go-

around flights, and then employ the model to generate synthetic go-around samples (in 

blue). Then, the original go-around and non-go-around samples (in green), together with 

the synthetic go-around samples (in blue) are formed to be a nearly class-balanced training 

set for predictors – depending on how many synthetic go-around sequences are generated. 

We apply the trained GAN model to generate 8854 go-around sequences combined with 

the 371 real go-arounds to increase the minority class in the training set to 10% of the total 

flight sequences, and generate 79,392 go-around sequences in addition to the 371 real go-

arounds to increase the minority class in training set to 50% of the total flight sequences. 

Finally, we evaluate the model performance on a collection of metrics, including F2 score, 

recall score, precision score, and accuracy. 
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Figure 36. Reconstructing a more balanced dataset with synthetic go-around samples to 

augment the minority class. 

In order to provide a pure comparison of the real and synthetic training set (without 

introducing effects produced from different predictors), we pick the LSTM model with 

multi-step-ahead prediction over the entire approach, suggested as the best predictor in 

Chapter 7, to train on different datasets. The following Table 16 summarizes the testing 

results of the LSTM predictor when trained on three different datasets (10%, 30%, and 50% 

of go-arounds) and tested on the same real data. As illustrated in Figure 37, F2 score is 

generally higher for the training set with 30% go-arounds. This is most likely because the 

class imbalance issue is eased by the additional amount of minority class samples added 

for training. The model trained on 50% synthetic go-arounds underperforms the models 

trained on 10% and 30% go-arounds, most likely due to the model learning an excessive 

number of “fake” samples. Future work is needed to determine the appropriate portions of 

synthetic data for training. 

 

Figure 37. Model performance at different information cutoff gates with the original 

portion, 10%, 30% and 50% of go-arounds in the training set. 
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While we have demonstrated a promising path towards augmenting the minority class 

for imbalanced learning, further efforts on model development and generalization are 

required for researchers to confidently use such workflows. Dealing with imbalanced 

datasets is the crux of many real-world classification problems, especially in safety-related 

fields. The capability to generate complex multivariate time series data with variable length 

to augment the minority class not only benefits the go-around prediction in this study, but 

more generally, would be helpful for other problems that require the augmentation of rare 

events. We hope that such initial promise and open questions inspire more and further 

research by theoreticians and practitioners to help break the impasse in imbalanced learning. 

 

 

Table 16. Model performance at different information cutoff gates with the original 

portion, 10%, 30% and 50% of go-arounds in the training set. 

After the flight passes gate Model F2 Precision Recall AUC Accuracy 
 

9 

LSTM_Multi 0.086 0.028 0.179 0.973 0.780  

10%GA 0.086 0.028 0.179 0.780 0.973  

30%GA 0.075 0.022 0.195 0.768 0.982  

50%GA 0.018 0.005 0.044 0.701 0.983  

8 

LSTM_Multi 0.137 0.058 0.205 0.985 0.824  

10%GA 0.099 0.087 0.103 0.720 0.993  

30%GA 0.189 0.092 0.256 0.823 0.988  

50%GA 0.024 0.005 0.238 0.723 0.905  

7 

LSTM_Multi 0.200 0.158 0.215 0.995 0.897  

10%GA 0.125 0.030 0.587 0.927 0.941  

30%GA 0.220 0.089 0.349 0.927 0.988  

50%GA 0.029 0.006 0.414 0.760 0.845  

6 

LSTM_Multi 0.248 0.096 0.410 0.983 0.882  

10%GA 0.112 0.031 0.308 0.796 0.962  

30%GA 0.310 0.144 0.436 0.844 0.988  

50%GA 0.038 0.008 0.432 0.797 0.872  

5 

LSTM_Multi 0.318 0.089 0.897 0.965 0.947  

10%GA 0.143 0.046 0.308 0.826 0.973  

30%GA 0.394 0.283 0.436 0.922 0.994  

50%GA 0.047 0.010 0.467 0.832 0.881  
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After the flight passes gate Model F2 Precision Recall AUC Accuracy 
 

