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REGULAR ARTICLE

Blood manufacturing methods affect red blood cell product
characteristics and immunomodulatory activity

Ruqayyah J. Almizraq,1 Philip J. Norris,2,3 Heather Inglis,2 Somaang Menocha,4 Mathijs R. Wirtz,5,6 Nicole Juffermans,5,6 Suchitra Pandey,3,7

Philip C. Spinella,8 Jason P. Acker,1,9 and Jennifer A. Muszynski4

1Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada; 2Blood Systems Research Institute, San Francisco, CA; 3Laboratory Medicine and
Medicine, University of California, San Francisco, CA; 4Department of Pediatrics, Nationwide Children’s Hospital, Columbus, OH; 5Department of Intensive Care Medicine and
6Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, Amsterdam, The Netherlands; 7Blood Centers of the Pacific (member of Blood
Systems), San Francisco, CA; 8Division of Critical Care, Department of Pediatrics, Washington University in St. Louis, St. Louis, MO; and 9Centre for Innovation, Canadian
Blood Services, Edmonton, AB, Canada

Key Points

• EVs vary by RCC
manufacturing method;
among methods tested,
red cell filtered RCCs
had lowest total and
cell-specific EVs.

•Manufacturing method
affects immune activity
of RCC supernatants:
AD RCCs were immu-
nosuppressive; WBF
RCCswere inflammatory.

Transfusion of red cell concentrates (RCCs) is associated with increased risk of adverse

outcomes thatmaybeaffectedbydifferent bloodmanufacturingmethodsand thepresenceof

extracellular vesicles (EVs).We investigated theeffect of differentmanufacturingmethodson

hemolysis, residual cells, cell-derived EVs, and immunomodulatory effects on monocyte

activity. Thirty-two RCC units produced using whole blood filtration (WBF), red cell filtration

(RCF), apheresis-derived (AD), and whole blood–derived (WBD) methods were examined

(n 5 8 per method). Residual platelet and white blood cells (WBCs) and the concentration,

cell of origin, and characterization of EVs in RCC supernatants were assessed in fresh and

stored supernatants. Immunomodulatory activity of RCC supernatants was assessed by

quantifying monocyte cytokine production capacity in an in vitro transfusion model. RCF

units yielded the lowest number of platelet and WBC-derived EVs, whereas the highest

number of platelet EVs was in AD (day 5) and in WBD (day 42). The number of small EVs

(,200 nm) was greater than large EVs ($200 nm) in all tested supernatants, and the highest

level of small EVs were in AD units. Immunomodulatory activity was mixed, with

evidence of both inflammatory and immunosuppressive effects. Monocytes produced more

inflammatory interleukin-8 after exposure to fresh WBF or expired WBD supernatants.

Exposure to supernatants from AD andWBD RCC suppressed monocyte lipopolysaccharide-

induced cytokine production. Manufacturing methods significantly affect RCC unit EV

characteristics and are associated with an immunomodulatory effect of RCC supernatants,

which may affect the quality and safety of RCCs.

Introduction

Red blood cell (RBC) transfusion remains common, particularly in critically ill patients.1-3 However,
transfusion of red cell concentrates (RCCs) is independently associated with increased risks of
nosocomial infection, organ dysfunction, and death.4-6 Transfusion-related immunomodulation (TRIM)
includes both immunosuppressive and inflammatory effects that may in part explain increased risks
in patients who receive blood transfusions.7-11 Mechanisms of adverse effects related to red cell
transfusion remain uncertain, although RCC contain a host of biologically active mediators, in both
soluble and cell-associated forms, which may contribute to organ dysfunction via alterations in recipient
inflammation and immune cell function.7,12-14 Although many previous studies have focused on
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accumulation of potentially harmful immunomodulatory mediators
during RCC storage,8,15,16 recent randomized clinical trials have failed
to demonstrate benefit with fresh RCC transfusion in critically ill or
hospitalized patients,17 thus calling into question the clinical relevance
of storage-related TRIM effects. It has been suggested that RCC
manufacturing methods, which are rarely accounted for in interven-
tional trials, may have confounded these results.18,19 Differences in
blood component manufacturing methods and RCC characteristics
across clinical trial sites may mask the effect of RCC storage duration
on patient outcomes.18,19 Indeed, in a large Canadian registry study
comparing the whole blood filtration method to the red cell filtration
method for RCC product preparation, transfusion with fresh whole
blood filtered (WBF) red cells was independently associated with in-
hospital mortality.20 Differences in blood component manufacturing
methods may result in significant differences in potential immuno-
modulatory mediators, such as intracellular factors released by
hemolysis, residual platelets and leukocytes, and extracellular vesicles
(EVs), and may play a significant role in posttransfusion immuno-
modulatory effects.21-24

