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G4Boost: a machine learning‑based tool 
for quadruplex identification and stability 
prediction
H. Busra Cagirici1, Hikmet Budak2 and Taner Z. Sen1* 

Background
Guanine-rich nucleic acid sequences have the potential to fold into functional sec-
ondary structures known as G-quadruplex (G4) structures [1]. In a G4 structure, four 
guanine nucleotides organized in a coplanar manner by flexible loop regions form a 
square planar structure of G-quartets (G-tetrads [2]). G4 structures are character-
ized by the presence of at least two stacks of G-quartets that are stabilized by Hoog-
steen-type hydrogen bonding as well as by the coordination of central monovalent 
cations to guanine nucleotides [3]. Depending on the environment, conformation 
of the structure, and the sequence intrinsic features, G4s exhibit diverse topologies. 
The presence of cations is required for the integrity of the structure with potassium 

Abstract 

Background: G-quadruplexes (G4s), formed within guanine-rich nucleic acids, are sec-
ondary structures involved in important biological processes. Although every G4 motif 
has the potential to form a stable G4 structure, not every G4 motif would, and accurate 
energy-based methods are needed to assess their structural stability. Here, we present 
a decision tree-based prediction tool, G4Boost, to identify G4 motifs and predict their 
secondary structure folding probability and thermodynamic stability based on their 
sequences, nucleotide compositions, and estimated structural topologies.

Results: G4Boost predicted the quadruplex folding state with an accuracy greater 
then 93% and an F1-score of 0.96, and the folding energy with an RMSE of 4.28 and 
 R2 of 0.95 only by the means of sequence intrinsic feature. G4Boost was successfully 
applied and validated to predict the stability of experimentally-determined G4 struc-
tures, including for plants and humans.

Conclusion: G4Boost outperformed the three machine-learning based prediction 
tools, DeepG4, Quadron, and G4RNA Screener, in terms of both accuracy and F1-score, 
and can be highly useful for G4 prediction to understand gene regulation across spe-
cies including plants and humans.
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ion (K+) providing optimal effect [4, 5]. G4 structures can be formed with syn or 
anti conformation of glycosidic bond [2], and from one, two or four separate strands 
(intermolecular, bimolecular or tetra molecular), with varying topologies [6, 7]. Fur-
thermore, G4 structure stability is dependent on the number of consecutive guanines 
forming G-quartets [8] as well as the length and the nucleotide composition of the 
loop regions [9, 10].

Although distributed throughout the genome, G4 motifs are significantly located 
in the functional regions of chromosomes such as telomeres as well as the regulatory 
regions of various genes including 5′ untranslated region (UTR), the first intron and 
the first exon regions [8, 11]. Growing in vitro and in vivo evidence implicates G4s in 
important biological processes, mainly including telomerase activity [12] and regulation 
of replication [13–15], transcription [16–18], and translation [19–21]. Given the corpus 
of evidence for regulatory and functional importance of the G4s, several tools have been 
developed for the genome-wide screening and annotations of the putative G4 structures.

The first computational approaches were solely based on sequence compositions. 
These sequence-based prediction approaches have tremendously contributed to the 
exploration of putative G4 structures and deciphering their biological roles at the level 
of the whole genome or transcriptome for various organisms. The nomenclature of G4 
motifs is based on the number of consecutive G bases and the loop lengths in between. 
Following in vitro studies defined the sequence pattern  (G3+N1−7G3+N1−7G3+N1–7G3+) 
to form stable  G4 structures which has been widely accepted for nearly two decades 
[22]. Since then, a variety of irregular G4 motifs has been investigated to include “imper-
fect” G4 motifs by definition [23–25] to allow greater motif flexibility, such as longer 
loops, bulges, or mismatches in the G4 motif (such as those identified by the pqsfinder 
program [26]) based on experimentally validated structures [23]. Others focused on a 
new scoring system for G4s based on nucleotide composition. Because it was shown that 
cytosine nucleotides form strong Watson–Crick base pairing with the guanine tracks 
and could be detrimental for the G4 structure formation [24], later models penalized 
the presence of cytosine nucleotides within the G4 motif (such as in the G4-Hunter pro-
gram [27]). Using either one of these approaches, large, genome-wide G4 datasets have 
become available for several species including main crops of wheat [28] and barley [11] 
as well as model species like human [29], Arabidopsis [30] and maize [31].

