
UC Irvine
ICS Technical Reports

Title
SpecC profiler : specification-level exploration tool

Permalink
https://escholarship.org/uc/item/8764j2dj

Authors
Srbljic, Sinisa
Stefanec, Mario
Benc, Ivan

Publication Date
2000-09-12

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8764j2dj
https://escholarship.org
http://www.cdlib.org/

Sinisa Srbljic
Mario Stefanec

Ivan Bene

Technical Report #00-29
September 12, 2000

Department of Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425, USA

Notice:

Copyright
(Title 1 U.S .)

Sinisa Srbljic
Mario Stefanec

Ivan Bene

Technical Report #00-29
September 2000

(Version as on September 12, 2000)

Department of Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425, USA

sinisa@ics.uci.edu
mario@ics.uci.edu
ibenc@ics.uci.edu

Abstract

Spece methodology of the system design consists of four major hierarchical levels:
specification, architecture, communication, and implementation. The Spece Profiler is a high-level
process within the Spece methodology, which analyzes system design at the specification level. To
achieve fast profiling with satisfactory accuracy, the Spece Profiler relies on simulation and front-end
compiler tools. Each subpart of the specification-level design is associated with the profiling
information, targeting computational complexity, storage requirements, and communication complexity
of the specification design. In addition, Spece Profiler predicts the performance, such as number of
instructions or execution time.

This report describes the profiler architecture and implementation. The accuracy of the
profiler is asserted by comparing the performance predicted by the profiler with the results of simulated
execution of different applications, like JPEG and Vocoder.

3

2.1 Profiler back-end architecture

2.2 Profiler front-end architecture

results •11>'U1it""n,.nl!tu.n

4 JIUl.n..,1En, '"""'"" .n. "'"""'"" """""""""' '" """"'' .n.,,..

5 JIUl,...,.,,.il'1'H.n""'

6 Conclusion

7 Acknowledgments

8 References

A Installation instructions

A.1 Installation on WindowsNT

A.2 Installation on Unix

B Front-end user reference manual

B .1 Introduction

B.2Menus

B.2.1 Project

B .2.2 Behavior

B.2.3 View

B .2.4 Component

B.2.5 Partition

B.2.6 Help

B.3 How to use the profiler front-end

B.3.1 Profiling on WindowsNT

B.3.2 Profiling on UNIX

B.3.3 Profiling of your own projects

1

2

2

3

5

7

8

9

10

10

11

11

11

12

12

12

12

12

13

13

13

13

14

14

16

16

1 General profiler architecture

2 Basic back-end functions

3 Basic front-end functions

4 Profiler working environment

5 Comparison of profiler prediction and instruction

set simulator (ISS) results for JPEG example using

MC56600 processor

ii

2

2

4

5

9

1 Profile results example

2 Spec. PE model

iii

6

7

1

During system-level design, designers

choose different models in different phases of

the design process in order to implement desired

functionality using a set of physical

components. The Spece design process or

methodology is a set of design tasks that analyze

and explore a set of models at different

hierarchical levels, i.e. at different stages of the

design process [l]. It starts with specification

model, transforming it into architecture model,

followed by the communication and

implementation model.

Profiler is a part of the unified Spece

1 methodology. Its main role within the Spece

methodology is to improve the specification

model. The specification model defines the

functionality of the system, and does not reflect

any architecture, communication or

implementation information. The profiler helps

designer to analyze and explore the specification

model, targeting computation complexity,

storage requirements, and communication

demands of the given specification model and

all of its parts. Efficiency of the given

specification model can be improved by

introducing parallelism, or by usmg different

calculation algorithms. Refinement of the

design's specification model is an iterative

1

process that stops when designer is satisfied

with the predictions provided by the profiler.

Refined specification model is then transformed

into the architecture model [1]. At the

architecture level, Spece methodology uses

estimator, another Spece exploration tool,

which gives more precise, clock cycle accurate,

information about performance of the design on

the different architectures. Next stage in Spece

methodology is the communication model [1]. It

introduces actual wires and timing relationships

according to the used communication protocols.