In addition, the presence of EVs in RCC products is an important
factor that has emerged as a potential mediator of the immu-
nomodulatory activity posttransfusion.25-27 EVs, heterogeneous
submicron-sized vesicles, are produced and released by many
types of cells.26,28 However, most studies do not take into account
the heterogeneity of EVs in RCCs in terms of the size, phenotype/
cell of origin, composition, and surface biomarkers. Because these
EVs, which accumulate in RCC during storage, can differ in terms of
their biogenesis and biophysical properties29 and can be influenced
by different blood manufacturing methods, their immunomodulatory
activity may vary as well. Thus, the aim of this study was to investigate
the effect of different manufacturing methods on RCC character-
istics, including hemolysis, residual cell counts, and extracellular
vesicles; and on the immunomodulatory activity of RCC superna-
tants on monocyte function.

Methods

Blood collection and manufacturing

All blood donors provided signed, informed consent at the time of
donation. Whole blood was collected from healthy donors, and
RCC (n 5 32) were produced using 4 different blood manufactur-
ing methods30 (8 units per method). WBF and red cell filtered
(RCF) RCC were collected by the Canadian Blood Services,
whereas apheresis-derived (AD) and whole blood–derived (WBD)
RCC were collected by Blood Systems in the United States.

Whole blood filtration method. Whole blood was collected
into blood collection sets (DQE 7292LX, Leucoflex MTL1 quadruple
Top/Top system, MacoPharma) with 70 mL citrate-phosphate-
dextrose (CPD) anticoagulant and processed using the whole blood
filtration method (n5 8). After collection, whole blood was cooled and
leukoreduced by filtration in the refrigerator within 48 hours of
stop-bleeding time. Filtered units were then centrifuged at 4552g
for 6 minutes to separate the blood components. An automated
extractor (Compomat G4, Fresenius-Kabi) was used to extract
plasma; saline-adenine-glucose-mannitol was added to RCC.

Red cell filtration method. Whole blood was collected into
blood collection sets (LQT 7292LX Leucoflex LCR-Diamond
quadruple Top/Bottom system, MacoPharma) with 70 mL of CPD
anticoagulant and processed using the RCF method (n 5 8). After

collection, units were rapidly cooled to 18°C to 24°C and held
overnight. Products were then centrifuged at 3493g for 11 minutes
and separated into the blood components (plasma, RBC, and buffy
coat) using an automated blood-processing device (Compomat
G4). Then, saline-adenine-glucose-mannitol was added to the extract-
ed RCC. The RCC units were leukoreduced by filtration at room
temperature within 24 hours of stop-bleeding time.

Apheresis-derived methods. RCC collected using apher-
esis cell separators (Trima Accel Apheresis System, Terumo BCT;
software 6.0.6; Trima Accel 80500 kit) with 70 mL of anticoagulant
citrate dextrose solution, solution A (ACD-A) and 200mL additive
solution (AS-3). After collection, RCC units were filtered at room
temperature.

Whole blood derived method. Whole blood was collected
into blood collection sets (Fenwal 4R1587P Flex Triple, WB 500 mL)
with 70 mL of CPD anticoagulant. WB units were centrifuged at
5895g for 8 minutes at 1°C to 6°C. Plasma was extracted, the RCC
was retained in the original bag, and 110mL of AS-1 was added.

