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Abstract 

Progress in metabolomics has brought the field from investigations of pre-selected 

compound lists and limited sample size toward comprehensive compound exploration of large 

sample size. This shift in focus demanded corresponding advances in informatics areas that we 

explore in this dissertation, such as in-silico compound identification tools, metabolomics meta-

analysis, and metabolomics repository design. 

 In Chapter 1, we focus on compound identification. Compound identification is 

traditionally treated as an information retrieval problem, where unknown compounds are identified 

by comparing their observed signals to the signals of chemical standards. Unfortunately, the 

metabolome contains significantly more compounds than standards, so there is a desire to 

computationally expand the space of indexed signals. Here, we benchmark a tool, CFM-ID, that 

predicts the signal of a compound based on its structure. We show that there is much progress 

needed in this area by determining that CFM-ID’s predictions could be readily replicated via 

heuristic rules that focus on structure. Extrapolating these ideas emphasizes the need for increased 

machine learning model training set sizes and standardization due to the complexity of the physics 

and statistical mechanics that mass spectrometry signals reflect. 

 In Chapter 2, we focus on meta-analysis of metabolomics studies. We believe that the 

synchronization of many independent datasets will allow for biological insights of high confidence 

and/or high generality. To this end, we developed a tool named BinDiscover, which allows for 

rapid hypothesis generation by enabling user-directed exploration of over 150,000 samples 

processed at the West Coast Metabolomics Center. We believe that this tool improves existing 

repository meta-analysis for several reasons. First, it is programmatic in nature, which allows for 

meta-analysis on a timescale of minutes rather than months. Second, the meta-analysis that it 



iv 
 

enables is focused on sample metadata rather than study hypotheses, which dramatically expands 

the number of investigations that can be conducted. Third, it is dramatically easier to use than 

existing options. Finally, it showcases our novel procedure, ontologically-grouped-differential 

analysis, which allows for the convenient comparison of categories of samples (e.g., mammals 

digestive system organs vs. bacterial cells) in order to produce tractable amounts high-confidence 

results. 

 In Chapter 3, we focus on repository design. We strongly believe that enabling the 

programmatic meta-analysis developed on in Chapter 2 onto a larger-scale, community-

contributed repositories of metabolomics data will enable massive clinical progress. To this end, 

we developed a tool that standardizes sample metadata. At current, user-submitted sample 

metadata matrices preclude programmatic meta-analysis because they suffer from the looseness 

and complexity of natural language. Our multistep standardization tool employs machine learning 

models embedded into an intuitive frontend to ensure that only high-quality sample descriptions 

are lodged into repositories. 

 Finally, in the appendix, we share several projects spanning the topics of the main chapters. 

In the first part, we share ClusterBase, which is a computational platform that uses network 

analysis to organize and annotate spectral data from metabolomics studies. In the second part, we 

share an automatic compound-ID workflow that harnessed the online CFM-ID tool. Finally, in the 

third part, we describe a machine learning approach to predicting spectral intensities that can 

augment quantum mechanically predicted spectra. 
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Chapter 1: How Well Can We Predict Mass Spectra from Structures? 

Reproduced from “How Well Can We Predict Mass Spectra from Structures? Benchmarking 
Competitive Fragmentation Modeling for Metabolite Identification on Untrained Tandem Mass 
Spectra” by Parker Ladd Bremer, Arpana Vaniya, Tobias Kind, Shunyang Wang, and Oliver 
Fiehn in the Journal of Chemical Information and Modeling. 
 
1.1 Abstract 

Competitive Fragmentation Modelling for Metabolite Identification (CFM-ID) is a machine 

learning tool to predict in silico tandem mass spectra (MS/MS) for known or suspected 

metabolites for which chemical reference standards are not available. As a machine learning tool, 

it relies on both an underlying statistical model and an explicit training set that encompasses 

experimental mass spectra for specific compounds. Such mass spectra depend on specific 

parameters such as collision energies, instrument types, and adducts which are accumulated in 

libraries. Yet, ultimately prediction tools that are meant to cover wide expanses of entities must 

be validated on cases that were not included in the initial training and testing sets. Hence, we 

here benchmarked the performance of CFM-ID 4.0 to correctly predict MS/MS spectra for 

spectra that were not included in the CFM-ID training set and for different mass spectrometry 

conditions. We used 609,456 experimental tandem spectra from the NIST20 mass spectral 

library that were newly added to the previous NIST17 library version.  

We found that CFM-ID’s highest energy prediction output would maximize the capacity for 

library generation. Matching the experimental collision energy with CFM-ID’s prediction energy 

produced the best results, even for HCD-Orbitrap instruments. For benzenoids, better MS/MS 

predictions were achieved than for heterocyclic compounds. However, when exploring CFM-

ID’s performance on 8,305 compounds at 40 eV HCD-Orbitrap collision energy, >90% of the 

20/80 split test compounds showed <700 MS/MS similarity score. Instead of a stand-alone tool, 
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CFM-ID 4.0 might be useful to boost candidate structures in the greater context of identification 

workflows. 

 

1.2 Introduction 
The expanse of metabolites observed in humans, plants, and other forms of life is 

enormous. The Human Metabolome Database (HMDB) alone currently contains well over 

100,000 documented metabolites and the total plant metabolome is believed to span over one-

million compounds.1,2 In liquid chromatography coupled to tandem mass spectrometry (LC-

MS/MS)-based metabolomics, a compound in a sample is commonly annotated by comparing 

their experimental mass spectra to reference mass spectra that are contained in a mass spectral 

libraries.3 Classically, these libraries are developed by acquiring mass spectra from authentic 

analytical standards. In practice however, reference mass spectra are available for only a small 

fraction of the metabolome.4,5 The coverage of compounds in PubChem that have associated 

mass spectra is estimated to be less than 1%.4 Therefore, millions of compounds do not have 

associated experimental mass spectra and, moreover, most of them are not commercially 

available.  Hence, mass spectra for these compounds must be predicted by in silico tools to 

facilitate compound identification in untargeted metabolomics.6 Predicted reference MS/MS 

spectra are in untargeted metabolomics because it is estimated that more than 80% of unknown 

MS/MS spectra remain unidentified. 

Numerous computational tools have been developed for compound identification or 

structure elucidation.7 The three basic approaches are: (1) rule-based fragmentation tools,8 for 

which fragmentation trends are identified by either classic organic chemistry based rules such as 

hydrogen-rearrangement rules9 or literature based reaction rules.10 (2) Quantum chemistry 

tools,11,12 in which first principle theory is applied to simulate fragmentation of a compound of 
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interest. Quantum chemistry tools such as quantum-chemical electron ionization mass spectra 

(QCEIMS)  are generally applied to electron ionization spectra, but there have been recent works 

to predict ESI-MS spectra.13 (3) Machine learning tools,14,15 for which statistical models are 

parameterized to generate spectra based on compound and spectrum relationships. These tools 

produce millions of in silico reference mass spectra relatively quickly and easily in hope to 

alleviate the pressing demand for reference MS/MS spectra. The success of enhancing 

experimental libraries with in silico libraries has been demonstrated, however, it is also clear that 

as stand-alone tools, they are not sufficient.16 Other machine learning tools attempt to predict 

chemical structures or chemical fingerprints from spectra. Examples are CSI:FingerID, the 

structure classifier Canopus or ChemDistiller.17–19  

CFM-ID 4.0, the tool tested in this publication, is a machine learning software based on a 

stochastic homogeneous Markov process, with additional hard-coded fragmentation rules for 

certain classes of compounds such as complex lipids.8 Therefore, it is important to highlight that 

in this paper we examine the underlying statistical model in conjunction with its default training 

set. However, CFM-ID comes with the capacity to reparametrize according to whatever example 

set the user might provide. CFM-ID was trained on a set of 12,165 Q-TOF fragmentation spectra 

for the [M+H]+ adducts and 6,120 MS/MS spectra for the [M-H]- adducts, covering collision 

energies of 10 eV, 20 eV, and 40 eV.4 Accordingly, CFM-ID predicts spectra for these collision 

energies for any given input compound.  

The chemical space of the metabolome is more expansive than any training set. The 

higher accessibility of high accuracy mass spectrometers today enables the use of training sets 

that are representative of both orbital ion trap and Q-TOF mass spectrometers equally. We 

therefore tested CFM-ID’s prediction capabilities for compounds, fragmentation methods, and 
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collision energies that it has not yet encountered. To accomplish this, we predicted spectra for 

the highly curated and reliable NIST20 MS/MS library, which contains compounds that are not 

included in CFM-ID’s training set that were measured on both Q-TOF and orbital ion trap 

instruments. 

 

1.3 Methods 
The workflow for our methods is shown in Figure 1. We used the highly curated NIST20 

library from the U.S. National Institute of Standards and Technology (NIST) as input of spectra 

and molecules into the benchmarking test.20 Compounds found in NIST17 21 or the CFM-ID 

training set were removed from NIST20 library set. The remaining chemical structures were used 

to predict MS/MS spectra using the CFM-ID 4.04 and the Mass Spectrum Rule-Based 

Fragmenter (MSRB) 1.1.3 software programs that were provided in Docker image format from 

the David Wishart laboratory (University of Alberta, Canada).22 The software performance was 

evaluated by matching predictions against experimental NIST20 library MS/MS spectra using 

the unweighted dot product with a mass tolerance of 10 ppm and excluding all ions within 2 Da 

of precursors. All spectra were normalized to relative abundance before calculating mass spectral 

similarities. Compound structures were classified according to the Wishart laboratory ClassyFire 

tool using the batch version implemented at http://cfb.fiehnlab.ucdavis.edu.23 To test our 

similarity-prediction model, the Vaniya/Fiehn Natural Product Library set of Q-Exactive HF 

orbital ion trap accurate mass MS/MS spectra (VFNPL) was freely downloaded from the 

Massbank of North America (https://massbank.us). For all chemical structure datasets, CACTVS 

molecular fingerprints were obtained using the PubChem web tool.24 All analyses were 

conducted using custom python scripts. 
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1.4 Results and Discussion 

1.4.1 Selecting Experimental MS/MS Spectra 
The NIST20 MS/MS library is composed of 27,613 compounds that generated 1,026,712 

MS/MS mass spectra. This library is commercially available to the public and is released in 

three-year intervals after extensive curation.  Only spectra for the most-often observed [M+H]+ 

and [M-H]- adducts were used to yield a consistent and large benchmarking data set. Compared 

to the 2017 release (NIST17 library), there was a significant increase with 15,961 compounds 

and 609,456 spectra newly added. A few NIST20 molecules were already used in CFM-ID 

training libraries and were consequently removed, leaving 15,328 and 15,494 compounds in 

[M+H]+ and [M-H]- the benchmarking set, respectively. While CFM-ID was solely trained on 

Q-TOF mass spectra, we included Q-TOF as well as orbital ion trap spectra. Orbital ion trap 

spectra included both higher energy collisional dissociation (HCD) and collision induced 

dissociation (CID) fragmentations. 

 

1.4.2 Creating the CFM-ID Library 
For these filtered NIST20 compounds, a CFM-ID 4.0.4 spectral library was created that 

was patched with CFM-ID predictions for molecules for which a rule-based upgrade model was 

Energy	Analysis	
(Each	Energy)	

NIST	20	
MS/MS	

CFM-ID		
in	silico	

Overall	
Analysis	(Best	

Energy)	

Compound	
Analysis	

Class-based	
Interpretation	

Predictive	Model	
Massbank.us	validation	

Individual	
Substructures	

Overall	Similarity	

 
Figure 1: Overall method workflow 
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available, MSRB 1.1.3. The MSRB-Fragmenter patch is an add-on tool that predicts spectra 

based on rules. The CFM-ID webtool shows users rule-based predictions when available, instead 

of machine-learning based predictions. Therefore, to replicate user experience, we utilized the 

MSRB predictions when possible.4 In total, the MSRB-Fragmenter yielded 834 spectra for 278 

compounds for [M+H]+ adducts and 822 spectra for 274 compounds for [M-H]- adducts. 

Table 1: MS/MS spectra from the NIST20 library used tobenchmark CFM-ID software. 
Adduct and type of fragmentation Number of tested spectra 

[M+H]+, Orbitrap HCD 157,407 
[M-H]-, Orbitrap HCD 71,026 
[M+H]+, Orbitrap CID 12,295 
[M-H]-, Orbitrap CID 6,333 

[M+H]+, Q-TOF MS/MS 1,111 
[M-H]-, Q-TOF MS/MS 35 

 

1.4.3 Overall CFM-ID Performance 
We aimed at benchmarking the performance of CFM-ID on spectra that were not 

included in either training, testing, or validating CFM-ID software.25 CFM-ID version 4.0 was 

created in early 2020. For that reason, we utilized the NIST20 MS/MS library that was released 

in June 2020 and removed all compounds that were present in NIST17 or the CFM-ID 4.0 

training set. For each remaining compound, we generated CFM-ID predictions for three 

collision-induced dissociation energies, 10, 20, 40 eV. After removing CFM-ID training 

compounds, NIST17 compounds, and uncommon adducts, 248,207 spectra remained. For each 

spectrum, we obtained the dot product similarity score with all three energy predictions for 

CFM-ID. We did not include any peak within 2 Da of the precursor ion because the precursor ion 

signifies the intact molecule and must be considered as orthogonal to MS/MS fragment spectra, 

and because the intensity of precursor ions vary a lot between instrument types and collision 
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energies. For each experimental spectrum, we saved only the score with the greatest similarity 

among its three comparisons.  

We hypothesized that that the quality of CFM-ID predictions of these spectra might 

depend on (a) instrument type and type of collision induced-fragmentation, (b) adduct type (a 

complexity which we limited by constraining to only protonated and deprotonated molecules), 

(c) collision energy and finally, the actual compound structure (defined by InChI Codes which 

were hashed as InChIKeys). We first partitioned 248,207 NIST20 mass spectra into six groups 

defined by instrument type and adduct type as given in Table 1. 

When subjecting these molecules to in silico fragmentation by CFM-ID 4.04 and 

benchmarking these spectra against the NIST20 experimental mass spectra, we were surprised to 

see a clear dichotomy of matches in a histogram plot (Figure 2), with very disparate frequencies 

of a number of compounds that excellently matched to experimental mass spectra (at dot-score 

similarity >950) and many more compounds that did not show satisfying MS/MS similarities 

(<50 dot-score similarity).  Between these two boundaries we found a nearly flat distribution of 

few other compounds. For Q-TOF spectra, the low total number of compounds may have 

hampered finding any good MS/MS matches at all. 

