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Abstract
Background: The ability to evaluate geographic heterogeneity of cancer incidence and mortality
is important in cancer surveillance. Many statistical methods for evaluating global clustering and
local cluster patterns are developed and have been examined by many simulation studies. However,
the performance of these methods on two extreme cases (global clustering evaluation and local
anomaly (outlier) detection) has not been thoroughly investigated.

Methods: We compare methods for global clustering evaluation including Tango's Index, Moran's
I, and Oden's I*pop; and cluster detection methods such as local Moran's I and SaTScan elliptic
version on simulated count data that mimic global clustering patterns and outliers for cancer cases
in the continental United States. We examine the power and precision of the selected methods in
the purely spatial analysis. We illustrate Tango's MEET and SaTScan elliptic version on a 1987-2004
HIV and a 1950-1969 lung cancer mortality data in the United States.

Results: For simulated data with outlier patterns, Tango's MEET, Moran's I and I*pop had powers
less than 0.2, and SaTScan had powers around 0.97. For simulated data with global clustering
patterns, Tango's MEET and I*pop (with 50% of total population as the maximum search window)
had powers close to 1. SaTScan had powers around 0.7-0.8 and Moran's I has powers around 0.2-
0.3. In the real data example, Tango's MEET indicated the existence of global clustering patterns in
both the HIV and lung cancer mortality data. SaTScan found a large cluster for HIV mortality rates,
which is consistent with the finding from Tango's MEET. SaTScan also found clusters and outliers
in the lung cancer mortality data.

Conclusion: SaTScan elliptic version is more efficient for outlier detection compared with the
other methods evaluated in this article. Tango's MEET and Oden's I*pop perform best in global
clustering scenarios among the selected methods. The use of SaTScan for data with global
clustering patterns should be used with caution since SatScan may reveal an incorrect spatial
pattern even though it has enough power to reject a null hypothesis of homogeneous relative risk.
Tango's method should be used for global clustering evaluation instead of SaTScan.
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Background
In medical research and epidemiological studies, it is
important to understand the spatial heterogeneity (clus-
tering) of disease cases across the study regions. If global
or local clustering patterns among the responses (e.g. can-
cer cases) exist, it is essential to consider the spatial corre-
lation of the individuals in a statistical model to evaluate
the association between the response (e.g., cancer death
and incidence) and the risk factors. Some statistical meth-
ods that are used in spatial analysis involve aggregated
summaries (count data) and Poisson regression models
that assume independence of neighboring locations with-
out overdispersion [1]. These assumptions are violated if
spatial dependence exists such as in Kulldorff et al. [2]
which examined unusually high breast cancer rates in the
northeastern part of the United States and research done
by Pickle et al. 2001 to detect a local cluster of an extreme
lung cancer mortality rate in a single county in Montana
caused by arsenic exposure [3]. It is important to identify
models with possible spatial correlation when performing
statistical analysis. For example, a risk factor (such as the
distance a region is from a contaminated water source
when measuring incidence of cholera) may turn out to be
significant in a model assuming independent responses.
However, this distance-oriented risk factor may not be
identified when spatial correlation in residuals is consid-
ered in the model.

Many statistical methods for testing spatial clustering and
heterogeneity were developed and can be classified into
two groups: methods for global clustering evaluation and
for local cluster detection [4,5]. Global clustering meas-
ures assess spatial trends (the tendency of spatial cluster-
ing) across an entire study region. Cluster detection
methods identify specific local clusters. Both clustering
patterns (global and local) occur in many cancer inci-
dence and mortality data sets. Simulation studies have
been conducted to evaluate methods for global clustering
evaluation and local cluster detection [6-10], but none
were designed to study and compare the performance of
the methods on data with two extreme situations, such as
global clustering and local outlier patterns. The purpose
of this paper is to investigate the performance of the meth-
ods for testing spatial heterogeneity on data with the two
extreme situations. We simulate disease data with homog-
enous populations to allow for a stronger power study [5].
We provide guidance for the proper use of the statistical
methods selected in the two situations of global clustering
and cluster detection.