These computational approaches have limitations in the sense that they can identify 
where G4 motifs may be located, but they cannot inform about whether these motifs 
can form stable G4 structures. Biological functioning of a G4 is dependent on its ability 
to fold into a stable structure [32]. Structural stability depends not only on G4 structural 
topological features, such as the number of G-quartets, lengths of loops, and discontinu-
ities within the G-stem [22, 23], but also external features such as cation availability and 
concentration [4, 5], which is hard to predict, and other internal features such as nucleo-
tide composition and distribution [24, 27] that may affect thermodynamic stability of 
G4s. Consequently, several computational approaches have extended their focus on the 
prediction of thermodynamic stability of G4s, including Mfold [33], RNAfold [34], and 
CentroidFold [35]. Although most of these tools were designed for RNA, they can be 
modified for application to DNA, at least for secondary structure prediction. A recent 
study, indeed, demonstrated that in most cases, the secondary structure of DNA can be 
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reconstructed with acceptable accuracy of a greater than 0.85 by at least one of these 
three tools with RNAfold showing the best overall performance [36].

An experimental approach, called G4-seq, to identify G4s in a genome-wide manner 
in genomic DNA, has recently been applied to humans [37]. In addition, machine learn-
ing procedures, such as Quadron [38] and DeepG4 [39], have been developed to predict 
G4-formation based on experimental human G4-seq datasets.

We developed a new machine learning-based prediction model, G4Boost, to define 
and annotate putative topological structures of G4s and predict structural stability based 
on secondary structure folding energy. Whilst previous tools only define G4s based on 
human experimental data and require the flanking regions from the G4 motif or define 
G4s solely on motif screening approaches, G4Boost incorporates sequence intrinsic fea-
tures alone to predict the sequence topological features, quadruplex folding probabil-
ity, and the secondary structure folding energy. By five-fold cross-validation approach, 
we evaluated G4Boost using different feature sets and across various machine learning 
algorithms and parameters. The final model was optimized using an extreme gradient 
boosting algorithm for both for the classification of folded and unfolded G4s and for 
the prediction of folding energy through a regression problem. Although G4Boost was 
developed based on plant datasets, we tested the applicability of this model to several 
organisms: Case studies with experimental X-ray crystallography structural data dem-
onstrated that this model can be efficiently applied to wheat, barley, rice, maize, Arabi-
dopsis, and human. Last, we included the performance comparison of G4Boost on the 
experimental X-ray data against the latest machine-learning based G4 prediction tools: 
DeepG4, Quadron, and G4RNA Screener to show that G4Boost outperformed these 
available tools in terms of both accuracy and F1-score.

Results
Description of the G4Boost framework

We describe a machine learning model for the classification and the prediction of the 
stability of G4 structures. G4Boost only requires an input sequence and initializes a 
three-layered prediction of (1) G4 structure topology, such as number of G-quartets 
and loop lengths, (2) G4 structure folding probability, and (3) quadruplex structure 
folding energy. The framework of our proposed approach is schematically depicted 
in Fig. 1. Phase 1 is the data wrangling step where we construct the training data and 
extract the G4 structure predictive features. Phase 2 is the development of supervised 
machine learning models for the prediction of G4 structure folding probability and fold-
ing energy. Phase 3 is the construction of final G4Boost machinery and followed by the 
evaluation step.

Construction of the training data

We compiled a list of 1,720,224 nonredundant G4 motifs from a total of 35 genomes 
of distinct species, including Arabidopsis [40], rice [41], maize [42], wheat and bar-
ley pangenomes [43, 44], and human genome [45]. Initially G4 motifs with the most 
studied pattern of  (G3+L1-7)3+G3+ were screened throughout these genomes on both 
sense and antisense directions. Although widely used, this motif has a caveat associ-
ated with it as it can give unequal number of G-bases forming G-quartets, such as 
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“GGGtttttttGGGGGtttttttGGGtttGGG” where the second G-stem contains five gua-
nines whereas the remaining G-stems contain three G-bases, thus two of the gua-
nines in the second G-stem either forms bulges within the G-stem or is placed in the 
loop region. The first and the second loop already contain seven nucleotides and the 
inclusion of the two guanines from the second G-stem results in longer loops (> 7 nt) 
which, in fact, does not fit the initial pattern of  (G3+L1-7)3+G3+. In either case of 
bulges and longer loops, the resulting G4s can be defined as imperfect (noncanonical) 
G4s [25] which were often associated with a decreased stability of the G4 structure 
[29]. We refined the search pattern such that G4Boost allows only equal number of 
consecutive G-bases in each of the G-stems and placed the additional guanines in the 
loop regions. This way, G4Boost does not eliminate any putative G4s, instead com-
putes the maximum and minimum lengths of the loops and the maximum number of 
G-tetrads that can be formed within the input sequence.

