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ARTICLE

Uncovering the heterogeneity and temporal
complexity of neurodegenerative diseases with
Subtype and Stage Inference
Alexandra L Young et al.#

The heterogeneity of neurodegenerative diseases is a key confound to disease understanding

and treatment development, as study cohorts typically include multiple phenotypes on dis-

tinct disease trajectories. Here we introduce a machine-learning technique—Subtype and

Stage Inference (SuStaIn)—able to uncover data-driven disease phenotypes with distinct

temporal progression patterns, from widely available cross-sectional patient studies. Results

from imaging studies in two neurodegenerative diseases reveal subgroups and their distinct

trajectories of regional neurodegeneration. In genetic frontotemporal dementia, SuStaIn

identifies genotypes from imaging alone, validating its ability to identify subtypes; further the

technique reveals within-genotype heterogeneity. In Alzheimer’s disease, SuStaIn uncovers

three subtypes, uniquely characterising their temporal complexity. SuStaIn provides fine-

grained patient stratification, which substantially enhances the ability to predict conversion

between diagnostic categories over standard models that ignore subtype (p= 7.18 × 10−4) or

temporal stage (p= 3.96 × 10−5). SuStaIn offers new promise for enabling disease subtype

discovery and precision medicine.
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Neurodegenerative disorders, such as frontotemporal
dementia (FTD) and Alzheimer’s disease (AD), are bio-
logically heterogeneous, producing high variance in

in vivo disease biomarkers, such as volumetric measurements
from imaging, protein measurements from lumbar puncture or
behavioural measurements from psychometrics, which reduces
their utility in disease studies and management. Key contributors
to this heterogeneity are that individuals belong to a range of
disease subtypes (giving rise to phenotypic heterogeneity) and are
at different stages of a dynamic disease process (producing
temporal heterogeneity). Previous studies aiming to explain bio-
marker variance typically focus on a single aspect of this het-
erogeneity: phenotypic heterogeneity at a coarse, typically late,
disease stage or temporal heterogeneity in a broad population.
However, the inability to disentangle the range of subtypes from
the development and progression of each over time limits the
biological insight these techniques can provide, as well as their
utility for patient stratification. Constructing a comprehensive
picture separating phenotypic and temporal heterogeneity, i.e.
identifying distinct subtypes and characterising the development
and progression of each, remains a major current challenge.
However, such a picture would provide insights into underlying
disease mechanisms, and enable accurate fine-grained patient
stratification and prognostication, facilitating precision medicine
in clinical trials and healthcare.

Both FTD and AD exhibit substantial pathologic, genetic and
clinical heterogeneity. In FTD a large proportion of cases (around
a third) are inherited on an autosomal-dominant basis, with
mutations in progranulin (GRN), microtubule-associated protein
tau (MAPT) and chromosome 9 open reading frame 72 (C9orf72)
being the most common causes. Of the major genetic groups,
GRN mutations are associated with TDP-43 type A pathology,
MAPT mutations with tau inclusions, and expansions in C9orf72
with type A or type B TDP-43 pathology1. AD instead has a single
pathological characterisation: the presence of both amyloid pla-
ques and neurofibrillary tangles, and the proportion of
autosomal-dominant cases is much smaller, accounting for
between 1 and 6% of cases2. The pathological heterogeneity
observed in AD consists of variation in the distribution of neu-
rofibrillary tangles, with 25% of patients having an atypical dis-
tribution of neurofibrillary tangles (described as hippocampal-
sparing or limbic-predominant) on autopsy at the time of death3.
Both FTD and AD exhibit a diverse range of clinical syndromes.
FTD has both behavioural and language presentations, and in
genetic FTD the clinical syndromes can further include atypical
parkinsonism and amyotrophic lateral sclerosis. In AD, the major
clinical syndrome is broadly divided into amnestic and rarer non-
amnestic variants, with non-amnestic variants including language
variant AD, logopenic progressive aphasia, visuoperceptive var-
iant AD, posterior cortical atrophy and frontal variant AD4.

Previous studies of neurodegenerative disease heterogeneity
have focussed on either temporal heterogeneity (i.e. subjects
appear different at different disease stages) or phenotypic het-
erogeneity (i.e. distinct groups of subjects appear different even at
the same disease stage), but rarely both. We refer to these two
approaches as stages-only models, which account for temporal
heterogeneity but not phenotypic heterogeneity, and subtypes-
only models, which account for phenotypic heterogeneity but not
temporal heterogeneity. Stages-only models arise for example
from regression against disease stage5,6, and data-driven disease
progression modelling7–15. Although such models have enabled
deeper understanding of the temporal progression of a range of
conditions, the inherent assumption that all individuals have a
single phenotype, i.e. follow approximately the same trajectory, is
a key limitation. At best, this limits the biological insight and the
accuracy of stratification they can provide, but potentially could

also lead to erroneous conclusions. Subtypes-only models use, for
example, clustering (e.g. refs. 16–23) to identify distinct groups, or
group individuals using information independent of the model,
such as genetics (e.g. ref. 24) or post-mortem examination (e.g.
refs. 25–28) for models based on in vivo imaging. With typical
subtypes-only models, the limitation is the inherent assumption
that all subjects are at a common disease stage so that the cohort
has no temporal heterogeneity. This requires a priori staging and
selection of individuals, which is typically crude in practice
leaving models that are not specific to subtype differences. Models
of both disease subtype and stage heterogeneity have been con-
structed previously for the small proportion of neurodegenerative
diseases that are inherited on an autosomal-dominant basis. For
example, Rohrer et al.29 investigate temporal heterogeneity within
genetic groups by regressing imaging markers against an esti-
mated age of onset (from family history). However, such studies
lack the ability to identify within-genotype phenotypes, and the
temporal resolution of the recovered genotype progression pat-
terns is limited by inaccuracy of the a priori staging.

This paper presents Subtype and Stage Inference (SuStaIn): a
computational technique that disentangles temporal and pheno-
typic heterogeneity to identify population subgroups with com-
mon patterns of disease progression. We demonstrate SuStaIn
using structural magnetic resonance imaging (MRI) data sets
from cohorts of genetic FTD and AD patients. In each case,
SuStaIn provides a data-driven taxonomy (set of subtypes and
stages), as well as detailed pictures of the progression of neuro-
degeneration within each of the data-driven subgroups. From the
genetic FTD data set, SuStaIn identifies subtypes from imaging
alone that map closely onto the genotypes and reconstructs pat-
terns of neurodegeneration that reflect analysis of the individual
genetic groups. This provides a validation of SuStaIn’s ability to
identify subgroups with distinct temporal progression patterns, as
the different genotypes are known to have distinct patterns of
neurodegeneration visible as brain atrophy in MRI29. However,
SuStaIn further uncovers two distinct within-genotype pheno-
types for carriers of a mutation in the C9orf72 gene, while finding
the MAPT and GRN mutation groups are more homogeneous. In
AD, SuStaIn identifies three distinct subtypes and reconstructs
their previously unseen temporal progression. In both neurode-
generative diseases, we demonstrate strong assignment of indi-
viduals to the SuStaIn subtypes, which is in contrast to subtypes-
only models in the literature (e.g. ref. 23). Even at very early
stages, at least a proportion of individuals show strong alignment
with particular subtypes, which highlights the potential utility in
precision medicine. In AD, we show that SuStaIn subtype and
stage enhance the ability to predict conversion between diagnostic
categories substantially beyond subtypes-only or stages-only
models.

