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Procedural and Declarative Category Learning Simultaneously Contribute to 

Downstream Processes 

Priya B. Kalra (pkalra7@uwo.ca), Laura J. Batterink (lbatter@uwo.ca), J. Paul Minda (jpminda@uwo.ca) 
Western Institute for Neuroscience, Perth Drive London, ON N6G 0B9 Canada 

 

Abstract 

Studies on interactions between procedural and declarative 
learning have focused on largely on competition during 
encoding, consolidation, or use (retrieval). Less attention has 
been paid to interactions between the representations created 
by each system. In a behavioral study, we demonstrated that 
information from both declarative and procedural learning can 
contribute to response selection. Participants were instructed to 
use a completely diagnostic, verbalizable, shape-based rule to 
categorize exemplars and received feedback after each trial. 
However, the categories also differed probabilistically in their 
color distributions. Participants used both color (learned 
procedurally) and shape (learned declaratively) to categorize 
exemplars, making faster responses when both sources 
indicated the same category judgement, and slower when they 
conflicted. Debriefing confirmed that most participants were 
unaware of the color distributions (aware participants were 
analyzed separately). This result suggests that both the color 
(procedural) and shape (declarative) information contributed to 
response selection.  

Keywords: memory, category learning, skill learning, 
knowledge representation, instruction 

Introduction 

Many mechanisms have been proposed for the process of 

category learning, and many models suppose a combination 

of at least two mechanisms (Pothos & Willis, 2011). One 

such pair of mechanisms is informed by the cognitive 

neuroscience of memory, procedural/implicit and 

declarative/explicit. Considerable evidence supports the 

existence and dissociability of these two forms of category 

learning, and their relations to procedural and declarative 

memory systems in the brain (Ashby et al., 1998, 2003; 

Ashby & Ell, 2001; Ashby & Maddox, 2011; Ashby & 

O’Brien, 2005; Filoteo et al., 1998, 2005; Knowlton et al., 

1994, 1996; Maddox & Ashby, 2004; Nomura et al., 2007; 

Price et al., 2009; Squire & Knowlton, 1995). 

 Evidence also suggests that both procedural and 

declarative/explicit category learning can take place 

simultaneously, over the same stimulus set (Crossley & 

Ashby, 2015; Foerde et al., 2006). However, some authors 

suggest that although learning can take place 

simultaneously and without interference, only one system 

contributes to downstream processes such as response 

selection and decision-making (e.g., Crossley & Ashby, 

2015). 

 
1 For simplicity we will use declarative/explicit and 

procedural/implicit interchangeably. 
2 Formally, this can be expressed as: 
(Eq 1) |ℎ𝐸(𝑛)| 𝜃𝐸(𝑛) <>  |ℎ𝑃(𝑛)| 𝜃𝑃(𝑛)  

Formally, COVIS (competition between verbal and 

implicit systems) provides a model of these two systems 

and how they could interact. COVIS integrates the 

traditions of research in memory and cognitive 

neuroscience (Ashby & Ell, 2001; Ashby & O’Brien, 2005) 

and can explain many of the observed phenomena. In the 

COVIS model, a procedural module and an explicit1 

module each internally reach a category decision, and 

submit their respective decisions to a gating mechanism, 

along with a confidence rating. The gating mechanism has 

a trust or bias parameter 𝜃  assigned to each module 

(based on its success rate during training), and combines 

this with the confidence rating (h) from each module to 

choose the category decision with the highest product of 

confidence and trust2. 

Confidence from the explicit module is based on distance 

from the category boundary (greater distance→more 

confident) and confidence in the implicit module is based on 

the absolute value of the difference between the probability 

of assigning each category (|𝑆𝐴(𝑛) − 𝑆𝐵(𝑛)|). This gating 

mechanism can account for observed effects such as trial-by-

trial switching between modules (Turner et al., 2017), 

dominance of one system in response selection despite 

learning by both systems (Crossley & Ashby, 2015), and 

gradual shifts over the course of training from dominance of 

one system to another (Poldrack et al., 2005). Notably, 

however, the gating mechanism as currently specified does 

not consider the contents (category decision) of each module, 

nor whether these are congruent with each other (both submit 

same category) or not. To the extent that the difficulty or 

degree of competition in a trial could be modeled by COVIS, 

it would take into account only the trust in and confidence of 

each module, not the category decision or the congruence of 

the two category decisions. 