Although sequence-based prediction approaches are favorable for genome-wide 
motif screenings, these putative motifs are suspected to fold into quadruplex struc-
tures given the competition between the Watson–Crick and the Hoogsteen base 
pairing. Therefore, we further evaluate the putative G4s in terms of both sequence 
topology and structural stability. As a stability measure for the quadruplexes, our 

Fig. 1 Summary of the G4Boost workflow. G4 motifs were extracted from several plant genomes and 
evaluated thermodynamically for folding into secondary structures to construct the training data (Phase 
1). G4 motifs were described by ten features and labeled by their folding probability and energy (Phase 1). 
Classification models were evaluated for their prediction accuracy of the G4 structure folding (Phase 2). 
Regression models were evaluated and optimized for the prediction of G4 structure folding energy (Phase 2). 
Final prediction machinery, G4Boost, is built for the prediction of G4 structure topology, folding probability, 
and folding energy (Phase 3) and evaluated (Evaluation)
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method uses thermodynamic energy predictions by RNAfold as structural stabil-
ity label. Although designed for RNA sequences, RNAfold predicts the secondary 
structure of DNA sequences with high accuracy [36]. Figure 2 shows an example of 
G4 structure folding obtained from X-ray crystallography experiment (Fig.  2A) and 
predicted by RNAfold (Fig.  2B). RNAfold predicted the base pairings forming the 
G-quartets correctly as shown in the experimental data. The free energy of secondary 
structure folding was, also, calculated by the RNAfold and used as an indicator of the 
stability of the quadruplex.

G4Boost identifies G4 sequence topology and locates the G4 motif in a given sequence

Supervised machine learning algorithms require training data containing labels and fea-
tures. In this study, the features to calculate the folding probability and energy of the 
putative G4 quadruplexes were extracted based on its sequence and topology. A broad 
definition of G4s could lead to an infinite number of putative G4 motifs without any lim-
its to the number of loops or the number of G-quartets “(G3+L1-7)3+G3+”. Experimental 
studies in humans suggested that G4s can contain longer loops around 12 nucleotide-
long [46] although most of the stable G4 structures contain shorter loops (i.e., less than 
7) [22, 29]. Initial definition of G4s was determined based on the most stable quadruplex 
topology where the number of G-quartets were limited to 3 or more. However, recent 
studies [47, 48] showed that although being exceptions G4 structures can be formed 
from less than 3 G-quartets. Therefore, we restricted our definition of G4 motifs to limit 
the number of loops to less than 11, G-quartets to less than 9, and loop length to 12 

Fig. 2 Representation of G4 structure folding. Crystal structure of a G-quadruplex (PDB ID: 3IBK [63]) from 
the top and the side (A) and its RNAfold representation (B) are shown. the 3D model of 3IBK is colored by its 
bases (guanines in green, adenines in gray, and thymines in red) and the backbone is colored blue. Two K+ 
ions are shown at the center. Hydrogen bonds between the K+ ion and the guanines are shown as yellow 
dotted lines. Bonding between the nucleotides is shown as dash lines in the RNAfold representation which is 
followed by the G4 sequence and the dot plus notation of the structure (B)
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(expressed as “(G1-8L1-12)3-11G1-8”) to expand the G4 motifs that do not qualify under the 
canonical definition of G4s, i.e., “(G3+L1-7)3+G3+”.

Our approach uses the following features: the main sequence topological features 
are the number of G-quartets, the number of loops, and the minimum and maxi-
mum lengths of loops; sequence intrinsic features are the lengths of query sequence 
and the putative G4 motif in the query sequence, in addition to the 20 features based 
on sequence intrinsic features, including monomer and dimer frequencies of the four 
nucleotides. For a total of 26 features, we assessed the contribution of each feature to 
the prediction models and selected the top-ranking features together with the top-rank-
ing prediction models after 5-fold cross validations. These following 10 features were 
selected as top-ranking for the extreme gradient boosting algorithm: the number of 
G-quartets, the number of loops, the maximum loop length, the minimum loop length, 
the length of the query sequence, the length of the G4 motif, the composition of G and C 
bases, and the composition of GG and CC dimers. Ranking of all features was provided 
in the Additional file 4: Table S1.

G4Boost predicts the G4 structure folding probability

We labeled the putative G4 motifs as either folded or unfolded G4s based on the ther-
modynamic calculations by RNAfold. RNAfold calculates the free energy for the alterna-
tive folding patterns based on base-pairing probabilities and backtracing of suboptimal 
structures, and returns the folding state with the lowest energy [34]. Our results showed 
that some of the motifs, even the canonical perfect G4 motifs, do not fold into quad-
ruplex structures. Instead, they form stem-loop hairpin structures. Even though those 
sequences might yield a low folding energy, indicating higher stability, those motifs were 
defined as unfolded G4s in this study. We therefore developed G4Boost to predict the 
G4 structure folding probability of the given sequence (Fig. 2).

A reliable way to assess a machine-learning model’s performance is to train a model 
and test on a separate dataset [49]. In order to limit the data loss during separation of 
the dataset, cross-validation approaches separate a portion of the data for training and 
test the model on the spared data (as shown as part of Phase 2 in Fig.  1). A five-fold 
cross-validation approach spares 20% of the data as test and trains the model using the 
remaining 80% of the data. In each turn, different parts of the data are used in the test 
and train and the overall performance is assessed by the average scores in each turn.