4 

LSTM_Multi 0.398 0.257 0.462 0.993 0.964  

10%GA 0.195 0.081 0.299 0.896 0.989  

30%GA 0.412 0.212 0.538 0.935 0.991  

50%GA 0.066 0.014 0.605 0.869 0.885  

3 

LSTM_Multi 0.494 0.295 0.590 0.993 0.957  

10%GA 0.363 0.246 0.410 0.953 0.993  

30%GA 0.526 0.420 0.538 0.911 0.995  

50%GA 0.121 0.028 0.714 0.914 0.924  

2 

LSTM_Multi 0.535 0.390 0.590 0.995 0.930  

10%GA 0.455 0.358 0.487 0.938 0.995  

30%GA 0.576 0.421 0.615 0.951 0.995  

50%GA 0.504 0.293 0.615 0.952 0.993  
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9. Real-Time Risk Predictive Framework 

9.1. Overview 

In this chapter, we introduce the Go-Around Prediction (GAP) software service and 

demonstrate its ultimate feasibility and practicality by testing it on real-time emulated 

traffic scenarios. The GAP service encapsulates the work developed in previous Chapters 

into the form of a software system, enabling stakeholders to readily assess the go-around 

probability in real-time during actual arrival operations in the NAS. Potential environments 

for the use of GAP include air traffic terminal automation systems, pilot displays, and 

NASA capabilities such as the In-Time Aviation Safety Management System (IASMS) and 

Digital Information Platform (DIP). Through the combination of a real-time data input 

stream and ML-based predictive models, the service allows for the continuous computation 

of the probability of a go-round. As each arrival flight approaches the airport, the prediction 

results can be updated and displayed to operators (i.e., air traffic controllers and pilots). 

This additional information will give operators enhanced situational awareness throughout 

the approach phase of flight, allowing them to mitigate growing risks earlier and, if needed, 

provide more time to safely execute go-arounds. 

The GAP service provides ANSPs, airports, airlines, and other ISSA stakeholders with 

a practical risk detection tool that enhances safety. Specifically, we would like to develop 

a proof-of-concept tool that can be distributed to Air Traffic Control facilities and airport-

focused personnel with the goal of identifying the probability of a go-around due to hazards 

in the approach domain in time for effective mitigation. Figure 38 depicts the overall 

concept and architecture of the GAP service. As seen in the figure, the GAP service is 

composed of two primary components: (1) on the left side of the figure is the machine 

learning model, having been trained on historical data, and (2) on the right side, the real-

time data stream injects live air traffic positions, weather, and other data sources into the 

service, computes the probability of a go-around, and outputs that information from the 

service. In summary, the GAP service performs the following functions: 

• It continuously monitors the arrival domain of the NAS and fuses disparate data to 

identify risk. 

• It makes use of several novel machine learning techniques to predict the occurrence 

of a go-around or missed approach. 

• It combines custom data collection capabilities with existing data dissemination 

frameworks to feed real-time data into state-of-the-art machine learning methods 

to provide real-time warnings. 
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Figure 38. The proof-of-concept GAP service.  

In the current stage, we will use real-time emulation data to demonstrate the ability to 

reliably predict the likelihood of go-arounds ahead of time. The prediction could help in 

risk mitigation at the pre-go-around stage and lessen inherent risks and uncertainties 

associated with the disruption of an airport when a go-around is executed. In order to 

achieve this capability, we identify the following requirements for the GAP service 

components, which will be discussed in further depth in the following subsections: 

• There is a need to emulate the real-time data feed using historical data so we 

can effectively test the service on go-around situations. It is for demonstration 

purposes to assure that a go-around occurred during the model run. 

• The models would need to be saved in order to be promptly called, accessed, 

and executed in response to real-time messages. 

• The web interface tool should include a moving map display and indicators of 

go-around probability, as well as supplement information that might be helpful 

for decision making, such as predicted runway occupancy buffer, separation, 

wind speed. 

• Several test scenarios of go-arounds need to be identified to demonstrate the 

proof-of-concept.  
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9.2. Real-Time Data Ingestion 

The first key module of the GAP system is the real-time data injection mechanism. The 

GAP system requires key messages like trajectory messages from the FAA’s SWIM feeds. 