However, outside of the laboratory, we observe scenarios 

in which information from both systems appears to be used 

simultaneously: for example, when making diagnoses, 

medical experts seem to use a combination of both 

conditional reasoning based on declarative knowledge as 

well as probabilistic reasoning based on experience (Norman 

& Brooks, 1997). Similarly, professional musicians 

performing from memory seem to simultaneously draw on 

both a non-verbalizable representation of motor sequences as 

well as a verbalizable understanding of the structure, form, 

and meaning of a musical piece (Chaffin, Logan, & Begosh, 

2009, cited in Reber, 2013). 

where 𝜃𝑒(𝑛) = trust in explicit input on the current trial, ℎ𝑒(𝑛) = 

confidence of explicit input on the currrent trial, 𝜃𝑝(𝑛) = trust in 

procedural input on current trial, and ℎ𝑝(𝑛) = confidence of 

procedural input on the current trial 
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To our knowledge, no study has been specifically designed 

to test whether information from both systems 

simultaneously contributes to a response within a single trial. 

However, some studies have hinted at this possibility. For 

example, Brooks and Allen (1991) observed that even though 

participants were given a perfectly predictive classification 

rule, their responses on a transfer task were nevertheless 

affected by similarity to previously seen exemplars along 

irrelevant dimensions—almost as if the similarity 

information were “contaminating” the rule-based 

classification. This study was originally designed to contrast 

rule-based and exemplar-based learning, not declarative and 

procedural learning, so it is possible that that the 

generalization based on exemplars could have been mediated 

by either procedural or declarative mechanisms.  

Similarly, Schoenlein and Schloss (2022) trained 

participants to classify stimuli based on a completely 

diagnostic shape difference, but using a cool-biased color 

distribution for one category and a warm-biased color 

difference for the other category. Participants were able to 

use the shape rule effectively, and they did not demonstrate 

explicit knowledge of color differences between categories. 

However, after training, participants were asked to rate how 

associated different colors were with each category (using the 

category names) on a continuous scale labeled from “not at 

all” to “very much.” The participants rated cool colors as 

more associated with the cool-biased category and warm 

colors as more associated with the warm-biased category, 

even generalizing to warm and cool colors that had not been 

included in the training set. Again, these findings 

demonstrate that unconscious learning of probabilistic 

information can occur simultaneously with explicit rule use. 

However, since the color-category associations were 

assessed outside of the categorization task, this study could 

not test whether this probabilistic color information directly 

influenced category response selection itself. 

More closely, Batterink and colleagues (Berger & 

Batterink, under review; Batterink et al., 2014) found that  

Figure 1a: Cool-biased color distribution. 

 

participants who were taught an explicit rule governing the 

use of novel articles showed an effect of the training 

distribution along a covert, second dimension (noun 

animacy), as reflected by reaction times, even when they  

were not aware of the article-animacy contingency. This 

finding shows that information acquired without awareness 

can affect intentional response decisions that are based on 

a deterministic rule, delaying response times when the two 

forms of information conflict. These results suggest that both 

information that the participant is aware of, as well as 

information that the participant is not aware of, are 

interacting at the point of response selection. In the current 

study, we attempt to extend this paradigm to category 

learning. 

The goal of the current study is to observe whether 

procedural and declarative knowledge contribute 

simultaneously to categorization response selection behavior. 

It can be difficult to disentangle the contributions of multiple 

learning systems in a single task because the systems usually 

converge on common responses. Here, we have designed a 

stimulus set in which information learned by each system can 

support different responses, and we have created trials in the 

test phase that are designed to maximize such divergence. 