A five-fold cross-validation based assessment was applied to evaluate the prediction 
performance of the G4 structure folding state for eight classifiers including Random For-
est, Classification and Regression Decision Trees (CART), Neural Network (NeuralNet), 
Logistic Regression (LR), Linear Discriminant Analysis (LDA), k-Nearest Neighbors 
(kNN), Naïve Bayes (NBayes), and Extreme Gradient Boosting (XGBoost) algorithms. 
Table 1 shows 5-fold cross-validation performance metrics such as accuracy, F1-score, 
precision, recall, and area under the receiver operating characteristic (AUROC) using 
the top 10 features. All the algorithms, except NBayes, predicted the G4 structure fold-
ing with > 90% accuracy. As the features are not completely independent and scaled, 
NBayes provided low prediction scores (accuracy of 79%).

Generally, accuracy is the most common metric used to evaluate a trained model; 
however, in this study, precision and recall are equally important since the training 
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data is unbalanced. The trained machine learning model is expected to demonstrate 
balanced precision and recall performance. A good measure to evaluate the balance 
between the precision and recall metrics is F1-score. F1-score is usually preferred over 
accuracy to evaluate the prediction power of a machine learning model on an unbal-
anced data. Therefore, the performance of the classification was further evaluated based 
on statistical metrics: precision, recall, and F1-score (Table 1). Our results showed that 
XGBoost performs best on the training data for the classification of the folded and 
unfolded G4s in terms of accuracy, F1-score, recall, and AUROC (Table  1). The Neu-
ral Network classifier showed slightly better performance in the precision; however, the 
low recall metrics resulted in an overall F1-score comparable to XGBoost (Table 1). The 
G4 sequences together with the associated features that are better classified with Neural 
Networks than XGBoost are provided in Additional file 5: Table S2. Additional perfor-
mance assessments were performed through plotting the Receiver Operating Charac-
teristic (ROC) curve (Fig. 4) for visualization and calculating the respective Area Under 
the Curve (AUC) score from the ROC curve [50]. Overall, the default XGBoost classi-
fier outperformed all the remaining algorithms for the classification of G4 folding with 
93.8% accuracy, 0.976 AUROC score, and 0.964 F1-score (Table 1).

We selected the extreme gradient boosting algorithm as our classifier to predict fold-
ing probability of the G4 motifs. The tree-based gradient boosting algorithm is a fast and 
powerful technique on a large spectrum of prediction problems, and XGBoost is among 
the top-performing algorithms preferred by the best machine learning competitors [51]. 
XGBoost algorithms are rather flexible with a set of parameters to be optimized for the 
best functioning. We optimized the parameters for the XGBoost classification using a 
5-fold cross validation approach. Figure  3 shows the improved performance metrics 
after parameter optimization in the XGBoost classifier as the ROC and Precision/Recall 
(PR) curves.

Feature distributions among the folded and unfolded G4s

We investigated the distribution of the features and the contribution of each feature 
to the folding state of the G4s. Our results showed that unfolded G4 motifs in general 
follow the canonical definition of G4s  (G3L1-7) which are almost always composed of 3 

Table 1 Performance comparison of classifiers

Five‑fold cross‑validation performance metrics of eight classifiers for the prediction of G4 structure folding probability. 
Average is devoted to average score and std is to standard deviation for the five‑fold cross‑validation sets. AUROC is the area 
under the receiver operating characteristic curve

Accuracy F1-score Precision Recall AUROC

Average SD Average SD Average SD Average SD Average SD

XGBoost 0.938 0.002 0.964 0.001 0.959 0.006 0.969 0.004 0.976 0.002

NeuralNet 0.934 0.002 0.962 0.001 0.964 0.009 0.959 0.011 0.974 0.002

RandomForest 0.933 0.003 0.961 0.002 0.956 0.006 0.966 0.003 0.963 0.005

KNN 0.928 0.003 0.958 0.002 0.955 0.007 0.961 0.005 0.937 0.010

CART 0.928 0.005 0.958 0.003 0.958 0.006 0.958 0.005 0.919 0.016

LR 0.927 0.003 0.958 0.002 0.949 0.007 0.968 0.005 0.966 0.003

LDA 0.907 0.005 0.947 0.003 0.932 0.004 0.962 0.004 0.941 0.005

NBayes 0.790 0.019 0.862 0.014 0.990 0.005 0.764 0.022 0.943 0.015
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G-quartets separated by loops with a maximum length of either 7 or 8 (Fig. 4). We evalu-
ated the training data for the refined definition of G4s and reported the location of the 
G4 motif within the query sequence.

