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Abstract

University of California, Merced 2017
Doctor of Philosophy

Collective motion in behaviorally heterogeneous systems
Katherine Copenhagen

PI: Professor Ajay Gopinathan, Chair: Professor Linda Hirst

Collective motion is a widespread phenomenon in nature where individuals actively propel
themselves, gather together and move as a group. Some examples of collective motion
are bird flocks, fish schools, bacteria swarms, cell clusters, and crowds of people. Many
models seek to understand the effects of activity in collective systems including things such
as environmental disorder, density, and interaction details primarily at infinite size limits
and with uniform populations. In this dissertation I investigate the effects of finite sizes
and behavioral heterogeneity as it exists in nature. Behavioral heterogeneity can originate
from several different sources. Mixed populations of individuals can have inherently different
behaviors such as mutant bacteria, injured fish, or agents that prefer individualistic behavior
over coordinated motion. Alternatively, agents may modify their own behavior based on
some local environmental dependency, such as local substrate, or density.

In cases such as mutant cheaters in bacteria or malfunctioning drones in swarms, mixed
populations of behaviorally heterogeneous agents can be modelled as arising in the form
of aligning and non-aligning agents. When this kind of heterogeneity is introduced, there
is a critical carrying capacity of non-aligners above which the system is unable to form
a cohesive ordered group. However, if the cohesion of the group is relaxed to allow for
fracture, the system will actively sort out non-aligning agents the system will exist at a
critical non-aligner fraction. A similar heterogeneity could result in a mixture of high and
low noise individuals. In this case there is also a critical carry capacity beyond which the
system is unable to reach an ordered state, however the nature of this transition depends
on the model details.

Agents which are part of an ordered collective may vary their behavior as the group
changes environments such as a flock of birds flying into a cloud. Using a unique model of
a flock where the group behaves as a rigid disk reveals interesting behaviors as the system
crosses a boundary between interfaces. The collective rotates and reorients or becomes stuck
on the boundary as it crosses. I also investigate the effects of variable behavior depending on
local density, and find that a frustration driven transient rotational phase arises in clusters
where agents with low local density move faster than those with high local density as in cell
clusters. All together I have shown that behavioral heterogeneity in collective motion can
lead to unique phases and behaviors that are not seen in their homogeneous counterparts.
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Chapter 1

Introduction

1.1 Motivation

Living things can group up into large groups which behave as if they were a single object.
Flocks of starlings fly around together as a single group which appears to act like a liquid
with flowing waves [1, 2]. Fish schools act as one single unit rather than many fish
acting as individuals [3]. Swarms of flies [4, 5], actin filaments inside our cells [6, 7],
herds of wildebeests [8], bacteria swarms [9], cell clusters [10] and many more systems like
these [11, 12, 13, 14, 15] are also all examples of collective motion. There are a few things
that collective motion systems all have in common. First, individuals consume energy to
propel themselves forwards, and second, individuals interact with eachother to form some
structure or order on length scales much larger than the size of the individual constituents.
The mechanism for propulsion and interaction between agents varies widely from system
to system, but there are common features and collective behaviors that are carried over
across length and timescales. Birds and fish interact by sight or sensing air or water flows,
while bacteria and cells interact by chemical signaling and protein adhesions, and on an
even smaller scale actin filaments interact through physical collisions, however all of theses
systems show some similar long range collective behaviors in the form of velocity or position
correlations.

Collective motion is an essential part of our lives and the world around us. When
we move as part of a crowd or our cells move together during tumor formation or tissue
development, the system behaviors are classified as collective motion. It is therefore
important to study and understand collective motion, not only for learning about the world
around us but also for health and safety, from escaping crowds and riots to preventing
tumor spread. Further, we can learn from the strategies that have evolved in nature, to
find efficient algorithms for drone swarms to improve performance for things like searching,
foraging, exploring, or even reintroduction of essential factors for environmental health
where they may have been wiped out such as reforrestation in burnt areas.

1.2 Background

When physicists began to gain interest in collective motion it was focussed particularly on
the case where long range polar order is established. This occurs in bird flock when all of
the birds align to fly in a consensus direction, or in fish schools, wildebeest herds and many
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others. In 1995 Tamas Vicsek showed that a very simple model, where agents interact by
aligning their direction of travel with neighboring agents, can result in a novel noise driven
phase transition between an ordered and disordered state in two dimensions [16]. An analogy
to a flocking system like these birds, but without self propulsion, i.e. agents simply reorient
to align with neighboring agent directions but do not actively propel themselves, would
be a magnetic system. This analogous system is the classic XY-model, where magnetic
spins rotate to point the same direction as their neighbors. In the passive magnet XY-
model in two dimensions, it is impossible to get an ordered phase or a phase transition with
decreasing noise or temperature, so the fact that one exists in active systems is a surprising
consequence of allowing aligning agents to propel themselves. After Vicsek showed the
possibility of such a transition, Toner and Tu were able to analytically prove that the out
of equilibrium nature of active systems allows for long range order to be established and a
noise driven transition to exist in two dimensions [17].

The discovery of novel noise driven phase transitions in out of equilibrium active matter
led physicists to study collective motion to find new phases and behaviors in collective
motion. There are two main theoretical approaches to studying active matter. One is agent
based modeling where each individual and it’s interactions with other agents are modelled
individually and positions are advanced with time. The second is hydrodynamic modeling
where collective motion is described by a set of equations which represent the density and
polarization of the agents with space and time.

1.2.1 Agent based modeling

Agent based models are implemented by defining a set of interactions and update rules
for individuals and then letting the system evolve in time, according to a simple set of
rules. Such systems show phase transitions driven by a wide variety of quantities including
noise, density [11], environmental disorder [18], behavioral heterogeneities [19, 20, 74], and
cohesive interaction details [21, 22]. They have also been used to study how swarms
use cooperation to achieve specific goals which are useful to biological systems, such as
cooperative decision making [23], agent segregation [24], and obstacle avoidance [25].

1.2.2 Hydrodynamic modeling

Hydrodynamic models define the local density and polarization through continuum
equations which can then be numerically integrated to model the behavior of collective
motion with time. They seek to understand the bulk properties of systems by utilizing
periodic boundaries and studying thermodynamic properties. Studies of such systems in
the thermodynamic limit of infinite size have revealed a number of interesting features
including long-range, scale-free correlations and a discontinuous phase transition [26]. These
thermodynamic limit studies have spurred interest in hydrodynamic and mean field theories
to describe such phenomena [27], and have revealed interesting defect dynamics, phase
transitions and collective behaviors in infinite size systems.
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1.3 Collective motion with finite sizes and behavioral
heterogeneity.

In nature, collective systems have boundaries and finite sizes which can have important
effects of the collective motion of the system. Additionally, there is no reason that all
agents in a collective systems in nature should behave identically. In this dissertation I
implement these two features of natural collective motion systems that are often neglected in
theoretical studies. From the perspective of finite system sizes I study behavioral variability
using two slightly different approaches. The first is looking at systems of mixed populations
where some subpopulation displays different behaviors than the remainder of the population
throughout the simulation due to disease or malfunction. The second is by looking at
environmentally driven behavioral variability where agents modify their individual behavior
based on local environment.

1.3.1 Mixed population heterogeneity

Disorder can exist in the form of variability in behavior among members of the group,
which has been modeled using agents with varying velocities [19, 28] or differing noise
sensitivity [29], agents that stochastically switch off social interactions [20] and migratory
groups of agents with varying sensitivity to external directional cues [30, 31]. An interesting
manifestation of such behavioral heterogeneity would be swarms with agents that have
varying abilities to process social cues. A specific scenario could be swarms with sub-
populations of non-aligners that either refuse or are unable to participate in utilizing shared
information with their neighbors resulting in significant impacts on the collective. For
example, it has been observed in colonies of the quorum sensing bacteria P. aureginosa
that colony collapse can occur if mutant cheaters (those that do not secrete signaling
compounds to sustain colony swarming) are introduced into the swarm even though there
are sufficient nutrients in the environment [32, 33, 34, 35, 36]. Differential behavior can
also be a result of disease in organisms. For example, in locust swarms, the introduction
of parasites (Paranosema locustae) inhibit the production of aggregation pheromones that
promote gregarious behavior, thus resulting in a transition to an individualistic state [37].
In analogy to these biological systems, non-alignment behaviors could also arise in robotic
drone swarms [38, 39], where software viruses or hardware failures could cause agents to
malfunction, leading to an inability to swarm effectively and requiring the development
of novel algorithms to alleviate this problem [40, 41, 42]. In chapter 2.1 we investigate
the effects of non-alignment on swarming systems and find that swarms which are able
to fracture exist at a critical carrying capacity of non-aligners and are able to adjust the
non-aligner carrying capacity on the fly by changing speed, or spacing.

Another consequence of disease, mutation or malfunction, as described above, could be
agents with variable diffusivities. In chapter 2.2 we examine several different models and
the effects of heterogeneous diffusivities on swarming ability. We find that depending on
the mechanism of cohesiveness interactions and alignment, increasing cohesive interaction
strength can either promote or hinder swarming ability with increasing noise, and a high
fraction of noisy agents will destroy a systems ability to align in an ordered cohesive unit.
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1.3.2 Environmentally driven behavioral variability

Groups of individual organisms can self-organize to form cohesive clusters with directed
motility in a spontaneously chosen consensus direction, for example a school of fish [43],
cluster of cells during tumor spread, tissue development and repair [44, 45], or a herd of
wildebeests [8]. These types of swarming systems will often encounter a change in the
environment, such as a flock of birds flying into a cloud or area of lower air temperature,
or a cluster of tumor cells invading changing tissue types [46]. Single cells have been
shown to change their speed and direction when crossing sharp interfaces [47]. Swarms
can also use collective dynamics to find and localize themselves to preferred niches or
microenvironments. For example it has been observed that golden shiners, Notemigonus
crysoleucas, which prefer low lighting, will spend more time in dark areas if they are part
of a school, due to cooperative sensing capabilities of the group [48]. Bacteria have also
been shown to take less time to reach a target with noisy chemical concentration gradients
in the environment when they are part of a cluster [49]. Also, e. coli. clusters modify
their own environment by secreting chemicals to create an environmental change between
the inside and outside of the cluster in order to trap the e. coli. and maintain clustering
behaviors [50]. It is therefore important to understand the effects of spatial environmental
changes on a cohesive swarming group.

In chapter 3.1 we investigate finite swarming clusters moving through heterogeneous
environments where agents change their speeds by exerting different propulsive forces within
each environment. Such changes could arise from the agent’s sensing and response to
a variety of environmental factors such as temperature, substrate stiffness, or chemical
composition. How is the path that a swarm takes affected by the presence of a boundary
between different environments, and how does it depend on the properties of the cluster
and the environmental change? We investigate these questions through a unique analytic
model for swarming systems which treats the entire population as a single solid unit with
self propulsion that can vary across the area of the flock, and show that under some realistic
conditions the cluster exhibits a behavior with a remarkable resemblance to Snell’s Law for
light.

In chapter 3.2 we investigate cohesive cell clusters with agents which vary their behavior
depending on transient local environment properties, specifically their local density, and
find that this kind of heterogeneity can lead to unique phases of motion. We use an
agent-based swarming model, which only allows short-range, nearest-neighbor interactions
and unconfined space, similar to previous models found in the literature [23, 24, 51], to
address the phenomenon of transient rotations in unconfined clusters. I show that a possible
mechanism for driving cluster rotations is density-dependent cell propulsion. This density-
dependent propulsion may be caused by contact inhibition of locomotion (CIL), whereby
cell protrusions are inhibited by the adhesions between cells [52, 53]. Taken together, our
results suggest a novel form of frustrated interactions between behaviorally different parts
of the same cluster that can lead to unique collective dynamics – a finding that may have
applications beyond the context of cellular clusters. I discuss the effects of environmentally
dependent behavioral variation in Chapter 3.



Chapter 2

Mixed population heterogeneity

In collective motion systems, agents can experience malfunction, sickness, or energetically
favorable fitness conditions which can lead to subpopulations which behave differently from
the rest of the collection. These bahavioral variations can also be caused by mixed species
or abilities within a swarm. In these systems when two different populations mix it can lead
to interesting system behaviors. In this chapter I discuss the effects of errant individuals
which refuse or are unable to participate in social alignment interactions in section 2.1, and
mixtures of populations with differing noise, or rotational diffusivity in section 2.2.

2.1 Self-organized sorting limits behavioral heterogeneity in
swarms

Collective motion in natural systems is a well studied phenomena that spans many spatial
and temporal time scales [11, 12], ranging from protein filaments driven by molecular
motors [6, 7], to swarming bacteria [9] and active colloidal crystals [14], to fish [3],
birds [1], and even robot swarms [38, 54]. Such collective phenomena rely on the sharing or
transmission of local information by constituents of the group leading to global consensus.
Information flow and information fidelity are therefore critically important for collective
systems to persist, especially in situations where disorder is an issue.

Disorder may exist in the environment and it has been recently shown that topological
disorder in the form of obstacles can have significant detrimental effects on the ability
for systems to move collectively [18, 25, 49]. Disorder can also exist in the form of
variability in behavior among members of the group, which has been modeled using
agents with varying velocities [19, 28] or differing noise sensitivity [29], agents that
stochastically switch off social interactions [20] and migratory groups of agents with
varying sensitivity to external directional cues [30, 31]. An interesting manifestation of
such behavioral heterogeneity would be swarms with agents that have varying abilities to
process social cues. A specific scenario could be swarms with sub-populations of non-
aligners that either refuse or are unable to participate in utilizing shared information
with their neighbors resulting in significant impacts on the collective. For example, it
has been observed in colonies of the quorum sensing bacteria P. aureginosa that colony
collapse can occur if mutant cheaters (those that do not secrete signaling compounds to
sustain colony swarming) are introduced into the swarm even though there are sufficient
nutrients in the environment [32, 33, 34, 35, 36]. Differential behavior can also be a result

5



6

of disease in organisms. For example, in locust swarms, the introduction of parasites
(Paranosema locustae) inhibit the production of aggregation pheromones that promote
gregarious behavior, thus resulting in a transition to a non-swarming state [37]. In
analogy to these biological systems, non-alignment behaviors could also arise in robotic
drone swarms [38, 39], where software viruses or hardware failures could cause agents to
malfunction, leading to an inability to swarm effectively and requiring the development of
novel algorithms to alleviate this problem [40, 41, 42].

Since differential behavior or non-alignment can be fairly ubiquitous in swarming
systems and too many such non-aligners will have a deleterious effect on the ability to
swarm, it poses a number of significant questions regarding how natural swarms deal with
non-aligners or more generally variations in alignment ability. Is there a maximum fraction
of non-aligners that a finite swarm can carry and is there a simple predictive relation
between the maximum non-aligner carrying capacity and the characteristics of the swarm?
Could there exist robust mechanisms that allow the whole group to increase its non-aligner
carrying capacity? Are there mechanisms that allow swarms to limit the spread of non-
aligning? Do these same mechanisms operate if the alignment abilities have a more natural
continuous spread? If there are fitness advantages associated with non-aligning how does it
affect the evolutionary dynamics? To address these issues, we study an agent based model
of finite swarms with local aligning and cohesive interactions between neighbors and a sub-
population of non-aligning agents within the group that do not align with their neighbors
and do not have a defined internal preferred velocity.

2.1.1 The model

Agents exist in a continuous two dimensional space where each agent interacts with other
agents in its immediate neighborhood defined by a vision radius dv. At any given time,
t, each agent has a position ~xi, and a direction of travel d̂i. The direction of travel of
the agent at the next time step is computed by taking into account both alignment and
cohesive interactions with its neighbors as well as noise. This is implemented by computing
an alignment interaction vector, ~dA and a cohesive interaction vector, ~dLJ . Here, ~dA for
an agent is the sum of the direction vectors of its nearby neighbors, which is proportional
to the mean consensus direction (see methods for details). The form of the alignment
interaction we use is common in studies of swarming systems and can be found in many
variants of the standard Vicsek model [16, 55, 56], which was formulated originally to
study a thermodynamic phase transition of aligning agents resulting from an increase in
temperature or noise of the system. The form of the cohesive interaction is modeled as
arising from a Lennard-Jones (LJ) interaction which is attractive at large distances and
repulsive at close range (see methods for details). The effect of the LJ interaction in our
model is to encourage agents to maintain a preferred distance (R) thus providing an overall
cohesiveness as well as collision avoidance within the swarm, as seen in similar swarming
systems [42, 22, 57]. In what follows, we set R ∼ 0.8dv, so that each agent sees only its first
nearest neighbors on average, consistent with prior flocking models. The updated travel
direction vector is then

~di(t) = α~dA + ε~dLJ + ~η (2.1)

where ~η represents noise. Noise is implemented as an angular adjustment to the
calculated travel direction vector and is described in detail in the methods section below.
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Here the parameters α and ε measure the importance of alignment and cohesiveness
respectively (equation (3.14)). Directional updates are only performed in time intervals
of δt corresponding to the physical reaction time of agents within the system. In contrast,
positions are updated every simulation time-step, ∆t, which can be made arbitrarily small.
It is to be noted that velocity is encoded by a new length scale, dr, the reaction distance,
which determines how far an agent moves before reprocessing information, i.e. in time
δt. Our model for the swarm produced expected stable collective dynamics [16], including
order-disorder transitions as a function of noise (Fig. 2.1), which have been studied using
both hydrodynamics [27, 58], and agent based models [26]. Although such agent based
models are quite simple and leave out many microscopic details, they have been shown to
produce a rich and complex phase space of collective motion that mimics the behavior of
real physical and biological swarming systems [26, 5, 21, 43].
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Figure 2.1: Order transition with noise for various system sizes.

To introduce behavioral heterogeneity in the form of non-aligners who refuse, or are
unable, to participate in utilizing local alignment cues to guide their movements, we choose,
at random, a fraction f of the swarming agents to be non-aligners after a transient time
period where collective motion is established. Non-aligner agents follow the same update
procedures as aligners, except that the alignment interaction is suppressed by setting α = 0,
so they no longer have any intrinsic tendency to align with their neighbors. Thus the only
forces the non-aligners feel arise from the LJ potential.

