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ABSTRACT OF THE DISSERTATION 

 

The Interface Energy and Particle Size Effects on Nanocomposites 

 

by 

 

Yinghui Zhu 

Doctor of Philosophy in Civil Engineering 

University of California, Los Angeles, 2019 

Professor Jiann-Wen Ju, Chair 

 

Currently, the advancement of nanotechnology provides new insights into the structures with 

the characteristic length in the nanometer scale. Due to their large specific area, the nano-structures 

may possess desirable features. Therefore, scientists attempt to employ the nano-structures as the 

reinforcements in the composite materials; i.e., nanocomposites, to achieve improved properties. 

It is well known that the local atomic environment at the matrix-reinforcement interface is different 

from its setting associated with the interior due to the accommodation of two different materials. 

As a consequence, the free energy associated with the interface is different from that associated 

with the interior. Since the nanocomposites have much larger interface area than the traditional 
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composites, the interface energy effect becomes one of the main factors that determine the 

mechanical properties. The objective of the present study is to research on the effective (overall) 

elastic, elastoplastic and elastoplastic damage behavior of nanocomposites by considering the 

interface energy effect. Firstly, a nanomechanical framework is proposed in Chapter 3 to 

investigate the effective elastic behavior of nanocomposites containing randomly distributed 

spherical particles. The interface energy effect is simulated by the zero-thickness membrane 

interphase between the matrix and the reinforcement together with the interface stress. In addition, 

classical micromechanical homogenization procedures are incorporated to determine the volume 

averaged effective properties. Secondly, the elastic nanomechanical framework in Chapter 3 is 

extended to consider the more sophisticated spheroidal particle reinforced nanocomposites in 

Chapter 4. The spheroidal particles are assumed to be aligned and randomly distributed in the 

matrix. Thirdly, the effective elastoplastic behavior of the spherical particle reinforced 

nanocomposite is studied in Chapter 5. The effective secant moduli are obtained for the 

nanocomposite with the elastoplastic matrix and the elastic reinforcements. In Chapter 6, the 

elastoplastic damage performance of the continuous fiber reinforced nanocomposites is 

investigated. Interface debonding is considered as the damage type that occurs in the 

nanocomposites. The progressive debonding of the interface and the volume fraction evolution of 

debonded fibers are presented. The results show that the effective mechanical properties of 

nanocomposites are dependent upon the total interface area. The interface energy effect increases 

with the rising total interface area in the composite and becomes negligible when the dimensions 
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of the reinforcements are in micrometer scale. Further, classical micromechanical solutions can be 

obtained when the interface energy effect is neglected.  
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- Chapter 1 -  

INTRODUCTION 

 

Abstract 

The concept of composite materials has been around since ancient history. After the long 

development process, composite materials have already been widely applied in diverse 

engineering fields, and the exploration of new composite materials never ends. Currently, the 

composite materials with micrometer scaled or even nanometer scaled reinforcements draw 

significant attention. Micromechanics theories are proposed to predict the mechanical properties 

of composite materials with the size of reinforcements in micrometer or larger length scale. 

However, classical micromechanics frameworks neglect the effect of interface energy and are not 

capable to determine the mechanical behavior of nanocomposites. Therefore, a theory that 

considers the interface energy effect are of great importance in predicting the mechanical 

properties of nanocomposites. In this chapter, composite material is introduced based on its 

definition, classifications and applications. Furthermore, the micromechanics theories are 

discussed. At the end, the concept of the interface energy is introduced. 
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1.1  Composite Materials 

In this section, composite materials are introduced in detail. The definitions, the structures, the 

developments, the classifications and the applications of composite are shown sequentially.  

1.1.1 Definitions 

A composite material is a solid material that consists two or more distinct phases or materials. 

Although the components in a composite material are mixed together, they have clear interfaces 

between the phases that are in contact. Commonly, composite materials have the following 

characteristics: 

1) The components and their volume fractions of a composite are designed for certain purpose; 

2) Composite materials are artificial materials with different properties from natural materials; 

3) Different from compounds and alloys, the components in composite materials keep their 

original physical and chemical properties; 

4) The overall effective properties of composite materials depend upon the joint effect of all the 

components and are better than, sometimes totally different from, the properties of any of its 

component. 

1.1.2 Structures of composite materials 

A composite material is consisted of the main components and the interfaces. The main 

components include the matrix and the reinforcements. The matrix and reinforcements have 
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distinct physical properties, chemical properties and structures. Due to the uniqueness of the 

structures and constituents, the interfaces are also regarded as one of the phases in the composite 

material under some occasions. Reinforcements, which are generally fibers, particles or thin films, 

usually have higher strength and stiffness than the matrix and take most of the loading in the 

composite. Matrix, on the other hand, is the medium that transfers the loading to the reinforcements 

through the interface.  

In the composite materials, the surface that connects the matrix and the reinforcement is named 

as the interface. Through the interface, loadings and deformations can be transferred from the 

matrix to the reinforcement. Due to the different local atomic environment at the interface, the 

mechanical properties at or near the interface are affected. Further, it is well known that the specific 

area increases as the volume decreases. The interface renders larger effect on the composite with 

the reinforcements in smaller sizes. Therefore, the development of nanotechnology draws 

significant attention on the study of the interface effect both experimentally and theoretically.  

The overall properties of a composite material are mainly depending on the physical and 

chemical properties of the component materials, the distribution of reinforcements, the 

manufacturing process and the environment of usage. By properly considering these factors, 

composite materials can be designed to achieve new properties while keeping the main features of 

its components.   
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1.1.3 Development of composite materials 

In terms of the development process, composite materials can be generally divided into the 

early-stage composite materials and the modern composite materials. The early use of composite 

materials can be dated back to the ancient times when the straw reinforced clay, which shares the 

similar concept of concrete, was utilized in the building walls. Other famous examples of the early-

stage composite materials include lacquer wares, bronze wares, etc.  

The development of the modern composite materials can be traced back to 1940s. In 1940, the 

glass fiber reinforced unsaturated polyester resin was firstly employed in the radomes for the 

military aircrafts. In 1942, glass fiber reinforced plastic (GFRP) is adopted in building a fishing 

ship. After that, GFRP was widely used in aviation, chemistry, and construction industry during 

1960s and 1970s, and is recognized as the first generation of the composite material. The volume 

fraction of the glass fibers in GFRP varies from 30% to 60%, and the matrix material is generally 

unsaturated polyester resin, epoxy resin or phenolic resin. Compared with steel, GFRP presents 

higher specific strength (strength/density) and better corrosion resistance. Since 1980s, the 

development in the design skills and the manufacturing techniques of composite materials greatly 

improve the performances of GFRP. However, the respectively low modulus and usage 

temperature limit the applications GFRP. Hence, GFRP doesn’t belong to the advanced composite 

materials (ACM), where the requirements of ACM are: high specific strength, high specific 

stiffness, high shear strength and modulus, good high-temperature performance, etc.  
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To increase Young’s modulus in the composite, people started to use the ‘advanced fibers’ 

(e.g., boron fibers, carbon fibers and aramid fibers) as the reinforcements instead of the glass fibers 

in 1950s. Moreover, in contrast to the poor heat resisting property of GFRP, the boron fiber 

reinforced plastic (BFRP), the carbon fiber reinforced plastic (CFRP) and the kevlar fiber 

reinforced composite (KFRP) display high operating temperature, which can be higher than 150 

Celsius degrees. Therefore, BFRP, CFRP and KFRP are usually termed as the second generation 

of composite materials.  

Advanced fiber reinforced polyimide matrix composites exhibit the operating temperature at 

about 200 Celsius. If metal is employed as the matrix material, the operating temperature can be 

increased to 175-900 Celsius. When ceramic is employed as the matrix material, the operating 

temperature can be 1000-2000 Celsius. In 1970s, the applications of the aluminum oxide fibers 

and the silicon carbide fibers contribute the properties of heat resisting, high toughness and 

multifunction in ACM. These composite materials are called the third generation of composite 

materials. The second and the third generations of composite materials are also referred to as the 

high-performance composite materials. They are composed of the high-performance 

reinforcements and the polymer, metal, carbon or ceramic matrix. High-performance composite 

materials usually possess one or more of the following properties: high specific modulus, high 

specific strength, good high temperature performance and multi-functional abilities.  
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1.1.4 Classification of composite materials 

Composite materials can be classified according to various aspects. Depending on the 

applications, composite materials can be classified into structural composite materials and 

functional composite materials. Structural composite materials are utilized in load-bearing 

structures. In the structural composites, the reinforcements take most of the loading, and the matrix 

distributes and transfers the loading to the reinforcements. Functional composite materials possess 

special physical or chemical properties, such as noise reduction, heat resistance, corrosion 

resistance, etc. In the functional composite materials, the functional properties always come from 

the reinforcements, and the matrix material, which integrates the reinforcements, can also enhance 

the effect.  

According to the geometry of the reinforcements, composite materials can be classified into 

fiber reinforced composites, particle reinforced composites and slice reinforced composites, etc. 

The fiber reinforced composites include the continuous fiber reinforced composites and 

discontinuous fiber reinforced composites. The continuous fiber reinforced composites are highly 

anisotropic and desirable when directionality is considered. The properties of the discontinuous 

fiber reinforced composites are similar to the particle reinforced composites. Although the particle 

reinforcing in composites is a less effective mean in strengthening, it is widely used due to the low 

cost and the ease of production. The main functions of the particle reinforcements in composite 

materials are adjusting the electric and heat conductivity, decreasing the thermal expansion 
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coefficient, improving the temperature tolerance and changing the density of the composite, etc. 

The reinforcements in slice reinforced composites are the slices with similar length and width. 

When the slices are closely stacked, they can effectively prevent fluid leakage and protect the 

composite from damaging along the normal direction to the slices. The slice reinforced composites 

are applied in various fields, including corrosion protection, leakage protection, heat insulation 

and electrical insulation.  

According to the types of matrix material, high-performance composite materials can be 

classified into metal matrix composites (MMCs) and non-metallic matrix composites. Further, the 

non-metallic matrix composites include the polymer matrix composites (PMCs) and the ceramic 

matrix composites (CMCs). The matrix materials of MMCs include aluminum, magnesium, copper, 

titanium, superalloy, intermetallic compound, refractory metal composite, etc. On the other hand, 

resin is the most commonly used matrix material of PMCs. Fiber reinforced PMCs, which have 

high strength and high modulus, are usually adopted as the structural materials. Particle or slice 

reinforced PMC can be employed as structural and functional materials. CMCs, including 

aluminum oxide CMCs, silicon carbide CMCs, zirconia CMCs, silicon nitride CMCs, are designed 

to improve the brittleness of ceramic materials.  

1.1.5 Applications of composite materials 

Composite materials are used in a wide variety of fields, including aerospace, ground 

transportation, water transportation, civil engineering, chemical engineering, sports equipment, 
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energy and environmental protection, medical apparatus, electrical engineering, etc. In aerospace, 

the manufactures such as Boeing and Airbus have applied the composite materials as the major 

structural parts in the aircrafts. In architecture, composites offer the designers and the civil 

engineers materials with better performance in the large-scale projects. In automotive industry, the 

use of composites makes the vehicles lighter and safer. For sports equipment, carbon fiber 

reinforced composites provide the features including good durability and lightweight. Moreover, 

the composites enable the use of the new energies and can improve the efficiency of the traditional 

energies. Figs. 1-1 to Fig. 1-6 presents several examples of the applications of composite 

materials.  
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Figure 1-1 Fairing of the rocket 

 

 

Figure 1-2 Hall of the speedboat 
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Figure 1-3 Body of the fighter aircraft 

 

 

Figure 1-4 Shell of the sports car 
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Figure 1-5 Bicycle 

 

 

Figure 1-6 Fishing Rod 
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1.2  Micromechanics of Composite Materials 

Micromechanics is a relatively new branch of continuum mechanics, which studies the 

deformation of bodies under forces. Traditionally, continuum mechanics assumes homogeneity of 

the material, which are acceptable macroscopically. However, microscopically, it is found that the 

microscopic structure of a solid material contains a lot of defects (Qu and Cherkaoui 2006). 

Although the traditional assumptions hold for the overall properties, they are not valid when the 

micro-scale ingredient is considered. Micromechanics considers the microstructural characteristics 

of the materials and homogenizes the microscopic properties to predict the macroscopic properties, 

which provides the basis for the design and the manufacture. In micromechanics, the studies are 

typically based on the representative volume element (RVE). The RVE is an element in the 

composite material that is able to present all the micro-structural information, which is sufficient 

to characterize the properties of the composite. Within an RVE, the mechanical behavior of the 

composite can be obtained through solving the boundary value problems following the continuum 

mechanics theories. The mechanical properties of the constituent phases together with the volume 

fractions, shapes and orientations of the reinforcements determine the overall properties of the 

composites.  

The origin of micromechanics may be dated back to the Eshelby’s work in 1957. Eshelby 

proved that when a stress-free strain, eigenstrain, is given in an ellipsoidal inclusion in the 

composite, the strain and stress fields inside the inclusion are uniform. The strain field can be 
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determined by the celebrated Eshelby tensor. Further, Eshelby (1961) proposed the equivalent 

principle that an inhomogeneity in the composite can be equivalented into an inclusion with 

uniform eigenstrain. Here, an inclusion denotes a volume inside a homogeneous material that is of 

the same material as the matrix, while an inhomogeneity in the composite has different material 

properties with the matrix. Based on the Eshelby’s studies, various micromechanics theories are 

developed.  

The overall properties of a composite material are of important consideration in 

micromechanics. Hashin and Shtrikman (1963) determined the upper and lower bounds of the 

effective properties in a composite material. Self-consistent method (Hershey 1954, Budiansky 

1965, Hill 1965) and Mori-Tanaka (1973) method extend Eshelby’s solution on a single inclusion 

problem and consider each reinforcement as a single inhomogeneity in the effective medium. Ju 

and Chen (1994) considers the pairwise particle interactions in the composite. The micromechanics 

theories enable people to predict the effective mechanical properties of materials and are powerful 

tools in the design and analysis of new materials. 

1.3  Interface Energy and Nanocomposites 

Interface is the surface between the matrix and the inhomogeneity in composite materials. Due 

to the accommodation of two distinct materials, the local atomic environment at interface is 

different from it associated with the interior. Therefore, the free energy related to the molecules at 

the matrix-inhomogeneity interface and the molecules in the interior are different. Interface/surface 
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energy is the excess free energy of the molecules at the interface/surface relative to the molecules 

in the bulk material. Interface/surface energy was firstly proposed in fluid mechanics and 

numerically equals to the surface tension (Gibbs 1906). For liquid, interface/surface energy 

exhibits an elastic tendency of keeping the least surface area, and the interface/surface is under 

tension, which can resist external forces to some extent. Fig. 1-7 is an example of the effect of 

interface/surface energy, where a paper clip is held by the water.  

 

 

Figure 1-7 A paper clip on the water surface 

 

The interface energy effect on overall properties is neglected in the micromechanics theories 

due to the low specific interface area in consideration. However, when focusing on the 

nanostructures in a material, the interface energy effect cannot be neglected. Researchers have 

shown that as the size of the inhomogeneity become smaller, the interface energy effect increases, 

and one has to take the interface energy into account for the nano-sized inhomogeneities. Therefore, 
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for nanocomposites, whose reinforcement phase has one or more dimensions in nanometer scale, 

the effective properties are dependent upon the interface energy. To determine the effective 

properties of nanocomposites, the interface energy effect can be considered on the classical 

micromechanics theories.  

1.4  Scope and Delimitations 

The main focus of the present work is formulating the nanomechanical frameworks that 

considers the interface energy effect to predict the effective mechanical properties of composite 

materials. The interface energy effect is simulated by including the in-plane interface stress in the 

idealized zero-thickness membrane interphase between the matrix and the inhomogeneity, from 

which the interfacial stress discontinuity conditions are formulated. Further, the effective elastic 

fields are related between the matrix and the reinforcement by following the homogenization 

procedures in classical micromechanics theories. As a consequence, the effective mechanical 

properties that considers the effect of interface energy are obtained for the composites.  

   Chapter 2 presents the micromechanics theories and the nanomechanics theories. First of all, 

the basic concepts in classical micromechanics theories are introduced, and the Eshelby’s work is 

explained. Additionally, the micromechanics theories, including the direct Eshelby method, the 

Mori-Tanaka method, the self-consistent method and the direct particle interaction method, are 

discussed. Next, the nanomechanical treatment of the interface is introduced. The interface models, 

the interface constitutive equations and the interface equilibrium equations are discussed. Further, 
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the available nanomechanics theories are presented.  

In Chapter 3, an elastic nanomechanical framework is proposed to determine the effective 

elastic moduli of the multiphase spherical particle reinforced composites. Instead of applying the 

Eshelby’s solution in classical micromechanics theories, the strain inside of the inhomogeneity is 

determined through the interfacial stress discontinuity equations. Further, following the effective 

medium assumption in the Mori-Tanaka method, the effective elastic moduli that considers the 

interface energy effect are obtained. The results reveal that the interface energy effect induces the 

size dependence terms on the effective moduli.  

Based on the study in Chapter 3, Chapter 4 presents a nanomechanical framework that predicts 

the effective elastic moduli of the multiphase spheroidal particle reinforced composites. We 

assume that the spheroidal particles are aligned and randomly distributed in the composite. Further, 

the similar approaches in Chapter 3 are followed. It is demonstrated that the solutions in Chapter 

3 can be obtained by assuming identical semi-axes in the spheroidal particles, and the 

micromechanics solutions can be recovered by either neglecting the interface energy related terms 

or considering the large reinforcement particles (in micrometer or larger length scale) in the 

proposed nanomechanical framework.  

In Chapter 5, an elastoplastic nanomechanical framework is proposed to predict the effective 

elastoplastic properties of the two-phase spherical particle reinforced metal matrix nanocomposites 

(MMNCs). The ductile metal matrix is assumed to be elastoplastic and the spherical reinforcement 

particles are elastic. Additionally, the continuously weakening restraint of the matrix material 
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during plastic deformation is considered by the secant moduli.  

Chapter 6 presents an elastoplastic damage nanomechanical framework for the two-phase 

continuous fiber reinforced composites. Similar to Chapter 5, the elastoplastic matrix and the 

elastic reinforcements are assumed. Progressive interface debonding is considered, and the 

debonded isotropic fibers are equivalented into the perfectly bonded anisotropic fibers. Further, 

the interfacial stress discontinuity equations, which are induced by the interface energy, are solved 

for the equivalented fibers, and the effective secant moduli of the composite are derived.   

Finally, Chapter 7 concludes the present dissertation of the interface energy effect on the 

nanocomposites, and the future work is discussed.  
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- Chapter 2 -  

LITERATURE REVIEW 

 

In this chapter, the micromechanics theories are introduced firstly, in which the Eshelby’s 

inclusion theory, equivalent inclusion principle and the micromechanical approaches in 

determining the overall effective mechanical properties of composites are explained in detail. The 

basic assumptions and the homogenization methods of the classical micromechanical approaches 

are emphasized and are the foundations of the nanomechanics formulations. Second, the main 

concepts in nanomechanics are introduced, in which the interface models, the interface constitutive 

equations and the generalized Young-Laplace equations are applied in the following chapters.  

2.1  Micromechanics of Heterogeneous Materials 

2.1.1 Eigenstrain  

The definition of eigenstrain is firstly proposed by Eshelby (1957). Eigenstrain is defined as 

the stress-free stain that corresponds to zero stress. The examples of eigenstrain include the thermal 

strain, the plastic strains and the transformation strain, etc. Before the further explanations on the 

eigenstrain in the micromechanical formulations are provided, distinguishing the terms 

inhomogeneity and inclusion are needed. For a domain D, the inclusion is defined as a subdomain 
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W in the domain D and the matrix is D-W. The inclusion and the matrix are of the same material. 

The eigenstrain e* equals to zero in the matrix but nonzero in the inclusion; see Figure 2-1. By 

contrast, the inhomogeneity is defined as a subdomain W, which has the different material 

properties from the matrix D-W (Qu and Cherkaoui 2006); see Figure 2-2. 

 

 

Figure 2-1 An inclusion in the matrix 

 

 

Figure 2-2 An inhomogeneity in the matrix 
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Now consider the eigenstrain e* prescribed in an inclusion W. D is the total domain with the 

uniform elastic stiffness tensor C0. The total strain in D is e and the elastic strain is e. According 

to the definition of the eigenstrain, the relation of the total strain, the elastic strain and the 

eigenstrain can be displayed as  

  (2.1) 

The total strain is related to the displacement through 

 
  

(2.2) 

Therefore, the stress-strain relation can be expressed as 

   (2.3) 

Further, the equilibrium equations render   

  (2.4) 

which leads to  

   (2.5) 

If no traction is applied on the boundary, the boundary conditions are 

  (2.6) 

Substituting Eq. (2.3) into Eq. (2.6) gives 

  (2.7) 

In Eq. (2.5),  can be regarded as a body force Fi , and therefore, the Eq. (2.5) turns to be 

the equilibrium equation for a homogeneous domain under the body force Fi . Similarly, Eq. (2.7) 

can be regarded as the new boundary condition that a surface traction  is applied on the 
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boundary of the domain D. As a consequence, the elastic fields of the homogeneous domain, which 

contains an inclusion, can be solved when the eigenstrain  is specified.  

2.1.2 Eshelby inclusion theory and equivalent principle principle  

Consider an ellipsoidal inclusion W in an infinite domain D with the elastic stiffness tensor 

C0. D is subjected to a far-field strain . The eigenstrain e* is uniform in the inclusion and zero 

in the matrix. Eshelby proved that the stress and the strain fields are uniform in the inclusion. In 

addition, he proposed a constant fourth-order tensor S, which is referred to as the Eshelby tensor, 

to determine the strain field in the inclusion. According to Eshelby, the perturbed strain  due 

to the eigenstrain is  

    (2.8) 

and the stress in the inclusion is, 

     (2.9) 

When the problem of the infinite body D containing an ellipsoidal inhomogeneity W is 

considered, the Eshelby’s equivalence principle can be applied to equivalent the inhomogeneity 

into an inclusion with the uniform eigenstrain. Assume that the elastic stiffness tensors of the 

matrix and the inhomogeneity are C0
 and C1, respectively, and a strain e0 is applied at the far field. 

The Eshelby’s equivalence principle reads  

  (2.10) 

where e* is the uniform eigenstrain. Through Eshelby’s equivalence principle, the heterogeneous 

ε ij
*

ε 0

ε '

ε ' = S : ε* x∈Ω

σ = C0 : ε 0 + ε '− ε*( ) = C0 : ε 0 + S : ε
* − ε*( ) x∈Ω

C0 : ε 0 + ε '− ε*( ) = C1 : ε 0 + ε '( )
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body D is transformed into a homogeneous body with uniform eigenstrain in W. Substitution of 

Eqs. (2.8) into (2.10) renders 

  (2.11) 

from which the eigenstrain can be determined explicitly, 

  (2.12) 

where .  

Eshelby made a great contribution to the micromechanics, and his work is the foundation of 

many classical micromechanics theories, including the direct Eshelby method, the Mori-Tanaka 

method and the self-consistent method, etc.  