For the declarative system, we provide—explicitly, 

verbally, and with examples—a deterministic, verbalizable 

category rule based on feature combinations. For the 

procedural system, the distribution of colors differs 

probabilistically between the two categories. If an association 

between color distribution and category membership is 

learned, it must be learned gradually, with immediate 

feedback. We also include measures of whether the color-

category knowledge is available to awareness or not. If it is 

learned gradually, based on feedback, and without awareness, 

we may infer that this learning is mediated by the striatal 

procedural system. The structure and task demands of the 

probabilistic color-category association are very much like 

the probabilistic classification task, which has been reliably 

demonstrated to use the striatal procedural system 

(Knowlton, Mangels, & Squire, 1996).  

Figure 1b: Warm-biased color distribution. 

During the test phase, if we see a difference between trials 

in which procedural and declarative learning point to the 
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same response (congruent) compared to those trials in which 

they point to different responses  

(incongruent), we will conclude that both sources of  

information contribute to response selection within a 

given trial. If we do not observe such a difference, we will 

conclude that information from both systems is not used 

simultaneously in response selection, though this does not 

rule out the possibility that parallel encoding may have 

taken place.  

Methods 

Participants 
A total of 249 undergraduates (ages 17 to 25, mean age 

18.4 years; 44% male, 54% female, 2% other/decline to 

state/non-binary/genderqueer) participated via an online 

platform for course credit. After all exclusions (see below), 

the final sample size for analysis was n=190. 

Materials 
Alien Stimuli 

“Alien” images were created using custom code and 

Python’s PIL package (https://pypi.org/project/pillow/) to 

combine geometric figures (ovals, rectangles, etc.) Each alien 

consisted of a large oval with some configuration of the 

following features: number of eyes (1-4), mouth type (round 

or angular), nose type (round or angular), ears (present or 

absent). All thirty-two possible combinations of these 

features were generated and used in the experiment (see 

Figures 2 & 3 for example images). 

Categorization Features and Explicit Rule. Stimuli were 

divided into two categories based on an exclusive or (XOR) 

rule over the eye and mouth dimensions. Stimuli in Category 

A had either a round mouth and odd number of eyes OR a 

square mouth and even number of eyes. Conversely, stimuli 

in Category B had either a square mouth and odd number of 

eyes OR a round mouth and even number of eyes. Thus, each 

category included 16 possible configurations of features 

(including both the diagnostic and nondiagnostic feature 

dimensions [nose and ears]). The XOR rule was chosen for 

two reasons.  First, an XOR rule is difficult or impossible to 

learn from feedback alone, so any use of the XOR rule could 

be assumed to be via the declarative system. Second, the 

complexity of the XOR rule requires considerable working 

memory and attention resource allocation, so it was unlikely 

that participants could attend to and become aware of the 

biased color distributions. 

Color selection and distribution. Each configuration of 

features (category token) was then generated in a variety of 

colors. Colors were divided into warm and cool colors based 

on their hue angle. Even hue-angle spacing was used to 

choose hue angles of 0, 30, 60, 90, 120, 150, 180, 210, 240, 

270, 300, 330 (where 0 corresponds to red and 180 to cyan). 

Warm colors were defined as those within 90 degrees (+/-) of 

0; cool colors were defined as those greater than 90 degrees 

(+/-) from 0. For each hue angle position, saturation (chroma) 

was adjusted to minimize differences in saturation across hue 

angles and between warm and cool color groups. Given the 

inherent asymmetry of the visual color space, it was not 

possible to equalize luminance (brightness) between warm 

and cool colors; cool colors were systematically lower in 

luminance than warm colors. See Figures 1a & 1b. The 

colormath package in Python (Taylor, 2018) was used to 

select colors in CIELChuv colorspace (CIE, 1986) and to 

calculate the distances between colors in that colorspace 

(delta e).  

Training phase color distributions.  

