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1. Introduction 

 The classic representation for the chemical potential in an N  component system is given by 

  
o( , ) ( , ) ln , 1, 2, ... ,  A A AT p T p RT x A N   (1) 

An examination of text books treating the subject of thermodynamics indicates a history of presenting Eq. 

1 without a derivation.  The earliest text book presentation of a form analogous to Eq. 1 would appear to 

be in the work of Lewis & Randall (1923).  In their treatment of single component ideal gases, Lewis & 

Randall (1923, page 165) suggest that the reader derive the result given by 

  o o( , ) ( , ) ln , constant  T p T p RT p p T   (2) 

Here we have used the nomenclature consistent with the presentation in this work as opposed to the 

original nomenclature of Lewis & Randall (1923).  Following this suggestion to the reader, Lewis & 

Randall (1923, page 191) introduced the concept of fugacity with the statement: "We may partially define 

the fugacity, f , in terms of the molar free energy through the equation 

  lnRT f B    (3) 

where B  is defined no further than by the statement that it is a function of temperature only, or, in other 

words, that it is a constant at a single temperature."  Moving on to multi-component systems, Lewis & 

Randall (1923, page 205) stated that: "Proceeding as in the case of a pure substance, we may partially 

define the fugacity of a solution constituent by the equation 

  lnA A ART f B    (4) 

where AB  is a constant for a given substance at a given temperature."  This intuitive path from a single 

component ideal gas to a multi-component ideal gas mixture has been a standard feature of the presentation 

of the chemical potential for many, many decades.  One of the most recent treatments of this problem is 

by Kondepudi (2008, Eq. 5.3.6) where one finds the single-component form given by 

   o o( , ) ( , ) ln , constantp T p T RT p p T     (5) 

On the basis of this result Kondepudi (2008, Eq. 6.1.9) presents the multi-component form by analogy in 

order to obtain 

  
o( , , ) ( , ) ln , constant , 1, 2, 3...   k k k kp T x p T RT x T k   (6) 

Here we see that the intuitive development of Lewis & Randall (1923) has served as the basis for 

Kondepudi's (2008) treatment more than eighty years later.  The most clearly stated justification for the 

creation of Eq. 6 on the basis of Eq. 5 is given by Prigogine & Defay (1954, page 124) that we repeat here 

as: 

"We say that a mixture of gases in volume V  at temperature T , is perfect if the free energy 
F  is equal to the sum of the free energies which the separate constituents would have if 

each were confined alone in the same volume at the same temperature." 
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Given this hypothesis, Prigogine & Defay (1954, Eq. 10.35) produced Eq. 6 on the basis of a result 

analogous to Eq. 5 (Prigogine & Defay, 1954, Eq. 10.11).  The intuitive path from Eq. 5 to Eq. 6 has been 

followed by many authors, and in this work we provide a derivation of Eq. 6 for ideal gas mixtures along 

with the result for the chemical potential of ideal liquid solutions. 

 

2. Gibbs-Duhem Equation 

 On the basis of Postulate I of Callen (1985, Eq. 2.1) for an N  component system we write 

   , , , ,....,A B NU U S V n n n  (7) 

in which U  is the internal energy of a macroscopic system, S  and V  are the entropy and volume of that 

system, and , ,....,A B Nn n n  represent the number of moles of the molecular species.  We begin with Callen's 

definitions 

   
, ....

, the temperature
A NV n n

U S T    (8a) 

   
, ....

, the pressure
A NS n n

U V p     (8b) 

   
, , ...

, the chemical potential
B N

A AS V n n
U n     (8c) 

in order to obtain the result given here as (Callen, 1985, Eq. 2.6) 

  

1

A N

A A

A

dU TdS pdV dn





     (9) 

At this point we recall the Euler form (Callen, 1985, pages 59 and 147) which is given by 

  

1

A N

A A

A

U TS pV n





     (10) 

and differentiation of this form leads to 

  

1 1

A N A N

A A A A

A A

dU TdS SdT pdV Vdp

dn n d

 

 

   

   

 (11) 

Subtracting Eq. 9 from Eq. 11 provides the Gibbs-Duhem equation 

  

1

0

A N

A A

A

SdT Vdp n d





      (12) 

in which we encounter a single equation containing N  unknown values of the chemical potential.  