2.1.3 Determination of the effective moduli  

Consider a composite material subjected to the displacement boundary condition as follows, 

  (2.13) 

Due to the perturbation of the inhomogeneities in composite material, the elastic fields are not 

uniform. Typically, the micromechanics theories consider each inhomogeneity as a single 

inhomogeneity surrounded by the effective matrix with the effective elastic modulus  and the 

effective strain . Therefore, the multi-inhomogeneity problem is simplified into a single-

inhomogeneity problem. For the simplified problem, the equivalent inclusion principle leads to 

  (2.14) 

where Cr is the elastic stiffness tensor of the inhomogeneity. The eigenstrain  can be solved 

C0 : ε 0 + S : ε
* − ε*( ) = C1 : ε 0 + S : ε*( )

ε* = − A + S( )−1 : ε 0
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u S = ε 0x

Ĉ0

ε̂ 0

Ĉ0 : ε̂ 0 + Ŝ : ε r
* − ε r
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from Eq. (2.14) that  

  (2.15) 

Furthermore, the total strain in the inhomogeneity can be expressed as  

  (2.16) 

where  is the local strain concentration tensor, which can be expressed as  

  (2.17) 

It is observed from Eq. (2.17) that the total stress is related to the effective strain  and the 

effective elastic stiffness . To explicitly determined the local strain concentration tensor and 

the effective elastic stiffness tensor, researchers have made various assumptions on the effective 

matrix. In the following sections, several categories of micromechanical theories are introduced 

and the corresponding assumptions on the effective matrix are presented.  

Furthermore, a global strain concentration tensor  is defined as 

   (2.18) 

where  is the overall effective strain of the composite. Once  and  are specified, the 

relation between  and  can be determined, and the overall effective elastic stiffness tensor 

reveals to be 

  
(2.19) 

where n denotes the number of total reinforcement phases in the composite. Based on the 

formulation in this section, the direct Eshelby method, the Mori-Tanaka method and the self-
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consistent method are discussed sequentially in the following sections.  

2.1.4 Direct Eshelby method 

The direct Eshelby method assumes dilute reinforcement concentration of inhomogeneities, 

in which the interactions between the inhomogeneities and between the matrix and the 

inhomogeneity are neglected. Therefore, the effective matrix yields   

  and  (2.20) 

As a consequence, the strain in the inhomogeneity is related to the overall volume-averaged strain,  

  
(2.21) 

where the global and the local strain concentration tensors are identical,  

  
(2.22) 

According to Eq. (2.19), the effective elastic stiffness tensor equals to 

  

(2.23)
 

It is noted that the multi-inhomogeneity problem, in the direct Eshelby method, is regarded as the 

problem of one inhomogeneity in an otherwise homogeneous matrix material with the original 

matrix material properties, see Fig. 2-3.  
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Figure 2-3 The rth phase inhomogeneity in the composite following the direct Eshelby method 

 

2.1.5 Mori-Tanaka method 

The Mori-Tanaka method is based on the assumption that taking out one inhomogeneity from 

the composite will not influence the overall effective elastic field. Therefore, an inhomogeneity 

can be reviewed as the single reinforcement in the uniform matrix of the stiffness tensor , 

which is subjected to the uniform strain , which implies that   

  and  (2.24) 

where  is the volume-averaged strain in the matrix when all the inhomogeneities are present.   

Based on the assumptions made by Mori and Tanaka, the relation between the strain in rth 

phase inhomogeneities and the volume-averaged strain in matrix becomes 

  (2.25) 

C0
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ε0
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where the local strain concentration tensor  is  

  
(2.26) 

and the volume-averaged strain in matrix is related to the overall averaged strain through  

  
(2.27) 

From Eqs. (2.25) and (2.27), we have  

  
(2.28) 

where the global strain concentration tensor is obtained as 

  
(2.29) 

Therefore, substituting Eq. (2.29) into Eq. (2.19), the effective elastic stiffness tensor of the 

composite is determined  

  

 

(2.30)
 

Similar to the direct Eshelby method, the Mori-Tanaka method considers only one inhomogeneous 

particle in the otherwise homogeneous effective matrix. However, instead of neglecting the 

interactions in the composite, Mori and Tanaka considers the interactions through the effective 

matrix, see Fig. 2-4. Therefore, better estimations of the effective elastic moduli are given by the 

Mori-Tanaka method than the direct Eshelby method.  
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Figure 2-4 The rth inhomogeneity in the composite following the Mori-Tanaka method 

 

2.1.6 Self-Consistent method 

Similar to the Mori-Tanaka method, the self-consistent method (Budiansky 1965, Hill 1965) 

assumes that removing one inhomogeneity from the composite will not influence the overall 

effective properties. The difference is that, in the self-consistent method, the effective elastic 

moduli and the effective strain of the effective matrix is assumed to be equal to the overall volume-

averaged elastic moduli and strain of the composite. The assumptions of the self-consistent method 

can be written as  

  and  (2.31) 

Therefore, the local strain concentration tensor and the global strain concentration tensor are 

identical,  

ε̂ 0 = ε Ĉ0 = C
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(2.32) 

where  is the Eshelby tensor that corresponds to the effective matrix of the elastic stiffness 

tensor . Substitution of Eq. (2.32) into Eq. (2.19) renders the overall effective elastic stiffness 

tensor  as 

 

                     (2.33)

 

It is noted that Eq. (2.33) is a function of , from which  can be solved, typically iteratively.  

The self-consistent method treats the inhomogeneity as a particle in an effective homogeneous 

matrix. The properties of the effective matrix are assumed to be identical to the unknown yet 

overall volume-averaged properties of the composite; see Fig. 2-5. 

 

Figure 2-5 The rth inhomogeneity in the composite following the self-consistent method  
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2.1.7 Direct particle interaction model 

Ju and Chen (1994a) proposed a micromechanical framework that considers the direct particle 

interactions to evaluate the effective moduli of composite material with ellipsoidal 

inhomogeneities. The Green’s function is integrated to determine the point-wise strain and stress 

fields in the composite. Through the ensemble volume average procedures, the effective elastic 

fields are obtained from the point-wise solutions. The governing equations are derived to 

determine the effective elastic moduli, which are  

  
(2.34) 

  
(2.35) 

  (2.36) 

  
(2.37) 

where S is a fourth-order constant tensor, sr is the Eshelby tensor for rth phase particles, 

corresponds to the interaction between the inhomogeneities. The effective moduli can be solved 

from Eqs. (2.34)-(2.37) if one can determine  explicitly. By neglecting , Ju and Chen 

proved that their framework provides the same solution as the Hashin-Shtrikman lower bound and 

the Mori-Tanaka method. Further, Ju and Chen (1994b) solved  by considering the pairwise 

particle interactions and improved the accuracy of the prediction. 
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2.2  Nanomechanics of Heterogeneous Materials 

2.2.1 Interface energy and interface stress 

Interface in the heterogeneous materials is the surface between the matrix and the 

reinforcement. It is well-known that, due to the different local micro-structures at the interface and 

in the interior, the mechanical properties at or near the interface are different from the mechanical 

properties of the abutting materials. However, in the classical micromechanics theories, the 

difference is usually neglected, and the perfect interface bonding conditions are adopted, in which 

the displacements and the stresses through the interface are continuous.  

Gibbs (1928) firstly introduced the concept of interface energy. The interface energy is 

defined as the excess free energy at the interface, which is due to the different local micro-structure 

at the interface. Interface stress is a different concept from the interface energy for solids, despite 

they always treated as equivalent terms in fluid mechanics. Various definitions of the interface 

stress are proposed in literature. Ibach and Harald (1997) defined the interface stress as the change 

of the bulk stress near the interface, 

  
(2.38) 

where  is the interface stress ( , =1,2, are the two perpendicular tangential directions of 

interface),  is the stress along the z-direction (the normal direction to the interface) and 

 is the stress on the interface. It is observed from Eq. (2.38) that the unit of the interface stress 
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is force per unit length. Shuttleworth (1950) followed the principle of virtual work that related the 

interface stress and the interface energy,  

  
(2.39) 

where  is the interface energy density. Eq. (2.39) is referred to as the Shuttleworth equation.  

The change in the local atomic environment leads to the change of the interface energy and, 

consequently, the interface stress. Therefore, the interface energy and the interface stress are 

related to the deformation of the interface (Duan et al. 2005a). According to Bottomley and Ogino 

(2001), Miller and Shenoy (2000), a linear constitutive relation is proposed for the interface stress 

and the interface strain, 

   (2.40) 

where  is the two-dimensional elastic stiffness tensor of the interface,  is the interface 

strain tensor composed of the tangential components of the strain at the interface, and  denotes 

the interface stress tensor. Further, Duan et al. (2005a) suggested a linear isotropic constitutive 

relation 

  (2.41) 

where  and  are the interfacial lamé constants and 1 is the two-dimensional second-order 

unit tensor. If written in the form with the interfacial bulk modulus and the interfacial shear 

modulus, Eq. (2.41) becomes 
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where  and  are the interfacial bulk and shear modulus, respectively.  

2.2.2 Interface models 

To simulate the interface energy effect on the mechanical properties of the composite, interface 

models are proposed in the literature, including the free sliding model, the linear spring model, the 

dislocation-like model and the interface stress model, etc. (Duan et al., 2005b). In the free sliding 

model, the traction and the displacement along the direction normal to the interface are continuous, 

while the components of the traction in the tangential direction is zero, that is, we have  

  

(2.43) 

where , is the 2nd-order identity tensor,  is the unit normal vector to the 

interface and the bracket  represents the interfacial discontinuity of the inner value from the 

matrix to the inhomogeneity.  

The linear spring model assumes continuous traction and discontinuous displacements at the 

interface, and the traction at interface is proportionally related to the interfacial displacement 

discontinuity,  

  

(2.44) 

where  and  are the spring constants in the tangential direction and the normal direction, 

respectively. When , tractions become zero, which corresponds to the complete 
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debonding of the interface. When  and  go to infinity, the displacement discontinuity has to 

be zero, which means that the interface is perfectly bonded.  

Dislocation-like model, similar to the linear spring model, assumes the continuous traction 

and the discontinuous displacement. However, the displacements on the two sides of an interface 

are assumed to be proportionally related, which can be expressed as  

  

(2.45) 

where  is the displacement on matrix side and  is the displacement on the inhomogeneity 

side, and  and  are two constants.  

2.2.3 Interface stress model 

Gurtin and Murdoch (1975) studied the elastic material surface/interface under the continuum 

mechanics theory. They established a theoretical framework of the interface, in which membrane 

theory is followed. According to Gurtin and Murdoch, the equilibrium equations at the interface 

can be written as  

  (2.46) 

where n is a unit normal vector of interface pointing from inhomogeneity to matrix and  

denotes the interface divergence. Eq. (2.46) is names as the generalized Young-Laplace equation, 

which corresponds to the Young-Laplace equation in fluid mechanics. Chen, Chiu and Weng (2006) 

presented the derivation of the generalized Young-Laplace equation by considering the 
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equilibrium conditions for an element on the interface. For a prolate spheroid,  

       (2.47) 

the generalized Young-Laplace equations under the cylindrical coordinate system are  

  (2.48) 

  (2.49) 

  (2.50) 

where , , , and ,

.
 
The generalized Young-Laplace equations for a spherical particle 

with radius r are expressed under the spherical coordinate system as   

  (2.51) 

  
(2.52) 

  
(2.53) 

For a circular fiber with radius a, the generalized Young-Laplace equations under the cylindrical 

coordinate system becomes 

  (2.54) 
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  (2.55) 

  (2.56) 

Since the derivations of the generalized Young-Laplace equations strictly follow the membrane 

theory of thin shells, one may refer to the derivations of the equilibrium equations in the membrane 

theory for details. In the interface stress model, the interface energy effect is simulated by inducing 

the interface stress in the membrane-type interface, and the generalized Young-Laplace equations 

are formulated accordingly. For a coherent interface, when the interface energy effect is considered, 

the continuous displacement together with the generalized Young-Laplace equations are the 

boundary conditions that need to be satisfied when solving the elastic field of a composite material.  
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- Chapter 3 -  

INTERFACE ENERGY EFFECT ON THE EFFECTIVE 

ELASTIC MODULI OF SPHERICAL PARTICLE-REINFORCED 

NANOCOMPOSITES 

 

Abstract 

In this chapter, the effective elastic moduli are derived for the spherical particle reinforced 

nanocomposite. The interface energy effect is considered for the nanocomposite. To simulate the 

interface energy effect, the interface is simulated by the zero-thickness membrane interphase with 

the interface stress. The interface stress is determined by a linear isotropic constitutive equation of 

the idealized interphase. The elastic fields in the particles and the elastic fields in the matrix are 

related by solving the equilibrium equations of the interphase. Further, the homogenization 

procedures in the classical micromechanics theories, including the direct Eshelby method, the 

Mori-Tanaka method, the self-consistent method and the direct particle interaction model, are 

adopted in determining the effective elastic moduli of the nanocomposite. Comparisons are made 

between the current nanomechanical framework and the micromechanical frameworks. It is 

observed that the effective elastic moduli become size-dependent when the interface energy effect 

is considered, and the effect of interface energy is negatively related to the size of the particles.  
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3.1  Introduction 

Nanocomposites are the composite materials with one or more dimensions of their 

reinforcement phases in the nanometer scale. Currently, with the advancement in nanotechnology, 

nanocomposites have attracted more and more attentions. Due to the large specific interface area 

of the reinforcements in the nanocomposites, the effect of the interface energy becomes an 

important factor that determine the mechanical properties of the nanocomposites. Interface energy, 

which is originated from the different local microstructures at the interface, affects the elastic fields 

near the interface, and perturbs the effective elastic fields in the composites. The concept of 

interface energy was firstly introduced by Gibbs (1906). Since then, the interface energy and its 

effect are studied by many researchers (Shuttleworth, 1950; Herring, 1953; Orowan, 1970; Gurtin 

and Murdoch, 1975; Murr, 1975; Cahn, 1978; Cammarata, 1994; Chen, Chiu and Weng, 2006; 

Duan et al., 2005). To simulate the interface energy effect on the elastic fields, Gurtin and Murdoch 

(1975) established an interface framework that treats the interface as a zero-thickness interphase 

between the matrix phase and the reinforcement phase., from which the interface continuity 

equations; i.e., the generalized Young-Laplace equations, are proposed. The elastic fields at the 

interface on the matrix side and on the reinforcement side are readily related through the 

generalized Young-Laplace equations.  

The predictions on the effective elastic moduli of the composite materials are extensively 

discussed in the micromechanics field, and various micromechanical theories are developed based 
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on different types of simplifications. For example, the direct Eshleby method totally neglects the 

particle interactions in the composite and the Mori-Tanaka method neglects the near field particle 

interactions. Ju and Chen (1994a) proposed an analytical framework that considers the particle 

interactions exactly and directly. Further, they presented an approximate solution that considers 

the inter-particle interaction, and their prediction exhibits good compatibility with the 

experimental data even for the composites with moderately high particle concentrations.  

In this chapter, a nanomechanical framework in determining the effective elastic moduli of the 

nanocomposites reinforced by the spherical particles is established. The nanomechanics 

framework, which is based on the micromechanics theories, takes the interface energy effect into 

consideration. Unlike the assumption of perfect interface condition in micromechanics, 

discontinuities of the stresses are considered at the interface. Solving the interface discontinuity 

equations; i.e., the generalized Young-Laplace equations, the interfacial strain discontinuity is 

obtained. Further, an interface average procedure is carried out for the strain discontinuity to 

consider the averaged interface energy effect over the interface. Consequently, the strain field in 

the particle and the strain field in the matrix are related, and the effective elastic moduli can be 

solved. The effective elastic moduli are derived following the homogenization approaches of the 

direct Eshelby method, the Mori-Tanaka method and the generalized self-consistent method, 

respectively. Isotropic interface energy effect is noticed on the effective elastic moduli. The results 

are revealed to be depending on the size and the volume fraction of the reinforcement.  
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3.2  Equivalent Inclusion Method with Interface Energy Effect 

Eshelby (1957) proposed an equivalent inclusion principle that is able to equivalent the 

inhomogeneity material into the matrix material with an eigenstrain field inside the original 

inhomogeneity domain. Moreover, Eshelby proved that the eigenstrain field is uniform when the 

shape of the inhomogeneity is an ellipsoid. For an ellipsoidal particle with the elastic stiffness 

tensor C1 embedded in a homogeneous matrix with the elastic stiffness tensor C0, the equivalence 

inclusion principle can be written as 

  (3. 1) 

where e0 is the far-field strain, e* is the eigenstrain and S is the Eshelby tensor. It is noticed that 

the inhomogeneity problem becomes an inclusion problem through the equivalence. The strain and 

stress fields in the inhomogeneity are simulated by adjusting the eigenstrain in the equivalented 

inclusion.  

Following the Eshelby’s equivalent inclusion principle in the micromechanics, an equivalent 

inclusion method is proposed in this section to that incorporates the interface energy effect on the 

elastic fields. Consider an ellipsoidal inhomogeneity W1 in the matrix D-W1. The elastic stiffness 

tensor of the particle and the matrix are C1 and C0, respectively. The total strain field in the 

inhomogeneity can be displayed as   

  (3. 2) 

where  is the total strain in the inhomogeneity,   is the far field strain,  is the perturbed 

C0 : ε 0 + S : ε
* − ε*( ) = C1 : ε 0 + S : ε*( )

ε1 = ε 0 + ε p + ε '

ε1 ε 0 ε p
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strain due to the interface energy effect and  is the perturbed strain field due to the interaction 

between the inhomogeneity and the matrix.  

To this end, the inhomogeneity is transformed into the matrix, and the original heterogeneous 

material becomes a homogeneous material with the eigenstrain  in W1. According to Eshelby, 

the perturbed strain  can be expressed as follows, 

   (3. 3) 

The total strains in the original inhomogeneity and the equivalented inclusion are identical. 

However, due to the stress-free eigenstrain  in the inclusion, the elastic strain  of the 

equivalented inclusion becomes  

  (3. 4) 

To ensure the stress in W1 before and after the equivalence are equal, the eigenstrain needs to be 

adjusted. Then, the equivalent inclusion equation with interface energy effect can be demonstrated 

as 

   (3. 5) 

Conventionally, the only unknown in the equivalent inclusion equation is the eigenstrain . 

Therefore, the eigenstrain can be solved from Eq. (3.1). However, in Eq. (3.5), one more unknown, 

, is induced due to the interface energy. To determine the two unknowns, one more equation is 

required. Further, it is noticed that, if the total strain in the inhomogeneity is solved directly, the 

equivalent inclusion equation can be written in the following form 

  (3. 6) 
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where the eigenstrain can be determined.  

 

 

Figure 3-1 Equivalent Inclusion Method 

 

3.3  Interface Boundary Conditions 

In classical micromechanics, the interface energy effect is neglected, and the interface between 

an inhomogeneity and the surrounding matrix is assumed to be perfect, where both of the 

displacement and the stress are continuous. However, for nanocomposites, the interface energy 

effect is proved to be important in the determination of the overall effective properties. To simulate 

the interface energy effect, the interface stress model is adopted. Therefore, if perfect interface 

bonding condition is considered, the displacement remains to be continuous. Nevertheless, the 

stress at the interface is discontinuous due to the interface stress. Following the interface stress 

model, the interfacial stress discontinuity condition can be represented by the generalized Young-

Laplace equations, which are  

  (3. 7) σ[ ]⋅n = −∇S ⋅ τ



 48 

where  is the interface stress,  is the unit normal vector to the interface, which points the 

matrix, and  is the interface divergence operator. Here, [·] represents the difference of the 

said value between the matrix and the inhomogeneity. As a consequence,  denotes the 

discontinuity of the traction on the two sides of the membrane interface. The detailed expressions 

of the generalized Young-Laplace equations for spherical particles are (Chen, Chiu and Weng, 

2006),   

  
(3. 8) 

  
(3. 9) 

  
(3. 10)

 

where a is the radius of the spherical particle. It is observed that the size of the reinforcement is 

considered in the generalized Young-Laplace equations.  

Now consider an inclusion problem. The displacements are continuous through the interface, 

that is, we have 

  (3. 11)
 

where  is the matrix side of interface and  is the inclusion side of the interface. 

Accordingly, the gradient of the displacements can be discontinuous through the interface (Mura 

2013, Qu and Cherkaoui 2006),  

  (3. 12) 
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normal direction to the interface, and the displacement gradient is continuous in the tangential 

direction to the interface. Further the strain discontinuity across the interface is given by, 

  
(3. 13) 

where  is the discontinuity of the total strain through the interface. Then, the interfacial 

discontinuity of elastic strain becomes 

  (3. 14) 

where  is the elastic strain in the inclusion. Since the eigenstrain is zero in the matrix and  

in the inclusion, the interfacial discontinuity of the eigenstrain is 

 . (3. 15) 

The substitution of Eqs. (3.13) and (3.15) into Eq. (3.14) gives 

  
(3. 16) 

Therefore, the interfacial stress discontinuity renders  

  (3. 17) 

or in the tensor form as 

  (3. 18) 

Consequently, the traction discontinuity at interface becomes  

  (3. 19) 

and substitution of Eq. (3.19) into Eq. (3.7) gives 

  (3. 20) 
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interface stress . To determine the interface stress, a linear interface constitutive relation is 

assumed, which leads to  

  (3. 21) 

where  is the interface strain and  is the elastic stiffness tensor of the interface. The 

interface strain is composed of the tangential components of the strain at the interface. Further, it 

is acknowledged by the previous researchers that the linear isotropic interface elastic stiffness 

tensor can be adopted, which can be written as 

  (3. 22) 

where  and  are the bulk modulus and the shear modulus of the interface, respectively, 

and  

 

  

Now, the interface stress is related to the interface strain, which is composed of the tangential 

components of the total strain in the abutting material. Substitution of Eq. (3.21) into Eq. (3.20) 

renders 

  (3. 23) 

The interface strain  can be determined when the total strain at the interface is obtained. 

Therefore, the interfacial strain discontinuity can be solved from Eq. (3.23), and the stress and the 

strain fields are related between the matrix and the inclusion. Further, the homogenization methods 

in classical micromechanics frameworks can be employed to predict the overall effective elastic 
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moduli of the composite. In the next section, the direct Eshelby method, the Mori-Tanaka method 

and the self-consistent method are followed in the determination of effective elastic moduli.   

3.4  Effective Elastic Moduli of the Composite 

The interfacial strain discontinuity tensor  can be solved from Eq. (3.23) as follows 

  (3. 24) 

where  and  are the isotropic coefficient tensors, 

  

(3. 25) 

The detailed step-by-step solution of  is demonstrated in Appendix I.  

Now consider a rth phase particle in the composite. According to the equivalence principle, 

we have 

  (3. 26) 

where  and  are the total strain and the elastic strain in the particle, respectively. Assume 

that the interface energy has uniform effect on the strain field in the particle. As a consequence, 

the total strain in the particle can be solved as  

  (3. 27) 
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   (3. 28) 

Substitution of Eqs. (3.27)-(3.78) into Eq. (3.26) gives 

  
(3. 29) 

Further, from Eqs. (3.24) and (3.29),  

  
(3. 30) 

and  can be solved as 

  
(3. 31) 

To predict the overall effective moduli, the homogenization procedures in classical 

micromechanics theories are adopted. Following the direct Eshelby Method,  

  (3. 32) 

Consequently, we have 

  (3. 33) 

The relation between the total strain  in the particle and the effective strain  in matrix under 

Eshelby’s assumptions is obtained from Eqs. (3.24), (3.28) and (3.31) 
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from which the strain concentration tensor reveals to be 

  
(3. 35) 

and the effective elastic stiffness tensor is   
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When a two-phase composite is considered, the effective elastic stiffness tensor can be written as, 

 
  (3. 37) 

Accordingly, the effective bulk modulus and the effective shear modulus can be expressed as, 

   
(3. 38) 

  

(3. 39) 

It is observed that the first two terms in the bulk modulus and the shear modulus are the equal to 

the bulk modulus and the shear modulus of the micromechanical solution of the direct Eshelby 

method, and the additional terms are related to the interface stiffness and the radius of the particles.   