Results
Subtype and stage inference. Figure 1 provides a conceptual
overview of the SuStaIn modelling technique. SuStaIn is an
unsupervised machine-learning technique that identifies popula-
tion subgroups with common patterns of disease progression.
SuStaIn builds on and combines ideas from clustering (e.g.
refs. 16–23) and data-driven disease progression modelling (e.g.
refs. 7–10,12). The combination uniquely enables SuStaIn to group
individuals with common phenotypes across the range of disease
stages. It determines the number of subtypes that the available
data can support, reconstructs the trajectory of stages within each
subtype, and assigns a probability of each subtype and stage to
each subject. These features provide insights into the underlying
disease biology and a mechanism for in vivo fine-grained strati-
fication at early disease stages.
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Synthetic data. A simulation study (see Supplementary Methods,
Supplementary Results, Supplementary Discussion and Supple-
mentary Figures 1–12) verifies the ability of the SuStaIn algorithm
to recover predefined subtypes and their progression patterns
from heterogeneous data sets with comparable numbers of sub-
jects, biomarkers and clusters (subtypes) to those used in this
study.

Subtype progression patterns. We demonstrate SuStaIn in two
neurodegenerative diseases, genetic FTD and sporadic AD, using
cross-sectional regional brain volumes from MRI data in the
GENetic Frontotemporal dementia Initiative (GENFI) and the
Alzheimer’s Disease Neuroimaging Initiative (ADNI). GENFI
investigates biomarker changes in carriers of mutations in GRN,
MAPT and C9orf72 genes, which cause FTD. GRN and MAPT
mutations are known to be associated with distinct phenotypes,
whereas C9orf72 is a heterogeneous group30. Here, GENFI serves
as a test data set with a partially known ground truth for vali-
dation, as we expect SuStaIn to identify genetic groups as distinct
phenotypic subtypes. However, it further supports investigation
of the phenotypic and temporal heterogeneity within genotypes.
Specifically, we ran SuStaIn on the combined data set from all 172
mutation carriers in GENFI (Fig. 2a), without genotypes, and
compared the resulting subtype assignments and progression
patterns with (a) participant’s genotype labels (Fig. 2b), and (b)
subtype progression patterns obtained from each genotype
separately (Supplementary Figure 13; 76 GRN carriers, 63 C9orf72
carriers, 33 MAPT carriers). Next, we used SuStaIn to identify
sporadic AD subtypes from ADNI (793 subjects, including 524
with mild cognitive impairment (MCI) or AD) and characterise
their progression from early to late disease stages (Fig. 3). We
tested consistency of the SuStaIn subtypes in a largely indepen-
dent data set—ADNI 1.5T MRI (576 subjects, including 396 with
MCI or AD) scans (Fig. 4) rather than the main 3T data set used
for Fig. 3. In each disease, cross-validation tests the reproduci-
bility of the subtypes and estimated progression patterns (Sup-
plementary Figure 14).

SuStaIn reveals within-genotype phenotypes in FTD. Figure 2
shows that SuStaIn successfully identifies the progression patterns
of the different genetic groups in GENFI, without prior knowl-
edge of genotype, and further suggests that phenotypic hetero-
geneity of the C9orf72 group results from two neuroanatomical
subtypes. Figure 2a shows the four subtypes that SuStaIn finds
from the full set of all mutation carriers in GENFI. We refer to
them as the asymmetric frontal lobe subtype, temporal lobe
subtype, frontotemporal lobe subtype and subcortical subtype.
Figure 2b reveals that GRN mutation carriers are the main con-
tributors to the asymmetric frontal lobe subtype, MAPT mutation
carriers are the main contributors to the temporal lobe subtype,
and C9orf72 mutation carriers are the main contributors to both
the frontotemporal lobe subtype and the subcortical subtype. This
suggests that there are two distinct subtypes in the C9orf72 group.
Application of SuStaIn to each genetic group separately supports
this finding by demonstrating that the GRN mutation carriers are
best described as a single asymmetric frontal lobe subtype, the
MAPT mutation carriers are best described as a temporal lobe
subtype and the C9orf72 mutation carriers are best described as
two distinct disease subtypes: a frontotemporal lobe subtype and
a subcortical subtype. SuStaIn additionally finds a subsidiary
cluster in the MAPT group for which the progression pattern has
high uncertainty. This high uncertainty likely prevents the cluster
from being detected when applying SuStaIn to all mutation car-
riers in Fig. 2 as this small number of subjects can be sufficiently
modelled by the three alternative subtype progression patterns.
Supplementary Figure 13 shows that the subtype progression
patterns for each genetic group are in good agreement with those
found in the full set of all mutation carriers (Fig. 2a). Supple-
mentary Figure 14A shows that the four subtypes estimated in
Fig. 2a are reproducible under cross-validation, with a high
average similarity between cross-validation folds of >93% for each
subtype. Altogether these results provide strong validation of
SuStaIn’s ability to recover distinct subtypes and their progression
patterns from a heterogeneous data set, while simultaneously
disentangling the heterogeneity of the C9orf72 group into two
distinct subtypes.
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Fig. 1 Conceptual overview of SuStaIn. The Underlying model panel (a) considers a patient cohort to consist of an unknown set of disease subtypes. The
input data (Input data panel, b), which can be entirely cross-sectional, contains snapshots of biomarker measurements from each subject with unknown
subtype and unknown temporal stage. SuStaIn recovers the set of disease subtypes and their temporal progression (as shown in the Output panel,
c) via simultaneous clustering and disease progression modelling. Given a new snapshot, SuStaIn can estimate the probability the subject belongs to each
subtype and stage, by comparing the snapshot with the reconstruction (as shown in the Application panel, d). This figure depicts two hypothetical disease
subtypes, labelled I and II, and the biomarkers are regional brain volumes, but SuStaIn is readily applicable to any scalar disease biomarker and any number
of subtypes. The colour of each region indicates the amount of pathology in that region, ranging from white (no pathology) to red to magenta to blue
(maximum pathology)
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SuStaIn identifies three subtype progression patterns in AD.
Figure 3 shows the temporal progression of the three neuroana-
tomical subtypes that SuStaIn identifies from ADNI, which we
term typical, cortical and subcortical. SuStaIn reveals that for the
typical subtype, atrophy starts in the hippocampus and amygdala;
for the cortical subtype in the nucleus accumbens, insula and
cingulate; and for the subcortical subtype in the pallidum, puta-
men, nucleus accumbens and caudate. Supplementary Figure 14B
shows that these three subtypes are reproducible under cross-
validation, giving an average similarity between cross-validation
folds of >92% for each subtype.

AD subtypes are reproducible in an independent data set.
Figure 4 shows that the three subtypes in Fig. 3 are reproducible
in a largely independent data set (<5% subjects in common)
consisting of regional brain volumes derived from 1.5T rather
than 3T MRI scans. From the 1.5T data, SuStaIn broadly repli-
cates the three major clusters found in the 3T data, again finding
a typical, cortical and subcortical subtype. The origin of atrophy
for each subtype is in general agreement with the 3T data: atro-
phy begins in the hippocampus and amygdala for the typical
subtype, in the insula and cingulate for the cortical subtype; and
in the pallidum, putamen and caudate for the subcortical subtype.
The main difference compared to the 3T data is that the nucleus
accumbens is not indicated as an early region to atrophy in the
1.5T data for the cortical and subcortical subtypes. SuStaIn

additionally identifies a small proportion (4%) of outliers with a
parietal subtype in the 1.5T data.