Finally, communication model is transformed

into the implementation model [1], which

represents a clock-cycle accurate description of

the system.

Since the system-level design process is

time-consuming, due to searching through the

large design space, the main goal of the profiler

is to improve the productivity and quality of the

design process. The productivity is achieved by

shortening the time needed to design the system.

Since the profiler reduces the time needed to

design the system, it enables the search of even

larger design space, improving the quality of

design by examining more possible solutions.

Moreover, the profiler is also used as a simple

. performance tool that predicts the metrics such

as execution time, number of executed

instructions, etc.

1: General profiler architecture

Section 2 describes the Spece profiler

architecture. The details of the profile results

extraction and calculation are given in Section

3. Performance prediction process is presented

in Section 4. In Section 5 we discuss the

accuracy of performance prediction. The

implementation details of the profiler and our

future work are described in Section 6.

2: Basic back-end functions

2

2

Figure 1 shows general profiler architecture

consisting of two major parts: back-end and

front-end. The profiler back-end takes the

specification model of the design as input,

analyzes it, performs profiling, and generates

· profile results as output. Profile results are input

for the profiler front-end, which predicts

performance, enables modification of the

specification model, and displays all of these

results in graphical form. While Section 2.1

describes profiler back-end in more details,

Section 2.2 describes the front-end.

Figure 2 shows basic back-end functions:

static analysis, specification preparation,

simulation, statistic results collection, and

profile results calculation.

Specification model is written in the Spece

language [l-3]. The basic Spece language

syntax and semantic structure is a behavior [1-

3]. The Behavior hierarchy is used to

decompose a system's specification into the

sequential and parallel subbehaviors, i.e. it

enables the decomposition of specification into

the hierarchy of components. Each behavior is a

class consisted of a set of ports for 1/0

communication with other behaviors, a set of

sub behavior instantiations, a set of private

variables and functions, and a public main

function [1].

Static analysis performs control flow

analysis, which builds the basic blocks structure

for all parts of the specification model, i.e. for

all behaviors in a given hierarchy, as well as for

all functions within each behavior.

Once basic blocks information is known,

specification preparation upgrades the

specification model and prepares it for the

simulation and statistical data collection. For

example, the specification model is

instrumented by inserting counters in each basic

block in order to keep track of the number of

basic block executions.

A functionally accurate simulation of the

upgraded specification model is run for each of

a set of test vectors from the application-test

vectors database. Upgraded specification model

is compiled and executed on the host machine.

If the simulation is run with different test

3

vectors, then profiling results represent average

value for a given set of vectors.

During the simulation, statistic results

collection updates counters containing statistical

information about total number of the basic

blocks executions. At the end of the functional

simulation, it produces statistical data for all

basic blocks.

Statistical data, combined with information

obtained during the static analysis, is used to

calculate the profile results. Profile results

calculation is computationally intensive

process, and since it is a core function of the

profiler back-end, it is separately presented in

details in Section 3.

2.2 Profiler front-end architecture

Figure 3 shows basic front-end functions:

display, editor, and performance prediction.

Display presents, in graphical form, various

data associated with the specification model:

Spece source code, behavior hierarchy,

behavior-to-behavior communication, profile

results, and performance prediction results.

Figure 4 shows the example of the output of the

display.

The profile and performance prediction

results are displayed both graphically and

numerically. The presentation of the results is

organized hierarchically due to the amount of

data to be displayed. For example, at the top of

the results hierarchy, designer sees graph with

only three bars: average number of operations

executed by a chosen behavior, behavior I/O

traffic, and behavior storage requirements. By a

double-click on the appropriate bar, the designer

sees more details. For example, by double-click

on the operation bar, the graph with the

following average information is presented:

number of arithmetic operations, number of

memory accesses, number of function calls,

number of logic and bit operations, and number

of data type conversion operations. Designer

can chose either to see even more details for

each of the given bars, or can return back to the

higher level of the results hierarchy.

4

Editor cooperates with the display, enabling

rearranging and changing of the Spece source

code. Since source code can be saved and

profiled again, it is possible to see the impact of

the design modification to the specification

model parameters.