Following the Mori-Tanaka method, effective moduli can be solved similarly. Different from 

the direct Eshelby method, Mori and Tanaka considered the far-field interactions by assuming  
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Consequently, 

  (3. 41) 

Based on the assumptions made by Mori and Tanaka, the total strain in the rth phase particles is 

related to the volume-averaged strain in the matrix as follows 
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(3. 43) 

The volume-averaged strain in the composite is 

  

(3. 44) 

which leads to  

  
(3. 45) 

Substitution of Eq. (3.42) into Eq. (3.45) yields, 

  
(3. 46) 

where the global strain concentration tensor is obtained  

  

(3. 47) 

Consequently, the effective elastic tensor is exhibited as  
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(3. 49)

 
and the corresponding effective elastic moduli of the composite are 

  
(3. 50) 

(3. 51) 

If the  and  related terms are dropped, the above effective elastic moduli is identical to 

the micromechanical effective elastic moduli predicted by the Mori-Tanaka method, where the 

interface energy effect is neglected.  

3.5  Discussions  

In this section, the interface energy effect on the effective elastic moduli of the two-phase 

composite containing spherical nano-voids are discussed. The effective elastic moduli of the two-

phase composite materials are presented in Eqs. (3.38)-(3.39) following the direct Eshelby method 

and in Eqs. (3.50)-(3.51) following the Mori-Tanaka method. For the two-phase composite 

containing nano-voids, the effective moduli are obtained by letting  and , and the 

effective elastic moduli following the direct Eshelby method become 

C = C0 +φ1 C1 −C0( )N1

   = C0 +φ1 C1 −C0( ) I−A −B : I+B( )−C0
−1 :C1 :B⎡⎣ ⎤⎦

−1
: I−C0

−1 :C1( ) : I−A( )⎡⎣ ⎤⎦}{
      : 1−φ1( )I+φ1 I−A −B : I+B( )−C0

−1 :C1 :B⎡⎣ ⎤⎦
−1

: I−C0
−1 :C1( ) : I−A( )⎡⎣ ⎤⎦}{⎡

⎣⎢
⎤
⎦⎥

K = K0 +
φ1 K1 − K0( ) 3K0 + 4µ0( )− 4

aφ1 K1 − K0( )KS

3K0 + 4µ0 + 3 1−φ1( ) K1 − K0( )− 4
aφ1KS

µ = µ0 +
5φ1µ0 µ1 − µ0( ) 3K0 + 4µ0( )−φ1 µ1 − µ0( ) 2

a KS 3K0 + 2µ0( )+ 4
a µS 3K0 + 4µ0( )⎡⎣ ⎤⎦

5µ0 3K0 + 4µ0( ) + 6 1−φ1( ) µ1 − µ0( ) K0 + 2µ0( )−φ1 2
a KS 3K0 + 2µ0( )+ 4

a µS 3K0 + 4µ0( )⎡⎣ ⎤⎦

KS µS

K1 = 0 µ1 = 0
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(3. 52) 

  
(3. 53) 

Additionally, the micromechanical direct Eshelby solutions are 

 

  
(3. 54)

 

  
(3. 55)

 Comparing the solutions with and without considering the interface energy effect, we notice that 

the interface energy effect induces additional terms in the elastic moduli. The additional terms 

depend on the size and volume fraction of the voids, the elastic moduli of the interface and the 

elastic moduli of the matrix.  

 By substituting  and  into Eqs. (3.50)-(3.51), the effective moduli of a two-

phase composite containing nano-voids can be displayed as  

    (3. 56) 

   

(3. 57) 

and the micromechanical Mori-Tanaka solutions are  

  
(3. 58) 

K = K0 −
φ1K0 3K0 + 4µ0( )

4µ0
− φ1K0KS

2aµ0
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2 3K0 + 4µ0( )
9K0µ0 + 8µ0

2 +
2φ1KSµ0 3K0 + 2µ0( )
a 9K0µ0 + 8µ0

2( ) +
4φ1µ0µS 3K0 + 4µ0( )
a 9K0µ0 + 8µ0

2( )

K = K0 −
φ1K0 3K0 + 4µ0( )

4µ0

µ = µ0 −
5φ1µ0

2 3K0 + 4µ0( )
9K0µ0 + 8µ0

2

K1 = 0 µ1 = 0

K = K0 −
φ1K0 3K0 + 4µ0( )− 4

a
φ1K0KS

3K0 + 4µ0 − 3 1−φ1( )K0 −
4
a
φ1KS

µ = µ0 +
−5φ1µ0

2 3K0 + 4µ0( )+φ1µ0 2
a KS 3K0 + 2µ0( )+ 4

a µS 3K0 + 4µ0( )⎡⎣ ⎤⎦
5µ0 3K0 + 4µ0( )− 6 1−φ1( )µ0 K0 + 2µ0( )−φ1 2

a KS 3K0 + 2µ0( )+ 4
a µS 3K0 + 4µ0( )⎡⎣ ⎤⎦

K = K0 −
φ1K0 3K0 + 4µ0( )

3K0 + 4µ0 − 3 1−φ1( )K0
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(3. 59)

 

Similarly, it is observed that additional terms are induced in the effective elastic moduli by 

considering the interface energy effect.  

Next, numerical calculations are presented for the two-phase composite with nano-voids. The 

aluminum matrix is considered. The bulk modulus of aluminum K0=75.2 GPa and the shear 

modulus µ0=34.7 GPa. The interface between the matrix and a void is the free-surface. Miller and 

Shenoy (2000) determined the free surface properties by the molecular dynamic simulations, 

which are adopted here for illustration:  

Interface 1:   

Interface 2:   

Now define the specific effective bulk modulus  and the specific effective shear modulus 

 as  

  and  (3. 60) 

where  represents the solution that considers the interface energy effect and  is the 

classical micromechanical solution. Fig. 3.2-3.5 depict the change of the specific elastic moduli 

with the change of the radius of the spherical voids, where the volume fraction of the voids is 0.3. 

The interface energy effect continues to decrease as the radius of the voids increases and becomes 

negligible when the radius is larger than 50nm. However, due to the different assumptions on the 

effective matrix, large differences are observed on the effect of the interface energy between the 

µ = µ0 −
5φ1µ0

2 3K0 + 4µ0( )
5µ0 3K0 + 4µ0( )− 6 1−φ1( )µ0 K0 + 2µ0( )

KS = −5.457N m µS = −6.2178N m

KS = 12.932N m µS = −0.3755N m

Kspecific

µspecific

Kspecific =
K( )nano
K( )micro

µspecific =
µ( )nano
µ( )micro

⋅( )nano ⋅( )micro
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effective elastic moduli solved following the direct Eshelby method and following the Mori-

Tanaka method.  

 

Figure 3-2 The specific effective bulk modulus vs. the radius of the voids (interface 1) 

 

Figure 3-3 The specific effective bulk modulus vs. the radius of the voids (interface 2) 
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Figure 3-4 The specific effective shear modulus vs. the radius of the voids (interface 1) 

 

 

Figure 3-5 The specific effective shear modulus vs. the radius of the voids (interface 2) 
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The dependence of the interface energy effect upon the volume fraction of the voids is presented 

in Fig. 3.6-3.9. The effective moduli corresponding to the volume fractions of 0.05, 0.1, 0.15, 0.2, 

0.25 and 0.3 are compared. It is recognized that the interface energy effect on the effective elastic 

moduli increases with the increasing of the volume fraction.  

 

 

 

Figure 3-6 The specific effective bulk modulus vs. the volume fraction of the voids (interface 1)
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Figure 3-7 The specific effective bulk modulus vs. the volume fraction of the voids (interface 2) 

 

 

Figure 3-8 The specific effective shear modulus vs. the volume fraction of voids (interface 1) 
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Figure 3-9 The specific effective shear modulus vs. the volume fraction of voids (interface 1) 

 

 

Figure 3-10 and Figure 3-11 exhibit that, at the same particle size, the interface energy effect on 

the effective moduli is positively related to the volume fraction of the inhomogeneities. Moreover, 

at the same volume fraction, the interface energy effect is larger for the inhomogeneities with 

smaller radius. In summary, the interface energy effect on the effective elastic moduli is 

demonstrated to be positively related to the total interface area in the composite.  
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Figure 3-10 Effective bulk modulus as a function of void volume fraction 

 

Figure 3-11 Effective shear modulus as a function of void volume fraction 
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3.6  Conclusions 

In this chapter, the interface energy effect on the effective elastic moduli of the spherical 

particle reinforced composite is studied. The interface energy effect is simulated by the zero-

thickness membrane interphase and the in-plane interface stress. Different from the 

micromechanical assumption of the perfect interface, discontinuity of the stress over the interface 

is considered in the present work. According to the boundary conditions at the interface, the 

interfacial strain discontinuity is determined, which is revealed to be related to the far-field applied 

strain and the eigenstrain of the equivalent inclusion. Accordingly, the effective elastic fields in 

the matrix and the particle are related. Next, following the assumptions in the direct Eshelby 

method and the Mori-Tanaka method, the effective elastic moduli of the spherical particle 

reinforced composites are solved by considering the interface energy effect. It is noticed that the 

interface energy effect induces extra terms on the effective moduli solved by classical 

micromechanics methods. The extra terms are shown to have particle size dependence and involve 

the interface properties. Based on the existing data of interface properties, a two-phase 

heterogeneous material containing nano-voids is investigated. Based on the illustrative figures of 

effective moduli with respect to void size and volume fraction, it is shown that interface energy 

effect increases with the increase of total interface area. Therefore, the size dependence can be 

interpreted as interface area dependence. And the volume fraction of inhomogeneities, the size of 

inhomogeneities are two factors that will influence the total area of interface.   
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- Chapter 4 -  

INTERFACE ENERGY EFFECT ON EFFECTIVE ELASTIC 

MODULI OF SPHEROIDAL PARTICLE REINFORCED 

NANOCOMPOSITES 

 

Abstract 

By incorporating the interface energy effect into classical micromechanics framework, effective 

elastic moduli of the composite material containing randomly distributed nanosized prolate 

spheroidal inhomogeneities are investigated in this chapter. The effect of interface energy, which 

is usually neglected in classical micromechanics theories, becomes important when the size of 

reinforcement phase in the composite enters the nanometer range. The interface energy effect is 

simulated by inducing interface stress on the zero-thickness membrane interface between the 

matrix and the inhomogeneities. The interfacial stress discontinuity equations are formulated in 

accordance with the equilibrium conditions on the idealized interface, from which the interfacial 

strain discontinuity is solved. Subsequently, the effective elastic moduli are derived basing on the 

classical micromechanics homogenization approaches. Comparisons are made between the 

effective moduli solved under the current nanomechanical framework and the classical 

micromechanical theory. The effective moduli are exhibited to be dependent upon the size of the 

inhomogeneities and the interface properties when the interface energy effect is considered. 
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4.1  Introduction  

The advancement of material science in nanotechnology provides new insights into particles 

in nanoscale and has attracted considerable attention in a wide range of disciplines such as 

astronomy, medicine, electronics and optics, etc. (Wood, 2008). Nanoparticles, having one or more 

dimensions in nanometer scale, may possess desirable properties different from conventional 

materials due to their greater specific surface areas. Currently, scientists attempt to use 

nanoparticles as the reinforcement phase in composite materials to create new materials with 

improved properties, such as high strengths, high moduli, high heat resistance, low gas 

permeability and low flammability (Giannelis, 1996; Ray and Okamoto, 2003). Meanwhile, 

predictions on the mechanical properties of nanocomposites have drawn significant attention. As 

nanocomposites are heterogeneous materials consisting of phases with distinctive properties and 

length scales, it is impractical to find the point-wise mechanical properties of a random material 

point. Instead, a common practice is to consider the overall effective properties of a heterogeneous 

composite. For composites with large-sized reinforcement (typically in the micrometer or larger 

scale), classical micromechanics theories have exhibited good predictions on the effective 

mechanical properties; e.g., the direct Eshelby method (Eshelby, 1957; Eshelby, 1961) for dilute 

particle concentration, the Mori-Tanaka method (Mori and Tanaka, 1973) for moderate 

concentration, and the pairwise particle interaction model (Ju and Chen, 1994a, b) for moderately 

high particle concentration. In this chapter, the homogenization scheme of the classical 
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micromechanics theory, the Mori-Tanaka method (Mori and Tanaka, 1973) or the first-order non-

interacting method (Ju and Chen, 1994a, b), is incorporated into the determination of the effective 

properties of nanocomposites.  

It is well known that the local atomic environment at the particle-matrix interface is different 

from its setting associated with the interior. As a consequence, the free energies possessed by the 

molecules at the particle-matrix interface and by the molecules in the interior are different. Gibbs, 

who first pointed out this phenomenon in 1906, proposed the concept of interface energy as the 

excess free energy per unit area of the interface (Gibbs, 1906). As the mechanical properties of a 

solid are related to its associated free energy, they are affected by the interface energy at the 

interface (Duan et al., 2005a). In classical micromechanics theories, the effect of interface energy 

is neglected because of the relatively low specific interface area as well as the small gross interface 

area in the composite. However, when one or more dimensions of a solid phase is (are) in nanoscale, 

the interface energy becomes one of the main factors that determine the material properties of a 

composite including its mechanical performances (Cammarata, 1997). For a nanocomposite, since 

the dimensions of the inhomogeneities are in the nanometer scale, the effect of interface energy 

needs to be considered. To characterize the interface energy effect on the mechanical properties, 

several models are proposed in the literature; among them, the interphase model and the interface 

model are most widely discussed. The interphase model (Walpole, 1978; Mikata and Taya, 1985; 

Qiu and Weng, 1991; Herve and Zaoui, 1993) assumes that there exists a layer between the matrix 

and an inhomogeneity, which is referred to as the interphase. The interphase transfers the loading 
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from the matrix to an inhomogeneity, and it can be regarded as a separate phase with a specified 

thickness and mechanical properties. On the other hand, the interface model, originated from the 

classical treatments for the imperfect bonding conditions in composite materials, assumes 

discontinuous stress and/or displacement from the matrix to an inhomogeneity; e.g., the free 

tangential interface sliding in the free sliding model, the linear displacement-traction relation in 

the linear spring model, and the linear relationship between the displacements on the two sides of 

the interface in the dislocation-like model (Duan et al., 2005b).  

In the study of capillarity, the interface energy is exhibited to be equal to the surface tension 

(the interface stress) numerically under certain occasions, and they are often wrongly regarded as 

equivalent (Shuttleworth, 1950). However, Gibbs (1906) distinguished these two concepts by the 

thermodynamics approach. He defined the interface stress as the reversible work required to 

elastically stretch an existing interface. In order to study the mechanical behavior of material 

surfaces, Gurtin and Murdoch (Gurtin and Murdoch, 1975) established a mathematical framework 

for the material surfaces following the continuum mechanics theory. The formulation is based on 

the interphase model, in which the thickness of the interphase is set to be zero. As a consequence, 

the membrane theory applies, and only in-plane forces are retained in the idealized zero-thickness 

interphase. According to the elastic theory of membranes, Gurtin and Murdoch (1975) assumed 

continuous displacements but discontinuous stress at the interface by inducing the in-plane 

interface stress. The corresponding interface boundary conditions, which involve the interface 

stress terms, are named the generalized Young-Laplace equations, as a counterpart of the well-
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known Young-Laplace equations in fluid mechanics. The generalized Young-Laplace equations 

can be expressed as:  

  (4.1) 

where  denotes the difference of stress at the interface between the matrix and the 

reinforcement,  is the outward unit normal to the interface, and  is the surface 

divergence of the interface stress . In the following expressions, [.] represents the discontinuity 

of said value at the interface from the matrix to the inhomogeneity. From the generalized Young-

Laplace equations, relations of the elastic fields at the interface between the matrix and the 

inhomogeneity can be determined. 

Recently, some researchers have studied the mechanical properties of nanostructured elements, 

such as nanosized plates and beams (Miller and Shenoy, 2000), spherical nanoparticles, thin films 

and nanowires (Dingreville et al., 2005; Wang et al., 2010). However, only a few researchers focus 

on the effective mechanical properties of nanocomposites, and experimental data are especially 

rare in the literature. Sharma et al. (2003) included the interface energy in the total free energy and 

rendered a variational formulation to determine the stress and the strain states for the composite 

containing a single spherical nano-inclusion, in which dilatational eigenstrain is assumed. Sharma 

and Ganti (2004) proposed a revised size-dependent Eshelby tensor that considers the interface 

energy effect and presented its expressions for spherical and cylindrical inclusions with dilatational 

eigenstrain. Duan et al. (2005a) addressed the spherical nano-inhomogeneity problem and 

predicted the effective moduli of the nanocomposite. Shodja and Hashemian (2019) adopted the 

σ[ ]⋅n = −∇S ⋅ τ

σ[ ]

n −∇S ⋅ τ

τ



 73 

couple stress theory to consider the size effect in nanocomposites. In addition to the research on 

the elastic behavior, the performances of nanocomposites under damage are discussed (Heidarhaei, 

2018; Rostamiyan and Ferasat, 2017; Fan et al., 2017; Voyiadjis and Kattan, 2019). Nevertheless, 

most of the existing approaches tackle the nanocomposite with spherical or cylindrical 

reinforcements, studies on the more general and more sophisticated spheroidal particle reinforced 

nanocomposites are demanded.  

In this chapter, an analytical framework is proposed to predict the effective elastic moduli of 

prolate spheroidal particle reinforced nanocomposites. The present framework is based on the 

classical micromechanics theories and considers the interface energy effect. At variance from the 

conventional perfect interface boundary conditions, which are assumed in micromechanics 

theories, the generalized Young-Laplace equations are incorporated at the interface to account for 

the interface energy-induced interfacial discontinuities. The interfacial strain discontinuity is 

solved for spheroidal particles. Further, effective moduli are derived following the homogenization 

approach in the Mori-Tanaka method. Compared with the classical micromechanical solutions on 

the effective moduli, the results are demonstrated to be dependent upon the size of the 

reinforcement particles and the properties of the interface.  

4.2 Interface Discontinuity Conditions for Spheroids 

Following Gurtin and Murdoch (1975), the interface energy effect is simulated by the 

generalized Young-Laplace equations. For a prolate spheroidal particle, we have 
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 ,   ,  (4.2) 

The generalized Young-Laplace equations are (Chen et al., 2006)  

  (4.3) 

  (4.4)
 

  (4.5) 

where , , , and , 

.
 
 

The interface energy is associated with the interfacial atomic environment. When the effect of 

interface energy is simulated by the interface stress, it is essential to determine the relation between 

the interface stress and the strain at the interface, which illustrates the change of the interfacial 

local atomic environment. Under the assumption of small deformation, a linearized constitutive 

relation has been widely employed in the literature (Duan et al., 2005a; Gurtin and Murdoch, 1975; 

Bottomley and Ogino, 2001). When the interface of a particle in the composite material is 

considered, the linearized constitutive equation can be written as: 

  (4.6) 

where  is the interface elastic stiffness tensor and  is the interface strain. As the thickness 

of the idealized interphase is neglected, the interface strain becomes identical to the tangential 
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components of the strain at the interface in the bulk material. As indicated by Duan et al. (2005a) 

that an isotropic interface is able to describe the interfacial elastic behavior under small 

deformations, a linear isotropic constitutive relation is adopted here. The linear isotropic interface 

stiffness tensor follows the form  

  
(4.7)

 

for i, j, k, l = 1, 2, with 

  (4.8) 

  (4.9) 

where ,  are the ‘bulk modulus’ and the ‘shear modulus’ of the idealized two-dimensional 

interface.  

4.3 Interface Discontinuities 

For a single ellipsoidal particle reinforced composite subjected to the far-field stress, the stress 

disturbance from the inhomogeneity is equivalent to the stress disturbance induced by a uniform 

stress-free strain (eigenstrain) in an inclusion (Eshelby, 1957, 1961; Mura, 2013). On the other 

hand, for the multi-particle reinforced composite, the particle-particle and the particle-matrix 

interactions are much more complicated compared with the single particle composite, which lead 

to nonuniform elastic fields surrounding each particle and nonuniform eigenstrain in the equivalent 

inclusions. To simplify the interaction problem, an effective medium approach is suggested by 

Mori and Tanaka (1973) (cf. Ju and Chen, 1994a, b) to treat each particle as a single particle inside 

CS = 2K SLijkl
v + 2µSLijkl

d

Lijkl
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Lijkl
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an effective matrix, which expands the use of Eshelby’s formulation to the multiparticle case and 

enables the prediction of effective properties. The Mori-Tanaka method is essentially a special case 

of the particle-interaction framework proposed by Ju and Chen (1994a, b), if the first-order non-

interacting method is adopted. However, the perfect interface conditions (the continuous stress and 

strain through the interface) are assumed in the Eshelby’s framework. When discontinuities are 

introduced at the interface, we use the generalized Young-Laplace equations to determine the stress 

and the strain fields in the reinforcement particles instead of the Eshelby’s solutions.  

Now we consider a multiphase prolate-spheroidal-particle-reinforced nanocomposite with 

isotropic reinforcements and the matrix material. Let us assume that all particles are 

unidirectionally aligned, and the particles in each reinforcement phase are identically shaped and 

randomly distributed in the matrix. When the particles are not unidirectionally aligned, the present 

work can be easily generalized with specified orientation distribution. For the rth phase particle 

, let us follow Mori and Tanaka’s assumption by regarding each particle as a single particle 

embedded in an otherwise homogeneous effective matrix with the averaged strain . Further, the 

averaged strain is also considered in the particle for simplicity. Following the equivalent inclusion 

principle, the equivalent inclusion equation for  can be rendered as: 

  (4.10)
 

where  and  are, respectively, the stiffness tensor of the matrix and the particle,  is the 

averaged total strain in the particle, and  is the eigenstrain. From Eq. (4.10), we have  

  (4.11) 
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ε r
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where  

  (4.12) 

Furthermore, the elastic strain  in the particle becomes 

  (4.13) 

It is emphasized that the eigenstrain is nonzero in the particle domain and zero in the matrix domain, 

and can be determined from Eq. (4.11) once the total strain of the particle is obtained.  

Based on the assumption that no interfacial debonding happens at the matrix-reinforcement 

interface, the displacement continuity condition at the interface can be expressed as 

  (4.14) 

where  is the relative displacement at the interface between the surrounding matrix and . 

From this point, [.] denotes the interfacial discontinuity of inner value from the matrix to the 

particle. It follows from Eq. (4.14) that the displacement gradient at the interface can be 

discontinuous over the interface (Mura, 2013; Qu and Cherkaoui, 2006); that is, we have  

  (4.15) 

where lr is the vector that magnifies the discontinuity of the displacement gradient over the 

interface and n is the unit normal vector to the interface. It is noted that the discontinuity is along 

the normal direction to the interface, and the displacement gradient is continuous in the tangential 

direction. By substituting Eq. (4.15) into the strain compatibility equations, the interfacial strain 

discontinuity is rendered as: 

Dr = Cr −C0( )−1 :C0

er

er = ε r − ε r
* = I−Dr

−1( ) : ε r

ur[ ] = 0

ur[ ] Ωr

ur∇[ ] = λ r ⊗n
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   (4.16) 

where  is defined as the strain discontinuity through the interface. In accordance with Eqs. 

(4.13) and (4.16), the interface discontinuity of elastic strain becomes 

  (4.17) 

Further, the interfacial stress discontinuity takes the form  

   (4.18) 

Substitution of Eqs. (4.6) and (4.18) into Eq. (4.1) leads to  

  (4.19) 

From Eq. (4.19), the vector of discontinuity  can be determined by the eigenstrain  in the 

particle and the total strain  in the matrix, whose tangential components are identical to the 

interface strain . Moreover, the strain discontinuity  can be solved according to Eq. (4.16). 