The alignment interaction is implemented by the agent choosing an updated direction
of travel that, in the absence of cohesive interactions or noise, is the sum of the direction
vectors all its nearby neighbors, which is proportional to the mean consensus direction. In
our model, at each reaction time step (δt), agents compute the summed direction ~dA(t)
(equation (2.2)) of all their neighbors (nbr) within a specified “vision” distance, dv. δt is
the physical reaction time of agents within the system, rather than the timestep of the
simulation (∆t).

~dA(t) =

nbr∑

j

d̂j(t− δt) (2.2)
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The cohesive interaction is modeled as arising from a Lennard-Jones (LJ) interaction
(equation (2.3)) between nearest neighbor agents which is attractive at large distances and
repulsive at close range. To calculate the LJ interaction, ŝij is a unit vector pointing between
the ith and jth agents and s is the separation between them.

~dLJ(t) = −12×
nbr∑

j

[R13

s13
− R7

s7

]
ŝij (2.3)

The standard Lennard-Jones force is equated to a LJ velocity due to the overdamped
dynamics of the system. The agents calculate the alignment direction vector ~dA as well as
the LJ direction vector ~dLJ , dictated by the cohesive LJ interactions with all their neighbors
(equation (2.3)) at each timestep. For our simulations the equilibrium separation between
agents (R in equation (2.3)) is set to a distance, relative to the vision distance dv, such
that each agent will see, on average, only their first nearest neighbors. A new direction of
travel for the agent in the next time step is determined by the vector formed by adding
α~dA(t) with ε~dLJ , where the parameters α and ε measure the importance of alignment and
cohesiveness respectively (equation (2.1)).

New positions are then calculated for each agent according to equation (2.4), where dr
is the reaction distance, or how far an agent moves in each timestep.

~xi(t+ ∆t) = ~xi(t) +
dr
δt
d̂i(t)∆t (2.4)

To mimic the response of real swarming individuals, we need to account for errors,
either in processing local orientation information or in the execution of movement. Errors
are modeled as noise that is added to the calculation of the updated direction ~d(t+ ∆t) by
adding a randomly selected angle into the calculated direction, θi = arctan di,y/di,x ± η/2.
In our model we set η = 0.2, dv = 1, R = 0.7887, ∆t = δt = 1, and α = 1.

Swarms are generated by randomly seeding N agents in a circle with radius equal to the
vision radius of agents, dv and then allowing the swarm to set its own size by following the
dynamics dictated by equation (2.1) and equation (2.4). The system has infinite boundaries
and varying the initial density, and simulation time step have little effect on the resulting
transitions. The time during the simulation when the non-aligners are introduced makes
little difference to the resulting transitions as seen below (Fig. 2.2). Initially the system is at
f = 0, with no non-aligners, then at time t0, a fraction of the system f is converted to non-
aligners, and the order is measured after the system has reached steady state. Typically it
takes less than 1000 time steps for the system to reach steady state, we wait until t = 12000
to measure the order to allow plenty of time for the system to stabilize.



9

Cheater Fraction
O

rd
er

Figure 2.2: Order transition with non-aligner fraction where the non-aligners are introduced
t0 time steps into the simulation.

2.1.2 Results.

Large inter-agent cohesiveness limit.

We first consider the limit where the cohesive interactions are strong enough to produce
a single swarm that cannot break apart and shows no rearrangements over time. This
happens when ε ∼ α, which is high enough to prevent the swarm from fracturing. Thus,
once a random spatial distribution of non-aligners is established in the swarm, it remains
fixed in a locked-in state thereafter. We begin by focusing on the effects of adding a fixed
fraction of non-aligners, f , to our system and analyzing how the addition of these non-
aligners affects the ability of the agents to swarm. To quantify the degree of order in the
swarm we use the group polarization of all the agents, O, defined by,

O =
1

N

∣∣∣
N∑

i=1

d̂i

∣∣∣ (2.5)

Fig. 2.5 (A) shows that as f increases, the swarm undergoes a sharp transition from an
ordered swarming state where O ≈ 1 to a static disordered non-swarming state with O ≈ 0.
The transition occurs at a critical non-aligner fraction, f∗, that is very weakly dependent
on the system size as seen in Fig 2.5(a) where the transition occurs near f∗ ∼ 0.5 for ε = 1,
dv/dr = 100, and various different system sizes. On the left of the transition the system
has a low non-aligner fraction and all agent directions are aligned with each other, shown
by the black arrow heads in Fig. 2.5(B) with non-aligners in red and aligners in blue, while
on the right of the transition the system is no longer able to form an ordered state, and
agents instantaneously have random directions (Fig. 2.5(C)), resulting in a state with no
net movement. It is to be noted that the time at which non-aligners are introduced does
not affect the results shown and there appears to be very little hysteresis in the system
(Fig. 2.2 and Fig. 2.3), suggesting a possible first order transition [20], which implies that
the results for a fixed non-aligner fraction are fairly unique.
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Hysteresis

Initializing the system with all non-aligners and introducing aligners has a slightly different
effect on the order of the system than vice versa. To examine the difference we measured
the order of the system as non-aligners are gradually added and then removed from the
system with time. Initially the system has no non-aligners and N = 100 aligners and then
one aligner is converted to non-aligner at a time and the system is allowed to relax for 100
time steps between each agent conversion. When only one non-aligner is being added at a
time it takes much less time for the system to adjust accordingly and less than 100 time
steps are necessary for the system to reach steady state. When the system reaches f = 1
the same process is repeated in reverse, converting one non-aligner to aligner at a time,
allowing 100 time steps for the system to equilibrate between each step. This results in a
slight hysteresis, Fig. 2.3, with a lower order when non-aligners are being removed from the
system rather than added.

Figure 2.3: The order transition for the system when non-aligners are gradually added and
then removed, resulting in a slight hysteresis.

Percolation driven transition

As information flow is crucial for the system to reach a consensus direction, a posible cause
for the transition is the connectivity or percolation of aligning agents accross the system.
Fig. 2.5 (b) shows snap shots of typical swarms in the ordered (top) and disordered (bottom)
states. It is clearly visible that in the ordered state all of the directions of agents, shown
as black arrows, are aligned and there is a high amount of connectivity between aligning
agents (blue) within the swarm, shown as black connecting lines. In the disordered state
the agent velocities are uncorrelated and there is very little connectivity of the non-cheaters
within the swarm. How much connectivity is required for a system to swarm?

To understand if connectivity of the particles is the underlying mechanism that controls
the order-disorder transition, we compare our system to standard models of percolation,
including site percolation and m = 3 bootstrap percolation. Site percolation is a measure of
the probability of randomly selecting an aligning agent that is part of the largest connected
cluster in the system. Typically this should be the probability of any aligner being in a
spanning cluster, but to avoid edge effects of our finite swarms we removed this restriction
with the reasoning that if there is a spanning cluster it would be the largest cluster.
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The probability that an aligning agent belongs to the largest site percolated network
is shown in Fig. 2.5(c)(green-dashed line) as a function of the non-aligner fraction. This
transition occurs at f ≈ 1/2, which is near the transition value for site percolation in
an infinite triangular lattice. Bootstrap percolation is similar to site percolation but with
the added requirement that not only must a randomly selected aligning agent be part of
the largest connected cluster, but to be considered part of a connected cluster it must
have m aligning agent neighbors as well. Bootstrap percolation with m = 3 is shown in
Fig. 2.5(c)(cyan) as well, and the transition occurs at f ≈ 0.4 which is also the transition
value for m = 3 bootstrap in an infinite triangular lattice. Comparing these two predicted
behaviors, site and m = 3 bootstrap percolation, with that of the order-disorder phase
transition our aligner and non-aligner mixed system (Fig. 2.5(c) (blue-solid)) over the
range of non-aligner fractions implied that the level of connectivity for the aligners is much
higher. We then counted the average number of like neighbors that each aligner has (red
in Fig. 2.5(c)) and found that on average in an ordered system each aligning agent has at
least four aligning neighbors.

The shape and position of the transitions for both site and m = 3 bootstrap percolation
do not match the shape of the order transition. Additionally, the order transition depends
on other parameters of the system such as speed and spacing which do not effect the
percolation transitions, which depend purely on the relative positions of agents within the
system, prompting us to examine other posible driving mechanisms for the order to disorder
transition in swarms with non-aligning agents.

(a) (b)

Figure 2.4: (a) With values of f below the order transition the particles all travel in the
same direction (black arrow heads) and aligning agents show a high degree of connectivity
(connecting lines shown in the image on the right) across the system (top). When the
cheater fraction is larger than the transition value the system does not exhibit a high
degree of connectivity and the particles all move in different directions (bottom). (b) The
order transition occurs at an f value lower than that required for site or m=3 bootstrap
percolation to stop. The average number of like neighbors that each non-cheater has in the
ordered state is four or higher.

Mean field approximation of the phase transition

Intuitively, increasing the fraction of non-aligners, f , while keeping the swarm together as
a single unit, decreases net alignment with different parts of the swarm trying to go in
different directions which results in a disordered stationary state. With cohesive strength
being fixed at a high value, the non-aligner carrying capacity, f∗, then depends sensitively
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on the ratio, dv/dr, where dv ∼ R is the vision radius or agent-spacing and dr is the reaction
distance. Fig. 2.5(D) shows the value of f∗ where the system transitions from an ordered
to a disordered state (blue) increasing with the ratio dv/dr.

To identify the cause for this behavior, we looked at the average magnitude of the
alignment interaction, α〈|~dA|〉, over all agents in the swarm, and the average magnitude of
the cohesive interaction, ε〈|~dLJ |〉. As the non-aligner fraction f increases, we found that the
average magnitude of the alignment interaction, α〈|~dA|〉 decreases as the non-aligners do not
contribute to alignment and that the transition occurs at a value of f ∼ f∗ when α〈|~dA|〉,
becomes less than ε〈|~dLJ |〉. Fig. 2.5(D) shows the value of f where the measured value of
〈|~dA|〉 in the simulation becomes less than 〈|~dLJ |〉 (green) and we see that it compares well
with the measured value f∗ for the order disorder transition. Comparing the alignment
interaction and cohesive forces as defined in the equations of motion allows us to derive a
simple analytic approximation for the value of f∗ with no adjustable parameters

f∗ ∼ 1− C × ε

α

dr
dv

(2.6)

Here, C is a constant set by the form of the cohesive interaction as well as the average
number of neighbors per agent (See section ’Analytic approximation for the ordered to
disordered state of the system’ below for derivation). The agreement between our analytical
estimate and the simulation values is shown by the red curve in Fig. 2.5(D).

The fact that f∗ changes from about 10% to about 90% in just over a decade in
the parameter dv/dr is of significance. Higher values of dv/dr correspond to situations
where agents are spaced much further than they move before updating directions, resulting
in agents being able to quickly correct for deviations from their perfect swarming
formation. Thus a potential mechanism for swarms to accommodate more non-aligners or
malfunctioning agents is to increase dv/dr, which can be accomplished either by increasing
their separation (increases dv) or by moving slower and/or processing information more
quickly (decreases dr). The other mechanism to potentially increase the non-aligner carrying
capacity f∗, is by reducing the cohesiveness ε/α.
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Figure 2.5: (a) Order vs non-aligner fraction of swarms with varying system sizes, ε = 100.
There is a clear transition from an ordered state with O ≈ 1 to a disordered state with
low O at non-aligner fractions above a critical value, f∗. (b) Simulation snapshot with a
value of f below the critical value, the agents (aligners shown in blue and non-aligners in
red) all travel in the same direction (black arrow heads). (c) When the non-aligner fraction
is larger than the critical value, the agents try to move in different directions, resulting
in a net zero polarization. (d) f∗ for the order-disorder transition (blue) as a function
of dv/dr compared to the non-aligner fraction at which the measured average cohesion
becomes greater than that of the average alignment (green). The red curve is the result of
our analytical approximation comparing average alignment and cohesiveness.

Tuning cohesiveness between agents allows for enhanced swarming.

Reducing the cohesiveness results in a situation where the disorder is no longer quenched
and the agents are able to rearrange themselves within the swarm or allow the swarm to
fracture. To study these cases, the system is initialized with a high ε = 1 in the locked-in
state and a high value of f > f∗ so that the system is in a static disordered state by
default. After a transient time period allowing the system to reach a steady state, ε is
reduced, allowing for potential rearrangements and fracture. When ε is reduced, we found
that the system fragments into smaller clusters which can individually be ordered swarming
clusters or disordered static clusters. Fig. 2.6(a) shows the weighted average of the steady
state order parameter O of the fragmented clusters of the system for a fixed non-aligner
fraction f = 0.8 versus the relative strength of the LJ interaction, ε, for a system size of
N = 100. A modest reduction in ε appears to have a dramatic effect. When ε = 10−1.0
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it appears that the polarization in the swarm is greatly amplified where swarming was
completely suppressed in the quenched configuration case (ε ∼ 1). Thus, the previously
immobile single cluster has now broken up into smaller clusters, many of which are mobile.
As ε is decreased further, the polarization begins to decay slightly suggesting that the
cohesiveness has become so weak that some of the clusters begin to fracture into individual
agents and thus are no longer part of ordered clusters. This suggests that there is some
optimal regime of ε for collective motion in the presence of non-aligners.

We next probed the dynamics associated with the cluster reorganization. Fig. 2.6(A
inset) shows the percent change in the fraction of aligners (blue) and non-aligners (green)
which are part of moving clusters as the simulation time progresses. The mobility fraction
of non-aligners steadily decreases while the mobility fraction of aligners steadily increases.
This suggests a sorting mechanism whereby non-aligners are being left behind allowing for
clusters with more aligners to become ordered and move collectively. This can be visualized
in Fig. 2.6 (B and C) which illustrates how the system starts out as a single disordered
group and then breaks apart into smaller ordered clusters with mixtures of non-aligners
and aligners, as well as disordered clusters consisting of mostly non-aligners.

To examine the relative contribution of rearrangements within single clusters to the
overall sorting, we measured the probability distribution of the angle between the direction
of travel of the non-aligners and the cluster average, as well as the same probability
distribution for aligners. We then calculated the difference in these two probability
distributions (Fig. 2.6(D)). We observe that aligners contribute predominantly to angles
close to zero (purple bar) within the spread due to noise (red shaded region), while non-
aligners are more likely to travel at angles around π/2 (blue bars) with respect to the cluster
average. This implies that non-aligners will gradually move towards the sides and backs
of the clusters before getting left behind. By sorting out non-aligners, the over all average
alignment interaction strength in the cluster increases due to the higher fraction of aligners
present, and the smaller cluster is able to swarm.

We now consider the full range of behaviors exhibited by our system as the parameters,
including cohesion and non-aligner fraction, are varied. Fig. 2.7 (A) shows a phase diagram
of the system in the non-aligner fraction/cohesion (f, ε) plane where the colors indicate the
value of the order parameter O. We see that if the non-aligner fraction exceeds a critical
value f∗(ε) predicted by equation (2.6) (solid white line), the system is in a disordered,
static state - denoted “St”. Here, the cohesive forces dominate over the alignment, leading
to the static state with no net order, due to the frustration of agents attempting to travel in
differing directions exceeding a value which can be resolved by aligning to reach a consensus
direction. Below the line, we see that the system is able to achieve order. There are,
however, two very different behaviors within this region. For low values of f , the system
is stable and achieves a high degree of polarization (O ∼ 1) as a single cohesive swarm,
relieving frustration by aligning to reach a consensus direction. This is clearly shown by the
swarming region labelled “Sw” in Fig. 2.7(B) where the colors now indicate the probability
that the system fractures into two or more clusters. Now, as the non-aligner fraction is
increased, we enter the sorting regime (“So”) that we examined earlier in this section,
where the system begins to fracture into smaller clusters, leaving behind non-aligner rich
clusters, allowing aligner rich clusters to swarm and thereby increasing the net polarization.
It is of interest to note here that the transition between the swarming and sorting phases
roughly occurs at a constant value of the non-aligner fraction, f c equal to the critical non-
aligner fraction, f∗, when the alignment and cohesion constants become equal, ε = 1 (in
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units of α), which is shown by the dashed white line, suggesting that at non-aligner fractions
above f c frustration within the system is relieved by fracture as well as alignment. The
existence of these three regimes and their locations relative to the predicted transition lines
turn out to be completely general and work over the range values of dv/dr feasible in our
simulations with no adjustable parameters (see Additional results and discussion - Phase
diagrams section below).

Time(x103)

%
 C

ha
ng

e 
in

 f m

Non-ali.
Normal

O
rd

er

A
B

t = 0

C

t = 20x103

log(ε)

Δθs

D

Pr
ob

ab
ilit

y 
di

ffe
re

nc
e

Δθs

Figure 2.6: (A) The weighted average steady state order of all clusters against ε, for a fixed
value of non-aligner fraction, f = 0.8 and system size of N = 100. (A inset) Plot of the
percent change in mobility fraction for aligners and non-aligners against time after the initial
transient phase with fixed ε = 10−1 and f = 0.8. (B) At values of non-aligner fractions near
the transition the system sorts from one single swarm without any order, to (C) smaller
clusters with ordered clusters and disordered clusters. Separation shown between clusters
in (C) is chosen for convenience and is much smaller than the actual separations by the
end of the simulation (clusters are shown to scale but their relative positions are not). (D)
Difference in the probability distribution of the angle between the direction of travel of non-
aligners from the average cluster direction and the direction of aligners from the average
cluster direction. Red shaded region is the angles which are within the range of the noise
of the system.
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Self-organized sorting.
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Figure 2.7: (A) The order parameter of the system with dv/dr = 100 plotted by color against
ε and f . (B) The probability of the system fracturing into two or more clusters plotted
against ε and f . The three phases, swarming (Sw), sorting (So), and static (St) are labeled
on the phase diagram, with the predicted ordering transition (from equation (2.6)) as a
solid white line and the dashed white line corresponding to the critical non-aligner fraction
at ε = 1. (C) The non-aligner fraction within small clusters which are ordered in steady
state vs. the initial non-aligner fraction f , with N = 100, and ε = 10−0.5, 10−1.0, 10−1.5, and
10−2.0, corresponding to the blue, green, red, and black curves respectively. The dashed
green line shows the value of f∗ = 0.5 with dv/dr = 100. The purple curve corresponds
to f∗ = 0.75, purple horizontal dashed line, with dv/dr = 200, and ε = 10−1.0. The
yellow curve corresponds to f∗ = 0.3, yellow horizontal dashed line, with dv/dr = 67, and
ε = 10−1.0. The light blue line shows the non-aligner fraction in the system if it were unable
to fracture. (C inset) The fraction of the system that is in ordered clusters for N = 500. (D)
The spread of non-aligner fractions within the sorted swarming clusters for several different
systems sizes. The shaded area shown for each system size represents the average ± one
standard deviation, for final cluster sizes in bins of size 10. Green dashed line as in (C).