Profile results, combined with the

information stored in the specification PE

models (where a PE can be a standard processor

or a custom hardware), is used to predict the

performance. Peiformance prediction is

significant function of the profiler front-end,

and is separately presented in details in Section

4. In addition, in Section 4 we describe how to

built specification PE models.

3

IOI beh•vio!Moin

·II;;Ji"P'Air;>ut
&!Ol Jpegi>eg :-fLI OCT dci

If! H<odeD.t• handed.ta

j fLJ HtifmanEncoda htifm..,..

ILJ Quatiizoioo quan1iza00n

-~Ou!putou!pul

)
olu f

)

p -• B;

uri~e_byta • (coda L la.ask (pl) << (O - p);
lete_bits • B - p;

uriee_byta I• (code -<< -p}
left_bits -• n;

! I I!! I!/// I/ II! I I I I I I I I I I I I I! I I I!/ I I I I I I 6000
void 11!1.Jilin(Void) {

printt (••••••••••••••••••••••\n•); 4000
printt("JPBG Encoder Eal;Jin .•• \n"');
pr:intt.("•--•••••••••••••••••••\n"'); 2000
block_no • 0 ;
eoba.p • o;
do
(

lfll11e.Qec(J20)

·: AddlSUb(704)

1BM>A1p1y(256J
DMde(64)

.Modu!o(O)

block_no H ; cmp: dofeul_CClnl'oneol
printtc•Processinq Block \dth .•. \;

- ['.] x);

••••\n");
d ••• \n");
S"T1U"\n•);

4: Profiler working environment

Ill Memory Acres (6699)

·'':Fune. Col (J)

lfllArlhmelic(1749)

l.ogic,61(368)

!BConvers!on(O)

The profile results, which are output of the

profiler back-end, are organized as a two

dimensional table. These tables store profiling

information, such as: average number of

operations, 1/0 traffic, and storage requirements.

For each behavior, profiler back-end generates

separate table. Table 1 shows the example of the

table with profile results, and since these tables

are large (56 rows and 29 columns), only small

part of the table is shown.

The calculation of the average number of

operations is based on the following

information: statistical data collected during

functional simulation and results of static

analysis of the Spece specification model.

Static analysis performs control flow analysis of

the high-level intermediate Spece code that is

stored as syntax tree [l].

In order to calculate the average number of

operations executed by the behavior, we take

into the account all functions executed by the

·behavior, as well as all of its subbehaviors.

5

Since the average number of operations of a

compound behavior depends on the average

number of operations of all its subbehaviors, we

start the process of calculation of the average

number of operations with leaf behaviors. The

leaf behavior is not compound, which means

that it does not contain any subbehavior. The

process of calculation continues with those

compound behaviors for which we already

calculated the average number of operations for

all subbehaviors.

Since the functionality of a behavior is

defined by its main function, the average

number of operations executed by the behavior

is defined to be equal to the average number of

operations of its main function, including

operations in all other called functions and all

instantiationed subbehaviors. Therefore, to

calculate the average number of operations

executed by the behavior, first we must

calculate the average number of operations

executed by each function. However, functions

can be recursive, so the average number of

operations of the functions is calculated by

Table 1: Profile results example

en
c:
0

~
(j)
c..
0

ION

CON

ADD

ASN

int

2

1

1

1

Data types

long float

0 0

0 0

0 0

0 0
, .

7

6

solving the following system of liner equations:

A=CxA+O (1)

A is n-dimensional vector, where ai is the

average number of operations executed by the

function i and n is the number of functions in

the behavior, including the main function. C is a

square matrix, where c;J denotes how many

times function i called flinction j. 0 is n

dimensional vector. For the function j in the leaf

behavior, the element Oj is calculated as:

Oj = (LNoBl * ExBl) I ExFn (2)

while for the function j in the compound

behaviors is calculated as:

Oj = (LNoBl * ExBl) I ExFn +

(LNoSB * ExSB) I ExFn, (3)

where NoBl is the number of operations in a

basic block, ExBl is the number of basic block

executions, NoSB is the average number of

operations in a subbehavior, ExSB is the number

of subbehavior executions, and ExFn is the

number of function executions. The summation

for a given function j include all basic block of

the function, as well as all calls to subbehaviors.