To determine the averaged strain in the particle, an interface averaging procedure is applied to the 

strain discontinuity :  

  (4.20) 

where  is the averaged interfacial strain discontinuity tensor,  is the interface area of the 

particle , and  and  are the coefficient tensors, whose detailed expressions are 

exhibited in Appendix I and II for prolate spheroids. For illustration, the detailed expressions of 

 and  under two limiting conditions are rendered here. When the spheroid reduces to a 

sphere with the radius a, the coefficient tensors  and  become isotropic tensors taking the 
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forms: 

  (4.21)
 

    (4.22) 

for i, j, k, l = 1, 2, 3, where M0 is the P-wave modulus defined as . When the semi-

axis a, in Eq. (4.2), goes to infinity, the spheroidal particle becomes a cylindrical fiber with  

and  equal to 

  (4.23)
 

    (4.24) 

for i, j, k, l = 1, 2, and  

, ,  

, ,  

It is noted that under either limiting conditions; i.e., the spheroidal particle becomes a sphere 

or a cylinder, the coefficient tensor  is identical to the negative of the Eshelby tensor for 

spherical or cylindrical particles (see Mura, 2013 for detailed expressions of the Eshelby tensor). 

For spheroids, the components  and  are compared with the corresponding 

components  and  of the Eshelby tensor with the change of aspect ratio in Fig. 4-1 and 

Fig. 4-2.  
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Figure 4-1 Comparison between -B1111 and the component S1111 of the Eshelby tensor vs. the 

aspect ratio (The material properties are , ) 

 

Figure 4-2 Comparison between -B3333 and the component S3333 of the Eshelby tensor vs. the 

aspect ratio (The material properties are , ) 
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The corresponding components in tensor -B and the Eshelby tensor reveal to be very close 

between the limiting conditions. The components of tensor Ar,  and , are plotted in Fig. 

4-3 and 4-4 with respect to the size of the reinforcement. The components approach zero with the 

increasing of the size of reinforcement.  

 

 

Figure 4-3 The component A1111 of the coefficient tensor A vs. the particle size b (with the 

aspect ratio a/b=5, the volume fraction , , , 

, ) 
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Figure 4-4 The component A3333 of the coefficient tensor A vs. the particle size b (with the 

aspect ratio a/b=5, the volume fraction , , , 

, ) 

 

Further, according to Eq. (4.16), the effective strain in  can be revealed as: 

  (4.25) 

In this section, an interfacial averaged strain discontinuity tensor is derived in order to 

determine the effective strain in the particle. The corresponding coefficient tensors,  and , 

are presented in detail in Appendix II and III for spheroids, in Eqs. (21)-(22) for spheres, and in 

Eqs. (23)-(24) for cylinders. The components of tensor  exhibit the dependence on the 

interface elastic stiffness and the dimensions of the particle Wr. They decrease as the size of the 

reinforcement particles increases, leading to the decrease of the interface energy effect. 
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Additionally, when the interface energy effect is neglected, all the components of  become 

zero. On the other hand, tensor  is a constant tensor based on the matrix properties only, which 

equals to the negative of the Eshelby tensor at limiting conditions. Moreover, the difference 

between the tensor -B and Eshelby tensor for prolate spheroids appears to be negligible.  

4.4 Effective Moduli of Spheroidal Particle Reinforced Composites 

The strain discontinuity at the interface is established for the composite with a single spheroidal 

particle inside the otherwise homogeneous effective matrix, and, from which, the strain of the 

particle is related to the strain in the matrix. In this section, predictions on the effective elastic 

stiffness of the multi-particle reinforced nanocomposites is presented. Now, let us define the 

effective elastic stiffness tensor as  

  (4.26) 

where  and  are, respectively, the averaged stress and averaged strain tensors of the 

composite, defined as  

 
  

(4.27) 

  (4.28) 

Here, Vm is the volume of matrix, Vr is the total volume of the rth phase particles and n is the total 

number of particulate phases. Substitution of Eq. (4.25) into Eq. (4.10) yields 
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Then, eigenstrain  can be derived from Eq. (4.29): 

 
  

(4.30) 

By substituting Eq. (4.30) into Eq. (4.28), the averaged strain  of the rth phase particle becomes 

  (4.31) 

where  is the local strain concentration tensor defined as:  

   (4.32) 

In addition, from Eq. (4.28) and (4.31), we arrive at  

   (4.33) 

where Nr is the global strain concentration tensor and takes the form 
 

  
 
(4.34) 

Here,  is the volume fraction of the matrix and  is the volume fraction of the rth phase 

particles. Subsequently, the effective stiffness tensor becomes 

  
 
(4.35) 

Based on the interfacial strain discontinuity tensor in the previous section, the effective elastic 

stiffness is derived following the classical homogenization procedures in the micromechanical 

framework. Note that the present work considers the particle interactions indirectly. Thus, 

inaccuracies are induced in the effective stiffness, particularly for composite materials with high 

particle concentrations. The direct inter-particle interactions were considered by Ju and Chen 

(1994a, b), and they showed higher order estimation of the effective properties, which provide 
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higher accuracy for the composite with high particle concentrations. To provide more accurate 

solutions at higher particle concentration, future work can be carried out by considering the inter-

particle interactions in the present framework.  

4.5 Nanomechanics Examples and Discussions 

In previous sections, a nanomechanics framework is formulated to predict the effective elastic 

moduli of spheroidal particle reinforced multi-phase nanocomposites. The formulation is based on 

the assumption made by Mori and Tanaka on the elastic fields in the matrix surrounding each 

reinforcement particle (Mori and Tanaka, 1973; Weng, 1984, 1990). Different from the classical 

micromechanical frameworks, the effect of the interface energy on the effective stiffness tensor is 

considered, and the generalized Young-Laplace equations are solved at the interface to determine 

the strain field inside the particles. In what follows, nanomechanical homogenization examples are 

presented to compare our solutions in this chapter with the classical micromechanical solutions.  

4.5.1 Analytical solutions of effective moduli for the 2-phase spherical-particle-reinforced 

nanocomposite 

Let us consider the simplest case of a two-phase spherical-particle-reinforced nanocomposite. 

Assume that the matrix and the particles are linear isotropic materials with the elastic stiffness 

tensors C0 and C1, respectively. According to Eq. (4.35), the effective stiffness tensor can be 

exhibited as: 
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(4.36)

 

and the corresponding effective bulk modulus and shear modulus are 

   (4.37) 

  (4.38) 

Compared with the micromechanical Mori-Tanaka solution, the effective moduli are displayed to 

have additional size-dependent terms due to the interface energy effect. As the particle size 

increases, the size-dependent terms decrease. If the interface energy effect is neglected (Ks = µ s = 

0), then size-dependent terms vanish and Eqs. (4.37)-(4.38) reduce to the classical 

micromechanics solutions (Qu, J., and Cherkaoui, 2006; Mura, 2013).  

4.5.2 Numerical solutions of effective elastic stiffness for the 2-phase spheroidal-particle-

reinforced nanocomposite 

Next, numerical calculations on effective elastic stiffness will be presented for the two-phase 

spheroidal-particle-reinforced nanocomposite. Consider an aluminum matrix (K0 = 75.2 GPa, µ 0 

= 34.7 GPa) nanocomposite with randomly distributed spheroidal nanovoids. Miller and Shenoy 

obtained the free-surface properties of this type of composite through molecular dynamics 

simulations in 2000 [19]. For the surface [1 1 1], they obtained KS = 12.932 N/m and µ S = -0.3755 

N/m; for the surface [1 0 0], KS = -5.457 N/m and µ S = -6.2178 N/m (Duan et al., 2005a; Miller 

and Shenoy, 2000; Sharma and Dasgupta, 2002). These sets of interface properties are adopted in 
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this section for illustration.  

 

Figure 4-5 The effective elastic stiffness  vs. the volume fraction   

(the aspect ratio a/b=5). 

 

Figure 4-6 The normalized effective elastic stiffness  (w.r.t. the classical micromechanics 

solution) vs. the volume fraction  (with the aspect ratio a/b=5). 
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The change of the component  of the effective stiffness tensor with respect to the 

volume fraction f of the spheroidal voids is rendered in Fig. 4-5 and Fig. 4-6. The solutions 

corresponding to different interface properties are compared with the classical micromechanics 

solutions. It is observed that as the volume fraction increases, the deviation increases between the 

solutions with and without the interface effect. Since the total interface area in a composite is 

proportionally related to the volume fraction of the inhomogeneities, it is reasonable to have larger 

interface energy effect on the effective elastic stiffness of composites with higher volume fractions.  

 

 

Figure 4-7 The effective elastic stiffness  vs. the semi-axis b (with the aspect ratio a/b=5, 

and the volume fraction ). 
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Figure 4-8 The normalized effective elastic stiffness  (w.r.t. the classical micromechanics 

solution) vs. the semi-axis b (with the aspect ratio a/b=5, and the volume fraction ). 
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considered. Micromechanical solution of effective stiffness under our framework (by neglecting 

the interface energy effect) is also compared with the solution of the classical micromechanics 
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4.6 Conclusions 

The interface energy effect on the elastic behavior of nanocomposite is discussed. The interface 

energy effect is regarded as the change of the interface boundary conditions, which is induced by 

the two-dimensional interface stress at the idealized zero-thickness membrane interface between 

the inhomogeneity and the matrix. The discontinuous boundary conditions at the interface are 

presented for spheroidal inhomogeneities.  

Furthermore, a nanomechanical framework is formulated to predict the effective moduli of 

composite material reinforced by nano-sized spheroidal particles. By solving the interfacial 

discontinuity equations and applying the micromechanical homogenization procedures, we relate 

the effective elastic fields in the inhomogeneities to the effective elastic fields in the matrix. 

Accordingly, the effective elastic moduli of the nanocomposite are derived.  

For illustration purpose, effective moduli for a composite material with spheroidal voids are 

presented. It is noted that the effective moduli depend upon the dimensions and volume fractions 

of the spherical inhomogeneities and approach to the classical micromechanical results with 

increasing radius and decreasing volume fractions of the inhomogeneities. 

  



 91 

4.7 References  

Bottomley, D. J., and Ogino, T.: Alternative to the Shuttleworth formulation of solid surface 

stress. Phys. Rev. B. 63, 165412 (2001) 

Cammarata, R. C.: Surface and interface stress effects on interfacial and nanostructured 

materials. Mater. Sci. Eng. A 237, 180-184 (1997) 

Chen, T., Chiu, M. S., and Weng, C. N.: Derivation of the generalized Young-Laplace equation of 

curved interfaces in nanoscaled solids. J. Appl. Phys. 100, 074308 (2006) 

Dingreville, R., Qu, J., and Cherkaoui, M.: Surface free energy and its effect on the elastic behavior 

of nano-sized particles, wires and films. J. Mech. Phys. Solids. 53, 1827-1854 (2005) 

Duan, H. L., Wang, J. X., Huang, Z. P., and Karihaloo, B. L.: Size-dependent effective elastic 

constants of solids containing nano-inhomogeneities with interface stress. J. Mech. Phys. 

Solids. 53, 1574-1596 (2005a) 

Duan, H. L., Wang, J., Huang, Z. P., and Luo, Z. Y.: Stress concentration tensors of 

inhomogeneities with interface effects. Mech. Mater. 37(7), 723-736 (2005b) 

Eshelby, J. D.: The determination of the elastic field of an ellipsoidal inclusion, and related 

problems. Proc. R. Soc. Lond. A, 241, 376-396 (1957) 

Eshelby, J. D.: Elastic inclusion and inhomogeneities. Prog. Solid Mech. 2, 89-140 (1961) 



 92 

Fan, M., Zhang, Y. M., & Xiao, Z. M.: The interface effect of a nano-inhomogeneity on the fracture 

behavior of a crack and the nearby edge dislocation. Int. J. Damage Mech. 26(3), 480-497 

(2017) 

Giannelis, E. P.: Polymer layered silicate nanocomposites. Adv. Mater. 8, 29-35 (1996) 

Gibbs, J. W.: The scientific papers of J. Willard Gibbs (Vol. 1). Longmans, Green and Company 

(1906) 

Gurtin, M. E., and Murdoch, A. I.: theory of elastic material surfaces. Arch. Ratio. Mech. Anal. 57, 

291-323 (1975). 

Heidarhaei, M., Shariati, M., & Eipakchi, H. R.: Effect of interfacial debonding on stress transfer 

in graphene reinforced polymer nanocomposites. Int. J. Damage Mech. 27(7), 1105-1127 

(2018) 

Herve, E., and Zaoui, A.: N-layered inclusion-based micromechanical modelling. Int. J. Eng. 

Sci. 31, 1-10 (1993) 

Ju, J. W., and Chen, T. M.: Micromechanics and effective moduli of elastic composites containing 

randomly dispersed ellipsoidal inhomogeneities. Acta Mech. 103, 103-121 (1994a) 

Ju, J. W., and Chen, T. M.: Effective elastic moduli of two-phase composites containing randomly 

dispersed spherical inhomogeneities. Acta Mech. 103, 123-144 (1994b) 

Mikata, Y., and Taya, M.: Stress field in and around a coated short fiber in an infinite matrix 

subjected to uniaxial and biaxial loadings. J. Appl. Mech. 52, 19-24 (1985) 



 93 

Miller, R. E., and Shenoy, V. B.: Size-dependent elastic properties of nanosized structural 

elements. Nanotechnology. 11, 139 (2000) 

Mori, T., and Tanaka, K.: Average stress in matrix and average elastic energy of materials with 

misfitting inclusions. Acta Metall. 21, 571-574 (1973) 

Mura, T.: Micromechanics of defects in solids. Springer Science & Business Media (2013) 

Qiu, Y. P., and Weng, G. J.: Elastic moduli of thickly coated particle and fiber-reinforced 

composites. J. Appl. Mech. 58, 388-398 (1991) 

Qu, J., and Cherkaoui, M.: Fundamentals of Micromechanics of Solidss. John Wiley & Sons, Inc. 

(2006) 

Ray, S. S., and Okamoto, M.: Polymer/layered silicate nanocomposites: a review from preparation 

to processing. Prog. Polym. Sci. 28, 1539-1641 (2003) 

Rostamiyan, Y., & Ferasat, A.: High-speed impact and mechanical strength of ZrO2/polycarbonate 

nanocomposite. Int. J. Damage Mech. 26(7), 989-1002 (2017) 

Sharma, P., and Dasgupta, A.: Average elastic fields and scale-dependent overall properties of 

heterogeneous micropolar materials containing spherical and cylindrical 

inhomogeneities. Phys. Rev. B. 66, 224110 (2002) 

Sharma, P., Ganti, S., and Bhate, N.: Effect of surfaces on the size-dependent elastic state of nano-

inhomogeneities. Appl. Phys. Lett. 82, 535-537 (2003) 

Sharma, P., and Ganti, S.: Size-dependent Eshelby's tensor for embedded nano-inclusions 

incorporating surface/interface energies. J. Appl. Mech. 71, 663-671 (2004) 



 94 

Shodja, H. M., & Hashemian, B.: Variational bounds and overall shear modulus of nano-

composites with interfacial damage in anti-plane couple stress elasticity. Int. J. Damage Mech. 

1056789519856934 (2019) 

Shuttleworth, R.: The surface tension of solids. Proc. Phys. Soc. Section A 63, 444 (1950) 

Voyiadjis, G. Z., & Kattan, P. I.: Fundamental aspects for characterization in continuum damage 

mechanics. Int. J. Damage Mech. 28(2), 200-218 (2019) 

Walpole, L. J.: A coated inclusion in an elastic medium. In Mathematical Proceedings of the 

Cambridge Philosophical Society (Vol. 83, No. 3, pp. 495-506). Cambridge University Press. 

(1978) 

Wang, Z. Q., Zhao, Y. P., and Huang, Z. P.: The effects of surface tension on the elastic properties 

of nano structures. Int. J. Eng. Sci. 48, 140-150 (2010) 

Weng, G. J.: Some elastic properties of reinforced solids, with special reference to isotropic ones 

containing spherical inclusions. Int. J. Eng. Sci. 22, 845-856 (1984) 

Weng, G. J.: The theoretical connection between Mori-Tanaka's theory and the Hashin-Shtrikman-

Walpole bounds. Int. J. Eng. Sci. 28, 1111-1120 (1990) 

Wood, J.: The top ten advances in materials science. Mater. Today. 11, 40-45 (2008) 

 

 

 



 95 

- Chapter 5 -  

INTERFACE ENERGY EFFECT ON EFFECTIVE 

ELASTOPLASTIC BEHAVIOR OF SPHERICAL PARTICLE 

REINFORCED METAL MATRIX NANOCOMPOSITES  

 

Abstract 

A nanomechanical framework is proposed to predict the effective elastoplastic behavior of the 

spherical particle reinforced metal matrix nanocomposites (MMNCs). The interface energy effect 

on the effective secant moduli of MMNCs is discussed. In this chapter, particles are assumed to be 

randomly distributed elastic spheres, while the matrix behaves elastoplastically. The interface 

energy, which perturbs the local mechanical properties near the matrix-reinforcement interface, is 

simulated by inducing the interface stress on the idealized zero-thickness membrane interphase 

between the matrix and the reinforcement. By employing the micromechanical homogenization 

approaches, an effective yield criterion is formulated, and the effective secant moduli of the 

spherical particle reinforced MMNCs are derived explicitly. Comparisons between the predictions 

under the present framework and under the classical micromechanics theories are presented. The 

dependence of the effective secant moduli upon the total interface area in the composite is noticed. 

Specifically, larger interface energy effect on the secant moduli is observed as the particle size 

decreases, whereas the interface energy effect can be neglected when the particle size enters 
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micrometer range. 

5.1 Introduction 

The research on the metal matrix composites (MMCs) has a long history in the literature. Due 

to the remarkable improvements on various properties, such as high strength and stiffness, long 

fatigue life, improved thermal stability, low density, over monolithic metals and conventional 

alloys, the MMCs are widely employed in the fields of aerospace, automotive, etc. Recently, with 

the advent of material science in nanotechnology, metal matrix nanocomposites (MMNCs) have 

attracted considerable attention. By reducing the dimensions of reinforcement phase to the 

nanometer scale, numerous desirable properties can be achieved, such as better damping capacity, 

wear resistance, higher temperature creep resistance and longer fatigue life (Trojanova et al., 2004; 

Deng et al., 2007; Shehata et al., 2009; Ferkel and Mordike, 2001). Despite the superior properties, 

the production of MMNCs remains to be the main obstacle that limits the practical applications. 

Due to the low wettability of ceramic nanoparticles with the molten metal matrix, conventional 

casting processes are not capable of dispersing the particles homogeneously over the entire matrix 

material (Casati and Vedani, 2014). Therefore, the production methods are discussed intensively 

by researchers, and several alternative preparation methods have been proposed in the literature 

(Yue et al., 1999; Tu et al., 2002; Li et al., 2004; Lan et al., 2004; Gu et al., 2011). Recently, the 

most popular and promising potential reinforcement materials include carbides, nitrides, oxides, 
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intermetallic alloys and allotropes of carbon, and the metal matrix could be Al, Cu, Mg and other 

alloys, etc.  

Regarding the development and the applications of MMNCs, the prediction on their effective 

elastoplastic properties is of considerable practical importance. Predictions on the elastoplastic 

properties of the micro-particle reinforced MMCs are intensively discussed by researchers during 

the past decades in the micromechanics field, the related models include the direct particle 

interaction model (Ju and Chen, 1994a, b, c; Ju and Tseng, 1996, 1997; Ju and Sun, 2001; 

Voyiadjis and Ju, 1994),  the self-consistent method (Hutchinson,1970, 1976), the Mori-Tanaka 

method (Tandon and Weng, 1988; Weng, 1990; Lagoudas et al., 1991) and the mathematical upper 

and lower bounds (Castaneda, 1991, 1992, 1996). However, it is well known that when the size of 

the reinforcement particles enters the nanometer range, the interface energy effect, which is totally 

neglected in the classical micromechanics theories, needs to be considered in determining the 

mechanical properties of the nanocomposite. While various strengthening mechanisms are 

proposed for nanocomposites (Zhang and Chen, 2006, 2008; Sanaty-Zadeh, 2012; Luo et al., 2012), 

limited studies have focused on constructing an analytical framework in the prediction of their 

elastoplastic behavior.  

Gibbs (1906) pointed out that, due to the distinct local atomic environments, the free energies 

possessed by the molecules at the material surface is different from the free energy of the bulk 

material. As a consequence, he introduced the concept of interface energy as the excess free energy 

per unit area at the surface/interface. When the interface is deformed, the change in the interface 
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energy leads to the change of the elastic fields near the interface. To characterize the effect of 

interface energy, Gurtin and Murdoch (1975), based on the membrane theory of thin shells, 

established a mechanical framework for material surfaces by idealizing the matrix-reinforcement 

interface as a zero-thickness membrane with the in-plane interface stress. Consequently, the 

interfacial continuity conditions, which are also named as the generalized Young-Laplace 

equations, can be derived from the equilibrium conditions of a membrane element. Even though 

the effect of interface energy exists in all kinds of composites, it is usually neglected for the 

composite with reinforcement phase in or larger than the micrometer scale, where the specific 

interface area is relatively low. However, when one or more dimensions of reinforcement phase is 

(are) in the nanometer scale, the interface energy effect becomes essential in determining the 

effective mechanical properties (Cammarata, 1997). Therefore, in order to predict the elastoplastic 

behavior of spherical particle reinforced metal matrix nanocomposites, the interface energy effect 

needs to be considered.  

The present chapter is aimed at developing an approximate and simple analytical framework 

in predicting the effective elastoplastic properties of spherical nanoparticle reinforced MMNCs. In 

the nanomechanical framework, the size effect is considered in addition to the classical 

micromechanical treatments for composites. To incorporate the size effect, the generalized Young-

Laplace equations are solved at the matrix-particle interface in an effective sense. Accordingly, 

the effective elastic fields are determined, and the effective elastic properties of MMNCs are 

obtained. In order to predict the plastic responses, an effective yield function is formulated, from 



 99 

which the secant moduli can be determined. At last, the elastoplastic response under a uniaxial 

loading is presented for illustration purpose. 

5.2 Interface Continuity Conditions  

Now we consider a two-phase spherical nanoparticle reinforced metal matrix nanocomposite. 

Assume that the particles are in the same size and are randomly distributed in the matrix, and both 

of the particulate phase and the matrix phase are isotropic materials. According to Gurtin and 

Murdoch (1975), when the interface energy effect is considered, the continuity conditions at the 

matrix-particle interface can be described by the generalized Young-Laplace equations,  

   (5.1) 

where  is the stress discontinuity from matrix to reinforcement, n is the unit normal to the 

interface,  is the interface divergence, and  represents the interface stress. In the following 

expressions, [.] denotes the interfacial discontinuity of the said value. Based on the equilibrium 

conditions in the membrane theory, the generalized Young-Laplace equations for spherical 

particles with the radius a can be expressed as:   

  (5.2) 
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Unlike the continuity conditions at the traditional perfectly bonded matrix-reinforcement interface, 

discontinuities in the stress are induced at the interface, the stress in the matrix and the stress in 

the particle are related through Eqs. (5.2)-(5.4). Under the assumption of small deformation, a 

linearized constitutive relation between the interface stress and the tangential components of the 

total strain at the interface is suggested (Gurtin and Murdoch, 1975; Bottomley and Ogino, 2001),  

   (5.5) 

where  is the interface stiffness tensor and  is the interface strain tensor, which is defined 

as the two-dimensional tensor consisting the tangential components of the strain at the interface in 

the bulk material. Further, a linear isotropic constitutive relation is proposed (Miller and Shenoy, 

2000; Duan et al., 2005), in which the interface stiffness tensor can be written as: 

   (5.6) 

for i, j, k, l = 1, 2, with  

  (5.7) 

   (5.8) 

where  and  are the interface bulk modulus and the interface shear modulus, respectively.  

