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a b s t r a c t

Structural transformations in crystalline solids are increasingly the basis of the functional
behavior of materials. Recently, in diverse alloy systems, both low hysteresis and
reversibility of phase transformations have been linked to the satisfaction of the non-
generic conditions of compatibility between phases. According to the Cauchy–Born rule,
these conditions are expressed as properties of transformation stretch tensor. The trans-
formation stretch tensor is difficult to measure directly due to the lack of knowledge about
the exact transforming pathway during the structural change, and the complicating effects
of microstructure. In this paper we give a rigorous algorithmic approach for determining
the transformation stretch tensor from X-ray measurements of structure and lattice
parameters. For some traditional and emerging phase transformations, the results given
by the algorithm suggest unexpected transformation mechanisms.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Structural transformations increasingly underlie the unusual behavior of emerging functional materials designed for
sensors/actuators (Otsuka and Wayman, 1999; Li et al., 2003; Kaufmann et al., 2010), solid-state refrigerators (Liu et al.,
2012; Cui et al., 2012), batteries (Kang and Ceder, 2009; Louie et al., 2010), thermoelectrics (Ikeda et al., 2009) and direct
energy conversion devices (Srivastava et al., 2011; Song et al., 2013a). These applications rely on the change of crystal
structure. The resulting change of lattice parameters, together with sensitivity of magnetoelectric properties to lattice
parameters, inspires an approach to the discovery of new functional phase-transforming materials (Cui et al., 2006; Zarnetta
et al., 2010; Srivastava et al., 2010; Song et al., 2013b). However, the formation of microstructure during phase transfor-
mation introduces elastic distortion at phase interfaces due to lattice misfit, which in turn leads to functional degradation.
Recent studies of morphological interface compatibility for phase-transforming materials shed light on the effect of low-
ering and even eliminating this distortion by tuning composition so that the lattice parameters satisfy strong conditions of
compatibility (Chen et al., 2011, 2013). These conditions are restrictions on the form of the transformation stretch tensor (Ball
and James, 1987; Bhattacharya, 2003) and the point groups of the two phases. The reversibility, thermal hysteresis, and
resistance to cyclic degradation of functional materials have been dramatically linked to properties of the transformation
stretch tensor and symmetries (Zarnetta et al., 2010; Chen et al., 2011; Song et al., 2013b; Chluba et al., 2015; James, 2015).
Here we propose an algorithmic approach for the determination of the transformation stretch tensor based on X-ray
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Fig. 1. Non-uniqueness of Cauchy–Born deformation gradient from a (a) square lattice to (b) oblique lattice due to lattice invariant deformations. Red, blue
and green balls represent different atomic species. Gray dots define the periodicity. In this example both lattices are chosen as primitive, for simplicity. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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measurements, and we give a rigorous proof of its validity. The results below reveal some unexpected transformation
mechanisms in traditional and emerging phase-transforming materials.

In principle, the determination of the transformation stretch tensor U is straightforward: simply observe where each
atom goes during transformation and deduce the macroscale deformation gradient F associated to this motion. The stretch
tensor associated to this macroscale deformation gradient (via the polar decomposition =F QU, ∈ ( )Q SO 3 , =U UT positive-
definite) should be the main quantity that is relevant to the stressed transition layers between phases that underlies im-
provements of reversibility discussed above.

In practice, however, determination of this macroscale deformation gradient is surprisingly subtle. First, not every atom
is convected with this macroscopic deformation gradient. Rather, some sublattice of the parent (austenite) phase is trans-
formed into some sublattice of the transformed (martensite) phase. The atoms within the unit cell of the chosen austenite
sublattice are not generally deformed by this macroscale deformation gradient, but rather undergo independent movements
called shuffling. Fix the lattices of austenite and martensite. It is easily seen that, by taking larger and larger sublattices of
austenite and suitable choices of corresponding sublattices of martensite, the associated deformation gradient can be made
arbitrarily close to the identity. Thus, the choices of sublattice are important.