The only unknown in the system of liner

equations (1) is the matrix A. The values of all

other parameters are available either from

simulation (matrix C, ExBl, ExFn, and ExSB),

from static analysis of the specification model

(NoBl), or from previous calculation steps

(NoSB). Therefore, by solving the system of

liner equations, we calculate the average

number of operations for all functions. The

average number of operations executed by the

behavior is then set to be equal to average

number of operations of the main function.

110 traffic of the behavior is calculated by

solving the linear system of equations similar to

(1). However, in this case matrix A represents
1 average I/O traffic of the behavior, NoBl is the

number of accesses to the port variable in a

basic block and NoSB is the average I/O traffic

in a subbehavior.

Storage requirement consists of the

memory required for storing behavior code,

static memory, dynamic memory, stack

(/)
c:
0

~
Q)
0.
0

Table 2: Spec. PE model

Data types

int long float
=>

ION 1 2 4

CON 1 2 4

ADD 1 2 4

ASN 0 0 0
. ,·',·

• ·v ',

7

requirements and port buffers. Storage required

for storing static memory and port buffers is

obtained by scanning of the source code, while

behavior code requirements is calculated by

simulating the target code generation process.

Stack requirements are calculated by using the

information collected during the simulation and

by building the procedure call tree. Dynamic

memory requirements are also calculated by

using the information collected during the

simulation and by regenerating the information

of run-time dynamic allocation process.

We give the profile results for storage

requirements in term of data types, like integer,

long, double, etc. When designer choose one of

the specification PE models in order to see the

performance prediction results, profiler front

end converts these types into the number of

bytes according to the given architecture. The

weights that convert data types into the number

of bytes are part of the specification PE models,

which is in detail described in next section.

4

Performance prediction is one of the basic

profiler front-end functions, as it is explained in

Section 2.2. As a performance measure,

designer can chose either execution time,

· number of executed instructions, or some other

target PE architecture parameter. Performance is

predicted based on profiling results generated by

the profiler back-end (see Table 1) and the

specification PE models.

Specification PE models are built as the

tables, where elements of the table correspond

to elements of Table 1, which stores the

profiling results. Table 2 presents the example

of the specification PE model. Two similar

methods are used to build the table, one used for

standard processors, and the other one used for a

custom hardware. For the standard processors,

table is generated by the process similar to the

process of target code generation. For custom

hardware, the table is generated by the process

similar to the process of synthesis of the control

unit, or to the process of the synthesis of the

register-transfer level (RTL) instructions.

For example, for the Spece source code:

{int c; int a; c=a+12345;} profiler generates the

profiling results presented in Table 1, while the

compiler generates the following target machine

code {MOVE a, Rl; MOVE #12345, Rl; ADD

Rl, R2; MOVE R2, c}. From these results, we

conclude that each integer identifier and

constant contribute with one MOVE instruction

into the target code, each integer addition

contributes with one ADD instruction, and there

is no contribution from assignment. According

to this discussion, we put the appropriate

weights into the Table 2 that reflect the

compilation process from the high-level

8

profiling information into the target machine

code. Weights are determined either to represent

processor cycles, execution time, number of

target instructions, etc. As an example, in Table

2 we present weights for the number of

processor cycles, assuming that operations with

integers can be done in one cycle, with long

integer in two cycles, and floating point

numbers in four cycles.

By multiplying the appropriate elements of

the Table 1 and Table 2, and then summing up

all the calculated amounts, we calculate the

performance according to the chosen weights.

5

The profiler is evaluated by running design

examples, and comparing the profiler's

performance prediction with the clock accurate

instruction set simulation [4-6]. In this paper,

we present the comparison of the profiler's

prediction for the JPEG example running on the

MC56600 processor, with the prediction of the

instruction set simulator for the same processor

[4, 5].