Solving the generalized Young-Laplace equations leads to the direct relation between the 

stress and the strain fields in the matrix and in the reinforcement on the two sides of the interface, 

from which, theoretically, the elastic fields can be derived. Nevertheless, it is practically 

impossible to determine the elastic state locally of all the points in a composite due to its 

sophisticated microstructure, such as the spatial distributions and micro-geometries. Instead, we 
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are attempting to establish a nanomechanical framework to predict the overall effective 

elastoplastic properties of the nanocomposite. For micro-particle reinforced composite, classical 

micromechanical effective medium theories have presented good compatibility with the 

experimental data at low or moderate particle concentrations by considering the interactions 

indirectly through the effective strain and stress fields in the matrix. Whereas, the effect of the 

interface energy is neglected due to the relatively small specific interface area. However, the 

specific interface area for MMNCs is much higher than the micro-particle reinforced. To predict 

the mechanical behavior of MMNCs, we bring the interface energy effect into consideration, and 

therefore, the generalized Young-Laplace equations is incorporated into the classical 

micromechanical homogenization approaches.   

Consider a two-phase metal matrix nanocomposite with elastoplastic matrix phase and elastic 

reinforcement phase. When large plastic strain occurs in the metallic matrix, even more 

sophisticated interactions could occur in the composite due to the change of its microstructure. 

Therefore, for simplicity, we consider small strains in this chapter, and accordingly, static isotropy 

and homogeneity of microstructure are assumed to hold during the loading process. In order to 

characterize the overall plastic response of the MMNCs, we construct an effective von Mises yield 

criterion in the matrix phase as 

   (5.9) 

where  and  are the von Mises effective stress and effective plastic strain in the matrix, 

respectively, defined as:  
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   and   (5.10) 

and   is the averaged stress in the matrix,  is the corresponding averaged plastic strain. 

Further,  represents the isotropic hardening function for the matrix-only material. 

Although isotropic hardening law with von Mises yield criterion is assumed here, the present work 

is capable of accommodating more general hardening law and yield criterion by making simple 

modifications. 

When the composite is subjected to a prescribed traction  at the far field, Tandon 

and Weng (1988) suggested an approximate expression of the secant Young’s modulus  of the 

matrix phase, 

   (5.11) 

Due to the plastic incompressibility of the metallic matrix, a further restraint is imposed on the 

secant Poisson’s ratio  that  

   (5.12) 

where  and  are the Young’s modulus and Poisson’s ratio of the matrix.  

Once the secant Young’s modulus and the secant Poisson’s ratio of the matrix is determined, 

the corresponding secant bulk modulus  and shear modulus  can be obtained through 
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It is noted in Eqs. (5.12)-(5.13) that the secant bulk modulus  is identical to the elastic bulk 

modulus  due to the plastic incompressibility of the matrix.  

To predict the overall effective elastoplastic behavior of a composite, it is essential to 

determine the elastic fields in the reinforcement phase based on the elastic fields in the surrounding 

matrix. Following Hill’s statement (Hill, 1965) about the continuous weakening constraint of the 

matrix on the reinforcements during plastic deformation, Berveiller and Zaoui (1978) proposed an 

expression of the effective stress in the inclusion for the single inclusion problem, which is 

   (5.14) 

where  and  are the volume averaged stress in the inclusion and the matrix, respectively, 

 and  are the corresponding averaged strain, and  is the secant stiffness tensor in the 

matrix, defined as: 

    (5.15) 

with  be the secant Eshelby tensor, which is obtained by replacing the elastic moduli in the 

Eshelby tensor with the secant moduli of the matrix under plastic deformation. In the subsequent 

discussions, superscript s denotes the secant moduli related properties. It is noted that the 

Berveiller and Zaoui’s approach is a simplification of the Hill’s study under a monotonic and 

proportional loading, the secant moduli and the deformation theory is adopted in describing the 

plastic behavior. In line with this approach, Tandon and Weng (1988), based on the Mori-Tanaka 

method and the Eshelby’s equivalent inclusion principle, showed the corresponding expression for 

multi-particle reinforced inhomogeneous composite as:  
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   (5.16) 

where  is the averaged perturbed strain in the particle domain due to the interactions between 

particles, and  is the eigenstrain from the Eshelby’s equivalence.  and  are related 

through the secant Eshelby tensor as follows, 

   (5.17) 

However, when the interface energy effect is studied, perturbed strain due to the interface energy 

effect needs to be considered. As a consequence, instead of applying Eshelby’s solution, we 

calculate the strain in the reinforcement phase by solving the continuity equations at the matrix-

particle interface. 

Since we are not considering the situation of interfacial debonding in the present chapter, it is 

reasonable to assume that the displacement through the matrix-particle interface is continuous, 

which leads to  

   (5.18) 

where u is the displacement vector in the composite. It follows that the displacement gradient can 

be discontinuous through the interface from the matrix to the particle (Mura, 2013; Qu and 

Cherkaoui, 2006), that is, we have  

   (5.19) 

where  is the vector that magnifies the discontinuity over the interface and n is the unit normal 

vector to the interface. Although discontinuity is revealed for the displacement gradient in Eq. 
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(5.19), it is necessary to mention that the displacement gradient is always continuous in the 

tangential direction at the interface. Further, the interfacial strain discontinuity is given as  

   (5.20) 

According to Mori and Tanaka (1973), each particle in the composite can be treated as a single 

particle surrounded by an effective matrix, whose strain field is assumed to be uniform and equals 

to the averaged strain  in the matrix phase. Therefore, strain in the spherical particle can be 

expressed as:  

   (5.21) 

Following Tandon and Weng (1988), the stress in the particle becomes,  

   (5.22) 

and the stress in the matrix is 

   (5.23) 

which leads to the interfacial stress discontinuity, 

   (5.24) 

Eshelby (1957, 1959, 1961) proved that the eigenstrain  inside an ellipsoidal inclusion is 

uniform under far-field loading. For simplicity, we follow Eshelby’s statement and assume 

eigenstrain remains uniform when the interface energy effect is considered. Substituting Eqs. (5.5) 

and (5.24) into Eq. (5.1) gives 

   (5.25) 

Eqs. (5.20) and (5.25) allow us to solve the interfacial strain discontinuity tensor, which renders  
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   (5.26) 

where  and  are the coefficient tensors that will change with the plastic flow. Since 

volume averaged strain and stress fields are desired in determining the effective properties, the 

volume averaged strain discontinuity tensor is solved as: 

   (5.27) 

where  and  are the volume averaged coefficient tensors,  

   (5.28) 

   (5.29) 

and a is the radius of the spherical particle,  is the P-wave modulus, . Then, 

the averaged strain in the particle phase becomes 

   (5.30) 

and the corresponding averaged stress is revealed to be 

   (5.31) 

It is noted that the tensor  is an isotropic tensor that is induced by the interface energy effect, 

it is affected by the interface stiffness, the size of the particle and the secant moduli of the matrix. 

Moreover, the components of  decreases as the particle size increases, and they become zero 

if the interface energy effect is neglected ( ). On the other hand, the coefficient tensor 
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consistent with the classical micromechanical Mori-Tanaka solution when the interface energy 

effect is totally ignored.  

5.3 Effective Secant Moduli of MMNCs 

Based on the strain discontinuity tensor in previous section, the overall effective strain and 

stress of the composite are related, and the effective secant moduli can be determined accordingly. 

When the effective fields are considered, Eq. (5.22) becomes 

   (5.32) 

from which the eigenstrain can be solved, 

   (5.33) 

Then, substituting Eq. (5.33) into Eq. (5.30) renders 

   (5.34) 

where  is defined as: 

   (5.35) 

Further, the overall volume averaged strain reveals to be 
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where  is the strain concentration tensor, 
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and the overall volume averaged stress takes the form 
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which leads to the effective secant stiffness tensor 

   (5.39) 

Consequently, the effective secant moduli are given as: 

   (5.40) 

  (5.41) 

Comparing the secant moduli in Eqs. (5.40)-(5.41), with that derived by Tandon and Weng 

in 1988, the size of the reinforcement particles and the interface stiffness are comprised. The 

micromechanical solutions can be obtained by neglecting the additional terms. Further, before any 

plastic deformation appears in the matrix, the superscript s can be dropped in all the terms to find 
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Therefore, secant moduli of the matrix can be obtained once  is determined. Now, let us 

identify the expression of   in terms of . For brevity, we express the fourth order isotropic 

tensors using their volumetric and deviatoric factors; e.g., the coefficient tensors  and  are 

revealed to be 

  
and

   
(5.44)
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and

  
 (5.45)

 

  and   (5.46) 

The relation between  and  can be established from Eqs. (5.23), (5.34), (5.36) and (5.38) 
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   (5.51) 

The relation is found between  and the prescribed far-field stress  (identical to the overall 

averaged stress in the composite), in which, however,  is also involved. Therefore, 

iterations are usually required to find , provided that the far-field stress  is specified. Once 

 is determined, the corresponding overall effective secant moduli are readily available. 

5.4 Results and Discussions 

In order to illustrate the present nanomechanical framework, in a context which is as simple 

as possible, the example of the aluminum matrix composite containing nanovoids under uniaxial 

loading is considered here. The far-field applied uniaxial stress can be presented as 

   (5.52) 

The mechanical properties of the matrix, the reinforcements and the matrix-reinforcement 

interface are exhibited in Table 5-1. The interface properties are obtained through molecular 

dynamic simulations (Miller and Shenoy, 2000; Sharma and Dasgupta, 2002; Duan et al., 2005).  
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Table 5-1 The elastic moduli of the matrix, the reinforcements and the interface 

 

Phase Material Symbol Value 

Matrix Aluminum   75.2 GPa 
  

  34.7 GPa 

Reinforcement Spherical Voids  0 GPa 
  

  0 GPa 

Interface [1 0 0] surface  -5.457 N/m 
  

 -6.2178 N/m 
 

[1 1 1] surface  12.932 N/m 
  

 -0.3755 N/m 

 

 

Further, the power-law type plastic hardening rule is adopted here. Then, Eq. (5.40) becomes  

   (5.53) 

where  is the initial yield stress, h and q are the material constants related to the plastic 

hardening behavior of the matrix material. The numbers of the material constants during plastic 

hardening are chosen as , h = 320 MPa and q = 0.265 for illustration purpose. Due 

to the lack of experimental data on the plastic behavior of MMNCs, comparisons are made between 

the solutions under current nanomechanical framework and under the classical micromechanics 
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theory. The secant moduli  and , which are normalized w.r.t. the micromechanical 

solutions, are displayed on Fig. 5-1 to Fig. 5-4 at the volume fraction , where 

 and .  

 

 

 

Figure 5-1 The change of normalized effective secant bulk modulus under different volume 

fraction of voids vs. the increase of external loading - interface [1 1 1] 
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Figure 5-2 The change of normalized effective secant shear modulus under different volume 

fraction of voids vs. the increase of external loading - interface [1 1 1] 

 

Figure 5-3 The change of normalized effective secant bulk modulus under different volume 

fraction of voids vs. the increase of external loading - interface [1 0 0] 
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Figure 5-4 The change of normalized effective secant shear modulus under different volume 

fraction of voids vs. the increase of external loading - interface [1 0 0] 
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yielding, and it decreases as the size of the voids increases. Under the specified interface properties 

in Table 5-1, the effect of interface energy becomes very small when the particle size exceeds 20 

nm in the elastic range. After yielding, we can see the continuous increasing on the interface energy 

effect with the increasing of the size of the voids. This phenomenon is due to two factors: 1. the 

interface energy plays a more important role in the composite with the continuously weakening 

matrix, 2. we assume that the interface properties are independent of the plastic flow in this chapter 

for brevity, while future study can be done on the change of interface properties with the 

weakening of the matrix material during the increase of the plastic flow. Further, even though the 
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different interface properties corresponding to [1 0 0] interface and [1 1 1] interface lead to 

opposite effects on the effective moduli, similar trends are noticed.  

 

 

 

Figure 5-5 The change of normalized effective secant bulk modulus with different particle size 

vs. the increase of external loading - interface [1 1 1], f = 0.2. 

0 10 20 30 40 50
0.95

1

1.05



 116 

 

Figure 5-6 The change of normalized effective secant shear modulus with different particle size 

vs. the increase of external loading - interface [1 1 1], f = 0.2. 

 

Figure 5-7 The change of normalized effective secant bulk modulus with different particle size 

vs. the increase of external loading - interface [1 0 0], f = 0.2. 
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Figure 5-8 The change of normalized effective secant shear modulus with different particle size 

w.r.t. the increase of external loading - interface [1 0 0], f = 0.2. 

 

The dependence of the normalized effective bulk modulus and shear modulus,  and , 

upon the volume fraction of voids are presented in Fig. 5-5 to Fig. 5-8 for both [1 0 0] and [1 1 1] 

interfaces with the radius of voids a = 10 nm. The present nanomechanical solutions at volume 

fractions  are compared with their corresponding micromechanical solutions. 

 represents the matrix-only material, where no matrix-particle interface exists. Therefore, 

the solutions under current nanomechanical framework match with the micromechanical solutions. 

Comparing the curves for various volume fractions, it is noticeable that the interface energy has 

larger effect on the effective moduli for the nanocomposite with higher reinforcement phase 

volume fraction.  
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Figure 5-9 The effect of total interface area on the effective secant bulk modulus. 

 

Figure 5-10 The effect of total interface area on the effective secant shear modulus. 
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It is known that both the decreasing of the particle size at a certain volume fraction and the 

increasing of the volume fraction at a fixed particle size lead to the increase of the total interface 

area in the composite. Therefore, the effect of interface energy on the effective moduli is positively 

related to the total interface area in the composite, which is displayed on Fig. 5-9 and Fig. 5-10.   

Due to the lack of available and reliable experimental data on the present topic at this stage, 

experimental validation is not performed here. Comparisons are performed between our 

framework with the classical micromechanical solutions, and the comparisons with experimental 

data will be made when related experimental data become available in the future. In addition, the 

interface properties, which are determined by the microstructure at the matrix-particle interface, 

are different for different composite materials.  

5.5 Closure 

In this chapter, a nanomechanical framework is presented to predict the effective elastoplastic 

behavior of the two-phase spherical particle reinforced metal matrix nanocomposite. The effective 

secant moduli are predicted by introducing the interface energy effect to the classical 

micromechanical elastoplastic framework. A zero-thickness interphase between the matrix and the 

reinforcement is adopted to simulate the effect of interface energy, and the interfacial stress 

continuity equations are formulated accordingly. By solving the continuity equations at the 

interface and applying the assumptions on the effective fields by Mori and Tanaka (1973), the 

effective stress and strain fields are correlated between the reinforcement and its surrounding 
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matrix. Further, an effective yield criterion is considered for the matrix material (Ju and Chen, 

1994c), and the Mori-Tanaka strategy (Tandon and Weng, 1988) is followed in estimating the 

effective secant moduli.  

The proposed framework allows the prediction of the effective secant moduli of the two-phase 

spherical particle reinforced metal matrix composite, where the reinforcement particles are 

randomly distributed in the matrix and the matrix is elastoplastic while the particles are elastic. 

Comparisons are made between the present nanomechanical framework with the classical 

micromechanical solutions. The size effect is noticed on the effective secant moduli, and the total 

interface area in the composite is revealed to be positively related to the effect of interface energy. 

When the dimensions of reinforcement approach micrometer scale, the effect of interface energy 

becomes negligible and our nanomechanical solutions will obtain the classical micromechanical 

solutions.  

Finally, it should be noted that this chapter is aimed at providing a simple and analytical 

framework in predicting the elastoplastic behavior of MMNCs and exploring the interface energy 

effect on the effective secant moduli compared with classical micromechanical solutions. 

Simplifications are made in the derivations, such as employing the volume averaged stress and 

strain fields in the matrix and in the reinforcements and assuming constant interfacial properties 

during the plastic flow. Further, the solutions are only compared with the classical solutions in 

section 5.4 due to the lack of available experimental data in this topic. Assessments and validations 

of present framework against reliable experimental data are warranted in the future.   
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- Chapter 6 -  

EFFECTIVE ELASTOPLASTIC DAMAGE MECHANICS FOR 

FIBER REINFORCED NANOCOMPOSITES WITH 

EVOLUTIONARY INTERFACE DEBONDING 

 

Abstract 

A nanomechanical evolutionary damage framework is presented to predict the effective 

elastoplastic damage behavior of the two-phase continuous circular-fiber reinforced 

nanocomposites. Under the transverse loading uniformly distributed along the longitudinal 

direction, the interface debonding is considered between the randomly distributed, unidirectionally 

aligned circular-fibers and the surrounding matrix. By assuming uniform interface debonding 

along the fibers, the effective properties are investigated under the plane strain condition. 

Additionally, since the nanosized fibers are studied, the interface energy effect is incorporated in 

the present model. The fibers under three bonding modes; i.e., the perfectly bonded fibers, the 

partially debonded fibers and the completely debonded fibers, are considered at the same time, and 

the corresponding volume fractions are predicted by the Weibull’s distribution function. Further, 

based on the debonding angle, the debonded isotropic fibers are regarded as perfectly bonded 

orthotropic fibers, and the two-phase composite with the interface debonding is equivalented into 

a four-phase composite without any interface debonding. The interface energy effect, which is 
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assumed to induce the interface stress in the zero-thickness membrane-type interphase, is 

considered on the equivalented four-phase nanocomposite, and the stress discontinuity equations 

through interface are formulated in accordance with the equilibrium conditions of the idealized 

interphase. Subsequently, the effective elastic stiffness is derived. Furthermore, to characterize the 

elastoplastic behavior, we assume that the reinforcement phases are elastic, and the matrix phase 

is elastoplastic. An effective yield function is then proposed to estimate the effective elastoplastic 

responses of the fiber reinforced nanocomposite. Finally, the prediction of the elastoplastic damage 

behavior for a two-phase continuous fiber reinforced nanocomposite under the biaxial loading is 

presented for illustration, where notable size effect is observed.  

6.1 Introduction 

Composite materials, which consist two or more different constituent phases, possess distinct 

properties than any of their components. Desirable properties can be obtained by combining the 

different phases in the composite, such as low density, high stiffness, high performance at elevated 

temperatures, good design flexibility, etc. The most common types of the composite materials 

include the particle reinforced composites, the short fiber reinforced composites and the 

continuous fiber reinforced composites. The continuous fiber reinforced composites are the 

composite materials with continuous reinforcement fibers unidirectionally aligned in the matrix. 

Compared with other types of the composite materials, the continuous fiber reinforced composite 
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is highly anisotropic and shows notably high stiffness and strength in the longitudinal direction, 

which are usually preferred when the directionality is considered.   

The strength in the transverse directions of the continuous fiber reinforced composites is much 

lower than the longitudinal direction. In the transverse directions, loading is transferred from the 

matrix to the fibers through the interface. Hence, the bonding strength of the interface is essential 

in the load carrying ability of the composite when the transverse loading is applied. Further, it is 

well-known that, for certain types of composites; e.g., the metal matrix composites, the interface 

bonding strength could be relatively low. Hence, the interface tends to be easily debonded under 

transverse loading (Simo and Ju, 1987a,b; Aboudi, 1987; Ju, 1989a,b; Pagano and Tandon, 1990; 

Zhao and Weng, 1997; Zhao and Weng, 2002; Ju and Lee, 2000; Ju and Lee, 2001; Matous, 2003; 

Sun, Ju and Liu, 2003; Liu, Sun and Ju, 2004; Liu, Sun and Ju, 2006; Ko, 2005; Paulino, Yin and 

Sun, 2006; Lee and Ju, 2007; Ju and Ko, 2008; Ju, Ko and Ruan, 2006; Ju, Ko and Ruan, 2008; 

Ju, Ko and Zhang, 2009; Rinaldi, Krajcinovic and Mastilovic, 2007; Voyiadjis, Kattan and 

Taqieddin, 2007; Ju and Yanase, 2009). When the debonding initiates, the transverse strength of 

the composite is significantly reduced, which greatly limits the practical applications of the 

composite. Therefore, studying the interface debonding in the fiber reinforced composite is of 

great importance. 

When one or more dimensions of the reinforcement phase is/are in the nanometer scale, the 

composite can be seen as a nanocomposite. For the continuous fiber reinforced nanocomposite, 

the transverse dimensions are in the nanometer scale. With the advancement in the nanotechnology, 
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nanocomposites have attracted more and more attentions recently. Compared with the 

conventional composites, nanocomposites can achieve numerous desirable properties, such as 

better damping capacity, better wear resistance, higher temperature creep resistance and longer 

fatigue, etc life (Trojanova et al., 2004; Deng et al., 2007; Shehata et al., 2009; Ferkel and Mordike, 

2001). It is noted that, due to the significantly larger gross interface area in the nanocomposite, the 

effect of interface energy, which is totally neglected for conventional composites, needs to be 

considered. Here, interface energy is defined as the excess free energy at the interface due to the 

different local atomic environment at interface than in the bulk material (Gibbs, 1906). The 

interface energy changes when the interface is deformed. Consequently, the elastic fields near the 

interface are perturbed. To characterize the effect of interface energy during the deformation, 

Gurtin and Murdoch (1975) established an interface model that treats the interface as a zero-

thickness interphase in between the matrix and the reinforcement. According to the membrane 

theory, they derived the interfacial continuity equations, which are also referred to as the 

generalized Young-Laplace equations. In the generalized Young-Laplace equations, a new 

concept ‘interface stress’ is introduced. Interface stress, which is defined as the force per unit 

length along the edge of an idealized interphase membrane element, is induced in order to simulate 

the perturbation on the elastic fields due to the interface energy. Even though the effect of interface 

energy is usually neglected for the reinforcements in larger length scale, it is essential when the 

effective mechanical properties of the nanocomposites is considered (Cammarata, 1997).   
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Research on predicting the effective mechanical properties of the composite materials are well 

developed in the past few decades. Originated from the celebrated Eshelby tensor and equivalence 

principle (Eshelby, 1957, 1961), various micromechanics theories are formulated that tackle with 

the problem of determining the effective properties of the composites. Among others, the Mori-

Tanaka method (Mori and Tanaka, 1973; Tandon and Weng, 1984; Weng, 1990), the Hashin-

Shtrikman bounds (Hashin and Shitrikman, 1963), the self-consistent method (Hill, 1965; 

Budiansky, 1965) and the direct interaction model (Ju and Chen, 1994a, b, c) attract the most 

attention. However, classical micromechanics models, which considers the dimensions of the 

reinforcement phases in the micrometer or larger length scale, neglected the effect of interface 

energy. As a consequence, they are not directly applicable to the research on the nanocomposites, 

where the interface energy effect has to be considered. Currently, a few researchers studied the 

interface energy effect on the effective elastic properties for nanocomposites (Sharma et al., 2003; 

Sharma and Ganti, 2004; Duan et al., 2005a, b). However, predicting the elastoplastic behavior of 

the fiber reinforced nanocomposites with interfacial damage is still a new topic.  