1.4.4 Impact of Collision Energy on CFM-ID Performance 
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Next, we analyzed the impact of collision energies.  We first focused on the 157,407 

protonated MS/MS spectra fragmented in HCD-mode using orbital ion traps and compared these 

to the 1,111 mass spectra in positive ESI mode obtained by a Q-TOF mass spectrometer. In 

contrast to the overall analysis in Figure 2 that focused on the best MS/MS match across all 

experimental and in silico collision energies, here we kept all individual MS/MS dot-score 

similarities separate that matched each experimental spectrum against the simulated CFM-ID 

spectra for each of the three CFM-ID predictions. We binned all experimental collision energies 

into 1 eV bins, ranging from 1 to 45 eV for Q-TOF spectra and 1-70 eV for  orbital ion trap mass 

spectra (Figure 3). For orbital ion traps, energy data differed within the NIST20 library, and we 

therefore selected only one specific instrument type (the Thermo Finnigan Elite Orbitrap data) to 

be able to utilize uniform energy descriptors. For the full range of energies calculated for this 

Figure 2: Overall CFM-ID performance measured 
by dot products between experimental NIST20 
MS/MS spectra and CFM-ID predictions for the 
same compound and adduct. The dot product was 
taken between experimental spectra and the three 
CFM-ID predictions, regardless of fragmentation 
method or settings. The best-scoring dot-product 
among the three comparisons was recorded and the 
total list was partitioned into six groups according 
to fragmentation conditions and adduct. 
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instrument type, we generated 200 bins, but found a dramatic dip in the number of spectra 

beyond the first 50 bins (up to 70 eV) to which we therefore limited the analyses. We conclude 

that CFM-ID performs poorly for the Q-TOF mass spectra from the NIST20 library that were not 

publicly available during CFM-ID 4.0 software development. We did not find any relationship of 

dot-score similarities of predicted versus experimental spectra, neither with respect to the 

experimental energies nor when analyzed for the different simulated energies at 10-40 eV. 

For the Elite Orbitrap mass spectra, we yielded a more nuanced result. While averaged 

MS/MS dot-score similarities remained well below the mark of 600 scores, a threshold that is 

often used to annotate compounds in experimental MS/MS investigations, we still saw an 

increase in higher-ranking dot-score similarities depending on the collision energies. For 

simulated low collision energies at 10-20 eV in CFM-ID (orange and purple graphs in Figure 

3b), much better dot-scores were achieved for experimental spectra at <10 eV or <20 eV than at 

>40 eV collision energies. Vice versa, CFM-ID spectra simulated for 40 eV collision energy 

showed best dot-score similarities around 40 eV experimental collision energies. Based on these 

Figure 3: Histograms of dot-score similarities for [M+H]+ molecules between experimental versus 
predicted MS/MS spectra, by experimental collision energies.   
Left (a): 1,111 experimental Q-TOF spectra from the NIST20 library.  
Right (b): 86,747 Thermo Finnigan Elite Orbital Ion Trap spectra from the NIST20 library.  
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observations, we conclude that CFM-ID is best used for Orbitrap spectra that match in silico with 

experimental collision energies. However, very often experimental MS/MS spectra at 10-20eV 

showed very simplistic mass spectra with very little fragmentation, which we interpret as the 

main reason why average dot-score similarities reached higher maxima than experimental versus 

predicted MS/MS spectra at 40 eV. In practice, low energy MS/MS spectra only yield 

uninformative neutral losses such as water or ammonium losses. Hence, for the purpose of 

annotating unknown compounds with in silico libraries, experimental and in silico spectra at 40 

eV should be more useful.  

Orbital ion traps collision energies are often given in relative normalized collision 

energies (%NCE). To refer %NCE values to  energies given in eV, we used information from 

metadata given in the NIST20 library for collision energies for the Thermo Finnigan Elite 

Orbitrap instrument contained both eV and %NCE information. Applied Orbitrap energies are 

represented as proportions of an optimal energy that scales (linearly) with the precursor mass. 

This proportion is typically written as “%NCE”.  

(Applied eV) = (Optimal eV) * (%NCE) 

and  

(Optimal eV) ∝ (Precursor mass) 

therefore 

(Applied eV) ∝ (Precursor mass) * (%NCE) 

The applied eV was used as x-axis in Figure 3b. Hence, histograms give very similar results if 

eV values are known, of if they are displayed as Precursor mass * %NCE (Supplement S1). 
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For other instrument types, such as the Thermo Fisher Lumos instrument, a different constant C 

in the proportionality would be needed. For this reason, we did not include all Orbitrap NIST20 

spectra, but only spectra from this specific instrument type. Overall, it is clear that one cannot 

simply use %NCE values that are typically reported for orbital ion traps instruments and report 

definitive eV values across all instrument types.  

 

We wondered why most spectra predictions gave either excellent at >900 similarity or 

dismal results at <100 similarity. We used the best-scoring CFM-ID energy for each molecule 

and analyzed the percentage of all 86,747 molecules for [M+H]+ adducts for the Thermo 

Finnigan Elite orbital ion trap mass spectrometer that yielded acceptable dot-score similarities 

between CFM-ID predictions and HCD-experimental MS/MS spectra (Figure 4). In this analysis, 

it becomes clear that very good predictions were found for a comparatively large population of 

very low experimental collision energies, while very poor MS/MS predictions consisted of a 

comparatively large population of very high experimental collision energies. The “best-

Figure 4: Histogram of [M+H]+/HCD-Orbitrap 
experimental collision energy against CFM-ID 
predictions. Each column was normalized to the sum of 
spectra in that bin of dot-product scores 
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predictions” (>950) were bolstered by experimental collision energies close to 1 eV. Hence, the 

vast majority of the “best predicted spectra” resulted from a systematic bias of matching very 

simple MS/MS fragmentation spectra with simple predictions. 

 

1.4.5 Impact of Molecule Structure on CFM-ID Performance 
Next, we investigated the impact of structure on CFM-ID predictability. To remove 

observed systematic bias from mismatched energies, we limited the analyses of MS/MS spectra 

to the 8,035 molecules that were assigned with explicit eV units in the NIST20 library between 

35-45 eV for the Thermo Finnigan Orbitrap. Figure 5 show that for  >90% of these compounds, 

MS/MS similarity dot-scores of <700 were yielded, even when choosing the optimal 40 eV 

setting in CFM-ID predictions for HCD Orbitrap spectra. Yet, for about 10% of these molecules, 

decent MS/MS spectra could be simulated with dot-scores >600, and in some cases even >800 

dot-score similarities.  
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We therefore used this subset of data to explore the impact of chemical structure on 

CFM-ID predictability of MS/MS spectra. We first hypothesized that compounds with a greater 

similarity to the CFM-ID training set might yield better dot-score MS/MS similarities. To this 

end, we acquired CACTVS fingerprints using the PubChem REST API for 4,040 molecules of 

the training set (that was disclosed by the authors of the CFM-ID software), and applied these to 

8,298 chemical fingerprints for the 35-45 eV HCD spectra molecules for [M+H]+ adducts in the 

Orbitrap NIST20 database.26 With all chemical fingerprints combined, we created a 2 

dimensional reduction embedding of fingerprints using Uniform Manifold Approximation and 

Projection (UMAP), Figure 6.27 We also examined dimensionality reduction using PCA and t-

SNE. Pairwise comparison of PCA’s dimensions as well as t-SNE projections yielded the same 

clustering of well-performing compounds (Supplements S2, S3). Chemical fingerprints of 

Figure 5: Histogram of 8,035 
[M+H]+/HCD-Orbitrap compounds with 
experimental collision energies 35-45 eV 
and simulated CFM-ID energy 40.  
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molecules with lo+w dot-score MS/MS similarities were expected to be found far away from the 

training data. We found that compounds with very poor MS/MS dot scores (dark blue) showed 

UMAP structural overlaps to the same degree as compounds with good dot scores. Hence, 

chemical similarity to the training data itself did not predict the ability to correctly simulate 

MS/MS spectra in CFM-ID. Instead, we found clusters of good predictions (yellow dots), 

suggesting a success of CFM-ID for very specific chemical classes, but not for others. To this 

end, we classified all 8,298 molecules by the ClassyFire algorithm into chemical SuperClasses 

and analyzed the proportion of dot-score similarities for the top-6 SuperClasses (Figure 7). It 

became clear that well-predicted compounds in CFM-ID at >900 dot score similarities were very 

likely to be benzenoids, while the poorly predicted compounds at <600 dot scores were likely to 

be organoheterocyclics. The overall proportion of chemical compounds were heavily biased 

towards these two SuperClasses, precluding definitive comments about other chemical 

structures. 

Intrigued by the notion that specific compound types were well-predicted and specific 

compound types were poorly-predicted, we sought to achieve a higher-resolution view on 

chemical substructures. Here, we used a random forest approach to identify fingerprint bits with 

the capability to distinguish between well-predicted and poorly-predicted compounds and then 

later in an attempt to predict CFM-ID’s capability to predict spectra, using a binary classification 

scheme with dot-score similarity of 700 as watershed mark between good and poorly predictable 

substructures. 
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Figure 6: 2D UMAP embedding of CFM-ID 
positive training fingerprints and 
[M+H]+/HCD-Orbitrap fingerprints. Upper 
panel (a) Training data set. Lower panel (b) 
8,298 molecules with 35-45eV [M+H]+ 
MS/MS spectra superimposed onto the training 
data (red dots). Yellow/blue color scheme 
indicates the normalized dot product values 0-
1000 between 0 and 1 
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This simplistic binary scheme was performed to allow the RF model to learn specific 

chemical features that had a high impact on overall good CFM-ID scoring, instead of using 

regression models that might focus on differentiating among the more-sampled, lower MS/MS 

similarity dot scores. We chose the model that maximized precision because precisions is most 

important for building libraries of predicted MS/MS spectra. To identify features, we selected the 

top-50 chemical fingerprint bits that showed the greatest capacity to distinguish between good- 

and worse MS/MS predictions. We examined the distributions for compounds for each chemical 

fingerprint bit in heatmaps and give results for the top-substructure fingerprints in Table 2, Table 

3 and Supplement S2. Using the chemical fingerprint bit 185 (“two rings of membership 6”) and 

bit 143 (“at least 1 ring of size 5”) explicitly reproduced the result of the superclass analysis.  

Hence, both the fingerprint analysis and the ClassyFire SuperClass analysis showed that CFM-

ID maintained the trained ability to predict MS/MS spectra for simple aromatic molecules that 

consisted of carbon-only rings. However, this training did not extend to other cyclic structures 

such as small ring systems with heteroatoms for which CFM-ID predictions failed. Using a 

Figure 7: ClassyFire-defined chemical superclasses 
vs. MS/MS dot product similarity for Orbitrap HCD 
spectra [M+H]+ between 35-45 eV. Each binned 
column of dot product is sum-normalized.  
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train/test split as 20%/80%, chosen randomly from the NIST20 dataset, we found that more than 

90% of the structures yielded <700 dot-score similarities to the corresponding experimental 

spectra (see confusion matrix Supplement S3). Yet, for 20 of the 23 benzenoids included in this 

withheld testing set gave >700 dot score similarities of confidence that the model can be used to 

select subsets of proposed compounds for which one can generate an in silico library. 

Table 2: Substructures associated with >700 dot score similarities by CFM-ID 
Bit Number SMILES/SMARTS Visualization 

185 At least 2 rings of size 6 N/A 

333 C(~C)(~C)(~C) 
 

345 C(~C)(~H)(~N) N/A 

356 C(~C)(:C)(:C) 
 

365 C(~H)(~N) N/A 

430 C(-C)(-C)(=C) 
 

 

516 [#1]-C=C-[#1] 
 

540 C-N-C-[#1] 
 

688 C-C:C-C-C 
 

708 C-C(C)-C-C 
 

709 C-C(C)-C-C-C 
 

710 C-C-C(C)-C-C 
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Table 3: Substructures associated with <700 dot score similarities by CFM-ID 

Bit Number SMILES/SMARTS Visualization 
19 >= 2 O N/A 
143 At least 1 ring of size 5 N/A 

340 C(~C)(~C)(~N) 
 

374 C(~H)(~H)(~H) N/A 

376 C(~N)(:C) 
 

449 C(-N)(=C) 
 

545 N-C:C-C 
 

600 N-C:C:C-C 
 

665 N-C:C-C-C 
 

 
 

To confirm how generalized this model is, we sought an orthogonal test set for which we 

used the Vaniya-Fiehn Natural Product Library within the public MassBank.us repository. 

Because our collision energy analysis for CFM-ID strongly suggested that matching the %NCE 

for Orbital Ion Trap instrument was extremely important, we removed all compounds for which 

we could not obtain or calculate an equivalent %NCE to match the CFM-ID “40 eV collision 

energy”. This constraint left 226 compounds to be tested using the CFM-ID 40 eV prediction. 

When removing all ions within 2 Da of the precursor ion, only 6 of the 226 tested natural product 

compounds yielded a >700 dot score (Supplement S3), confirming that CFM-ID has very limited 

prediction ability for correct MS/MS spectra beyond simple benzenoid structures.   

 

1.5 Conclusions 
It is important that machine learning-based prediction models are tested and benchmarked 

by independent analyses on datasets that were not available during model building. Here, we tested 
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mass spectra from NIST20 and MassBank.us (MassBank of North America) to probe the accuracy 

for which CFM-ID 4.0 was able to predict spectra from structure, a holy grail in tools for use in 

untargeted metabolomics or exposome research. As a standalone too, CFM-ID’s performance 

provides only few spectra with high MS/MS similarity scores when validated against experimental 

spectra. However, even with low dot-score similarities, tools like CFM-ID might be worthwhile 

to be used in the context of compound identification workflows to boost some structures over 

alternative chemicals, as has been shown in the CASMI 2016 contest.16  For example, CFM-ID 

could be used to predict fragmentation at 40 eV at which richer fragmentations occur that are useful 

for compound identifications. For HCD spectra in orbital ion trap mass spectrometers we observed 

some structural clusters of good MS/MS predictability.  While it is not possible to match CFM-ID 

to a specific %NCE, CFM-ID collision energies in eV are proportional to the product of %NCE 

and precursor mass of the compound. Based on these results, it seems reasonable that for 

improvement of MS/MS in-silico prediction from structures, Q-TOF and HCD experimental 

spectra may be combined to expand the space of training sets. 

During our benchmarking tests we found that the accuracy of CFM-ID 4.0 predictions 

depended on specific chemical substructures, but not on the similarity of tested structures to the 

structural space in the training set. Hence, we can conclude that at current, machine learning for 

direct MS/MS predictions in CFM-ID did not work for most compound classes, except for the 

ClassyFire SuperClass of benzenoids.  Nevertheless, if CFM-ID 4.0 is cautiously used in 

conjunction with compound-identification workflows, it may improve overall compound ID 

scores. 16,28  We hope that in the coming years the standardization of metabolomics repositories 

will enable massive datasets to drive the progress of machine learning methods to predict mass 

spectra from chemical structures.   
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1.6 Data and Software Availability 
The code used in this manuscript is available at https://github.com/plbremer/cfmid_2. The CFM-

ID docker images are available at https://hub.docker.com/repository/docker/wishartlab/cfmid. 