Shipping, storage, and sampling. Using packing configurations
designed to maintain RCC at an appropriate temperature (1°C to
10°C), RCC units were shipped to the Canadian Blood Services
laboratory in Edmonton, AB, Canada. All shipments arrived
within 24 hours of being packed and RCC were stored between
1°C and 6°C in a monitored refrigerator for up to 42 days. RCC
sampling (25% of the unit volume) was performed once on day 5
(fresh) and once on day 42 (expired) postcollection as previously
described.31,32 An aliquot (5 mL) of each day 5 sample was set for
residual cell counting and in vitro quality parameter testing. The
remaining RCC samples were centrifuged at 1000g for 10 minutes
at 4°C (Eppendorf 5810R) to separate cells from supernatant.
Supernatant was collected and transferred to cryovials and frozen
at#65°C. One frozen supernatant aliquot from each unit (fresh and
expired) was used at Canadian Blood Services for in vitro quality
assessments and to measure EV concentration and size profile by
qNano. Additional frozen supernatant aliquots from each unit (fresh
and expired) were shipped on dry ice to 2 centers for additional
analyses: (1) Blood Systems Research Institute (San Francisco,
CA) to test the cell of origin of EVs by flow cytometry and (2) The
Research Institute at Nationwide Children’s Hospital (Columbus,
OH) for monocyte coculture testing. All testing was performed on
the day 5 and day 42 aliquots, except residual cell counts, which
were measured on day 5 supernatants only (supplemental Figure 2).

In vitro quality assessment of RCC units

Hemolysis was determined using a Drabkin-based spectrophoto-
metric method as previously described.32-34 Briefly, for hematocrit
(Hct), RCC were aspirated into self-sealing Hct capillary tubes and
read visually after centrifugation for 5 minutes in a Hct centrifuge
(Hettich Haematokrit Centrifuge Type 2010). Total hemoglobin
and supernatant hemoglobin were treated with Drabkin reagent
and measured spectrophotometrically using a microplate reader
(SpectraMax 384 Plus, Molecular Devices Corp.). Percent hemo-
lysis was determined using Hct and measured values for superna-
tant hemoglobin and total hemoglobin as previously described.21

Supernatant samples were sent to an accredited laboratory (Alberta
Health Services) for analysis on an automated chemistry analyzer
(DXC800, Beckman Coulter, Inc) to measure supernatant potas-
sium concentrations as described previously.32

25 SEPTEMBER 2018 x VOLUME 2, NUMBER 18 MANUFACTURING METHOD AFFECTS RCC IMMUNOMODULATION 2297



Residual cell counts

RBC samples (1 mL) were sent to the Canadian Blood Services
National Testing Laboratory (Ottawa, ON, Canada) to determine
residual white blood cell (WBC) levels using flow cytometry as
previously described.22 Residual platelet counts were also mea-
sured by the flow cytometer using lineage-specific monoclonal
antibodies as described previously,23,24 with some modifications.
Briefly, RCC (100 mL) were diluted with buffer (13 phosphate-
buffered saline) and 5 mL of the fluorescently labeled monoclonal
antibodies (PerCP/Cy5.5 anti-human CD41a antibody; BD Biosci-
ences, Mississauga, ON) were added to identify platelets. Commer-
cial isotype control (PerCP/Cy5.5 mouse IgG1, isotype control; BD
Biosciences) was used as a negative control. After 15 minutes of
incubation in the dark at room temperature, prepared samples were
run on a bench-top digital flow cytometer (LSR-Fortessa X-20, BD
Biosciences) with TruCOUNT beads (BD Biosciences) used to
determine the absolute number of platelets per microliter. Results
were analyzed using BD FACSDiva 8.0.1 software (BD Biosciences).