Formation of stable G4 structure has been associated with the nucleotide composition 
of the candidate motif. In particular, cytosine nucleotides within the close proximity to 
the guanines in the G4 motifs could interfere with the quadruplex folding by forming 
strong bonds with the guanines in the G-quartets [24]. Indeed, our results showed that 
dimer and monomer contents of both cytosine and guanine nucleotides have high sepa-
ration power for the folded and unfolded G4 motifs (Fig. 4). G and GG contents were 
higher in the folded G4 whereas C and CC contents were higher in the unfolded G4s 
(Fig. 4), suggesting that the presence of cytosines around the G4 motif could interfere 
with the stable formation of G4 structures.

G4Boost predicts the G4 structure folding energy

The third layer of G4Boost predicts the G4 structure folding energy based on the ther-
modynamic measurements of the RNAfold. Similar to the classification of G4 structure 
folding, we initially compared different regression algorithms at their default settings 
and subsequently fine-tuned the parameters for the best-performing algorithm. Neural 

Fig. 3 The ROC and PR curves for classification performance. The Receiver Operating Characteristic (ROC) 
(left) and the Precision/Recall (PR) (right) curves for the five-fold cross validation are shown. Each fold colored 
separately where the mean scores are colored blue, and the random probability is shown as red dash lines

Fig. 4 The frequency distribution of the selected features to build the prediction model for folded (blue) 
and unfolded (red) G4s. The features include A CC and B GG dinucleotide contents, C C and D G nucleotide 
contents, E motif length, F input sequence length, G minimum loop length, H maximum loop length, I the 
number of G-quartets, and J the number of loops
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Network, gradient boosting, and extreme gradient boosting regression models were 
compared based on root mean square root (RMSE) and R-square (R2) scores as well as 
the explained variance and mean absolute error scores. Table 2 shows the overall perfor-
mance metrics for the regression models to predict quadruplex folding energy on a five-
fold cross validation set. Overall, the XGBoost model resulted in the highest scores in all 
the performance metrics.

While the baseline accuracy was high, parameter fine tuning improved the overall per-
formance of the XGBoost regression model where the R2 score increased to 0.95 and 
RMSE score decreased to 4.28 (Fig. 5). Then, we assessed the features and interactions 
behind the model mechanics. Interrogation of the model architecture through ranking 
of the features by their importance revealed an assigned score for individual variables 
(Additional file 1: Fig. S1). We measured the feature importance in terms of weight and 
gain where gain is defined as the number of times a feature is visited for splitting a deci-
sion tree and the weight is defined as the empirical squared improvement as a result 
of this split [52]. Additional file 1: Fig. S1 shows the ranking of the features where the 
lengths and GG content were among the most selective features in terms of tree con-
struction (gain) and the information gained (weight). Interestingly, the least information 
gained from the number of G-quartets as shown in the weight graph, although these 
features contribute greatly to the construction of the decision tree as shown in the gain 
graph (Additional file 1: Fig. S1).

Table 2 Performance comparison of regression models

Five‑fold cross‑validation performance metrics of three regression models for the prediction of G4 structure folding energy 
are shown. Average is devoted to average score and std is to standard deviation for the five‑fold cross‑validation sets

Variance R2 RMSE Absolute error

Average SD Average SD Average SD Average SD

XGBoost 0.937 0.019 0.937 0.019 4.449 0.132 2.751 0.236

NeuralNet 0.933 0.021 0.933 0.021 4.567 0.222 2.931 0.232

GBoost 0.915 0.024 0.915 0.024 5.170 0.186 3.321 0.261

Fig. 5 The performance evaluation of the G4 folding energy. Cross-validated predictions for each data were 
compared against the measured energy from RNAfold
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Decision trees generated by XGBoost regression model include direction and reveal 
hierarchical dependencies of the decisions. The decision trees revealed that the first 
decisions were based on the number of G-quartets (Additional file  1: Fig. S2). Other 
decisions were independent of the context where each feature interacts with one another. 
Furthermore, we evaluated the training dynamics of this decision model using learning 
curves where we observed the correlation between the training and the cross-validation 
scores with a varying number of training samples. As the number of training samples 
increases, the training and the cross-validation scores converge together, indicating that 
the sample size is sufficient to construct this prediction model (Additional file 3: Fig. S3).

Performance evaluation on the X-ray crystal structures

The prediction performance of fully trained G4Boost was evaluated on the G4 sequences 
collected from X-ray crystallography experiments. The Protein Data Bank [53] (PDB) 
website (www. rcsb. org) stores 3D shapes of proteins, nucleic acids, and complex assem-
blies from X-ray diffraction, NMR, and electron microscopy experiments. We collected 
the quadruplex data from X-ray crystallography experiments for DNA and RNA mol-
ecules only, resulting in the 238 entries, where more than half is composed of redun-
dant sequences. Cleaning the redundancy resulted in the 78 unique G4 structures with 
known 3D X-ray images. Some of the quadruplexes are initially complex structures 
where our manual curation showed that six of the entries (1K2L, 3UKG, 6TZS, 1QYK, 
6TQI, and 4GFB) are not in fact G-quadruplex structures and might be as well classified 
as quadruplex-like structures due to lack of bonding to form a G-quartet. This leaves the 
final test data with the 72 positives and 6 negatives for the folding of G4s.