The NIST20 and NIST17 datasets are available for purchase at 

https://www.nist.gov/programsprojects/nist20-updates-nist-tandem-and-electron-

ionizationspectral-libraries. The VFNPL is freely available at https://massbank.us/. 
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1.8 Supplemental 
 

  

Supplement S1. Histograms of dot-score similarities 
for [M+H]+ molecules between experimental versus 
predicted MS/MS spectra, using Precursor Mass × 
%NCE as a surrogate for explicit collision energies. 
Note the slight difference in curvature compared to 
Figure 3b.  
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Supplement 2: 2D t-SNE embedding of CFM-ID 
positive training fingerprints and [M+H]+/HCD-
Orbitrap fingerprints. Upper panel (a) Training data set. 
Lower panel (b) 8,298 molecules with 35-45eV 
[M+H]+ MS/MS spectra superimposed onto the 
training data (red dots). Yellow/blue color scheme 
indicates the normalized dot product values 0-1000 
between 0 and 1. 
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Supplement 3: First and second dimension of PCA 
transformed CFM-ID positive training fingerprints 
and [M+H]+/HCD-Orbitrap fingerprints. Upper 
panel (a) Training data set. Lower panel (b) 8,298 
molecules with 35-45eV [M+H]+ MS/MS spectra 
superimposed onto the training data (red dots). 
Yellow/blue color scheme indicates the normalized 
dot product values 0-1000 between 0 and 1. 
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Supplement S4: Histograms of bit-distributions across 
dot product score for each bit that was deemed to be 
associated with better predictability. 
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Supplement S5: Confusion matrices of 
applying CFM-ID 4.0 for compound class 
prediction on 20% withheld NIST20 spectra 
(top) and 226 natural products from the 
VFNPL dataset in MassBank.us (bottom).   
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Chapter 2: BinDiscover’s Sample-Oriented and Programmatic Meta-analysis 

Applied to 156,000 GC-TOF MS Metabolome Samples 

Reproduced from “BinDiscover’s Sample-Oriented and Programmatic Meta-analysis Applied to 
156,000 GC-TOF MS Metabolome Samples” by Parker Ladd Bremer, Gert Wohlgemuth, and 
Oliver Fiehn, in the Journal of Cheminformatics. 
 
2.1 Abstract 

Metabolomics by gas chromatography / mass spectrometry (GC/MS) provides a 

standardized and reliable platform for understanding small molecule biology. Since 2005, the 

West Coast Metabolomics Center at the University of California at Davis has collated GC/MS 

metabolomics data from over 156,000 samples and 2,000 studies into the standardized BinBase 

database. We believe that the observations from these samples will provide meaningful insight to 

biologists and that our data treatment and webtool will provide insight to others who seek to 

standardize disparate metabolomics studies. 

We here developed an easy-to-use query interface, BinDiscover, to enable intuitive, rapid 

hypothesis generation for biologists based on these metabolomic samples. BinDiscover creates 

observation summaries and graphics across a broad range of species, organs, diseases, and 

compounds. Throughout the components of BinDiscover, we emphasize the use of ontologies to 

aggregate large groups of samples based on the proximity of their metadata within these 

ontologies. This adjacency allows for the simultaneous exploration of entire categories such as 

“rodents”, “digestive tract”, or “amino acids”. The ontologies are particularly relevant for 

BinDiscover’s ontologically grouped differential analysis, which, like other components of 

BinDiscover, creates clear graphs and summary statistics across compounds and biological 

metadata. We exemplify BinDiscover’s extensive applicability in three showcases across 

biological domains. 

https://bindiscover.metabolomics.us/
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2.2 Introduction 
Metabolomics databases can serve a variety of purposes. Some databases compile spectral 

libraries into repositories that users can download and incorporate into their identification 

workflows. Examples include MassBank of North America (https://massbank.us) [1] or Global 

Natural Products Social Molecular Networking (GNPS) [2]. Other examples include study-centric 

databases that store the metadata and observations of user-submitted studies, including the 

Metabolomics Workbench, [3] MetaboLights, and ReDU [3–5] databases. Others, such as the 

Human Metabolite Database (HMDB) [6], can be loosely described as information compilers, as 

they synthesize information from a range of sources. Finally, but not exhaustively, are compilation 

databases, that aggregate multiple, smaller, databases. A recent example of this is the COCONUT 

(COlleCtion of Open Natural ProdUcTs) database for natural products [7]. One of the most 

tantalizing research directions in metabolomics is harmonizing the archipelago of datasets in order 

to create a critical mass of synergistic data that can be used to achieve broad understanding of 

biology [8]. Within the MetabolomicsWorkbench database, users can query metabolite-centric 

comparisons with Venn diagrams and metabolite ratios data tables. While such queries are easily 

performed for individual compounds, navigating interfaces for bulk queries across different study 

designs is best performed via application programming interfaces (APIs) that require 

computational expertise that not all scientists have. HMDB compiles information from disparate 

sources. HMDB and related databases from the same laboratory are reliable because the 

information is manually curated in painstaking efforts. For both HMDB and 

MetabolomicsWorkbench queries, meta-analysis on bulk metabolite queries suffers because it is a 

retrospective attempt to harmonize compound-centric information sets across multiple biological 

study designs. Too much biological metadata is lost in translating either text sources (as in HMDB) 

or cryptic and unstructured sample/treatment naming schemes (as used during 

https://massbank.us/
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MetabolomicsWorkbench uploads). At least for compound names, MetabolomicsWorkbench 

employs a database-internal naming scheme, RefMet.  However, neither confidence levels for 

compound annotations nor concentration values are known for MetabolomicsWorkbench, due to 

the complexity and variety of instrument conditions.  

Within individual laboratories, data may be more harmonized due to use of a specific type 

of instrumentation under defined protocols. Here, tools like meta-XCMS [9] or Amanida [10] 

allow for the generation of results that come from multiple studies. However, such tools expect a 

specific input data format, and such data files are not homogeneous even within a laboratory when 

different individuals process metabolomics raw data. Hence, even on a laboratory level, gathering 

data in a systematic way to render compiled results accessible to meta-analyses tools is not 

straightforward. Hence, classic meta-analysis is performed on a higher abstract level such as 

pathways or reducing to sets of synonymous names [11], instead of queries of bulk metabolite 

tables.   

We recognize the challenge of aggregating results derived across labs and methods. We 

therefore posit that standardization of protocols is key to useful cross-study comparisons and 

queries, for both study metadata and data acquisition processes. Here, standard operating 

procedures are more mature in GC-MS metabolomics compared to LC-MS/MS. At UC Davis, we 

operate a unified, automated workflow to process metabolomics data since 2005, called BinBase. 

We here took a snapshot of all data processed until winter 2021 to enable large scale, multi-study 

meta analyses to investigate the data. We term this tool BinDiscover. It is a webtool to enable users 

to perform meta-analysis within minutes to extract data trends and propose hypotheses. Rather 

than simply comparing two types of metadata (e.g. two different species with the same organ), we 

assigned all metadata into ontologies to empower broad comparisons such as phylo organizations 
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or ontologically grouped differential analysis (OGDA). OGDA queries transform broad questions 

into sets of smaller categories and then combine statistical result outputs into graphs. 

 

2.3 Methods 
The BinDiscover database draws spectral and compound information from the GC-Binbase 

database [12, 13]. GC-Binbase uses a bucket sort approach, where new peaks from the 

chromatographic runs of samples are either matched to previously annotated groupings or 

identified as new compounds. This bucket sort is algorithmic, with a retention index tolerance of 

2,000 Fiehn RI units (approximately 2 seconds) and a weighted dot product similarity >600. All 

compound annotations have been manually conducted and curated over the past 20 years. 

Additional details such as automatic recognition of ‘isomeric interferences’, ‘peak purity’, ‘peak 

apex ions’, ‘unique ion’, ‘signal/noise’  and further parameters indicating data quality are used 

within GC-BinBase as output by the vendor’s ChromaTOF software that was used for MS-

deconvolution [12, 13]. Spectra presented in BinDiscover are consensus spectra that constantly 

improve spectra quality  for all individual mass spectra that are assigned to a Bin (a mass spectrum 

with a specific unique ion and a specific retention index). 

The BinDiscover database draws spectral and compound information from the 

GCBinbase database.[12, 13] GCBinbase uses a bucket sort approach, where new peaks from the 

chromatographic runs of samples are either matched to previously annotated groupings or 

identified as new compounds. This bucket sort is algorithmic, with a retention index tolerance of 

2,000 FiehnRI units (approximately 2 seconds) and a dot product similarity of 600. New 

annotation group identifications have been manually conducted over the past 20 years. Spectra 

presented in BinDiscover are consensus spectra which are the average among all those 

individuals belonging to a bin. 
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For generating the BinDiscover database, all analyses were conducted using custom 

python scripts that are available in Github (see Data Availability). We heavily employed 

statistics routines from SciPy and the network analysis framework from NetworkX. 

Development was performed locally before full-data transformation on a 64 core, 128-GB RAM 

Amazon Web Services (AWS) virtual machine. The BinDiscover output database is deposited on 

a Postgres database managed by AWS. The API employed the Flask library and the frontend 

relied heavily on Plotly/Dash. The API and frontend were containerized with docker and 

deployed on AWS Elastic Beanstalk. 

 

2.4 Results 

2.4.1 BinBase is an Automatic Data Processing Database for GC-TOF Mass 

Spectrometry 
At the UC Davis West Coast Metabolomics Center, primary metabolites are studied for 

18 years using identical workflows for data acquisition and data processing using gas 

chromatography-time of flight mass spectrometry (GC-TOF MS). At current, five GC-TOF MS 

instruments are in operation. Standard operating procedures have been published extensively and 

have been locked and remained unchanged since 2005. Data were aligned by a set of fatty acid 

methyl ester internal standards, forming a stable retention index. Co-eluting mass spectra were 

deconvoluted and automatically de-noised by the instruments’ software. This software also 

provided a range of metadata on the quality of data reports, from peak purity to isomeric 

interferences, absolute and relative ion intensities, and unique ions that best described the 

presence of specific metabolites within the proximity of other compounds. All this metadata was 

utilized by a multi-level filtering algorithm to generate a comprehensive database for both known 

and unidentified metabolites, called BinBase. To query biological metadata for cross-study 
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analyses, we downloaded all data from BinBase in December 2021. This data comprised 156,174 

samples that were processed into 18,290 Bins, i.e. unique mass spectra at specific retention times 

that used specified quantification ions. Bins included 773 identified metabolites, 39 known 

chemical artifacts (like polysiloxanes that originate during the GC-TOF MS process) and 15,843 

spectra that were not annotated as specific chemicals. The remaining bins were accounted for by, 

over the course of 17 years of use, algorithmic artifacts that led to multiple bins which were 

merged into single metabolite values during data exports. Some Bins are associated with the 

same biological metabolite due to incomplete chemical trimethylsilylation, as has been reported 

before. We generated a workflow to investigate the biological associations for each Bin, called 

BinDiscover. A simplified workflow is shown in Figure 1. GC-TOF MS Compound 

identifications were performed within the BinBase administrative graphical user interface (GUI) 

(BinView) using both mass spectral spectral similarity and retention index difference between 

library spectra and calculated retention times. For compound identification, the FiehnLib library 

[12] was used in conjunction with MassBank.us and NIST20 spectra [14]. Kovats retention index 

values (based on alkane elution order) were automatically normalized to Fiehn retention indices 

that are based on fatty acid methyl ester (FAME) elution order. 
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2.4.2 Wrangling and Transforming Metabolomic and Biological Metadata 
Each Bin is associated with biological information with respect to all studies when it was 

positively detected. Biological metadata were curated as detailed below, mapping sample 

metadata to established ontologies. We used three ontologies: 1) the National Center for 

Biotechnology Information (NCBI) taxonomy for species [15, 16], 2) the Medical Subject 

Headings (MeSH) taxonomy for organs and diseases [17], and the ClassyFire ontology for 

compounds [18]. In total, we used and input of 1,696 metadata combinations, defined as specific 

organ/species/disease triad. Across all samples, a total of 55,261,308 observed metabolites were 

associated with Bins, along with the full spectra and intensities of the quantification ions for each 

specific Bin. Each sample in BinBase is associated with information on the corresponding 

Figure 1: Overall workflow for BinDiscover database queries 
(a) BinBase records observations from 156,174 metabolomic samples run on a GC-TOF mass 
spectrometer from 2005-2021. Corresponding biological metadata were curated and the resulting 
annotation table formed the basis of the exploratory webtool BinDiscover. (b) BinDiscover associates 
metabolite intensities across species, organs, and diseases. Established ontologies are used to order 
biological metadata for queries. For metabolites, we used the ClassyFire ontology to enable 
compound class-level queries. (c) Biological metadata are associated with all samples and are 
represented and can be queried via different ontology levels, such as “digestive system” or “bacteria”. 
Species, organ and disease ontologies are highlighted by colors.  
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biological study that was conducted. Studies included both published and unpublished 

experiments, as data were gathered for both in-house academic purposes over the past 17 years, 

as well as for extramural fee-for-service projects. Biological metadata was entered into the small 

version of SetupX, called miniX [13]. Clients entered minimal information such as species, 

organs, short abstracts and sample labels that contained text for specific aspect of study designs. 

Since there is no universal algorithm to capture all details of biological designs in coherent and 

machine readable forms, the biological metadata necessarily remained heterogeneous. We 

therefore had to curate biological metadata and transform and normalize ion intensities.  

The first step was to remove technical variance that arose from using four GC-TOF mass 

spectrometers and varying instrument conditions over the last 17 years. Across all studies, the 

exact same concentrations of FAME internal standards were used, offering us the opportunity to 

use FAME retention index markers as a surrogate value for instrument performance for each 

specific sample. Hence, we normalized metabolite intensities in each sample by the sum of the 

FAME ion intensities. We validated that FAME intensities showed correlations greater than 0.8 

across all samples, demonstrating that they also reflected differences in GC-MS injection 

conditions. Next, we automatically identified problematic samples and excluded those from 

BinDiscover. To do this, we removed samples with poor FAME patterns, as defined as extremely 

high or low FAME intensity values. In addition, we removed entire biological metadata triads if 

they showed more than 20% failed FAME samples (Supplemental Figure S1), or if there were 

fewer than 10 samples in total for a specific biological metadata triad class. This data wrangling 

ensured that outliers did not have outsized effects on average metabolite intensities for any 

specific biological class. In this way, we balanced maximizing metadata coverage and 

maintaining statistical reliability. The distribution of sample counts is shown in Figure 2.  
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Next, we curated and combined metadata combinations to map metadata to established 

ontologies and to correct for misspellings. Metadata were manually entered into miniX over the 

last 17 years, leading to an array of metadata combinations for ‘homo sapiens’, ’homo sapien’, 

‘Human’, ‘human’, spellings with extra spaces or tabs, and different synonyms for either species 

or organs. All strings were transformed into formal ontology entries, accounting for the largest 

reduction of metadata combinations. Overall, 515 metadata combinations remained, concomitant 

with a 23.3% reduction of specimen to a total number of 119,783 samples. The next type of data 

wrangling accounted for correcting intensity values for unique bins. Here, we first combined bins 

that were best represented by a single unique metabolite. Such double bins arose over the course 

of 17 years because of multiple derivatization forms (with or without trimethylsilylation of 

amino groups) or because of incorrect retention time index calculations due to overloaded 

chromatograms. To obtain a single intensity for each compound for each sample, we 

preferentially drew intensities from the most-populated bin. If that bin was not detected, we 

scaled the intensity of the next-most-populated bin according to the average intensity ratio 

Figure 2: Sample count for all combinations of biological 
metadata triads. Triads with fewer than 10 samples (red) were 
removed to increase statistical reliability.  
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between the two bins. Overall, we retained 16,616 bins to be associated with the metadata 

combinations (773 metabolites with known chemical structure, and 15,843 unknowns).  