Extracellular vesicle characterization

QNano assay for extracellular vesicle concentration and
size profiling. Quantification and size characterization of EVs
in RCC were measured using a tunable resistive pulse sensing
instrument (TRPS/qNano system; IZON Science Ltd) as previously
described in detail.35,36 Two different nanopores (NP200 and
NP400) were used in this study to target EVs ,1 mm in size using
a standard stretch range (43-47 mm). Carboxylate polystyrene
calibration particles (CPC200; IZON Science Ltd) were used with
the NP200 to characterized EVs ,200 nm in diameter, whereas
CPC500 (IZON Science Ltd) was used with NP400 nanopore to
calibrate for EVs$200 nm. Supernatant samples were diluted with
electrolyte solution (RK1 measurement electrolyte, IZON Reagent
kit) and the sample dilution adjusted as required to target a particle
rate of 1000 to 2000/min. Samples were filtered with Millex syringe
filter (Merck Millipore Ltd) before being analyzed with NP400 or
NP200, as recommended by the manufacturer. Samples and
calibration particle measurements were run under the same
conditions and at least 1000 particles were recorded with 2
different standard pressure ranges (1 unit5 1 mbar). Data obtained
were analyzed using IZON Control Suite software, version 3.3.

Flow cytometry assay for extracellular vesicle pheno-
typing and quantification. EV phenotyping was performed
using a flow cytometer as previously described.37,38 Briefly, 20 mL
of the supernatant of each RCC product was stained with the
following linage-specific monoclonal antibodies to identify the cell
of origin of EVs: CD41a-PerCP-Cy5.5, CD142-APC, CD66b-PE,
CD144-BV421, CD235a-FITC, CD3-FITC, and CD14-PE-Cy7
(BioLegend), and CD16-ECD, CD19-PerCP-Cy5.5, and CD62P-
APC (BD Biosciences). Stained samples were incubated in the
dark for 30 minutes at room temperature, diluted in 13 phosphate-
buffered saline, and acquired on an LSRII flow cytometer for
60 seconds (BD Biosciences); sufficient events were collected
to provide approximately $5000 gated EV events. An AbC
Anti-Mouse Bead Kit (Life Technologies) was used to set the
compensation along with the single-stained compensation control.
Small beads ranging from 0.2 to 1 mm (Megmix-Plus SSC beads,
Biocytex) were used to generate the EV gate and to further classify
them based on their size (only EVs #1.0 mm in diameter were
analyzed). BD TruCOUNT tubes (BD Biosciences) were used to

obtain the absolute number of EVs/mL. Data were analyzed using
FlowJo v10.

Monocyte coculture experiment

Monocyte in vitro transfusion model and cytokine
measurements. Monocytes were isolated from whole blood of
8 healthy adult donors as previously described39,40 and were used
immediately in coculture models. The monocyte coculture model
was adapted from our previously published in vitro transfusion
model.39,40 For each experimental replicate, 1 3 106 healthy adult
monocytes were plated on 12-well tissue culture plates in complete
tissue culture media with 20% by volume RCC supernatants or
complete tissue culture media only as control for 4 hours at 37°C in
5% CO2 incubator. The 20% by volume of RCC supernatant
was chosen to approximate the volume ratio of a 20 mL/kg
RBC transfusion. After this incubation, cells were stimulated with
1 ng/mL of lipopolysaccharides (LPS) from Salmonella enterica
serotype abortus equi (Sigma) for 4 hours. Cell supernatants from
each well were collected and stored at280°C for batch analysis of
LPS-induced cytokines. Pro-inflammatory cytokines tumor necro-
sis factor-a (TNF-a), interleukin-1b (IL-1b), IL-8, and the anti-
inflammatory cytokine IL-10 were quantified by chemiluminescence
using the IMMULITE 1000 automated chemiluminometer (Siemens
Healthcare Diagnostics). All experimental replicates were per-
formed using different healthy adult monocyte donors and different
RCC units. Endotoxin and pyrogen-free reagents and labware were
used for all experiments.