As the first layer of analysis, G4Boost predicts the quadruplex topology from the 
sequence. Interestingly, this experimental data showed that G4s can contain G-quartets 
as low as 1 and with a maximum of 4 (Additional file  6: Table  S3). Additionally, loop 
lengths showed great variance between 1 and 12 nucleotides which was, in fact, inde-
pendent of our definition of G4s. As the second layer of G4 analysis, G4Boost predicts 
the G4 structure folding probability for the test data. G4Boost provided a 97% true posi-
tive prediction rate (70 of the 72 positives) and a 50% of true negative prediction rate 
(3 of the 6 negatives). Overall accuracy for the G4Boost prediction was 93.6% whereas 
the balance accuracy was 73.6% and the F1-score of 0.97. RNAfold, on the other hand, 
classified 38 of the test data as unfolded G4s, with the performance metrics: accuracy of 
56.4%, balanced accuracy of 76.39%, and the F1-score of 0.69. RNAfold classified all the 
six unfolded G4s correctly whereas it failed to predict almost half of the folded G4s. Our 
results showed that although initially trained on the RNAfold predictions, G4Boost out-
performed the RNAfold for the classification of the folded and unfolded G4s in terms of 
both accuracy and the F1-score.

As the final layer of the prediction model, G4Boost predicted the G4 structure folding 
energy of the test data. G4Boost predicted a folding energy of -24 on average for all the 
test data and the energy predictions were similar for the folded and unfolded G4s with 
an average energy prediction of − 24 and − 21, respectively (Additional file 6: Table S3). 
On the other hand, secondary structure energy predictions showed larger variance 
with the RNAfold when compared to cross-validation datasets. RNAfold resulted in an 
average energy of − 17 for the test data. Comparison of the secondary structure energy 

https://www.rcsb.org
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predictions between G4Boost and RNAfold yielded an RMSE score of 16.41 and an R2 
score of 0.17. This discrepancy might be attributed to the inability of RNAFold to cor-
rectly classify these G4s.

Performance evaluation against DeepG4, Quadron, and G4RNA screener

We compared the performance of G4Boost on the G4 sequences collected from X-ray 
crystallography experiments with the performances of the three other G4 prediction 
tools: DeepG4 [39], Quadron [38], and G4RNAscreener [54]. Of these tools, G4RNA 
screener provides an easy-to-use web server where only an input sequence is required. 
Quadron features a graphical user interface (GUI) as well as an executable R script than 
can be run provided with an input fasta file. Though Quadron requires a prior knowledge 
of R programming language to setup. DeepG4, on the other hand, requires experience in 
R scripting language to setup and run as no executable scripts is provided. In terms of 
G4 prediction performances, G4RNA screener and DeepG4 were able to evaluate the 
given sequences, whereas Quadron only evaluated the 31 of the 78 input sequences. The 
sequences without a favorable prediction were counted as unfolded G4s.

G4Boost outperformed DeepG4, Quadron, and G4RNA Screener in terms of accuracy, 
recall, and F1-score (Table 3). DeepG4 and Quadron provided the lowest true positive 
prediction rates of 46% and 26%, respectively. It is important to note that these two tools 
were initially developed to evaluate the G4s within larger regions (~ 200 bp) and evalua-
tion of the G4 sequence itself (< 100 bp) without the knowledge of the extending regions 
might be limiting their performance. G4RNA Screener, on the other hand, provided a 
slightly better balanced-accuracy (74% vs 76%) and precision (96% vs 98%) than G4Boost 
as G4RNA Screener successfully classified 5 out of 6 unfolded G4s. However, due to the 
high false negative predictions with 22 out of 72 G4s, G4RNA Screener resulted in lower 
accuracy (94% vs 71%) and F1-score (0.97 vs 0.81) than the G4Boost.