Lastly, we had to impute missing values. Here, we considered four scenarios 

(Supplemental Figure S2). (1) A specific bin might be truly absent from a sample, and perhaps 

even from a full metadata combination. Indeed, most bins were absent from most biological 

specimens, for biological reasons. However, when calculating intensity ratios of bins between 

organs or species, ratio fold-changes become infinite when compounds are absent from one 

organ or species but present in the other. (2) On the other hand, a bin might be absent is a sample 

due to random errors, such as thresholds in peak detection algorithms. For example, as reported 

before, our BinBase algorithm uses conservative thresholds for spectral quality based on signal 

intensity. If a peak failed weighted dot-score similarity thresholds of 700, that bin would not be 

declared to be found in that sample, and missed in the BinBase database. Manual investigations 

or recursive backfilling might find such peak, but those approaches are not tractable. We call 

such peaks missing at random (MAR), while truly missing compounds (for biological reasons) 

can be thought of as missing not at random (MNAR). (3) Most peaks are not found 100% of all 

samples in a specific metadata combination, or 0% detected, i.e. always absent, but somewhere 

in-between. Imputing the minimum intensities for missing data has been shown to work well for 

MAR metabolomics data using vectors of samples or vectors of features [19]. However, if a bin 

is largely absent for a specific metadata combination (i.e. very rarely detected), a single outlier 

could grossly inflate the overall distribution. Therefore, we imputed the percentage of presence, 

multiplied by the minimum value of detected peaks (bins) for each metadata combination. In this 

way, if nearly all samples have annotations, then we simply impute the minimum. If nearly all 

samples lack annotations, then we impute a small number that is close to the noise level and will 
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conserve the semi-quantitative fold change. This approach also provides a solution to the 

uncommon, but challenging case of ~50% present, where the data neither clearly represent MAR 

nor MNAR cases. (4) Lastly, if a bin is completely absent, there is no minimum value. In this 

case, we imputed a value such that the average for any 0% MDC will appear on the left edge of 

the average distribution for that compound across all metadata combinations (such that 

differential analysis would show an increase from the 0% case). Hence, for all bins and all 

metadata combination, a value is given, often as a small noise term.  After normalizing, 

imputing, and curating distributions for all bins and all metadata combinations, we calculated 

derivatives of the bin intensities to empower comparisons and queries of metabolome-wide 

metadata combinations. Here, we calculated the averages, medians, and ratios of intensity values 

and stored the resulting dataset in a PostgreSQL BinDiscover database. We also computed the 

Welch t-test on pairs of log-transformed pairs of distributions. We chose log-transformed data 

here instead of directly using Welch t tests due to the known phenomenon of typically non-

Gaussian distributions of metabolite values. The results of fold-change and significance 

calculations were stored, rather than the underlying distributions, in order to dramatically speed-

up the return of query results in real-time for user queries. 

 

2.4.3 Ontologically Grouped Differential Analysis 
We here introduce ontologically grouped differential analysis (OGDA) to extract 

generalizations hidden within the complex data in Omics databases. In metabolomics as well as 

proteomics or genomics databases, studies performed by biologists or biomedical scientists 

comprise complex study designs that ultimately can be described in biological metadata that are 

associated with each sample. We summarized the biological metadata that was available to us 

using Medical Subject Header (MeSH) ontologies, ClassyFire chemical ontologies and NCBI 
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species ontologies. Hence, all sample metadata were tabularized into ontological sets. OGDA 

then exploits ontologies to select sets based on their taxonomic proximities. In this way, samples 

from many studies can be compared on different ontological hierarchies on a database-wide 

level. Hence, intractable lists of results get transformed into condensed lists to base further 

analysis.  

To exemplify the power of this approach, we randomly used three use cases involving 

queries on organ levels across species, queries across species, queries on a human disease level, 

and queries on metabolite levels. Figure 3 demonstrates how ontologically grouped differential 

analyses calculations are performed. Here, a nutritional researcher might be interested in 

querying the metabolomic differences between microbial cells  (bacteria) and metabolites that 

Figure 3: Schema for Ontologically Grouped Differential Analysis. Example 
query human digestive tract versus bacterial metabolomes.  
a) All BinBase samples with metadata that ontologically map to (Human, Digestive 

System without Disease) were compared to samples that mapped to (Bacteria 
Cells without Disease).  

b) Such ontology-based summary queries yield a set of biological metadata 
combinations that are then subjected to pairwise differential analysis.  

c) For each compound, pairwise differential analysis yields a matrix of p-values and 
a matrix of fold changes that can be conservatively described by the  maximum p-
value and minimum fold-change, respectively. Therefore, only one point is 
visualized per compound in downstream volcano plots. 
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are found in the human digestive tract. Hence, the example query would use the BinDiscover 

ontology triads [ (Human, Digestive Tract, no Disease) vs. (Bacteria, Cells, no Disease) ] on a 

very generic term level (Digestive Tract and Bacteria) that by themselves would not be found in 

the study metadata. Yet, such words and abstractions are commonly used and understood in the 

literature. 

To process this request, BinDiscover transforms the given request into an equivalent 

request that utilizes all relevant and available samples within BinBase. The ontology search 

yields all samples that associated with ‘Digestive Tract’ or ‘Bacteria’ and obtains a set of all 

nodes that are ontologically related to the requested hierarchical level (“belongs to”). Details are 

given in Supplemental Table S1. Importantly, stool (human feces) does not belong to the MeSH 

ontology of digestive system, but to the ontology “fluids and secretions”. Hence, human stool 

samples were not included in this specific query. We then summarize all samples and transform 

the higher ontology level request into a list of related metadata combinations. The metabolomes 

of all BinBase samples that are summarized to the query groups defined in this manner are then 

subjected to pairwise statistical analyses. For each pair, BinDiscover creates classic results of a 

list of Welch-test statistical p-values and corresponding fold-changes between the two query sets. 

Therefore, if we have n combinations for one ontology sample set and m combinations for the 

comparator sample set, we yield n*m fold-changes and p values for each metabolite. The results 

can then be rethought of as an n*m fold change matrix and an n*m p-value matrix for every 

compound (Figure 3c). 

Next, BinDiscover simplifies these compound matrices to exactly one aggregated p-value 

and associated fold-change for each compound. To extract overarching trends across the 

database, we conservatively estimate results for each compound across all n*m pairs. For 
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example, if at least one bacterium showed significant higher levels of a metabolite than any 

human gut organ, but other bacteria would not be significant, this metabolite would not be 

summarized as an overall significant difference between bacterial metabolism and human gut 

samples. To maintain this level of conservative constraint, we therefore used the maximum p-

value for each compound and the minimum fold change as boundaries. If statistical tests were 

overall significant, but n*m pairs showed both positive and negative fold-changes, BinDiscover 

represents the fold change as 0. For the example query shown in Figure 3, we ultimately did not 

find any chemically identified bacterial metabolite that was significantly different and at higher 

levels than detected in human gut metabolomes. However, the query retrieved 15 significant 

metabolites that were found in increased levels in human digestive system organs (Supplemental 

Table S2). These compounds can be summarized into vitamins, lipids, sterols, and amino acid 

derivatives. These metabolites are indeed not known to be directly produced by bacteria but 

relate to human food metabolism in a broad sense, confirming the validity of BinDiscover 

queries to match classic information that could be derived from scientific literature. When we 

conducted tests for the 773 structurally identified compounds, we obtained results in 26 seconds, 

at a rate of approximately 1 second per metadata combination query. When we repeated the 

analyses for 15,843 unknown compounds, BinDiscover retrieved results in 8 minutes and 40 

seconds, at a rate of 6.9 seconds per query. Overall, we found 74 unknown compounds to be at 

significantly higher levels in bacteria, and 0 compounds in higher concentrations in human 

organs.  

 It is worth noting that ontologically grouped differential analysis between samples with 

distinct extraction methods offers important quantitative results that presence/absence analysis 

would overlook, however, these results must be interpreted with care. In general, we can expect 
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that comparisons among groups of species or diseases, no matter how distant in their ontologies 

(human blood vs. fish blood), would be quantitative because the mass or volume of sample and 

other analytical method parameters remain fixed. However, comparisons that aggregate organs 

may involve the grouping of organs that have orthogonal extraction methods, e.g., plasma 

volume compared to tissue mass. We believe that such comparisons are important to allow 

because, for example, basic presence/absence analysis would represent the small amount of 

sucrose in human blood in the same way as the large amount of sucrose in plants. However, there 

is some bias that comes from each extraction methods, so those results having larger fold 

changes can be interpreted with higher confidence. Indeed, one of the goals of ontologically 

grouped differential analysis is to conservatively minimize the fold changes for each compounds 

among the set of requested organs in order to increase confidence in these quantitative findings. 

 

2.4.4 Case Study 1 –Exploring Food Metabolomes 
Metabolomics is a hypothesis generating tool.  Databases must prove their usefulness by 

serving specific queries. We here provide four use cases to highlight how biologists or 

biomedical scientists might use the BinDiscover webtool. To enable rapid exploration of the 

metabolome data on differences between species, organs and diseases, users define ontologically 

grouped differential analysis on biological metadata, or explore data from a compound-centric 

pool. The webtool relies on commonly accepted statistics and clear graphics to obtain rapid 

insights into major metabolic differences in biological comparisons (Figure 4).  
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We first envisioned a nutritional researcher exploring this tool. Food metabolomes and 

dietary biomarkers are increasingly recognized as important contributor to disease [20, 21]. As a 

starting point, a researcher might wonder why “an apple a day keeps the doctor away”? The user 

might choose to compare an apple to any other fruit, in this case a fig (Figure 4a). Such a 

comparison is valid and produces a large amount of information comparing these two fruits. 

When hovering over the online graph (Figure 4a), each dot represents an individual compound. 

Tagatose is highlighted here as the metabolite that showed the largest difference in apple over fig 

Figure 4: Queries in BinDiscover give novel biological insights. 
a) Comparing the metabolome of a specific organ across two different 

species, here: apple vs. fig fruits, yields many differences. 
b) Comparing that specific organ (apple fruit) against the same organ of all 

species constrains overall differences to a few metabolites.      
c) One differential apple metabolite, tagatose, was then queried and found 

to be the most abundant in apple fruits compared to all other 
species/organ combinations across the metabolome database.  

d) Chemical information for tagatose is then given as mass spectrum, 
quantification mass, international chemical identifier, retention index and 
chemical class ontology. 
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fruits. At this point, the user might want to increase the query and compare apple fruits to all 

fruits in the BinDiscover database (currently 26 fruits). In this way, researchers find out which 

metabolites are uniquely increased, or decreased, in apples compared to all other fruits. 

Interestingly, this query still showed tagatose to be found in higher levels in apples than in other 

fruits (Figure 4b), with notably fewer total metabolic differences compared to the differential 

analyses of the apple/fig pair. The online data tables that correspond to the visual charts show all 

differential metabolites and guide users to compound-specific follow up queries. Here, the 

envisioned nutritionist user would find a sunburst diagram and chemical metadata (Figures 4c, 

4d). The sunburst diagram shows that indeed, tagatose showed the highest intensity in apple 

fruits across all species/organ/disease metadata combinations. Such finding may be interesting 

because tagatose, despite containing 92% of the sweetness of sucrose, provides only 

approximately 1/3 of the calories compared to sucrose [22]. Moreover, tagatose does not increase 

insulin in patients with Type-2 diabetes [23]. Researchers might use this finding as starting point 

for additional research, e.g. apple genomic tools to increase tagatose contents in other fruits or 

even in apple cultivars. 

 

2.4.5 Case Study 2 – Cancer Metabolism 
Next, we envisioned a cancer biologist interested using BinDiscover. Here, we highlight 

how repeatedly utilizing the BinDiscover differential analysis tool empowers isolating both 

identified and unknown compounds that distinguish cancer metabolic phenotypes from 

corresponding non-malignant analogs, and how different cancer cells and tissues would reveal 

specific alterations that are not prevalent in other cancers. Specifically, for proof of principle, we 

obtained three metadata combinations for lung, liver and pancreas cancers, each compared 

against their non-malignant counterparts. In each utilization, we obtained a set of compounds. By 
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taking the intersection of the resultant sets, a cancer biologist may find compounds that are 

differentially regulated in all cancer types (Figure 5a), and compounds that would be specific for 

each cancer type. We found 11 identified compounds that intersected with all cancers, such as 

increases in glutamine, dehydrated glutamine, n-acetylglutamate, and methylmalonic acid 

(Supplemental Data S1). These compounds can be associated with tricarboxylic acid (TCA) 

cycle activity, specifically for anaplerotic reactions supplanting carbon into the TCA cycle. For 

example, excess glutamine is known to be heavily used in cancerous cells in particular via 

glutamine dehydrogenase to generate glutamic acid, which is then converted to alpha-

ketoglutarate [24]. Similarly, the branched-chain amino acid degradation product methylmalonic 

acid is converted to the TCA metabolite succinyl-CoA in an anaplerotic reaction, as cancer cells 

are deprived of mitochondrial acetyl-CoA due to lowered activity of pyruvate dehydrogenase. 

Another typical cancer biomarker found by this combined BinDiscover differential analysis was 

increased pyrophosphate, which is associated with increased kinase activity and cell growth [25]. 

