
UC Irvine
Writings / Presentations

Title
Programming New Realtime DSP Possibilities with MSP

Permalink
https://escholarship.org/uc/item/8766r1b7

Author
Dobrian, Christopher

Publication Date
1999

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8766r1b7
https://escholarship.org
http://www.cdlib.org/

Proceedings of the 2nd COST G-6 Workshop on Digital Audio Effects (DAFx99), NTNU, Trondheim, December 9-11, 1999

1

Programming New Realtime DSP Possibilities with MSP

Christopher Dobrian

Gassmann Electronic Music Studio
School of the Arts — Music

University of California
Irvine, CA 92697-2775 USA

dobrian@uci.edu

ABSTRACT

The new MSP extension to the Max programming environment
provides an easily comprehensible and versatile way to program
realtime DSP applications. Because of its full integration into
Max, MSP allows one to combine MIDI data and audio data
readily in any program, and to hear the results immediately. This
makes it an excellent environment for experimenting with new
DSP algorithms and for designing music performances with a
realtime DSP component.

This paper presents some algorithms for time-domain audio
processing in MSP which are not commonly found in the
repertoire of included effects for commercially available audio
processors. These algorithms—which use the realtime
segmentation of captured audio—are computationally
inexpensive, yet are capable of producing a variety of interesting
sonic effects. They include simulated time-compression and
pitch-shifting of audio samples, segmentation of audio samples
for use as “notes” in another rhythmic structure, and modulation
to extreme rates of sample playback.

1. INTRODUCTION

MSP—written by David Zicarelli based on ideas of Miller
Puckette—is the addition of audio signal processing capability to
the existing Max programming environment. It provides an
intuitive and versatile way to program realtime DSP applications,
and has already become the chosen environment for such work
among musicians. MSP presents at least two artistic advantages
for a musician: it allows one to design and use unconventional
DSP algorithms not readily available from commercial audio
effects processors, and it allows a single program to produce
many different musical results, dependent on the nature of the
input or on decisions made in real time by the computer or by a
performer. This is particularly appropriate for artistic works such
as an audio installation located in a public space, or a musical
performance that includes spontaneous improvisation.

In these pages I will explain selected algorithms for modification
of digital audio in which the only method of processing is simply
the unconventional playback of recorded sounds. The fact that
these operations use stored audio does not necessarily mean that
the processing is not effectively realtime. Since MSP can be
programmed to automatically record incoming sounds, and begin

playback and processing immediately (for all practical purposes
at the same time as the sound is being recorded), these algorithms
can be used on sounds that are performed live, and the control of
the processing parameters can also be done in real time.

2. GRANULAR PLAYBACK OF RECORDED AUDIO

MSP allows one to capture incoming audio and store it either to
disk or in RAM. As soon as it is stored in RAM it is available for
access by any other part of the program, via a variety of playback
methods. The algorithms explained below focus on three primary
playback ideas: 1) rapid access of very short segments of
recorded audio (“grains” potentially as short as 1.5 milliseconds,
but more commonly in the range of 20-100 milliseconds), 2)
segmentation of recorded sound into “notes” (usually longer than
“grains”) which can be played rhythmically by Max, and 3) use
of a recorded sound as a wavetable for a lookup oscillator, such
that the sound can modulate continuously from its original form
into a periodic tone or vice versa.

2.1. Emulated phase vocoding in the time domain

The use of the Fourier transform for frequency-domain processes
such as time compression/expansion and pitch-shifting is well
documented. However, the fact that MSP runs in real time on a
general-purpose computer (Macintosh PowerPC) means that
frequency-domain operations involving Fourier transforms often
tax the computer’s processing power significantly (with currently
available processors), limiting the number of such processes one
can use simultaneously. For this reason, in my own works that
use MSP I have pursued less computationally expensive
processing methods. One such method is the use of granular
sample playback for simulation of time compression/expansion.

The conceptual basis of “granulation” is windowing small
segments of an audio signal in rapid succession (often with some
overlap of windows). In the implementation shown here (Figure
1), two overlapping repeating triangular windows are used.
Identical triangular windows with a time offset equal to 1/2 the
window duration are used in this case to maintain unity gain. In
effect, a repeating triangular window is the same as amplitude
modulation (multiplication) of the sound by a triangle wave with
a DC offset (occupying the range 0 to 1). When two versions of
this are added together, with the two triangle waves always 180°
out of phase, the sum of the two triangle waves is always 1, so the
effect of the amplitude modulation is nullified.

Proceedings of the 2nd COST G-6 Workshop on Digital Audio Effects (DAFx99), NTNU, Trondheim, December 9-11, 1999

2

Use Word 6.0c or later to

view Macintosh picture.