This chapter is focused on predicting the elastoplastic behavior of the continuous fiber-

reinforced nanocomposites with interface debonding. The interface energy effect on the overall 

effective elastoplastic behavior is studied, and interface is simulated by the membrane interphase 

with the in-plane interface stress. Following Mori and Tanaka’s assumption on the effective fields, 

the volume-averaged elastic fields are correlated through the interface continuity equations. As the 

increase of the external loading, progressive interface debonding is considered by the gradually 
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reduced stiffness, and the Weibull’s probability function is incorporated to predict the damage 

volume fraction evolution. At the end, an effective yield function of the composite is proposed to 

predict the overall elastoplastic behavior.  

6.2 Interface Debonding of Nano-fiber Reinforced Composite 

Now consider a two-phase continuous fiber reinforced nanocomposite with all the fibers 

aligned in one direction. Since the radii of the fibers are assumed to be in nanometer scale, the 

effect of interface energy becomes an essential factor in the determination of the mechanical 

properties (Cammarata R. C., 1997). When perfectly bonded, the interface can be modeled by the 

zero-thickness membrane, which contains the in-plane interface stress, to simulate the interface 

energy effect (Duan et al., 2005c). Accordingly, the stress through the interface is discontinuous, 

and the discontinuity conditions can be determined from the equilibrium equations of the idealized 

membrane, which is also referred to as the generalized Young-Laplace equations, taking the form  

   (6.1) 

where  is the interfacial discontinuity of stress, n is the unit normal to the interface,  

denotes the interface divergence, and  represents the interface stress. In what follows, the 

square bracket [.] is employed to represent the interfacial discontinuity of the said value. For 

circular fiber reinforced composite, the generalized Young-Laplace equations are 

   (6.2) 

   (6.3) 
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   (6.4) 

where a is the radius of the circular cross-section of the fibers. To determine the interface stress 

, a linear isotrpic constitutive relation is adopted here. The relation between  and the interface 

strain , which is composed of the tangential components of the total strain at interface, can be 

presented as (Gurtin and Murdoch, 1975; Bottomley and Ogino, 2001; Miller and Shenoy, 2000; 

Duan et al., 2005b) 

   (6.5) 

where  

   for i, j, k, l = 1,2  (6.6) 

   (6.7) 

   (6.8) 

where  is the interface elastic stiffness tensor of the rth phase reinforcements and ,  

are the corresponding interface bulk modulus and the interface shear modulus, respectively. When 

interface debonding initiates, the local atomic environment is changed, which leads to the change 

of the interfacial continuity conditions and the associated interface moduli. Neglecting the 

interface energy effect, Zhao and Weng (1997, 2002) proposed an equivalent approach that treat 

partially debonded reinforcements as perfectly bonded reinforcements with reduced stiffness. In 

the present study, following Zhao and Weng (1997, 2002), we assume that the interface of the 

equivalented fibers is perfectly bonded. Further, the interface moduli are assumed to be unchanged 
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for the equivalented fibers. Nevertheless, the current work can also take the reduction of interface 

moduli into consideration through simple modifications.   

Debonding initiates when the stress at the matrix-fiber interface reaches a certain value, which 

leads to the reduced load transferring ability of the composite from the matrix to the fibers. 

Therefore, the debonding criterion is especially important to determine the bonding status during 

loading progress. Based on the notion that the normal traction  at the interface governs the 

debonding initiation, a debonding criterion by introducing a fixed debonding critical stress  

at the interface is suggested, and debonding initiates once  (Ju and Ko, 2008; Ju and 

Yanase, 2008). When the coordinates that coincide with the directions of the principle stresses are 

considered, as shown in Fig. 6-1, the normal traction on the interface is 

   (6.9) 

Then, the debonding criterion can be displayed as 

   (6.10) 

 

Figure 6-1 The normal direction and the principal stresses at the interface 
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To quantify the reduction of the stiffness during the debonding process, the concept of the 

equivalent damaged area is adopted, which is defined as the projected area from the debonded 

interface to the axis, and the ratios of the equivalent damaged area to the total cross-sectional area 

are selected as the damage parameters. The equivalent damaged areas in the directions that 

correspond to the principal stresses are presented in Fig. 6-2. Further, the damage parameter D1 

equals to the ratio of the equivalent damage area in direction 1 to the entire cross-sectional area, 

and the damage parameter D2 equals to the ratio of the equivalent damage area in direction 2 to 

the entire cross-sectional area. Here, we assume that the transverse loading is uniform along the 

longitudinal direction, so that the debonding along the longitudinal direction is constant, and the 

damage parameter D3 along the fibers is zero. Provided the principle stresses at interface, the 

damage parameters are given as, 

   (6.11) 

   (6.12) 

   (6.13) 

 where  is the debonding angle. 

D1 =
2α + sin2α

π

D2 =
2α − sin2α

π

D3 = 0

α = arcsin σ 1 −σ cri

σ 1 −σ 2
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Figure 6-2 Debonding angle and the equivalent damage areas.  

 

Following Zhao and Weng (1997, 2002), the debonded isotropic fibers can be equivalented into 

perfectly bonded orthotropic fibers with reduced stiffness. The stiffness tensor of the equivalented 

orthotropic fibers can be written as, 

  for i, j, k, l, and I, J, K = 1, 2, 3  (6.14) 

where   and . Here, even though the upper-

case and the lower-case indices share the same numbers, summation convention only applies to 

the lower-case indices.  

Due to the sophisticated microstructure in the composite, including the spatial distributions of 

the fibers and the micro-geometries, the stress around each fiber varies. Therefore, instead of 

assuming that all the fibers are in the same bonding state, it is more reasonable to assume that the 

Cijkl = λIKδ ijδ kl + µIJ δ ikδ jl +δ ilδ jk( )
λIK = λ 1− DI( ) ⋅ 1− DK( ) µIJ = µ 1− DI( ) ⋅ 1− DJ( )
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fibers can have different bonding conditions. According to the bonding conditions, the fibers are 

generally classified into three phases: perfectly bonded fibers (phase 1), partially debonded fibers 

(phase 2) and completely debonded fibers (phase 3). After the debonding initiates, all of the three 

phases can exist in the composite at the same time, and they can be equivalented into perfectly 

bonded fibers with different elastic stiffness tensors, which can be described by Eq. (6.14). In 

addition, the phase 1 fibers have D1=D2=0, the phase 2 fibers are assumed to have the same 

debonding angle  that corresponds to the current stress state, and the damage parameters of the 

phase 3 fibers are equal to 1 in both transverse directions. Through the equivalence, the original 

two-phase nanocomposite with interface debonding is equivalented into a four-phase 

nanocomposite with all of the reinforcement phases perfectly bonded to the matrix, and Eqs. 

(6.2)-(6.4) can be solved under the equivalented properties directly. Further, the volume fraction 

of each phase is predicted by  

  for  and   (6.15) 

  for   (6.16) 

where Pd is the Weibull’s probability function that denotes the probability of debonding (including 

partially debonded and completely debonded), M and S0 are the constant parameters of the function, 

and Pc is the probability of being completely debonded. Therefore, the volume fractions for the 

reinforcement phases can be shown as 

   (6.17) 

α

Pd = 1− exp − σ 1 −σ cri
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⎞
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M⎡

⎣
⎢
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⎤

⎦
⎥
⎥
,  Pc = 0 σ 1 ≥σ cri σ 2 <σ cri

Pc = Pd = 1− exp − σ 1 −σ cri
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⎤
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σ 1 ≥σ 2 ≥σ cri

φ1 = φT 1− Pd( )
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   (6.18) 

   (6.19) 

where  is the total volume fraction of fibers, and , ,  are the volume fractions of 

phase 1, phase 2, phase 3 fibers, respectively.  

It is noted that the linear isotropic assumption on the interface is applicable to the perfectly 

bonded interface and the free surface. Since the partially debonded fibers are equivalented into the 

perfectly bonded fibers, we assume that the interface is still linear isotropic for simplicity. 

However, the change of the interface elastic moduli has to be considered. Based on the debonding 

angle, the gradually changing interface elastic moduli of the partially debonded fibers are defined 

as 

  and   (6.20) 

Eq. (6.20) presents a linear relation between the interface elastic moduli and the debonding angle. 

The more general relations can be applied if suitable experimental data or the results from 

numerical simulations become available.  

6.3 Effective Elastic Stiffness  

The effective elastic stiffness of the fiber-reinforced nanocomposite with interface debonding 

can be obtained by considering the effective elastic behavior of the equivalented four-phase fiber 

reinforced nanocomposite. According to Eshelby (1957, 1961), the equivalented perfectly bonded 

φ2 = φT Pd − Pc( )

φ3 = φT Pc

φT φ1 φ2 φ3

K2
I = 1− 2α

π
⎛
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⎞
⎠⎟ K1

I + 2α
π
K3
I µ2

I = 1− 2α
π

⎛
⎝⎜

⎞
⎠⎟ µ1

I + 2α
π

µ3
I
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fibers can be further equivalented into the matrix with eigenstrain in the original domain, which 

reads, 

   (6.21) 

where  is the perturbed strain in the reinforcement domain,  is the stress-free eigenstrain 

originated from the Eshelby’s equivalent inclusion principle, and the subscript r = 1, 2, 3 

corresponds to the fibers in different bonding phases. To determine the perturbed strain , and 

thereby the eigenstrain , classical micromechanics theories follow the Eshelby’s solution 

(Eshelby, 1957, 1959). However, as discontinuity is induced to simulate the effect of interface 

energy, Eshelby’s solution cannot be applied directly to the present study. Since the fibers with 

interface debonding is equivalented into perfectly bonded fibers with reduced stiffness, the 

displacement continuity conditions can be written as  

   (6.22) 

where ur is the displacement vector of the rth phase fibers. Consequently, the strain discontinuity 

through interface beocmes, 

   (6.23) 

where  denotes the magnitude of displacement gradient discontinuity over the interface from 

matrix to rth phase fibers, and n is the unit narmal vector to the interface. Following the assumption  

by Mori and Tanaka, the strain  in the rth phase fibers reveals to be  

   (6.24) 

where  is the volume-averaged strain in the effective matrix. Then, Eq. (6.21) becomes, 

σ r = Cr : ε 0 + ε r
pt( ) = C0 : (ε 0 + ε r

pt − ε r
* )

ε r
pt ε r

*

ε r
pt

ε r
*

ur[ ]= 0

ε r[ ]= 12 ur∇[ ]+ ∇ur[ ]( ) = 12 λ r ⊗n+ n⊗λ r( )

λ r

ε r

ε r = ε0 − ε r[ ]

ε0



 140 

   (6.25) 

Further, the volume-averaged stress in the matrix is  

   (6.26) 

As a consequence, the interfacial stress discontinuity  at the interface of the rth phase fibers 

is obtained, that is 

   (6.27) 

Note that the eigenstrain in a single ellipsoidal inclusion is proved to be uniform when the interface 

energy effect is neglected (Eehslby, 1957, 1959, 1961). Here, for simplicity, we assume that the 

uniformity of the eigenstrain still holds when the effect of interface energy is incorporated. 

Substitution of Eqs. (6.5) and (6.27) into Eq. (6.1) gives, 

   (6.28) 

from which  can be solved 

   (6.29) 

where  and  are the coefficient tensors. As the volume-averaged properties are desired, the 

volume-averaged strain discontinuity tensor is obtained as 

   (6.30) 

where  and  are the volume averaged coefficient tensors. The detailed expressions of  

and  for the circular fibers are  

     

σ r = Cr : ε r = C0 : (ε0 − ε r[ ]− ε r
* )

σ0 = C0 : ε0

σ r[ ]

σ r[ ]= σ0 − σ r = C0 : ε r[ ]+ ε r
*( )

C0 : ε r[ ]+ ε r
*( ) ⋅n = −∇S ⋅ Cr

I : ε I( )

ε r[ ]

ε r[ ]= Ar : ε0 +B : ε r
*

Ar B

εr[ ]= Ar : ε0 +B : ε r
*

Ar B Ar

B

Ar( )1111 = Ar( )2222 =
Kr
I + µr

I

8a K0 + 4
3 µ0( ) +

Kr
I + µr

I

4aµ0
Ar( )1122 = Ar( )2211 =

3 Kr
I + µr

I( )
8a K0 + 4

3 µ0( ) −
Kr
I + µr

I

4aµ0
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where a is the radius of the circular fiber. It is observed from the above expressions that the tensor 

 is depending upon the interface stiffness and the radius a of the circular fibers. Its components 

vanish when the interface elastic moduli are neglected ( ) or a goes to infinity. On the 

other hand, the tensor  is identical to the negative of the Eshelby tensor for circular fibers. In 

addition,  and  are independent of the stiffness of the reinforcements. According to Eq. 

(6.30), the volume averaged strain and the volume averaged stress of the rth phase fibers are 

obtained, 

   (6.31) 

   (6.32) 

Substitution of Eq. (6.31) into Eq. (6.25) renders the eigenstrain as  

   (6.33) 
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ε r
* = I+B( )−1 : I−Ar( ) : ε0 − I+B( )−1 :C0

−1 :Cr : εr
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Further, Eq. (6.31) gives, 

   (6.34) 

where  is the local strain concentration tensor, defined as 

   (6.35) 

As a consequence, the overall volume-averaged strain becomes 

   (6.36) 

where  is defined as the global strain concentration tensor for the rth phase fibers, 

   (6.37) 

Then, the overall volume-averaged stress can be shown as 

   (6.38) 

Consequently, the effective stiffness tensor takes the form  

   (6.39) 

It is observed from Eq. (6.39) that the interface energy effect is incorporated in the effective 

stiffness tensor for the equivalented four-phase circular fiber reinforced nanocomposite. The 

classical Mori-Tanaka micromechanical solutions can be obtained directly from Eq. (6.39) when 

the interface energy effect can be neglected; i.e.,  or a is in the micrometer or larger length 

scale.  
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6.4 Effective Elastoplastic Behavior 

In this section, we consider the fiber reinforced nanocomposite with the elastoplastic matrix 

phase and the elastic reinforcement phases. The more general case that all the phases are 

elastoplastic can be formulated by adding the plastic strain to the eigenstrain in the reinforcement 

phases. Additionally, the composite under small strain is considered for simplicity due to the fact 

that more sophisticated interactions could occur at the large plastic strain in the matrix. During the 

plastic deformation, the local stress field varies from one point to another in the matrix and depends 

upon the loading history and the surrounding microstructure of the position in consideration. 

Therefore, the overall effective plastic behavior are studied.  

To describe the overall effective plastic behavior of the composite, a volume-averaged von 

Mises yield criterion is constructed, 

   (6.40) 

where  and  are the von Mises effective stress and effective plastic strain in the matrix, 

respectively, defined as  

   and   (6.41) 

Here,  and  are the volume-averaged stress and plastic strain of the matrix, respectively. 

 represent the isotropic hardening function of the matrix material. According to Eqs. (6.33) 

and (6.35), 

F σ 0
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p* = 2

3
ε0
p : ε0

p

σ0 ε0
p

K ε0
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   (6.42) 

Further, from Eqs. (6.37) and (6.41), we arrive at  

   (6.43) 

and the relation between  and  are obtained 

   (6.44) 

where 

   (6.45) 

It is worthy to mention that when a traction  is applied at the far field,  is identical to 

the overall volume-averaged stress of the composite. Substitution of Eq. (6.44) into Eq. (6.41) 

renders 

   (6.46) 

where .  Further, Eq. (6.40) becomes 

   (6.47) 

Eq. (6.47) is the effective yield function of the equivalented four-phase nanocomposite. 

Furthermore, we assume associative flow rule for the composite. However, the effective yield 

function with non-associative flow rule can be constructed in a similar manner by considering both 

of the normal and tangential directions of the plastic flow.  
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Since the associative flow rule is considered, the volume-averaged plastic increment can be 

characterized as 

   (6.48) 

where  is the overall volume-averaged plastic strain, and   is the plastic consistency 

parameter. Here, the plastic loading/unloading conditions follow the Kuhn-Tucker condtions, that 

is  

   (6.49) 

As the plastic strain occurs in the matrix domain, the overall volume averaged plastic increment 

can be demonstrated as   

   (6.50) 

Therefore, the volume-averaged plastic strain increment of the matrix is obtained as  

   (6.51) 

and the equivalent plastic increment of the matrix is determined by 

   (6.52) 

In summary, from Eqs. (6.51)-(6.52),  can be expressed as the function of  for a given . 

Substitution of  into Eq. (6.47) leads to an equation of , from which  can be solved and 

the plasrtic increment is determined. Therefore, provided the hardening function  of the 
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matrix, the overall effective plastic behavior of the composite can be fully characterized by Eqs. 

(6.47), (6.51) and (6.52).  

6.5 Overall Elastoplastic Damage Responses under Biaxial Tensile Loading 

In this section, the elastoplastic damage responses of the fiber-reinforced nanocomposite are 

presented under the proposed framework. For simplicity, we assume the transverse biaxial tensile 

loading is applied to the composite at far-field, and the plane strain condition is followed. The 

applied tensile stress can be written as 

   (6.53) 

where R is the ratio between the biaxial stresses. In addition, to satisfy the plane strain condition,  

  and all other   (6.54) 

where 

   (6.55) 

Furthermore, the power-law type hardening function is employed, and the effective yield function 

in Eq. (6.47) becomes 

   (6.56) 

where  is the initial yield stress of the matrix, h, q are the constants associated with the plastic 

hardening behavior of the matrix material, and   

    (6.57) 
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Additionally, the volume-averaged plastic strain increment of the composite and the equivalent 

plastic strain increment of the matrix can be expressed as  

  (6.58) 

   (6.59) 

where 

   (6.60) 

The corresponding elastic strain increment of the composite is  

   (6.61) 

where  is the effective compliance tensor of the composite. As a consequence, 

the total strain increment in the composite reveals to be   

   (6.62) 

According to the Kuhn-Tucker conditions,  and  during the plastic 
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   (6.63) 

where  can be solvd as 

   (6.64) 

6.6 Numerical Simulations and Discussions 

In this section, numerical simulations are demonstrated to illustrate the predictions of the 

present model. The results under the proposed model are compared with the classical 

micromechanical solutions, in which the interface energy effect is neglected. However, due to the 

lack of available experimental data, experimental validation is not implemented. The experimental 

validation will be performed in the future once suitable experiment data become availivable.  

Let us consider a two-phase continuous circular fiber reinforced nanocomposite. We assume 

that the nanocomposite consists the Ti-6Al-4V matrix (K0 = 94.8 GPa, µ 0 = 43.7 GPa) and 

randomly distributed continuous SiC fibers (K1 = 345 GPa, µ 1 = 159.2 GPa) (Nimmer et al., 1991). 

Further, the plastic parameters of the matrix material are ,  and 

 (Ju and Lee, 2000, 2001), and the parameters of the Weibull’s distribution function are 

, , and  (Ju and Ko, 2008). In term of the interface properties, 

we choose two sets of interface moduli, which are ,  for the perfectly 

bonded interface and ,  for the free surface. Note that the interface 
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moduli are related to the microstructures at the interface. The aforementioned sets of interface 

moduli are chosen for illustration purpose, and the actual interface moduli for the current 

nanocomposite can be obtained by different methods such as the molecular dynamics simulation 

(Miller and Shenoy, 2000), first principles and atomistic potential calculations. 

The stress-strain relation of the nanocomposite under the transverse tensile biaxial loading (R 

= 0.4) is displayed in Fig. 6-3. Comparisons are made between the solutions with and without 

considering the interface energy effect; i.e., the nanomechanical solution and the micromechanical 

solution. Both solutions present two ‘knees’ on the figure. The first ‘knee’ corresponds to the 

evolution of the interface debonding. Due to the progressive debonding of the interface and the 

evolution of the corresponding volume fractions, the slope of the curve decrease gradually. Before 

the first ‘knee’, all the fibers are in phase 1, which are the perfectly bonded fibers. During the first 

‘knee’, interface debonding inititates in the composite, and all the bonding phases may exist at the 

same time. At the end of the first ‘knee’, we consider that all the fibers are completely debonded 

and the composite can be treated as the matrix with nanovoids in the transverse directions. 

Therefore, the decreasing of the slope is suspended. At a higher stress level, the matrix yields and 

the plastic deformation appears in the matrix, which forms the second ‘knee’ on the figure. 

Moreover, the interface energy effect is noticed on the stress-strain curve. Based on the currently 

adopted interface elastic moduli of the bonded interface and the free surface, the interface energy 

shows consistent effect on the stiffness of the composite during the elastoplastic damage process. 

Before the first ‘knee’, the interface energy effect is goverened by the interface elastic moduli of 
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the prefectly bonded interface. In the region of the first ‘knee’, the interface elastic moduli transites 

from ,  to , . After the first ‘knee’, the interface elastic moduli are constant.  

 

 

Figure 6-3 The comparison between the nanomechanical prediction and the micromechanical 

prediction. 

  

The effect of interface energy on the evolution of the debonding angle and the volume 

fractions are presented in Fig. 6-4 and Fig. 6-5, respectively. When the interface energy effect is 

considered, the debonding initiates at a lower strain due to the higher initial stiffness. The change 

of the debonding angles with respect to the strain  are also displayed in Fig. 6-4, and the 

debonding angle reaches p/2 at the end, which corresponds to the complete debonding. The change 
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of the volume fractions of the equivalented reinforcement phases are exhibited in Fig. 6-5. The 

volume fraction of phase 1 fibers decraeses gradually with the increase of the external loading. 

However, when the debonding angle reaches p/2, the phase 2 partially debonded fibers become 

completely debonded fibers, which corresponds to the abrupt changes on the figure. It is also 

noticed that different bonding phases can exist in the composite at the same time.  

 

 

 

Figure 6-4 Debonding angle a vs. . 
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Figure 6-5 The evolution of volume fractions vs. . 
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Figure 6-6 The size effect on the stress-strain relation of the composites reinforced by the 

circular fibers with different radius. 
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Figure 6-7 The comparison among composites with different volume fractions of the fibers 
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The interface energy effect on the effective elastoplastic behavior is studied for the continuous 

fiber reinforced nanocomposite with interface debonding. The debonding initiates when the tensile 
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describes the extent of the debonded region can be solved according to the stress at the interface. 

Based on the debonding angle, the damage parameters are defined along two perpendicular 
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possibilities of the interface debonding. Therefore, the three bonding conditions (perfect bonding, 

partial debonding, complete debonding) can exist at the same time. Further, the debonded fibers 

are equivalented into the perfectly bonded fibers with reduced elastic stiffness. As a consequence, 

the original two-phase composite is equivalented into a four-phase compoiste.  

The interface energy effect is considered on the equivalented composite. The effect of interface 

energy is simulated by a zero-thickness membrane interphase between the matrix and the fiber, 

and the interface stress is intorduced in the membrane interphase, which leads to the discontinuous 

stress through the matrix-fiber interface. The change of the interface energy effect during the 

debonding evolution is considered by adopting the gradually changing interface elastic moduli for 

the equivalented fibers. Following the Mori and Tanaka’s assumption on the effective matrix and 

solving the interfacial stress discontinity equations, the elastic stiffness tensor of the equivalented 

four-phase composite is determined.  

To predict the plastic behavior, we assume that the matrix is elastoplastic, while the fibers are 

elastic. An effective yield function of the composite is proposed in Section 6.4, in which the 

associative flow rule and the isotropic hardening law are adopted. The yield function, the elastic 

strain incremental and the plastic strain incremental are presented for the composite under the 

biaxial tensile transverse loading in Section 6.5.  