Fortunately, there are guidelines for choosing the sublattice. The deformation gradient has been measured directly by
macroscopic methods in a few cases by the so-called “two-surface analysis” (Kurdjumov et al., 1961; Duggin and Rachinger,
1964; Otsuka and Shimizu, 1974). This consists of scratching an austenite single crystal on two nonparallel surfaces,
transforming the crystal to martensite by cooling, detwinning the crystal by stress to remove the inevitable microstructure
that forms, carefully removing the stress, and measuring suitable lengths and angles associated to the scratches to get F. In
all of these cases of which we are aware it is found that relevant martensite sublattice is a primitive lattice of martensite.1

The austenite sublattice is generally not primitive.
While the algorithm given below works in more general cases, it is here written to find the sublattice of austenite that is

closest in a certain norm to the primitive lattice of martensite. The distance chosen is a measure of strain having certain
algorithmic advantages. Besides being frame-indifferent, it also has certain advantages with regard to symmetry, i.e., lattices
of different variants of the martensite phase have the same distance to the austenite sublattice. The idea of minimizing
strain has a long history in martensite originating from the work of Bain (1924).

A second consideration for the determination of F is well-known. This is the presence of lattice-invariant deformations.
Referring to Fig. 1, suppose sublattice vectors of initial and final phases are, respectively, linearly independent vectors ai and
bi for = …i d1, 2, , , where d is the dimension of the lattice. A nonsingular linear transformation  →F: d d can be defined
uniquely by

= = … ( )i dFa b , 1, 2, , . 1i i

The notation →a bi i denotes a lattice correspondence. In the case of transformation in Fig. 1, one choice of the lattice
correspondence can be →a b1 1, →a b2 2 where = [ ]a 1, 01 , = [ ]a 0, 12 and = [ ]ab , 01 and β β= [ ]b bb cos , sin2 as illustrated in
Fig. 1. The alternative set of vectors a1 and +a a1 2 describes the same lattice (a), which results in a different correspondence
from (a) to (b). This obviously changes the F and thus the transformation stretch tensor U. More generally, any two sets of
1 A primitive lattice of martensite is a sublattice of the martensite structure having a unit cell of smallest volume, i.e., it embodies the fundamental
periodicity of the martensite lattice, accounting for the crystal structure and species.



Fig. 2. A Bain correspondence from bcc to monoclinic: (a) an orthogonal sublattice of bcc (red); (b) the deformed monoclinic lattice (black) from the
orthogonal face-centered sublattice. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of
this paper.)
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primitive lattice vectors for a given lattice (or, two sets of lattice vectors describing a sublattice) are related by a lattice
invariant transformation (see, e.g., Pitteri and Zanzotto, 2010) i.e., a unimodular matrix of integers. If we allow an invariant
transformation for both initial and final phases, the ambiguity of F is Λ Λ→ ( ) ( )

−F Ff i
1 where Λ( )i and Λ( )f denote the lattice

invariant transformations for the initial and final lattices, respectively.
Experimental two-surface analysis is difficult for several reasons, beginning with the requirement of a large oriented single

crystal. A more common experimental approach is first to infer the lattice correspondence, which effectively says which atoms go
where (for a subset of atoms), and from this information and the precise crystallography, to deduce the transformation stretch
tensor. This is done indirectly by X-ray diffraction methods. The most advanced procedure is to use synchrotron Laue micro-
diffraction techniques, so as to avoid the need to prepare a single crystal, together with a heating/cooling stage (Section 6). One
sees that, during transformation, some spots associated to a zone-axis move just a small distance. It is then plausible to assume
that the lattice planes associated to these pairs of spots are transformed one to another. If this information is known for a
sufficient number of planes, a plausible lattice correspondence can be postulated, and the stretch tensor can be determined.