Figure 1. Overlapping triangular windows on a sound

The value of this windowing process is that each individual
window (i.e., each cycle of each triangle wave) can be treated as
an independent grain of sound, with its own unique playback
speed and its own unique starting point within the original sound.
For example, if each window is 4096 samples in duration,
unmodified playback can be achieved by having each grain begin
reading 2048 samples later in the sound than the previous
(overlapping) grain. However, if each grain begins reading from
the source sound only 1024 samples later than the previous grain,
the entire sound will be traversed exactly half as fast the original.
Of course the sound will be modified because, during the overlap,
one grain will be playing a delayed version of what the other has
just played. This results in comb filtering effects which can range
from very subtle to very prominent, depending on the source
sound and the delay between grains. The advantage is that by
controlling only one parameter—how far the starting point of
each successive grain leaps ahead in the source sound—the sound
can seem to be compressed or expanded in time, and a variety of
other effects such as echoes and comb filtering can be achieved.

This starting point incrementing parameter can be expressed as a
multiplier of the normal (unmodified) leap size, which is 1/2 the
window period. For example, a multiplier of 2 will cause the
starting point of each grain to leap ahead in the source sound
twice as far as normal, thus traversing the sound twice as fast,
“compressing” it by a factor of 2. A multiplier of 0.5 will make
the leap half as large as normal, causing the grains to traverse the
source sound at half the original tempo.

Furthermore, each grain can itself be played at any increment rate
as it reads the source sound, thus changing the internal speed of
each grain and transposing its pitch. If, for example, the grains
are played with a transposition value of –12 semitones (i.e., at
half speed) with a tempo factor of 1, the effects is similar to pitch
shifting down one octave. The sound of each grain is slowed
down, but the grains progress through the source sound at a
normal rate. The trade-off in quality is that some parts of the
source sound are left unread (in the case of downward
transposition without a corresponding change in the tempo factor)
or overlapped (in the case of upward transposition). Again,
depending on the nature of the source sound and on the amount of
the transposition, the effect may be either subtle or extreme.

This particular implementation of granulation (chosen from
among many different possible approaches) has two significant
advantages: 1) the input parameters for varying the process have
a direct relationship to musical attributes—transposition and
tempo—which correspond to the sonic effects one expects from
pitch-shifting and time compression/expansion, and 2) one can
modulate from a completely unmodified playback of the original
sound (transposition=0, tempo=1) to a wide variety of

modifications and effects. To do this, we need a continuous chain
of triangular windows, overlapping precisely as shown in Figure
1, and we need to be able to make changes in the starting point
and speed of each grain at precisely the moment when the
amplitude of the window is at 0 (in order to avoid clicks caused
by discontinuities in the output sound).

However, achieving the sample-accurate control necessary to
realize this idea correctly is not obvious in MSP. MSP calculates
a vector of several milliseconds worth of samples at one time, and
control information from Max—such as unique starting point and
transposition values for each grain—can only be supplied at the
beginning of each vector calculation. For this reason, I have
chosen to express the offset between grains as an integer multiple
of the signal vector size, and the length of each grain (each
triangular window) is twice that. By looking for the end of the
window (testing for the maximum sample value coming from a
count~ object), the edge~ object sends out a bang which can be
used to trigger new control values at the beginning of the next
vector (with the Scheduler in Audio Interrupt option checked to
ensure that the control information is always synchronized with
the beginning of a new vector).

The implementation shown in Figure 2 is a bit complicated to
read without explanation, so I will point out its primary features.
Because it is designed to be used as a subpatch in a larger
program, certain precautions have been taken which make it easy
to re-use in multiple contexts and/or multiple copies. For one
thing, the buffer that contains the source sound is not included in
the subpatch; the wave~ objects refer to a buffer~ that can reside
in any loaded program, the name of which can be specified as an
argument or sent in the second inlet. Similarly, the triangular
windows are not read from a buffer~, but are instead calculated
by a mathematical formula (in the bottom part of the example);
this prevents confusion that could possibly arise from creating
multiple instances of a buffer~ with the same name. As an
additional precaution, this example eschews the use of a delay~
object, even though that would be the easiest way to make the
precise sample offset for the two overlapping triangular windows.
Use of delay~ for this purpose would limit the maximum window
size (since the amount of RAM set aside for the delay~ must be
specified as an initializing argument), and that memory could also
add up quickly if multiple copies of this subpatch are used.
Avoiding delay~ requires some machinations to keep both
windows synchronized; they are derived from the same looping
sample counter (the count~ object), but the offset of one window
must be recalculated for every 1/2 window length. The initial
starting point in the source sound is specified as an integer
number of samples received in the left inlet. This triggers a
calculation of the window size based on the signal vector length,
and starts the sample counter looping from 0 to windowsize-1. To
determine the speed of each grain, this sample count is multiplied
by a factor derived from the current transposition value, and the
starting point offset is added to that. At the end of each half-
window (detected by the ==~ and edge~ objects), each successive
necessary starting point is calculated (and is multiplied by the
tempo factor).