Disease subtyping and staging. We investigated SuStaIn’s cap-
ability for reliable stratification in each neurodegenerative disease
(Fig. 5) to determine the potential for homogeneous cohort
identification. First, we assessed how reliably SuStaIn assigns
patients to subtypes (Fig. 5a, b). Specifically, in genetic FTD, we
tested the consistency of SuStaIn subtypes with the different
genotypes in symptomatic mutation carriers (Table 1), and
compared this consistency against models that do not account for
temporal heterogeneity (Table 2). Second, we assessed the relia-
bility of the SuStaIn stages in each disease (Fig. 5c, d) by com-
parison with clinical diagnostic categories. In ADNI, where
clinical follow-up information is available, we further examined
the ability of SuStaIn subtypes and stages to predict relevant
outcomes, by determining whether SuStaIn subtype and/or stage
modify the risk of conversion between diagnostic categories
(Table 3).

SuStaIn provides utility for patient stratification. Figure 5
illustrates the ability of SuStaIn to provide disease subtyping and
staging information for each neurodegenerative disease. Figure 5a
shows that the strength of assignment (see Methods: Strength of
assignment to subtype) to the SuStaIn subtypes in genetic FTD
increases as the diseases progress, with 88% of the symptomatic
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Fig. 2 SuStaIn modelling of genetic frontotemporal dementia using GENFI data. a The progression pattern of each of four subtypes that SuStaIn identifies.
Each progression pattern consists of a sequence of stages in which regional brain volumes in mutation carriers (symptomatic and presymptomatic) reach
different z-scores relative to non-carriers. Intuitively (for a more precise description see Methods: Uncertainty Estimation), at each stage the colour in each
region indicates the level of severity of volume loss: white is unaffected; red is mildly affected (z-score of 1); magenta is moderately affected (z-score of 2);
and blue is severely affected (z-score of 3 or more). The circle labelled A indicates the asymmetry of the atrophy pattern (absolute value of the difference
in volume between the left and right hemispheres divided by the total volume of the left and right hemispheres) at each stage for each subtype. CVS is the
model cross-validation similarity (see Methods: Similarity between two progression patterns): the average similarity of the subtype progression patterns
across cross-validation folds, which ranges from 0 (no similarity) to 1 (maximum similarity). f is the proportion of participants estimated to belong to each
subtype. b The contribution of each genotype to each of the SuStaIn subtypes. This is calculated as the probability an individual has a particular genotype
given that they belong to a particular subtype
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mutation carriers in GENFI being strongly assigned (i.e. >50%
likelihood of a particular subtype). Figure 5b shows that the
strength of assignment to the SuStaIn subtypes in AD also increases
with disease progression, with a strong assignment of individuals to
subtypes in 78% of ADNI participants with an AD diagnosis. The
strong assignment of the AD subtypes that SuStaIn achieves by
accounting for temporal heterogeneity is in contrast to previous
studies23 that model phenotypic but not temporal heterogeneity.
Moreover, the strong assignment is seen even at early disease stages
(MCI), where many subjects cluster around the vertices of the tri-
angles: 37% of MCI subjects are strongly assigned to a subtype.
Figures 5c, d show that the distribution of SuStaIn stages differs
between diagnostic groups in both GENFI and ADNI, and provides
a good separation of presymptomatic and symptomatic mutation
carriers, and cognitively normal (CN) and AD.

SuStaIn subtypes discriminate FTD genotype. Table 1 shows
the classification accuracy obtained using the SuStaIn subtypes in
Fig. 2 to discriminate the genotype of affected mutation carriers
in GENFI. While the use of MRI to identify genotype is not
necessary in these subjects, so not clinically relevant, this
experiment demonstrates the ability of SuStaIn to identify sub-
types in a data set with a known ground truth. The SuStaIn
subtypes give a balanced accuracy of 95% for the two-way clas-
sification task of distinguishing the homogeneous GRN and
MAPT carrier groups. For the more challenging three-way clas-
sification task of distinguishing all genotypes in the presence of
heterogeneity, the SuStaIn subtypes provide a maximum balanced
accuracy of 86%. A high proportion of the homogeneous GRN
and MAPT carrier groups are correctly assigned to the asym-
metric frontal lobe (93% of affected GRN carriers) and temporal
lobe subtype progression patterns (91% of affected MAPT car-
riers). The heterogeneous C9orf72 carrier group are much more

difficult to classify, with a total of 75% of affected C9orf72 carriers
being assigned to the frontotemporal lobe and subcortical sub-
types. Apart from heterogeneity, the C9orf72 carriers are also
more difficult to classify because the frontotemporal lobe and
subcortical subtype progression patterns are more similar to the
other subtypes; by evaluating the similarity of each pair of sub-
type progression patterns (see Methods: Similarity between two
subtype progression patterns) we find that the asymmetric frontal
lobe and temporal lobe subtypes have the most distinct pro-
gression patterns of any pair of subtypes; the asymmetric frontal
lobe and frontotemporal lobe subtypes have the most similar
progression patterns of any pair of subtypes. The precise strategy
of assigning subjects to subtype can alter the classification rates
somewhat and Supplementary Table 1 examines this effect.

Genotype discrimination out-performs subtypes-only models.
Table 2 shows the classification accuracy obtained using a
subtypes-only model (Fig. 6), which does not account for tem-
poral heterogeneity, to discriminate the genotype of affected
mutation carriers in GENFI. The SuStaIn subtypes out-perform
the subtypes-only model. The subtypes-only model gives a
balanced accuracy of 92% compared to 95% using SuStaIn for the
two-way classification task of distinguishing GRN and MAPT
carrier groups; the subtypes-only model gives a maximum
balanced accuracy of 69% compared to 86% using SuStaIn for the
three-way classification task of distinguishing all genotypes. In the
subtypes-only model the majority of misclassifications arise from
the earlier stage affected GRN and MAPT carriers being assigned
to the mild frontotemporal subtype associated with C9orf72
carriers. See also Supplementary Table 2.

SuStaIn subtypes and stages have predictive utility in AD.
Table 3 shows that the SuStaIn subtypes and stages have
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Fig. 3 SuStaIn modelling of sporadic Alzheimer’s disease using ADNI data. The rows show the progression pattern of the three subtypes identified by
SuStaIn. Diagrams as in Fig. 2, but the z-scores are measured relative to amyloid-negative (cerebrospinal fluid Aβ1–42 > 192 pg per ml) cognitively normal
subjects, i.e. cognitively normal subjects with no evidence of amyloid pathology on cerebrospinal fluid. The cerebellum was not included as a region in the
Alzheimer’s disease analysis and so is shaded in dark grey
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predictive utility for the risk of conversion between diagnostic
categories in ADNI. By fitting a Cox Proportional Hazards model,
we found significant effects (t-test) of baseline SuStaIn subtype
(p= 2.44 × 10−3) and stage (p= 8.76 × 10−11) on an individual’s
risk of conversion from MCI to AD. Of the SuStaIn subtypes, the
subcortical subtype is associated with the lowest risk of conver-
sion, while the typical subtype is associated with the highest risk
of conversion. Supplementary Table 3 shows that SuStaIn out-
performs subtypes-only and stages-only models at estimating the
risk of conversion between diagnostic categories in ADNI. By
performing likelihood ratio tests comparing SuStaIn to subtypes-
only and stages-only we find that SuStaIn provides a significantly
better fit (likelihood ratio test) than both subtypes-only (p=
3.96 × 10−5) and stages-only (p= 7.18 × 10−4) models. This
shows that both the subtypes and stages estimated by SuStaIn
provide additional information for predicting the risk of con-
version from MCI to AD.