Alternatively, this information can also come from an upstream source such as NASA’s 

ATD-2/DIP Fuser, which fuses various inputs into a data stream ready for analysis. For our 

purposes, we introduced two additional processes providing further data curation as well 

as a real-time filtering layer that narrows the emphasis of the incoming data on the domain 

for GAP (within approximately 10 nm from the airport). The system can be operated in 

one of the two modes, as shown in Figure 39. The upper mode enables the process to be 

performed on actual live data coming from the data sources. The bottom emulated data 

stream is for demonstration purposes to assure that a go-around occurred during our model 

run. The modular architecture of the data injection components is a technically sound 

approach that facilitates easier integration with other systems. 

 

Figure 39. Real-time and emulated data streams and how we prepare them for input to the 

GAP processes. 

Our real-time data pipeline is built on top of the Java Message Service (JMS, a Java 

API that enables applications to create, send, receive, and read messages) and Apache 

Software Service, which includes Apache Kafka (a distributed event streaming platform 

for handling real-time data feeds), Apache Flink (a stream processing framework with 

stream- and batch-processing capabilities), Apache ZooKeeper (a centralized service for 

maintaining configuration information, naming, providing distributed synchronization and 

group service), Apache NiFi (an integrated data logistics platform for automating the flow 

of data between software systems), and Apache ActiveMQ (a message broker written in 

Java to send messages between different applications).  

To begin, the SWIM/DIP fuser or the historical data files are put in a designated 

repository in preparation for data ingestion into Kafka. Before launching the Kafka server, 
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we run the ZooKeeper instance that will keep track of the status of the Kafka cluster nodes, 

topics, partitions, etc. When Kafka is ready, we connect it to Flink clusters and create 

needed topics for storing, organizing, and messaging the input and output data. 

Second, after the environment is set up, we initialize ActiveMQ and NiFi. We use the 

ActiveMQ source connector to read messages and write them to the created Kafka topics. 

NiFi is needed to publish and consume messages to and from ActiveMQ queues. 

Additionally, we configure two JMS processors – TapClient and TapProducer – to make 

this process more efficient. 

Third, Flink will subscribe to the topics and consume data from the Kafka stream once 

everything is up and running. We let Flink periodically print out the number of messages 

published to the output Kafka topics. As long as messages are printed out, the emulation is 

working properly. 

9.3. Offline Models 

Due to the relative rarity of go-around operations, it is challenging to accumulate large 

enough samples set for reliable training of an online machine learning model. We thus opt 

for offline training, which requires saving all the models so they can be called and executed 

when new observations arrive. All the models have already been built, trained, and fine-

tuned on a large store of historical datasets for production use, and they can be retrained 

periodically as needed.   

There are two kinds of models we need to save for the GAP service – distance-variant 

models to predict ROB at each information cutoff gate, and the model to predict go-around 

occurrence. While the features remain the same, the coding frameworks used to derive 

them need to be adjusted to operate with the real-time data sources. In the current 

development stage, we retrain the ROB model with the XGBoost algorithm, and retrain the 

go-around prediction model using IO-HMM. In addition, we alter the sampling rate of the 

information cutoff gates with 0.5 nm spacing and rederive the features in order to train a 

more refined model capable of providing predictions at every 0.5 nm. The whole year of 

2018 operations at the JFK airport are used for model training, albeit two months (April 

27th – June 27th) are excluded from the analysis due to missing data in the APTC profile.  

With the same feature space as we derived before, we retrain the XGBoost algorithm 

with the new dataset to model ROB at every 0.5 nautical miles. In total, 20 models are 

trained independently, each with its own training and testing set. These 20 models are then 

used to generate predicted ROB values (𝑅𝑂𝐵̂) as one of the features for the go-around 

prediction model for the GAP service to provide the probability of go-around occurrence 

as the flight approaches the airport. In general, 27% – 70% of go-arounds are correctly 

classified by the model, and 4% – 20% of predicted go-arounds are correct. As the flight 

gets closer to the airport, the prediction becomes more reliable. 