Starting with a cluster with a high non-aligner fraction, we showed that, for low enough
cohesive energies, the swarm dynamics spontaneously cause the re-organization and break-
up of the cluster. What, then, is the non-aligner fraction of the sub-clusters that are
now mobile and able to swarm? To answer this question, we looked more closely at the
fragmented clusters and measured the average non-aligner fraction of all swarming clusters
which have O > 0.9. Fig. 2.7 (C) shows the final fraction of non-aligners averaged over
all swarming sub-clusters as a function of the initial non-aligner fraction in the system, for
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three different values of f c of ∼ 0.3, 0.52,and, 0.75, which is set by changing the value of
dv/dr according to Fig. 2.5(D). For low values of the initial non-aligner fraction, f , the final
non-aligner fraction appears to follow linearly with a slope of unity, implying that little
sorting or fracturing occurs for low non-aligner fractions. This is as expected, since for
non-aligner fractions below the transition for a single crystallized swarm, at f c, are within
the “Sw” region of the phase diagram in Fig. 2.7(A, B), and no fracturing is necessary to
relieve frustrations within the system.

Then, as the initial non-aligner fraction continues to increase and approach f ≈ f c, we
enter a region where the final non-aligner fraction seems to level off. In this regime, the
value of f is high enough that, if the cohesiveness, ε, were very high (> 1), the system
would be in a frustrated state with no overall alignment and different agents trying to go
in different directions but being held together. But since the cohesiveness is actually low,
the frustration can be relieved by the cluster fragmenting into smaller pieces that can have
a net alignment. The same logic holds for resulting smaller clusters that still have too high
of a non-aligner fraction f - and they will continue to fragment. If a resulting cluster has
a non-aligner fraction less than ∼ f c, it is within the “Sw” region of the phase diagram
in Fig. 2.7(A, B), so it can move collectively by reaching a consensus direction to relieve
frustrations without fragmenting further. Thus the aligners have effectively self-organized
into small clusters with an average non-aligner fraction close to the critical value f c. This
picture is confirmed by Fig. 2.7(C inset) which shows the fraction of the system which
is contained in ordered moving clusters. For low initial non-aligner fractions, almost the
entire cluster is mobile, while beyond the critical non-aligner fraction, the mobility fraction
decays linearly as predicted by the simple picture where non-aligners in excess of the critical
fraction f c are simply left behind.

To examine how robust our results are, and, in particular, if they are sensitive to the
initial system size, we fix ε and the non-aligner fraction at ε = 10−1.0, and f = 0.8,
and examined the final swarming clusters for a range of initial system sizes. We also
measured the spread of non-aligner fractions within final clusters of different sizes, again for
a few systems sizes. Fig. 2.7(D) shows the average ± standard-deviation of the non-aligner
fraction over the different final cluster sizes. We can see that both the average non-aligner
fraction and its variance within the final clusters are fairly independent of initial system
size.

One can now imagine a generic swarm where the fraction of non-aligners (or
defective/diseased agents) increases over time. This could be due to the spreading of a
disease among organisms or the breakdown/malfunctioning over time of individual robotic
agents, or simply the tendency of entropy to increase. As time goes on, the system will reach
a state where the fraction of non-aligners exceeds the critical fraction, f c, thus entering the
sorting regime, if the cohesive forces are in the right regime. Our results indicate that the
system can then shed almost the entire excess non-aligner population (above the critical
threshold) and revert to a fraction close to but just below f c. Then as the system evolves
again over time the non-aligner fraction increases past the threshold and the process begins
again. Thus, dynamical sorting can compete against natural processes that drive increases
in the non-aligner fraction and provide a mechanism for the system to reach a dynamic
equilibrium, regulating its composition so that it sits at the edge of criticality in behavior;
reminiscent of a self-organized critical system.
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Swarms with a distribution of alignment behaviors.

So far, we have considered behavioral variability to be binary in character with agents being
either aligning or non-aligning (α = 1, 0). It is, however, quite reasonable to expect that
many naturally occurring swarms might display a spectrum of behaviors that corresponds
to natural abilities differing from individual to individual. We showed before that the
phase behavior of the swarm is controlled by the mean level of alignment as compared
to cohesion. Here we consider what happens if, instead of changing the mean level of
alignment accomplished by changing the fraction of non-aligners in a binary system, we
keep the mean value fixed and change the spread in a system with continuous values of the
alignment interaction strength α. To implement this, we selected α for each agent from a
Gaussian distribution with mean, µ, and standard deviation, σ. We consider two types of
systems, one with a high value of µ that would result in an ordered swarming system in the
σ = 0 case and one with a low value of µ which would result in a static system with σ = 0.
Keeping these two values of µ fixed, we vary the spread σ.

Fig. 2.8 (A) shows both the low µ (blue) and high µ (red) cases and we can see that as
σ increases there exists a critical threshold, σc, beyond which the system will be likely to
fracture (solid lines show probability of fracture), however the reason for fracture is different
in both cases. The average order parameter (dashed line) for the high µ case starts out high
and as σ increases and fracture begins to occur, the order decreases slightly because some
individuals now have a low enough α that they behave like non-aligners and break off of the
main body of swarmers to form static clusters. In the case where µ is low the system has
very low order at low σ and as the spread of α values increases the system begins to fracture
and the average order increases. In this case some agents are reaching high enough α values
to form an ordered state and will create clusters of ordered moving agents which break off
from or fragment the static main body of agents. Fig. 2.8(B) shows a snapshot from the
simulation that started off as one swarming cluster. Here σ is high enough to allow fracture
resulting in the sorting out of a smaller, static cluster of agents with a predominantly low
value of α. Thus the increase in the spread of α has similar consequences whether one starts
with a high or low average α. There is a self-organized separation of the population leading
to clusters of similar ”phenotype” providing a mechanism for a natural limitation to the
extent of variability in any swarming population.

Evolving populations.

We now examine the idea that dynamical sorting could be a mechanism for evolving
swarms to robustly sustain a certain composition over longer timescales. For swarms,
over sufficiently long timescales, one could imagine that the non-aligner population fraction
increases due to some fitness advantage that the non-aligners derive by not participating
in orientational information processing. For example, in [30], an agents ability to decide
on a preferred travel direction due to social interactions or migratory tendency is assumed
to come at some cost due to energy expenditure or reduced predator awareness during
directional information processing. In this case the non-aligners would be cheaters in the
evolutionary sense which can lead to some interesting dynamics. To model the evolutionary
dynamics we considered a model replicator system [59] where agents replicate themselves
at a rate that is determined by their fitness, with the fitter species (cheater or non-cheater)
being able to reproduce more quickly and increasing its proportion in the population over
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time. The assigned fitness of an individual agent depends on whether an agent is a cheater
and whether it is in a swarming cluster. We take the fitness of an agent i at any point in
time to be given by,

Fi = φO ×Ocl + φc × σi (2.7)

Here, Ocl is the polarization of the cluster that agent i belongs to, φO represents
the fitness advantage that agents gain by being in ordered clusters and φc is the fitness
advantage gained by cheating agents (say by avoiding energy expenditures associated
with orientational processing or signaling) and σi is equated to 0 for non-cheaters and
1 for cheaters. These fitness advantages are similar qualitatively to those postulated to
study evolution in migratory populations where there were costs associated with obtaining
directional cues from the environment and an overall fitness associated with migrating
close to the desired direction [30, 60, 61]. We start with a system of N = 500 agents with
ε = 10−0.5 with periodic boundary conditions at different total cheater fractions. For each
simulation, the system is allowed to evolve until a steady state is reached and the relative
fitness of all cheaters, Frel, given by

Frel =
〈Fch〉t

〈Fnc〉t + 〈Fch〉t
(2.8)

is measured. Here 〈Fch/nc〉t is the time averaged fitness of all cheaters/non-cheaters
given by Eq 2.7. As an example, fig. 2.8(A) shows how the relative fitness of cheaters Frel
varies with cheater fraction for the ratio of fitness advantage constants Φ = φc/φO = 0.2.
In our evolutionary dynamics, we take the relative fitness of all cheaters, Frel, to be the
expected fraction of cheaters in the subsequent generation. The red dashed line in fig. 2.8(A)
shows a typical evolutionary trajectory. Here, a population that starts with a cheater
fraction f = 0.7 has Frel ∼ 0.39 which results in a cheater fraction f ∼ 0.39 in the
subsequent generation which has Frel ∼ 0.55 and so on. A fixed point at which the initial
cheater fraction is equal to that in the next generation is then given by the intersection
between the curve and the diagonal (black dot in fig. 2.8(A)). An evolutionarily stable fixed
point is obtained when a fixed point is an attractor of all evolutionary trajectories, as is
the case here. Fig. 2.8(B) shows how the relative fitness of cheaters Frel varies with cheater
fraction for several different values of the ratio of fitness advantage constants Φ. We observe
a unique stable fixed point for each value of Φ, that increases with Φ, suggesting that in
any system where both cheating and swarming are advantageous, competing pressures can
result in stable populations of cheaters that are dynamically regulated by self-organized
sorting.
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Figure 2.8: (A) Probability of fracture (solid), and order parameter (dashed) plotted against
σ for a high value of µ = 2.5(blue) and a low value of µ = 0.5(red). (B) Snapshot from a
simulation with µ = 2.5, and σ = 1.2 showing fragments of a larger cluster that has sorted
itself into an ordered cluster with a higher mean α and static, disordered cluster with α ∼ 0
for most agents. Arrowheads signify direction of motion, and the color bar shows the value
of α for each individual agent. (C) The relative fitness of all cheaters, Frel, as a function
of cheater fraction, f for Φ = 0.2. The point where the dashed diagonal line crosses the
fitness curve is a fixed point where the cheater fraction and fitness of the system become
equal representing an equilibrium fixed point for the evolutionary dynamics. Red dashed
line shows an example trajectory an evolving system would follow starting at f = 0.7 and
approaching the fixed point after several generations. (D) The relative fitness of all cheaters,
Frel, in the system as a function of cheater fraction for different values of the ratio of fitness
advantage constants Φ = φc/φO = 0, 0.2, 0.4, 0.6, 0.8, and 1 corresponding to the blue,
green, red, cyan, purple and yellow lines respectively. The points were the dashed diagonal
line crosses the fitness curves are evolutionary fixed points. For this system N = 500,
dv/dr = 100, and ε = 10−0.5.

2.1.3 Methods

Individual’s behavior

In this section we discuss the details of the behavior of each individual. Particles were
initialized with random positions and directions within a circle of radius dv, or the vision
radius of particles. Then directions are updated according to Eq. 2.1.

~xi(t+ ∆t) = ~xi(t) + drd̂i∆t (2.9)

The alignment and cohesiveness interactions are given in Eq. 2.10 and Eq. 2.11
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α 1 r 0.7887 N 20 - 600

R 1 dr 0.01 f 0 - 1

∆t 1 η 0 - 1 ε 10−3 − 100

Table 2.1: Parameters

respectively where n.n. signifies all neighbors within a vision radius of dv = 1, including itself
for the alignment interaction, but not including itself for the Lennard-Jones interaction.

~dA =
n.n.∑

j

~vj(t) (2.10)

~dLJ = −12
n.n.∑

j

(R13

s13ij
− R7

s7ij

)
ŝij (2.11)

We set α = 1 to set the scale for interaction strengths so that we can vary ε in units
of α. We also set R = 0.7887, which allows for each particle to see on average their first
nearest neighbors when the system has reached equilibrium. ŝij is a unit vector pointing
between the ith and jth particles and sij is the distance separating them. New positions are
then calculated for each particle according to Eq. 2.9, where dr is the reaction distance of
each particle and held constant across the swarm at dr = 0.01, i.e. over damped dynamics.
In real systems the value of dr can be determined from the speed of agents motion and
the reaction time of the agents, vtr, and therefore can be varied for specific systems by
varying either of these quantities as well. The simulation time step, which for this model is
equivalent to the reaction time, is set to ∆t = 1, though varying the simulation time step
while holding the reaction time constant does not effect the results presented. Individuals
also have some physical limitations in the form of an angular noise which is added to the
calculated direction of travel. This noise is set to η = 0.2 and a random angle is selected
from [−η/2, η/2] and added to the new direction. Simulations were run for 105 time steps,
and data was averaged over 200 samples.

Additional results and discussion

Initial density and simulation timestep dependence.

Varying the initial number of agents per unit area (d−2v ) has very little effect on the resulting
phase transitions over a wide range as shown in Fig. 2.9(a) where ρ0 is the agent initial
density. The simulation time step also has very little effect on the system dynamics as can
be seen in Fig. 2.9(b). Note that this time step (∆t is the simulation time step and not the
processing time for interactions (δt).
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Figure 2.9: The order transition for the system with non-aligner fraction for varying initial
system density (a), and simulation time step (b).

Sorting

To examine the amount of rearrangement that is taking place within the swarm when the
cohesiveness is reduced we measured the amount of sorting that is taking place according
to Eq. 2.12. This is the fraction of neighbor pairs within the whole system which are of
the same type (like-like neighbor pairs) at time t, normalized by the fraction of like-like
neighbor pairs at the initial time. This allows us to look at how the system is rearranging
to put particles of the same type next to each other as the simulation evolves through time.

S(t) =
n.n.same/n.n.(t)

(n.n.same/n.n.)0
(2.12)
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Figure 2.10: The system rearranges with time causing agents to have more neighbors of the
same type as themselves resulting in an increase in the sorting measurement.
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Analytic approximation for the ordered or disordered state of the system

We found that the average magnitude of the alignment interaction on any agent chosen at
random, must be greater than the average magnitude of the Lennard-Jones interaction in
order for the system to be ordered, satisfying the inequality in Eq. 2.13.

〈A〉i > 〈LJ〉i (2.13)

The average magnitude of the alignment interaction is the chance of an agent, chosen
at random, being a aligner, (1 − f), multiplied by the number of agents it is interacting
with, n, and the alignment interaction strength, α, as seen in the left hand side of Eq. 2.14.
The average magnitude of the Lennard-Jones interaction is due to the fluctuations of each
agent (regardless of whether it is a non-aligner or not) around the bottom of the potential
well that it is in. In any time step an agent can move a distance up to dr away from the
bottom of the well, resulting in a Lennard-Jones force (of the form given in Eq. 2.3) at a
separation of R−dr on average from each of it’s n neighbors, as seen in the right hand side
of Eq. 2.14. However, due to the fact that the n Lennard-Jones forces acting on an agent
from each neighbor will point in effectively random directions, and the average magnitude of
the Lennard-Jones force on the agent will be equivalent to the root mean squared distance
travelled by a classic 2D random walk with n steps, resulting in the factor of

√
n.

(1− f)nα >
√
nε× 12

[ R13

(R− dr)13
− R7

(R− dr)7
]

(2.14)

(1− f)nα >
√
nε× 12

[ 1

(1− dr/R)13
− 1

(1− dr/R)7

]

(1−f)nα >
√
nε×12

[(
1+

12

1!
dr/R+

12× 13

2!
(dr/R)2+...

)
−
(

1+
6

1!
dr/R+

6× 7

2!
(dr/R)2+...

)]

Since dr/R is small we can drop higher-order terms.

α(1− f)

ε
>

12√
n

[6dr/R]

Ignoring defects and considering the mostly hexagonal lattice of agents in our system,
we take the coordination number to be n = 6 and find

α(1− f)

ε
> 12

√
6
dr
R

From this result we have a simple linear relationship between interaction energy scales
(α, ε) and physical system parameters (dr, R(dv)), which we can use the predict the value
of f∗,

f∗ = 1− 12
√

6

0.8

ε

α

dr
dv

(2.15)

where the average magnitude of the alignment interaction and the average magnitude
of the Lennard-Jones interaction within the system become equal and the order disorder
transition occurs.
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Phase diagrams

The analytic prediction of the phases of the system holds for a wide range of parameters
feasible in our simulations. Fig. 2.10 shows the three phases (swarming “Sw”, static “St”,
and sorting “So”) shown in the (f ,ε) plane for three values of dv/dr = 67, 100, and 200. The
predicted transition lines are derived from Eq. 2.15 (solid white line), and the calculation
of f c, the critical non-aligner fraction, f∗, when ε = 1 (dashed white line), and are accurate
over a wide range of dv/dr as shown.
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Figure 2.11: The phase diagram for the system with the analytically derived phase
boundaries for three values of dv/dr = 67, 100, and 200.

Determining Interaction Strengths from Separation Measurements

The value of ε can be inferred by looking at how well crystalized and solid the swarm is
and hence how regular the spacing between agents is. Therefore in an ordered swarm, a
lower value of ε will result in a larger variance in agent-agent separation. In the case where
ε is increased above the swarming threshold (see Fig. 3(a)) the dynamics of the swarm are
dominated by random agent motion around the potential minimum due to the active forces
exerted by agents and the relationship between ε and separation variance no longer holds.
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Fig. 2.12 shows the variation in separation plotted against ε for several values of dv/dr,
within the ordered regime, which can be directly measured in a given swarm and a clear
relationship between increasing ε and decreasing separation variance can be seen, allowing
for ε to be extracted from direct swarm measurements in natural systems.