Derivations of this result are given by numerous authors [Prigogine & Defay (1954, Eq. 6.38); Denbigh 
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(1961, Eq. 2.83); Callen (1985, Eq. 3.14); Kuiken, 1994, Eq. 4.9); Kondepudi (2008, Eq. 5.2.4)]; however, 

not all authors proceed directly to the more useful form of this result given by Callen (1985) and presented 

in the following paragraph. 

 At this  point we return to the Euler form given by Eq. 10 and rearrange that result as 

       

1

1

A N

A A

A

S U T V p T T n





      (13) 

From this we obtain 

  

     

     

1

1

1

1

A N

A A

A

A N

A A

A

d S dU T dV p T T dn

U d T V d p T n d T









  

  









 (14) 

and multiplication by the temperature leads to 

  

     

1

1

1

A N

A A

A

A N

A A

A

TdS dU pdV dn

T U d T V d p T n d T









   

 
 

 
 
  









 (15) 

Use of Eq. 9 with this result provides an alternate form of the Gibbs-Duhem equation given by (Callen, 

1985, Eq. 3.18) 

       

1

1 0

A N

A A

A

U d T V d p T n d T





     (16) 

This form allows us to work with the energy, U , instead of the entropy, S , that appears in Eq. 12.  A key 

characteristic of this result is that it represents one equation containing N  unknown values of the chemical 

potential. 

 

3. Single Component Ideal Gas 

 Here we follow many authors and explore the case of a single-component ideal gas for which Eq. 16 

simplifies to 

       1 0U d T V d p T n d T    (17) 



   

   

5 

For a single-component system we express the ideal gas law in the form 

  pV nRT  (18) 

and we make use of Callen’s (1985, Eq. 3.26) representation for the energy of an ideal gas given by 

  U n RT   (19) 

Callen notes that 3 2  for monatomic ideal gases and goes on to comment that for diatomic molecules 

such as 2O  or NO  there tends to be a considerable region of temperature for which 5 2; .  The value 

of 3 2  is consistent with the kinetic theory development given by Jeans (1916,  

Chapter VI).  Both Eq. 18 and Eq. 19 represent crucial simplifications for ideal gases that are not 

applicable to liquid solutions.  We can use Eq. 19 to express the first term in Eq. 16 as 

       1 1U d T n RTd T n R dT T     (20) 

while Eq. 18 can be used to express the second term in the form 

       V d p T nR dp p nR dT T   (21) 

Given these two results we can represent Eq. 17 as 

     1 0
dT dp

d RT
T p

       (22) 

This form of the Gibbs-Duhem equation for a single-component ideal gas can be integrated [Prigogine & 

Defay (1954, Eq. 10.12); Callen (1985, Eq. 3.33); Kuiken (1994, Eq. 6.82); Kondepudi (2008,  

Eq. 5.3.6)] in order to obtain the chemical potential given by 

         o o o o o o( , ) ( , ) 1 ln lnT p T T T p RT T T RT p p         (23) 

The next step in the traditional path forward is to infer by intuition the multi-component form of Eq. 23 

as indicated in the work of Prigogine & Defay (1954, Eq. 10.26), Callen (1985, Eq. 13.8), Kuiken (1994, 

Eq. 6.83), and Kondepudi (2008, Eq. 6.1.9).  The apparent need for intuition to arrive at the multi-

component form results from the fact that Eq. 16 represents a single equation containing N  unknown 

values of the chemical potential.  We address this problem in the next section. 

 

4. Ideal Gas Mixtures 

 For ideal gas mixtures we will apply Dalton's Laws given by 

  , 1, 2, ... , A Ap V n RT A N  (24a) 

  

1

A N

A

A

p p





   (24b) 

  , 1, 2, ... , A Ap x p A N  (24c) 
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and we will make use of the constraint on the mole fractions given by 

  

1

1

A N

A

A

x





  (25) 

In addition to these relations for ideal gas mixtures, we will make use of Callen's (1985, Eq. 3.39) 

representation for the energy that takes the form 

  

1

A N

A A

A

U n RT





   (26) 

Use of this expression for the energy in Eq. 16 leads to 

       

1 1

1 0

A N A N

A A A A

A A

n RT d T V d p T n d T

 

 

      (27) 

and it is convenient to divide this result by nR  and arrange the result in the form 

       