Discussion
G4s were canonically defined as at least three consecutive guanine bases separated 
by rather flexible loop regions up to 7 nucleotides long. Subsequent studies however 
showed stable structure formation with motifs even with 12-nucleotide-long, mis-
matches or bulges in the G-stem, or longer sequence patterns that fold into multim-
eric G4 structures. Adding more complexity to the canonical definition, later studies 
showed that cytosines within the G4 motifs might interfere with the G-quartet for-
mation and form stable guanine-cytosine Watson–Crick pairing instead. Therefore, 

Table 3 Performance comparison of G4Boost against other G4 prediction tools

The comparison is based on the G4 sequences collected from X‑ray crystallography experiments, with lengths shorter than 
100 bp

Accuracy Balanced 
accuracy

Recall Precision F1-score

G4Boost 0.936 0.736 0.972 0.959 0.97

DeepG4 0.474 0.563 0.458 0.943 0.62

G4RNA Screener 0.705 0.764 0.694 0.980 0.81

Quadron 0.321 0.632 0.264 1.000 0.42
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identification of G4 motifs that can form a stable secondary structure is a challeng-
ing task given that all G4 structures do not follow the canonical definition of G4s, 
and all G4 motifs with the canonical definition do not fold into stable quadruplex 
structures. To overcome the limitations of sequence-based predictions, in  vitro 
evidence such as G4-seq data can be used when available to classify folding ability 
of putative G4 motifs via machine learning. When experimental data is not avail-
able, thermodynamic predictions can be a good alternative to predict G4 structure 
stability.

Here we describe a decision tree-based prediction method, named G4Boost, to 
predict the G4 motifs and evaluate the secondary structure folding probability and 
energy. G4Boost extracts G4 sequence topology features and identifies the G4 motif 
within a given sequence. Two key advantages of G4Boost are (i) the ability to define 
G4 motifs in the query sequence without considering the upstream and downstream 
elements if the data not available, and, more importantly, (ii) G4Boost evaluates 
the structural stability of the putative G4 motifs based on thermodynamic energy 
predictions and reports back the G4 motifs with high secondary structure folding 
probability. Here, we showed that G4Boost accurately predicts the quadruplex fold-
ing state (> 93% accuracy) and the folding energy (RMSE of 4.28 and  R2 of 0.95) of 
the predicted sequence only by the means of sequence intrinsic feature (Figs. 3 and 
5). These prediction performances were obtained with the use of XGBoost, a scal-
able machine learning system for tree boosting. XGBoost is powered by ensemble of 
multiple tree-based learners where each new tree learns from the errors of previous 
trees. XGBoost algorithm has shown to be superior to the most of the algorithms by 
being recognized as part of the winning solutions in machine learning competitions 
at both Kaggle and KDDCup 2015 [51].

G4Boost is not limited to humans and has been trained for a variety of species. 
Interspecies conservation studies showed that only less than 50% of the human 
quadruplexes were conserved between human and other species such as dog and 
mouse [55]. Furthermore, a more detailed conservation pattern of G4s across 37 
species where the results showed that G4s with shorter loops are conserved whereas 
G4s with longer loops show diversity [56]. Since the conservation of the G4 motifs 
among diverse species is open to debate, covering diverse genotypes is crucial for a 
better understanding of the functional roles of G4s in cellular regulation.

Even though the training data was mostly composed of plant genomes, G4Boost accu-
rately classifies human quadruplexes as shown by the experimental X-ray crystallog-
raphy data for humans (Additional file 6: Table  S3). For the same data, G4Boost even 
outperformed the available popular machine-learning based prediction tools: DeepG4, 
Quadron, and G4RNA Screener, in terms of both accuracy and F1-score (Table  3). 
G4Boost provides an accurate solution to identify and classify the G4 motifs for species 
and conditions for which no experimental data are available. Integrating such compre-
hensive data into machine learning pipelines and careful examination of the presence 
of G4s can lead to the identification of new pathways, and consequently may improve 
human health and existing plant and animal breeding programs. Therefore, we expect 
this three-layered G4 prediction tool will be useful in expanding our understanding of 
cellular and molecular control of many traits in a variety of species.
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Conclusion
Functional G4s have been associated with many important biological functions in plants 
and human, including but not limited to telomere maintenance [12], replication [13], a/
biotic stress [11] and translation [20]. Since then large efforts have revealed candidate 
G4 motifs across several genomes based on sequence motif screenings [11, 28, 30, 31]. 
One major problem with the G4 screening approaches is that these were either solely 
based on sequence pattern or developed using experimental data that is available for 
humans. Further understanding of the G4 secondary structure folding stability is nec-
essary because G4s have more potential to be functional when folded into stable  G4 
structures. Considering limited experimental data available for G4 structures, thermo-
dynamic measurements stand as a strong candidate to evaluate secondary structure sta-
bility in plants.

We presented G4Boost to identify and annotate G4s and predict their structural 
stability in terms of thermodynamic energy. G4Boost does not require any additional 
data except the query sequence as input and is an easy-to-use python-based applica-
tion. Other than direct classification, G4Boost provides a quadruplex folding probabil-
ity score where different thresholds can be applied to lower or increase the confidence 
depending on the study.

Considering conservation variety of G4 motifs among different species, we included a 
wide range of species for our model. G4Boost was trained and applied to 35 genotypes 
and 6 species (wheat, barley, rice, maize, Arabidopsis, and human). Five-fold cross-val-
idation experiments showed that G4Boost correctly predicts the folding state of the G4 
structures with a greater than 93% accuracy, and predicts the secondary structure fold-
ing energy with high accuracy with a root-mean-square-error of 4.28 and R-squared of 
0.95 for diverse species, including but not limited to plants.

