The influence of human disturbance on wildlife nocturnality.

Permalink
https://escholarship.org/uc/item/87b547gj

Journal
Science (New York, N.Y.), 360(6394)

ISSN
0036-8075

Authors
Gaynor, Kaitlyn M
Hojnowski, Cheryl E
Carter, Neil H
et al.

Publication Date
2018-06-01

DOI
10.1126/science.aar7121

Peer reviewed
HUMAN IMPACTS

The influence of human disturbance on wildlife nocturnality

Kaitlyn M. Gaynor1*, Cheryl E. Hojnowski1, Neil H. Carter2, Justin S. Brashares1

Rapid expansion of human activity has driven well-documented shifts in the spatial distribution of wildlife, but the cumulative effect of human disturbance on the temporal dynamics of animals has not been quantified. We examined anthropogenic effects on mammal diel activity patterns, conducting a meta-analysis of 76 studies of 62 species from six continents. Our global study revealed a strong effect of humans on daily patterns of wildlife activity. Animals increased their nocturnality by an average factor of 1.36 in response to human disturbance. This finding was consistent across continents, habitats, taxa, and human activities. As the global human footprint expands, temporal avoidance of humans may facilitate human-wildlife coexistence. However, such responses can result in marked shifts away from natural patterns of activity, with consequences for fitness, population persistence, community interactions, and evolution.

The global expansion of human activity has had profound consequences for wildlife. Research has documented the effects of habitat destruction and defaunation on species and ecosystems (1), but the indirect or nonlethal pathways through which humans alter the natural world have largely eluded quantification. Human presence can instill strong fear in wild animals, which may adjust their activity to avoid contact with humans (2). As in natural predator-prey systems, such risk avoidance can have important nonlethal effects on animal physiology and fitness, affecting demography and triggering trophic cascades (3).

The study of fear effects on animals has focused mainly on spatial avoidance, propelled by rapid advances in wildlife tracking, remote sensing, and computational methods (2, 4). However, as the human footprint expands (3), fewer areas are available for animals to seek spatial refuge from people. In places where wild animals co-occur with humans, animals may minimize risk by separating themselves in time rather than in space (6). Temporal partitioning is a common, even intrinsic, feature of ecological communities, shaping spatiotemporal patterns of predation and competition (6–8). Here we show that humans, as a diurnal apex “super predator” (9), are driving increases in nocturnal activity across diverse mammalian taxa.

To quantify temporal shifts in wildlife activity in response to humans, we conducted a meta-analysis of published literature on the activity of mammals across gradients of human disturbance. Our dataset included 141 effect sizes for 62 mammal species, representing 21 families and nine orders, and spanned six continents (Fig. 1A). We restricted our analysis to medium- and large-bodied mammals (>1 kg in body size (10)) because of their large space needs, potential for conflict with humans, and high levels of behavioral plasticity and because data on their 24-hour activity patterns were widely available. Within each study, we compared animal nocturnality under conditions of low and high human disturbance. We classified areas, time periods, or individual animals as being associated with low or high disturbance on the basis of categorical descriptions of the study system or binned distance or elapsed time from an anthropogenic disturbance (tables S1 and S3).

For each species in each study, we calculated the risk ratio (RR) as a measure of effect size. We compared the percentage of activity that occurred at night (as measured by motion-activated cameras, telemetry devices, and direct observation) at sites or during seasons of high human disturbance (Xh) with nighttime activity under low disturbance (Xl), with RR = ln(Xh/Xl). A positive RR indicated a relatively greater degree of nocturnality in response to humans, and a negative RR indicated reduced nocturnality. We used meta-analytical random-effects models to estimate the overall effect of human disturbance on nocturnality and to compare responses across types of human disturbance, species traits, habitats, continents, and study methods. We also used multivariate models to explore the relative importance of these factors with an information-theoretic approach.

Our analysis revealed a marked increase in nocturnal activity. Overall, mammal nocturnality increased by a factor of 1.36 [95% confidence interval (CI), 1.23 to 1.51] in areas or time periods of high human disturbance relative to nocturnality under low-disturbance conditions. For example, an animal that typically splits its activity evenly between the day and night would increase its proportion of nocturnal activity to 68% of total activity near human disturbance. Of the 141 effect sizes, 83% corresponded to an increase in nocturnality in response to humans (Fig. 1B). This finding

Fig. 1. Mammals become more nocturnal to avoid humans throughout the world. (A) Map illustrating the locations of the 76 studies included in the meta-analysis. (B) Paired measures of nocturnality (percentage of activity that occurs in the night) in areas of high human disturbance (Xh) and low human disturbance (Xl), displayed for each species in each study (n = 141 effect sizes, ordered from high to low Xh). The relative change in nocturnality in response to human disturbance was used to calculate the effect size (RR) for the meta-analysis, where RR = ln(Xh/Xl).
indicates a widespread increase in nocturnality among mammals living alongside people. Our analysis spanned a wide range of human disturbances associated with diverse stimuli representing different levels of risk to wildlife, including lethal activities (e.g., hunting and retaliatory persecution), nonlethal activities (e.g., hiking and natural resource extraction), and human infrastructure (e.g., urban development, road construction, and agriculture). There was a significant increase in nocturnality in response to all types of human activity, with similar patterns across trophic levels and body sizes. Back-transforming the overall (mean) RR (0.31; CI, 0.21 to 0.41) indicates that nocturnality increased by a factor of 1.36 (CI, 1.23 to 1.51) in response to human activity. Fractions of effect sizes in each category are indicated in parentheses (human activity categories were nonexclusive). Mammals exhibit a significant increase in nocturnal activity in response to all types of human activity, with similar patterns across trophic levels and body sizes. Back-transforming the overall (mean) RR (0.31; CI, 0.21 to 0.41) indicates that nocturnality increased by a factor of 1.36 (CI, 1.23 to 1.51) in response to human activity.
diel cycle provides a reliable set of environmental cues against which ecological and evolutionary processes play out (30). Behavior at different times of the diel cycle influences and is influenced by morphology [e.g., corneal size (31)], physiology [e.g., opsin proteins (32)], and ecology [e.g., group living and predation risk (33)]. Although most mammals possess some sensory adaptations to nighttime activity due to nocturnal mammalian ancestors, many species have evolved traits that optimize diurnal behavior (34, 35). When active at other times, diurnally adapted animals may suffer from reduced hunting and foraging efficiency, weakened antipredator strategies, disruption of social behavior, poor navigational capacity, and higher metabolic costs, all of which can compromise reproduction and survival (36, 37).