108 

 

 

9.4. Test Scenarios 

In order to identify suitable test scenarios for the real-time emulation demonstration, 

we undertook an exploratory analysis of historical go-around data at JFK. We defined two 

types of scenarios: clusters, where multiple go-around events occur in one hour, and 

isolated events, where only one go-around event occurs in at least an hour. Go-around 

clusters were detected by calculating the cluster density for each go-around event. Cluster 

density is the number of go-arounds that occur from 30 minutes before to 30 minutes after 

the event in question. According to these two types of scenarios, specific go-around events 

were chosen and investigated further.  

We filter out some go-around events from testing consideration due to the current 

constraints imposed by our GAP service at this early stage of development. First, go-

arounds at runways 13L and 13R were omitted due to the present limitations of the inferred 

runway algorithm (a critical component of the go-around prediction model). Second, the 

scenarios involving mixed-use runways are less desirable for test scenarios because the 

ROB prediction presently only considers arrivals. We further utilize the airport runway 

configuration data and historical departure data to determine if any of the runways in 

question were mixed-use, which means they were used concurrently for both departures 

and arrivals. Finally, by visually inspecting a replay of the trajectories, we validate that all 

selected go-around events were confirmed to be true positives.  

A web-based user interface is developed for the GAP service to display the results of 

the go-around prediction. We can employ a centralized collection and processing 

infrastructure for both real-time operational data and predictive models through the web-

based interface. In addition, the web interface is developed using open-source software 

tools, which enable potential customers to freely use the GAP capabilities during proof-of-

concept demonstrations, as well as on a more regular basis once the capability is ready for 

commercial use. Figure 40 below shows a snapshot of the GAP viewer. In addition to the 

probability prediction, the display has the real-time representation of the actual operational 

traffic within the vicinity of the airport, including arrival, departure, and surface operations. 
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Figure 40. The GAP service provides a visualization display where subject aircraft 

positions and related metrics are continuously updated along with go-around 

predictions. 

9.5. Real-Time Deployment 

We integrate all the technical components and modules presented above to create a 

proof-of-concept GAP service demonstration that can be illustrated via the viewer and 

emulated using historical data. The overall architecture for the proof-of-concept GAP 

service is shown in Figure 41. The top set of processes (above the horizontal dashed lines) 

encompasses the training of the model on historical flights. The bottom set of processes 

illustrates the components required for the real-time prediction and outcome display. 

As an example, we choose a test scenario in early April 2018 to demonstrate the end-

to-end capability of the GAP service by emulating the historical data sets into real-time 

data streams. On this date, AAL164 is on approach to JFK runway 31R. The meteorological 

conditions include high wind gusts over 30 knots.  A link to the video of the GAP software 

system in action for this scenario can be found at https://youtu.be/EVjPvEyp3g0. In order 

to construct this proof-of-concept demonstration, a number of processes are executed on 

the emulated data stream behind the scenes. We end this section by summarizing the whole 

workflow of the backend of the demonstration for the GAP capability, as demonstrated in 

Figure 42. 

 

https://youtu.be/EVjPvEyp3g0
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Figure 41. The overall architecture for the proof-of-concept GAP service. 

After the models are well-trained on historical data, we save the models and leverage 

the real-time data pipeline which is built on top of JMS and Apache software service to 

obtain the real-time prediction of go-around occurrence. Specifically, when the JMS 

TapClient serializes real-time data streams (trajectory data, etc.) and publishes them to the 

Kafka server as topics, we are able to decode the messages using the Avro Schema and 

transform them to the desired data format. We set a few seconds (5 seconds in the current 

setting) of sleep time to allow for the accumulation of incoming data. The data acquired 

throughout the time window, in conjunction with the logging information kept in memory 

(if any), will be used to project the landing runway first and decide which information 

cutoff gate to be analyzed and predicted. Next, the Python scripts for deriving all of the 

required features will be executed. Once we obtain the predicted runway occupancy buffer 

(ROB) using the pre-trained model at the corresponding information cutoff gate, we 

include this additional feature into the design matrix, and use it for the go-around prediction. 