Among methods for global clustering evaluation, we
selected Tango's MEET [11], because it has been shown to
be the most powerful test for testing spatial heterogeneity
[5-7,12]; Moran's I [13] is selected as a reference for com-
parison since it has been used widely in these areas; as an

alternative version of Moran's I adjusting for heterogene-
ous population density, Oden's I*pop [14] is selected
because it has not been compared with Tango's MEET in
earlier works. Among cluster detection methods, SaTScan
elliptic version [15] is selected because it has proven to be
very powerful in detecting local clusters (with either regu-
lar shapes or irregular shapes) with good precision, and
reasonable computation time [16,17]. We also selected a
local version of Moran's I among the cluster detection
methods because of the ability of the statistic to perform
well on outlier detection even though it is not a good
method for detecting large clusters [18,19].

The rest of the paper is organized as follows. First, we
briefly present selected global indices of spatial autocorre-
lation, local indices of spatial association (LISA) and SaT-
Scan elliptic version. Second, we discuss the steps and
parameters utilized in the simulation study. Next, the
results of the simulation study are included, and the appli-
cation of the selected methods on HIV and lung cancer
mortality data in the United States are given. The paper
ends with a discussion.

Methods
2.1 Global indices of spatial autocorrelation

Global indices of spatial autocorrelation as defined by
Waller and Gotway [19] provide a summary over the
entire study area of the level of spatial similarity observed
among neighboring observations. In this section we
briefly describe the three common global indices of spa-
tial autocorrelation we intend to evaluate. In the follow-
ing sections, i and j denote geographic units (e.g.
counties), yi is the number of cases at geographic unit i, ni

is the population at risk at geographic unit i, ,

, N is the total number of geographic units, wij

is a weight assigned to the pair of geographic units i and j.

Tango's Index
Tango's excess events test (EET) [20] is defined as

There are many choices of the weight function (see Song
and Kulldorff [21] and Griffith [22]). A simple weight
function based on adjacent neighbors is defined as
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For this paper we refer to Tango's EET with the adjacent
neighbor weight function given in equation [2] as
Tango_ADJ.

We also consider a population density adjusted exponential
weight (PD) [21] that allows for the scale of the spatial
clustering to be adjusted based on the population density,

where dij is the distance between geographic units i and j,

 and mi = max{r:ur(i)  }. The population size in

geographic units i and its r nearest neighbors is defined as

ur(i) The parameter  is chosen by the user and allows the

user to view the population density as a measure of spatial

clustering. Song and Kulldorff [21] note that for a given ,
the weight function will decrease slower in rural areas
than urban areas, as in a rural area ki is large. Thus, a large

 is more sensitive to larger clustering pattern and smaller

 is more sensitive to smaller clusters.

Since the weight function (such as the one in equation

[3]) depends on a user defined parameter , Tango devel-
oped Tango's Maximized excess events test (MEET) in
order to detect clustering patterns irrespective of the geo-
graphic scale. As discussed in [11], Tango's MEET is
defined as

. Here,

we refer to Tango's MEET in our paper as Tango_PDM
since we define EET using weight as in equation [3]. We
set V to be 50% of the total population (an upper limit on

). Where  has values as 0.1%, 0.5%, 1%, 2%, 5%, 10%,
20%, 30%, 40%, and 50% in our study.

Moran's I
Moran's I [13] has been widely used for assessing overall
clustering pattern, and is defined as

where , and .

We use the adjacent neighbors weight function as defined
in equation [2]. I is between -1 and 1; Positive values of I
are associated with strong geographic patterns of spatial
clustering, negative values of I indicate negative spatial
correlation (i.e. a clustering of dissimilar values), and a
value close to zero represents complete spatial random-
ness.

Oden's I*pop
Moran's I defined in the above paragraph does not
account for population heterogeneity, therefore, a global
clustering pattern indicated by a positive Moran's I may be
completely due to the clustering of counties with similar
high/low population. As alternative versions of Moran's I,
Oden [14] derived two statistics (Ipop and I*pop) to test for
global spatial autocorrelation adjusting for population
density. His most powerful test statistic is defined as

Where , vi = ni/n+, vj = nj/n+, ei = yi/y+, ej = yj/y+,

and . Oden notes that symmetry is not

required for I*pop and wii  0 (but can be fixed at any spec-

ified value).