Although mainly trained on plant species, G4Boost accurately classifies the experi-
mental X-ray crystallography data for human G4s as well. An accurate prediction of G4s 
and their stabilities will provide a better understanding of the role of these important 
functional structures play in cellular and molecular regulation of traits of interest.

Methods
All data analyses were performed in python version 3 and machine learning analysis 
were applied through python scikit-learn package [57].

Construction of the G4 library

The putative G4 motifs were retrieved using a regex screening approach for the canoni-
cal G4 motif regex (’({gG}{3,}\w{1,7}){3,}{gG}{3,}’) on both sense and antisense strands 
of the genome using regular expression operations package in python. Reverse com-
pliments of the G4 motifs that were identified on the antisense strands were included 
for further analysis. We compiled a list of nonredundant G4 motifs identified from the 
genomes of distinct species including human (Homo sapiens—GCF_000001405.39) [45], 
barley (barley cultivar Morex) [58, 59], maize (Zea mays—GCF_902167145.1, B73 Ref-
Gen_v5) [42], Arabidopsis (Arabidopsis thaliana—GCF_000001735.4) [40], rice (Oryza 
sativa japonica—The Institute for Genomic Research (TIGR) version 7) [41], and wheat 
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(IWGSC Chinese Spring RefSeq v1.0) [60]. To increase the coverage, we included pange-
nomes for barley and wheat species as well [43, 44], totaling to 35 genomes. G4 motifs 
identified from both sense and antisense strands of the 35 genomes were combined into 
one dataset and redundant sequences were eliminated.

Thermodynamic analysis of the G4s

These G4 motifs were later subjected to secondary structure folding using RNAfold [34] 
with quadruplex option (-q). The G4 motifs were later classified as folded or unfolded 
depending on the secondary structure prediction by RNAfold. If the motif is folded into 
a quadruplex structure, it is classified as folded G4. If the motif is folded into other sec-
ondary structures or no secondary structure formation is observed, then it is classified 
as unfolded G4. Secondary structure folding energy was again calculated by RNAfold 
thermodynamically and was later used for the folding energy prediction.

Feature selection

Initially we extracted 26 features based on sequence intrinsic features including initial 
sequence length, nucleotide content, and dinucleotide content together with the G4 
sequence topology features. G4 sequence topology were defined as the motif length, 
number of loops connecting the runs of consecutive G bases (# of loops), the number of 
consecutive G bases (G-quartets), minimum number of bases in a loop, and the maxi-
mum number of bases in a loop. To remove the features contributing the least and/or 
for the worse performance, we applied feature selection specific to the prediction algo-
rithms, including feature_importance functions implemented in the prediction algo-
rithms, the recursive feature elimination, and selecting the features arbitrarily. After 
fivefold cross-validations, we selected the top performing combination of the features 
and the prediction models (Additional file 4: Table S1).

Model construction and evaluation

Supervised prediction models were built using eight classifiers and three regressors from 
the python scikit-learn package. Classifiers include extreme gradient boosting, neural 
networks, random forests, k-nearest neighbors, logistic regression, decision trees, linear 
discriminant analysis, and Naïve Bayes. Regressors include extreme gradient boosting, 
neural network, and gradient boosting. Prediction models were trained using feature 
selection and parameter tuning when applicable. Hyperparameters and the codes were 
provided in Additional file  7: Data 1. Training accuracies were calculated by an inter-
nal five-fold cross-validation. Using the cross_validation function in the sklearn package, 
the prediction scores were evaluated by the mean and the standard deviations for the 
five cross-validation sets. These prediction scores include accuracy, balanced accuracy, 
precision, recall, and F1-score for classification models [61] and the root mean squared 
error (RMSE), the coefficient of determination (R2) score, explained variance for the 
regression models [62].

Additional performance assessments were performed for classification models 
through plotting the receiver operating characteristic (ROC) curve and the precision/
recall (PR) curve for visualization. These performances were measured by calculating the 
area under the curve (AUC) score [50].
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X-ray crystallography data curation

Quadruplex structures were extracted from the Protein Data Bank (PDB) [53]. These 
X-ray determined G4 structures include intermolecular, bimolecular or tetra molec-
ular structures. We extracted the intermolecular G4s as is, and since highly flex-
ible loop regions do not always show up in X-ray, we modified the bimolecular and 
tetramolecular G4 structures by adding an arbitrary loop region between the closest 
strands as appropriate. The artificially added loops contained only Ts, and the number 
of Ts was decided based on its publication or based on the loops that were already 
present in the determined structure. Redundant sequences were eliminated to remove 
bias to obtain the final set of G4 crystal structures.
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