The predicted go-around probability, along with any other information that may be useful 

for operators (e.g., runway occupancy buffer, separation), will be displayed on the 

visualization platform. The whole workflow (except for the display service) has been tested 

on a Windows-x64 10 computer (256 GB RAM, Intel Xeon E5-2643v4 3.40 GHz) running 

Python 3.7.6, JAVA 1.8.0, and all supporting packages installed. The average running time 

for getting the go-around probability result for 5-second collected data is 0.839 seconds. 

This suggests that it is feasible to use the trained models to provide real-time guidance. 
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Figure 42. The workflow of the backend of the GAP service. 
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10. The Flight Plan 

We close now with a “flight plan” outlining future research paths. Drawing on the 

present dissertation endeavor, we see great opportunities to leverage modern advances in 

AI for the study of go-arounds, or other application domains. As such, we discuss specific 

directions of promising research in the following areas. 

(1) Complement the modules required to enhance the GAP service to handle more 

complex traffic situations and operations at various airports, thereby broadening the scope 

of scenarios covered by the developed framework. 

(2) Overhaul the machine learning models at the core of the go-around prediction in 

order to improve their accuracy and reduce potential false positives. This enhances the 

value proposition of GAP to the airlines, FAA, and other stakeholders by enabling them to 

not only achieve increased situational awareness during the crucial approach phase of flight, 

but also to prevent the go-around from occurring in the first place resulting in reduced 

workload and efficiency gains. 

(3) Integrate the GAP software service with several currently used operating platforms, 

including NASA’s IASMS and DIP capabilities, to offer an easy access point for system 

users.  

(4) Refine the use cases and conduct a deeper examination of the value created by the 

technology to narrow the problem space and enable us to focus on challenges faced by 

ISSA, such as real-time predictive analytics and how it translates to increased safety 

margins and economic benefit for operators. 

(5) Extend the work beyond the identified use cases and re-prototype for other safety-

related areas, such as autonomous driving and urban air mobility (UAM), leveraging its 

design principles and methods for studying rare events in a real-time arena.  

10.1. Broaden The Scope 

Thus far, the dissertation work has demonstrated a proof-of-concept containing an end-

to-end process flow that combines a real-time data stream with machine learning models 

to achieve prediction results. We successfully built the GAP service for arrival operations 

at JFK airport. However, due to resource limitations, several operational scenarios were 

omitted. The operational envelope of the present proof-of-concept was limited in scope and 

operational complexity. In the future, generalization to other airports and the addition of 

mixed-use runway operations will broaden the breadth of operating coverage with the GAP 

service.  

This work may also be extended to other atypical flight approach procedures, such as 

(1) Unstabilized Approach, in which an aircraft does not maintain an appropriate speed, 

descent rate, vertical/lateral flight path, or landing configuration; (2) Short Approach, in 
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which an aircraft shortens its downwind leg and turns earlier than normal for the base leg; 

(3) Dogleg Approach, in which an aircraft establishes its approach on the radar base leg for 

an ILS approach, to name a few.  

Relevant to this opportunity area, the following questions need to be considered: (1) 

What additional data sources or processing steps are required to accommodate increased 

operational complexities such as mixed-use runway operations? (2) How can we make the 

system more adaptable so that we can shorten the amount of time and decrease the level of 

effort required to implement the system at a new airport? (3) What types of airports are 

candidates for expansion? (4) Will the increased complexity have a detrimental effect on 

the machine learning model and predictive performance, and if so, how can this problem 

be mitigated? 