Additionally, we explored apparent compounds that might distinguish the three cancer types 

investigated here (Supplemental Data S1).  
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For example, in pancreatic cancers we observed increased amounts of all four forms of 

tocopherol, also known as Vitamin E. Vitamin E has been proposed to be associated with 

decreased pancreatic  cancer risk, in opposite to our findings [26]. We also noticed several 

dipeptides to be increased specifically in pancreatic cancer studies, such as cystine, homocystine, 

and dialanine (Supplemental Data S1)., indicating enhanced import of peptides as supplement 

nutrients or increased proteolysis. For lung cancer studies, we noted specific increased levels in 

alpha-keto acids such as 2-ketoisocaproic acid  and 2-ketoisovaleric acid along with 

Figure 5: Sequential queries extract unknown metabolites 
associated with cancer metabolism.  
(a) Integrating results from three BinDiscover queries 
comparing liver, lung and pancreas cancer studies with and 
without cancer yields three sets of compounds. Results are 
separated here between identified and unknown compounds. 
(b) BinDiscover gives spectra and chemical metadata to 
enable chemists to utilize unknown compounds in their own 
studies, either for targeting these compounds in their own 
studies or for compound identification. Here, unknown 
110321 is displayed. 
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corresponding alpha-hydroxy acids like 2-hydroxyvaleric acid and 2-hydroxyglutaric acid 

(Supplemental Data S1). These compounds are usually associated with increased use of amino 

acid degradation. Lung cancer studies were also marked  by elevated acetylations, including N-

acetyl-glycine, -mannosamine, -serine, -aspartate and –putrescine (Supplemental Data S1). The 

latter two compounds have previously been proposed as biomarkers of lung cancer progression 

[27, 28]. For liver cancer, the most apparent specific trend that was absent in prostate- or lung 

cancer studies was the abundance of glycolytic intermediates galactose-6-phosphate, fructose-6-

phosphate, fructose-1,6-bisphosphate, 3-phosphoglycerate, 2-phosphoglycerate, and 

phosphoenolpyruvate, along with the pentose phosphate cycle metabolite ribulose-5-phosphate, 

and generic sugar phosphates inositol-4-monophosphate and N-acetylglucosamine-6-phosphate 

(Supplemental Data S1). An increased glycolytic flux is not only well-known for liver cells [29] 

but also a generic hallmark of cancer and, according to studies available in BinBase, much 

elevated in liver cancers compared to lung- or pancreatic cancers.  Apart from classic known 

metabolites, chemists and metabolomic researchers might assist cancer researchers in finding 

novel clues towards metabolic dysregulation in cancer. Here, we found more than 1,500 

unidentified compounds that were specific for the three cancer types, and 27 unknown 

compounds that were commonly differentially regulated in all cases (Supplemental Data S2). 

The chemical metadata for a randomly chosen example from the 27 common dysregulated 

compounds, unknown 110321, is shown in Figure 5b. As BinBase gives both spectra, 

quantification ions and retention indices, other metabolomics researchers can readily use that 

information to target these unidentified cancer biomarkers in their studies. Secondly, spectra of 

novel biomarkers serve as starting point for compound identification. Compound 110321 shows 

a range of even-numbered fragment ions such as m/z 144, 172, 174, which are typical of primary 
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amines, plus high m/z ion clusters around m/z 274 and m/z 230 which also point to the presence 

of nitrogen moieties. The spectrum lacks m/z 117, a typical fragment for carboxylic acids and 

sugars. The retention indices reveal a compound that has a boiling point similar to other amino 

acids, and hence, compound 110321 can be classified as a primary amine with additional 

functional groups such as a secondary amine. With chemical ionization/accurate mass 

spectrometry, the full structure would then become identifiable [30]. 

 

2.4.6 Diversity of Bacterial Metabolism 
A microbiologist might use BinDiscover to study bacterial metabolism across species, for 

example, as background for synthetic biology supplanting traditional synthetic routes [31]. 

Likewise, the gut microbiome is gaining focus as the source of many endogenous metabolites as 

well as the origin of phenotypes in pharmaceutical testing [32]. The diversity of potential of 

bacterial metabolic function is of interest, and we therefore generated a clustered heatmap as 

phylo-metabolomic tool in BinDiscover (Figure 6).  These phylo-metabolomic heatmaps utilize 

the chemotaxonomic presence of all detected metabolites (in columns) against the specified 

combination of taxa (in rows) using hierarchical clustering. 
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Such heatmaps can be used to delineate specific outlier species, as shown for highlighted 

section #1 in Figure 6a for methylomonas denitrificans which uses methane metabolism as its 

carbon source. A detailed BinDiscover comparison of this species against all other bacteria 

(Figure 6b) revealed much elevated production of squalene [33] and inosine-5-phosphate 

concomitant with reduced ribose biosynthesis.  Section #2 in Figure 6a highlighted a cluster of 

compounds that were unique to synechococcus elongatus, a blue-green photosynthetic algae, that 

produces the pigment trans-phytol in addition to various alkanes that were absent in all other 

bacteria in BinDiscover. Section #3 contained ubiquitously present metabolites such as fatty 

acids, amino acids, and nucleic acids , which therefore did not contribute to bacterial 

classifications. Finally, Section #4 marked a section of metabolites that linked the human mouth 

Figure 6: Comparison of the gas chromatography metabolomes of bacteria in BinDiscover. 
(a) A heatmap of all metabolites in BinDiscover against all available bacteria species. Matrix entry color is determined by percent 
presence of that metabolite in that species. Four regions of interest (1)-(4) are highlighted in green and discussed in the text. (b) A 
differential comparison of metabolomic abundances in bacteria species against the methane-metabolizing species methylomonas 
denitrificans. 
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bacterium streptococcus mutans and the plant pathogen pseudomonas syringae. Observed 

metabolites included tryptamine and indole-3-acetate, which have been included in publications 

studying the host-pathogen relationship [34, 35]. In general, the diversity present in these 

bacterial metabolomes reflects the niches that are to be expected [36]. We focus on biological 

concepts in the case studies presented here because we BinDiscover itself is intrinsically 

informatics-oriented. An additional case study that is more oriented toward cheminformatics 

where we showcase the relevance of unknown compounds is shown in Supplemental Figure 4. 

 

2.5 Discussion 
BinDiscover effectively enables rapid meta-analysis of metabolomics information with 

the objective of ease of use for biological scientists, focusing on both capability and breadth of 

metabolome coverage. However, post-hoc retrieval and harmonization of biological sample 

metadata were challenging. To our knowledge, there are scant examples of usable interfaces that 

correctly map biological study designs, covering not only species and organs, but also 

treatments, time courses or disease phenotype dimensions of study designs. Hence, two of the 

most important issues concerning to sample metadata were the inconsistency of metadata 

terminology used when capturing biology study information in our miniX study design DB and 

the omission of fine-grained biological study design details. Inconsistent metadata terminology 

describes the informality by which samples were labeled by biologists who were sending studies 

to the UC Davis West Coast Metabolomics Center over the past 18 years. While for domain 

experts, a word such as “C57BL/6” might sufficiently describe a specific mouse wildtype, even 

for this classic example there are different laboratory strains such as B6J (or B6/J) for mice from 

the Jackson laboratory, and similar strain variants from other laboratories. The same is true 

across other biological domains, from cell types to fine grained descriptions of tissues and 
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organs. Closely related to this omission of details was the difficulty to capture the essence of 

biological studies, such as the use of specific gene knockouts or drug treatments. Information 

was sometimes delivered by biologists in text formats and through sample lists, but usually 

domain-specific acronyms were used that were intractable to compile retrospectively throughout 

the diversity of 2,000 different studies in our GC/MS database.  

An alternative approach to programmatically capture study design details might use 

named-entity recognition combined with NoSQL/GraphDB records. An entity recognition 

system might start with a vocabulary of known ontologies, but would need to be capable to 

expand an internally consistent vocabulary to capture arbitrary descriptions. While a graph 

approach allows for robust and dynamic descriptions of samples and their relationships, the 

named-entity recognition avoids problematic curation. Yet, a graph-based interface would 

present significant complexities for users, especially biologists who are asked to submit their 

study information. Initial efforts led to frustrations and overwhelmed potential users. An 

alternative approach to capture study metadata is to pre-define motifs of study designs and 

coerce study design details into those motifs. While many fine-grained study details (and, hence, 

sample metadata resolution) get lost in coarse motif-based GUI forms, such tools may 

dramatically simplify the procedure for biological clients. While not comprehensive, reducing 

the burden on researchers can dramatically increase the likelihood that individuals will contribute 

these details when using metabolomics (or other –omics) services. 

Importantly, ontologically grouped differential analysis offers important quantitative 

results that simple presence/absence analysis ignores. For example, sucrose is present and detected 

at low amounts by untargeted GC-MS metabolomics in human blood. However, it would be wrong 

to conclude that sucrose is a major constituent in human samples, compared to plant samples. Here, 
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semi-quantitative assessments are possible in GC-MS based metabolomics for two reasons: (a) 

Electron ionization at 70 eV is standardized in GC-MS for 60 years, and it does not suffer from 

suppression by co-eluting compounds, unlike electrospray processes used by LC-MS/MS. (b) 

Extraction, derivatization, injection, detection and data processing methods at UC Davis have been 

standardized to assure that chromatograms were never overloaded (i.e. avoiding peak saturations), 

but also never blank (ensuring that the most abundant peaks in specific samples were reaching 

detector saturation). Hence, semi-quantification was assured by both data acquisition and data 

processing procedures, including using the exact same concentration of (fatty acid methyl ester) 

internal standards over the past 18 years. Nevertheless, of course despite these precautions, 

quantitative must be interpreted with care. For example, comparisons across organs may include 

biofluids versus tissues, i.e. different units of biomass. In addition, different solvent extraction 

efficiencies across different tissues or biofluids may introduce bias. Hence, quantitative 

comparisons that yield large fold-change differences can be interpreted with higher confidence 

than small differences. Indeed, one of the goals of ontologically grouped differential analysis is to 

conservatively minimize the fold changes for each compounds among the set of requested organs 

in order to increase confidence in these quantitative findings. However, for biological metadata 

combinations with few samples and few studies, quantitative comparisons are less robust than for 

differential analyses for which there were thousands of sample data available in BinBase.  

Additionally, BinDiscover is built on top of a snapshot of BinBase data as they were in 

December 2021.  As BinBase continues to expand, novel compounds get added. For example, in 

November 2022, we reliably detected the presence of carboxymethylcysteine (Figure S3) for the 

first time, in a study analyzing bovine muscle tissues, treated with inhibitors against oxidative 

phosphorylation complexes. Hence, compounds in BinBase that were formally recorded at later 



55 
 

dates might have been present infrequently or at low abundance, and were therefore not sufficiently 

validated for induction into BinBase. To overcome such metadata incongruencies, BinDiscover 

focuses on high-level analyses of species and organ queries using ontological differential analysis, 

sunburst diagrams, and phylo-metabolomic trees. Users obtain the number of samples for each 

query and metadata combination with the notion that the estimation of median metabolite levels 

gets more robust the more samples are included in comparisons. Even more specific metadata 

comparisons may provide insights into metabolic differences if users focus on compounds with 

sufficiently large fold changes. 

BinDiscover aims at hypothesis-generating and data exploration. We are motivated to 

discover unexpected findings, and, contextually, are relatively unconcerned about false-positives 

(type I error). Similarly, we do not use Fisher’s method to aggregate p-values when combining 

metadata combinations, because we here compare completely different hypotheses in each 

pairwise comparison, using ontologically grouped differential analysis. 

Future versions of BinDiscover may become incrementally updated by data from new 

studies including from public contribution. A related tool, ADAP-KDB, perpetually retrieves and 

updates a user-explorable consensus library of spectra from the MetabolomicsWorkbench.[37] 

ADAP-KDB does not use static snapshots and focuses on a community-contributed source of data, 

but it is clearly spectrum-centric and assisted by the de-facto standards in GC-MS. We hope that 

there will be community-wide efforts to further standardize standard operating procedures for 

metadata definitions, sample extraction, data acquisition, and data processing to confidently 

include broader contributions from the community into GC-Binbase.  

It is critical that meta-analysis systems for metabolomics focus on samples, not on studies. 

In this way, metadata of samples can be repurposed for new biological comparisons, conducted 
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from a library of analyzed samples. At current, meta-analysis often relies on combining studies 

that had approximately the same intention, which dramatically reduces the ways in which data can 

be re-used. As a part of this grand unification of metabolomics data, we hope that standardization 

in metabolomics will improve. The inclusion of internal standard kits as matrix spikes into 

samples before extraction could serve as a check of instrument state as well as allow for semi-

quantitative, on-the-fly calibrations that would dramatically improve the level of confidence in 

sample-to-sample integration. 

 

2.6 Conclusion 
BinDiscover is a webtool based on a 156,000 sample GC-TOF database that has 

accumulated data since 2005. We curated this dataset by removing samples that failed quality 

control checks, imputing missing values, and mapping the metadata as well as identified 

metabolites to established ontologies. We showed that our webtool enables rapid hypothesis 

generation and trend extraction in order to transform machine-sized databases into human-sized, 

actionable simplifications. Our tool provides components that enable the examination of large 

swaths of data simultaneously as well as the ability to focus on individual compounds. We enable 

the comparison of multiple types of species and organs using chemotaxonomy trees and 

ontologically grouped differential analysis, but also the  visualization of single compounds with 

sunburst diagrams or chemical metadata. One novel approach to data analysis, ontologically 

grouped differential analysis, uses external ontologies, such as the NCBI species taxonomy or 

MeSH hierarchy, to create groups of samples that match generic terms. The logic of ontologically 

grouped differential analysis can be applied to arbitrary metadata or features, as long as a 

corresponding ontology exists, so we believe that it has applicability for other -omics as well. 

Hence, queries can be grouped along the ontology axes, for example, to compare “rodent blood” 
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against “human blood” or similar broad groupings. Metabolomics is now mature enough to 

empower  re-using data deposited in large scale databases derived from standardized methods, 

with the explicit aim to perform meta-analyses across disparate studies. We strongly emphasize 

the importance of metabolome standardization initiatives that are critically needed for cross-study 

and cross-species data comparisons. Indeed, this type of sample-centric data collection could form 

training sets for large scale phenotype-predicting machine learning models. We found that one of 

the most challenging aspects in the creation of this metanalysis tool was curating and harmonizing 

the swaths of metadata submitted by biologist clients. We envision working toward simplified, yet 

powerful metadata capture systems.  