Numerical simulations are presented in Section 6.6 for the composite under bixial tensile 

transverse loading. The progressive interface debonding and the evolution of the volume fractions 

are demonstrated. Comparisons are made between the nanomechanical and the micromechanical 
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predictions of the growth of the debonding angle, the development of the volume fractions and the 

stress-strain curve. The dependence of the effect of interface energy upon the size and the volume 

fractions of the fibers is also investigated. The results reveal that when the interface energy effect 

is considered, the mechanical behaivors of the composite exhibit size dependence and are related 

to the total interface area. The effect of interface energy increases with the increasing of the total 

interface area, and become negligible when the size of reinforcements in the composite are in 

micrometer scale. However, due to the lack of available experimental data, experimental 

validations are not performed in the present chapter. Comparisons between the current prediction 

and the experimental data are warranted once suitable and reliable experimental data become 

available in the future.   
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- Chapter 7 -  

SUMMARY AND FUTURE WORK 

 

7.1  Summary 

In this research, the overall effective mechanical behavior of particle reinforced and 

continuous fiber reinforced nanocomposites are investigated by considering the interface energy 

effect.  

In Chapter 3, the interface energy effect on the spherical particle reinforced nanocomposite is 

investigated. To account for the interface energy effect, the interface is simulated by the zero-

thickness membrane interphase, which leads to the stress and strain discontinuities between the 

matrix and the particles. By solving the equilibrium equations of the idealized interphase, the 

effective elastic fields in the matrix and the particles are related and isotropic interface energy 

effect is noticed on the effective fields. Furthermore, the effective elastic moduli of the spherical 

fiber reinforced nanocomposite are derived based on the homogenization procedures of the direct 

Eshelby method and the Mori-Tanaka method. It is recognized that the effective moduli, which 

considers the interface energy effect, exhibit the dependence upon the particle sizes and the 

particulate volume fractions. In addition, the illustrative figures, which are developed based on the 

analytical expressions, depict that the interface energy effect decreases with the increasing of the 
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particle size and the volume fractions. Moreover, when the size of the particles is in micrometer 

or larger scale, the interface energy effect becomes negligible, and the predictions are equal to the 

corresponding classical micromechanics solutions.  

Based on the formulation in Chapter 3, a nanomechanical framework is developed in Chapter 

4 to predict the effective elastic moduli of the spheroidal particle reinforced nanocomposites. 

Compared with Chapter 3, the framework is able to address the more sophisticated particle shapes, 

which range from spherical particles to the continuous fibers. The interface energy effect is 

averaged over the interface area, and the anisotropic effect is noticed on the effective elastic fields. 

Following the Mori-Tanaka method, the effective moduli are determined for the spheroidal particle 

reinforced nanocomposite. Further, the particle size dependence and the particulate volume 

fraction dependence are observed on the effective moduli.  

In Chapter 5, a nanomechanical framework is formulated to predict the effective elastoplastic 

behavior of the spherical particle reinforced metal matrix nanocomposites. The matrix is assumed 

to be elastoplastic and the particles are elastic. The decreasing constraint power of the matrix 

during the plastic deformation is considered by adopting the secant moduli of the matrix under the 

Mori-Tanaka mean-field theory. Additionally, the effective secant moduli are obtained for the 

metal matrix nanocomposite.  

Chapter 6 is devoted to predicting the overall effective elastoplastic behavior of the continuous 

fiber reinforced two-phase nanocomposites under interface debonding. Similar to Chapter 5, the 

matrix is assumed to be elastoplastic and the fibers are elastic. The interface debonding initiates 



 166 

when the normal traction at the interface reaches the critical debonding stress. Progressive 

debonding is considered, the extent of debonding is related to the stress state at the interface. 

Moreover, the damage volume fraction evolution is accounted by the Weibull’s distribution 

function. The fibers with different bonding conditions can exit in the matrix at the same time. 

Further, the isotropic debonded fibers are equivalented into perfectly bonded orthotropic fibers, 

and the two-phase composite with interface debonding is equivalented into a four-phase composite 

without interface debonding. Based on the equivalented composite, the elastic moduli are 

determined following the Mori-Tanaka mean-field theory, and an effective yield function of the 

composite is proposed to predict the plastic behavior.  

7.2  Future Work 

The main objective of the present research is to develop the simple and analytical 

nanomechanical frameworks for the nanocomposites, where the effect of interface energy is 

considered. Unlike the perfect interface conditions in the micromechanical formulations, the stress 

and strain are discontinuous through the interface, and the discontinuities are shown in the 

generalized Young-Laplace equations. Solving the generalized Young-Laplace equations renders 

the direct relation of the strain in the matrix and the strain in the reinforcement at the interface. 

Although the generalized Young-Laplace equations can be solved exactly at the interface, it is very 

difficult to determine the point-wise stress and strain fields in the reinforcements. Therefore, the 

effective medium approaches are employed, and the effective elastic fields are considered for the 
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matrix and the reinforcements. It is well known that the micromechanical effective medium 

approaches neglect the near-field interactions and are only applicable for the composites with low 

to moderate volume fractions of the reinforcement phases; e.g., the volume fraction at 

approximately 0.1 for the direct Eshelby method and 0.2 for the Mori-Tanaka method. The direct 

particle interaction model with the higher order pair-wise particle interaction solution present much 

better predictions on the elastic moduli of the spherical particle reinforced composites with higher 

reinforcement volume fractions. If the nanocomposites with moderate to moderate high particle 

concentrations are under consideration, the direct particle interaction model can be adopted in the 

determination of the elastic properties. However, the calculation cost is significantly increased. 

Moreover, the pair-wise solution is presented for spherical particles only. For the 

ellipsoidal/spheroidal particles, the pair-wise solution can be more difficult to be obtained. As a 

consequence, the present study employs the Mori-Tanaka mean-field theory to investigate the 

mechanical properties of the nanocomposites with moderate reinforcement concentrations, and 

future work can be done to apply the direct particle interaction model to consider the interface 

energy effect.  

The prolate spheroidal particles in Chapter 4 are assumed to be unidirectionally aligned for 

simplicity. At two limiting conditions, the unidirectionally aligned prolate spheroids become the 

spheres or the unidirectionally aligned long fibers. However, the composites with randomly 

oriented particles attract more attention currently. Therefore, an orientation average procedure can 

be performed on the framework in Chapter 4 to consider the randomly oriented particles. Further, 
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the research on the spheroidal particles can be extended to the ellipsoidal particles. Although the 

generalized Young-Laplace are more complicated for ellipsoids, the framework for the composites 

with ellipsoidal particles can be applied in a more general condition.  

The elastic moduli of the idealized interphase are assumed to be constant during the plastic 

deformation in the matrix. However, the local atomic environment at the interface changes with 

the development of the plastic strain in the matrix, which may lead to the non-negligible change 

in the interface properties. Therefore, the change of the interface properties with the increasing of 

the plastic strain can be studied. Further, the interface is considered as linear isotropic for the 

partially debonded fibers, which are equivalented into perfectly bonded fibers with reduced 

stiffness in Chapter 6. Since the bonded interface and the free surface have distinct interface 

properties, future work is needed to validate the proposed estimation on the interface elastic moduli 

for the partially debonded interface, which combines the bonded interface and the free surface. 

Additionally, it is recognized that the local interfacial shear stress could affect the interface 

debonding process. An energy-based interface debonding criterion can be introduced to 

accommodate the effect of the local radial normal and shear stresses on the interface debonding.  

Experimental validations are the key parameters in the calibration of the proposed frameworks. 

However, due to the difficulty in the production, nanocomposites are not widely used in the 

industry, and the experiments on the investigation of the mechanical properties of the 

nanocomposites are very limited. Further experimental validations will be performed once the 

suitable and reliable experiment data become available. 
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 Last but not least, the present frameworks are able to be applied in the customized optimal 

design of the nanocomposites, which allow us to select different constituent phases, interface 

properties, volume fractions and particle sizes to achieve optimal properties. Additionally, 

extensions of the current mechanical frameworks to consider other physical problems, such as the 

problems on the electrical and thermal conductivity, magnetism, electromagnetism and other 

couple-field and multi-field problems, can be done in the future.   
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Appendix I. Interfacial Strain Discontinuity Tensor of Spherical 

Particle Reinforced Composites 

Since the generalized Young-Laplace equations for spherical particles are expressed under the 

spherical coordinate system, we start by transforming the effective strain tensor in the matrix under 

the Cartesian coordinate system to the spherical coordinate system, 

  (I.1) 

where L is the transformation matrix  

  (I.2) 

The tangential components of  can be presented as  

  (I.3) 

              (I.4) 

              (I.5) 

Therefore, the interface strain tensor , which is a two-dimensional tensor, can be expressed as 
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tensor and the deviatoric interface strain tensor as 

  (I.7) 

  (I.8) 

According to Eqs. (3.21)-(3.22), the interface stress  becomes  
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          (I.12) 

The interfacial strain discontinuity is along the normal direction of the interface. For a 

spherical particle, the normal direction is along the r-axis in the spherical coordinate system. 

Consequently, the unit normal vector takes the form  

  (I.13) 
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  (I.17) 

  (I.18) 

Transformation of the eigenstrain from the Cartesian coordinate to the spherical coordinate gives, 
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  (I.25) 

 

  (I.26) 

ε rθ
λ = 1

2 λ1 cosθ cosφ + 1
2 λ2 cosθ sinφ − 1

2 λ3 sinθ

ε rφ
λ = − 1

2 λ1 sinφ + 1
2 λ2 cosφ

(ε*)Spherical = L ⋅ ε* ⋅LT

ε rr
* = (sin2θ cos2φ)ε xx

* + (sin2θ sin2φ)ε yy
* + (cos2θ )ε zz

*

     + (sin2θ sin2φ)ε xy
* + (sin2θ cosφ)ε xz

* + (sin2θ sinφ)ε yz
*

εθθ
* = (cos2θ cos2φ)ε xx

* + (cos2θ sin2φ)ε yy
* + (sin2θ )ε zz

*

      + (cos2θ sin2φ)ε xy
* + (−sin2θ cosφ)ε xz

* + (−sin2θ sinφ)ε yz
*

εφφ
* = (sin2φ)ε xx

* + (cos2φ)ε yy
* + (−sin2φ)ε xy

*

ε rθ
* = (sinθ cosθ cos2φ)ε xx

* + (sinθ cosθ sin2φ)ε yy
* + (−sinθ cosθ )ε zz

*

      + (sinθ cosθ sin2φ)ε xy
* + (cos2θ cosφ)ε xz

* + (cos2θ sinφ)ε yz
*

ε rφ
* = (−sinθ sinφ cosφ)ε xx

* + (sinθ sinφ cosφ)ε yy
*

      + (sinθ cos2φ)ε xy
* + (−cosθ sinφ)ε xz

* + (cosθ cosφ)ε yz
*

ε* =

ε rr
* ε rθ

* ε rφ
*

ε rθ
* εθθ

* εθφ
*

ε rφ
* εθφ

* εφφ
*

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

(ε* )dev =

2
3 ε rr

* − 1
3 (εθθ

* + εφφ
* ) ε rθ

* ε rφ
*

ε rθ
* 2

3 εθθ
* − 1

3 (ε rr
* + εφφ

* ) εθφ
*

ε rφ
* εθφ

* 2
3 εφφ

* − 1
3 (ε rr

* + εθθ
* )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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(I.27) 

  

(I.28) 

  

(I.29) 

According to Eq. (3.18), interfacial stress discontinuity is obtained  

 , (I.30) 

and the detailed expressions are as follows, 

  

(I.31) 

         

(I.32) 

         

(I.33) 

(ε* )vol =

1
3 (ε rr

* + εθθ
* + εφφ

* ) 0 0

0 1
3 (ε rr

* + εθθ
* + εφφ

* ) 0

0 0 1
3 (ε rr

* + εθθ
* + εφφ

* )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

(ελ )vol =

1
3 (ε rr

λ + εθθ
λ + εφφ

λ ) 0 0

0 1
3 (ε rr

λ + εθθ
λ + εφφ

λ ) 0

0 0 1
3 (ε rr

λ + εθθ
λ + εφφ

λ )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

(ελ )dev =

2
3 ε rr

λ − 1
3 (εθθ

λ + εφφ
λ ) ε rθ

λ ε rφ
λ

ε rθ
λ 2

3 εθθ
λ − 1

3 (ε rr
λ + εφφ

λ ) εθφ
λ

ε rφ
λ εθφ

λ 2
3 εφφ

λ − 1
3 (ε rr

λ + εθθ
λ )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

[σ]= 3K̂0 (ε
λ )vol + (ε*)vol( ) + 2µ̂0 (ελ )dev + (ε*)dev( )

[σ rr ]= 3K̂0 (ε rr
λ )vol + (ε rr

* )vol( ) + 2µ̂0 (ε rr
λ )dev + (ε rr

* )dev( )
         = (K̂0 + 4

3 µ̂0 )(λ1 sinθ cosφ + λ2 sinθ sinφ + λ3 cosθ )

         + K̂0 (ε xx
* + ε yy

* + ε zz
* )

         + µ̂0[(2sin2θ cos2φ − 2
3 )ε xx

* + (2sin2θ sin2φ − 2
3 )ε yy

* + (2cos2θ − 2
3 )ε zz

*

         + (2sin2θ sin2φ)ε xy
* + (2sin2θ cosφ)ε xz

* + (2sin2θ sinφ)ε yz
* ]

[σ rθ ]= 2µ̂0 (ε rθ
λ )dev + (ε rθ

* )dev( )
         = µ̂0 (λ1 cosθ cosφ + λ2 cosθ sinφ − λ3 sinθ )
         + µ̂0[(sin2θ cos2φ)ε xx

* + (sin2θ sin2φ)ε yy
* + (−sin2θ )ε zz

*

         + (sin2θ sin2φ)ε xy
* + (2cos2θ cosφ)ε xz

* + (2cos2θ sinφ)ε yz
* ]

[σ rφ ]= 2µ̂0 (ε rφ
λ )dev + (ε rφ

* )dev( )
         = µ̂0 (−λ1 sinφ + λ2 cosφ)
         + µ̂0[(−sinθ sin2φ)ε xx

* + (sinθ sin2φ)ε yy
*

         + (2sinθ cos2φ)ε xy
* + (−2cosθ sinφ)ε xz

* + (2cosθ cosφ)ε yz
* ]
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Eqs. (3.55)-(3.57) are the left-hand side the generalized Young-Laplace equations in Eqs. 

(3.8)-(3.10), and the right-hand side of the generalized Young-Laplace equations can be presented 

as follows, 

          (I.34) 

 

  

(I.35) 

 

1
a (τθθ +τφφ ) = 1

a {ε̂ xx
0 [2KS (1− sin2θ cos2φ)]

                        + ε̂ yy
0 [2KS (1− sin2θ sin2φ)]

                        + ε̂ zz
0 [2KS (1− cos2θ )]

                        + ε̂ xy
0 [2KS (−sin2θ sin2φ)]

                        + ε̂ xz
0 [2KS (−sin2θ cosφ)]

                        + ε̂ yz
0 [2KS (−sin2θ sinφ)]}

− 1
a

[∂τθθ

∂θ
+ 1

sinθ
∂τθφ

∂φ
+ (τθθ −τφφ )cotθ ]

= − 1
a {ε̂ xx

0 [2KS (−sinθ cosθ cos2φ)

             + 2µS (−sinθ cosθ cos2φ − cosθ
sinθ cos2φ + cos3θ

sinθ cos2φ − cosθ
sinθ sin2φ)]

       + ε̂ yy
0 [2KS (−sinθ cosθ sin2φ)

             + 2µS (−sinθ cosθ sin2φ + cosθ
sinθ cos2φ + cos3θ

sinθ sin2φ − cosθ
sinθ cos2φ)]

       + ε̂ zz
0 [2KS (sinθ cosθ )+ 2µS (2sinθ cosθ )]

       + ε̂ xy
0 [2KS (−sinθ cosθ sin2φ)+ 2µS (−2sinθ cosθ sin2φ)]

       + ε̂ xz
0 [2KS (−cos2θ cosφ)+ 2µS (−2cos2θ cosφ)]

       + ε̂ yz
0 [2KS (−cos2θ sinφ)+ 2µS (−2cos2θ sinφ)]
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         (I.36) 

  

− 1
a

∂τθφ

∂θ
+ 1

sinθ
∂τφφ

∂φ
+ 2τθφ cotθ⎛

⎝⎜
⎞
⎠⎟

= − 1
a {ε̂ xx

0 [2KS (sinθ sinφ cosφ)+ 2µS (2sinθ sinφ cosφ)]
       + ε̂ yy

0 [2KS (−sinθ sinφ cosφ)+ 2µS (−2sinφ cosφ)]

       + ε̂ xy
0 [2KS (−sinθ cos2φ)+ 2µS (−2sinθ cos2φ)]

       + ε̂ xz
0 [2KS (cosθ sinφ)+ 2µS (2cosθ sinφ)]

       + ε̂ yz
0 [2KS (−cosθ cosφ)+ 2µS (−2cosθ cosφ)]
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Further, the detailed expressions of the generalized Young-Laplace equations are obtained 

from Eqs. (I.31)-(I.36), 

         

(I.37) 

 

  

(I.38) 

 

(K̂0 + 4
3 µ̂0 )(λ1 sinθ cosφ + λ2 sinθ sinφ + λ3 cosθ )

+ε xx
* [K̂0 + µ̂0 (2sin2θ cos2φ − 2

3 )]

+ε yy
* [K̂0 + µ̂0 (2sin2θ sin2φ − 2

3 )]

+ε zz
* [K̂0 + µ̂0 (2cos2θ − 2

3 )]

+ε xy
* [µ̂0 (2sin2θ sin2φ)]

+ε xz
* [µ̂0 (2sin2θ cosφ)]

+ε yz
* [µ̂0 (2sin2θ sinφ)]

= 1
a {ε̂ xx

0 [2KS (1− sin2θ cos2φ)]
    + ε̂ yy

0 [2KS (1− sin2θ sin2φ)]

    + ε̂ zz
0 [2KS (1− cos2θ )]

    + ε̂ xy
0 [2KS (−sin2θ sin2φ)]

    + ε̂ xz
0 [2KS (−sin2θ cosφ)]

    + ε̂ yz
0 [2KS (−sin2θ sinφ)]}

µ̂0 (λ1 cosθ cosφ + λ2 cosθ sinφ − λ3 sinθ )
+ε xx

* [µ̂0[(sin2θ cos2φ)]+ ε yy
* [µ̂0 (sin2θ sin2φ)]+ ε zz

* [µ̂0 (−sin2θ )]

+ε xy
* [µ̂0 (sin2θ sin2φ)]+ ε xz

* [µ̂0 (2cos2θ cosφ)]+ ε yz
* [µ̂0 (2cos2θ sinφ)]

= − 1
a {ε̂ xx

0 [2KS (−sinθ cosθ cos2φ)

             + 2µS (−sinθ cosθ cos2φ − cosθ
sinθ cos2φ + cos3θ

sinθ cos2φ − cosθ
sinθ sin2φ)]

       + ε̂ yy
0 [2KS (−sinθ cosθ sin2φ)

             + 2µS (−sinθ cosθ sin2φ + cosθ
sinθ cos2φ + cos3θ

sinθ sin2φ − cosθ
sinθ cos2φ)]

       + ε̂ zz
0 [2KS (sinθ cosθ )+ 2µS (2sinθ cosθ )]

       + ε̂ xy
0 [2KS (−sinθ cosθ sin2φ)+ 2µS (−2sinθ cosθ sin2φ)]

       + ε̂ xz
0 [2KS (−cos2θ cosφ)+ 2µS (−2cos2θ cosφ)]

       + ε̂ yz
0 [2KS (−cos2θ sinφ)+ 2µS (−2cos2θ sinφ)]
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(I.39) 

 

As a consequence, the amplitude of the interfacial strain discontinuity, ,  and , can be 

expressed by the effective strain  in matrix and the eigenstrain  in the inclusion.  

  

µ̂0 (−λ1 sinφ + λ2 cosφ)
+ε xx

* [µ̂0[(−sinθ sin2φ)]+ ε yy
* [µ̂0 (sinθ sin2φ)]

+ε xy
* [µ̂0 (2sinθ cos2φ)]+ ε xz

* [µ̂0 (−2cosθ sinφ)]+ ε yz
* [µ̂0 (2cosθ cosφ)]

= − 1
a {ε̂ xx

0 [2KS (sinθ sinφ cosφ)+ 2µS (2sinθ sinφ cosφ)]
       + ε̂ yy

0 [2KS (−sinθ sinφ cosφ)+ 2µS (−2sinφ cosφ)]

       + ε̂ xy
0 [2KS (−sinθ cos2φ)+ 2µS (−2sinθ cos2φ)]

       + ε̂ xz
0 [2KS (cosθ sinφ)+ 2µS (2cosθ sinφ)]

       + ε̂ yz
0 [2KS (−cosθ cosφ)+ 2µS (−2cosθ cosφ)]

λ1 λ2 λ3

ε̂ 0 ε*



 179 

Solving Eqs. (I.37)-(I.39), we have 

 

(I.40) 

λ3 =
1
a

{ε̂ xx
0 [ 2KS

K̂0 + 4
3 µ̂0

cosθ − sin2θ cosθ cos2φ( ) + 2KS

µ̂0

−sin2θ cosθ cos2φ( )

                  + 2µS

µ̂0

−sin2θ cosθ cos2φ − cosθ cos2φ + cos3θ cos2φ − cosθ sin2φ( )]

          + ε̂ yy
0 [ 2KS

K̂0 + 4
3 µ̂0

cosθ − sin2θ cosθ sin2φ( ) + 2KS

µ̂0

−sin2θ cosθ sin2φ( )

                  + 2µS

µ̂0

−sin2θ cosθ sin2φ + cosθ cos2φ + cos3θ sin2φ − cosθ cos2φ( )]

          + ε̂ zz
0 [ 2KS

K̂0 + 4
3 µ̂0

sin2θ cosθ( ) + 2KS

µ̂0

sin2θ cosθ( ) + 2µS

µ̂0

2sin2θ cosθ( )]

          + ε̂ xy
0 [ 2KS

K̂0 + 4
3 µ̂0

−sin2θ cosθ sin2φ( ) + 2KS

µ̂0

−sin2θ cosθ sin2φ( ) + 2µS

µ̂0

−2sin2θ cosθ sin2φ( )]

          + ε̂ xz
0 [ 2KS

K̂0 + 4
3 µ̂0

−sin2θ cosθ cosφ( ) + 2KS

µ̂0

−sinθ cos2θ cosφ( ) + 2µS

µ̂0

−2sinθ cos2θ cosφ( )]

          + ε̂ yz
0 [ 2KS

K̂0 + 4
3 µ̂0

−sin2θ cosθ sinφ( ) + 2KS

µ̂0

−sinθ cos2θ sinφ( ) + 2µS

µ̂0

−2sinθ cos2θ sinφ( )]}

        + ε xx
* [ K̂0

K̂0 + 4
3 µ̂0

−cosθ( ) + µ̂0

K̂0 + 4
3 µ̂0

2
3

cosθ − 2sin2θ cosθ cos2φ⎛
⎝⎜

⎞
⎠⎟ + 2sin2θ cosθ cos2φ]

        + ε yy
* [ K̂0

K̂0 + 4
3 µ̂0

−cosθ( ) + µ̂0

K̂0 + 4
3 µ̂0

2
3

cosθ − 2sin2θ cosθ sin2φ⎛
⎝⎜

⎞
⎠⎟ + 2sin2θ cosθ sin2φ]

        + ε zz
* [ K̂0

K̂0 + 4
3 µ̂0

−cosθ( ) + µ̂0

K̂0 + 4
3 µ̂0

2
3

cosθ − 2cos3θ⎛
⎝⎜

⎞
⎠⎟ − 2sin2θ cosθ ]

        + ε xy
* [ µ̂0

K̂0 + 4
3 µ̂0

−2sin2θ cosθ sin2φ( ) + 4sin2θ cosθ sinφ cosφ]