10.2. Improve The Model 

We have developed predictive models that can regularly update the go-around 

probability as the flight continues along with its approach to the airport. Specifically, for 

each flight, using information from the realized own-flight and leading flight, airport 

surface traffic, and weather, we extract and derive associated feature vectors and use them 

to predict whether the flight will initiate a go-around before landing. This sequential 

prediction problem requires the extraction and fusing of multiple diverse data sources 

(flight trajectory, air traffic control, weather, surface conditions, etc.) in order to train a 

model and then use it in real time. In addition, we have been able to extract real-time 

information from the Kafka server and derive features fed into the pre-trained predictive 

model to estimate the probability of go-around occurrence in real time. Building on the 

current research effort, further improvements are needed: 

(1) From the labeling perspective, unsupervised (clustering) methods can be leveraged 

to improve the model labeling scheme for better training. Instead of labeling the flight 

sequences with a binary response (go-around or not), flight activity sequences might be 

classified/clustered by unsupervised learning with multiple labels/classes. Transformer 

encoder model can be considered to learn the latent representation of the observed 

sequential data, and cluster the latent representation to construct an informative flight 

activity sequence for each aircraft. This may help ease the class imbalance issue and help 

with the understanding of different states of the flight sequences.  

(2) From the feature engineering perspective, other than adding more features and 

deriving more robust signatures of the real-world scenarios, feature learning-based 

methods can be employed for dealing with the imbalanced pattern classification. The idea 

is to train an autoencoder to project the input feature space onto a learned feature space 

with better representation. Two or more autoencoders can be stacked together to provide 

more robust representations for different sets of features, and with different activation 

functions. Samples are then classified in the new feature space leaned in this manner 

instead of the original input space. Experimental results show that the autoencoder feature 
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learning method yields statistically significant improvement compared to resampling-

based and feature projection methods for dealing with the imbalanced pattern classification 

problems.  

(3) From the model architecture perspective, efforts could be put into designing other 

sequential models that outperform the current models with fewer false alarms without 

impacting the response time of the prediction, such as combining the generative Input-

Output Hidden Markov Model with discriminative neural networks, the LSTM Fully 

Convolutional Network (LSTM-FCN) which works efficiently on multivariate time series 

classification tasks.  

(4) From the model interpretability perspective, explore the possibility of root-causing 

the go-around occurrence. In addition to the evolving go-around probability conveyed to 

aviation stakeholders during the operations, one could take one step further to leverage 

Explainable AI (XAI) techniques to find the potential root causes (risk factors) for the high 

value of go-around prediction. While the prediction of go-around probability can enhance 

situational awareness, the root cause analysis can help uncover hidden connections and 

causalities behind the prediction, and thus support human decisions. The difficulty for this 

subtask would be that the scalability and real-time reaction need to be underpinned by 

automated RCA of the complex aviation system in order for them to be genuinely viable. 

There is a broad spectrum of techniques with the usual trade-off between tractability and 

expressiveness. Once the GAP service model is sufficiently mature, finding appropriate 

mechanisms to infer root causes of the go-around prediction in real time based on the 

resulting model is a promising direction to explore. 

10.3. Integrate With Existing Platform 

The objective is to operationalize the fundamental GAP predictive capabilities for the 

stakeholder application(s) with the greatest potential to affect system-wide safety or value 

proposition to the stakeholders. To accomplish this, GAP components should be improved 

to make them cloud-ready, allowing for integration with existing platforms like NASA’s 

IASMS, DIP platform, and Skyview Data Services (SDS) platform. The integration efforts 

will eventually enable the GAP services to be supplied more efficiently to stakeholders, 

providing more robust solutions that realize benefits in safety and performance in the next-

generation aerospace systems. This requires adapting the GAP services to operate with 

near-real-time streams coming into these platforms received through the FAA SWIM feeds 

and disseminating to stakeholders the GAP predictions based on this near real-time data. 

The following research questions should be addressed: (1) What are the APIs or other 

interface mechanisms for the various platforms to be integrated with? (2) Do the platforms 

have access to the appropriate real-time data streams required for GAP to make accurate 

predictions? (3) When will these platforms be accessible for integration? (4) How will the 

GAP information be connected end-to-end with stakeholder systems? (5) How will they 

utilize it to enhance the safety and efficiency of the operation? 
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10.4. Closing The Loop 

Closing the loop entails collaborating closely with domain experts in order to conduct 

a thorough evaluation of the software service. Human behavior and reasoning, as well as 

their interactions with the go-around decision-making assistance, are difficult to model. 