Unbeknownst to participants, stimuli in the training 

condition followed biased color distributions. Two color 

distributions were created: one warm-biased and one cool-

biased, and each was assigned to a category in 

counterbalanced fashion (i.e., for half of participants, 

Category A followed the warm-biased distribution and 

Category B the cool-biased distribution, and vice versa for 

the other half). Each training color distribution included a 

total of 88 tokens distributed across all 12 hue values. Each 

distribution contained 64 congruent (e.g., warm colors in the 

warm distribution) and 24 incongruent (e.g., cool colors in 

the warm distribution) items. Within each category, each 

color was also distributed evenly across subcategory and 

number of eyes. The distribution of non-diagnostic features 

(nose type and ears/no ears) was also matched between the 

two categories.  

Procedure 
Overview 

Participants completed the task on their personal 

computers (option to complete the task on tablet or phone was 

disabled) via the Pavlovia online testing platform 

(www.pavlovia.org). Both training and test phase tasks were 

created using PsychoPy (Peirce et al., 2019). After giving 

informed consent by selecting an online box in Qualtrics, 

participants viewed an explanation of the explicit rule on a 

screen with visual examples. Participants then progressed 

through the training phase, followed by the test phase. 

Finally, participants answered demographic and debriefing 

questions and completed a brief test of color-blindness using 

Ishihara plates. All instructions were provided in text form on 

the computer screen. 

 

Figure 2: Screenshot of training phase trial. 
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Training phase 

Participants were given a cover story in which they were 

asked to match aliens to their appropriate vehicles—aliens of 

one category used rockets, while the other category used 

saucers (no verbal labels were given for vehicle type). 

Participants were instructed on the explicit rule through slides 

that explained the rule (e.g. “Group 1 aliens have square 

mouths and an odd number of eyes”) and provided examples. 

The training task then began. A short practice block of 12 

trials preceded the four training blocks. In all other ways 

practice trials were identical to training trials.  

On each trial, participants were shown an alien and two 

images of spaceships—one rocket, one saucer-shaped. The 

rocket was always on the left side of the screen and the saucer 

on the right. Participants categorized each alien by choosing 

rocket or saucer (left/right) with a key press (f/j). Participants 

received feedback in the form of the words “correct” or 

“incorrect” displayed on the screen. Feedback was based 

solely on the explicitly instructed XOR mouth/eyes rule. 

Since color correctly predicted category membership on 

64/88 training trials, the maximum accuracy that could be 

reached using only color was less than or equal to 64/88 = 

.73. Category-ship combination was counterbalanced across 

participants, so for half the participants Category A aliens 

used the rocket and Category B aliens used the saucer, and 

vice versa for the other half. To encourage accurate 

performance, incorrect responses were followed by a 3 

second delay with countdown. The task screen also included 

a “power bar” showing cumulative accuracy; in the pre-task 

instructions, participants were told that cumulative accuracy 

above 70% was necessary “to win the game.” 

Stimuli were presented in 4 blocks of 44 trials; each block 

was roughly even in terms of category, color, subcategory, 

and non-diagnostic features. Frequency of individual features 

(e.g. number of eyes) was balanced across categories to deter 

the formation of individual feature-color associations3. 

Stimulus order was pseudorandom such that no more than 3 

trials from the same category appeared consecutively and 

consecutive same-color or same-eye-number trials were 

similarly limited. Trial order within a block was fixed, but 

block order was random across participants.  

Figure 3: Screenshot of test phase trial. 

 
3 If an association between color and a particular combination of 

diagnostic features were learned (e.g., aliens with square mouths and 

Test phase 

 On each trial, participants were shown two aliens, 

one from Category A and one from Category B, and one ship, 

and were instructed to choose which alien corresponded to 

the presented ship. To avoid confusion with the training 

left/right configuration of the ships, the aliens were stacked 

vertically and response keys were u/n (upper or lower).  