By altering typical activity patterns in some wildlife species, human disturbance initiates behaviorally mediated trophic cascades and transforms entire ecological communities (38, 39). Fear-based behavioral responses by apex predators to humans may diminish their ability to hunt and thus perform their ecological role at the top of a trophic web (40). Animals that are increasingly nocturnal may drastically alter their diets toward prey or forage that are more accessible at night, reshaping lower trophic levels (41). Predators may also abandon kills near human settlements in the daytime, resulting in increased overall predation rates (42). Human-induced increases in nocturnality among prey species can also increase their vulnerability to nocturnal predators (43). Differential responses to human disturbance among mammal species also alters patterns of predation and competition. Predators may increase nocturnality in response to humans, creating temporal human shields, in which a prey species will then decrease nocturnality near human disturbance to avoid predation, analogous to spatial human shields (44, 45). Alternatively, some prey species may instead seek out human-dominated areas at night to escape nocturnal predators that spatially avoid humans (46).

Human-induced change in diel activity is a growing field of inquiry, as indicated by the large number of studies in our meta-analysis (table S1). However, very few studies have examined the individual-, population-, or community-level consequences of these behavioral changes. Given the widespread nature of increased nighttime activity, there is ample opportunity and need to study not just the magnitude of this effect but also its consequences for individual fitness, species interactions, and natural selection. Additional research and synthetic analyses are also needed for nonmammalian taxa, which may also exhibit diel shifts in response to humans (47).

As research on the pattern and consequences of increased nocturnality advances, we urge that similar progress be made to incorporate knowledge of temporal dynamics into conservation planning. Currently, spatial ecology informs commonly used land-planning tools (48), but new tools are needed that explicitly address temporal interactions. Approaches may include diurnal “temporal zoning,” analogous to spatial zoning, that would restrict certain human activities during times of the day when species of conservation concern are most active or when the likelihood of negative human-wildlife encounters is highest. Similar strategies already restrict human activity at certain times of the year, such as during breeding seasons (49). Systematic approaches to understanding and managing temporal interactions between humans and wildlife species, human disturbance initiates behaviorally mediated trophic cascades and transforms entire ecological communities (38, 39). Fear-based behavioral responses by apex predators to humans may diminish their ability to hunt and thus perform their ecological role at the top of a trophic web (40). Animals that are increasingly nocturnal may drastically alter their diets toward prey or forage that are more accessible at night, reshaping lower trophic levels (41). Predators may also abandon kills near human settlements in the daytime, resulting in increased overall predation rates (42). Human-induced increases in nocturnality among prey species can also increase their vulnerability to nocturnal predators (43). Differential responses to human disturbance among mammal species also alters patterns of predation and competition. Predators may increase nocturnality in response to humans, creating temporal human shields, in which a prey species will then decrease nocturnality near human disturbance to avoid predation, analogous to spatial human shields (44, 45). Alternatively, some prey species may instead seek out human-dominated areas at night to escape nocturnal predators that spatially avoid humans (46).

Human-induced change in diel activity is a growing field of inquiry, as indicated by the large number of studies in our meta-analysis (table S1). However, very few studies have examined the individual-, population-, or community-level consequences of these behavioral changes. Given the widespread nature of increased nighttime activity, there is ample opportunity and need to study not just the magnitude of this effect but also its consequences for individual fitness, species interactions, and natural selection. Additional research and synthetic analyses are also needed for nonmammalian taxa, which may also exhibit diel shifts in response to humans (47).

As research on the pattern and consequences of increased nocturnality advances, we urge that similar progress be made to incorporate knowledge of temporal dynamics into conservation planning. Currently, spatial ecology informs commonly used land-planning tools (48), but new tools are needed that explicitly address temporal interactions. Approaches may include diurnal “temporal zoning,” analogous to spatial zoning, that would restrict certain human activities during times of the day when species of conservation concern are most active or when the likelihood of negative human-wildlife encounters is highest. Similar strategies already restrict human activity at certain times of the year, such as during breeding seasons (49). Systematic approaches to understanding and managing temporal interactions between humans...
and wildlife can open up new domains for conservation in an increasingly crowded world.

REFERENCES AND NOTES

The influence of human disturbance on wildlife nocturnality
Kaitlyn M. Gaynor, Cheryl E. Hojnowski, Neil H. Carter and Justin S. Brashares

Science 360 (6394), 1232-1235.
DOI: 10.1126/science.aar7121

Nocturnal refuge
As the human population grows, there are fewer places for animals to live out their lives independently of our influence. Given our mostly diurnal tendencies, one domain that remains less affected by humans is the night. Gaynor et al. found that across the globe and across mammalian species—from deer to coyotes and from tigers to wild boar—animals are becoming more nocturnal (see the Perspective by Benítez-López). Human activities of all kinds, including nonlethal pastimes such as hiking, seem to drive animals to make use of hours when we are not around. Such changes may provide some relief, but they may also have ecosystem-level consequences. Science, this issue p. 1232; see also p. 1185