The difficulty is worsened further in settings where people have not yet experienced this 

tool. The objectives of this opportunity area are: (1) Identifying the most compelling use 

cases for potential users from a value proposition standpoint; (2) Comprehending how the 

aviation stakeholders will use the GAP service; (3) Deriving high-level requirements from 

stakeholder feedback in order to identify which specific technical components will need to 

be developed and/or enhanced. (4) Identifying other high-priority enhancements to be 

made to bring present methods up to date. 

Before deploying the GAP software service for real-world applications, we will need 

to interview stakeholders, including airlines, to understand how the go-around prediction 

can benefit their operations in terms of both safety and efficiency. The effort is required to 

improve risk quantification—the estimation of the likely frequency of occurrence against 

the likely magnitude of impact if the risk led to an accident. Additionally, field tests in both 

emulations and real-world airport environments will aid in bridging the online-offline gap 

and establishing a fundamental understanding of which strategies perform effectively and 

why. The stakeholder feedback and emulation/testing data acquired during trials can be 

utilized to evaluate the potential for broader adoption of the GAP service for different kinds 

of flight anomalies and at other airports. 

For this opportunity area, we seek answers to the following questions: (1) What is the 

value proposition of go-around prediction to each organization (e.g., airports, airlines, 

NASA, FAA, and other stakeholders)? (2) How much value is generated by avoiding a go-

around occurrence? (3) What are the highest-priority areas for risk reduction related to go-

arounds? (4) How should the information be displayed to optimize the advantages of safety 

and efficiency benefits? (5) How long in advance does the go-around prediction need to 

occur to be helpful to stakeholders? (6) How tolerant are stakeholders of false positives?  

10.5. Open The Door 

This opportunity area considers other potential applications and their markets beyond 

the identified use cases and creates an initial commercialization plan with government and 

industry stakeholders. The developed risk predictive intelligence can be prototyped and 

tested for use in other safety-related areas of transportation systems, such as autonomous 

vehicles (AV) and urban air mobility (UAM). The new application research can leverage 

the design principles and methodologies of the dissertation work so far for predicting rare 

event occurrences in a real-time arena, in order to improve the safety and efficiency of the 

system. However, when adopting this data-driven real-time risk predictive framework to 

other mobility settings, two significant paradigm shifts in data handling and prediction 

strategies need to be considered. 
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First, the primary obstacle is the lack of operational data to populate the risk predictive 

framework, since the unmanned systems are still in their early development stages. For 

autonomous driving, realized data from manned driving operations or AV testing offers an 

alternative and suitable approximations for model learning while overcoming the 

limitations of lacking empirical data from fully autonomous vehicles. Moreover, the 

insufficiency of accident/pre-crash data can be further compensated by synthetic off-

normal scenarios generated by GANs, as we did in the go-around study – generating 

synthetic samples to augment the presence of anomalous events for better training and 

model generalization. In the aviation field, however, manned aircraft operations do not 

provide an adequate baseline for UAV operations due to the vast configuration differences 

and the varying operational context. While simulation data may be employed due to its 

scalability and convenience, the gap between simulation data and reality must be 

considered. Transfer Learning is a promising direction worth exploring since it has the 

potential to transfer the learned knowledge from simulated data to the real-world process.  

Second, the current risk predictive analytics can be extended to an end-to-end 

interactive motion planner. The present study employs a non-interactive prediction 

paradigm, which typically performs acceptably in sparse traffic scenarios like commercial 

aircraft landing but can easily fail in dense traffic scenarios. Vehicles, pedestrians, and 

UAVs need to be modeled as active agents capable of not just capturing motion history and 

current interactions with other agents, but also reasoning about how other agents will react 

to their future behaviors. Specifically, while the sequential models (e.g., IOHMM, LSTM) 

are maintained for predicting the behaviors of individual agents using historical and current 

information, their output predictions of corresponded agents can be fed to another network 

layer with weights for joint training. All model parameters will be optimized 

simultaneously by considering the individual sequential models and their prediction 

interactions among multiple agents at the same time. Other interactive prediction and 

planning approaches such as game-theoretic planning and reinforcement learning should 

also be investigated. 
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Appendix A: Data Sources 

A.1. Asynchronous Data 

We leverage large stores of historical data, including NASA’s Sherlock ATM Data 

Warehouse, to provide training sets for model development. We limit the scope of the study 

to JFK airport due to a number of factors including the frequency of go-arounds, the mix 

of international and domestic traffic, and the complexity of arrival operations in the New 

York area. Our datasets range from July 1st to December 24th in 2018 at the John F. 