 

2.7 Data and Software Availability 
All code is available at https://github.com/metabolomics-us/bindiscover. The complete 

distributions are available at https://zenodo.org/record/7982901. The derived data are available via 

https://bindiscover.metabolomics.us. 
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2.9 Supplemental 
 

  

Supplemental Figure S1: Frequency of FAME detections across all BinBase study 
samples (1,696 metadata triplet combinations). Samples were removed if they belonged 
to metadata combinations with a FAME annotation frequency less than 80%. 
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Supplemental Figure S2: Concept graphs of imputed data (to replace missing data) versus experimentally detected data. These 
concept graphs use simulated data, not data obtained from BinBase, to illustrate four different scenarios of how missing metabolite data 
in BinBase metadata combinations might be overcome.  (a) Top left. Data missing at random might have been missed by experimental 
causes, such as data processing thresholds or instrument malfunctions. (b) Bottom left. Data missing not at random, but with many 
missing data and few detected data for metadata combinations. Examples could be for metabolites that were generally found at low 
levels and for which experimental limits-of-detections caused data missingness in many samples, but not in all samples. Another cause 
for data missingness in this scenario is metabolites that are synthesized or detected only in specific conditions, such as pharmaceutical 
drugs in human plasma that may be found in high levels in some subjects, but very low or absent in most others.  (c) Top right. Data 
missing due to unexplained differences in study design parameters that impact absence or presence of metabolite not at random. Example 
for such rare cases could be different animal feeds used in rat plasma metabolome studies, or age-related metabolites that were present in 
one study but not in another. Typically, such not-at-random gross missingness might only be found in metadata combinations that have a 
small total sample count. (d) Bottom right. Metabolites that were completely absent in specific metadata combinations. Yet, to compute 
fold-changes for differential analyses, instrument noise levels are used to impute missing data around defined variance. 
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Supplemental Figure S3: S-carboxymethylcysteine, a compound detected in November 
2022 in bovine skeletal muscle and automatically added to BinBase.  
a) Experimentally observed spectrum (red) compared to reference library spectrum (blue) and 

identified by both mass spectral and retention index similarity. 
b) Chemical compound information for S-carboxymethylcysteine, including the international 

chemical identifier hash key (InChI), the BinBase identifier, the FAME-based retention 
index 626424, the Kovats calculated retention index, and the quantification mass.  
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  Supplemental Figure S4: Discovering Unknown Unknowns in the GC/MS metabolome.  
 
a) The spectra of unknowns in BinDiscover and NIST17 GC/MS were clustered using 

DBSCAN with a minimum cluster membership of 25 and a cosine similarity of 950 (set 
high to identify distinct archetypes). This yielded ~225 clusters containing both known 
and unknown compounds. It was observed that certain clusters were comprised (almost) 
entirely of unknown spectra, which means that there were no similar spectra in NIST17. If 
we assume that NIST17 is a comprehensive authority on GC/MS spectra, then the 
compounds associated with these spectra remain outside of those measured and could not 
be identified using a library-retrieval approach. 

b) Clusters were validated by visualizing the similarity between spectra when spectra were 
sorted by cluster membership. Visually distinct squares arose along the diagonal, which 
indicates high cluster purity. 

c) An example bin’s spectrum from cluster 5 is visualized. 
d) The associated metadata for the same bin is visualized. This compound appears to 

originate in plants and/or insects that interact with fruiting plants.  



67 
 

 

Supplemental Table S1: Example metadata combinations associated with ontological queries, 
used in Figure 1. 
From or 
to Metadata Triplet Sample Count 

from homo sapiens - Pancreas - No Disease 217 
from homo sapiens - Duodenum - No Disease 183 
from homo sapiens - Liver - No Disease 471 
to lactobacillales - Cells - No Disease 16 
to pseudomonas syringae - Cells - No Disease 16 
to synechococcus elongatus - Cells - No Disease 414 
to vibrio fischeri - Cells - No Disease 13 
to saccharophagus degradans - Cells - No 

Disease 
55 

to helicobacter pylori - Cells - No Disease 24 
to salmonella enterica - Cells - No Disease 66 
to chromobacterium - Cells - No Disease 24 
to ralstonia eutropha - Cells - No Disease 17 
to streptomyces cattleya - Cells - No Disease 11 
to bacillus subtilis - Cells - No Disease 88 
to staphylococcus aureus - Cells - No Disease 78 
to mycoplasma - Cells - No Disease 12 
to faecalibacterium prausnitzii - Cells - No 

Disease 
66 

to synechococcus - Cells - No Disease 27 
to clostridium perfringens - Cells - No Disease 36 
to streptococcus mutans - Cells - No Disease 18 
to pseudomonas aeruginosa - Cells - No Disease 163 
to escherichia coli - Cells - No Disease 1313 
to propionibacterium - Cells - No Disease 24 
to clostridium - Cells - No Disease 36 
to methylomonas denitrificans - Cells - No 

Disease 
12 

to halomonas elongata - Cells - No Disease 11 
to bacillus thuringiensis - Cells - No Disease 170 
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Supplemental Table S2: Significant compounds resulting from the query in Supplemental Table 
S1 

Compound Name InChIKey log2(fold-
change) 

p-Value 

zymosterol CGSJXLIKVBJVRY-XTGBIJOFSA-N -4.1 9.01E-20 

ascorbic acid 
CIWBSHSKHKDKBQ-JLAZNSOCSA-
N -7.4 1.38E-40 

5-hydroxy-3-indoleacetic 
acid 

DUUGKQCEGZLZNO-
UHFFFAOYSA-N -6.4 7.19E-55 

(5E)-isovitamin D3 
LMBGVVOJTGHJNP-FVUVGDFOSA-
N -3.2 8.02E-03 

docosahexaenoic acid 
MBMBGCFOFBJSGT-
KUBAVDMBSA-N -8.8 1.35E-94 

cholesterone 
NYOXRYYXRWJDKP-
GYKMGIIDSA-N -4.9 6.39E-16 

hexadecylglycerol 
OOWQBDFWEXAXPB-
UHFFFAOYSA-N -3.0 9.32E-30 

tocopherol gamma- 
QUEDXNHFTDJVIY-
DQCZWYHMSA-N -2.3 1.21E-37 

epicholestanol QYIXCDOBOSTCEI-FBVYSKEZSA-N -7.1 4.38E-50 

campesterol 
SGNBVLSWZMBQTH-
PODYLUTMSA-N -4.7 1.32E-19 

2-monoolein 
UPWGQKDVAURUGE-
KTKRTIGZSA-N -2.7 9.75E-27 

hypotaurine 
VVIUBCNYACGLLV-UHFFFAOYSA-
N -4.2 1.54E-33 

D-erythro-sphingosine 
WWUZIQQURGPMPG-
KRWOKUGFSA-N -1.2 1.87E-03 

N-methylglutamic acid 
XLBVNMSMFQMKEY-
BYPYZUCNSA-N -4.1 3.60E-21 

arachidonic acid 
YZXBAPSDXZZRGB-DOFZRALJSA-
N -5.4 5.61E-24 
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Chapter 3: SMetaS: A Sample Metadata Standardizer for Metabolomics 

 
Reproduced from “SMetaS: A Sample Metadata Standardizer for Metabolomics” by Parker 
Ladd Bremer and Oliver Fiehn, in Metabolites. 
 
3.1 Abstract 

Metabolomics has advanced to an extent where it is desired to standardize and compare 

data across individual studies. While past work in standardization has focused on data 

acquisition, data processing, and data storage aspects, metabolomics databases are useless 

without ontology-based description of biological samples and study designs. We here introduce a 

user-centric tool to automatically standardize sample metadata. Using such a tool in frontends for 

metabolomic databases will dramatically increase the FAIRness (Findability, Accessibility, 

Interoperability, and Reusability) of data, specifically for data reuse and finding datasets that 

share comparable sets of metadata, e.g., study meta-analyses, cross-species analyses or large 

scale metabolomic atlases.  

SMetaS (Sample Metadata Standardizer) combines a classic database with an API and 

frontend and is provided in a containerized environment. The tool has two user-centric 

components. In the first component, the user designs a sample-metadata matrix and fills the cells 

using natural language terminology. In the second component, the tool transforms the completed 

matrix by replacing free-text terms with terms from fixed vocabularies. This transformation is 

designed to maximize simplicity and is guided by, among other strategies, synonym matching 

and typographical fixing in an n-grams/nearest neighbors model approach. The tool enables 

downstream analysis of submitted studies and samples via string equality for FAIR retrospective 

use. 

3.2 Introduction 
Motivation for Sample Metadata Standardization 
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There is growing interest in standardizing metabolomics data [1–4]. Such standardization 

could lead to dramatic increases in biological and biomedical applicability of metabolomics. For 

example, decreasing the workload involved in the meta-analysis of metabolomics datasets would 

validate metabolomics’ reproducibility overall, in addition to providing conclusions for those 

systems which are specifically studied [5,6]. Another way is the development of a vast 

metabolomics dataset, which would serve as the input to large machine learning models [7]. 

These multivariate models could aid or even supplant hypothesis-driven biology in the same way 

that statistical language models reproduce language despite the absence of a comprehensive 

language theory [8]. 

There are multiple areas where metabolomics standardization is being improved [9,10]. 

Areas that we do not address in this work include observational/chemical data acquisition and 

data processing. In this area, there has been much progress, and it is hoped that efforts toward 

(semi) quantitation and homogenization of methods will occur.  

We here focus on the development of tools to standardize the metadata that describes 

samples. Our goal is to enable meta-analysis that occurs on a sample-level and is programmatic. 

This programmatic meta-analysis means the ability of computers and their users to aggregate 

samples very quickly and very easily. We envision users to be able to aggregate through samples 

by checking the equality of strings (e.g., “species”= “mus musculus”) rather than aggregation 

using natural language tasks. Likewise, we employ ontological relationships (e.g. “X is a type of 

Y” relationships) to group sample metadata to query database on different levels of abstraction.  

By emphasizing the sample-level for meta-analysis, we dramatically increase the number 

of ways that samples can be compared. In traditional meta-analysis, researchers are constrained 

to explore only the original intentions of authors’, i.e., based on study design factors and 
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hypotheses. If, instead, samples are labeled by every column header and corresponding values 

(such as body mass index, sex, age), then researchers could reuse those samples to explore any 

number of new hypotheses therein as a potential on-the-fly-factor (e.g., comparing metabolomes 

of specific organs across age groups, or organs across diseases). 

Sample Metadata in -Omics 

Ultimately all -omics analyses are based on samples. Challenges to capturing sample 

metadata from other fields may therefore inform solutions for metabolomics. There is a growing 

interest in the reuse of sample data for understanding reproducibility of findings, validation of 

hypotheses or as input into machine learning models. Many projects, databases, or consortia 

operate by formalizing and mandating metadata standards [11–13][14]. While the intent for 

project-wise metadata standardization is an appealing first step, the dispersion of authority 

creates challenges for system and data interoperability. It is very difficult to merge databases 

with different standards in a traceable and logical manner. Today, there are over 1,000 metadata 

standards lodged at https://fairsharing.org [15]. Formalizing and harmonizing these standards is 

an area of active research, and sophisticated informatics schemes have been proposed to reduce 

this bottleneck [15][16].  

Perhaps an even greater challenge is the latency of biological and biomedical 

communities to adopt metadata standards and to adhere to reporting guidelines. There are at least 

three obstacles: (a) Definitions of ‘minimum requirements’ and ‘best practice’ surely change 

over time and between sub-communities. (b) Individual biologists or biomedical researchers do 

not have immediate benefits or incentives to adhere to metadata standards. This problem may be 

viewed as a variant of the ‘tragedy of commons’ [17]. (c) Many metadata upload tools are 

written with underlying database architectures in mind, not with user friendliness. In industry, 
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user friendliness for web interfaces is a primary objective. In academia, user friendliness of front 

ends is claimed, but not tested or proven.    

Hence, classic databases and sample submission interfaces expect users to submit 

samples and their metadata in good-faith. The ideas of reusing data have been commonplace 

since the early 2000s, however, with little progress so far [18]. Attempts to reuse genomics data 

for Covid-19 analysis revealed that, despite relatively simple requirements, over 77% of 12,000 

Covid sequencing experiments lacked location metadata [17]. Similar findings have been 

reported for metabolomics sample metadata [19]. Finally, as we have recently learned from our 

own BinBase metabolomics database [20], retroactively assigning machine-ready metadata is 

either very tedious or demands much more research[20,21]. 

SMetaS development was therefore focused on the user-facing aspects of sample 

metadata. We avoided developing yet another standard, and rather created a tool that others can 

adapt and utilize within their own pipelines. Second, SMetaS intends to simplify the process of 

creating machine-ready metadata for the non-coding scientist. We take out the user awareness of 

standards and ontologies but instead employ these as backend for programmatic curation of user-

based metadata. We focus on presenting a familiar tabular format, which might increase the 

fraction of scientists who are willing and able to describe their samples in some detail. 

Sample Metadata in Metabolomics – Tool Critiques 

Ultimately, successful programmatic meta-analysis, especially on a community-wide 

level, becomes an engineering problem. Design choices can improve or hinder a tool’s capacity 

to facilitate programmatic meta-analysis. We explore and critique three community tools that 

focus on sample metadata. 

Tool Critique - Metabolomics Workbench 
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On the Metabolomics Workbench platform, samples are submitted as part of a study [22]. 

A user chooses a single type of sample (human, plant, material, etc.), and then the user is 

exposed to a set of sample metadata categories with free text fields that depend on the chosen 

sample type (e.g., plant will yield “watering” options, human will not). Additionally, they are 

exposed to a copy/paste .tsv parser for accompanying (and possibly redundant with freetext 

options) tabular sample metadata as the study uploader conceives of the samples.  

The MetabolomicsWorkbench offers some design choices that support programmatic 

meta-analysis. The displayed fields for steps are based on the selections of previous steps, which 

reduces visual complexity for the user.  

MetabolomicsWorkbench also makes design choices that are not favorable for 

programmatic meta-analysis. The most unfavorable is the usage of freetext for sample metadata 

values (e.g., in the specific headers and in the additional matrix). Until natural language models 

become much more advanced, this design choice prohibits inter-study programmatic meta-

analysis. Similarly, there are too many metadata categories offered to users. Full-reproducibility-

level detail should be reserved for the associated publication. Moreover, the exposure to too 

many fields can overwhelm users and reduce interest or willingness in participation. Finally, the 

assignment of sample-specific values to the study as a whole, e.g., annotating a study as a 

“human study”, precludes studies with multiple sample types. We believe this represents a strong 

argument for the assignment of metadata values to each sample individually, rather than making 

the strong assumption that some metadata value will apply to all samples in a particular study (it 

is very easy to conceive of studies that compare people, food, and bacteria, for example). We 

believe that a good phrase to describe the assignment of descriptions to samples is sample-level 

granularity. 
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Tool Critique - ReDU  

In ReDU, sample metadata are submitted retrospectively to be associated with spectral 

information that has already been uploaded to the GNPS/MassIVE platform [23]. Users copy a 

Google Sheets template which offers a fixed set of sample metadata categories. For each sample, 

for each category, users select a value from a finite set of options provided in a dropdown or on 

another sheet. Completed metadata files can be checked with a graphical tool and then uploaded. 

 ReDU offers some design choices that support usage and programmatic meta-analysis. 