In Section 6 we review this procedure. From our study of examples in Section 5 we find that for the cubic-to-monoclinic
transformation in Zn45Au30Cu25 the algorithm unexpectedly gives two transformation stretch tensors, associated to two
different correspondences, that have comparable strain. (Note: the algorithm gives the smallest, next smallest, etc.) One of
them was not known previously, illustrating that the algorithm can be used for the discovery of plausible transformation
mechanisms. With this information we then show explicitly the micro-Laue diffraction patterns for this alloy (Section 6). We
Fig. 3. A comparison of the Bain correspondence and a new correspondence found using the algorithm presented in this paper. (a) The bcc lattice and two
of its sublattices (red and blue) of size 4. Lattice distortions between these sublattices and the deformed lattices (b) and (c) (black; for clarity atoms within
the unit cell are not shown). See the text for further information. (For interpretation of the references to color in this figure caption, the reader is referred to
the web version of this paper.)
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show from these patterns that neither of the two mechanisms is favored by the typical experimental procedure described in
the preceding paragraph. Of course, this could indicate that both mechanisms occur in the alloy, which would be especially
interesting. This example and the theoretical example of Fig. 3 suggest that this algorithm can be useful to reveal un-
expected but highly plausible new mechanisms. We also note that algorithm can be used effectively in conjunction with
these micro-Laue diffraction methods.
2. Lattice correspondence for structural transformation

Based on a natural intuition that “a mode of atomic shift requires minimum motion”, Bain (1924) proposed the now
famous lattice correspondence for the formation of bcc α-Fe from fcc γ-Fe,

[ ] → [ ]

[ ] → [¯ ]

[ ] → [ ] ( )

100 110

010 110

001 001 . 2

fcc bcc

fcc bcc

fcc bcc

In this original article there is little justification beyond the statements, “If one regards the centers of faces as the corners of
a new unit, a body-centered structure is already at hand” and the assertion that the proposed mechanism is “the only easy
method of constructing a body-centered atomic structure from the fact-centered cubic crystal” (Bain, 1924). Bain did not
give an explicit expression what he meant by minimum motion, and so could not give a proof that the Bain correspondence
given by (2) gives the least transformation strain for the fcc–bcc transformation. The applicability of the Bain or near-Bain
strain (or its inverse) and associated correspondence to many transformations was suggested by Bowles and Wayman
(1972). Following these authors, we continue to use the terminology “Bain correspondence” for this correspondence, al-
lowing for small perturbations of the bcc or fcc.

The Bain correspondence has been applied to study numerous phase transformations such as Fe–Pt alloy (Tadaki and
Shimizu, 1970), equal-atomic NiTi (Otsuka et al., 1971; Knowles and Smith, 1980) and CuAlNi (Chu, 1993). It is also widely
used for modeling transformation pathways and formation of microstructure in reversible phase transformations (Ball and
James, 1992; Bhattacharya, 2003; Huang et al., 2003). Indeed, most of these studied transformations are not exactly the
same as γ-Fe to α-Fe, but they all follow a transformation analogy that a cubic-type structure (i.e., simple cubic, fcc or bcc
type) deforms to a structure with equal or lower symmetry.

The martensitic phases of these near-Bain transformations are usually perturbed body or face-centered sublattices of the
austenite phase, schematically shown as Fig. 2. To illustrate the effect of this perturbation quantitatively, we construct a
structural transformation from a bcc lattice with =a 10 to a monoclinic lattice with a¼0.961, b¼1.363, c¼1.541, and
β = °97.78 . Fig. 3(a) shows the bcc lattice with two sublattice unit cells (red and blue). Conventional wisdom would say that
the Bain correspondence ( →red black in Fig. 3(c)) is appropriate for this transformation. However, our algorithm proposed
in this paper reveals an unexpected alternative correspondence ( →blue black, Fig. 3(b)). Both red and blue unit cells contain
4 lattice points (n¼4), and are similar to the monoclinic primitive cell in size and shape. Fig. 3(b) and (c) shows the
comparison of lattice distortions. Both mechanisms give exactly the same final monoclinic sublattice (in black). However, by
quantitative calculation, the principal stretches for the new correspondence are all closer to 1 than for the Bain corre-
spondence. More precisely, both correspondences have the same middle principal stretch, and the other principal stretches
are λ λ= =0.9291, 1.11671 3 for the new correspondence and λ λ= =0.9283, 1.11761 3 for the Bain correspondence.