Discussion
In this study we introduce SuStaIn—a powerful tool for data-driven
disease phenotype discovery, providing insights into disease
aetiology, and enhanced power for patient stratification in clinical

trials and healthcare. Results from the GENFI data set first validate
that SuStaIn can successfully recover known distinct progression
patterns in genetic FTD corresponding to different genotypes.
Moreover, SuStaIn identifies and characterises within-group het-
erogeneity for carriers of a mutation in the C9orf72 gene as distinct
temporal progression patterns in two subtypes. The results
demonstrate the utility of SuStaIn for data-driven disease phenotype
discovery, and provide biological insight into the C9orf72 mutation.
Application of SuStaIn to the 3T ADNI data set recovers three
distinct AD subtypes with final stages that reflect post-mortem
neuropathological findings. Results from a largely independent AD
data set (ADNI 1.5T) corroborate these three subtypes. The disease
subtype characterisation SuStaIn provides goes much further than
post-mortem neuropathological studies3,28, or other machine-
learning techniques23, by characterising the temporal trajectory of
each subtype, enabling in vivo stratification of subjects by disease
stage as well as disease subtype. We demonstrate the ability of
SuStaIn to stratify in vivo by both subtype and stage in genetic FTD
and AD. In genetic FTD, we show that the SuStaIn neuroimaging
subtypes can distinguish affected carriers belonging to different
genetic groups with high classification accuracy. In AD, we
demonstrate strong assignment of subjects to the SuStaIn subtypes
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Fig. 4 Reproducibility of the SuStaIn subtypes in Fig. 3. A largely independent Alzheimer’s disease data set (only 59 subjects are in both the 576 subject
data set used to generate this figure and the 793 subject data set used in Fig. 3) consisting of those with regional brain volume measurements from 1.5T
MRI scans, rather than 3T MRI scans, are shown. Diagrams are as in Fig. 3, with the rows showing the progression pattern of one of the subtypes identified
by SuStaIn. SuStaIn modelling identifies three major subtypes: a typical, a cortical and a subcortical subtype, which are in good agreement with the three
subtypes in Fig. 3, as well as an additional very small outlier group (only 4%) with a subtype we term parietal. This small subgroup may represent outliers
with a posterior cortical atrophy phenotype
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even at early disease stages (MCI), and that the SuStaIn subtypes
and stages have added utility for predicting conversion between
clinical diagnoses, beyond more traditional stages-only or subtypes-
only models.

Previous studies in genetic FTD have found asymmetric
frontotemporoparietal lobe volume loss in GRN carriers, tem-
poral lobe volume loss in MAPT carriers, and widespread sym-
metric grey matter atrophy and volume loss in the cerebellum in
C9orf72 carriers24. The asymmetric frontal lobe subtype and
temporal lobe subtype in Fig. 2 show clear similarities with pre-
vious studies of regional volume loss in GRN and MAPT muta-
tion carriers respectively. However, SuStaIn provides much
greater detail and accuracy by avoiding reliance on crude a priori

staging, e.g. via mean familial age of onset. The frontotemporal
lobe subtype and subcortical subtype in Fig. 2 both have features
previously associated with C9orf72 mutation carriers, but SuStaIn
assigns these features to two distinct disease subtypes, and further
reveals the temporal progression of each subtype.

Several biological factors may produce the two subtypes
observed in C9orf72 mutation carriers, either individually or in
combination. Clinically, while there is significant overlap, patients
typically present with either a behavioural variant FTD or
amyotrophic lateral sclerosis as their main phenotype31, and they
can progress at various rates; genetically, the expansion length is
variable and there are additional genetic modifiers (e.g.
TMEM106B and ATXN2) that alter phenotype32–34; and patho-
logically, most cases have either type A or type B TDP-43
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Fig. 5 SuStaIn subtyping and staging of genetic frontotemporal dementia and Alzheimer’s disease. a, b The assignability of the disease subtypes estimated
by SuStaIn for genetic frontotemporal dementia, and Alzheimer’s disease. Each scatter plot visualises the probability that each individual belongs to each
of the SuStaIn subtypes estimated for a genetic frontotemporal dementia (as shown in Fig. 2a), and b. Alzheimer’s disease (as shown in Fig. 3). In the
triangle scatter plots, each of the corners corresponds to a probability of 1 of belonging to that subtype, and 0 for the other subtypes; the centre point of
the triangle corresponds to a probability of 1/3 of belonging to each subtype. c, d The probability subjects from each of the diagnostic groups belong to
each of the SuStaIn stages for c genetic frontotemporal dementia and d Alzheimer’s disease. CN = cognitively normal; MCI = mild cognitive impairment;
AD = Alzheimer’s disease

Table 1 Ability of subtypes to distinguish between different
genotypes in symptomatic mutation carriers in GENFI using
the SuStaIn subtypes in Fig. 2a

GRN MAPT C9orf72

Asymmetric frontal
(threshold p > 0.65)

93% (13) 9% (1) 4% (1)

Temporal (threshold
p > 0.35)

0% (0) 91% (10) 21% (5)

Frontotemporal 0% (0) 0% (0) 42% (10)
Subcortical 7% (1) 0% (0) 33% (8)
Accuracy 93% (13/14) 91% (10/11) 75% (18/24)

Each entry is the percentage (number) of participants of a particular genotype assigned to that
subtype. The final row indicates the percentage (fraction) of participants assigned to the correct
subtype from each genotype. The results show that SuStaIn can accurately discriminate
genotypes, validating the ability of SuStaIn to identify distinct phenotypes that align with known
genetic groups

Table 2 As Table 1, but for subtypes obtained from a
subtypes-only model that accounts for heterogeneity in
disease subtype but not disease stage, i.e. the subtypes in
Fig. 6

GRN MAPT C9orf72

Severe frontal (threshold
p > 0.99)

57% (8) 9% (1) 4% (1)

Severe temporal
(threshold p > 0.99)

0% (0) 64% (7) 8% (2)

Mild frontotemporal 43% (6) 27% (3) 88% (21)
Accuracy 57% (8/14) 64% (7/11) 88% (21/24)

The results show that SuStaIn (Table 1) provides much better discrimination of the different
genotypes than the subtypes-only model shown here, demonstrating the added utility of a model
that accounts for heterogeneity in disease stage
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pathology31. While further study is required to determine the
biological factors that influence neuroanatomical phenotype,
these findings demonstrate the power of SuStaIn in identifying
hitherto unrecognised disease subtypes using clinical data, and
thus open up the potential to link variations in genetics, pathol-
ogy and neuroanatomy.

We also find evidence for the presence of a subsidiary group in
the MAPT mutation carriers, but numbers are too small to
determine whether this group have a distinct progression pattern.
Among individuals with significant evidence of MRI atrophy
(SuStaIn stage of ≥5), four individuals (two pairs of individuals
from the same families) of 13 were identified as belonging to the
subsidiary group. Although MAPT mutations have been com-
monly thought to have a very specific pattern of atrophy affecting
the anterior and medial temporal lobes predominantly, one pre-
vious paper has shown that there can be a second pattern of
atrophy in specific mutations, where the lateral temporal lobes are
affected more than the medial regions35. Interestingly, the two
pairs of individuals who constitute the subsidiary group in our
analysis all have P301L mutations, a mutation that falls into this
second alternate atrophy pattern group in ref. 35. None of the
nine individuals assigned to the predominant progression pattern
in our analysis have P301L mutations, or V337M mutations, the
other mutation identified in ref. 35 as having an alternate atrophy

pattern. This suggests that SuStaIn may be able to identify par-
ticular MAPT mutations that fall into this alternate group, but
larger studies will be required to confirm this.

In AD, post-mortem histology3 and retrospectively analysed
MRI scans close to the time of death28 observe three distinct
patterns of atrophy in late-stage AD patients: one focussed on the
temporal lobe that is similar to the late stages of the typical
SuStaIn subtype; one affecting predominantly cortical regions cf.
late stages of the cortical SuStaIn subtype; and one with stronger
subcortical involvement cf. late stages of the subcortical SuStaIn
subtype. This gives confidence in the SuStaIn subtypes, which
provide much greater information by revealing the progression of
each subtype over time, including the earliest sites of regional
volume loss. Moreover, and importantly for practical utility, the
SuStaIn subtypes can be assigned in vivo using MRI, enabling
linkage of late-stage pathological observations with early-stage
neurodegeneration.