Kennedy (JFK) airport, except for four days with defective data. After data cleaning and 

matching, there are on average 525 arrival flights per day in the analyzed airport within the 

analysis period. 

The first dataset is retrieved from the Integrated Flight Format (IFF) and Reduced Data 

(RD) summary of the NASA Sherlock Data Warehouse, which are gathered from 76 FAA 

facilities and formatted by ATAC corporation. Fields of interest include flight summary 

(e.g., time, aircraft type, origin, destination, operation type), trajectory information 

(timestamp, latitude, longitude, altitude, groundspeed, course, rate of climb, etc.), and 

landing information (e.g., runway threshold crossing time). Arrival trajectories have been 

filtered to 400 nautical miles centered on the analyzed airport for each flight. The RD 

summary includes the information of takeoff / landing runway and runway threshold 

crossing time. The RD summary and the IFF data have been further processed and merged 

on a daily basis for each flight arriving at JFK. This dataset is used to derive flight-specific 

characteristics (Section 4.3.1), approach stability features (Section 4.3.2), and in-trail 

separation features (Section 4.3.3)  

The second dataset, airport surface detection equipment Model X (ASDE-X) data, 

allows us to determine the position of aircraft and ground support equipment in the airport 

surface area. Each record of raw surface track data contains the timestamp, latitude, 

longitude, altitude, and groundspeed. This dataset is useful in identifying key metrics for 

airport surface operations, which we will discuss in detail in Chapter 5.  

The third dataset, which comes from the FAA aviation system performance metrics 

(ASPM) database, provides airport level configuration and weather information every 

quarter-hour. The dataset includes count of Official Airline Guide (OAG) scheduled 

arrivals/departures, airport arrival/departure rate (AAR/ADR, which measure airport 

arrival and departure throughput capacity), meteorological conditions flag (instrument or 

visual, reflecting whether conditions allow for pilots to operate without instruments), 

ceiling (in feet), visibility (in statute miles), wind angle from magnetic north (degree), wind 

speed (in knots), and airport supplied runway configuration. We use this dataset to derive 

the airport and weather features by matching flight-level operation with the 15-minute 

interval weather information according to the time at which the aircraft reaches a certain 

distance from the landing runway threshold. 
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A.2. Real-Time Data 

With the advent of the FAA’s System Wide Information Management (SWIM) system 

for dissemination of high-definition trajectory and air traffic control automation data, we 

are able to provide the path forward to provide real-time predictive analytics. Below are 

the data sources available in real-time and that can replace the asynchronous datasets 

during the development of real-time application software systems for go-around 

predictions. 

The Aviation Weather Center (AWC) METeorological Aerodrome Reports (METARs) 

is used to replace the ASPM dataset to provide airport level weather information updates 

every hour. We validate the historical records between METARs and ASPM. It is found 

that these two datasets are not consistent during periods when daylight saving time is 

observed due to the conversion error of the ASPM dataset. We use this dataset to derive 

weather related features such as wind, visibility, and ceiling by matching each flight with 

the most-updated information (i.e., record that is available in the latest hour). 

The Airport Configuration (APTC) profile provides the real-time data stream of runway 

configuration, airport arrival/departure rate (AAR/ADR), and meteorological conditions at 

the airport. The data comes from the FAA SWIM’s Flight Information Service (AFIS), 

which provides timely and specific information on individual flights from the operators. 

The ASDE-X dataset is substituted with the EV database. The EV database provides 

runway threshold crossing time and the runway exit time. We thus can calculate the metric 

we need (i.e., runway occupancy buffer that we will introduce in Chapter 5.) in a more 

convenient way, without inferring from the trajectory and airport surface configuration.  
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