Participants were presented with a total of two blocks of 38 

trials each (one saucer block, one rocket block). In half the 

trials, the colors of both aliens were congruent with the 

training color distribution (e.g., A-warm/B-cool); in the other 

half of trials, both aliens were presented in incongruent 

colors. All stimuli presented were novel (i.e., not previously 

seen in the training task). 

Pairs in the congruent and incongruent conditions were 

balanced for total shared features, shared diagnostic features, 

shared non-diagnostic features, binned warmness difference, 

and mean distance between colors in colorspace (delta e). 

Post-tests and survey questions 

Colorblindness items. Participants were asked to type the 

numbers visible to them in a set of 5 Ishihara plates selected 

to probe for deficiencies in color vision. Before any 

exclusions, about 1% of participants responded to the 

Ishihara plates in ways consistent with some form of 

colorblindness. However, performance for these participants 

was comparable to that of other participants and the main RT 

difference between congruent and incongruent trials at test 

was similar in colorblind and non-colorblind participants. It 

is likely the case that they were able to perceive the 

differences in color distributions based on brightness 

differences even though they may not have been able to 

perceive all hue differences. For this reason, we did not 

exclude participants on the basis of their Ishihara plate 

responses or self-reports of colorblindness.  

Strategy use and color awareness questions. Participants 

were also asked to complete the following open-ended 

questions: 

1. Describe the rule you used to classify the 

aliens (in your own words, to the best of your 

ability).  

2. Other than the rule you were instructed to 

use, did you use any strategy or rule of thumb to 

decide which aliens went with which ships? (if yes, 

please describe briefly if you can) 

3. Did you notice anything about the colors 

of the aliens? If yes, please describe below 

4. Describe what (if anything) you noticed 

about the colors of the aliens.  

5. Did you use the colors to help the aliens 

find their ships? (yes/no) 

 

odd number of eyes are typically green/blue) that would be in 

essence learning of the rule-color association. 
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Figure 4a: Training phase accuracy by block 

As we were primarily interested in effects of implicit 

sensitivity to the color distribution on categorization 

performance, responses to any of these questions that 

suggested a use of color to classify stimuli, or awareness of 

the biased color distributions resulted in the participant’s data 

being excluded from further analysis. 

Participant exclusions 

Low performance. Thirteen (13) participants performed 

below 70% accuracy on the training phase and were excluded 

from further analysis on the assumption that they had not 

engaged with the task in earnest. In addition, 17 participants 

were excluded from test phase analysis for test phase scores 

lower than 70% accuracy.  Test phase performance was used 

to exclude participant because data were collected online and 

low performance was used as a marker for lack of 

engagement with the task (confirmed by unusually low 

reaction times coupled with low accuracy).  The distribution 

of test phase scores was bimodal, such that most participants 

performed very well (>80% accuracy) but a significant 

cluster performed in the chance range (40-60% accuracy). 

Survey responses. In addition, participants were excluded 

for the following reasons based on their responses to open-

ended questions. Participants whose responses to survey 

questions indicated any type of color-category association 

(n=9) and/or who answered “Yes” to “did you use color to 

categorize the aliens” (n=11) were excluded from further 

analysis (total n=17). After these exclusions, the final sample 

size for accuracy analysis was 190. 

Figure 5a: Test phase accuracy by condition 

 
4 Without excluding participants with exceptionally long or 

variable reaction times, the main effected reported for this 

Figure 4b: Training phase reaction time by block. 

Reaction time data cleaning and analysis. Before 

reaction time by participant and condition was analyzed, 

reaction time data were cleaned as follows: 1) only correct 

trials were included 2) each participant’s mean and SD for 

RT were calculated; trials that were above or below 3SDs of 

that participant’s mean were excluded. 3) participants with 

exceptionally long (mean >6 seconds) or exceptionally 

variable (SD > 6 seconds) were excluded; these cutoffs were 

determined by visual inspection of the histograms for 

participant means and standard deviations of reaction time, 

respectively
4
. After these exclusions, 173 participants were 

included for reaction time analysis. 