ε

〈(
s-〈

s〉
)2 〉

 (x
10
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)

Figure 2.12: Variance of the separation between each agent and it’s neighbors plotted
against ε.

2.1.4 Discussion

Within a group of swarming or flocking animals there may exist intrinsic behavioral
heterogeneities that can effect the ability of the group to remain cohesive and move
collectively. Behavioral differences can arise from natural individual variations, diseases
or genetic mutations that occur randomly as the group of animals produces progeny.
In artificial systems, such as robotic drones, differences can manifest as malfunctioning
hardware or compromised software. In natural systems, therefore, it seems likely that
there could exist collective mechanisms that allow the whole group to carry a subgroup of
individuals that do not participate collective decision making (i.e non-aligners or cheaters).

We studied a system of swarming agents that display individual variations in their
alignment strength. For the binary case of mixtures of aligners and non-aligners, we found
that when the cohesion is strong, there is a critical fraction of non-aligners f∗ above which
collective motion of the whole group can no longer be achieved. We call this critical non-
aligner fraction, the maximum non-aligner carrying capacity. We showed that there is
a simple predictive relation between the maximum non-aligner carrying capacity and the
length and interaction strength scales that characterize the swarm. We showed that swarms
can increase their non-aligner carrying capacity f∗ by increasing the separation between
agents, moving slower and/or processing information more quickly. These simple robust
mechanisms could allow for a swarm or flock to adapt to increased non-aligner loads “on
the fly” and our results also suggest optimal designs of parameters for “non-aligner tolerant”
artificial swarms.

Alternatively, we found swarming could be enhanced in an unusual manner by lowering
the cohesive attraction between agents. We showed that, as cohesion is lowered, there exists
a regime where the clusters can actively sort out and leave behind the excess non-aligning
population. We find that the newly sorted clusters that emerge after segregating are capable
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of swarming and carry a fraction of non-aligners that is near a fixed critical non-aligner
carrying capacity that we are able to predict from measurable swarm parameters. Thus
the dynamics of the swarm naturally weeds out non-aligners above the critical capacity
and maintains the non-aligner fraction in the swarm close to this value, reminiscent of
a self-organized critical behavior. This result highlights a simple, robust and efficient
mechanism that allows heterogeneously mixed populations to naturally regulate their
composition and remain in a collective swarming state despite the natural tendency for
cheating/diseased/defective population fractions to increase.

It is to be noted that lowering the value of cohesiveness too much can also lead to
deleterious effects with the swarming clusters unable to hold themselves together. This
suggests that, if such a sorting and segregation mechanism is utilized in nature, the relative
magnitudes of cohesiveness and orientational alignment need to be tuned to lie within an
optimal range. It is also interesting to note that though we considered cheaters or defective
agents as having a negative effect on swarming, one could also consider situations where a
swarm needed to break up or segregate between two populations. Our results indicate that
a simple mechanism to achieve this would be for one group to simply become “non-aligners”
and allow the swarm dynamics to automatically segregate and expel them from the swarm.

It is to be noted that we were able to map out the entire phase space of behaviors in
these heterogeneous systems including swarming, static and sorting phases and relate them
to simple relations between the swarm parameters. Furthermore, these swarm parameters
can be directly observed or inferred from measurements of real swarms (see Supplementary
Information 4). Thus our results provide us with predictive power about real swarms
including their maximum non-aligner carrying capacity, their ability to sort and the critical
non-aligner fraction that sorting leads to. It is also intriguing in this context that if there
is a natural tendency for non-aligners to increase, we would expect to measure, in a real
swarm, a composition of non-aligners close to a critical fraction that we can predict based
on measurable swarm parameters.

We were also able to show that our notions of sorting extend to swarms with a continuous
distribution of individual alignment preferences. In fact, the existence of outliers, whether
they were non-aligners or “super-aligners” or both triggered the sorting process. This is
suggestive of a natural means of separating different types of behavior which could have
implications not only for limiting variability in populations but also more generally for the
division of labor in collectively moving systems.

Finally, we pursued the idea of competing cheating and sorting by considering the
evolutionary dynamics of a replicator system, where there was a fitness advantage associated
with being in a collectively moving swarm and an advantage for being a cheater. We
showed that the system has a globally stable evolutionary fixed point corresponding to a
particular fraction of cheaters that is set by relative fitness advantage of cheating and the
swarm parameters. It is interesting to note that evolutionary equilibria between successful
strategies can thus be tuned by changing the physical parameters of the swarm. Our work
therefore makes connections to studies of evolutionary dynamics in structured populations
and networks [62, 63] and specifically to work that shows that both network structure [64]
and its dynamics [65] can influence the success of cheating or defection. In the broadest
sense, our results suggests the idea that the spread of a non-aligner/defector/cheater
strategy within a population beyond a critical threshold can spontaneously trigger large-
scale re-organization of the collective that expels outliers and effectively limits the spread
of behavioral variability.
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2.2 Noise heterogeneity

Collective motion is a phenomenon that exists in nature across a wide range of length
scales from actin fibers within cells to bacteria [7], bird flocks [2], and crowds of people [15].
Artificial collective motion has more recently emerged in the form of active colloids, drone
swarms and simulations. The mechanism for propulsion and interaction between agents
varies widely from system to system, but there are common collective behaviors that are
carried over between systems. Natural systems such as birds, fish, bacteria, and cells often
show some polar order on length scales longer than that of the individual constituents,
which can also be a desireable feature in drone flocks, and has been recreated in synthetic
swarms of actin fiber active nematics, and colloidal systems. Other systems that can show
collective motion may not necessarily align into ordered flocks, such as fly swarms, and
isotropic active colloids. Several simple models exist that can simulate these collective
motion systems and have been used to shed light on many of the behaviors seen.

Pairwise interactions and noise are two key components of agent based models that lead
to many collective behaviors, including milling in fish schools, flocking birds, swarming
flies, and colloidal clustering. At sufficiently low noise and high density, most agent
based swarming models show a highly polarized flocking phase, and increasing noise drives
a transition into a disordered isotropic phase, the nature of this transition depends on
the details of noise implementation. Typical pairwise interactions include some form of
alignment interaction and a distance dependent attractive / repulsive or volume exluding
interaction, both of which can be either physical or cognitive. Physical interactions are
associated with collisions or adhesions between agents or reorientations driven by contact
between agents, such as cells or colloids bumping into eachother and forming adhesions.
Physical alignment interactions exist in rod shaped bacteria or active colloids which align
by pushing against eachother, while cognitive alignment occurs in flocks of birds, schools of
fish or crowds of people where agents have a preference to travel in the average direction
of their neighbors, and cognitive cohesive interactions occur between birds or fish which
adjust their orientation to maintain some desired spacing. From a modeling perspective,
cognitive interactions effect the well defined direction in which agents propel themselves
while physical interactions are treated separately from propulsion and affect the actual
motion of the agents.

In natural systems, the amount of noise, or rotational diffusivity, may vary from
individual to individual, as seen in bacteria with mutations, malfunctioning drones, and
manufacturing errors in colloids. In simulations, collective motion is generally studied in
a very controlled consistent environments with identical agents accross the system. What
happens to the collective behaviors of systems with mixtures of high and low noise agents,
and under what conditions can a system stay as a single cohesive unit? What are the effects
of physical vs. cognitive interactions on a systems ability to tolerate heterogeneity in noise
level?

To answer these questions we adapt popular swarming models from the literature to
examine finite sized clusters of swarming agents with noise heterogeneity, and combinations
of both physical and cognitive alignment and cohesive interactions. We find that in all
cases there exist four general phases of motion, a cohesive disordered cluster similar to a
crystal or liquid, a single flock of cohesive polarly aligned cluster similar to a flying crystal
or bird flock, and two fracturing states consisting either of a gas of individual agents, or
small polarly ordered clusters. Unsurprisingly, an increase in noise is associated with loss
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of polar order, while an increase in cohesive interaction strength results in a decrease in
cluster fracture. We also find that noise levels above the order disorder transition suppress
cluster fracture as it will be in stationary liquid- or solid-like states, with no polar order,
rather than lower noise where locally ordered domains form and pull apart the swarm even
in the presence of higher cohesive interaction strength.

With mixed populations we find that when alignment is driven by physical collisions,
the system is able to remain ordered with a higher fraction of noisy individuals at higher
cohesive interaction strengths, while the opposite is true for cognitive alignment interactions
where the cohesive and alignment interactions are more competitive than cooperative as in
the physical alignment model.

In this section we compare several swarming models and the effects of hetergeneous
populations with variable noise levels. We discuss the similar behaviors that are seen in
all models as well as some of the differences between model choices and the behaviors that
these differences highlight in natural systems. Providing strategies for model selection as
well as properties that hold across models.

2.2.1 Model

In order to understand the effects of heterogeneous populations, for several different models,
all agents are initialized as a single cohesive unit and they interact according to the following
general equations of motion:

~̇xi = ~Fi (2.16)

Where ~xi is the position of agent i with respect to a common origin and ~Fi are the forces
acting on it. The agent motion is overdamped in continuous two dimensional space which
is why the force is equated to velocity. The forces that act on each agent originate from the
self propulsion of the agent as well as any physical interactions as shown in eq. 2.17.

~Fi = v
~di

|~di|
+ k ~Pi (2.17)

Here, v is the strength of self propulsion compared to k, the strength of the physical
forces. ~di is the direction of self propulsion and ~Pi are any physical forces acting on the
agent by neighboring agents. The forms of ~di and ~Pi depend on the model specifics and are
presented below for each model studied. All models presented here utilize a Lennard-Jones
force as the cohesive interaction shown in eq. 2.3 for the pair of agents i and j.

~LJ ij = −12
(R12

s13ij
− R6

s7ij

) ~sij
|~sij |

(2.18)

Here, R is the equilibrium separation between agents and ~sij = ~xj − ~xi is a vector
connecting the centers of agent i and j. Agents are all initialized as a cohesive unit and
then allowed to move freely with no boundaries for ∼ 106 timesteps and the final state of
the system is then analyzed.

The group polarization of the system is taken as the weighted average of all clusters
(with greater than 1 agents) of the order parameter shown in eq. 2.19.
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O =
1

N

N∑

i=0

~̇ ix/|~̇ ix| (2.19)

Simulations are run for ten samples and the largest cluster size for each sample is
averaged (N ) to examine the amount of fracture occuring in the system, the average largest
cluster size is also normalized by the total system size. So the value of N will be 1 if the
system does not fracture and close to 0 for a system that fragments into individual agents.
The system can be classified into one of four phases: 1. A flock with high O and high N ,
2. Stationary swarm with low O and high N , 3. Fragmented flock with high O and low N ,
or 4. A gas with low O and low N . These four phases are illustrated in Fig. 2.13, (A, B,
C, and D) respectively.

1 2

3 4

Figure 2.13: The four phases the clusters can take are illustrated here. (A) Flocking phase
where all agents form one cohesive group traveling in the same direction. (B) Static swarm
where agents remain in one unfragmented group but are unable to reach an ordered state,
so the cluster overall stays stationary. (C) Fragmented flocks, where the system fractures
into smaller groups which remain ordered, and (D) where the entire system evaporates into
individual disordered clusters or individual agents.
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Physical collision models

Active Brownian Particles (ABP)

Active brownian particle models are mostly used to simulate colloidal particles or those
that interact through phsyical collisions while the direction of self propulsion undergoes
angular diffusion. Since the particles only interact through physical collisions, alignment
interactions are in the form of a torque or rotation towards the instantaneous direction of
travel, similar to what would happen when active rods collide with each other and push
against each other until they are reoriented to be aligned. This can result in a collective
flock if the particle density is sufficiently high.

To impliment this model the direction of self propulsion is equal to the instantaneous
velocity of the particle with angular diffusion as denoted by ~η. Noise is included as a random
angular adjustment from a Gaussian distribution with variance equal to η. This is the case
for both physical cohesive interaction and alignment, as would occur in colloids or bacteria.

~di = ~̇xi + ~η

Active Colloids (AC)

In a case where the alignment interaction is cognitive and agents process direction
information and reorient based what their neighbors are doing the self propulsion direction
comes from a standard Vicsek alignment interaction again with angular diffusion, as shown
below.

~̇di =

nbr∑

j

~dj + ~η

As with the active brownian particle model the physical interactions or ~P are due to a
cohesive interactions, in our case we used a Lennard-Jones potential shown in eq. 2.18. The
Lennard-Jones force acting on a particle acts from all neighboring particles and summed
up as shown below.

~Pi =
nbr∑

j

~LJ ij

Vicsek-like models

Normalized alignment (NA)

We also looked at a model where both the alignment and colision avoidance is a cognitive
process and contribute to the direction of self propulsion ~d. We still use a Lennard-Jones
interaction as the cohesive interaction as shown in eq. 2.3 but now all of the interactions
go into the propulsion direction and are normalized so agents always move at a constant
speed.

~di =
nbr∑

j

(α
~̇xj

|~̇xj |
+ ε ~LJ ij) + ~η′
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Alignment (AL)

We also examined a model where the alignment interaction is not normalized, so agents
with more neighbors, or neighbors that are more aligned with eachother, will more strongly
prefer a direction of travel equal to the average of the neighbors when compared to the
Lennard-Jones interaction and noise:

~di =

nbr∑

j

(α~̇xj + ε ~LJ ij) + ~η′

In this case the noise ~η′ is a randomly oriented vector with magnitude η′. Since the
agents now use some cognitive process to reorient in order to avoid collisions and maintain
a prefered distance to neighbors the physical interaction vector does not take effect in either
of these models (NA, or AL).

~Pi = ~0

2.2.2 Results

Homogeneous systems

Typically an increase in noise is associated with a transition from an ordered (flocking)
to a disordered (static) state, and we expect a decrease in cohesive interaction strength
to lead to system fracture. For all four models we see a flocking to static transition with
increasing noise for a wide range of cohesive interaction strengths. Fig. 2.14(A) shows the
noise driven transition for each model with a fixed reasonable cohesive interaction strength
of ε = 0.5, 0.5, 0.004, 0.004 for AL, NA, AC, and ABP respectively. In all four cases there is
a noise driven transition from a flocking to a static state with increasing noise. Fig. 2.14(B)
shows the critical noise value where the order parameter passes through 0.5 against the
cohesive interaction strength ε. If we look at how this noise driven transition depends on
the cohesive interaction strength we see that in the cognitive cohesive interaction models
(AL, and NA) when ε is sufficiently high the ordered state is unreachable for any amount
of noise, so there is effectively a transition from a flocking to a static state with increasing
cohesive interaction strength. For the AC model with physical collisions and cognitive
alignment the transition is almost completely independent of cohesiveness and entirely
driven by increasing noise, as seen by the horizontal red line in Fig. 2.14(B). In the ABP
model the alignment interaction is closely tied to the cohesive interaction, as it is due
to reorientation with the instantaneous velocity, which is in turn dependent on collisions
with other particles. For this model the noise driven transition is sensitive to the cohesive
interaction strength. The steep decrease in the critical noise value with increasing cohesive
strength at low cohesion is most likely due to the cluster sizes, as the system fragments
into extremely small 1, 2 or 3 agent clusters for low cohesive interaction strength. The
order of these small clusters can appear artificially high if the random motion leads to the
2 or 3 agents aligning with eachother, when the overall system is in more of a gaseous
disordered state as individual agents are disregarded when calculating average order. At
slightly higher cohesive interaction above ε = 10−3 the system can no longer fracture and
the critical noise value increases with increasing cohesive interaction as the two interactions
are closely linked for the ABP model. While for the other three models the cohesive and
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alignment interactions act more competitively that cooperatively, which leads to higher
order in general but a decreasing trend between critical noise and cohesion.

We can also look at the amount of fracture occuring in the system by calculating the
normalized average largest cluster size. Fig. 2.14(C) shows the average largest cluster
plotted against the cohesive interaction strength with fixed noise η = 1, 1, 3, 0.5 for AL,
NA, AC, and ABP respectively. For low cohesion the cluster fragments into small clusters
or individual agents, and with increasing cohesion the cluster transitions into a state where
it no longer fractures and the average largest cluster is the system size (N = 1). We define
the fracture transition as when at least 50% of the agents are in the largest cluster, which
is where this average largest cluster (N ) passes through 0.5. We can then look at how the
fracture transition depends on the amount of noise in the system. For the AL and NA
models with both cognitive alignment and cohesion the fracture transition is independent
of noise. In the AL model the fracture transition happens at ε = 2 × 10−1 which is also
associated with a sharp increase in the critical noise value seen in Fig. 2.14(B), which is
different than the NA model where the fracture transition at ε = 2 × 10−2 leads to a
decrease in the critical noise value. This implies that the smaller fractured clusters in the
AL model will have lower order than the unfractured system, while in the NA model the
small fractured clusters are able to flock with higher noise than the unfractured cluster.
This is due to the fact that in the AL model the alignment interaction is unnormalized so
agents with more neighbors will have an effectively larger alignment interaction which will
occur more in unfractured clusters than the smaller fractured ones. In the NA model the
alignment is normalized and so neighbor number does not effect the alignment interaction
and smaller clusters show higher critical noise values.

The ABP model also has a fracture transition that is independent of noise. While the
AC model shows a very strong dependence of fracture transition on noise. The high fracture
transition for noise values below 2.0 in the AC model are below the constant noise driven
transition seen in Fig. 2.14(B) AC model, meaning the system is more likely to fracture
while it is in the ordered state. This is due to locally ordered domains which form and then
pull apart from eachother.
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Figure 2.14: AL - Vicsek alignment where the alignment interaction is unnormalized. NA
- Standard Vicsek model with normalized alignment. AC - Active colloids which align by a
normalized Vicsek alignment and self propulsion is separate from physical collisions. ABP
- Active Brownian Particle model where propulsion is in the direction of instantaneous
velocity, which leads to alignment. (A) Order vs. noise plot for all four models with
ε = 0.5, 0.5, 0.004, 0.004 for AL, NA, AC, and ABP respectively. (B) The critical point
for the noise transition for various cohesive interaction strengths (ε). (C) The chance of
the cluster fracturing vs. the cohesive interaction strength (ε) with Noise = 1, 1, 3, 0.5 for
AL, NA, AC, and ABP respectively. (D) The critical transition point for the chohesive
interaction strength vs. the noise in the system.