For this study we refer to I*pop as I*pop_ADJ with the adja-
cent neighbor weight function and I*pop_PD with the pop-
ulation density weight function. Note that I*pop_PD
should be more sensitive to the global clustering patterns
if a larger  is assigned, and more sensitive to local clusters
with a smaller  value.

Cluster detection methods
While global indices of spatial association evaluate the
tendency of global spatial clustering across an entire
region, local indices of spatial association (LISA) detect
patterns in geographic units that deviate extremely from
neighboring units (local outliers). SaTScan is another tool
that has been widely used for local cluster detection,
which is good for detecting large clusters. It may also eval-
uate outliers (local clusters with a small geographic or
population size) when the outlier pattern is very strong or
a small maximum search window is used.
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Local Moran's I

The local version of Moran's I is calculated analogously as
the Moran's I (equation 4). Instead of computing one
value of Ir for the entire geographic region, we compute a

value  for each geographic unit (e.g. county) i. Thus the

local version of Moran's I is defined as

where  is the overall rate.

SaTScan
Poisson model based SaTScan circular version [15] and
SaTScan elliptic version [15] has been widely used for
cluster detection on aggregated count data. For each cen-
troid (each geographic unit is a centroid), we construct
many areas (circles or ellipses) with varying sizes (and
angles) sharing the same centroid. We only evaluate SaT-
Scan elliptic version in this paper because the elliptic ver-
sion has better power and precision compared with
circular version for most of situations [16]. Defining the
shape of ellipses by the ratio of the long radius to the short
radius, we use the combination of shapes 1.5, 2, 3, and 4
in our analysis. We rotate each ellipse of fixed shape in the
circle (the radius of the circle is the length of the long axis
of the ellipse) sharing the same centroid, each rotation
moves the ellipse to a new angle. The number of angles for
those shapes 1.5, 2, 3 and 4 is selected to be 4, 6, 9, and
12, respectively. For a given zone Z, the likelihood is then
defined as

where the Z is the collection of all the possible geographic
units (i's), with varying shapes and geographic sizes in
study region, and Z' is the collection of geographic units
in the whole study region that are not in Z. Also yz and yz
are the numbers of cases inside and outside of Z, respec-
tively, and nz and nz are the corresponding populations.
When we are interested in clusters of both high and low
rates, the indicator can be removed. The statistic is then

where G is the whole study region and

which is independent of the Z. The Z that maximizes the
 over all the Z's in G is the most likely cluster. When
searching for large clusters, we use 50% of total popula-
tion as the maximum size of Z, and for local small cluster
or outlier detection, we use 5% of the total population as
the maximum size of Z in the simulation.

Simulating geographic data
We simulate count data with fixed total number of cases
(or sample size) for i = 1,...,3109 representing data from
the 3109 counties of the continental United States (US)
(multinomial data.) All distance measures are calculated
using the latitude and longitude coordinates of the county
centroids. We use the actual configuration of U.S. counties
but not the real U.S. populations for the counties, because
the U.S. has a complex configuration at the county level
with a varying number of neighbors for each county and
it can provide a real and complicated structure of the adja-
cent neighbors and nearest neighbors. Waller et al. [5] dis-
cussed the issue with power analysis of the tests of clusters
and clustering in heterogeneous populations. They found
that power depends on the local population at risk. Here,
in order to evaluate the performance of the methods on
data with varying relative risk patterns without confound-
ing from heterogeneous population, we simulate data
assuming homogeneous county population in the US. We
set ni (the population at risk) equal to 5,000 for all simu-
lations, thus n+ = 15,545,000. Note that the performance
of the tests will be poorer when data are generated from a
heterogeneous population, because more spatial variation
will be introduced through the population variation. We
experimented with simulations that had 5,000-50,000
fixed cases (results not shown) to obtain a relevant range
of power. Larger and smaller number of cases yielded
results which did not adequately force separation of the
methods with respect to the power in different scenarios
(i.e., for small number of cases all methods had a very
poor power for data with outliers; and for a larger number
of cases, all the methods had a power approximately 1 for
data with a global clustering pattern.) Therefore, we used
a smaller y+ (sample size of 5,000) to simulate data with
global clustering pattern and a larger y+ (sample size of
30,000) to simulate data with a local cluster (outlier) as
described in the following sections.