1

0

A N

A A A

A

V
d p T x dT T d RT

nR
 





      (28) 

In order to derive a useful result from this form of the Gibbs-Duhem equation, we represent the first term 

as 

   
 

 

d nR VV
d p T

nR nR V
  (29) 

Our treatment of the right hand side of Eq. 29 is based on the following simple theorem 

Theorem: 

1

A N

A
A

A
A

dd
x








   (30) 

in which 

  , 1, 2, ... ,   A Ax A N  (31) 

To prove this theorem, we begin with the Eq. 25 and use that constraint on the mole fractions to obtain 

   

1 1

1

A N A N

A A

A A

d d d d
x x

 

 

     
      

        (32) 

This result can also be expressed as 
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 

 
 

1 1

 

 

   
               

 
A N A N

A A
A A A

A A
A A

x d xd
x d x d x

x x
 (33) 

and the sums can be separated leading to 

     
1 1

 

 

   
              

A N A N

A A
A A

A A
A A

x xd
d x d x

x x
 (34) 

The second term on the right hand side is zero according to 

     

1 1

0

A N A N

A
A A

A
A A

x
d x d x

x

 

 

 
   

    (35) 

and this leads to the result given by 

  
 

 
1

A N

A
A

A
A

d xd
x

x





    
   

     
  (36) 

Application of Eq. 31 provides the desired proof. 

Proof: 

1

A N

A
A

A
A

dd
x








   (37) 

To apply this theorem to Eq. 29 we use / n R V  to obtain 

   
 

 

 

 
1





  
A N

A
A

A
A

d n R V d n R VV
d p T x

nR n R V n R V
 (38) 

At this point we make use of Eq. 24a which provides 

  , 1, 2, ... , A An R V p T A N  (39) 

and substitution of this expression in Eq. 38 leads to 

   
 

 
1 1

 

 

 
   

  
A N A N

A A
A A

A A
A A

d n R V dpV dT
d p T x x

nR n R V p T
 (40) 

Use of this result in Eq. 28 provides the following form of the Gibbs-Duhem equation: 
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     

1

1 0

A N

A A A A A

A

x dp p dT T d RT





         (41) 

If each of the N  terms in the brackets are constants, one can easily prove that those constants are zero 

leading to 

     1 0 , 1, 2, ... ,    A A A Ad p p dT T d RT A N   (42) 

This represents one solution to Eq. 41; however, at this point in time the author cannot prove that  

Eqs. 42 represents a unique solution to Eq. 41.  Without a proof of uniqueness, we proceed on the basis 

that Eqs. 42 represent one solution that can be integrated from some reference state indicated by a subscript 

zero to obtain 

  

  

     

o o o o

o o

( , ) ( , )

1 ln ln , 1, 2, ... ,



   

A A A A

A A A

T p T T T p

RT T T RT p p A N

 



 (43) 

Use of Eq. 24c provides 

  
o o

A
A

A A

p p
x

p p
  (44) 

and this allows us to arrange Eq. 43 in the form 

  

      

 

o o o o o

o

( , ) ( , ) 1 ln

ln ln , 1, 2, ... ,

  

  

A A A A

A A

T p T p T T RT T T

RT p p RT x A N

  

 (45) 

If the reference state is identified as 

Reference State: o o o, , 1.0A AT T p p x    (46) 

we can express Eq. 45 in the form 

  

      

 

o o o o o

o

( , , ) ( , ) 1 ln

ln ln , 1, 2, ... ,

  

  

A A A

A

T p x T p T T RT T T

RT p p RT x A N

  

 (47) 

Traditionally the details associated with op and oT  are ignored and this result is expressed as 

  
o( , , ) ( , ) ln , 1, 2, ... ,  A A A AT p x T p RT x A N   (48) 

This form is presented as an intuitive extension of Eq. 23 by numerous authors such as Prigogine & Defay 

(1954, Eq. 10.35), Denbigh (1962, page 113), Callen (1985, Eq. 13.8), Kuiken (1994, Eq. 6.85), and 

Kondepudi (2008, Eq. 6.1.9).  Guggenheim (1959, Eqs. 5.12.1 and 5.12.2) derives a form analogous to 

Eq. 23 and then lists a form analogous to Eq. 48 indicating that the multi-component version results from 
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statistical mechanics; however, no reference to the analysis is given.  Prigogine & Defay (1954, page 319) 

present a statistical analysis indicating that a form of Eq. 48 also applies to dilute liquid solutions; 

however, if one removes the constraints imposed by Eqs. 24 and 26, the form given by Eq. 48 does not 

follow.  In the next section we show that the chemical potential for liquid solutions is not given by Eq. 48 

regardless of how small Ax  might be. 