Stimuli, code for creating stimuli, analysis scripts, and de-

identified data (including full survey responses) can be found 

at:  

https://osf.io/cb3zu/?view_only=e7eab311411341428543

1fa6d53b4f26 

Results 
Task performance  
Training phase  

Mean accuracy was computed for each participant and 

each block and analyzed using a one-way ANOVA with 

blocks (1-4) as a within-subjects factor. Mean reaction time 

was computed for each participant and was analyzed using a 

one-way ANOVA with blocks (1-4) as a within-subjects 

factor. Mean accuracy (M=.93 SD= .05) was generally high 

and mean reaction time (M = 2.07s. SD =1.46s) on the 

training task was within expected limits. In addition, 

performance improved over training blocks, as seen in  

Figure 5b: Test phase reaction time by condition. 

experiment is still significant: (MINCONGRUENT =3.28s, MCONGRUENT 

= 3.07s; MRTDIFF = .143s,  t(189)= 4.005, p<.0001 ).  
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significant effects of block on accuracy (increasing, F(4, 760) 

= 47.81, p<.001) and reaction time (decreasing, F(4, 756) = 

228.43, p<.001) See Figures 4a and 4b5.  

Test Phase 

Overall performance. Mean accuracy in the test phase 

was comparable to training phase accuracy (M =.96, SD = 

.19). Mean response times were longer than in the  

training phase (M = 2.90s SD = 2.54s) after reaction time 

data cleaning (see above). 

Test Phase Differences by Condition. We compared 

accuracy and reaction time in the test phase across the main 

condition of interest (congruency). 

Accuracy analysis. Although accuracy was numerically 

higher for congruent trials than incongruent trials, this 

difference did not reach significance (MCONGRUENT = .966, 

MINCONGRUENT = .960; t(189) = 1.75, p = .08). See Figure 5a. 

Reaction time analysis. Participants’ RTs were 

significantly slower for incongruent than congruent trials: 

(MINCONGRUENT =2.862s, MCONGRUENT = 2.719s; MRTDIFF = 

.143s, t(172)= 4.68, p<.0001). Figure 5b shows the 

comparison of RTs across condition, within participant.  

Strategy use  
 87% of participants gave some response to the 

question “Describe the rule you used to classify the aliens (in 

your own words, to the best of your ability).” Of these, 85% 

gave a response that referred generally to the eyes and mouth 

or to the parity of the eyes and the shape of the mouth. An 

additional 3% referred to using the rule given. We interpret 

these responses as evidence that shape (XOR rule)-based 

classification in these participants was implemented by 

declarative mechanisms. 

Discussion 

In the current study, we have demonstrated that the 

contents—not merely the engagement—of both procedural 

and explicit categorization modules can contribute to 

categorization behavior and downstream processes such as 

decision-making and response selection. If both modules 

suggest the same category (congruent condition), response 

selection is facilitated (faster reaction time); if the modules  

suggest conflicting categories, then response selection is 

hindered (slower reaction time). 

 Very few participants reported any explicit 

knowledge of the biased color distributions (<10%); those 

who did were excluded from the analysis intended to show 

interaction between explicit and procedural information. For 

this reason, we feel comfortable interpreting the effects of the 

color distribution as contributions of the procedural category 

learning module, despite the fact that the reversed form of the 

test phase could potentially disadvantage a procedural 

learning system (Jacoby, 1991; Fincham & Anderson 1994; 

Vaquero et al, 2020). We interpret the robustness of the effect 

 
5 Congruency effects appeared to develop over the course of 

training such that incongruent trials were (on average) slower and 

despite this reversal as evidence of abstract learning beyond 

stimulus-response association (Reber,1991;Seger, 1994). 

In contrast, in their debrief responses almost all 

participants explicitly referred to the eyes and mouth 

(diagnostic features), or to “the rule that was given,” and 

sometimes reported verbalizable heuristics based on the XOR 

rule. Furthermore, performance accuracy in the first block of 

training trials is well above chance: this pattern suggests that 

participants are applying an explicit rule that they already 

know (from the instructions provided) rather than searching 

for a rule or gradually accumulating information about the 

shape-category relation. 