We simulate regional count data sets under the null
hypothesis of constant relative risk
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where (y1, y2,...,y3109) are regional counts generated from
the multinomial distribution. The total number of cases y+
here is always the same as the total number of cases in the
corresponding data simulated under the alternative
hypothesis.

We simulate regional count data sets under the alternative
hypothesis

where , ri is the relative risk at geographic unit

i, which is not the same for all geographic units.

In order to simulate data with global clustering pattern,
the relative risks are defined to have a directional west-east
trend with either a linear or exponential increasing func-
tion (this trend can also reflect the pattern in data with a
north-south trend since a simple rotation is all that is nec-
essary.) With the minimum relative risk (on the west) as
1, we experimented with maximum relative risk (on the
east) with values ranging from 1.5-10 (results not shown).
However, we were unable to detect differences in the per-
formance of the selected statistics when the relative risk
was above 2 (all methods had power close to 1). Therefore
we used a maximum relative risk of 1.5 in our final study.
The monotone increasing function is defined as

for the relative risks with a linear trend, and

for the relative risks with an exponential trend, where a is
an integer from 0-99. The longitudinal coordinates of the
continental United States ranges from -124.161 to -
67.623. We divide this large interval into 100 sub-inter-
vals of equal length where each interval corresponds to a
value of i used in equations [8] and [9]. Both equations
allow for a relative risk of 1.5 between the lowest and
highest longitudinal coordinates. As shown in Figure 1,
the relative risk increases from west to east monotonically,
while the relative risk with the exponential trend (figure
1A) increases faster than that with the linear trend (figure
1B).

In order to simulate data with small local clusters (out-
lier), we set all values of ri equal to 1, except for one geo-
graphic unit which has a relative risk of 4. We only
consider a single outlier in the simulated data. The
number of adjacent neighbors for all counties in the con-
tinental U.S. ranges from 0-14. In order to evaluate if the

power varies by the number of adjacent neighbors around
one outlier, we select three counties with different
number of adjacent neighbors as the outliers with relative
risk of 4, which are Manassas City, Virginia (with 2 adja-
cent neighbors), Jackson County, Kansas (with 6 adjacent
neighbors), and Fulton County, Georgia (with 10 adja-
cent neighbors). Figure 2 includes the maps of the
assigned relative risks for the three patterns.

Calculating power and chance of a county being detected 
as inside clusters
We use Monte Carlo simulation methods to assess the
power of rejecting null hypothesis and the chance a
county is detected as inside any cluster. The steps involved
in our simulation study are as follows:

• Step 1: Simulate 10,000 data sets using the multino-
mial distribution (equation 6) under the null hypoth-
esis (no outlier or global clustering pattern).

• Step 2: Calculate Tango_PDM, Tango_ADJ, Moran's
I, I*pop_PD, I*pop_ADJ, and SaTScan elliptic version
(SaTScan-E) statistics for each data set from step 1.
Calculate Local Moran's I for each county i in each
data from step 1.

• Step 3: Find the 95th percentile for Tango_ADJ,
Moran's I, I*pop_PD, I*pop_ADJ, and SaTScan-E. The
95th percentile is the critical point for the empirical dis-
tribution of each of the statistics. Find the 5th percen-
tile for Tango_PDM, which serves as the critical point
for Tango's I with the PDM weight function. Find the
95th percentile for the local Moran's I at each county
i. There are then 3109 critical points for Local Moran's
I (one for each county.)