The significance of finding the correct lattice correspondence for a structural transformation is emphasized in the lit-
erature (Wayman, 1964; Bowles and Wayman, 1972). The problem was well-appreciated by Lomer (1955) as early as the
mid-1950s. In his study of the mechanism of the β α→ phase transformation of U Cr98.6 1.4, he examined theoretically (by
hand) 1600 possible transformation mechanisms, and reduced this to three correspondences having the smallest principal
strains, which he considered the likely candidates.

Direct experimental measurement of the macroscopic finite strain of transformation together with accurate structural
characterization by X-ray diffraction provides a possible way to determine the lattice correspondence and thus the trans-
formation stretch tensor. But, as indicated above, this is technically difficult due to (i) the need for an oriented single crystal,
(ii) the need to remove the inevitable fine microstructures that form during transformation due to constraints of com-
patibility, and (iii) the need for an accurate measure of full finite strain tensor. Even using a state-of-art TEM on a pre-
oriented single crystal sample, one cannot definitively remove the ambiguities among many lattice correspondences due to
some inevitable obstacles: tracking the evolution of diffraction spots in a fast structural transformation process, simulta-
neously indexing both phases, and most significantly, finding a special zone that can unambiguously reveal the differences
among various lattice correspondences. This difficulty is discussed below for a particular example in Section 6.

Consider a Bravais lattice = { ∑ … ∈ }n n ne : ,i
i

d d1 determined by linearly independent lattice vectors … ∈e e, , d
d

1 ,
i¼1,…,d, and assemble the lattice vectors as the columns of a d�d matrix = ( … )E e e, , d1 . can equivalently be denoted
Without loss of generality, by switching the sign of its first column, we assume that det E 4 0.

 ξ ξ= ( ) = { ∈ = ∈ }E r r E: , .d d
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This determinant is the (d-dimensional) volume of a unit cell of ( )E .
Given two lattices ( )E and ( ′)E , the d�d nonsingular matrix L satisfying ′ =E EL is called a correspondence matrix from

( )E to ( ′)E . As noted above, the two lattices ( )E and ( ′)E are the same if and only if a correspondence matrix L is a
unimodular matrix of integers, or, briefly, ∈ ( )GL dL , . If a correspondence matrix L is a matrix of integers with >Ldet 1,
then ( ′)E is a sublattice of ( )E . The quantity Ldet is the volume ratio of the unit cell of ( ′)E to that of ( )E .

Correspondence matrices are often reported for conventional rather than primitive descriptions of a given Bravais lattice,
particularly for 7 of the 14 types of Bravais lattices in 3D. For example, with d¼3 the conventional description for an fcc
lattice with lattice parameter a0 is an orthogonal basis, so χ= =aE I Econv 0 , where, for example,

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥χ= =

−
−

−

a
E

2

1 0 1
1 1 0
0 1 1

,
1 1 1

1 1 1
1 1 1

.0

Here, χ =det 4 so the volume of the conventional unit cell is 4 times that of the primitive cell. From now on, the symbol χ is
reserved for a correspondence matrix from the primitive to conventional unit cell of a Bravais lattice: χ=E Econv . The change
from the primitive to the conventional correspondence is merely a notational change, but it is important when comparing
with correspondences in the literature. The use of the conventional description is only done at the last stage, after im-
plementation of the algorithm.