 

5. Liquid Solutions 

 At this point we return to the general form of the Gibbs-Duhem equation given by Eq. 16.  For liquid 

solutions this result is expressed as 

     
1

1 ( ) ( ) 0





    
A N

liq liq liq A liq A liq

A

U d T V d p T n d T  (49) 

in which it is understood that the temperature, T , is the temperature of the liquid solution.  Here we remind 

the reader that Eqs. 24 and 26 are only valid for ideal gas mixtures, thus Eq. 48 is restricted to ideal gas 

mixtures.  The situation for ideal liquid mixtures represents an entirely different case as we shall see in 

the following paragraphs.  For liquid solutions we avoid Eq. 26 and express the internal energy of a 

mixture (Whitaker, 2012, Eq. 49) according to 

  

1

( ) ( )u





 
A N

liq A liq A liq

A

U n  (50) 

Since the internal energy of species A  is only a weak function of the pressure, we represent ( )uA liq  in the 

form 

Assumption:  
o

o( ) ( )
u

u u
 

   
 

A
A liq A liq

p

T T
T

 (51) 

This is an approximation that deserves to be explored in detail; however, the idea that the temperature 

dominates the value of the internal energy for liquids is quite reasonable.  Use of Eqs. 50 and 51 allows 

us to express the first term in Eq. 49 as 

     o
o2

1

1 ( ) )
u

(u





  
     

   

A N

A
liq liq A liq A liq

p
A

dT dT
U d T n x T T

T TT
 (52) 

Moving on to the second term in Eq. 49, we represent that term as 

           1 liq liq liq liq liq liq liq liq liqV d p T n V n d p T n c d p T  (53) 

and we impose a second assumption given by 

Assumption:   constantc  liq liq liqn V  (54) 
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Once again, this approximation deserves to be explored in detail; however, the total molar concentration 

of a liquid solution changes only slightly for very large changes in both temperature and pressure.  Thus 

Eq. 54 represents a reasonable approximation.  We now return to Eq. 53 and carry out the differentiation 

of liqp T  to obtain 

      2

1 
  

  
liq liq liq liq liq liq

liq

dT
V d p T n dp p c

c T T
 (55) 

At this point we represent the total liquid pressure in terms of the partial pressures according to (Whitaker, 

2009, Appendix B) 

  

1

( )





 
A N

liq A liq

A

p p  (56) 

Here one must note that this representation for the pressure is for liquid solutions, and it does not represent 

an ideal gas condition as indicated by Eq. 24b.  Use of this definition allows us to express  

Eq. 55 as 

    2

1 1

( ) ( )
 

 

  
A N A N

A liq A liq
liq liq liq liq

liq liq
A A

d p p dT
V d p T n n

c T c T
 (57) 

This result, along with Eq. 52, can be used in the Gibbs-Duhem equation given by Eq. 49 to obtain 

  

 o
o2

1

2

1 1 1

( ) )

( ) ( )
( ) ( ) 0

u
(u





  

  

  
    

   

    



  

A N

A
A liq A liq

p
A

A N A N A N

A liq A liq
A liq A liq

liq liq
A A A

dT dT
x T T

T TT

d p p dT
x d T

c T c T


 (58) 

At this point the route forward appears to be very complex and not at all comparable to the simple analysis 

that led to Eq. 42 for ideal gas mixtures.  However, there is one special case associated with  

Eq. 58 that has some practical applications, and that is the case in which the temperature and the total 

pressure are treated as constants.  If we impose this simplification as indicated by 

Assumption:  is constantT  (59a) 

Assumption:  is constantliqp  (59b) 

the Gibbs-Duhem equation given by Eq. 58 takes the form 

  

1 1

( )
( ) ( ) 0

 

 

  
A N A N

A liq
A liq A liq

liq
A A

d p
x d

c
  (60) 
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The partial pressure of species A  is constrained by 