        + ε xz
* [ µ̂0

K̂0 + 4
3 µ̂0

−2sin2θ cosθ cosφ( ) + 2sinθ cos2θ cosφ]

        + ε yz
* [ µ̂0

K̂0 + 4
3 µ̂0

−2sin2θ cosθ sinφ( ) + 2sinθ cos2θ sinφ]
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(I.41)

 

λ2 =
1
a

{ε̂ xx
0 [ 2KS

K̂0 + 4
3 µ̂0

sinθ sinφ − sin3θ sinφ cos2φ( ) + 2KS

µ̂0

sinθ cos2θ sinφ cos2φ − sinθ sinφ cos2φ( )

                  + 2µS

µ̂0

−2sin3θ sinφ cos2φ( )]

          + ε̂ yy
0 [ 2KS

K̂0 + 4
3 µ̂0

sinθ sinφ − sin3θ sin3φ( ) + 2KS

µ̂0

sinθ cos2θ sin3φ + sinθ sinφ cos2φ( )

                  + 2µS

µ̂0

2sinθ cos2θ sin3φ + sinθ sin2φ cosφ( )]

          + ε̂ zz
0 [ 2KS

K̂0 + 4
3 µ̂0

sin3θ sinφ( ) + 2KS

µ̂0

−sinθ cos2θ sinφ( ) + 2µS

µ̂0

−2sinθ cos2θ sinφ( )]

          + ε̂ xy
0 [ 2KS

K̂0 + 4
3 µ̂0

−sin3θ sinφ sin2φ( ) + 2KS

µ̂0

sinθ cos2θ sinφ sin2φ + sinθ cosφ cos2φ( )

                   + 2µS

µ̂0

2sinθ cos2θ sinφ sin2φ + 2sinθ cosφ cos2φ( )]

          + ε̂ xz
0 [ 2KS

K̂0 + 4
3 µ̂0

−sinθ sin2θ sinφ cosφ( ) + 2KS

µ̂0

cosθ cos2θ sinφ cosφ − cosθ sinφ cosφ( )

                   + 2µS

µ̂0

2cosθ cos2θ sinφ cosφ − 2cosθ sinφ cosφ( )]

          + ε̂ yz
0 [ 2KS

K̂0 + 4
3 µ̂0

−sinθ sin2θ sin2φ( ) + 2KS

µ̂0

cosθ cos2θ sin2φ + cosθ cos2φ( )

                   + 2µS

µ̂0

2cosθ cos2θ sin2φ + 2cosθ cos2φ( )]}

        + ε xx
* [ K̂0

K̂0 + 4
3 µ̂0

−sinθ sinφ( ) + µ̂0

K̂0 + 4
3 µ̂0

2
3

sinθ sinφ − 2sin3θ sinφ cos2φ⎛
⎝⎜

⎞
⎠⎟

                 − 2sinθ cos2θ sinφ cos2φ + 2sinθ sinφ cos2φ]

        + ε yy
* [ K̂0

K̂0 + 4
3 µ̂0

−sinθ sinφ( ) + µ̂0

K̂0 + 4
3 µ̂0

2
3

sinθ sinφ − 2sin3θ sin3φ⎛
⎝⎜

⎞
⎠⎟

                 − 2sinθ cos2θ sin3φ − 2sinθ sinφ cos2φ]

        + ε zz
* [ K̂0

K̂0 + 4
3 µ̂0

−sinθ sinφ( ) + µ̂0

K̂0 + 4
3 µ̂0

2
3

sinθ sinφ − 2sinθ cos2θ sinφ⎛
⎝⎜

⎞
⎠⎟

                 + 2sinθ cos2θ sinφ]

        + ε xy
* [ µ̂0

K̂0 + 4
3 µ̂0

−2sin3θ sinφ sin2φ( )− 4sinθ cos2θ sin2φ cosφ − 2sinθ cosφ cos2φ]

        + ε xz
* [ µ̂0

K̂0 + 4
3 µ̂0

−sinθ sin2θ sin2φ( )− cosθ cos2θ sin2φ + cosθ sin2φ]

        + ε yz
* [ µ̂0

K̂0 + 4
3 µ̂0

−2sinθ sin2θ sin2φ( )− 2cosθ cos2θ sin2φ − 2cosθ cos2φ]
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(I.42) 

λ1 =
1
a

{ε̂ xx
0 [ 2KS

K̂0 + 4
3 µ̂0

sinθ cosφ − sin3θ cos3φ( ) + 2KS

µ̂0

sinθ cos2θ cos3φ + sinθ sin2φ cosφ( )

                  + 2µS

µ̂0

2sinθ cos2θ cos3φ + sinθ sinφ sin2φ( )]

          + ε̂ yy
0 [ 2KS

K̂0 + 4
3 µ̂0

sinθ cosφ − sin3θ sin2φ cosφ( ) + 2KS

µ̂0

sinθ cos2θ sin2φ cosφ − sinθ sin2φ cosφ( )

                  + 2µS

µ̂0

−2sin3θ sin2φ cosφ( )]

          + ε̂ zz
0 [ 2KS

K̂0 + 4
3 µ̂0

sin3θ cosφ( ) + 2KS

µ̂0

−sinθ cos2θ cosφ( ) + 2µS

µ̂0

−2sinθ cos2θ cosφ( )]

          + ε̂ xy
0 [ 2KS

K̂0 + 4
3 µ̂0

−sin3θ sin2φ cosφ( ) + 2KS

µ̂0

sinθ cos2θ sin2φ cosφ − sinθ sinφ cos2φ( )

                   + 2µS

µ̂0

2sinθ cos2θ sin2φ cosφ − 2sinθ sinφ cos2φ( )]

          + ε̂ xz
0 [ 2KS

K̂0 + 4
3 µ̂0

−sinθ sin2θ cos2φ( ) + 2KS

µ̂0

cosθ cos2θ cos2φ + cosθ sin2φ( )

                   + 2µS

µ̂0

2cosθ cos2θ cos2φ + 2cosθ sin2φ( )]

          + ε̂ yz
0 [ 2KS

K̂0 + 4
3 µ̂0

−sinθ sin2θ sinφ cosφ( ) + 2KS

µ̂0

cosθ cos2θ sinφ cosφ − cosθ sinφ cosφ( )

                   + 2µS

µ̂0

2cosθ cos2θ sinφ cosφ − 2cosθ sinφ cosφ( )]}

        + ε xx
* [ K̂0

K̂0 + 4
3 µ̂0

−sinθ cosφ( ) + µ̂0

K̂0 + 4
3 µ̂0

2
3

sinθ cosφ − 2sin3θ cos3φ⎛
⎝⎜

⎞
⎠⎟

                 − 2sinθ cos2θ cos3φ − 2sinθ sin2φ cosφ]

        + ε yy
* [ K̂0

K̂0 + 4
3 µ̂0

−sinθ cosφ( ) + µ̂0

K̂0 + 4
3 µ̂0

2
3

sinθ cosφ − 2sin3θ sin2φ cosφ⎛
⎝⎜

⎞
⎠⎟

                 − 2sinθ cos2θ sin2φ cosφ + 2sinθ sin2φ cosφ]

        + ε zz
* [ K̂0

K̂0 + 4
3 µ̂0

−sinθ cosφ( ) + µ̂0

K̂0 + 4
3 µ̂0

2
3

sinθ cosφ − 2sinθ cos2θ cosφ⎛
⎝⎜

⎞
⎠⎟

                 + 2sinθ cos2θ cosφ]

        + ε xy
* [ µ̂0

K̂0 + 4
3 µ̂0

−2sin3θ sin2φ cosφ( )− 4sinθ cos2θ sinφ cos2φ + 2sinθ sinφ cos2φ]

        + ε xz
* [ µ̂0

K̂0 + 4
3 µ̂0

−sinθ sin2θ cos2φ( )− 2cosθ cos2θ cos2φ − 2cosθ sin2φ]

        + ε yz
* [ µ̂0

K̂0 + 4
3 µ̂0

−2sinθ sin2θ sinφ cosφ( )− 2cosθ cos2θ sinφ cosφ + 2cosθ sinφ cosφ]
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Since the volume averaged strain field is desired, the interfacial strain discontinuity tensor is 

averaged over the entire interface area, which gives 

  

(I.43) 

  

 

(I.44) 

  

(I.45) 

1
4π

(λ1 sinθ cosφ)sinθ dθ dφ
0

π

∫0

2π

∫

= ε xx
* K̂0

K̂0 + 4
3 µ̂0

− 1
3

⎛
⎝⎜

⎞
⎠⎟ +

µ̂0

K̂0 + 4
3 µ̂0

− 8
45

⎛
⎝⎜

⎞
⎠⎟ −

4
15

⎡

⎣
⎢

⎤

⎦
⎥

 + ε yy
* K̂0

K̂0 + 4
3 µ̂0

− 1
3

⎛
⎝⎜

⎞
⎠⎟ +

µ̂0

K̂0 + 4
3 µ̂0

4
45

⎛
⎝⎜

⎞
⎠⎟ +

2
15

⎡

⎣
⎢

⎤

⎦
⎥

 + ε zz
* K̂0

K̂0 + 4
3 µ̂0

− 1
3

⎛
⎝⎜

⎞
⎠⎟ +

µ̂0

K̂0 + 4
3 µ̂0

4
45

⎛
⎝⎜

⎞
⎠⎟ +

2
15

⎡

⎣
⎢

⎤

⎦
⎥

 + ε̂ xx
0 KS

a K̂0 + 4
3 µ̂0( )

4
15

⎛
⎝⎜

⎞
⎠⎟ +

KS

aµ̂0

4
15

⎛
⎝⎜

⎞
⎠⎟ +

µS

aµ̂0

8
15

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 + ε̂ yy
0 KS

a K̂0 + 4
3 µ̂0( )

8
15

⎛
⎝⎜

⎞
⎠⎟ +

KS

aµ̂0

− 2
15

⎛
⎝⎜

⎞
⎠⎟ +

µS

aµ̂0

− 4
15

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 + ε̂ zz
0 KS

a K̂0 + 4
3 µ̂0( )

8
15

⎛
⎝⎜

⎞
⎠⎟ +

KS

aµ̂0

− 2
15

⎛
⎝⎜

⎞
⎠⎟ +

µS

aµ̂0

− 4
15

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
4π

(λ1 sinθ sinφ)sinθ dθ dφ
0

π

∫0

2π

∫

= ε xy
* µ̂0

K̂0 + 4
3 µ̂0

− 4
15

⎛
⎝⎜

⎞
⎠⎟ −

2
5

⎡

⎣
⎢

⎤

⎦
⎥

 + ε̂ xy
0 KS

a K̂0 + 4
3 µ̂0( ) − 4

15
⎛
⎝⎜

⎞
⎠⎟ +

KS

aµ̂0

2
5

⎛
⎝⎜

⎞
⎠⎟ +

µS

aµ̂0

4
5

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
4π

(λ1 cosθ )sinθ dθ dφ
0

π

∫0

2π

∫

= ε xz
* µ̂0

K̂0 + 4
3 µ̂0

− 4
15

⎛
⎝⎜

⎞
⎠⎟ −

2
5

⎡

⎣
⎢

⎤

⎦
⎥

 + ε̂ xz
0 KS

a K̂0 + 4
3 µ̂0( ) − 4

15
⎛
⎝⎜

⎞
⎠⎟ +

KS

aµ̂0

2
5

⎛
⎝⎜

⎞
⎠⎟ +

µS

aµ̂0

4
5

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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(I.46) 

  

(I.47) 

  

(I.48) 

1
4π

(λ2 sinθ cosφ)sinθ dθ dφ
0

π

∫0

2π

∫

= ε xy
* µ̂0

K̂0 + 4
3 µ̂0

− 4
15

⎛
⎝⎜

⎞
⎠⎟ −

2
5

⎡

⎣
⎢

⎤

⎦
⎥

 + ε̂ xy
0 KS

a K̂0 + 4
3 µ̂0( ) − 4

15
⎛
⎝⎜

⎞
⎠⎟ +

KS

aµ̂0

2
5

⎛
⎝⎜

⎞
⎠⎟ +

µS

aµ̂0

4
5

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
4π

(λ2 sinθ sinφ)sinθ dθ dφ
0

π

∫0

2π

∫

= ε xx
* K̂0

K̂0 + 4
3 µ̂0

− 1
3

⎛
⎝⎜

⎞
⎠⎟ +

µ̂0

K̂0 + 4
3 µ̂0

4
45

⎛
⎝⎜

⎞
⎠⎟ +

2
15

⎡

⎣
⎢

⎤

⎦
⎥

 + ε yy
* K̂0

K̂0 + 4
3 µ̂0

− 1
3

⎛
⎝⎜

⎞
⎠⎟ +

µ̂0

K̂0 + 4
3 µ̂0

− 8
45

⎛
⎝⎜

⎞
⎠⎟ −

4
15

⎡

⎣
⎢

⎤

⎦
⎥

 + ε zz
* K̂0

K̂0 + 4
3 µ̂0

− 1
3

⎛
⎝⎜

⎞
⎠⎟ +

µ̂0

K̂0 + 4
3 µ̂0

4
45

⎛
⎝⎜

⎞
⎠⎟ +

2
15

⎡

⎣
⎢

⎤

⎦
⎥

 + ε̂ xx
0 KS

a K̂0 + 4
3 µ̂0( )

8
15

⎛
⎝⎜

⎞
⎠⎟ +

KS

aµ̂0

− 2
15

⎛
⎝⎜

⎞
⎠⎟ +

µS

aµ̂0

− 4
15

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 + ε̂ yy
0 KS

a K̂0 + 4
3 µ̂0( )

4
15

⎛
⎝⎜

⎞
⎠⎟ +

KS

aµ̂0

4
15

⎛
⎝⎜

⎞
⎠⎟ +

µS

aµ̂0

8
15

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 + ε̂ zz
0 KS

a K̂0 + 4
3 µ̂0( )

8
15

⎛
⎝⎜

⎞
⎠⎟ +

KS

aµ̂0

− 2
15

⎛
⎝⎜

⎞
⎠⎟ +

µS

aµ̂0

− 4
15

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
4π

(λ2 cosθ )sinθ dθ dφ
0

π

∫0

2π

∫

= ε yz
* µ̂0

K̂0 + 4
3 µ̂0

− 4
15

⎛
⎝⎜

⎞
⎠⎟ −

2
5

⎡

⎣
⎢

⎤

⎦
⎥

 + ε̂ yz
0 KS

a K̂0 + 4
3 µ̂0( ) − 4

15
⎛
⎝⎜

⎞
⎠⎟ +

KS

aµ̂0

2
5

⎛
⎝⎜

⎞
⎠⎟ +

µS

aµ̂0

4
5

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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(I.49) 

  

(I.50) 

  

(I.51) 

Consequently, the interface averaged  can be written as follows 

  (I.52) 

1
4π

(λ3 sinθ cosφ)sinθ dθ dφ
0

π

∫0

2π

∫

= ε xz
* µ̂0

K̂0 + 4
3 µ̂0

− 4
15

⎛
⎝⎜

⎞
⎠⎟ −

2
5

⎡

⎣
⎢

⎤

⎦
⎥

 + ε̂ xz
0 KS

a K̂0 + 4
3 µ̂0( ) − 4

15
⎛
⎝⎜

⎞
⎠⎟ +

KS

aµ̂0

2
5

⎛
⎝⎜

⎞
⎠⎟ +

µS

aµ̂0

4
5

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
4π

(λ3 sinθ sinφ)sinθ dθ dφ
0

π

∫0

2π

∫

= ε yz
* µ̂0

K̂0 + 4
3 µ̂0

− 4
15

⎛
⎝⎜

⎞
⎠⎟ −

2
5

⎡

⎣
⎢

⎤

⎦
⎥

 + ε̂ yz
0 KS

a K̂0 + 4
3 µ̂0( ) − 4

15
⎛
⎝⎜

⎞
⎠⎟ +

KS

aµ̂0

2
5

⎛
⎝⎜

⎞
⎠⎟ +

µS

aµ̂0

4
5

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
4π

(λ3 cosθ )sinθ dθ dφ
0

π

∫0

2π

∫

= ε xx
* K̂0

K̂0 + 4
3 µ̂0

− 1
3

⎛
⎝⎜

⎞
⎠⎟ +

µ̂0

K̂0 + 4
3 µ̂0

4
45

⎛
⎝⎜

⎞
⎠⎟ +

2
15

⎡

⎣
⎢

⎤

⎦
⎥

 + ε yy
* K̂0

K̂0 + 4
3 µ̂0

− 1
3

⎛
⎝⎜

⎞
⎠⎟ +

µ̂0

K̂0 + 4
3 µ̂0

4
45

⎛
⎝⎜

⎞
⎠⎟ +

2
15

⎡

⎣
⎢

⎤

⎦
⎥

 + ε zz
* K̂0

K̂0 + 4
3 µ̂0

− 1
3

⎛
⎝⎜

⎞
⎠⎟ +

µ̂0

K̂0 + 4
3 µ̂0

− 8
45

⎛
⎝⎜

⎞
⎠⎟ −

4
15

⎡

⎣
⎢

⎤

⎦
⎥

 + ε̂ xx
0 KS

a K̂0 + 4
3 µ̂0( )

8
15

⎛
⎝⎜

⎞
⎠⎟ +

KS

aµ̂0

− 2
15

⎛
⎝⎜

⎞
⎠⎟ +

µS

aµ̂0

− 4
15

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 + ε̂ yy
0 KS

a K̂0 + 4
3 µ̂0( )

8
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⎛
⎝⎜

⎞
⎠⎟ +

KS

aµ̂0

− 2
15

⎛
⎝⎜

⎞
⎠⎟ +

µS

aµ̂0

− 4
15

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 + ε̂ zz
0 KS

a K̂0 + 4
3 µ̂0( )

4
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⎛
⎝⎜

⎞
⎠⎟ +

KS

aµ̂0

4
15

⎛
⎝⎜

⎞
⎠⎟ +

µS

aµ̂0

8
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⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ε λ

ε λ = Â : ε̂ 0 + B̂ : ε*
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where  and  are isotropic tensors , 

  

(I.53) 

 

Â B̂

Â = 3Âb ,2Âs( )
Âb =

4
9

KS

a K̂0 + 4
3 µ̂0( )

Âs = − 2
15

KS

a K̂0 + 4
3 µ̂0( ) +

1
5
KS

aµ̂0
+ 2
5

µS

aµ̂0

B̂ = 3B̂b ,2B̂s( )
B̂b = − 1

3
K̂0

K̂0 + 4
3 µ̂0

B̂s = − 2
15

µ̂0
K̂0 + 4

3 µ̂0
− 1
5
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Appendix II. The coefficient tensor “A” 

The components of the coefficient tensor A for the prolate spheroid in Eq. (4.2) are  

 
(II.1)

 

 
(II.2)

 

 
(II.3) 

 
(II.4)

 

 
(II.5)

 

  (II.6) 

 
(II.7)

 

where  

 
(II.8)

 

 
(II.9)

 

A1111 =
1
8
KS

µ0
J1 +

1
8
µS

µ0
J2 +

1
16

KS

M 0

J2 +
1
16

µS

M 0

2J1 − J2( )

A1122 =
1
8
KS

µ0
J3 −

1
8
µS

µ0
J1 +

1
16

KS

M 0

2J1 + J2( )− 1
16

µS

M 0

J2 + 4J3( )

A1133 = − 1
8
KS

µ0
J1 + J3( )− 1

8
µS

µ0
J2 − J1( ) + 1

4
KS

M 0

J1 +
1
8
µS

M 0

J2 + 2J3 − J1( )

A1212 =
1
8
KS

µ0
J1 − J3( ) + 1

8
µS

µ0
J1 + J2( )− 1

8
KS

M 0

J1 +
1
8
µS

M 0

J1 + 2J3( )

A1313 =
1
4
KS

µ0
J4 +

1
16

µS

µ0
11J1 − 3J2 + 4J3 + 4J4( )− 1

8
KS

M 0

J2 − J1( ) + 1
2
µS

M 0

J5

A3311 = − 1
8
KS

µ0
J1 + J3( )− 1

8
µS

µ0
J2 − J1( ) + 1

16
KS

M 0

5J1 − J2 + 4J3 + 4J4( )− 1
16

µS

M 0

3J1 + J2 + 4J3 − 4J4( )

A3333 =
1
4
KS

µ0
J1 + J3( ) + 1

4
µS

µ0
J2 − J1( ) + 1

8
KS

M 0

J2 − J1( )− 1
2
µS

M 0

J5

J1 =
π a 8a4 − 2a2b2 + 3b4( ) a2 − b2 + b2 −8a4 − 4a2b2 + 3b4( ) tanh−1 e⎡
⎣

⎤
⎦

S a2 − b2( )5/2

J2 =
π a 8a4 − 42a2b2 + 7b4( ) a2 − b2 + b2 24a4 − 4a2b2 + 7b4( ) tanh−1 e⎡
⎣

⎤
⎦

S a2 − b2( )5/2
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(II.10)

 

 
(II.11)

 

 
(II.12)

 

Further,  is the eccentricity, and  is the surface area of the 

prolate spheroid.  

 

J3 =
π a −8a4 +10a2b2 + b4( ) a2 − b2 + b2 8a4 −12a2b2 + b4( ) tanh−1 e⎡
⎣

⎤
⎦

S a2 − b2( )5/2

J4 =
π 4ab2 −4a2 + b2( ) a2 − b2 + b2 16a4 −11a2b2 + 4b4( ) tanh−1 e⎡
⎣

⎤
⎦

S a2 − b2( )5/2

J5 =
π ab2 −14a2 − b2( ) a2 − b2 + b2 8a4 + 8a2b2 − b4( ) tanh−1 e⎡
⎣

⎤
⎦

S a2 − b2( )5/2

e = 1− b
2

a2
S = 2πb2 1+ a

be
arcsine⎛

⎝⎜
⎞
⎠⎟
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Appendix III. The coefficient tensor “B” 

The components of the coefficient tensor B for the prolate spheroids in Eq. (4.2) are  

 (III.1) 

 (III.2) 

 (III.3) 

 (III.4) 

 (III.5) 

 (III.6) 

 (III.7)
 

where 

 (III.8) 

 (III.9) 

B1111 = − 1
2
I1 −

K0

M 0

I2 −
1
6
µ0
M 0

8I2 − 3I1( )

B1122 =
1
6
4I2 − I1( )− K0

M 0

I2 +
1
6
µ0
M 0

I1

B1133 = − 2
3
I2 − I1( )− K0

M 0

I2 −
2
3
µ0
M 0

2I2 − I1( )

B1212 = − 1
3
I1 + 2I2( )− 1

3
µ0
M 0

4I2 − I1( )

B1313 = − I1 + I3( ) + 4
3
µ0
M 0

I2 − I1( )

B3311 = − 2
3
I2 − I1( )− K0

M 0

I1 − I2 + I3( ) + 2
3
µ0
M 0

I3

B3333 =
4
3
I2 − I1( )− K0

M 0

I1 − I2 + I3( )− 4
3
µ0
M 0

I3

I1 =
πa2b b a2 −10b2( ) a2 − b2 + 25a4 − 24a2b2 + 8b4( ) tan−1 a2 − b2

b
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

S a2 − b2( )5/2

I2 =
πa2b b a2 − b2 + a2 − 2b2( ) tan−1 a2 − b2

b
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

S a2 − b2( )3/2
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 (III.10) I3 =
πb b3 7a2 + 2b2( ) a2 − b2 + a2 −24a4 + 23a2b2 − 8b4( ) tan−1 a2 − b2

b
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

S a2 − b2( )5/2