First, the constrained vocabularies enable programmatic meta-analysis via string equality rather 

than entity recognition. Second, the sample-level granularity naturally expands meta-analysis 

capabilities by enabling a looser selection of samples across studies, rather than forcing meta-

analysis to focus on the small subset of comparisons that can be made on those studies with the 

same hypothesis. Third, Google sheets is a familiar tool to many users, which minimizes 

complexity, thereby encouraging use. Fourth, there is ongoing update capability because the 

metadata categories/headers can be expanded via Github requests. 

 ReDU makes some design choices that hinders programmatic meta-analysis. The most 

important involves the specific metadata categories that are available and the corresponding 

vocabularies. The included columns seem rare, such as Altitude or TermsOfPosition. Also, the 

overlap in category meaning, such as comorbidity and disease, necessitates merges in 

downstream curation before final analyses. This complexity hinders programmatic meta-analysis 

because future programmers will have to explore and compare vocabulary spaces. Finally, the 

constrained vocabularies terms are not expandable in an easy way, which precludes sample 

submission. 

Tool Critique - MetaboLights 
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In MetaboLights, samples are submitted as part of a study [24]. Users are walked through 

a series of steps that include submitting study-wide attributes and experimental methodology. 

Ultimately, users are exposed to a step where samples are described via an uploadable or 

buildable sample metadata matrix.  

 There are some design aspects that favor programmatic meta-analysis. The step-by-step 

walkthrough simplifies the submission process which encourages use. Likewise, the emphasis on 

sample-level resolution is essential to FAIR programmatic meta-analysis. Additionally, the 

connection of metadata categories/headers to ontology terms generates a constrained vocabulary 

that would enable string equality comparisons and support downstream ontological analysis.  

 Unfortunately, Metabolights has several problems that hinder programmatic meta-

analysis. All ontologies are accessible at any place in the sample matrix. Because the same idea 

can have different forms in different ontologies, tedious downstream merges are required to 

remove inconsistencies. Likewise, terms can be entered as freetext, which leads to the same 

problem. Finally, upload to the matrix interface requires the use of an ftp service, which greatly 

discourages use. 

SMetaS 

Based on the above discussions, our goal is to create a tool that enables sample-oriented 

and programmatic meta-analysis if used in a front end for study submissions to metabolomic 

databases. Such tools necessarily must remain a compromise between asking users to detail 

every aspect of a study (e.g., the exact composition of chow in studies of animal models), versus 

the time and efforts users are willing to spend for sample or data submissions. Such tools offer 

programmatic relationships to existing standards, but do not complexify the space of already 

existing standards. Indeed, we designed a tool that captures the essence, but not the total 
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complexity, of a sample’s nature, while giving users the option to add more details if they are 

inclined to do so. This mixture of mandatory and voluntary metadata is auto-curated and 

recorded into a database, which can then be linked to the observed metabolomics of a sample in 

downstream analyses. 

 

3.3 Methods 
 

 

For generating the vocabularies and associated models, we made extensive use of custom 

python scripts that are available in Github (see Data Availability). We heavily employed 

snakemake, networkx, pandas, scikit-learn, and other libraries [25–27]. The API and frontend 

were also generated using custom python scripts that are available in Github (see Data 

Availability). We heavily employed Flask, Dash, and Docker. Development and creation were 

performed locally on a personal computer. 

Figure 1: Workflow of the Metadata Standardizer 
First, each metadata column type (species, organ, drug, etc.) has a starting vocabulary derived by combining/subsetting existing 
ontologies/vocabularies, making sure that the intersection of any two vocabularies is 0. Next, for each vocabulary, we generate additional 
resources that facilitate ease-of-use for sample submitters (e.g., nearest neighbor models that map synonyms/typos to the correct term). 
Finally, we make the vocabularies and associated resources as the backend to a user-friendly frontend. These vocabularies and models are 
expandable if new terms are desired by users. The vocabularies and models are also available as an API directly. A more detailed workflow is 
available as Supplemental Figure 1. 
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3.4 Results 

3.4.1 Overview 
 The primary result of this work is a tool that facilitates the standardization of sample 

metadata for downstream programmatic analysis. Basic usage for SMetaS is illustrated in Figure 

2. Here, the user first chooses metadata that are associated with their samples. There is no 

capability to specify “factors” because that is an artificial constraint that can be readily applied 

downstream. User selections generate a downloadable csv file for which each row is a sample 

and each column is a metadata attribute. We chose this format because all scientist users are 

familiar with such basic worksheets and know how to manipulate these documents. Cells can 

remain empty if that attribute does not apply. Users then reupload their csv files, and interact 

Figure 2: Walkthrough of user experience. 
a) the first component of the tool is a walkthrough that allows users to design a sample metadata matrix. b) an example metadata matrix prior 
to standardization. c) the second component of the tool is a walkthrough that allows users to that curate that submission. d) the same 
submission with terms standardized in order to dramatically simplify meta-analysis. 



78 
 

with the SMetaS transformation process, which converts freetext, natural language entries into a 

formalized and standardized representation. 

This tool’s most noteworthy design choices that facilitate this are shown in Table 1. The 

tool is provided as a container that is directly runnable. Associated code is available for the 

vocabulary pipeline as well as downstream API/frontend. Documentation is available as well. 

Table 1: SMetaS design principles. 

Number Design Principle 
1 headers with orthogonal vocabularies 
2 vocabularies with non-redundant terms 

3 
inclusion of a synonym set for each “main term” to facilitate the 
loose expression of a term 

4 
vocabularies/models that expand to incorporate new terms easily 
submitted by users 

5 
machine learning models that increase speed-of-use and make the 
program typo tolerant 

6 
a deference for simplicity when possible. We believe that user 
apathy/disinterest is as much a problem as any technical challenge 

 

3.4.2 Extended Description of Components 
Our tool is comprised of two main components. In the first component, users walk 

through a short series of steps where they generate a csv spreadsheet onto which they transcribe 

their sample metadata. Users can select core sample types (tissue, cells, etc.) as well as additional 

sample attributes. Users then fill out their created spreadsheet locally and resubmit it to the 

second part of the tool. 

In the second component, the user submission is transformed into an equivalent sample 

metadata matrix that is ready for programmatic meta-analysis at a later date. To do this, there are 

several steps that are made at the user’s submission. By the end of these passes, it is guaranteed 
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that all terms will be transformed into an existing term or become new terms in the 

corresponding vocabulary.  

In the first pass, a term-frequency-inverse-document-frequency (tf-idf) vectorizer and 

nearest neighbors model (nnm) automatically curates user-submitted strings [28][29]. This 

vectorizer works by transforming a given string into a numeric vector and then finding the 

vocabulary term with the most similar vector. The components of the numeric vector are decided 

during the database construction step in Figure 1/Supplemental Figure 1. The vector has 

components of all three character combinations present at least once. For example, mus musculus 

would generate (m,u,s), (u,s,’ ‘), (s,’ ‘,m), (‘ ‘,m,u), (u,s,c), etc. while arabidopsis thaliana would 

generate (a,r,a), (r,a,b), etc., and the union of each term’s set generates the total set of vector 

components. The magnitudes of each cell in the term/component matrix are based on presence of 

that component in a term after weighting component magnitudes according to number of 

appearances within that term (term frequency) and rareness of that letter triplet across all terms 

(inverse document frequency). New words are coerced into this pre-determined space and cosine 

similarity determines the distance between vocabulary terms and user-provided terms. 

The tf-idf vectorizer and nnm curate strings such as species (e.g. mice, mouse, M. 

musculus and similar terms), organ names, drugs names, units, or other metadata. Metadata that 

are intrinsically unique to a sample (e.g., magnitudes of height or drug amount) are not curated. 

The derivations of the initial controlled vocabularies from official ontologies are described in 

Table 2. The first pass is expected to deal with the bulk of user-submitted strings.  

In the second pass, terms that were not able to be mapped in the first pass can be 

transformed using a substring search. This might happen if the term was accidentally misspelled 

or an unknown synonym or abbreviation was used. Both the first and second pass map sets of 
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strings to “main terms”, e.g., “mus musculus”, “mouse”, “mice”, or “house mouse” would all be 

mapped to “mus musculus”. 

Finally, in the third pass, users can confirm to add new terms that were not present in the 

associated header’s vocabulary, for example, for organ, species or experimental intervention that 

were not included in the large, standardized community vocabularies that we employ (see 

below). In this way, users add new strings to our underlying ontologies to update and renew the 

system over time to increase the likelihood that next users will find matching selections (e.g., for 

new cell types, drugs, etc.). Users are given a freetext input box preloaded with the observed 

term. Once confirmed, these freetext terms are added to the corresponding vocabulary for future 

users, and corresponding models will be retrained on this expanded vocabulary. 

Users receive a standardized csv file to be used to submit a study for metabolomic data 

acquisitions (e.g., at the UC Davis West Coast Metabolomics Center), or to submit metabolomic 

data to a common repository (e.g., for the MetabolomicsWorkbench) to enable programmatic 

meta-analysis. The system includes a programmatic access point for submitted studies and 

authors for convenient integration into existing pipelines. 

3.4.3 Use case  
We here provide an explicit example based on a study performed at the West Coast 

Metabolomics Center involving the effect of ozone on metabolism in the lung [30]. In Figure 3, 

we show an excert from the study abstract, the freetext representation created with our tool, and 

finally the curated representation created with our tool. 

Briefly, male and female adult mice were exposed to house dust mite allergen, then 

exposed to ozone, and finally sacrificed and differences in lung metabolism were compared to 

untreated control mice by metabolomics assays. Most of the information given in the publication 

(Figure 3a) was captured by SMetaS, but not all details of the study design (Figure 3b). We 
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recorded basic descriptions of the lungs (organ, mass, massUnit), the mice from which they were 

derived (species, sex, age, ageUnit, strain), the treatment of ozone exposure represented as a drug 

(drugName, drugDoseMagnitude, and drugDoseUnit), and the time-series aspect after exposure 

to the allergen (zeroTimeEvent, time, and timeUnit). We lose information such as the intranasal 

delivery, ozone chamber details, and high-detail lung lobe locations. We recognize that there are 

other valid ways to represent this study. For example, it would have been possible to represent 

the allergen exposure as another drug. Indeed, creating unambiguous instructions for metadata 

representation is an area of active research [15] 

 

 

 

Importantly, SMetaS transforms freetext strings to formalized nomenclature (Figure 3c) 

by mapping to pre-existing terms. All non-numeric strings were already contained in the initial 

ontology-derived vocabularies except for ‘allergen exposure’, ‘ozone’, and ‘hours/day’ and 

freetext strings were successfully. These three metadata strings were then added to their 

corresponding vocabularies (zeroTimeEvent, drugName, drugDoseUnit) for future users. 

Figure 3: Example use case of SMetaS. 
a) Excerpt of a published study abstract [30] b) SMetaS matrix representation of 
information from the abstract and methods section  [30]  c) SMetaS curation of freetext 
terms of the matrix representation. 
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3.4.4 Construction of Vocabularies 
Sample metadata standardizers should incorporate vocabularies. As expanded on in the 

discussion, there are several important properties of vocabularies. SMetaS relies on a 

constrained, non-overlapping, non-redundant, and expandable vocabulary for each metadata 

category. Constrained vocabularies allow for equality testing via string equality rather than entity 

recognition. For example, for databases supported by SMetaS, all samples associated with mice 

are mapped to “mus musculus”. For databases that accept free-text without automatic curation, 

users must devise post-hoc models or elaborate search criteria to collect those mice samples. 

Such post-hoc data curations easily creates errors, dramatically increases the workload and 

decreases overall data quality. 

We limited the number of downloaded vocabularies and ontologies to large, mature 

community repositories such as MeSH [31], NCBI [32,33], Cellosaurus [34], NCIT [35] and 

FDA [36]. These non-redundant vocabularies avoid string overlaps and therefore abolish the 

need for complicated downstream merges between headers and terms. Finally, expandable 

vocabularies minimize system maintenance and allow for perpetual updates when users submit, 

for example, a new drug, genetic variant, animal model, etc.  

To generate vocabularies that maintain our first three principles, we accessed a set of ontologies 

and vocabularies relevant to metabolomics study samples, listed in Table S1. For each 

header/category, we extracted sets of non-overlapping “main” vocabulary terms, each of which 

had a set of 0 to n synonyms derived from the same sources. For example, “mus musculus” 

would be a main term, while “mouse”, “mice”, or “house mouse” would be synonyms. The 

selections for vocabulary origins were made based on internal discussion. The headers and 

vocabularies are summarized in Table 2. 
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Table 2: The metadata categories, term counts, and definition of initial vocabularies. The Initial 
Vocabulary Description column describes what subsections of formal ontologies comprise each 
vocabulary, initially. 

Grouping Metadata Category 
Term 
Count Initial Vocabulary Description 

Core Sample 
Type species 724,962 

NCBI ontology less 
-rank ‘strain’ 

-parent node scientific name contained 
‘environmental sample’  

-parent node scientific name contained 
‘unclassified’ 

-rank ‘no rank’ that contained ‘/’ 
-rank ‘species’ containing numerical characters 

-rank ‘species’ containing ‘vector’ 

 organ 11,494 MeSH ontology heading ‘A’ and lower 

 cellLine 247,365 Cellosaurus ontology 

 material 2,056 

MeSH ontology: 
-heading ‘D20’ and lower 
-heading ‘G16’ and lower 

Sample 
Description massUnit 49 

Unit Ontology: 
-heading UO0000002 and lower 

 volumeUnit 79 
Unit Ontology: 

-heading UO0000095 and lower 

 sex 3 All sexes 

 heightUnit 48 
Unit Ontology: 

-heading UO0000001 and lower 

 weightUnit 49 
Unit Ontology: 

-heading UO0000002 and lower 

 ageUnit 22 
Unit Ontology: 

-heading UO0000003 and lower 

 ethnicity 1,057 
NCIT Ontology: 

-header C17049 and lower 

 geographicalOrigin 799 

MeSH ontology: 
-header Z01 and lower 

-header G16.500.275 and lower 

 strain 2,282 

NCIT Ontology: 
-header C14250 and lower except those terms 

which exist in the NCBI ontology or are 
descendants of Gene header in NCIT ontology 
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Study Factors drugName 9,537 FDA drug vocabulary 

 drugDoseUnit 753 Unit Ontology 

 geneKnockout 141,605 NCBI human gene vocabulary 

 disease 36,378 
MeSH ontology: 

-header C and lower 

 diet 1,164 MeSH heading G07.203 and lower 

 exercise 569 
MeSH heading I03 and lower, MeSH heading 

G11.427.410.698 and lower 

Time Series zeroTimeEvent 69,321 
NCIT: ontology: 

-header C43431 and lower 

 timeUnit 22 All Units 

Other inclusion 0 None in initial vocabulary 

 exclusion 0 None in initial vocabulary 

 comment 0 None in initial vocabulary 
 

 

 

3.5 Discussion 
There are several shortcomings of our design. Intrinsic problems are derived from the 

decision to use a tabular approach to retaining study metadata information. No matter what set of 

metadata categories that we offer to users, eventually there may be a study that cannot be fully 

described using that schema. Study design space is extraordinarily broad, and we have 

encountered surprising factors such as “proximity to parking lots” in studies submitted to our 

metabolomics service core at UC Davis. No tractable tabular approach with a fixed set of 

metadata could capture such design. Instead, we focus on capturing the essence of a sample 

rather than its full intricacies. In doing so, we assume that metadata categories that we do not 

include do not define different populations in the statistical sense.  
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We expect to improve the sample description space of SMetaS based on samples 

submitted to the West Coast Metabolomics Center because our service core analyzes over 30,000 

samples/year. SMetaS offers the metadata categories ‘comment’, ‘inclusion criteria’, and 

‘exclusion criteria’ as alternatives to categories that are explicitly provided. Over time, we will 

accumulate data on metadata objects that are common enough to warrant creating explicit 

categories. Such commentary metadata also give us insights which exiting categories or units do 

cause discrepancies in study descriptors that are insufficiently covered yet. For example, in 

metagenomics, nuanced aspects of environment or host descriptors are necessary for valid 

interpretations [17]. Hence, future versions of SMetaS will include additional 

categories/vocabularies derived from submitted data.  