Heterogeneous system

In order to study systems with noise heterogeneity we randomly select a subpopulation
of a fraction f of the system to be high noise while the remainder of the system is a low
noise population. The fraction f of high noise agents is the heterogeneity fraction. We
selected two values of noise η, one above and one below the order transition for the uniform
system and then assigned a fraction f of the agents the high η value and the remainder the
lower value of η. By increasing the fraction of high noise agents we see an effect similar
to increasing the noise of the uniform system. For all four models there are a couple
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consistencies between the phase diagrams in the cohesion (ε) / heterogeneity fraction (f)
parameter space. Fig. 2.15 (A, B, C, and D) show this phase diagram for AL, NA, AC, and
ABP respectively. The AL, and NA models are very similar as in the uniform system case
due to the similarity in the model details.

The increase in f leads to a transition between ordered flocks, either fragmented or
cohesive to a disordered state. In the AL model the f driven order transition below a
critical ε is independent of ε while in the fragmenting regime at low cohesion of the NA
model the f driven transition is sensitive to the cohesive interaction strength. This suggests
that fragmentation in the NA model leads to more ordered small clusters, while in the AL
model the ordered state drives fracture to occur for low f as ordered domains form with
differing polarization that pull apart from eachother. This does not occur in the AL model
because as an ordered state is reached with decreasing noise or f the alignment interaction
does not become strong enough to pull the system apart until there is sufficient order
within the system for a flocking state to be reached without fracture, due to the fact that
the alignment interaction is not normalized.

In all four models there is a static cohesive cluster phase for high ε and high f , and a
fragmented flock phase when f and ε are sufficiently low. For the AC and ABP models the
phase transitions become more complicated and fracture transition is not simply driven by
ε and order is not primarily dependent on f . In the cases where the propulsion and physical
interactions are separated (AC, and ABP) and the agents do not necessarily always travel
at constant velocity, the fracturing and order transitions become much more tied together.
For the AC model, both system fracture and the order to disorder transition occur with
increasing f , with only a small region of flocking for high cohesion and low f and a small
region of evaporation between the static swarm and fragmented flocking regimes. Conversely
the ABP model shows a similar transition but much more driven by an increase in cohesion
than an increase in heterogeneity fraction. The heterogeneity does however drive the system
from an ordered flocking phase to a static swarming phase at high cohesion. The amount
of heterogeneity sustainable by the flock increases with increasing cohesion because of the
close tie between cohesion and alignment in the ABP model.

By fixing the fraction and varying the value of noise in the high noise population we were
also able to determine if the phases that occur in the heterogeneous system are dependent
on the overall meanfield noise within the system or simply the fraction of high and low noise
agents. What we found was that for the AL and ABP models the phases are dependent on
the average noise level in the overall system, while for the NA and AC models simply the
fraction of high and low noise agents are important for driving transitions.



35

10-1 100 101 102

Cohesion(ε)

0.0

0.2

0.4

0.6

0.8

1.0

He
te

ro
ge

ne
ity

 fr
ac

tio
n

(A)

3

4

1

2

10-2 10-1 100 101

Cohesion(ε)

0.0

0.2

0.4

0.6

0.8

1.0

He
te

ro
ge

ne
ity

 fr
ac

tio
n

(B)

3

4

1

2

10-4 10-3 10-2

Cohesion(ε)

0.0

0.2

0.4

0.6

0.8

1.0

He
te

ro
ge

ne
ity

 fr
ac

tio
n

(C)

3

4

1

2

10-4 10-3 10-2

Cohesion(ε)

0.0

0.2

0.4

0.6

0.8

1.0

He
te

ro
ge

ne
ity

 fr
ac

tio
n

(D)

3

4

1

2

Figure 2.15: Phase diagrams for the fraction of high noise agents present against the
cohesion for each of the four models. The four phases are marked 1 - flocking, 2 - static,
3 - fragmented flocks, and 4 - gaseous. The solid line represents the order transition while
the dashed line shows the fracture transition. (A) Shows the AL model phase diagram. (B)
NA phase diagram. (C) AC phase diagram, and (D) ABP phase diagram.

2.2.3 Discussion

Swarming systems in nature can have behavioral heterogeneity, which can come in many
different forms including noise heterogeneity. We utilized four swarming models found
in the literature to examine the effects of noise heterogeneity on swarming systems. By
classifying the distance dependent cohesion interaction as cognitive or physical we can
separate the models into two categories. In the models where the cohesion is cognitive an
increase in cohesive interaction can drive a transition from an ordered into a disordered
state. While models where the physical cohesion insteractions are not normalized along
with the alignment interaction as a cognitive process, the increase in cohesive interaction
strength either does not effect the order transition which is only driven by noise, or an
increase in cohesive interaction can lead to more stable flocking, and an increase in the
order transition point with noise. Specifically the ABP model which is used to model active
brownian particles, such as colloids, the alignment mechanism is closely tied to the cohesive



36

interaction and leads to an increase in alignment with high cohesive interaction strength.
When noise heterogeneity is introduced, in the cognitive cohesive models (AL and NA)

the order to disorder transition is still driven by an increase in noise while fracture is driven
by a decrease in cohesive interaction strength. Interestingly with an unnormalized alignment
interaction the average noise of the system drives the transition between order and disorder
however typical Vicsek like swarming models have a normalized alignment interaction, in
this case the order to disorder transition with increasing heterogeneity fraction of the high
noise population is driven by the fraction of high noise particles.

Models where the cohesiveness and collisions are separate from the propulsion of the
agents (AC and ABP) the fracture and order transitions lie almost entirely on top of
eachother, when the alignment is from a Vicsek like interaction an increase in high noise
fraction on particles can drive the system from a fractured flocking phase into a cohesive
static state while in the ABP model where the alignment is driven by reorientation with
instantaneous velocity the fracture transition results from a decrease in cohesion, and once
fracture begins to occur the system forms small ordered clusters. While for high cohesion
where the system is unable to fracture, the increasing fraction of high noise agents drives
the system from a cohesive flock to a static phase.

Our results show that a Vicsek alignment interaction leads to a system where the order
to disorder transition with noise occurs at a lower noise value with increaseing cohesion
while an alignment interaction driven by particles reorienting with their own instantaneous
velocity results in the opposite, where an increase in cohesive interaction leads to an increase
in the amount of noise that can be sustained within the system. This holds for both
uniform and heterogeneous noise systems. When the cohesive interaction is grouped with
the alignment interaction and then normalized and particles move with constant velocity
an increase in cohesive interaction strength beyond a certain point leads to an order to
disorder transition. This also results in the fractured state existing as small flocks rather
than a gaseous state.



Chapter 3

Environmentally driven behavioral
variability

Collective motion systems may also display transient variations in behaviors between
individuals driven by local environment changes. A flock of birds can fly into a cloud
or an area of different air temperature, fish schools can swim into colder water or cells can
move across substrates with variable stiffness which effects the speed at which they move.
Individual agents may also experience different local environments when changing relative
position within a flock. For example, a cell moving between the interior or exterior of a
cluster, or a bird moving from the outside into the center of a flock. Cells in the core of
a cluster become completely surrounded by other cells and as a result will move slower
which effects the motion of the cluster as a whole. In this chapter we discuss the effects of
agent behavioral variability driven by environmental changes. In section 3.1 we discuss flock
motion as it moves from one environment to another, in section 3.2 we examine the effects
of agent behavior which is dependent on local density, such as when cells move between the
interior and exterior of a cluster, this work was done in collaboration with an experimental
research group.

3.1 Active matter clusters at interfaces

Swarming is a widespread biological phenomenon characterized by long range order
emerging in a system from local interactions between agents[13], such as a swarm of
flies[4, 5], or flock of birds[1]. Typically, a group of flocking individual organisms self-
organize to form a cohesive cluster with directed motility in a spontaneously chosen
consensus direction, for example a school of fish[43], cluster of cells during tumor growth,
tissue development and repair[44, 45], or herd of wildebeests[8]. These types of swarming
systems will often encounter a change in the environment, such as a flock of birds flying
into a cloud or area of lower air temperature, or a cluster of tumor cells invading different
tissue types[46]. Single cells have been shown to change their speed and direction when
crossing sharp interfaces [47]. Swarms can also use collective dynamics to find and localize
themselves to preferred niches or microenvironments. For example it has been observed
that golden shiners, Notemigonus crysoleucas, which prefer low lighting, will spend more
time in dark areas if they are part of a school due to cooperative sensing capabilities
of the group[48]. Bacteria have also been shown to take less time to reach a target in
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the presence of noisy chemical concentration gradients in the environment when they are
part of a cluster[49]. Also e. coli. clusters modify their own environment by secreting
chemicals to create an environmental change between the inside and outside of the cluster
in order to trap the e. coli. and maintain clustering behaviors[50]. It is therefore
important to understand the effects of spatial environmental changes on a cohesive swarming
group. In this paper we investigate finite swarming clusters moving through heterogeneous
environments where agents change their speeds by exerting different forces within each
environment. Such changes could arise from the agent’s sensing and response to a variety
of environmental factors such as temperature, substrate stiffness, or chemical composition.
So, how is the path that a swarm takes affected by the presence of a boundary between
different environments, and how does that depend on the properties of the cluster and the
environmental change?

Agent based models[16] and hydrodynamic continuum models[17] have been used with
great success to model natural collective systems[13, 12], and reveal phases and transitions
which emerge from the active, far from equilibrium nature of these systems[66, 26].
Agent based models are implemented by defining a set of interactions and update rules
for individuals and then letting the system evolve in time, such systems show phase
transitions driven by a wide variety of quantities including noise, density[11], environmental
disorder[18], behavioral heterogeneities[19, 20], and cohesive interaction details [21, 22].
They have also been used to study how swarms use cooperation to achieve specific goals
which are useful to biological systems, such as cooperative decision making[23], agent
segregation[24], and obstacle avoidance[25]. Hydrodynamic continuum models on the other
hand do not treat each agent as an individual, but instead study an average alignment and
density profile within the system[27]. Hydrodynamic swarming models have established
active matter as a type of nonequilibrium complex fluid[67, 58] and provided a unified
framework to study phase transitions[68, 27], instabilities[69] and pattern formation[70] in
active systems.

To answer the question of swarms crossing from one environment into another, we
utilize a simplified model for a swarm that assumes a polarized ordered state with velocities
correlated across the system[2] and finite system size, which allows us to examine the overall
behaviors of the swarm crossing an interface without necessitating details about individual
agent motion as in agent based models, or infinite system sizes as in hydrodynamic models.
We consider a swarm as a single cohesive disk-shaped unit, or cluster, each individual agent
within the swarm manifests as a force per unit area applied to the disk in the direction
of polarization. We then allow the cluster to cross an interface between two differing
environments where the portion of the swarm in each environment may apply stronger or
weaker forces to the cluster depending on the substrate, resulting in a torque and therefore a
curved trajectory. We can then map the trajectories of the cluster and measure the resulting
relationships between the cluster motion before and after crossing the interface. We find
four catagories for cluster behavior which depend on two important cluster parameters. The
two important parameters are cluster speed, i.e. low speed (overdamped) vs. high speed
(underdamped) clusters, and the ratio of the rotational damping to translational friction.
It is to be noted that though a prescribed amount of rotational damping arises from the
translational friction on the disk, the ratio is a parameter that could be smaller (or bigger)
depending on whether the cluster exerts torques to maintain (or resist) rotation.

Our model has predictive capabilities for determining the curved path of a cell cluster
at an interface between substrates. The results of which could be extended to suggest
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possible methods of patterning substrates to direct cell cluster motion. Other regimes of
our model provide insight into the behaviors of faster swarms, such as bird flocks and
fish schools, moving between heterogeneous environments. Finally, for swarms that exert
torques to maintain turning, we show that swarms can display circular paths and trapping
at interfaces.

3.1.1 The Model.
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Figure 3.1: View from above showing the two regions one above (light green) and below
(dark green) the interface between two different substrates shown in light and dark blue
respectively. Each region of the cluster propels itself along the polarization direction (n̂ at
an angle of Φ with the positive x-axis) with a force per unit area of f1 for the top region
and f2 for the bottom region. The cluster center is at a height Y above the interface (in
the diagram shown Y is negative because the center of the cluster is below the interface).

We use a mathematical model for a swarming cluster (Fig. 3.1) that treats it as a single
cohesive unit that moves on a two dimensional substrate by exerting a force per unit area in
some cluster polarization direction (at an angle Φ with respect to the positive x-axis). We
then examine a single cluster moving across an interface between two different substrates
where the area of the cluster contained on substrate 1 (shown in light green above the solid
horizontal line in Fig. 3.1) exerts a force per unit area of f1 and the portion on substrate
2 (shown by the dark green area in Fig. 3.1) exerts a force per unit area of f2. The force
applied on the cluster by every portion of the cluster is in the direction of polarization with
a magnitude that depends on the areas within each substrate and the substrate dependent
forces. The cluster also experiences a friction-like damping force resisting translational
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motion. Utilizing these details we can calculate a force on the cluster at any height Y
above a horizontal substrate interface (See appendix for details).

If the cluster is polarized at an angle which is not normal to the interface there is
an asymmetry of the forces on either side of the interface, which results in a torque on
the direction of polarization of the cluster which in turn rotates the direction of the force
on the cluster and can result in a curved trajectory or a bend in the path of the cluster
as it crosses the interface. This torque can be calculated from the force per unit area
of the cluster on each substrate along with the distance from the cluster center. From the
derived expressions for force and torque (see appendix) we can find the non-dimensionalized
equations of motion for the cluster shown in eqs.3.1-3.3, where v1 and v2 are the equilibrium
speeds of the cluster in the top and bottom substrates respectively, and C is the ratio of the
angular damping to the translational friction on the disk. In the non-dimensionalized forms
of the equations shown below the translational/frictional damping constant is incorporated
into the equilibrium speeds v1 and v2.

d2Φ

dT 2
=

4

3π

√
1− Y 2(1 + Y 2)(v2 − v1) cos(Φ)− CdΦ

dT
(3.1)

d2X

dT 2
=
(

1/2(v1 + v2) + 1/π(v1 − v2)
(

arcsin(Y ) + Y
√

1− Y 2
))

cos(Φ)− dX

dT
(3.2)

d2Y

dT 2
=
(

1/2(v1 + v2) + 1/π(v1 − v2)
(

arcsin(Y ) + Y
√

1− Y 2
))

sin(Φ)− dY

dT
(3.3)

We can then use finite difference methods to solve these equations of motion and
examine the system subjected to different substrates and initial conditions. In the model
the lengthscale is set by the cluster radius, and the timescale is set by the time taken for
the cluster to accelerate from rest to the fraction (1− 1/e) ∼ 0.63 of its equilibrium speed.
The active nature of the system allows the angular damping and translational friction to
not be equal, implying C 6= 1. Physically we can expect C > 1 for situations when swarms
exert torques to resist turning, and C < 1 for cases where swarms exert torques to maintain
or persist in turning as seen in systems like the persistent turning walker model for K.
Mugil fish[71]. How, then, does the incident angle and ratio of equilibrium speeds in each
substrate affect the transmitted angle of the swarm? What is the effect of exerted torques
which promote turning?
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3.1.2 Results.
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Figure 3.2: Representative trajectories of the system in each of the four limitting behaviors
of the system. In all four cases v1 = 2v2.

Fig. 3.2 shows the four characteristic trajectories for limits of the two important parameters:
low velocities (overdamped, friction dominated behaviors), high velocities (underdamped,
inertia dominated behaviors), and clusters with angular damping (C > 0). At the end
we consider a special limiting case where C = 0, relevant/applicable to agents that apply
torques to promote turning which exactly cancel out any angular damping, resulting in
unique cluster behaviors.
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Cluster trajectories.
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Figure 3.3: Example trajectories of the cluster, each color is a different incident angle where
the incoming cluster is shown by the straight lines entering from the left of each plot (x < 0)
directed towards the origin, and the clusters are in contact with the interface, which is at
y = 0 (maroon dashed line), when the trajectory is within the orange band. The substrate
on the bottom half (y < 0) has twice the equilibrium speed as the top substrate (v2 = 2v1) in
both cases. (a) For low speeds, where friction dominates cluster motion, the cluster curves
while it is in contact with the interface (orange band), and once it leaves the interface it has
a well defined straight path along some rotated polarization direction. (b) High velocities,
when inertia dominates, result in the cluster starting to curve when it comes into contact
with the interface and then large sweeping curves away from the interface as the momentum
of the cluster causes it to persist along the previous direction before gradually adjusting to
the new substrate.

The overall behaviors of the cluster in the presence of angular damping fall into two different
categories: refraction/reflection (Fig 3.3(a)), and large sweeping curves (Fig 3.3(b)). In
both cases the direction that the cluster actively propels itself in (n̂ at angle Φ) can only
accelerate due to torques experienced while it is in contact with the interface. This means
that while the cluster is on a single substrate the angular speed of n̂ can only decrease due
to rotational damping.

In the low velocity cases (v1 = 0.01 in Fig. 3.3(a)) friction dominates the cluster motion
and the cluster moves in a direction parallel to the active propulsion of the cluster (~v||n̂) at
nearly all times. In this friction dominated limit, the system can refract or reflect off of the
interface and only comes into contact with the interface once allowing us to measure the
incident and refracted angle and make predictions about the behaviors and interactions of
the cluster with an interface.