Statistical analysis

For the monocyte coculture experiment, comparisons between
RCC product groups were analyzed using analysis of variance with
Dunnett posttest for multiple comparisons. All statistical analyses
were performed using Prism 7.00 (GraphPad Inc). For EV
characterization, statistical analysis was completed using SPSS
(IBM SPSS Statistics 23.0). Analysis of variance followed by a
Tukey post hoc test was used to identify significant differences
within the storage period for EV assays and to evaluate any
significance among pairwise comparisons of testing time points
during the storage time. Paired Student t tests were used to
identify significant differences between the testing time points
(days 7 and 42). Pearson correlation coefficient and associated
P value were calculated between EVs and cytokines for all of the
RCC units and for each blood manufacturing method. Linear
model analysis was performed to test the significant of the
correlations between the manufacturing methods. P , .05 was
considered significant throughout the study.

Results

In vitro quality parameters

Residual cell count. Although all of the blood manufacturing
methods had similar level of residual WBC, quantities of residual
platelets differed among the products based on the processing
methods used (Figure 1).

Supernatant potassium and percent hemolysis. As
expected, there was a significant increase in hemolysis during
storage in all of the RCC products (Figure 2A), with no significant
differences among manufacturing methods of the expired units.
However among day 5 units, AD RCCs demonstrated greater
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hemolysis compared with RCF (P 5 .006) and WBF (P 5 .025)
units. Supernatant potassium also increased over storage time in all
of the RCC products, with no significant differences among
manufacturing methods at day 42 (Figure 2B). On day 5 of storage,
supernatant potassium was significantly higher in WBF units
compared with RCF (P 5 .024) and WBD (P 5 .008) RCCs
(Figure 2B).

Characterization of EV populations by tunable

resistive pulse sensing

There was an increase in the total number of EVs (EVs per milliliter)
on day 42 in comparison with day 5 of storage in all blood
manufacturing methods. In addition, the number of small EVs/
exosomes (,200 nm) was greater than large EVs ($200 nm) in all
of the products on days 5 and 42 (Figure 3A-B). Notably, the
highest level of EVs ,200 nm was in AD units, which were
significantly different from WBD on day 5 (P 5 .0115) as well as
WBD and RCF on day 42 (P5 .0050 and P5 .0083, respectively;
Figure 3A). No statistically significant differences among the blood
products was observed with larger EVs (EVs $200 nm) except on
day 42 between AD and WBF RCC (P 5 .0106, Figure 3B).

Furthermore, the size profile of EV showed significant differences in
the EV size-profile among all RBC products (P , .05). On day 5 of
storage, WBF-RCC had a different EVs size profile (smaller EVs,
91.1 6 6.8 nm) in comparison with apheresis-RCC (125.4 6
37.0 nm; P 5 .009). On day 42 of storage, the mean of small EVs
(,200 nm) apheresis andWBF RCC was lower compared with RCF
and WBD products (P , .05) (data not shown).

EV quantification and cells of origin by flow cytometry

Across all groups, EV counts measured by flow cytometry were
orders of magnitude lower than those measured by TRPS, suggesting
that flow cytometric analyses may have missed some of the smaller
EVs. Consistent with the TRPS data, flow cytometry results showed a
significant increase in the number of total EVs (EVs/mL) on day 42 of
hypothermic storage in all of blood manufacturing methods (P ,
.05) compared with day 5 (Figure 3C). Among day 5 superna-
tants, RCF units had the lowest total EV and platelet-derived EV
concentrations (Figure 3C,E), whereas AD units had the highest
RBC-derived EV concentrations (Figure 3D). Among day 42
supernatants, RBC-derived EV concentrations were highest in
WBD supernatants (Figure 3D), whereas RCF supernatants again
demonstrated the lowest concentration of platelet-derived EVs
(Figure 3E).