The three AD subtypes found in the 3T MRI data set are
corroborated by the largely independent 1.5T MRI data set.
However, some small differences arise between the subtype pro-
gression patterns of the three subtypes recovered in each data set.
These differences lie predominantly in how early the nucleus
accumbens begins to atrophy in the different subtypes: across all
three subtypes the nucleus accumbens shows atrophy earlier in
the 3T subtypes than the 1.5T subtypes. A possible explanation
for this is that the volume of the nucleus accumbens, which is
relatively small, can be estimated more accurately using the
higher field strength 3T MRI scans than the 1.5T MRI scans, and
thus atrophy in the nucleus accumbens can be identified from an
earlier stage in the 3T data set compared to the 1.5T data set.

In the 1.5T MRI data set we additionally find a small proportion
(4%) of outliers with a parietal subtype. This small subgroup may
represent a posterior cortical atrophy phenotype: comparing the
Alzheimer’s disease Assessment Scale-cognitive subscale (ADAS-
cog) scores between individuals with an AD diagnosis that are
assigned to the parietal subgroup (N= 6) and the typical AD
subgroup (N= 65), we find that the parietal subgroup have worse
performance (Mann–Whitney U test) on certain praxic (Q6.
Ideational Praxis, p= 6.1 × 10−3, z= 2.7) and spatially-
demanding (Q14. Number Cancellation, p= 4.9 × 10−3, z= 2.8)
subtests, but similar performance (Mann–Whitney U test) in
memory domains (Q8. Word Recognition, p= 0.81, z=−0.2; Q1.
Word Recall, p= 0.48, z= 0.70). Additionally, the parietal sub-
group is on average 10.3 years younger (p= 2.8 × 10−3, z=−3.0,
Mann–Whitney U test) than the typical AD subgroup.

The temporal spreading patterns for distinct subtypes esti-
mated by SuStaIn offer biological insight. For example, the pro-
gression pattern of each subtype provides a view of how
neurodegeneration spreads from a distinct origin over the rest of
the brain that is uncorrupted by phenotypic heterogeneity. A key
advantage of SuStaIn is that it provides a purely data-driven,
hypothesis-free, reconstruction of the progression of neurode-
generative disease subtypes. However, these observations also
have great potential to inform mechanistic models36,37 of neu-
rodegenerative disease, which explain their temporal progression
via various hypothetical mechanisms of disease propagation over
brain networks. Current mechanistic models implicitly assume a
single-disease progression pattern—an assumption often violated
in patient data sets, but much more reasonable if focussed on
particular SuStaIn subtypes.

SuStaIn shows strong capabilities for patient stratification in
AD, which we are able to validate in genetic FTD where we expect
the subtype assignments to correspond to distinct genotypes.
SuStaIn provides high classification accuracy for differentiating
the different mutation types in genetic FTD, and the AD subtypes
are clearly assignable. In genetic FTD, SuStaIn out-performs a

Table 3 Utility of SuStaIn subtype and stage for predicting
the risk of conversion from mild cognitive impairment to
Alzheimer’s disease

SuStaIn
subtype

SuStaIn
stage

Age Sex Education APOE4

S–C–T 1.57** 1.13† 0.98 0.98 0.93~ 1.82†

S–C 1.76~ 1.16† 0.95* 1.03 0.92 1.53*
C–T 1.48~ 1.11† 0.98 0.87 0.97 1.84†

S–T 2.11* 1.13† 1.02 1.13 0.90* 2.13†

Each row shows Hazards ratios for a different Cox Proportional Hazards model that estimates
the risk of conversion from mild cognitive impairment to Alzheimer’s disease using ADNI data.
Each column shows the estimated hazard ratio for each variable. Each hazards ratio tells you
how the risk of conversion changes for each unit increase of a particular variable: a ratio of 1
means no modification of the risk, a ratio >1 means there is an increase of the risk, and a ratio
less than 1 means there is a reduction of the risk. For the first model (S–C–T) it is assumed that
the hazard ratio increases multiplicatively from the Subcortical subtype (S) to the Cortical
subtype (C) to the Typical subtype (T), i.e. the S–C–T model estimates that each SuStaIn
subtype has a hazards ratio 1.57 times that of the previous subtype (i.e. the cortical group have a
1.57 times greater risk of conversion than the subcortical group, the typical group have a 1.57
times greater risk of conversion than the cortical group, and the typical group have a 2.46
(1.572) times greater risk of conversion than the subcortical group). In the remaining models
only two groups are compared at a time to demonstrate that the results are similar without this
assumption, although the statistical power is reduced. This result demonstrates the added utility
of both disease subtypes and stages obtained from SuStaIn for predicting conversion between
mild cognitive impairment and Alzheimer’s disease, with both subtype and stage modifying the
risk of conversion.
Statistical significance is indicated as: ~p < 0.1, *p < 0.05, **p < 0.01, †p < 1 × 10−3
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Fig. 6 Subtypes-only model for GENFI; not accounting for disease stage
heterogeneity. Brain diagrams as in Fig. 2, but here each diagram represents
a different subtype, which we refer to as severe frontal, severe temporal
and mild frontotemporal. There is no notion of disease stage in the
subtypes-only model
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subtypes-only model, giving a balanced classification accuracy of
86% for distinguishing genotype compared to 69% for the
subtypes-only model. This provides compelling evidence that
there is substantial heterogeneity in disease stage within different
phenotypes, and that modelling this disease stage heterogeneity is
important for better patient stratification. This is further
demonstrated in AD, in which SuStaIn’s subtypes and stages
substantially out-perform subtypes-only and stages-only models
for predicting conversion between diagnostic categories. These
early results are highly promising, particularly given that the
particular choice of biomarkers used here (coarse regional brain
volumes) is not optimised for stratification. In this initial study,
we chose to use MRI to maximise the number of subjects with all
available measurements, to simplify the interpretation of the
results, and to enhance the clinical utility. However, future work
will test the added benefit of including a wider range of bio-
markers and a more fine-grained set of regional volumes in
SuStaIn for patient stratification. For example in AD, incor-
poration of amyloid and neurofibrillary tangle measures, e.g. from
amyloid and tau positron emission tomography (PET) scans, will
enable stratification of individuals at the very earliest disease
stages.

The previous study of Zhang et al.23 also looked at the
assignment of AD subtypes using a subtypes-only model that
does not account for temporal heterogeneity in disease stage. In
contrast to the study of Zhang et al.23, we observe strong
assignment of AD patients to the subtypes (Fig. 5b) emphasising
the importance of accounting for heterogeneity in disease stage.
This assignability clearly increases with disease progression, with
the subtypes being most strongly assigned in clinically diagnosed
AD patients. However, even at early stages (MCI), many subjects
cluster around the vertices of the triangles showing strong
potential for identifying early-stage cohorts representative of each
subtype.

The model underlying SuStaIn makes several assumptions to
enable the simultaneous estimation of subtypes and their pro-
gression. One assumption is that biomarker variance is inde-
pendent. In reality biomarkers tend to co-vary due to shared
biological processes. However, simulation experiments (Supple-
mentary Figure 7) show that the subtype progression patterns
recovered by SuStaIn are robust to biomarker covariance.
Nevertheless, refinements might come from modelling covariance
among strongly dependent biomarkers, e.g. using model selection
criteria to identify a minimal set of necessary covariance para-
meters, and future work will explore this idea.