Let = ( … )E a a, ,A d1 and = ( … )E b b, ,B d1 . We seek a sublattice of the austenite primitive lattice ( )EA that is mapped to the
martensite primitive lattice of ( )EB . Note that we fix the primitive lattice of martensite in applications of the algorithm,
since this gives interesting answers. The algorithm is however not restricted to this hypothesis. For example, it can also
handle cases in which a sublattice of the martensite lattice is chosen, or all sublattices of bounded volume with a given
bound. Let ℓ ∈ ×d d be the correspondence matrix giving the sublattice ℓ( )EA that is mapped to the final lattice ( )EB during
the transformation. The basic equation (1) in this case becomes ℓ =FE EA B, and the transformation stretch tensor U is the
unique positive-definite square root of F FT .
3. Distance function

We introduce the following function as a measure of the distance from U to I:

ℓ ℓ ℓ( ) = ( ) − = − ( )
− − −E E F F I E E E E Idist , , . 3A B

T
A B B

T T
A
T1 2 1 2

∥·∥ denotes the Frobenius norm, ∥ ∥ =A A Atr T .
The distance (3) is independent of rigid rotations of both lattices, and is particularly attractive from the point of view of

symmetry. Physically, it represents the Lagrangian strain of the structural transformation. The use of inverse of F FT avoids
possible noninvertibility of ℓ that may arise during the minimization process. In addition, this norm is exactly preserved by
point group transformations of both Bravais lattices. That is, if orthogonal tensors RA and RB are, respectively, in the point
groups of ( )EA and ( )EB , i.e., ( ) = ( )E R EA A A and ( ) = ( )E R EB B B , there exist associated matrices μA and μB such that

μ=R E EA A A A and μ=R E EB B B B then the distance transforms as

μ μℓ ℓ( ) = ( ) ( )E E E Edist , , dist , , . 4A B A B A B

Note that μA B, are integral matrices of determinant ±1, so μ μℓ ℓ=det det A B. Thus, immediately one minimizer of the distance
with assigned determinant gives the expected symmetry-related minimizers. Alternative distances are analyzed by Müh-
lemann and Koumatos (2015).

As noted above it is typical to report the correspondence matrix in terms of the conventional basis instead of the pri-
mitive one. If ℓ ⁎ is a minimizer of ℓ( )E Edist , ,A B the conversion is done by χ χℓ=⁎ − ⁎L A B

1 . Note that ⁎L is not necessarily a matrix
of integers.

A significant property of the distance function (3) will be used to justify our algorithm below. Fixing EA and EB, the
distance function can be trivially extended to a function over real matrices, ( ) = ( )f L L E Edist , ,A B . Denoting = − −X E LE E L EL A B B

T T
A
T1

and using · ≤ =X I X I X3L L L , we have

( )( ) = − · + ≥ − + = −
( )

f L X X I X X X2 3 2 3 3 3 .
5L L L L L

2 2 2

Choose any integral matrix ℓ1 and define ℓ= ( )C f1 1 . By (5) the minimizer(s) of ( )f L necessarily lie in the bounded set

≤ + CX 3L 1 , that is, ≤ + +C CX 3 2 3L
2

1 1. Let α be the minimum of∥ ∥XL
2 under the constraint∥ ∥ =L 1, then we have

α ∥ ∥ ≤ < + + ( )C CL X 3 2 3 . 6L
4 2

1 1

That is, all the L's such that ( ) <f CL 1 live in the sphere with the radius of (( ) )α+ +C C3 2 31 1
1/4

in 9.
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4. Algorithm for structural phase transformation

The algorithm for the determination of the N best lattice correspondences and their associated transformation stretch
tensors is given below. As explained above, EB is given.

1. Calculate the primitive bases and the conversion matrices for the conventional cells from the input lattice parameters:
EA,B and χA,B. Calculate α by minimizing the term XL with respect to L for all ∥ ∥ =L 1.