Monocyte coculture

The immunomodulatory effects of RCC supernatants on monocytes
were mixed and differed by manufacturing method. Regardless of
storage duration, AD and WBD RCC supernatants were immuno-
suppressive with respect to TNF-a production in response to LPS
(Figure 4A). Meanwhile, day 42WBD supernatants produced more
IL-8 in the absence of LPS (Figure 5), suggesting a mixed
immunosuppressive and inflammatory response to WBD RCC at
day 42. Exposure to day 5 WBF RCC supernatant resulted in
increased LPS-induced IL-1b production (Figure 4B) and higher
IL-8 in the absence of LPS (Figure 5), suggesting an augmented
inflammatory response to fresh WBF RCC (Figure 4C). Monocyte
LPS-induced IL-10 and IL-8 production did not differ from controls
for any of the RCC supernatants evaluated (Figure 4B,D).

Correlations among residual cells, EV, and

cytokine production

Exploratory correlational analyses were performed to assess the
relationships between monocyte function and the amount of
residual cells with all of the RCC products (supplemental Figure 1).
Significant and clear negative correlations were identified be-
tween residual platelet count and LPS-induced pro-inflammatory
cytokine production: TNF-a (r 5 0.543, P 5 .002) and LPS IL-8
(r 5 0.507, P 5 .005), suggesting that higher residual platelet
counts are associated with immunosuppressive activity (supple-
mental Figure 1A,C). Similarly, residual platelet count was negatively
correlated with IL-8 production in the absence of LPS, again
suggesting a potentially anti-inflammatory phenotype (r 5 0.550,
P 5 .003) (supplemental Figure 1D). Conversely, there were no
strong correlations identified between residual WBC and monocyte
cytokine production, although the correlation between residual
WBC and LPS-induced IL-10 was statistically significant (P5 .043,
r 5 0.378) (supplemental Figure 1E-H).

Additional correlation analyses were executed to evaluate the
relationships between the monocyte function and cell-derived EVs.
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For fresh RCC products, no significant correlation was found
between cytokine production and platelet-EV, RBC-EV, or total
WBC-EV (supplemental Table 1a). However, as presented in
supplemental Table 1a, significant moderate negative correla-
tions were identified between LPS-induced TNF-a and B cell–
derived and monocyte-derived-EV (CD191EV [0.437, P 5 .017]
and CD161EV [0.467, P 5 .010)] in fresh products. Likewise,
LPS-induced IL-10 significantly and negatively correlated with
B cell–derived, monocyte-derived, and T cell–derived EV (CD191EV
[r5 0.513,P5 .004], CD161EV [r5 0.499,P5 .005], and CD31EV
[r 5 0.379, P 5 .042]).

At day 42 of storage, there was a significant negative correlation
between platelet-EV and LPS-induced TNF-a (r5 0.352, P5 .048;
supplemental Table 1b). In the absence of LPS stimulation, a clear
positive correlation was identified between IL-8 and total WBC-EV
as well as CD141 monocyte-EV (r 5 0.570, P 5 .001; r 5 0.610,
P 5 .0004, respectively; supplemental Table 1b).

Discussion

In this study, different manufacturing methods influenced the quality
control parameters and EV characteristics of RCC products and
were associated with differential immunomodulatory activity in vitro.
Our findings are in agreement with previously published studies
documenting differences in RCC quality measures, including levels
of hemolysis, potassium, deformability, and residual plasma, platelet
and leukocyte concentrations, and EV quantities across manufactur-
ing method.30,32,41,42 It is no longer appropriate to consider all RCC
used in transfusion as equivalent. The current study is among the
first to document a potential functional consequence related to
these differences.