To enable the modelling of purely cross-sectional data, here we
make an assumption of an arbitrary timescale. This formulation
can also work with longitudinal data when available, although
here we reserve the longitudinal information to validate the
clinical utility of SuStaIn to make future predictions at an indi-
vidual’s first visit. However, extensions to SuStaIn that utilise
longitudinal information to further provide a well-defined time-
scale are an important area for future work.

Here we make a further implicit assumption that the cohort is
correctly diagnosed. While the genetic tests in GENFI ensure this,
the clinical diagnoses of AD in ADNI are less reliable and the
proportion of misdiagnosis, e.g. of depression or other neurolo-
gical diseases, is non-negligible. Simulation of the effect of mis-
diagnosis (Supplementary Figure 9) demonstrates that SuStaIn
can robustly recover subtype progression patterns under a sub-
stantial proportion of outliers, up to 20%. Nevertheless, future
adaptions of the SuStaIn model might include a broad outlier
class to capture individuals that do not fit any of the main
clusters.

One caveat on the findings is that the underlying data may
come from a spectrum of disease progression patterns, rather

than a set of distinct trajectories as SuStaIn is designed to esti-
mate. Simulations (Supplementary Figure 11) demonstrate that
SuStaIn may still recover multiple distinct progression patterns
from data generated by a spectrum of progression patterns. In
this case the distinct progression patterns identified by SuStaIn
still provide useful information about the extrema within the
underlying spectrum of progression patterns. Here, however, the
alignment with genotypes in genetic FTD and neuropathological
observations in AD provide confidence that the distinct subtypes
are genuine. Future work will extend SuStaIn to be able to
represent spectra of progression patterns (e.g. using Mallow’s
models as in refs. 38,39).

We introduce SuStaIn—a tool to disentangle and characterise
the temporal and phenotypic heterogeneity of neurodegenerative
diseases. We use it to elucidate the temporal and phenotypic
heterogeneity of both genetic FTD and AD subtypes with pre-
viously unseen detail. We further demonstrate SuStaIn’s potential
as a patient stratification tool in AD by showing strong alignment
of subjects with specific subtypes even at early disease stages, as
well as added power to predict conversion between clinical
diagnoses. SuStaIn has the potential to make substantial clinical
impact as a tool for precision medicine and is readily applicable to
any progressive disease, including other neurodegenerative dis-
eases, respiratory diseases and cancers.

Methods
GENFI data set. We used cross-sectional volumetric MRI data from GENFI
(http://www.genfi.org.uk/). Subjects were included from the second data freeze of
GENFI, which in total consisted of 365 participants recruited across 13 centres in
the United Kingdom, Canada, Italy, The Netherlands, Sweden and Portugal. A total
of 313 participants had a usable volumetric T1-weighted MRI scan for analysis (15
participants did not have a scan and the other participants were excluded as the
scans were of unsuitable quality due to motion, other imaging artefacts or
pathology unlikely to be attributed to FTD). The 313 participants included 141
non-carriers, 123 presymptomatic carriers and 49 symptomatic carriers. Of the 123
presymptomatic mutation carriers there were 62 GRN, 39 C9orf72 and 22 MAPT
carriers. Of the 49 symptomatic carriers, there were 14 GRN, 24 C9orf72 and 11
MAPT carriers. The acquisition and post-processing procedures for GENFI have
been previously described in ref. 29. Briefly, cortical and subcortical volumes were
generated using a multi-atlas segmentation propagation approach40, combining
cortical regions of interest to calculate grey matter volumes of the entire cortex,
separated into the frontal, temporal, parietal, occipital, cingulate and insula cor-
tices. In addition to regional volumetric measures, we also included a measure of
asymmetry, which is calculated as the absolute value of the difference between the
volumes of the right and left hemispheres, normalised by the total volume of both
hemispheres. This asymmetry measure was log transformed to improve normality.
See Supplementary Table 4 for a summary of the biomarkers used in the SuStaIn
modelling.

ADNI data set. Data used in the preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (http://adni.loni.
usc.edu). The ADNI was launched in 2003 by the National Institute on Aging
(NIA), the National Institute of Biomedical Imaging and Bioengineering (NIBIB),
the Food and Drug Administration (FDA), private pharmaceutical companies and
non-profit organisations, as a $60 million, 5-year public-private partnership. For
up-to-date information, see http://www.adni-info.org. Written consent was
obtained from all participants, and the study was approved by the Institutional
Review Board at each participating institution.

We downloaded data from Laboratory Of Neuro Imaging (LONI; http://adni.
loni.usc.edu) on 11 May 2016 and constructed two cross-sectional volumetric MRI
data sets for SuStaIn model fitting: those with higher (3T) and lower (1.5T) field
strength. The inclusion criteria for the 3T and 1.5T data sets were having cross-
sectional FreeSurfer volumes available that passed overall quality control from
either a 3T (processed using FreeSurfer Version 5.1) or a 1.5T (processed using
FreeSurfer Version 4.3) MRI scan. The 3T data set consisted of 793 subjects (183
CN, 86 significant memory concern, 243 early MCI, 164 late MCI, 117 AD), of
which 73 were enroled in ADNI-1, 99 were enroled in ADNI-GO and 621 were
enroled in ADNI-2. The 1.5T data set consisted of 576 ADNI-1 subjects (180 CN,
274 late MCI, 122 AD). The 1.5T and 3T data sets are largely independent: only
59 subjects (14 CN, 33 late MCI, 12 AD) have both 1.5T and 3T scans. We
downloaded processed cross-sectional FreeSurfer volumes for 1.5T and 3T scans,
using FreeSurfer Versions 4.3 and 5.1, and quality control ratings. We retained only
the volumes that passed overall quality control, and normalised them by regressing
against total intracranial volume. We further downloaded demographic
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information for covariate correction: age, sex, education and APOE genotype from
the ADNIMERGE table. We downloaded diagnostic follow-up information to test
the association of the SuStaIn model subtypes and stages with longitudinal
outcomes. We also downloaded baseline cerebrospinal fluid (CSF) measurements
of Aβ1–42, which we used to identify a control population. Again, see
Supplementary Table 4 for a summary of the biomarkers used in the SuStaIn
modelling.

z-scores. We expressed each regional volume measurement as a z-score relative to
a control population: in GENFI we used data from all non-carriers, in ADNI we
used amyloid-negative CN subjects, defined as those with a CSF Aβ1–42 mea-
surement >192 pg per ml41. This gave us a control population of 48 amyloid-
negative CN subjects for the 3T data set, and 56 amyloid-negative CN subjects for
the 1.5T data set. We used these control populations to determine whether the
effects of age, sex, education or number of APOE4 alleles (ADNI only) were sig-
nificant, and if so to regress them out. We then normalised each data set relative to
its control population, so that the control population had a mean of 0 and standard
deviation of 1. Because regional brain volumes decrease over time the z-scores
become negative with disease progression, so for simplicity we took the negative
value of the z-scores so that the z-scores would increase as the brain volumes
became more abnormal.

SuStaIn modelling. We formulate the model underlying SuStaIn as groups of
subjects with distinct patterns of biomarker evolution (see Mathematical Model).
We refer to a group of subjects with a particular biomarker progression pattern as a
subtype. The biomarker evolution of each subtype is described as a linear z-score
model in which each biomarker follows a piecewise linear trajectory over a com-
mon timeframe. The noise level for each biomarker is assumed constant over the
timeframe and is derived from a control population (see Mathematical model).
This linear z-score model is based on the event-based model in refs. 7,8,38, but
reformulates the events so that they represent the continuous linear accumulation
of a biomarker from one z-score to another, rather than an instantaneous switch
from a normal to an abnormal level. A key advantage of this formulation is that it
can work with purely cross-sectional data because it requires no information about
the timescale of change, but instead uses events as control points of piecewise linear
segments with arbitrary duration. The model fitting considers increasing number of
subtypes C, for which we estimate the proportion of subjects f that belong to each
subtype, and the order SC in which biomarkers reach each z-score for each subtype
c= 1 … C. We determine the optimal number of subtypes C for a particular data
set through ten-fold cross-validation (see Cross-validation).