Proceedings of the 2nd COST G-6 Workshop on Digital Audio Effects (DAFx99), NTNU, Trondheim, December 9-11, 1999

3

Use Word 6.0c or later to

view Macintosh picture.

Figure 2. Control of grain tempo and transposition

2.2. Rhythmic segmentation of recorded audio

Instead of using tiny grains of sound (as in most types of granular
synthesis), one can divide a sound into slightly longer segments
more on the order of short notes. These notes will have the
timbral characteristic of some small portion of the source sound,
but can be used in any desired musical structure. By making the
minimum note length equal to the fastest pulse in an arbitrary
rhythmic structure, one can impose any desired rhythm on a
recorded sound. Figure 3 shows a way to do this with ordered
segments of a sound, leaving the source sound essentially intact
and recognizable.

Use Word 6.0c or later to

view Macintosh picture.

Proceedings of the 2nd COST G-6 Workshop on Digital Audio Effects (DAFx99), NTNU, Trondheim, December 9-11, 1999

4

Figure 3. Sample played with rhythmic segmentation

The inlets allow one to specify a tempo and a metric structure—
beats per measure and divisions per beat—and these values are
used to calculate the duration of each segment (beat division) and
the speed of the metro object that triggers each segment. (It is
assumed that the contents of the buffer~ are set by a record~
object elsewhere in the program.) This example has initial default
values of 120MM, 4 beats, divided in 4 parts per beat. For each
segment of the sound (each beat division), a counter reads from a
table to get a stereo panning value (used to calculate the level for
each of two outlets), an amplitude (specified in dB), and a
playback speed. These values can be supplied to the tables with
set or refer messages. Thus, the tables can at any moment be
filled with an entirely new rhythm (as delineated by pitch,
loudness, and stereo location) in any desired tempo and meter. In
this way, any source sound can be used, yet an arbitrary rhythm
can be imposed upon it to achieve interesting musical effects.

2.3. Sample as waveform

The length of a sound that can be stored in RAM by MSP (in a
buffer~ object) is limited only by available application memory.
The most common uses for a buffer~ are a) storage of a very
small segment of audio (e.g., 512 samples) for use as a lookup
table by a periodic oscillator (a cycle~ object), and b) storage of a
longer segment (either pre-recorded or recorded in real time) for
“sampling” or other less conventional playback methods such as
those shown here. However, in MSP it is a simple matter to use a
buffer of any length for either purpose. For example, by attaching
a phasor~ object to a wave~ object, or by attaching a scaled
phasor~ object to a play~ object, one can traverse an entire
buffer periodically at any rate (Figure 4).

Use Word 6.0c or later to

view Macintosh picture.

Figure 4. Two ways to use entire buffer as a wavetable

Although the frequency of the phasor~ is known, the actual
frequency content of the output depends on the contents of the
buffer, and can be difficult to predict when a long and complex
buffer is used. Since the frequency of the phasor~ can be varied
continuously between audio and sub-audio rate, a continuous
transformation can be made from periodic tone to unaltered
playback of the buffered sound at its original rate. Figure 5
demonstrates one example of such a transformation. It is an
automated process that plays repeated “notes” every 125ms, using
a phasor~ and wave~ combination that reads through a 2-second
buffer. With each successive note, the frequency of the phasor~
is reduced, beginning at 64Hz and ending at 0.5Hz (the
appropriate rate to play a 2-second buffer at its original speed).
Every 16 seconds, a new buffer is selected and a new 14-second
downward glissando is begun; at the end of the glissando, the
buffer is played in its entirety for a full two seconds.

Use Word 6.0c or later to

view Macintosh picture.

Figure 5. Transition from wavetable to sample

The above example uses a pre-established transition from
periodic tone to unaltered playback. Such modulation could
equally well be supplied in real time using input from a MIDI
controller or any other Max control data.

3. CONCLUSION

I have demonstrated here three computationally inexpensive
methods of processing pre-recorded sound (or sound captured
only a few milliseconds earlier) which are not commonly used in
commercial effects-processing systems. They employ the
segmentation of sound for granular synthesis, simulated time
compression/expansion, simulated pitch shifting, wavetable
lookup, and rhythmic performance of contiguous segments of a
sound. These processes use modification parameters specified in
“musical” terminology (transposition, tempo, beats, etc.) making
them easy to incorporate in an algorithmic performance or audio
installation.

4. BIBLIOGRAPHY

Dobrian C., MSP: The Documentation, version 1.1, Cycling ’74,
Santa Cruz, California, 1998.

Dolson, M., “The phase vocoder: a tutorial”, Computer Music

Journal 10(4):14-27, 1986.

Roads, C., The Computer Music Tutorial, MIT Press, Cambridge,

Massachusetts 1996.