Although factors associated with TRIM are yet to be fully elucidated,
studies have suggested that the infusion of damaged or active cells,
and/or foreign antigens/mediators in both soluble and cell-associated
forms, are potential immunomodulatory mediators that are strongly
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associated with TRIM.7,12,13,43 Several studies have shown that
RCC products contain residual cells and accumulate cell-derived
factors in the supernatant during storage, such as EVs, which have
been shown to have proinflammatory and immunosuppressive

potential.30,44-47 For instance, in a publication by Danesh et al
in 2014,47 the authors demonstrated proinflammatory effects,
including increased release of proinflammatory cytokines from
monocytes after incubation with exosomes (small EV) isolated
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from RCC, suggesting that RCCmay contribute to TRIM. Conversely,
in other previous work by our group, supernatants from leukoreduced
stored RCC that had been depleted of EVs suppress monocyte
function in vitro and extracellular protein-bound RNA, such as
microRNA, were implicated as a potential soluble mediator of
immunosuppression.40

In this study, an immunosuppressive effect was identified with AD
and WBD RCC supernatants as shown by the significant reduc-
tion in the release of the inflammatory cytokine (TNF-a) by
monocytes in response to LPS stimulation. TNF-a is an important
cytokine in immune activation and antimicrobial immunity.48-50 In
clinical studies, low whole blood TNF-a production in response to
LPS is a reproducible marker of immune suppression in critically ill
patients, associated with risks of nosocomial infection, prolonged
organ dysfunction, and death.51-53 Our findings are in agreement
with previous studies reporting similar immunosuppressive activity
of WBD RCC products.39,54

In our exploratory analyses relating immunomodulatory activity to
cell-derived EV, a statistically significant correlation was identified
in this study between platelet-derived EV and the suppressed
LPS-induced TNF-a production in RCC at expiry. Similar to what
was observed for residual platelets, there was a negative correlation

between platelet-EV and LPS-induced TNF-a production, suggest-
ing that platelet-derived EVs correlated with immunosuppres-
sive activity. Because neither residual cells nor EV population
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Figure 4. Monocyte LPS-induced cytokine production. (A) TNF-a, (B) IL-10, (C) IL-1b, and (D) IL-8 following exposure of RCC supernatant from different RCC

manufacturing methods at fresh (day 5/white) and at expiration (day 42/shaded). Significant level in comparison with control (*P , .05; **P , .01; ***P , .001).
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correlations perfectly explain the mixed immunomodulatory effects
observed with different blood manufacturing methods, it is likely that
other mediator(s) in the supernatant of the blood products might
play an important role in these effects. Although the focus of this
study was not to analyze the soluble immunomodulator factors in
the blood product supernatant, the immunomodulatory roles of
several soluble mediators, including platelet-derived mediators,
have been examined. For instance, Perros et al55 showed that
supernatant from platelet concentrate cocultured with dendritic
cells resulted in significant immunosuppression as evidenced by
downregulated IL-12, IL-6, IL-1a, and TNF-a. It has been indicated
that this could be due to soluble mediators present in the
supernatant such as histamine, platelet factor 4, and sCD40L,
which can regulate the expression and the production of cytokines
and chemokines.55 Furthermore, Ando et al56 revealed that platelets
upon stimulation secrete suppressive soluble factors, more likely to
be protein(s), which may downregulate the macrophage responses
without direct cell–cell contact. Recent work from our group
showed that platelet-EVs induced TGF-b secretion without in-
ducing proinflammatory cytokines in EV-exposed monocytes.57

Interestingly, our study failed to identify significant correlations
between RBC-EV and monocyte cytokine production across
manufacture methods for either fresh RCC or RCC at expiration,
consistent with our recent publication measuring effects of RBC-EV
on monocyte activation.57 Previous studies suggest an immuno-
suppressive role of RBC-EV; Sadallah et al58 observed a significant
reduction in the release of LPS-induced inflammatory cytokines
(TNF-a, IL-8) in the presence of exosomes derived from isolated
erythrocytes. They postulated that the immunosuppressive effects
could be due to phosphatidylserine expressed on the surface of
the RBC-EV, which have been shown to downregulate the
immune response. It has been also suggested that the RBC-EV
react with Toll-like receptors and downregulate their ability to
activate the macrophage in the presence of LPS stimulation.58

Whether transfusion of these EV within the RCC product
may account for some of reported immunosuppressive activity
associated with transfusion remains uncertain and requires
further investigations.