Mathematical model. The linear z-score model underlying SuStaIn is a con-
tinuous generalisation of the original event-based model7,8, which we describe first.

The event-based model in refs. 7,8 describes disease progression as a series of
events, where each event corresponds to a biomarker transitioning from a normal
to an abnormal level. The occurrence of an event, Ei, for biomarker i= 1 … I, is
informed by the measurements xij of biomarker i in subject j, j= 1 … J. The whole
data set X= {xij | i= 1 … I, j= 1 … J} is the set of measurements of each
biomarker in each subject. The most likely ordering of the events is the sequence S
that maximises the data likelihood

P XjSð Þ ¼
YJ

j¼1

XI

k¼0

PðkÞ
Yk

i¼1

P xijjEi
� � YI

i¼kþ1

P xijj:Ei
� � !" #

; ð1Þ

where P(x | Ei) and P(x | ¬Ei) are the likelihoods of measurement x given that
biomarker i has or has not become abnormal, respectively. P(k) is the prior
likelihood of being at stage k, at which the events E1, ..., Ek have occurred, and the
events Ek+1, …, EI have yet to occur. The model uses a uniform prior on the stage,
so that P(k)= 1/(I + 1), k= 0 … I, i.e. a priori individuals are equally likely to
belong to any stage along the progression pattern. The likelihoods P(x | Ei) and P(x
| ¬Ei) are modelled as normal distributions.

The linear z-score model we use in this work reformulates the event-based
model in (1) by replacing the instantaneous normal to abnormal events with events
that represent the (more biologically plausible) linear accumulation of a biomarker
from one z-score to another. The linear z-score model consists of a set of N z-score
events Eiz, which correspond to the linear increase of biomarker i= 1 … I to a z-
score zir= zi1 … ziRi

, i.e. each biomarker is associated with its own set of z-scores,
and so N=

P
i
Ri . Each biomarker also has an associated maximum z-score, zmax,

which it accumulates to at the end of stage N. We consider a continuous time axis,
t, which we choose to go from t= 0 to t= 1 for simplicity (the scaling is arbitrary).
At each disease stage k, which goes from t= k

Nþ1 to t= kþ1
Nþ1, a z-score event Eiz

occurs. The biomarkers evolve as time t progresses according to a piecewise linear

function gi(t), where
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Thus, the times tEiz are determined by the position of the z-score event Eiz in the
sequence S, so if event Eiz occurs in position k in the sequence then tEiz =

kþ1
Nþ1.

To formulate the model likelihood for the linear z-score model we replace Eq.
(1) with
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where,

P xijjt
� �

¼ NormPDF xij; gi tð Þ; σ i
� �

:

NormPDF(x, μ, σ) is the normal probability distribution function, with mean μ and
standard deviation σ, evaluated at x. We assume the prior on the disease time is
uniform, as in the original event-based model.

The SuStaIn model is a mixture of linear z-score models, hence we have

P XjMð Þ ¼
XC

c¼1

fc P XjScð Þ;

where C is the number of clusters (subtypes), f is the proportion of subjects
assigned to a particular cluster (subtype), and M is the overall SuStaIn model.

Model fitting. Supplementary Figure 15 provides a flowchart detailing the pro-
cesses involved in the SuStaIn model fitting. Model fitting requires simultaneously
optimising subtype membership, subtype trajectory and the posterior distributions
of both. In particular, the cost function here depends on the sequence ordering,
which to our knowledge standard algorithms do not handle. We therefore derive
our own algorithm to fit SuStaIn, based on the well-established methods developed
for the event-based model (7,8,42,43), for which we demonstrate convergence and
optimality in simulation (see Supplementary Results: Convergence) and in the data
sets used here (see Convergence). As shown in the black box in Supplementary
Figure 15, the SuStaIn model is fitted hierarchically, with the number of clusters
being estimated via model selection criteria obtained from cross-validation. The
hierarchical fitting initialises the fitting of each C-cluster (subtype) model from the
previous C-1-cluster model, i.e. the clustering problem is solved sequentially from
C= 1 … Cmax (where Cmax is the maximum number of clusters being fitted),
initialising each model using the previous model. For the initial cluster (C= 1), we
use the single-cluster expectation maximisation (E-M) procedure shown in the
green box in Supplementary Figure 15, and described subsequently. We fit sub-
sequent cluster numbers (C > 1) hierarchically by generating C-1 candidate C-
cluster models using the split-cluster E-M procedure shown in the blue box in
Supplementary Figure 15, and described subsequently. From these C-1 candidate
C-cluster models, the model with the highest likelihood is chosen.

The split-cluster E-M procedure shown in the blue box in Supplementary
Figure 15 is used to generate each of the C-1 candidate C cluster models. For each
of the C-1 clusters, the split-cluster E-M procedure first finds the optimal split of
cluster c into two clusters. To find the optimal split of cluster c into two clusters, the
data points belonging to cluster c are randomly assigned to two separate clusters.
The optimal model parameters for these two data subsets are then obtained using
the single-cluster E-M procedure (green box in Supplementary Figure 15). These
cluster parameters are used to initialise the fitting of a two-cluster model to the
subset of the data belonging to cluster c, using E-M. This two-cluster solution is
then used together with the other C-2 clusters to initialise the fitting of the C-
cluster model. The C-cluster model is then optimised using E-M, alternating
between updating the sequences Sc for each cluster and the fractions fc. This
procedure is repeated for 25 different start points (random cluster assignments) to
find the maximum likelihood solution (see Convergence).

The single-cluster E-M procedure shown in the green box in Supplementary
Figure 15 is used to find the optimal model parameters (the sequence S in which
the biomarkers reach each z-score) for a single-cluster. In the single-cluster E-M
procedure the sequence S is initialised randomly. This sequence is then optimised
using E-M by going through each z-score event E in turn and finding its optimal
position in the sequence relative to the other z-score events, i.e. by fixing the order
of the subsequence T= S/E and maximising the likelihood of the sequence by
changing the position of event e in the subsequence T. The sequence S is updated
until convergence. Again the single-cluster sequence S is optimised from 25
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different random starting sequences to find the maximum likelihood solution (see
Convergence).

Convergence. At several points in the model fitting we perform a greedy opti-
misation from a number of different starting points and choose the maximum
likelihood sequence or set of sequences. The multiple runs safeguard against local
minima. However, in fact, we find that the optimisation displays good convergence:
runs from all start points typically converge to a solution with likelihood within a
1 × 10−3 % of the maximum likelihood, and within the uncertainty estimated by
the uncertainty estimation procedure (see Uncertainty estimation). The con-
vergence of the SuStaIn algorithm and ability to locate the global minimum and
correct solution is further demonstrated in simulation using synthetic data in
(Supplementary Results: Convergence).