JPEG is an image compression standard [4,

5], consisted of four major building blocks.

Handle data fragmentizes picture into 8x8 pixels

blocks. Discrete cosine transformation (DCT)

transfers blocks into frequency domain. The

DCT output coefficients are then quantified in a

ISS

Profiler

(a) Average number of instructions (b) Average execution time [ns]

5: Comparison of profiler prediction and instruction set simulator (ISS)wsults
for JPEG example using MC56600 processor

(JPEG behaviors: 1 - Huffman encode, 2 - Handle data, 3- Quantization, 4 - OCT)

quantization block, and finally encoded in

Huffman Encode block. Each previously

mentioned JPEG building block is mapped to

one SpecC behavior, and comparisons for those

four behaviors are made in Figure 5.

For each behavior two comparisons are

made, one comparing the prediction of the

number of instructions, and second comparing

the execution time prediction. As can be seen in

the Figure 5, profiler accurately predicts the

relatively performance for both the number of

instructions and execution time for all four

behaviors. It accurately determines which one of

the given two behaviors lS more

computationally intensive. For absolute

performance, it can be noticed that for all

behaviors the prediction is within 10% of the

actual result, except for the execution time

9

prediction for the Handle Data behavior. The

Handle Data behavior performs large number of

system calls (for example print calls) that are

not currently included in the profile results.

6

We implemented the profiler as

heterogeneous distributed system running on

both UNIX and Windows operating systems.

Currently, profiler is used and tested by the

Center for Embedded Computer Systems,

University of California, Irvine, USA, and

School of EE and Computing, University of

Zagreb, Croatia. Profiler back-end is written in

C++, and we prepared executable codes by

using gee compiler for both UNIX and

Windows environment. Profiler front-end is

written in Visual Basic (display, editor, and

performance prediction), while run-time support

1s written in Visual C++. Run-time support

enables communication and synchronization of

the back-end and the front-end when they are

running on Windows operating system. We

generated the executable code for front-end only

for Windows system.

Our first experiance during the testing of the

Spece profiler shows significant improvement

in the productivity of system-level design

process by using profiling results and confirms

accuracy of the performance prediction results.

By increasing the database of the available

target specification PE models (where a PE can

be a standard processor or custom hardware),

we also expect that the quality of design will be

significant! y improved.

Currently we are implementing additional

functions in the profiler back-end like the

prediction of the point to point communication,

size of dynamically allocated memory, stack

size, and size of the memory for source code.

We are enhancing the profiler front-end

functionality by adding more features like

performance prediction for heterogeneous target

systems, parallel/sequential exploration feature,

the worst case analysis feature, and target

system synchronization exploration feature.

10

7

We would like to thank Professor Daniel D.

Gajski for inviting as to work on the Spece

profiler project. We would also like to thank

Andreas Gerstlauer, as well all all other

members of the Center for Embedded Computer

Systems, University of California, Irvine, for

provided help and valuable advises.

8
[1] D. D. Gajski, J. Zhu, R. Domer, A. Gerstlauer,

S. Zhao, SpecC: Specification Language and
Methodology, Kluwer Academic Publishers,
Boston, MA, ISBN 0-7923-7822-9, March 2000

[2] Jianwen Zhu, Rainer Doerner and Daniel D.
Gaj ski, "Syntax and Semantics of the Spece
Language," Proceedings of the Synthesis and
System Integration of Mixed Technologies
1997, Osaka, Japan, December 1997.

[3] Rainer Domer, Jianwen Zhu, Daniel D. Gajski,
"The Spece Language Reference Manual," UC
Irvine, Technical Report ICS-TR-98-13, March
1998.

[4] Hanyu Yin, Haito Du, Tzu-Chia Lee, Daniel D.
Gaj ski, "Design of a JPEG Encoder using
Spece Methodology," UC Irvine, Technical
Report ICS-TR-00-23, July, 2000.

[5] L. Cai, J. Peng, C. Chang, A. Gerstlauer, H. Li,
A. Selka, C. Siska, L. Sun, S. Zhao and D.
Gaj ski, "Design of a JPEG Encoding System,"
UC Irvine, Technical Report ICS-TR-99-54,
November 1999.