The tabular approach in SMetaS is also limiting the relationship between descriptors and 

samples. For example, we assume unique “is a” relationships between a sample and its listed 

species. While our approach can handle multiple species (for the user, simply a delimiter is 

needed), the precise meaning of a list of species is not specified. To add additional relationship 

types (such as co-cultures) would mean increasing the complexity of the written string, which is 

philosophically prohibited in our fixed vocabulary approach (of course, we cannot prevent users 

from submitting messy custom terms). Future improvements would maintain sample metadata in 

node/edge graphs, where the edges afford the opportunity to programmatically store more 

detailed relationships between samples and descriptors. We illustrate this in the transition from 

Figure 4a to Figure 4b. 
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Storing sample metadata as graphs would simplify querying data in hierarchical and 

ontology-based meta-analysis. As illustrated in Figure 4c, we see that ontologies map neatly 

with sample sets when using a graph approach and we can imagine this implementation affording 

very natural queries.  

While tempting, the notion of a parser that automatically derives sample metadata from 

natural language is likely not applicable to existing publications or existing datasets for which 

the assignment of unique properties to specific samples is not clear.  

In general, we recognize some of the shortcomings that are built into our system. We 

accept these as an inevitable consequence of our goal to render this tool intuitive for users. 

Figure 3: Comparing tabular to graph storage for sample 
metadata. 
a) a simple schema for several samples is shown b) the same schema is 
expressed as a graph, with additional complexity programmatically 
embedded into nodes c) the same schema as a graph where the ontology 
for the species node is included. This allows for the natural hierarchical 
analysis of metadata. 
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Challenges and complexities have been documented when users deposit studies into repositories 

[19]. While our tool aims to conform to user expectations with a front-end that is intuitive 

enough to be completed without further manuals or communications, our tool has not yet been 

deployed as mandatory study submission frontend for a metabolomic repository. User feedback 

is currently sought from users of the UC Davis metabolomics service core with its approximately 

300 clients/year. Upon completion, an updated frontend will feed into the new UC Davis LC-

BinBase system, replacing the outdated miniX (SetupX) system that was in operation for 18 

years [37]. 

3.6 Conclusion 
We have created SMetaS, which standardizes submitted sample descriptions to enable 

downstream programmatic meta-analysis. This tool is readily deployable in a fully reproducible 

way for core laboratories or larger repositories. 

 We are interested in standardizing metadata to programmatically utilize metadata. We 

envision at least two ways of doing this in masse. The first is agglomerative analysis similar to 

those available in our BinDiscover tool [20]. There, we allowed for the exploration of 

combinations of metadata to be visualized and explored according to user specified nodes on 

ontological hierarchies. We can imagine expanding upon this concept and programmatically 

probe which data patterns persist when comparing studies and samples on their highest 

ontological parent nodes, i.e., what are the largest generalizations that can be made? Validations 

of such meta-analyses would be based on published ground truths (e.g., absence of cholesterol in 

the plant kingdom), giving credibility to new hypotheses to be revealed by large scale database 

queries.  

 The second way that we hope to utilize this tool is as the foundation for a comprehensive 

metabolomics atlas. We hope that this atlas could be one of many large, normalized datasets 
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provided to a large machine learning model that circumvents hypotheses altogether to provide 

clinical or therapeutic predictions in opposition to or in conjunction with theory provided by 

domain experts. 

3.7 Data and Software Availability 
All code is available at https://github.com/metabolomics-us/metadatastandardizer. We make 

extended documentation available at https://metabolomics-us.github.io/metadatastandardizer/. 

The documentation reviews deployment instructions for this tool on Amazon Web Services as well 

as a detailed walkthrough for using the backend. 
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3.9 Supplemental Information 

 

 

 

 

Figure S1: Detailed Workflow of SMetaS 
a) formal ontologies supply curated and relevant terms. Here we show a simplified version of the Medical Subject Headings 
ontology. b) ontologies are coerced into initial vocabularies for metadata categories. Here, the organ subgraph from MeSH becomes 
the organ vocabulary. c) each vocabulary generates a tf-idf vectorizer, which creates a numeric space based on triplets of letters. d) 
each vocabulary and vectorized space is used to create a nearest neighbors model, which is used to find similar terms to strings 
provided by users. e) in the first pass, described in the Results, the API connects the tf-idf/nearest-neighbors models to the frontend. 
f) in the event that new terms are added to vocabularies (like a new drug to the drug vocabulary), the API adds terms to the 
vocabularies, which triggers a retraining of the tf-idf vectorizer/nearest neighbors models based on the expanded vocabulary. g) 
completion of a curation process stores the resultant curated values into tables in the database. h) completion of a curation process 
generates an excel file that is immediately available for the user. This excel file contains the same information that is stored in g). i) 
the stored studies can be programmatically accessed. Details for practical usage are provided in the documentation website at 
https://metabolomics-us.github.io/metadatastandardizer/ . 

https://metabolomics-us.github.io/metadatastandardizer/
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Appendix: Additional Projects 

Part 1: ClusterBase 
ClusterBase was a project developed during a summer internship at the Chan-Zuckerberg 

Biohub with colleagues Dr. Brian DeFelice and Wasim Sandhu. It is an in-house software tool that 

ingests processed mass spectrometer data files into a database and then performs network analysis. 

This project had several benefits for the metabolomics team at the Biohub. First, it established 

modern infrastructure for their data so that any subsequent project will be significantly easier. 

Second, the network analysis automatically annotated metabolites. This sped the processing of 

Figure 1: ClusterBase Outline. 
a) the ClusterBase project starts files derived from MS-Dial, which in 
turn accepts raw instrument output. The Clusterbase project is outlined 
in red. These files are ingested into a database and then network 
analysis is performed. b) network analysis occurs between studies, 
where nodes are metabolites and edges between nodes are formed based 
on similarity (retention time, MS2, etc.) In this way, the nth study can 
be automatically annotated based on previous studies. c) After many 
studies, subgraphs form, and the sample metadata from studies can be 
associated in order to identify unknowns of interest. 
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data and reduced turn-around time for clients. Third, the networking allowed for the organized 

association of unidentified compounds that were observed in independent studies. Determining 

metabolites that were observed for samples with metadata of interest (certain diseases, ages, etc.), 

allowed the team to focus on those metabolites for the process of chemical identification. in This 

allows for the retrospective identification of trends among those samples from disparate studies 

but common metadata attributes, i.e., the appearance of certain metabolites in certain diseases. 

These benefits are outlined in Figure 1. 

 The process of ClusterBase can be outlined as follows. ClusterBase begins with the 

ingestion of files from MS-Dial that are in turn derived from raw mass spectrometer files. MS-

Dial generates 1) an “individual file” for every sample, which contains a set of observed peaks, an 

MS/MS spectrum (MS2), adducts, intensities, etc. 2) an “alignment file” for every study (set of 

samples), which contains a sample-feature matrix, where each sample is one of the individuals and 

each feature is the union of all peaks sets among indiviuals. Magnitudes are derived by 

algorithmically shifting/stretching the features in each samples’ mz-rt space, and 3) a mapping file 

containing key-value relationships between the summary alignment file and each of the individual 

files.  

 For the nth study, ClusterBase extracts all information from the alignment and individual 

files and coerces those data into a relational database. ClusterBase then performs network analysis 

among the aligned features from the nth study against the aligned features from all other studies 

that it has seen thus far. Each feature becomes a node, and edges between nodes and among are 

created if the nodes in the nth study have sufficiently close retention times, precursor masses, 

adducts, MS2 similarities, etc. to nodes from previous studies. Clusterbase then chooses those nth 

study nodes that have sufficiently confident identifications based on connections to earlier nodes, 
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and returns predicted identities to the user for verification. Upon verification, CluserBase updates 

properties of node-groups, such as consensus spectra and consensus retention times. A user 

interface for ClusterBase was developed and is showcased in Figure 2. 

 The entire process is heavily parameterized (retention time cutoffs, consensus spectrum 

binning parameters, etc.) and therefore we needed to determine the optimal parameters. To do this, 

we used a customized hyperparamter optimization process. This involved comparing the identities 

in the automatically generated subgraphs to identities that were manually generated over the past 

several years by the Biohub metabolomics team. For a single set of parameters, the entire network 

was generated. Then, we determined the precision and recall of each identity. For each identity, 

we examined the subgraph with the greatest percent population. The precision was treated as the 

fraction of nodes in that subgraph with that identity. The recall was treated as the fraction of nodes 

in the entire network that belonged to that subgraph. We could then take the average of those 

precisions and recalls for each identity and assign a value for the entire network for that 

Figure 2: ClusterBase user interface. In this example, for visual simplicity, only two studies are loaded (STQU002 and BRY005). A 
study is selected and the aligned mz-rt space is displayed (center) along with study metadata (left). A peak can be selected from the mz-rt 
space, which generates the corresponding subgraph (bottom-center), cluster metadata (top-right), and spectra (bottom-right). 
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hyperparameter combination. We chose a parameter set that offered good precision in order to 

have confidence in our identities.  

 Throughout this process, we challenged many assumptions in the software that we used. 

One of the assumptions worth mentioning is shown in Figure 3. Here, we show that MS-Dial’s 

alignment process is not completely reliable. 

 

Part 2: CFM-ID Webtool Automation 
One of the outstanding challenges in metabolomics is to identify what compounds are 

present in complex mixtures from biological samples such as human plasma. The traditional 

method is an information retrieval problem – a database of (identity:observables) pairings is 

generated, and for each observable in the sample, the identity corresponding to the best-matched 

observables is chosen. There is a significant bottleneck in the generation of these pairings because 

each pair must be manually synthesized and tested. Therefore there is great interest in in silico 

tools to aid the generation of these libraries.  

Figure 3: Explorations into MS-Dial’s alignment. In MS-Dial, the mz-rt spaces among samples are aligned based on intensities in the 
space. This is challenging, especially when aligning matrices that are qualitatively different (e.g., plasma vs liver). We checked the 
alignment by generating similarity matrices for the MS2 associated with a particular feature. This revealed three cases: in the 
homogenous case, the alignment succeeded and all MS2 were relatively similar. In the subcluster case, where multiple distinct 
metabolites were identified as the same feature. In the entropic case, a noise element is assigned to be a metabolite. 
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 In this project, in conjunction with colleagues Dr. Arpana Vaniya and Fanzhou Kong, we 

compared in silico tools for compound identification. I was tasked with identifying 500 compounds 

using, CFM-ID, the tool extensively explored in Chapter 1. CFM-ID has an online component that 

extends its functionality beyond library generation into the realm of compound identification. 

Unfortunately, this tool does not have a “batch mode”, so, in this project, I wrote a pipeline that 

automated the webtool. We identified those 500 compounds with this automation wrapper and 

then performed statistical analysis on the identification attempt. The workflow is outlined in 

Figure 1.  

 

 The challenging aspect of this work is that the CFM-ID webtool is not intended for 

automatic use. Therefore, we had to deconstruct the webtool from the outside and write custom 

requesters and scrapers. After doing this, the results were analyzed. For each compound attempted, 

we were interested in how far from the top suggestion was the genuine identity. Our results are 

shown in Figure 2. In this figure, we see that CFM-ID dramatically underperforms similar tools. 

We spoke with developers, and determined that the CFM-ID webtool had some kind of error. After 

Figure 1: Workflow of CFM-ID automation. 
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testing, it was discovered that the CFM-ID webtool database had become corrupted and that they 

needed to regenerate most of their MS2 predictions. 

Part 3: MS2 Intensity Prediction 
 Throughout my Ph.D. I had the privilege to help others as well as explore my own scientific 

ideas. I am truly grateful for the excellent funding in the Fiehn lab that afforded me the time to 

pursue my scientific passions.  

 One of the avenues that I explored was the creation of an intensity predictor to augment 

quantum mechanical predictions of MS2 spectra. The quantum mechanical predictions modeled 

the fragmentation process well, and therefore had a good jaccard score when compared to their 

Figure 2: Comparison of CFM-ID to other top compound identification tools. 

Figure 1: Outline of Spectral Prediciton problem. a) the goal is to predict an intensity for each peak in a predicted spectrum. 
Therefore, we have n predictions per compound, where n is the number of non-zero m/z values. b) performance vs. training iteraction 
shows that we quickly achieve optimized generalization. 
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experimental analogs, but did not capture the intensities well. We suspected this was because they 

did not model interactions with the detector. Therefore, we were motivated to create a tool to 

replace the quantum mechanically predicted intensities, as illustrated in Figure 1a. Here, we show 

that, we rely on quantum mechanics for the substructures, and therefore the m/z values, but we 

desire learn to predict an intensity for each peak. Therefore, every compound actually requires n 

prediction, where n is the number of peaks in the spectrum. We think of the relative intensities as 

a competition, and therefore, as feature input, utilize structural information via graph fingerprints 

as well as intensities of surrounding peaks. 

The success is shown in Figure 1b, where we quickly arrive at a generalized model. Indeed, 

we encountered the problem often seen with machine learning in mass spectrometry – the 

complexity of the physics and statistical mechanics is barely encapsulated in the descriptor space. 

Moreover, interpolation is extremely difficult because of the complexity of these processes. 

Indeed, we quickly achieve an optimally generalized model, despite the fact that our model can 

continue to over-optimize on its training set. 

Ultimately, we achieved moderate success in this approach, as illustrated in Figure 2. Here, 

we see that we have slightly increased the similarity of predicted spectra to their empirical spectra. 

Figure 2: Similarity distributions with quantum mechanical and machine learning spectra.  
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re directions would include transforming this regression problem into a classification problem, in 

order to remove the tendency for predictions to be a moderate intensity. 