Uncertainty estimation. In addition to estimating the most probable sequence Sc
for each subtype, we can determine the relative likelihood of all sequences for each
subtype by evaluating the probability of each possible sequence. This gives us an
estimate of the uncertainty in the ordering Sc, which we summarise by plotting the
probability that each z-score event appears at each position in the sequence for
each subtype. We visualise this probability (see Fig. 2 for example) using different
colours to indicate the cumulative probability each region has reached a particular
z-score: the cumulative probability of a region going from a z-score of 0-sigma to 1-
sigma ranges from 0 in white to 1 in red, the cumulative probability of a region
going from a z-score of 1-sigma to 2-sigma ranges from 0 in red to 1 in magenta,
and the cumulative probability of a region going from a z-score of 2-sigma to 3-
sigma ranges from 0 in magenta to 1 in blue. In practise the number of sequences is
too large to evaluate all possible sequences so we use Markov Chain Monte Carlo
(MCMC) sampling to provide an approximation to this uncertainty, as in7,8. As in
refs. 7,8, we take 1,000,000 MCMC samples initialised from the maximum like-
lihood solution, checking that the MCMC trace shows good mixing properties.

Cross-validation. We use ten-fold cross-validation here for two distinct purposes:
(i) to evaluate the optimal number of subtypes and (ii) to evaluate the consistency
of the subtype progression patterns. We evaluated the optimal number of subtypes
using the Cross-Validation Information Criterion (CVIC)44, i.e. by evaluating the
likelihood of each c-subtype model from c= 1 … C on the test data for each fold
and choosing the model with the highest out-of-sample likelihood P(X | M), or
equivalently the lowest value of the CVIC, across all folds. The CVIC is defined as
CVIC=−2 × log(P(X | M)), where P(X | M) is the probability of the data for a

particular SuStaIn model, M, i.e. P(X | M)=
PC

c¼1
P XjScð ÞP Scð Þ. In cases where the

evidence for a more complex model was not strong (a difference of less than 6
between the CVIC and the minimum CVIC across models, or equivalently a dif-
ference of less than 3 between the out-of-sample log-likelihood and the minimum
out-of-sample log-likelihood across models), we favoured the less complex model
to avoid over-fitting45. To evaluate the consistency of the subtype progression
patterns we performed ten-fold cross-validation by dividing the data into ten folds
and re-fitting the model to each subset of the data, with one of the folds retained for
testing each time. We report the consistency of the models across folds by com-
puting the similarity between the progression patterns of two subtypes (see Simi-
larity between two subtype progression patterns): the model fitted to each fold and
the model fitted to the whole data set.

Similarity between two subtype progression patterns. To enable the compar-
ison of subtype progression patterns in data subsets (Supplementary Figure 13B)
and across cross-validation folds (CVS in Figs. 2–4, and Supplementary Fig-
ures 13A and 14), we measure the similarity of pairs of subtype progression pat-
terns using the Bhattacharyya coefficient46. We evaluate the Bhattacharyya
coefficient between the position of each biomarker event in the two subtype pro-
gression patterns, averaged across biomarker events and MCMC samples. The
Bhattacharyya coefficient measures the similarity of the distribution of the position
of biomarker events in the subtype sequences and ranges from 0 (maximum dis-
similarity) to 1 (maximum similarity).

Patient subtyping and staging. We assigned subjects to subtypes and stages
predicted by the SuStaIn model (Fig. 5, Tables 1 and 3) by first evaluating the
likelihood that they belonged to each subtype (by integrating over disease stage)
and choosing the subtype with the highest likelihood, and then evaluating the
probability they belonged to each stage of the most probable subtype and choosing
the stage with the highest likelihood. When evaluating the likelihood we integrated
over the set of MCMC samples to account for the uncertainty in the model
parameters, rather than just evaluating the likelihood at the maximum likelihood
parameters. This means that a patient’s model stage indicates the average position
over the posterior distribution on the sequence given the data.

Strength of assignment to subtype. We evaluated the strength of an individual’s
assignment to a particular subtype by comparing the probability that they were at
stage ≤2 (i.e. they had no major imaging abnormalities and therefore could not be

assigned to a particular subtype) with the probability that they belonged to each
SuStaIn subtype (probability for each subtype summed over stages 3+). The strength
of the assignment was evaluated as their maximum probability of belonging to one of
the subtypes. We considered those with a maximum probability of belonging to a
particular subtype of greater than a half as having a strong assignment to a subtype.

Comparison to subtypes-only and stages-only models. We compared our
SuStaIn model to a subtypes-only model and a stages-only model. In the subtypes-
only model, individuals are clustered together into groups based on the similarity
of their biomarker measurements—without accounting for heterogeneity in disease
stage. The stages-only model is a disease progression model where all subjects are
assumed to be samples of a single common progression pattern—without
accounting for heterogeneity in disease subtype. We formulated the subtypes-only
and stages-only models so that they were as close as possible to the SuStaIn model,
but did not model heterogeneity in disease stage or disease subtype, respectively.
This allows us to assess the benefit of accounting for this disease stage or subtype
heterogeneity in the SuStaIn model. The subtypes-only model consists of a mixture
of Gaussians with unknown mean and variance. The subtypes-only model is fitted
to symptomatic mutation carriers for GENFI, and AD subjects for ADNI, so that
the subtypes correspond to a single diagnostic group. As done for the SuStaIn
model, we evaluated the optimal number of clusters (subtypes) using the CVIC44.
The stages-only model is a special case of the SuStaIn model outlined in Mathe-
matical Model, where only a single subtype is modelled, i.e. C= 1.

SuStaIn modelling of GENFI data set. Supplementary Tables 4–6 provide a
summary of the settings of the SuStaIn algorithm. We applied SuStaIn modelling to
various subgroups of the GENFI data set: all 172 mutation carriers, 76 GRN mutation
carriers, 63 C9orf72 mutation carriers, 33 MAPT mutation carriers. For all mutation
carriers we fitted SuStaIn models of up to a maximum of 5 subtypes. For the GRN,
C9orf72 and MAPT mutation carriers we fitted SuStaIn models of up to a maximum
of 3 subtypes. We chose the z-score events for the GENFI data set to include z-scores
of 1, 2 and 3 for each volume, but excluded z-score events where fewer than 10
mutation carriers had values that were greater than that z-score. The maximum z-
score, which is reached at the final stage of the progression, was set to be 2, 3 or 5
depending on whether the maximum z-score event was 1, 2 or 3, respectively. We
maintained the same z-score events across each of the GENFI experiments.

SuStaIn modelling of ADNI data set. We applied SuStaIn modelling to two
largely independent (overlap of 59 individuals) subgroups of the ADNI data set:
793 individuals with 3T MRI scans and 576 individuals with 1.5T MRI scans, for
which we tested SuStaIn models of up to a maximum of 5 subtypes. As we did for
GENFI, we chose the z-score events to include z-scores of 1, 2 or 3 for each volume,
but excluded z-score events where fewer than 10 subjects had values that were
greater than that z-score. Again the maximum z-score, which is reached at the final
stage of the progression, was set to be 2, 3 or 5 depending on whether the max-
imum z-score event was 1, 2 or 3 respectively. Full details of the settings of the
SuStaIn algorithm can be found in Supplementary Tables 4–6.

Classification of mutation groups using subtypes. We performed two experi-
ments to compare the ability of subtypes obtained from SuStaIn and the subtypes-
only model to classify mutation carriers in GENFI into their different mutation
groups. In the first experiment (Tables 1 and 2) we optimised the probability
required for assignment to each of the subtypes. This accounts for different
amounts of heterogeneity within the different subtypes. In the second experiment
(Supplementary Tables 1 and 2) we simply assigned individuals to their most
probable subtype and compared their assigned subtype with their mutation group.
In both experiments the classification results are reported as out-of-sample
accuracies obtained through 10-fold cross-validation.

Data availability
Genetic FTD data used in this study will become available via the GENFI website (www.
genfi.org.uk) and by application to the GENFI data access committee (email: genfi@ucl.
ac.uk). The AD data used in this study are available from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). SuStaIn source code is
available at https://github.com/ucl-mig/.
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