All stimuli shown in the test phase were novel, i.e. not  

shown in the training phase, so participants could not use 

memory for specific exemplars to categorize the test stimuli. 

It is possible that they were comparing each test stimulus to 

stored representations of previous stimuli (exemplars); 

however, the high accuracy levels, particularly early in 

training, suggest that a similarity-based approach alone 

cannot explain the results. Furthermore, the nature of the 

XOR rule deters similarity-based reasoning based on shape 

features and is difficult to learn inductively. 

With regard to the COVIS model, some results support the 

current specification, but some argue for adjustments to the 

gating mechanism. Specifically, the high accuracy (defined 

by responses consistent with the explicit rule) is consistent 

with COVIS because the trust parameter for the explicit 

module should be high ( 𝜃𝐸 = 1) by the end of training while 

the trust parameter for the procedural module must be lower 

since it only inconsistently ( 𝜃𝑃 < .73) predicts the correct 

(reinforced) response. 
However, the difference in reaction times between 

congruent and incongruent trials is not predicted by COVIS; 

the gating mechanism in COVIS does not consider the actual 

category choices of each model, nor whether they are the 

same, but only the confidence from each model and the trust 

parameter for each model. In our stimulus set, there are 

examples of stimuli that could be considered high and low 

confidence for each module, but these are distributed evenly 

across congruent and incongruent trials. In other words, in 

our stimulus set congruency and confidence are uncorrelated, 

so the observed difference in reaction time based on 

congruency cannot be explained away by confidence. 

In order for COVIS to accommodate the current findings, 

the gating mechanism would have to be modified to consider 

not only the confidence and trust in each module, but also 

whether the results of each module are consistent with each 

other. This could be accomplished by modeling the gating 

mechanism as receiving a probability for a given category 

decision from each module, and combining them to reach a 

final decision. The ATRIUM model uses a “mixture of 

experts” gating mechanism like this (Krushke, 2011), but 

models a different set of category learning modules (not 

procedural and explicit). 

less accurate by block 4 of training, but these differences did not 

quite reach statistical significance 
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Substantively, our findings suggest that representations 

formed by both procedural and declarative learning may 

simultaneously contribute to categorization and response 

selection behavior. Although many forms of interaction 

between procedural and declarative learning have been 

observed (see e.g. Freedberg, 2020), to our knowledge this 

finding represents a completely novel form, specifically that 

the contents, not only the activity or confidence of each 

system, interact. 

The implication of this finding is that in complex, real-

world situations, both rule-based or explicit decision making 

and procedural and similarity-based decision making may 

interact. For example, in formal instruction students are often 

given rules or necessary and sufficient criteria for category 

membership (e.g. mammals have hair and live young etc.), 

but if they experience only a biased selection from the space 

of possible category members (e.g. only dogs and cats as 

mammals), they may have difficulty transferring their 

knowledge of mammals in general to unfamiliar exemplars, 

despite the fact that they have an explicit, perfectly diagnostic 

rule. 

Similarly, it is possible that results such as those of 

Gleitman, Armstrong & Gleitman (1983) could be 

reinterpreted as an example of behavior influenced by both 

explicit (deterministic) and implicit (probabilistic) 

representations for the same category. The current results 

cannot reveal whether different learning modules or memory 

systems create discrete or overlapping representations of the 

stimulus space, but our in-progress fMRI-RSA study is 

designed to answer this question. 

In another example, the current findings provide further 

evidence that behavior can be based on a combination of both 

implicit representations based on accumulated experiences 

and explicit understandings or beliefs, as seen in many 

studies using the Implicit Association Test (Greenwald & 

Banaji, 2017).  

Thus, the findings of the current study not only deepen our 

understanding of how memory systems may interact, but also 

provide a potential mechanism to explain and predict 

behavior in the real-world.  
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