Although an immunosuppressive effect was observed with the
supernatant from AD and WBD RCC, supernatants from fresh
WBF units resulted in significantly higher inflammatory cytokine
(IL-8) production from the unstimulatedmonocytemodel in comparison
with controls. IL-8 is a very important mediator and regulator of the
innate immune response.59 It is also believed to be a valuable
diagnostic tool because it has been used along with other
cytokines, such as IL-6, to determine the severity of inflammation
in the body before death.59,60 Interestingly, fresh WBF units, which
were associated with higher IL-8 production in the absence of LPS,
were shown to have lower residual platelets. At the same time, RCC
supernatants that resulted in monocyte IL-8 expression similar to
control values had higher residual platelet counts, suggesting that
perhaps residual platelets may blunt inflammatory effects of other
mediators in this model. Therefore, the effect of residual platelets on
immunomodulatory activity and patient clinical outcomes is worth
additional examination.

The augmented inflammatory responses associated with “fresh” but
not “expired” WBF products is a novel finding that could provide a
biological mechanism for the data recently published by Heddle

et al.20 In that registry study, transfusion of fresh (#7 days of
storage) WBF was associated with higher in-hospital mortality
compared with the mid-age (8 to 35 days) of the reference group
(RCF RCCs). Collectively, our work suggests that storage duration
and blood manufacturing method used to produce the blood
components could both affect patient clinical outcomes. However,
additional investigation is warranted to validate and explain these
findings, and to identify the causative factors associated with these
outcomes.

Our study has limitations. It focused on the cytokine production of
monocytes because of its clinical relevance, especially in critically ill
patients. However, the immunomodulatory effects of RCC super-
natant on other immune cell types or on other measures of the
monocyte function may be different. Similarly, in vitro models may
not reflect the complexity of the biological system in vivo and the
interactions between immune and nonimmune cells, endothelial
cells, and microenvironment, which all may influence host response
to transfusion. Furthermore, in this study, we examined only fresh
(day 5) and expired (day 42) RCC supernatant because it covers
the storage time range for RCC transfusion, but earlier points such
as day 0 or day 1 may better reflect the influence of manufacturing
methods without a storage effect. In addition, we did not measure
the effect of the EV-free supernatant or the potential soluble
immunomediators in the supernatant; it is likely that these factors
may play an important role in the mixed immunomodulatory effects
observed with different blood manufacturing methods. We view
these as important future studies. Furthermore, we centrifuged the
blood product to collect the supernatant for testing, and it is
possible that the centrifugation may generate more EV in the
supernatant and may release the cargo of some cells or particles,
which may affect the final results of this study. Moreover, not all EV
in this study were categorized based on their cell of origin given the
small EVs/exosomes that were detected by the TRPS technique but
were not identified by the flow cytometer. Thus, the exploratory
correlation analysis relating immunomodulatory activity to cell-
derived EVs did not include all EVs, but rather those large enough
to be detected on the flow cytometer (.100-150 nm). Furthermore,
the correlation analysis performed here was an exploratory
correlation only; we did not correct for multiple comparisons in
the correlations because of hypothesis-generating exploratory
data. Additionally, it is not yet clear whether these findings and
differences observed are due to the differences in manufacturing
methods or to other variables such as donor characteristics.
Although donor factors such as sex and age may influence RCC
products during storage,61 the main focus of this project was
to investigate the effect of different manufacturing methods on
RCC characteristics and immunomodulatory effects on monocyte
activity.

In conclusion, this study shows that blood manufacturing methods
significantly influence the immunomodulatory effects of RCC
supernatant on monocytes in vitro and significantly affect RBC
and non-RBC EV characteristics throughout storage, which have
the potential to affect quality and safety of RBC products. Effects
were largely independent of storage duration, suggesting that the
differences observed between RCC manufacturing methods may
account for differences in studies examining clinical effects of
RCCs storage duration, particularly within international multicen-
ter studies. Results warrant further examination of their potential
immunomodulatory effects and clinical consequences.
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