The high velocity case (v1 = 5 in Fig. 3.3(b)) is characterized by the fact that the
cluster’s translational inertia dominates the direction of cluster motion (~v), for an extended
period of time after crossing the interface. In this high velocity case, as the cluster leaves
the interface it will move in a direction which is not necessarily parallel to the direction of n̂,
resulting in the apparent angular acceleration away from the interface. However, after some
time the system will reach equilibrium where ~v||n̂ and the cluster will move in a straight
line in some well defined direction. In this case the momentum of the cluster carries it away
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from the interface even if the direction of n̂ is such that the cluster should be propelled
towards the interface meaning that the cluster can rotate and return to the interface a
finite number of times before reaching a stable straight trajectory within a single substrate.
This high velocity (inertia dominated) case could model the motion of a bird flock crossing
an interface between hotter and colder air where their momentum will continue to carry
the flock in one direction and the speed and trajectory will gradually stabilize as the flock
adjusts to the new environment, potentially traveling in a different direction from that with
which it entered.

Refraction and reflection at an interface.
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Figure 3.4: (a) The ratios of the sines of the incident (θ0) and refracted (θf ) angles plotted
against the ratios of the equilibrium speeds in each material, with v1 = 0.001. The vertical
lines show the value of velocity ratio where the refracted angle would become greater than
π/2, resulting in a reflection, for each initial angle shown in the legend. When the cluster is
reflected (right side of the vertical dashed lines) the horizontal line at sin θf/ sin θ0 = 1 shows
that the reflected angle is equal to the incident angle. (b) The angle that the trajectory
makes (with respect to the normal to the interface) on the faster (θfast) and slower (θslow)
substrates for a cluster moving from the slower substrate to the faster one shown in blue,
and the similar angles for a cluster moving from the faster to the slower substrate shown in
red dashed line. In both these cases v1 = 0.001, and v2 = 0.002, and C = 1.

In this section we examine the case where the velocity on each substrate is low enough that
friction dominates, and the cluster experiences rotational damping (C > 0). The cluster
in this regime is representative of slow moving natural swarming systems, including cell
clusters, and bacteria swarms. A cluster approaching an interface at an angle will begin to
turn when it comes into contact with the interface and when contact with the interface is
lost it will travel in a straight line in a new direction. We can then measure the resulting
angle and the incident angle (labeled θf and θ0 respectively in Fig. 3.2) and compare them
to the velocity ratio on the two substrates. To do this we plot the ratio of the sines of
the refracted and incident angles against the ratio of the equilibrium velocities on each
substrate. Fig. 3.4 (a) shows the relationship between these ratios for many initial angles
(see legend), along with a fit line to the numerical data for the refraction angle which leads
to the predicted reflections. Applying a similar fit to systems with different values of C leads
to the relationship shown in Eq. 3.4. This relation bears a remarkable resemblance to Snell’s
law for optical paths except with an exponent of 0.87/C instead of unity. Additionally, when
moving from a slower substrate to a faster one the cluster will be reflected off the interface
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if the transmitted angle should be π/2 or greater, i.e. total internal reflection. The velocity
ratio where reflection should begin to occur is shown as vertical dashed lines for different
incident angles according to the color legend. The predicted reflections align well with the
plotted data, where the ratio of the sines for each incident angle begins to reflect at the
same point as the vertical dashed lines. The reflection is shown by the horizontal dashed
line at 1, which implies that the reflected angle is equal to the incident angle beyond the
velocity ratio which would result in θf > π/2.

sin θ2
sin θ1

=
(v2
v1

)0.87/C
(3.4)

The trajectories of these clusters are also reversible in time as can be seen in Fig. 3.4(b)
which shows the cluster trajectory angle with respect to normal on the faster substrate
plotted against the angle of the trajectory on the slower substrate. The blue solid line
shows the case where the cluster is moving from the slower substrate onto the faster one,
and drops down to the diagonal line when reflection begins to occur. The red dashed line
shows the angles for the faster to slower case. The overlap of these two curves shows that
whether moving from faster to slower or vice versa the angles depend only on the substrates
and angles and not on the initial substrate of the cluster. The refraction of the cluster into
the slower medium while approaching at a large angle from the faster medium is similar to
the reported behavior of the golden shiners that collectively turn into darker regions where
they move slower[48].
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Fast swarms and swarms with exerted torques to promote turning.
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Figure 3.5: The ratios of the sines of the initial and final trajectory angles measured with
respect to the normal to the interface. The velocity on the top substrate (v1) is labeled for
each plot and the color legend for incident angle is consistent across all four plots. Squares
are for C = 2, triangles for C = 1 and circles for C = 0.5. The diagonal line is a fit for the
low velocity case and the vertical lines are predicted values for the reflections to begin for
each incident angle shown by color according to the legend.

In the case where the velocity on each substrate is high enough for interia to dominate
cluster motion, the cluster will still adjust its direction as it passes through the interface
but its own momentum will carry it straight across the interface before slowly adjusting it’s
angle depending on the rotations caused by the interface which we can see qualitatively in
Fig. 3.3(b). This results in the cluster often returning to the interface and interacting with
it multiple times making the refracted angle vary from the predictions made for the friction
dominated case.

Fig. 3.5 shows the ratio of the incident and refracted angles of clusters versus the ratio
of velocities scaled by angular damping similar to Fig. 3.4(a). In this plot the collapse at
low velocities for different values of C is shown by the shapes of the markers, C = 0.5 for the
circles, C = 1 (rotational damping arising from translational friction only) for the triangles
and C = 2 for the squares, the shapes and color legend are consistent across all four plots
shown. We can see that at high velocities the reflected angle varies greatly from the low
velocity case where reflected angle was equal to incident angle. This is due to the fact that
the cluster passes through the interface before turning around and then passes through the
interface again resulting in multiple interactions with the interface and final reflected angles
that don’t relate in a well defined way to the incident angles. The refracted angle also differs
from the low velocity case due to the effects of momentum and inertia at high velocities,
the trajectories become complicated and cease to follow a well defined relationship. This
behavior could be related to the complex fluid-like motions of starling flocks as they swoop
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and change directions in large arcing trajectories, possibly due to changing environments
from flying over trees or through different altitudes and air temperatures.
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Figure 3.6: (a) Trajectories for the C = 0 case with low velocities. v1 = 0.001 and
v2 = 0.002, the incident trajectories are the straight lines coming from the left. (b) Same
as (a) but for the high velocity case where v1 = 5 and v2 = 10. The cluster is in contact
with the interface while the trajectory is shown in the orange band.

Finally we consider a special case of a swarm that actively promotes rotations by exerting
a torque that exactly cancels out any rotational resistance from friction-like damping
(resulting in C = 0). In this case two very different behaviors emerge. The first is in
the low velocity case where friction dominates the translational motion, though angular
momentum is always important due to the fact that C = 0 independent of velocity. In
this case the cluster will again begin to rotate as it crosses the interface, and experience
no angular acceleration once it loses contact with the interface, however it will continue to
rotate along a circular curve and return to the interface some time later. This causes the
cluster to become trapped at the interface by always rotating around and returning to the
interface without being able to escape as seen in Fig. 3.6(a). The second case is for high
velocities where the inertia of the cluster will carry it past the interface and it may return
to the interface or escape but the initial crossing of the interface starts the cluster rotating
and the cluster will move in a circle somewhere away from the interface typically on the
slower substrate as seen in Fig. 3.6(b).
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3.1.3 Detailed derivation
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Figure 3.7: Diagram of cluster setup, the parameters are described below.

We use a mathematical model for a swarming cluster that treats it as a single cohesive unit
that moves on a two dimensional substrate by exerting a force and torque per unit area
whose magnitude depends on the nature of the substrate. Here we examine the effects of a
single cluster moving across an interface between two different substrates where each portion
of the cluster exerts a force per unit area depending on which substrate it is on. The force
exerted on the cluster in direction of polarization (n̂) is equal to the substrate dependent
force per unit area (f1(or 2)) multiplied by the area of the cluster on each respective substrate
(A1(or 2)), with damping constant b.

F = (f1A1 + f2A2)n̂− b~v (3.5)

The area of the partial circles within each region at any heigh y above the substrate
interface can be calculated by the interagrals shown below, where R is the radius of the
cluster, and θ1 and θ2 are the angles to the intersections of the interface line and the rim
of the cluster as shown in Fig. 3.7. Integrating and simplifying results in Eq. 3.6 as the net
force on the cluster with radius R at height y above the interface.
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(
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y
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rdrdθ + f2
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)
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R
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)
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The expression for force on the cluster due to the active force per unit area exerted by
the cluster and damping is shown below.

F =
1

2
R2
(
π(f1 + f2) + 2(f1 − f2)

(
arcsin(

y

R
) +

y

R

√
1− (y/R)2

))
n̂− b~v (3.6)

In addition to the substrate dependent force applied on the cluster, the polarization
direction of the cluster will also be subject to a torque due to the asymmetry of the variable
forces on each area of the cluster. The net torque on the cluster can be calculated by
integrating the torque per unit area over the portions of the cluster on each substrate
similar to the calculation of force above. The torque per unit area is due to the force per
unit area at each point on the disk, i.e. f1(or 2)n̂× ~r, with angular damping −cω.

τ =

∫

A1

f1n̂× ~rdA+

∫

A2

f2n̂× ~rdA− cω (3.7)

The area of the portions of the cluster on each substrate is integrated as in the force
case above, and simplified to get the expression for torque on the cluster shown in Eq. 3.8.
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(
f1×
(
R3

3
sin(φ) sin(π − arcsin(− y

R
)) +

R3

3
cos(φ) cos(π − arcsin(− y

R
))

+
y3 sin(φ)

6 sin2(π − arcsin(− y
R))
− y3 cos(φ) cos(π − arcsin(− y

R))

3 sin(π − arcsin(− y
R))

)

− f1
(
R3

3
sin(φ) sin(arcsin(− y

R
)) +

R3

3
cos(φ) cos(arcsin(− y

R
))

+
y3 sin(φ)

6 sin2(arcsin(− y
R))
− y3 cos(φ) cos(arcsin(− y

R))

3 sin(arcsin(− y
R))

)
+ f2×

(
R3

3
sin(φ) sin(2π + arcsin(− y

R
)) +

R3

3
cos(φ) cos(2π + arcsin(− y

R
))

+
y3 sin(φ)

6 sin2(2π + arcsin(− y
R))
− y3 cos(φ) cos(2π + arcsin(− y

R))

3 sin(2π + arcsin(− y
R))

)

− f2
(
R3

3
sin(φ) sin(π − arcsin(− y

R
)) +

R3

3
cos(φ) cos(π − arcsin(− y

R
))

+
y3 sin(φ)

6 sin2(π − arcsin(− y
R))
− y3 cos(φ) cos(π − arcsin(− y

R))

3 sin(π − arcsin(− y
R))

))
− cω

τ = ẑ
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The equation below shows the torque on the cluster due to the active forces on each
substrate, and rotational damping.

τ = ẑ
2
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√
R2 − y2 cos(φ)(f2 − f1)(R2 + y2)− cω (3.8)

From eq. 3.6 for force and eq. 3.8 for torque we can write down the equations of motion
for the orientation as well as the x and y coordinates of the cluster, as shown below.
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We can then nondimensionalize the equations of motion through the following
substitutions:
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In the limit where the cluster is entirely on one substrate, we can compute the
equilibrium speed of the cluster on each substrate by letting the acceleration go to zero, and
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Y > 1 for the first substrate or Y < −1 for the other substrate. Taking the real components
of the equations of motion these limits of the system give us the equilibrium speeds as given
below.

0 =
mR

2b2

(
π(f1 + f2) + 2(f1 − f2)(±

π

2
)
)
n̂− ~v

v1/2 =
πmR

b2
f1/2

Substituting equlibrium velocities into the equations of motion results in the eqs. 3.1-3.3.
Additionally, the value of c due only to friction-like resistance is c = bR2/2. Substituting
c = CbR2/2, where C is the ratio of the actual rotational resistance to the frictional angular
resistance, results in the following equations of motion.
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d2Y

dT 2
=
(

1/2(v1 + v2) + 1/π(v1 − v2)
(

arcsin(Y ) + Y
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sin(Φ)− dY
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(3.11)

3.1.4 Discussion.

Collective directed motility is a phenomenon that is widespread in biological systems
including cell clusters during tissue development and tumor formation, as well as bacterial
biofilms and flocks of birds. In these types of systems it is reasonable to assume that clusters
of collectively moving agents move through changing environments, be it a change in air
temperature, stiffness in substrate or any other change which could result in speed change.
We have used a model which treats a swarming cluster as a single cohesive unit with a
preferred direction, to examine the effects of a swarm moving across an interface between
two environments due to a change in speed that occurs in each separate environment.

We found that clusters can display different broad behaviors. The most applicable
of which is for slow moving swarms with some angular damping. In this case a swarming
cluster approaching an interface at an angle will undergo some form of refraction or reflection
resulting in a new direction which is predictable by a simple relationship between incident
and refracted angle and the ratio of the equilibrium speeds on each substrate. Clusters
in this regime can also display total internal reflection at the predictable angle where the
refraction angle would exceed π/2. This regime of our model could represent cell clusters
on changing substrates and our predictions could be used to pattern a substrate to direct
cluster motion along a desired path.

When the velocities of the cluster is increased on both substrates the trajectories
gradually diverge from the predicted refraction angles and reflections found for low velocities
where friction dominates cluster motion. This is due to the inertia of the clusters carrying
it quickly across the interface with the inability of the cluster to change directions at a
comparable rate. As the cluster velocities continue to increase the trajectories become
sensitive to initial conditions and rotational damping, due to the cluster interacting multiple
times with the interface or spending less time in contact with the interface than necessary for
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the cluster to adjust its direction according to the torques present. These kinds of clusters
display broad sweeping curved trajectories away from the interface and could provide insight
into the impressive collective motion seen in starling flocks and fast moving fish schools,
such as sardines.

In the special case where the cluster experiences no angular damping, possibly due to
swarms exerting a torque which counter-acts the friction-like resistance that is present in the
translational motion, the cluster will either become stuck on the interface for low velocities
or stabilize in circular trajectories on a single substrate for high velocities. These types
of behaviors may be desirable for certain systems, and our predictions could be used to
engineer cell clusters, or robot algorithms to follow desired paths. Trapping a cell cluster
on an interface could be useful for separating cells or subjecting them to specific conditions
which could then be applied at the interface more easily to cell clusters as individual cells
will not display the same kinds of collective modes at an interface. Cell cluster motion has
been shown to be controllable by hard boundaries[72], and our results suggest that a similar
strategy could be used with softer substrate interfaces which can be crossed to manipulate
cell cluster behaviors.

Our results show possible predictive capabilities for slow moving clusters such as cells
or bacteria moving across changing substrates, as well as possible insight into ongoing
questions such as the behaviors of starling flocks and fish schools as they spiral and curve
while they span and cross interfaces between changing environments. Additionally our
results suggest possible mechanisms for directing collective systems by way of changing
environmental conditions.

3.2 Frustration induced phases in migrating cell clusters

Collective motion is an emergent phenomenon in large groups of individuals where the
motion can arise from purely local interactions. This phenomenon occurs across scales in
systems ranging from bacteria to fish [12, 11]. Studies of such systems in the thermodynamic
limit of infinite size have revealed a number of interesting features including long-range,
scale-free correlations and a discontinuous phase transition [26]. These thermodynamic
limit studies have spurred interest in hydrodynamic and mean field theories to describe such
phenomena [27]. Finite groups display collective motion that closely model schools of fish
or flock dynamics with boundaries. Their kinematics are characterized by unique behaviors
including guidance by asymmetric boundaries [73] and the ability to simultaneously exhibit
different phases of motion [74]. Collective motion of groups was found to exhibit three
distinct phases: running, rotating and random [75, 76]. In the running phase, the individuals
are all more or less aligned, leading to a large translational velocity of the cluster center of
mass. In the random or disordered phase, individual velocities are uncorrelated and there is
very little overall motion of the cluster. In the rotating phase on the other hand, the cluster
rotates as a whole around a common center. While the running and random phases have
analogs in infinite systems, the mechanisms that can give rise to rotations are less clear.

Through simulations, confinement has been shown, to be one mechanism that results in
uniform populations of self propelled particles exhibiting rotational modes [45, 77, 78, 79].
Simulations of large groups of unconfined agents can also display rotational phases or milling
states where the group rotates in a donut shape under certain conditions [68, 80, 66, 81, 82].
However to achieve these rotational milling states, the agents interact over a range up to tens
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of times the size of an individual agent, and form a low density ‘hole’ at the center, where
the defect in the velocity orientation field resides. Groups of cells have also been shown to
display such rotations though it is unlikely that cells can interact much beyond their nearest
neighbors [44, 83]. This rotational motion has been studied both experimentally and using
simulations for small groups of cells confined to different geometries [84, 72, 85, 86]. Perhaps
even more remarkably, unconfined cell clusters have also been observed experimentally to
show transient rotational phases [87], and this behavior has been speculated to promote
chemotaxis.

In this paper, we use an agent-based swarming model, which only allows short-range,
nearest-neighbor interactions and unconfined space, similar to previous models found in
the literature [23, 24, 51], to address the phenomenon of transient rotations in unconfined
clusters. We show that a possible mechanism for driving cluster rotations is density-
dependent cell propulsion. This density-dependent propulsion may be caused by contact
inhibition of locomotion (CIL), whereby cell protrusions are inhibited by the adhesions
between cells [52, 53]. This causes cells at the cluster core, surrounded by other cells, to
move slower than those at the edge of the clusters, which have a lower local cell density [88].
This results in an outer rim of cells that move faster than central core ones and display
stronger alignment interactions. We also find that decoupling the motion of the rim and
central cells suppresses any rotational motion, suggesting that it is the coupling of two
systems with different motilities (rim and core) that leads to rotational phases. Specifically,
rotations arise in this model when the internal noise is such that the rim cells are in an
ordered state with respect to velocity alignment, while the core of the cluster is disordered.
The coupling of these two systems (rim around core) results in a frustrated state of the
ordered rim being pinned by the disordered core. The whole coupled system is then able
to relieve this frustration most effectively by existing in a rotational phase where the more
ordered rim is able to pull the disordered core, which is pinning it in place, into a rotational
phase. This model successfully captures the dynamics of transitions between the modes of
motion and proportions of time spent in each phase observed experimentally [87]. In the
experiments, when the cell clusters are subjected to a chemical gradient [50, 89] there is an
increase in the proportion of running phase, and a decrease in the rotational phase. This
trend is also captured by our model when a chemical gradient is introduced. Furthermore,
our model predicts an increase in the proportion of rotating phase with the size of the
cluster, which we confirmed with experimental data. Taken together, our results suggest a
novel form of frustrated interactions between behaviorally different parts of the same cluster
that can lead to different collective dynamics – a finding that may have applications beyond
the context of cellular clusters.

