
UC Berkeley
UC Berkeley Previously Published Works

Title
Exploring Challenging Variations of Parsons Problems

Permalink
https://escholarship.org/uc/item/8794g5s0

ISBN
9781450367936

Authors
Weinman, Nathaniel
Fox, Armando
Hearst, Marti

Publication Date
2020-02-26

DOI
10.1145/3328778.3372639

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8794g5s0
https://escholarship.org
http://www.cdlib.org/

Exploring Challenging Variations of Parsons Problems
Nathaniel Weinman
nweinman@berkeley.edu

University of California, Berkeley

Armando Fox
fox@berkeley.edu

University of California, Berkeley

Marti Hearst
hearst@berkeley.edu

University of California, Berkeley

ABSTRACT
Introductory programming classes teach students to program using
worked examples, code tracing, and code writing exercises. Par-
sons Problems are an educational innovation in which students
unscramble provided lines of code, as a step towards bridging the
gap between reading and writing code. Though Parsons Problems
have been found effective, there is some evidence that students can
use syntactic heuristics to help them solve these problems without
fully understanding the solution.

To address this limitation, we introduce Faded Parsons Problems,
a variation of Parsons Problems where parts of the provided code
are incomplete. We explore a specific instantiation of this idea,
Blank-Variable Parsons Problems, in which all variable names are
blanked out. Unlike another Parsons Problem variation—adding
distractor code lines—Blank-Variable Parsons can be automatically
created from a solution without additional effort from an instructor.

A 75 minute pilot study with CS1 students indicates that solving
standard Parsons Problems does not lead to short-term near-transfer
in codewriting, suggesting a need for problemswith less scaffolding.
Additionally, students self-report Blank-Variable Parsons as fitting
in difficulty between Parsons Problems and codewriting, suggesting
Blank-Variable Parsons may be one opportunity to fill this gap.

CCS CONCEPTS
• Applied computing → Interactive learning environments;
• Social and professional topics → CS1.

KEYWORDS
Parsons Problem; Faded Scaffolding; Practice Tools; CS1

1 INTRODUCTION AND BACKGROUND
The learning sciences suggest that students benefit from tackling
problems in their Zone of Proximal Development (ZPD), or problems
that are solvable but only with guidance or scaffolding. Parsons
Problems [3], in which students unscramble provided lines of code,
are an example of such scaffolding. Unlike code tracing and worked
examples, they provide an opportunity for students to construct
solutions, but unlike code writing, the solution space is much more
limited and a lighter mastery of language syntax is required. Ericson
et al. [2] found Parsons Problems to be faster than code writing
exercises while producing similar learning gains in CS1 classrooms.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCSE ’20, March 11–14, 2020, Portland, OR, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6793-6/20/03.
https://doi.org/10.1145/3328778.3372639

However, Parsons Problems have limitations as well. Denny et
al. [1] raise concerns that students can “game” Parsons Problems,
or make progress while avoiding learning. Additionally, though
Parsons Problems support students in constructing a logical so-
lution, students do not write any code. We introduce and study
Blank-Variable Parsons Problems, a more challenging variant
in which all variable names are removed from the provided lines.

2 METHODS AND RESULTS
We ran a pilot study in the summer of 2019 with CS1 students at a
large US university. 13 participants (11 Male) were compensated
monetarily for their time and offered a chance to review Multiple
Recursion. The researchers were not course instructors.

Participants worked through a total of 4 exercises. The first 3
exercises consisted of two challenging Multiple Recursion ques-
tions and one easy question (Fizz Buzz) in a fixed order. Participants
were randomly assigned, without replacement, to work on these
three exercises in each of the three problem type: Parsons Prob-
lems, Blank-Variable Parsons, and code writing. The final exercise
repeated the first question, but was always code writing.

Though all participants working on the first Multiple Recursion
exercise as a standard Parsons Problem were able to solve it, none
were able to solve the same problem at the end of the study as a code
writing exercise. Additionally, at the end of the study, participants
self-rated Blank-Variable Parsons as harder to solve than Parsons
Problems but easier to solve than code writing questions.

3 CONTRIBUTIONS AND FUTUREWORK
This pilot study provides early motivation for the opportunity of
further fading between Parsons Problems and code writing. It in-
troduces Blank-Variable Parsons, a more challenging variation of
Parsons Problems, as a problem which may serve this need. It more
broadly opens up a discussion for other instantiations of Faded Par-
sons Problems, in which parts of the provided code are incomplete.

ACKNOWLEDGMENTS
This material is based upon work supported by by the National
Science Foundation Graduate Research Fellowship under Grant No.
DGE 1752814 and the Google Social Interactions Research Award.

REFERENCES
[1] Paul Denny, Andrew Luxton-Reilly, and Beth Simon. 2008. Evaluating a new exam

question. In ICER '08.
[2] Barbara J. Ericson, Lauren E. Margulieux, and Jochen Rick. 2017. Solving parsons

problems versus fixing and writing code. In Koli Calling '17.
[3] Dale Parsons and Patricia Haden. 2006. Parson’s Programming Puzzles: A Fun

and Effective Learning Tool for First Programming Courses (ACE ’06). 157–163.

Poster Session 3 SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

1349

https://doi.org/10.1145/3328778.3372639

	Abstract
	1 Introduction and Background
	2 methods and results
	3 CONTRIBUTIONS AND FUTURE WORK
	Acknowledgments
	References