[6] Andreas Gerstlauer, Shuqing Zhao, Daniel D.
Gaj ski and Arkady M. Horak, "Design of a
GSM Vocoder using Spece Methodology," UC
Irvine, Technical Report ICS-TR-99-11, March
1999.

Installation on WindowsNT

1) Double click on the Setup.exe

2) Follow instructions displayed by the installation. Remember name of the folder in which you
installed the profiler.

3) Add to the PATH environment variable subdirectory "bin" which is located in the directory
that contains installed profiler. For example, if you installed profiler into
"c: \SpecC\profiler" directory, you should add "c: \SpecC\profiler\bin" to your
PATH environment variable.

IMPORTANT: Do not use folders which names contain"" (space), the profiler
won't work properly in such cases.

A.2 Installation on UNIX

1) Unpack the binary distribution archive into an empty directory called SpecCProf (or select
a similar name)

=> mkdir SpecCProf
=> cd SpecCProf
=> gtar xvzf Profiler_VlOl_BIN.tar.gz

2) Put the directory containing profile executable in the PATH

11

Graphical user interface (profiler client) for the Spece profiler has been developed in order
to simplify the process of the spec profiling. Client as input uses a text file with the description of the
spec profile. This file is created by the profiler when -g switch is enabled:

=>profiler -p -g example

Beside the spec profile file, client uses files with descriptions of different processing elements.

Menus

B.2.1 Project

Open
Opens an existing spec profile file. Spec profile files end with "_gui . txt" suffix.

Compile/Profile
If you have Spece system installed on you Windows machine, you can use this
option to recompile the project and get new profiling results.

Arguments

Telnet

Exit

If you are using Compile/Profile option, use ·this to specify the arguments that will be
passed as input arguments for the simulation.

Starts telnet application. Telnet application is used as a command window for the
UNIX based systems.

Exit profiler GUI.

B.2.2 Behavior

Name
Shows names of the behaviors in the behaviors view.

Operations
Shows number of operations for each behavior in the behaviors view.

Traffic
Shows traffic for each behavior in the behaviors view.

Storage

12

Shows storage required for each behavior in the behaviors view.

Partitions
Shows partitioning of the behaviors in the behaviors view.

B.2.3 View

Spece source
Enables you to see and modify the source code of the project. If you want to use this
feature _gui . txt file must be located in the directory which contains source files of
your project.

Hierarchy (disabled)
Will enable you to see the behavior hierarchy picture.

Communication (disabled)
Will enable you to see picture of the communication paths.

Save source
Saves all modifications made on the source code.

B.2.4 Component

Open

Select

Opens file with the PE component description. Component description files end with
"_cmp. txt" suffix.

Opens dialog for selecting the active PE component.

B.2.5 Partition

Save
Saves partition information to the file.

B.2.6 Help

About
Displays about box.

13

to use

B.3.1 Profiling on WindowsNT

We have prepared two examples (HelloWorld, TLC) which will enable you to start using
profiler much faster and easier:

1) Start the profiler client by DOUBLE CLICK on the PROFILER CLIENT ICON.

2) To start one of the prepared examples, choose OPEN from the PROJECT menu.

3) Open dialog box will appear and you have to choose the EXAMPLES directory. Within
EXAMPLES directory choose either HELLOWORLD or TLC directory.

4) Within chosen directory open appropriate _gui. txt file (HelloWorld_gui. txt or
TLC_gui . txt).

5) After opening _gui . txt file, left part of the window, behavior view, shows Main
behavior, while right part of window, source code view, shows the source code of the Main
behavior.

6) CLICK to the + LEFf of the Main behavior to see all SUBBEHA VIORS of the Main
behavior.

7) CLICK on the NAME of the behavior to see the SOURCE CODE of the chosen behavior in
the source code view.

8) To see names, number of operations, traffic, storage or partitions for the behaviors, choose
one of the options from the BERA VIOR menu NAME, OPERATIONS, TRAFFIC,
STORAGE or PARTITIONS, respectively.