  0 ( ) , 1, 2, ... ,  A liq liqp p A N  (61) 

and a reasonable approximation for the partial pressure (often referred to as an ideal liquid solution) is 

given by 

Assumption: ( ) ( ) , 1, 2, ... , A liq A liq liqp x p A N  (62) 

Use of this result in Eq. 60 along with the constraint given by Eq. 59b leads to 

  

1 1

( )
( ) ( ) 0

 

 

  
A N A N

liq A liq
A liq A liq

liq
A A

p d x
x d

c
  (63) 

and this can be arranged in the same form as Eq. 41 to obtain 

  

1

( )
( ) ( ) 0

( )





 
  

  

A N

liq A liq
A liq A liq

liq A liq
A

p d x
x d

c x
  (64) 

Here we are confronted with the same problem we encountered with Eqs. 41 and 42, and following the 

same procedure we use Eq. 64 to obtain one solution given by 

  
( )

( ) , 1, 2, ... ,
( )

 
A liq liq

A liq
A liq liq

d x c
d A N

x p
  (65) 

This equation can be integrated from some reference state indicated by a superscript zero to obtain 

   o

o

( )
( ) ( ) ln , 1, 2, ... ,

( )

 
   
  

A liq
A liq A liq liq liq

A liq

x
p c A N

x
   (66) 

If the reference state is chosen to be pure species A  we have o( ) 1A liqx  and the chemical potential for 

species A  takes the form 

     o( , , ) ( , ) ln ( ) , 1, 2, ... ,   
 A A A liq liq A liqliq liq

T p x T p p c x A N   (67) 

This looks similar to the general result for ideal gas mixtures given by Eq. 48 and to enhance the 

comparison we express Eq. 67 in the form 

  
o( , , ) ( , ) ln , 1, 2, ... , , constant  and   A A A A liqT p x T p RT x A N T p    (68) 

in which the parameter   is given by 

  
liq

liq

p

c RT
  (69) 
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If the parameter   were one (and it is not), we would conclude that the chemical potential for an ideal 

liquid solution would be identical to the chemical potential for an ideal gas mixture.  However, if we 

consider an aqueous solution at one atmosphere, the calculation of   for an ideal liquid solution is given 

by 

  

  

   3 3

18 g mol 1atm 1
, ideal liquid solution

12001g cm 82 atm cm mol K 300K

 

 

liq liq

liq liq

p MW p

c RT RT



 (70) 

From this result it is clear that Eq. 68 for ideal liquid solutions represents a dramatically different result 

than Eq. 48 for ideal gas mixtures.  This conclusion is quite different than the conclusion reached by 

Prigogine & Defay (1954, Eq. 20.41) who indicated that all sufficiently dilute liquid solutions have 

chemical potentials of the form given by Eq. 48. 

6. Conclusions 

 In this work we have examined the Gibbs-Duhem equation for multi-component systems with the 

objective of developing a representation for the chemical potential.  For ideal gas mixtures we have 

derived a result that many have assumed to be true in order to arrive at Eq. 48.  For ideal liquid solutions 

the Gibbs-Duhem equation becomes very complex; however, a useful result can be obtained for the case 

in which variations of the temperature and the total pressure can be ignored.  This leads to a result for the 

chemical potential indicating that ideal liquid solutions are very different than ideal gas mixtures.  While 

we know that Eq. 42 and Eq. 65 represent solutions to special forms of the Gibbs-Duhem equation, we 

have not proved that these solutions are unique. 
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Nomenclature 

liqc  liq liqn V , total molar concentration, mol/m3 

N  total number of molecular species 

An  number of moles of species A  

n  total number of moles 

p  total pressure, N/m2 

op  total pressure at the initial state, N/m2 

Ap  partial pressure of species A , N/m2 

R  gas constant, 82.06 3atm-cm mol K  

S  total entropy, kcal/K  

T  temperature, K  

oT  reference temperature, K  
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U total internal energy, kcal 

u U n  internal energy per mole, kcal/mol  

Au  species A  internal energy per mole, kcal/mol  

V  total volume, m3 

Ax  mole fraction of species A 

Greek Letters 

  chemical potential for a single component system, kcal/mol  

A  chemical potential of species A, kcal/mol  

o
A  reference chemical potential of species A, kcal/mol  

  coefficient in the representation for the energy of an ideal gas 

A  coefficient in the representation for the energy of species A  in an ideal gas mixture 
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