3.2.1 Model

Cell clusters are modeled as groups of particles that move with overdamped dynamics in two-
dimensional continuous space (see methods section below). Cells are initially arranged in a
circular disk, with velocities pointing in random directions. Cell velocities are determined by
their internal self propulsion (with magnitude pi), as well as physical interactions between
cells, such as adhesions and collisions [24, 90]. All of these interactions assume that cells
communicate with each other by contact within a distance small enough to only include
nearest neighbors. The cell diameter is selected from a Gaussian distribution, as uniform
cell sizes lead to crystal lattice effects which are unlikely to exist in the experimental cell
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system (see Additional information - Lattice indiuced rotations section below). Finally, the
velocities of the cells are subject to some uniform and uncorrelated noise (~η) due to random
traction forces with the substrate and the random nature of the protrusions that cells use
for propulsion. Cell positions are then updated according to their individually calculated
velocities.

~xi(t+ ∆t) = ~xi(t) + ~vi(t) ∗∆t (3.12)

To determine the velocity of individual cells, a couple of interactions are taken into
account. First, cells propel themselves in a direction (n̂, eq. 3.13) determined by the
memory of their own previous polarization and an alignment interaction with the mean
orientation of neighboring cells, V̂ , with interaction strength α.

n̂ =
v̂(t−∆t) + α ∗ V̂
|v̂(t−∆t) + α ∗ V̂ |

, V̂ =

∑
n.n. ~vi

|∑n.n. ~vi|
(3.13)

Cell velocities for each cell are calculated as arising from the forces described here and
illustrated in Fig. 3.8(a). The self propulsion magnitude is set by p. Additionally cells
experience volume exclusion and adhesion with neighboring cells, which are modeled as
arising from a Lennard-Jones force ( ~LJ) and a spring-like interaction (~S). The spring
force is longer range and acts past their nearest-neighbors, as long as it is not interrupted
by other cells (Fig. 3.8(a)). This adhesion force acts to maintain compact, cohesive, and
roughly circular clusters.

~vi(t) = p ∗ n̂+ ε ∗ ~LJ + k ∗ ~S + ~η (3.14)
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(a) (b) (c)

Figure 3.8: (a) Schematic for the model. Green direction indicators show the direction
of the neighbors of the gray cells, and the green indicator on the gray cell shows the
alignment interaction (V̂ ). The orange arrows show the Lennard-Jones interaction with
each neighboring cell and the red arrow is the total LJ interaction ( ~LJ) on the gray cell.
Finally, the blue spring denotes the cell-cell adhesion interaction (~S). Note that it only exists
between the gray cell and its second nearest neighbors that do not have cells interrupting
the path between them. (b) Time series of the group polarization and angular momentum
of the cell cluster. The colors along the bottom axis show the phase of the system with
time (running – red, rotating – blue, and random – green) for experimental data (top)
and simulations (bottom), for a uniform cluster (dashed) and a cluster with behavioral
heterogeneity (solid, corresponding to the point marked in Fig. 3.9b). (c) The proportion
of time that the cluster spends in each phase (simulations (plain) and experiments (cross-
hatched)), along with a typical illustration of what each phase looks like in the simulations,
with velocity vectors as black arrows. The cluster size for simulations is N = 37 cells, while
experiments are for an average cluster size of 50.

Phase characterization

We identify the mode of motion of the cell cluster by measuring the polarization (O) and
angular momentum (A)

O =
1

N

N∑

i=0

v̂i (3.15)

A =
1

N

N∑

i=0

v̂i × r̂i

We can also calculate the average expected velocity of the cells assuming perfect
alignment, or perfect rotational motion (see Additional information - Average speeds section
below). We define the running phase to occur when the group polarization (O) is greater
than 0.5, and the average cell velocity is over half the expected velocity assuming perfect
alignment. Similarly, the rotational phase occurs when the cluster angular momentum
(A) is greater than 0.5, and the average cell velocity is over half the expected velocity
assuming perfect rotation of the cluster. Finally, the random phase is defined for all other



57

combinations ofO,A, and average velocity. These definitions are made to ensure consistency
with the definitions in the experimental analysis [87]. In the experiments, malignant B and
T type lymphocytes were placed in a chemical gradient of CCL19, where they assemble
into clusters and move towards higher CCL19 concentration. Automated analysis of video
recordings of the cell clusters was utilized to extract velocity vectors of individual cells,
which were then used to compute polarization and angular momentum as functions of time
(see [87] for details). Using the criteria described above, we can then label the phase of
motion of the cluster for each time point. We then calculate the proportion of time that
the cluster spends in each of the three phases throughout a simulation in a manner that
allows for experimental comparison.

3.2.2 Results

Uniform cell clusters

In the case where all cells within the cluster behave identically, the cluster remains in a
single phase throughout the simulation. The dashed line in Fig. 3.8 (b, bottom) shows a
time trace for a cluster in the running phase where the group polarization remains high
and angular momentum remains low throughout. When compared to a time trace of the
same quantities measured in experimental cell clusters (Fig. 3.8 (b, top), the features of
the time traces are very different. In the experiments, the group polarization and angular
momentum fluctuate from high to low values corresponding to spontaneous transitions of
the cluster between various phases of motion. In the simulations, on the other hand, the
cluster undergoes a transition from a running phase to a random phase only with increasing
noise or decreasing propulsion. Fig. 3.9a shows the proportion of time spent by clusters
in each of the three phases plotted against noise and propulsion. The diagonal line of
the transition between running at low noise and random at high noise is the well known
noise-driven transition seen in Vicsek swarming models [26, 16, 91].

The running and random phases seen here are similar to those seen in experiments;
however, the transition between the running and random phases in phase space is very
sharp and there is very little overlap or mixing of the phases. Experimentally, cell clusters
are observed to spontaneously switch between running, rotating, and random phases which
means that they coexist within this parameter space. Alternatively one could say that cells
change their internal parameters, such as the propulsion, p, or noise, η, so that they cross
over the transition between the phases. However, it is implausible for the entire cell cluster
to change internal parameters in a coordinated way. Additionally, the uniform clusters
show a very low level of cell rearrangement or fluidity within the cluster, whereas, in the
experiments, cells are observed to move between the rim and the core of the cluster regularly.
We therefore conclude that additional features of the real system must be incorporated into
the model to recapitulate a rotational phase and transitions between phases within a single
set of parameter values, as well as large scale cluster rearrangement.

Introducing heterogeneous behavior

An aspect of cellular behavior that is missing in this description is the possibility that cells
may behave differently in different regions of the cluster, say the periphery or the interior.
Rim cells have increased propulsion compared to inner-cluster (core) cells due to reduced
CIL, which causes cells adhered to other cells to form fewer protrusions than cells which
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have more open space around them. We implement this effect by scaling the propulsion
with the number of neighbors, increasing for cells with fewer neighbors

pi = pcore +
3

7
∗ (pcore − prim) ∗ (ni − 6) (3.16)

Here, ni is the number of neighbors around cell i. prim and pcore are the propulsion of
the rim cells (average of 3.67 neighbors) and core cells (average of 6 neighbors) respectively.
A similar inverse relation between local density and propulsion (and therefore, alignment),
was explored for a semi-infinite system in [92].

This variation of cell propulsion causes the rotating phase to emerge, and to coexist
with the other phases, as seen in experiments. There is now a region in parameter space
where there is a peak in the rotational phase at low values of pcore and intermediate noise
(Fig. 3.9b). In this region, there are proportions of all three phases which are close to
those seen in experiments. The point highlighted in Fig. 3.9b is an example of a location in
parameter space where the simulations closely match the experiments. The time series for
the group polarization and angular momentum at this point in parameter space is shown in
Fig. 3.8 (b, bottom), and agrees well with the experimental time series. Furthermore, when
the proportion of time spent in each of the three phases is compared to the experimentally
measured values, they match very closely (Fig. 3.8c). We next investigate, more closely,
the mechanism that drives the rotating phase.

Cluster rim to core coupling

The values of propulsion for individual cells in our simulation with heterogeneity are mostly
close to pcore, except for those near the periphery where it rapidly climbs to an average
of prim (see Additional information - Density dependent propulsion section below). This
prompts us to consider whether the behavior of the system can be understood as arising
from the coupling of two different systems – a ring-like rim with a higher propulsion and
a uniform core with lower propulsion. We first examine the rim cell system by confining
a ring of cells to a circular shape and assigning them a fixed value of propulsion (= prim)
independent of neighbor number. This results in the phase diagram shown in Fig. 3.10,
where the contours are boundaries of regions where the proportion of time spent in the
corresponding phase exceeds 30% and 50%. This phase space shares some characteristics
with the uniform cluster phase diagram (Fig. 3.9a), such as the transition from a running to
a random phase with increasing noise or decreasing propulsion, and the lack of a rotational
phase. Due to the lower number of neighbors in the rim case, however, the slope of the
diagonal running-random transition line is smaller compared to the case with a uniform
cluster.

We next couple the rim cells to the core, resulting in a ring of cells confined to a circle
with propulsion prim = 8, positioned around a core of cells with propulsion pcore. The black
dashed line in Fig. 3.10 shows the noise value below which a ring of cells with prim = 8 would
be ordered (or in the running phase more than 30% of the time); while above the black
solid line we expect a cluster with an average uniform p given by eq. 3.17 to be disordered
(random phase greater than 30%).

paverage =
prim ∗Nrim + pcore ∗Ncore

N
(3.17)
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We notice that there is a triangular region between the dashed and solid black lines at
low pcore and intermediate noise where the rim should be in its ordered state while the core
would be in the disordered state. This suggests the possibility that when the rim is pinned
in place by the random phase of the core cells it could relieve the frustration and maximize
order by existing in a rotational phase moving around the core.

Indeed, when we couple the ordered rim to the random phase core in this parameter
regime, we find a peak in the rotating phase (Fig. 3.10, solid contours). The fact that the
peak in the rotational phase does not exist for the rim or core alone but emerges when the
two systems are coupled suggests that the rotational phase is driven by the coupling of the
ordered rim to the disordered core.

There are some differences between the ring-disk confined system and the full unconfined
model shown in Fig. 3.9b, but these are mainly due to affects arising from the confinement of
the rim cells to a circle. Indeed, relaxing the confinement of the rim cells, while still treating
the cluster as two different coupled systems of the rim cells with higher propulsion around
core cells with lower propulsion recovers the original, fully heterogeneous model phase space
(see Additional information - Rim/core cluster model section below). Taken together, these
results suggest that it is the coupling between the disordered core and ordered rim that is
the mechanism behind the cell cluster rotations seen experimentally.

Transitions into and out of rotating

While we have shown that the running, rotating, and random phases can coexist within our
model with heterogeneous neighbor-dependent propulsion, we have not yet examined the
dynamics of the transitions between these phases. To do this, we quantify these transitions
by monitoring changes in the overall topological properties of the phases, which are easier to
track. In particular, note that in condensed matter systems, including active matter [93, 94],
phase transitions may be driven by the interactions and dynamics of topological defects [95].
We first take a coupled rim-core cluster with rim cells confined to a circle and project the
rim cell velocities onto the confining circle. We then identify a defect in this effectively
one-dimensional velocity field as a point where the velocity projections switch directions.
Note that the defects, as we have defined them, exist when there is no defect in the full
velocity field of the entire cluster in its running phase and vanish when there in fact is a
vortex in the cluster in its rotating phase (+/- 1 defect in the director field).

Fig. 3.11a shows these defects for a cluster in the running phase and the rotating phase.
In the running phase, the cluster has two defects of opposite signs at roughly opposite
sides of the cluster. The formation and spreading apart of a defect pair coincides with
the transition from rotating to running phase while the annihilation of the pair results in
the running to rotating phase transition. By measuring the frequency of occurrence of any
given number of defect pairs in each cluster phase, we investigate the correlation between
the phase and number of defect pairs (Fig. 3.11b). We see a large peak in the rotating phase
for zero defect pairs and a peak in the running phase for one defect pair. The random phase
has a much broader peak around two or three defect pairs, suggesting that the random phase
could occur when multiple defect pairs spontaneously form.

To observe the effective interactions of defects with each other, we calculate the pair
distribution function (g(r)) for the spacing between two individual defects when a single pair
exists. Fig. 3.11c shows the pair distribution function calculated over all time throughout
a simulation, independent of what phase the cluster is in at any particular point in time.
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We see that for parameter values when the cluster is predominantly in the running phase,
the pair distribution indicates that the two defects will repel and largely exist at maximum
separation. When the cluster is mostly in the rotating or random phase (Fig. 3.11c inset),
there is a small peak at zero separation, implying that there may be a small effective
attractive force between the defects if they get within one cell diameter of each other
(rc ∼ 30). At longer ranges, the interaction is repulsive, though the slope is much smaller
for both of these cases than in the running case, so the defects only repel weakly, increasing
their chance of annihilating and transitioning out of the running phase. Thus, system-wide
parameters have a significant influence on the interactions between topological defects,
which in turn controls the dynamics of the defects, the formation or annihilation of which
are correlated with cluster phase transitions.

Cluster size dependence

We next examine the effect of cluster size on the phase diagram. Fig 3.12a shows regions
of the parameter space with a proportion of rotating phase greater than 30% for different
cluster sizes. Compared to the predictions of the simulations regarding the proportion
of the rotating phase, the predictions regarding the running and random phases have a
very large spread across the parameters tested. Thus, we focus on the more significant
rotational phase shown here (see Additional information - Size dependence section below).
Again, the dashed black line shows the noise value below which the rim alone would be in
an ordered phase, while the colored dashed lines show the transition between the running
and random phases for a uniform system of average p (eq. 3.17), for each different system
size. Our results indicate that larger clusters have a higher proportion of rotational phase
while smaller clusters are less likely to rotate.

This is consistent with the idea that the coupling-induced rotational phase only exists in
the area of phase space where the rim propulsion would result in an ordered state (running
phase greater than 30% of the time; below the dashed black line) while the average p
of the whole cluster would lead to a disordered state (random phase greater than 30%
of the time; above the colored dashed lines for each size). Larger systems have a higher
proportion of core cells and therefore will have a larger proportion of the phase space where
the average p results in a disordered cluster (because pcore is always lower than prim) while
the rim remains ordered, leading to a larger overlap of the two and a more stable rotational
phase. Fig. 3.12(a inset) shows the comparison between experimental and simulation values,
where the blue points are the experimentally measured proportions of rotating phase against
cluster size, and the red shaded region shows the size dependence of the simulations with the
parameter values marked by black crosses in Fig. 3.12a. Although these parameter values
were chosen based solely on the proportions of all phases exhibited by a cluster of size
N = 37, the dependence on system size seen in the simulations is very similar to that of the
experiments, further supporting the idea that the rim/core coupling is a likely mechanism
for experimental cell cluster rotations.

Cluster fluidity

Exchanges between the periphery and the interior of the cell clusters were proposed to
have an important functional role in exposing ‘fresh’ cells with unsaturated receptors to
the chemical gradient [87]. To examine this feature of our clusters, we look at the fluidity
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of a cluster as measured by the rate of exchange between core and rim cells. A rim cell is
defined as any cell with an exposed edge larger than a single cell diameter. We then average
the number of cells which switch between the rim and the core in each time step to get a
measurement for the cluster fludity.

We measure this exchange rate for the original, fully heterogeneous neighbor-number-
dependent propulsion model (phase space in Fig. 3.9b). Fig. 3.12(b inset) shows contours for
the fluidity across parameter space. It turns out that the fluidity of the cluster is significantly
higher when the cluster shows a majority of running or rotating phase compared to the
random phase. This is presumably due to the fact that the large scale rearrangements or
rim/core cell exchanges happen when the rim cells move past the slow moving core cells
and then mix back into the cluster. This is why the fluidity drops for high pcore values,
approaching prim. Fig. 3.12b shows the dependence of the rim/core exchange on cluster size
for the simulations, as well as the experiments (cross-hatched bars). The trend of decreasing
rim/core exchange with increasing cluster size is more dramatic in the simulations, but
is maintained between both experiments and simulation, further supporting a rim/core
coupling as the mechanism for rotational phases in cell clusters.

It should be noted that the simulations slightly overestimate the proportion of the
running phase in smaller clusters at the expense of the random phase. We speculate
that this might be a signature of cellular clusters maintaining a roughly constant effective
prim across cluster sizes, perhaps by sensing curvature. In this case, our simulations are
essentially overestimating the effective prim value because the rim cells in smaller clusters
have fewer neighbors, and p increases linearly with decreasing number of neighbors. This
would result in a slight overestimation of the running phase with decreasing cluster size at
the expense of the random phase seen in the experiments (see Additional information - Size
dependence section below). Similarly, for large cluster sizes, the simulations underestimate
the effective prim, leading to a higher proportion of the random phase at the expense of the
running phase, as well as an underestimation of the rim/core exchange in simulations due
to the fact that about 60% of the exchanges that take place occur during the running phase
in both experiments and simulations.