• Step 4: Simulate 1000 alternative data sets using the
multinomial distribution (equation 7) under each of
the alternative hypotheses described in the previous
section. The five settings mentioned above are:

a) Global pattern with exponentially increasing
relative risk rates (equation 9)

b) Global pattern with linearly increasing relative
risk rates (equation 8)

c) Local outlier with two adjacent neighbors (Man-
assas City VA)

d) Local outlier with six adjacent neighbors (Jack-
son County KA)

e) Local outlier with ten adjacent neighbors (Ful-
ton County GA)
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Global patternFigure 1
Global pattern. Graphical representation of simulated data with global clustering patterns. The risk increases from West to 
East with either an exponential monotone function (A) or a linear monotone function (B).
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• Step 5: Calculate Tango_PDM, Tango_ADJ, Moran's
I, I*pop_PD, I*pop _ADJ, and SaTScan-E for each of the
1000 data sets from Step 4. Calculate local Moran's I
for each county in each data set from Step 4.

• Step 6: Report the power depending on the statistics.

a. For each of the statistics Tango_ADJ, Moran's I,
I*pop_PD, I*pop_ ADJ, and SaTScan-E, We calculate
the power as the percentage of values out of the
1000 replicates that are above the critical point
obtained in step 3. For Tango_PDM, the power is
the percentage of values smaller than the critical
point obtained in step 3

b. For the cluster detection methods SaTScan-E and
local Moran's I, we also report the chance of a
county being detected inside clusters, which is
defined to be the number of times that a county is
counted inside a detected cluster or as an outlier
out of the 1000 replicates. If that ratio for a county
is close to 1, then there is a large chance that a par-
ticular county is inside a cluster or an outlier as
determined by this method. If the ratios for the
counties inside the true cluster or a true outlier are
all high, we claim that the method has a high
chance to find the correct cluster location, which
indicates good precision of cluster detection.

Notes on simulation methods
Table 1 includes a summary of all the statistics and weight
functions we use for this study. Since the adjacent neigh-
bor weight function is one of the most common weight
functions used in spatial data analysis we included it in
our study. For comparison we also used a population den-
sity weight function which utilized the population when
determining weights. Methods for global clustering evalu-
ation cannot detect local cluster locations; therefore we do
not evaluate the chance of a county being detected inside
a cluster as defined in step 6c for those methods. Note that
we evaluate the performance of Moran's I, Tango's statis-
tics, Oden's I*pop and SaTScan-E for data with global clus-
tering pattern and outlier pattern. We report statistical
power for all methods except local Moran's I. Local
Moran's I is only used for local outlier identification and
we only report chance of geographic unit being detected
as an outlier in the outlier detection for Local Moran's I
since a power calculation is not possible due to fact that
Local Moran's I provides a statistic for each geographic
unit. For SatScan-E we report both power and the chance
of geographic units being detected as inside clusters. The
results of the chance of being inside clusters are presented
in maps and the powers are provided in a table.

Local clusterFigure 2
Local cluster. Graphical representation of the simulated 
relative risk for each of the three alternative data set with 
local clustering. The relative risk for the counties of Manassas 
City Virginia (2 adjacent neighbors), Jackson County Kansas 
(6 adjacent neighbors), and Fulton County Georgia (10 adja-
cent neighbors) are set to 4. All other counties in the United 
States (excluding Alaska and Hawaii) are set to 1.

Table 1: Statistics and methods used to detect global clustering and outlier detection along with weight functions used.

Weight function

Method/Statistic Adjacent neighbor Population density

Global Tango ✓ ✓

I* pop ✓ ✓

Moran's I ✓

Local Local Moran's I ✓

SatScan-E na na
Page 7 of 14
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Simulation results
Performance of the methods on data with global spatial 
clustering patterns
Among all the selected methods for global clustering eval-
uation, Tango_PDM has the highest power to reject the
null hypothesis of homogeneous relative risk over the
entire study region and claim that the simulated data have
global clustering pattern (results presented in Table 2.)
The I*pop statistics with varying weights also has good
power (>0.8) for the population density weight function.
Specifically, when there is a large  (50% of total popula-
tion) in the population density weight function, the statis-
tics have good power because they are more sensitive to
large clustering pattern according to the formulation. All
methods using an adjacent neighbor weight functions
(Tango_ADJ, Moran's I, I*pop_ADJ) that only evaluate lim-
ited adjacent neighbor regions have low power (around
0.1-0.2) for detecting the global clustering patterns.