2. Choose N integral matrices ℓi, = …i N1, , , as the initial guess of the solution list such that ℓdet i is close to E Edet /detB A and
ℓ( )E Edist , ,i A B is small.

3. Let C1 be the maximum ℓ( )f i for ℓ ’si in the solution list and calculate the radius (( ) )ρ α= + +C C3 2 31 1
1/4

.
4. Calculate iteratively the distance of integral matrices in the sphere of radius ρ. If a new matrix (not in the current solution

list) with smaller distance is detected, update the solution list, recalculate the radius, and repeat this step.
5. For each solution ℓi, calculate the Cauchy–Born deformation gradient ℓ= ( )−F E Ei B A i

1 and the transformation stretch tensor
= ( )U F Fi i

T
i

1/2. Finally, rewrite all the solutions in the conventional bases: χ χℓ* = −Li iA
1

B.

The algorithm converges in a finite number of steps and gets all matrices with the N lowest distances (up to the de-
generacy (4)) because it searches through all matrices of integers satisfying the rigorous bounds (6). The power 1/4 in the
definition of ρ is particularly advantageous for numerical reasons.

In Fig. 4 we give an example computed by the algorithm that reveals a switch from Bain correspondence to a new
correspondence with increasing lattice complexity measured by the modulation m (Otsuka et al., 1993). Consider a trans-
formation from an fcc lattice with lattice parameter =a 20 to a monoclinic lattice with realistic lattice parameters =a 1.41,

=b 1.99, =c 1.42 m, β = °86 , where the integer >m 0 denotes the modulation along monoclinic c-axis. Fig. 4(a) shows the
undeformed fcc lattice projected onto the ( )010 plane. Fig. 4(b) shows the change in distance function for the two corre-
spondences with m varying from 1 to 16. Initially, the Bain correspondence is much smaller than the new one, however it
loses its privilege after the 7th modulation. The results suggest that both kinds of lattice correspondence are feasible in a
structural transformation for some special lattice parameters, and in this case m¼7 is the critical case. These long stacking
period structures are common especially for the adaptive martensite structures (Kaufmann et al., 2010).
5. Examples

As a first example we remark briefly about the classical Bain mechanism for →bcc fcc. Our algorithm proves that with
the choice of distance we have made, the Bain correspondence gives the smallest distance (d¼0.277 for α-Fe to γ-Fe)
between these primitive lattices. The next smallest is the rather large number d¼2.74 suggesting that the Bain corre-
spondence is strongly preferred in this case. By way of comparison, the case presented in Fig. 3 has d¼0.0702 for the
smallest solution and d¼0.0713 for the next smallest solution. A fascinating consequence of our algorithm is that if the fcc in
the example →bcc fcc is perturbed slightly to monoclinic, and a modest size sublattice of this monoclinic lattice is given
(instead of the primitive lattice), then the situation changes drastically, i.e., there can be modest size sublattices and non-
Bain mechanisms that give a smaller strain than that given by the Bain correspondence (cf., Fig. 3).
Fig. 4. A change of correspondence detected by the algorithm as the size of the martensite sublattice increases. Lattice parameters are given in the text. (a)
(010) projection of the fcc lattice with two unit cells (red and blue) of a sublattice corresponding to m¼4. The graph (b) summarizes the result of running
the algorithm with the choices of = …m 1, , 16 and, for each m, fixing the sublattice of size m to be the martensite sublattice. In (b) the resulting values of
the distance function are plotted, and the overall minimizing value of distance is the minimum of the two graphs at each m. For clarity the deformed
configurations are not shown. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)



Table 1
Transformation principal stretches, the associated lattice correspondences and derived orientation relationships for various phase-transforming materials.

X. Chen et al. / J. Mech. Phys. Solids 93 (2016) 34–4340
Table 1 shows the results calculated by the algorithm for six materials. The types of transformation are chosen to be
diverse. In all cases except Zn45Au30Cu25 (see below) the algorithm gives the accepted orientation relationship.