Cell clusters in a chemical gradient

Cell clusters can chemotax robustly up a chemical gradient [87] and it has been shown that
such a collective chemotactic motion can be obtained by cells at the cluster rim having a
propulsive force normal to the surface of the cluster with a magnitude that depends on the
local concentration of the chemokine [87, 96, 97]. We are interested in how such a gradient
would affect the proportion of time the clusters spend in each of the different phases. To
implement a chemical gradient into our model, we introduce an additional term into the
calculation for the cell propulsion direction, n̂, by replacing α ∗ V̂ by α ∗ V̂ +~g in eq. 3.13),
where

~gi = gc′y

p.a.n.∑

j

~fj (3.18)

and the sum j is over each distinct pair of adjacent neighbors of cell i. ~fj is a vector
pointing in the direction bisecting the angle subtended by the centers of the cells of the
neighbor pair at the center of cell i, with a magnitude equal to the arc length between the
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two neighbors (see Additional information - Methods, chemotaxis section below). Here, g
reflects the strength of the influence on propulsion direction from the chemokine gradient
per unit distance, of exposed cell edge arclength, c′ is the change in chemokine concentration
per unit distance and y is the distance (in microns) from the 0 ng/ml concentration point.
This results in a gradient force in the direction of the most vacant region around a cell,
with a magnitude proportional to the size of the vacancy, causing a large outward force on
rim cells and negligible force on core cells, resulting in an overall upward drift due to the
unbalanced forces [87].

We introduce such a chemical gradient to a system with running, rotating and random
proportions close to those measured experimentally in the absence of a chemical gradient.
We find that the gradient leads to cluster motion up the gradient as anticipated, and
observed experimentally. We then measure the changes in the proportion of phases as a
function of the gradient (shown in Fig. 3.12c). With increasing gradient, we find an increase
in the proportion of the running phase and a decrease in the amount of the rotating phase,
similar to what is seen experimentally, (Fig. 3.12c inset) while the random phase proportion
stays essentially unchanged.
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Figure 3.9: (a) Proportion of time spent by the cluster (N = 37 cells) in each of the
three phases plotted against propusion p and noise |~η| for a cluster where all cells behave
identically. (b) Phase diagram of the proportion of time spent in each of the three phases
for a system with neighbor-number-dependent propulsion where the rim cells (those with
3.67 neighbors) have a propulsion of prim = 8. pcore is the propulsion of core cells (those
with 6 neighbors), and η is the magnitude of the noise. The black ‘x’ shows the point where
the time series and phase proportions shown in Fig. 3.8 are taken.
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Figure 3.10: Proportion of time spent by the system in each of the three phases as a function
of propulsion p and noise |~η| for a ring of 18 cells confined to a circle with propulsion
prim = p. Dashed contour lines indicate regions (shaded) where the proportion of time
spent in the corresponding phase exceeds 30% (blue) and 50% (red). Solid contour lines
show the same contours but for the rim confined to a circle with prim = 8 coupled with a
core of cells with pcore = p, and a full cluster size of N = 37. Note that the rotational phase
only has non-zero values for the coupled system. The horizontal dashed line marks the noise
value below which the rim alone would be ordered (greater than 30% running phase) with
prim = 8, and the diagonal solid line marks the region above which a core with an average
propulsion set by eq. 3.17 (with pcore = p) is disordered (greater than 30% random phase).

(c)(a) (b)

Running
Rotating
Random

Figure 3.11: (a) Velocities of the rim cells of a 37 cell cluster which are confined to a circular
shape projected onto the circle. In the running phase (red), there are two defects of opposite
signs in the velocity field, denoted by the orange and blue points. There are no defects in
the rotating phase (blue). (b) The proportion of the number of defect pairs for each phase,
with a peak at zero defect pairs for the rotating phase (blue), and one defect for the running
phase (red). (c) The pair distribution function plotted against the separation between two
defects when only one defect pair exists for parameters where the cluster primarily displays
a running phase (note that g(r) is calculated over the whole simulation, independent of
specific phases at any given point in time). (c - inset) The pair distribution function for
points in parameter space dominated by rotating (blue) and random (green) phases.
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Figure 3.12: (a) Proportion of time spent in the rotating phase by a system with neighbor-
number-dependent propulsion as a function of pcore and noise |~η| for prim = 8. The black
horizontal dashed line marks the noise value below which the rim alone would be ordered
(corresponding to the dashed transition line in Fig. 3.10 with prim = 8). The diagonal lines
show the noise value above which a uniform system with average propulsion p would be
disordered (red: N = 19, blue: N = 37, and green: N = 61). The shaded regions are
where the clusters spend at least 30% time in the rotational phase, with the same color
scheme (blue: N = 37, and green: N = 61; note that there is no red shaded region). (a
- inset) The dependence of the proportion of rotating phase on system size. The shaded
red region shows the range of dependence for a spread of parameter values marked with
black crosses in the main figure. The experimental measurements are shown as the blue
points. (b) The fluidity of the cluster measured as the rate of exchange between the core
and rim cells of the cluster, for several systems sizes, for both simulations (plain bars), and
experimental data (cross-hatched bars). (b - inset) Contours for the fluidity of the cluster
over the pcore-η parameter space. (c) Simulated proportion of each phase (see legend)
plotted with increasing chemical gradient (gc′r in eq. 3.18, where r is the cell diameter),
along with experimental data in the inset. The concentration gradient of chemokine in the
experiments is measured in (ng/ml)/mm and shown on the x-axis for the inset.

3.2.3 Methods

Basic model

The exact form of the ~LJ and ~S interactions are given below, along with parameter values
used in these simulations. Here, r is the average size of the two interacting cells, and the
spring interaction exists between n.n.n. which are next nearest neighbors, with σj taking a
value of 0 when there is a cell between cell i and next nearest neighbor j, and 1 otherwise.

~LJ = −12 ∗
n.n.∑

j

[r12
d13
− r6

d7

]

~S = −
n.n.n.∑

j

σj ∗ ~dij

Chemotaxis

The chemical gradient force is introduced as the sum of vectors pointing between each
adjacent neighbor pair for each cell. Fig. 3.13 is a schematic demonstrating this gradient
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Parameter Description Values

N Number of cells 7 to 91

∆t Time step 0.01

α Strength of alignment
interaction.

6

|~η| Noise magnitude. 0 to 8

ε Strength of Lennard-Jones
interaction

18

k Strength of spring force 0.1

pcore Propulsion value for core cells. 0 to 8

prim Propulsion value for rim cells 0 to 8

Table 3.1: Parameters

force, where the purple arrows show the force between each individual pair of adjacent
neighbors and the green arrow shows the sum, or the overall gradient force on the gray cell
which can then be scaled with concentration as described in the main text in the section
‘Cell clusters in a chemical gradient’.

Figure 3.13: A schematic illustration of the chemical gradient force on the gray cell. The
purple arrows show the force between each pair of adjacent neighbors while the green arrow
shows the over all outward gradient force.

3.2.4 Additional information

Lattice induced rotations

Fig. 3.14 shows the parameter space for cell clusters with uniform cell size. The rotational
phase seen at low values of noise and intermediate pcore is caused by lattice vibrations,
which are phonon-like modes within the crystal structure of the cluster (see video S1),
somewhat similar to [103]. To verify that the lattice structure is the mechanism behind the
rotations we introduced polydispersity in the size of the cells. We select the sizes of the cells
from a Gaussian distribution with a spread of 10% of the average size. The phase diagrams
shown in the main text are for polydisperse clusters and it can be seen that these lattice
induced rotations become completely suppressed when the polydispersity is introduced (see
video S2, equivalent to S1 but with polydisperse cells, and Fig. 2a in main text), and only
the peak in the rotational phase for intermediate noise and low pcore remains, though it is
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slightly reduced. This suggests that the rotations seen experimentally are not induced by
lattice vibrations in the structure of the cell cluster, since they would then be suppressed
by the polydisperse nature of the cells.
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Figure 3.14: Full cell cluster model with uniform cell sizes resulting in lattice effects such
as the peak in the rotational phase at low noise and intermediate pcore values.

Average speeds

The expected average speed of cells in the running phase is the weighted average of the
propulsion of all the cells:

〈vrun〉 =
prim ∗Nrim + pcore ∗Ncore

N
(3.19)

When the cluster is in the rotational phase the average speed is adjusted to account for
the relationship between cell radius from the center of the cluster (center of rotation) and
the speed of the cells. This results in the following expected average speed of cells in the
rotational phase:

〈vrot〉 =
7

18
(prim + 2pcore) (3.20)

The average speed of the cells in the cluster is then compared to these expected average
speeds to identify the phase of motion along with order and angular momentum as described
in the main text under the ‘Phase characterization’ section.

Density dependent propulsion

When cell propulsion is scaled with local density due to contact inhibition of locomotion,
the core cells or those closer to the center have a propulsion close to pcore, while past a
certain radius the propulsion rises sharply to a higher propulsion value. Fig. 3.15 shows
the value of the propulsion for cells vs. the distance from the cluster center of mass (dcom).
The blue line shows the full model with neighbor-number-dependent propulsion while the
green line shows the propulsion when the rim and core cells are identified by distance from
the cluster center of mass (rim/core coupled system model as described in the main text
section ‘Cluster rim core coupling’).
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Full model
Coupled model

Figure 3.15: The propulsion (p) of cells plotted against distance from the cluster center of
mass (dcom). For both the full model and the rim/core coupled model the propulsion starts
low and then at distances where the cells are at the rim rather than the core, the propulsion
p increases to a higher value.

Rim/core cluster model

The full phase space associated with the solid contour lines in Fig. 3 is shown in Fig. 3.16.
This is for a system where the rim cells of the cluster are confined to a circle with a
propulsion of prim = 8 and the core cells are free to move within the circle of rim cells
with a propulsion pcore plotted on the x-axis. We can see some features similar to the full
model such as the triangle of rotating phase when the core prefers a random phase while the
rim prefers a running one. This supports the description of the coupled rim/core systems
resulting in the rotational phase.
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Figure 3.16: The rim/core binary propulsion model with the rim cells confined to a circle.

When the circular confinement of rim cells is relaxed and the rim cells are free to move,
keeping the propulsion binary between the rim cells with prim = 8 and the core cells with
pcore (shown on the x-axis) independent of neighbor number, we recover a phase diagram
(Fig. 3.17) very similar to the full model shown in Fig. 2b.
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Figure 3.17: The rim / core binary propulsion model with the rim cells free to move and
unconfined.

Size dependence

Fig. 3.18 shows the proportion of time spent in each of the three phases for clusters of varying
sizes. The experimental clusters are shown as blue dots, and the running and random phases
are noisy and have almost no correlation with cluster size. Note that the simulations for
larger clusters have little predictive capabilities as evident from the large spread in the
calculated values. It is also likely that very small experimental cell clusters may fracture
and reform frequently which is disallowed in the model, leading to the larger discrepency
between experiments and simulations for very small clusters. The rotating phase, however,
has a much narrower spread of proportions in the simulations and an increase with system
size. The increase in rotational phase with cluster size is also observed in the experimentally
measured proportions.
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Figure 3.18: The size dependence of all three phases.

Varying rim propulsion

Fig. 3.19 shows the dependence of the phases on prim. After an initial low start of the
rotational phase for low prim, the difference between prim and pcore becomes large enough
and there is a peak in the rotational phase before it gradually decreases and the running
phase gradually increases with increasing prim. If experimental cell clusters increase prim
with cluster size by some rim curvature sensing mechanism in the cells, this would account
for a couple of small differences in the cell clusters. The first of these is the slight
overestimation of the rotational phase and the underestimation of the running phase in
large clusters in the experiments. Additionally, about 60% of the rim/core exchange that
takes place in cell clusters occurs during the running phase with 20% in each of the rotating
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and random phases. With an increase in the running and decrease in the rotational phase
in larger clusters, if they have a higher prim, the slight underestimation of cluster rim/core
exchange in the simulations compared to experiments in large clusters (Fig. 5b) would be
accounted for as well.
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Figure 3.19: Cluster phase space with pcore fixed to 0.5 and scanning over prim up to 8.

Solid-body-like rotations

The rim of the cluster is able to drag the core around with it resulting in solid-body-like
rotations. Fig 3.20 shows the percent difference in angular rotation speed of the core of
the cluster compared to the rim. While the amount of slip occuring is slightly higher for
clusters with a larger difference in pcore and prim, the amount of slip is still small enough
that the rim is dragging the core around with it, resulting in a solid body like rotation.
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Figure 3.20: Rotational slip of outer rim around the inner core, for the full original model
with no confinement.

Fluidity vs. gradient

As the chemical concentration gradient increases, the cluster spends an increasing amount
of time in the running phase robustly moving up the gradient. Since the rim/core exchange
takes place predominantly in the running phase, we would expect an increase in rim/core
exchange with increasing gradient. This is verified by the simulations in Fig. 3.21 which
shows the increasing amount of rim/core exchange that takes place with increasing chemical
concentration gradient, for the simulations shown in Fig. 5c.
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Figure 3.21: Amount of rim/core exchange plotted against chemical gradient.



Chapter 4

Conclusion

Hydrodynamic and agent based models have led to the discovery of many phases and
transitions in active systems, typically systems are treated as homogeneous and in a
controlled environment. In this dissertation I have investigated the effects of heterogeneity
in agent behavior on collective motion systems with finite size. Behavioral heterogeneity
can exist in nature in the form of mixed populations with variable behavior or as a result
of an environmental change. From these perspectives I have used agent based modeling to
investigate collective motion with heterogeneous behavior.

Mixed populations

In systems where collective motion exists with mixtures of aligning and non-aligning agents
a cluster that is unable to fracture will be able to sustain a fraction of non-aligning agents
that can be estimated from a mean field calculation of relative alignment and cohesive
interaction strengths. This fraction can be found from parameters of the system that can
be measured experimentally in any natural collective system, such as speed, reaction time,
and spacing. Natural systems can also adjust their non-aligner carrying capacity on the
fly by changing properties such as their speed or spacing. Additionally if the cohesion of
the system is sufficiently low for fracture to be possible the system will break apart into
smaller clusters which will exist at a non-aligning fraction close to the critical non-aligner
carrying capacity of unfracturing swarms. This means that in a system where non-aligning
has a tendency to increase due to disease spread, malfunction, or some evolutionary fitness
advantage of non-alignment, natural systems can fracture and effectively sort out excess
non-aligners to self regulate composition. The carrying capacity for non-alignment can also
be adjusted by natural systems on the fly by regulating properties of the system such as
speed, reaction time or spacing.

A similar mixed population of heterogeneous agents can exist in the form of a mixture of
high and low noise agents. We utilized four variations on common swarming models found
in the literature to investigate the effects of mixed populations of different noise levels. We
found that an increase in fraction of high noise agents can drive a similar order to disorder
transition and the nature of this transition depends on the model details. In models where
the physical collision interactions are treated separately from the self-propulsion of the
agents, allowing for agents to be slowed down by collisions and not all move at equal speeds
results in fracturing of clusters almost always resulting in small ordered groups rather than
a gaseous state of individual agents, with random directions of travel. In models where
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the cohesiveness is calculated as part of the self-propulsion direction with alignment there
is a cohesion driven order to disorder transition in addition to the typical noise driven
transition seen in collective motion systems. If the alignment interaction takes the form of
a standard Vicsek alignment where agents follow the average direction of their neighbors
and this interaction is normalized then there is an order to disorder transition which is
entirely dependent on the fraction of high and low noise particles and the level of noise in
the high noise population is unimportant. However in other types of alignment interactions
of a reorientation towards instantaneous travel direction or an unnormalized Vicsek-like
interaction there is an order to disorder transition that is driven by the average noise of the
population rather than the fraction of high and low noise agents.

Environmentally driven heterogeneity

Collective systems where agents behave differently depending on their local environment can
exhibit unique phases of motion and interesting collective modes. We found that treating
a flock as a single cohesive unit and observing it as it crosses a boundary between multiple
environments causes the flock to turn and rotate in interesting paths. We found that the
important features of a flock crossing a boundary are the speed of the flock and whether
agents within the flock prefer to continue rotating once they have begun or tend to settle
towards a straight trajectory in the absense of outside influences. Fast moving flocks that
have persistant turning behaviors will begin to rotate upon crossing a boundary between
environments where agents move faster in one environment than the other, and then upon
completely entering the new environment will equilibrate to travel in a circular path. If the
fast moving flock does not show a preference to continue turning it will show large sweeping
arcs as it crosses into a new environment but eventually settle into a straight path, somewhat
eminiscent of the large sweeping arcs seen in bird flocks. Slower moving systems show very
different behaviors than the fast ones. A slow moving flock crossing an interface between
a fast and slow environment will become stuck at the interface always turning around
and returning from the new environment to the interface if the agents persist in turning
behaviors. However a slow moving flock which relaxes to a straight trajectory will turn while
it is in contact with the interface and establish a new direction to travel in upon completely
crossing into the new environment which depends on incident angle as well as difference in
speeds in the two environments. This relationship bears a remarkable resemblance to Snell’s
law for light changing between media with different indices of refraction and allows us to
write down a simple predictive equation for the trajectory of a swarm crossing an interface
between slow and fast environments. We even observe a critical angle beyond which total
internal reflection occurs. These results offer simple predictive capabilities for flock motion
between varying environments as well as posible mechanisms for directing collective systems
by way of patterning environments to promote travel along a desired path.

We also looked at an experimental system of cell clusters which vary their behaviors
based on local environment due to contact inhibition of locomotion, which acts to slow
down cells which have a higher local density. This density dependent propulsion leads
to a frustrated system where cells at the rim of a cluster with lower local density move
faster which prefer an ordered state while cells at the core of the cluster with high
local density move slowly and are unable to reach a consensus direction. The system
manages this frustration by the rim rotating around and pulling the core with it into
a rotational state. Taken together, our results show that the rotations induced by rim-
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core coupling hold across a range of system sizes, propulsion strengths, noise values, and
even in the presence of directional forcing. They may even extend into three-dimensional
rotations [99, 100, 101, 102], suggesting that the coupling between two swarming systems
which are in different ordered phases can lead to interesting behaviors not seen in either
system alone. Heterogeneous behavior within a single group is a robust mechanism that
cells or other types of swarming organisms may use to enhance rotating phases or other
phases that would be unlikely or impossible to achieve otherwise.
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