Designed for cluster detection, SaTScan-E with maximum
spatial window as 50% of total population has moderate
power (around 0.75 (See Table 2)) in identifying the data
with spatial heterogeneity successfully.

The type of increasing function in the global trend (expo-
nential or linear) was not a key factor in power for all the
statistics for the data with the same maximum relative
risk. Power is slightly higher for data with exponential
function compared with linear function because the rela-
tive risk in data with exponential function increases faster
than that in data with linear function, even though the
maximum relative risk in both types are the same (maxi-
mum relative risk = 1.5). We also note that with maxi-
mum relative risk above two, all methods obtained a
statistical power above .95.

SaTScan-E also detects cluster locations with significantly
higher risks. We compute the chance of a county being
inside the detected clusters out of the 1000 replicates and
present the chances in Figure 3A. The counties with
orange through red color have moderate to high chance
(60% to 100%) being detected as inside clusters of high
risk. The blue color areas indicate counties with low
chance to be detected. The patterns in Figure 3A do reflect
a spatial variation (high risk in the west vs. low risk in the
east). The chances of counties being inside detected clus-
ters are lower for data with linearly increasing function
(right) compared with that with exponentially increasing

Table 2: Power of selected statistics for detecting data with local and global cluster types.

Global clustering methods Local cluster detection 
methods

Tango_PD
M

Tango_AD
J

Moran's I 
ADJ

I*pop_ PD
( = 5%)

I*pop_ PD
( = 50%)

I*pop_ ADJ Local 
Moran's I

SaTScana

Local 
clusters
relative risk 
= 4
sample size = 
30,000

Two adjacent 
neighbors

(Manassas 
City VA)

0.107 0.127 0.024 .079 0.056 0.060 + 0.973

Six adjacent 
neighbors

(Jackson 
County KS)

0.089 0.124 0.027 .087 0.042 0.047 + 0.962

Ten adjacent 
neighbors

(Fulton 
County GA)

0.081 0.125 0.030 .079 0.043 0.055 + 0.979

Global 
clustering
relative risk 
= 1.5
sample size = 
5.000

Linear 0.997 0.285 0.232 .884 0.996 0.119 + 0.737

Exp 0.998 0.291 0.235 .886 0.997 0.129 + 0.781

a for global clustering evaluation, we used 50% of total population as the maximum search window. With the outlier detection, we use 5% of the 
total population as the maximum search window in SaTScan-E.
+ Power calculations are not available for Local Moran's I due to the fact that a statistics is produced for each geographic unit in the study. It is 
difficult to define power in the presence of multiple comparisons.
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SatScan and local version of Moran's I results for Global clustering and local cluster patternsFigure 3
SatScan and local version of Moran's I results for Global clustering and local cluster patterns. Graphical represen-
tation showing the chance of geographic units being detected as inside clusters (the number of times a geographic unit was 
selected as a unit inside a cluster over 1000 simulations). (A) Results from SatScan-E on data with global clustering pattern as 
shown in Figure 1, (B) Results from SatScan-E on data with outlier as the three counties shown in Figure 1, and (C) Using local 
version of Moran's I on data with outlier pattern as shown in Figure 2.
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function (left), which is expected because the risks
increase faster with an exponential function. Compared
with the true risk pattern in Figure 1, SaTScan-E only
detects clusters with high risk in limited eastern areas, but
does not capture the global clustering pattern as shown in
Figure 1. Also, we cannot evaluate the precision of SaTS-
can-E because there is no true cluster in the data with glo-
bal clustering pattern.

Performance of methods for data with local clusters 
(outliers)
Based on our simulation study, the ability of the statistics
to identify the spatial heterogeneity in data with only out-
liers is not very sensitive to the number of adjacent neigh-
bors. SatScan-E with maximum search window as 5% of
total population performed significantly better (with
power above 0.95) than all methods for global clustering
evaluation (with power lower than 0.2) in terms of power
(Table 2). This result was not surprising since SaTScan-E is
designed for local cluster detection and with a small
search window it searches for clusters with a smaller size
(outliers). Methods for global clustering evaluation do
not perform well because there is no strong global cluster-
ing tendency when the data have a single outlier including
one county.