Among these examples, we list two solutions for Zn45Au30Cu25. The material has been recently found to satisfy the
cofactor conditions (Chen et al., 2013), which have been shown Song et al. (2013b) to promote unusually low thermal
hysteresis (≈ °2 C) and enhanced reversibility, owing to a fluid-like flexible martensite microstructure. It was believed
(Song et al., 2013b) to transform by the second solution, Table 1. However, the table shows that the first solution is the one
having the smallest distance and the smallest transformation strain by various measures. Coincidentally, the new
transformation stretch tensor also satisfies closely the cofactor conditions. To investigate this further, the same sample of
Zn45Au30Cu25 used in Song et al. (2013b) was characterized by synchrotron X-ray Laue microdiffraction. The results are
discussed in the next section.

Note that the algorithm is applicable to a wide range of phase transformations even if the initial and final crystal structures
do not have a group/sub-group relation. Examples are Ti95Mn5 and Sb2Te3/PbTe (Table 1), which are not reversible. The
principal stretches of Sb2Te3 as well as the lattice correspondence reported here are consistent with the experimental results
in Chen et al. (2011). The algorithm can be also applied to organic materials when the molecular chains have sufficient
periodicity. One extreme example is the polymorphic transformation between two triclinic lattices in terephthalic acid (see
Table 1). In this case the calculated principal stretches agree with the macroscopic deformation (Ball and James, 2015) of the
polymorphic transformation of this material as shown in Fig. 5 (Bailey and Brown, 1967; Davey et al., 1993).
6. X-ray microdiffraction experiment on Zn45Au30Cu25

6.1. Physical properties and crystal structures

The transformation temperature for Zn45Au30Cu25 is about �40 °C measured by Differential Scanning Calorimetry (Song
et al., 2013b). The austenite phase is face-centered cubic (L21) with lattice parameter = ˚a 6.1606 A0 , whereas the martensite
phase is monoclinic with 18 atomic layer modulation along the crystallographic c-axis. The lattice parameters of martensite
are = ˚ = ˚a b4.4580 A, 5.7684 A, = ˚c 40.6980 A, β = °86.80 (Song et al., 2013b).

6.2. Experiment and results

The experiment was conducted at the Advanced Light Source BL 12.3.2 X-ray Laue Microdiffraction, Lawrence Berkeley
National Laboratory. For accurate determination of the structural parameters and the investigation of transformation
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pathways, we used a Domed Hot Stage (DHS 900) for in situ measurement of the structural change by two diffraction
methods (polychromatic and monochromatic) while slowly varying the temperature. The Laue patterns (by polychromatic
diffraction) were continuously collected per 1 °C for a complete transformation loop (Kunz et al., 2009). This temporal-scan
gives the orientational dynamics of the phase transformation. Fig. 6 shows the Laue patterns corresponding to pure aus-
tenite, mixed phases and pure martensite, respectively. The spots in Laue pattern represent the diffracted crystallographic
planes. We used the XMAS (X-ray Microdiffraction Analysis Software, Tamura, 2014) to obtain the orientation matrix by
indexing the Laue pattern based on the lattice parameters and periodicities given in Section 6.1. The austenite orientation
matrix Oa for Fig. 6(a) and martensite orientation matrix Om for Fig. 6(c) are

⎡

⎣
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⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
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−

− −
=

−

− − ( )
O O

0.6103 0.0689 0.0477
0.0630 0.6085 0.0728
0.0552 0.0672 0.6099

,
0.2731 0.0886 0.3411
0.0542 0.5649 0.1034
3.0502 0.1992 2.6870

.
7

a m

6.3. Calculation of orientation relationships

For a 3-dimensional structural transformation from ( )EA to ( )EB , if the algorithm gives the lattice correspondence
matrix L associated with the least value of the distance function (4), we assume that the lattice vectors ( ) =a a a E L, , A1 2 3 are
Fig. 6. Typical Laue patterns of Zn45Au30Cu25 at the same position of the sample: (a) austenite; (b) mixed phases; (c) martensite.