9) On the RIGHT CLICK to any behavior, a pop-up menu with the following options appears:
GENERAL, OPERATIONS, TRAFFIC, STORAGE and PARTITIONS.

10) By choosing GENERAL option a new window with bar chart is displayed. Chart shows
number of operations, traffic and storage groups information of the chosen behavior.

11) Double click on any group displays chart with the informations for that group.
Groups are ordered hierarchically:

Operations Traffic Storage
Memory Access Input. Static

Constant Bit Bit
Identifier Event Event
Array Access Int Int
Other Char/Bool Char/Bool

14

Function Call Short Short
Arithmetic Int/Long Int/Long

Inc/Dec LongLong LongLong
Sub/Add En um En um
Multiply Pointer Pointer
Divide Float Float
Modulo Single Single
Comparison Double Double

Logical/Bit LongFloat LongFloat
Bitslice Output Dynamic
Pos/Neg *same as Input *same as Static
Not Stack
Or *same as Static
And Ports
Eor *same as Static
Shift

Conversion

UP button shows upper level in the hierarchy.

12) To load a component choose OPEN from the COMPONENT menu.

13) Open dialog box will appear and you have to choose the COMPONENTS directory. Within.
COMPONENTS directory double click on one of the component files:

Motorola_No_Instructions_cmp.txt
Motorola_Time_cmp.txt
CustomHW_time_cmp.txt

14) After opening the component select the active component by choosing SELECT option
from the COMPONENT menu. After selecting desired component click on OK button.
Selected component becomes active and profiling results for that component are shown for
all behaviors.

15) Changing of the source code of the behaviors is possible in the source view. Choose SA VE
SOURCE from the VIEW menu to save modifications.

16) Choose COMPILE/PROFILE from the PROJECT menu to obtain profiling results for the
modified source code. Progress dialog appears on the screen showing progress of the
compilation and profiling process. When profiling is complete, behavior view is updated
with new profiling results.

17) Use actions described in 6 - 16 to analyze new profiling results.

15

B.3.2 Profiling on UNIX

We have prepared four examples for UNIX platform: HelloWorld, TLC, Vocoder and
JPEG. Before profiling on the UNIX map UNIX drive with examples to your local NT machine.
Follow steps described in 3.1. Following steps are different:

3) Open dialog box will appear and you have to choose the EXAMPLES directory from the
mapped UNIX drive. Within EXAMPLES directory choose HELLOWORLD, TLC,
VOCODER or JPEG directory.

4) Within chosen directory open appropriate _gui. txt file (HelloWorld_gui. txt,

TLC_gui. txt, TestBench_gui. txt or Tb_gui. txt).

16) To obtain results for the modified source code choose TELNET from tbe PROJECT menu.
This brings up the telnet window.

17) Log on to the UNIX machine with installed Spece system.

18) Go to the EXAMPLES directory on the mapped UNIX drive and enter the directory that
contains modified files.

19) Start make:

=>make

This will recompile and simulate the project, and also calculate new profiling results.

20) To load _gui . txt files with new profiling results choose OPEN from the PROJECT menu
and repeat steps 3 and 4.

B.3.3 Profiling of your own projects

If you want to use profiler GUI in profiling your own projects put them into existing
EXAPMLES directory:

1) Create new directory in the EXAMPLES directory

=>mkdir My_project

2) Create SIR file for your project.

3) To prepare SIR file for profiling execute the command:

=>profiler -i My_project_SIR_FileName

16

4) Compile instrumented SIR file into an executable file:

=>sec My_project_SIR_FileNarne_ins -sir2out

5) Execute instrumented executable with any number of test vectors.

6) To calculate profile for the project and create _gui . txt file execute the command:

=>profile -p -g My_project_SIR_FileNarne

If you are using WindowsNT operating system follow instructions described in 3.1. In this
case, if you want to use Compile/Profile feature you have to provide a makefile in the directory
containing the source files and name it make_My_project_SIR_FileName.

If you are using UNIX operating system follow instructions described in 3.2.

17