Fig. 5. The macroscopic deformation in terephthalic acid during polymorphic transformation predicted by our algorithm: (a) deformation associated to the
predicted transformation stretch tensor; (b) the observed morphologic change (Davey et al., 1993) between two polymorphs of the material shown viewed
(approximately) along the same axis as in (a). (The terminology for forms I and II is that of Bailey and Brown, 1967; note that the opposite terminology is
used by Davey et al., 1993.)
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parallel to the lattice vectors ( ) =b b b E, , B1 2 3 closely. Here we use the conventional notation “ ” to represent this closeness,
i.e., E E LB A and −E L EB A

1 .
For any ∈ ( )r E , we have =r En where ∈n 3 is the crystallographic directional index, and =⁎ − ⁎r E nT where ⁎n is the

crystallographic planar index. By the closeness assumption, we have

( )
−n L n , 8B A

1

( )
⁎ ⁎n L n . 9B

T
A

In the case of Zn45Au30Cu25 in Table 1, the algorithm indicates that there exist two lattice correspondences
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I II

For cubic to monoclinic transformation there are 12 symmetry-related correspondence matrices. LI and LII are chosen so as
to match the crystallographic orientation from the X-ray Laue diffraction measurement (Bhattacharya, 2003).

The correspondence matrices in (10) are not symmetry-related, both give small transformation strain, but can hardly be
distinguished by X-ray Laue diffraction. For example, we choose crystallographic directions = [ ]n 0, 1, 1A a, [ − ]0, 1, 1 a and
crystallographic planes = ( )⁎n 2, 0, 6A a, ( )0, 0, 1 a, ( )2, 1, 5 a, ( )1, 1, 9 a. By Eq. (8), the parallelisms given by LI and LII are

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2, 0, 6 2, 0, 11 , 0, 0, 1 1, 0, 10 , 2, 1, 5 7, 2, 34 , 1, 1, 9 5, 1, 41 11a m a m a m a m

[ ] ( ) [ − ] [ − ] ( )0, 1, 1 8, 9, 1 , 0, 1, 1 8, 9, 1 12a m a m

and

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2, 0, 6 2, 0, 9 , 0, 0, 1 1, 0, 9 , 2, 1, 5 7, 2, 27 , 1, 1, 9 5, 1, 36 13a m a m a m a m

[ ] ( ) [ − ] [ − ] ( )0, 1, 1 9, 9, 1 , 0, 1, 1 9, 9, 1 14a m a m

respectively. Fig. 7 shows the stereographic projections by X-ray Laue diffraction for both cubic (red dots) and monoclinic
(black boxes) phases. As seen from Fig. 7, these two transformation mechanisms cannot be distinguished.

We conclude from this comparison that the micro-Laue method as described above, in conjunction with the algorithm
presented here, can be a useful tool for inferring orientation relationships and therefore transformation stretch tensors, but,
in the case of Zn45Au30Cu25, it is not able to unequivocally declare one mechanism identified by the algorithm as being
preferable to the other. The most interesting situation, and, in our opinion, the most likely, is that both mechanisms occur in
Zn45Au30Cu25. Both transformation stretch tensors closely satisfy the cofactor conditions. The simultaneous occurrence of
both mechanisms would imply that there would be two sets of 12 variants available to the material, each with a great many
conditions of compatibility closely satisfied both between individual variants and also with austenite.
Fig. 7. Stereographic projections of the Zn45Au30Cu25 from the orientation matrices measured by X-ray Laue diffraction: (a) crystallographic directions;
(b) crystallographic planes. (Red dots denote the cubic phase, black boxes denote the monoclinic phase.) (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this paper.)
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