We also compared the chance of the true outlier counties
being detected as inside clusters from the two methods for
local cluster detection (SaTScan-E vs. LISA) in Figure (3B
vs. 3C). SaTScan-E has a very good chances (above 0.9) to
detect the true outlier counties. The maximum chance of
being detected as inside clusters for local Moran's I are
lower than those from SaTScan-E (around 0.4-0.5). How-
ever, we note that local Moran's I did detect the location
of the true simulated outlier with a higher chance (0.4-
0.5) than all other counties (with chance < 0.1) as shown
in Figure 3C. The precision for SaTScan-E is very good
because only the true outlier counties have a very high
chance (red color) to be detected from the map, and the
precision of local Moran's I is not very good because the
chance of a true outlier being detected is about 0.4-0.5
and the counties around the true outliers also have mod-
erate chance (0.4-0.5) to be detected as inside cluster.

Examples
We provide two real data examples with the two extreme
clustering situations (global clustering pattern and out-
lier) to demonstrate the performance of SaTScan-E and
Tango_PDM, which have the best performance among the
others methods evaluated in our simulation study.

Clustering pattern of HIV mortality in US during recent 
decades
HIV disease, as a non-cancer disease, has the public's
attention in recent decades because of its high mortality.

To understand the spatial pattern of HIV mortality, we use
an HIV mortality data during 1987-2004, which is availa-
ble from the National Center for Health Statistics and
extracted from the Surveillance, Epidemiology, and End
Results (SEER) Program of the National Cancer Institute
(NCI) http://seer.cancer.gov. The total number of HIV
deaths during 1987-2004 is 406,465 in our data set. First,
we simply map the observed mortality rate and the
smoothed rate in Figure 4A (observed) and 4B
(smoothed) using GIS. In Figure 4B, the rates are
smoothed using the software Headbang [23] with the
county population at risk as the weight for smoothing
with 30 neighboring counties. The smoothed map pro-
vides a better sense of spatial pattern with less noise com-
pared with the observed map. From the maps, we visually
see a south to north global clustering trend of the mortal-
ity rates similar to the global clustering trend we evaluated
in our simulation study except in a different direction
(West to East trend in our simulated data set.)

We then used the selected methods on the raw HIV mor-
tality data for testing of the spatial heterogeneity.
Tango_PDM successfully detected the global clustering
pattern (p-value < .001). This result from Tango_PDM
indicates that it is necessary to consider global spatial cor-
relation of mortality rates when constructing classical spa-
tial statistical model to analysis mortality data. A spatial
model with a variance-covariance matrix incorporating
spatial patterns will help to eliminate a possible correla-
tion in the residuals compared with a regression model
without considering spatial correlation.

As shown in Figure 4C, SaTScan-E identified five statisti-
cally significant clusters (p-value < .05) with relative risks
ranging from (1.11 to 10.37) when we only searched for
clusters of high rates using 50% of total population at risk
as the maximum spatial search window. However, it does
not capture the global clustering pattern observed in Fig-
ure 4A and Figure 4B. We also conduct a search for clusters
with low rates only. As shown in Figure 4D, we have a
large cluster (No. 1) covering the upper part of US with
low relative risk (0.31) compared with the regions out-
side. The other significant clusters (No. 2, 3, and 4) have
relative risks as 0.52, 0.53 and 0.67 separately. This does
indicate a global clustering pattern in HIV mortality in US,
which is consistent with the pattern observed in Figure 4A
and Figure 4B.

Clustering pattern of lung cancer mortality in US during 
50s-60s
Lung cancer has been the leading cancer in the United
States and experienced a decreasing mortality trend over
years. The mortality is very high for lung cancer patients in
earlier years (1950s-60s). Here, our interest is to identify
possible clusters/outliers with high lung cancer mortality
Page 10 of 14
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Example using data with a global clustering patternFigure 4
Example using data with a global clustering pattern. (A) Raw and (B) Smoothed HIV mortality rates per 100,000 for the 
years 1987-2004 using county population as weight for smoothing over 30 nearest neighbors (top). (C) is detected clusters of 
high rates from SaTScan-E and (D) is detected clusters of low rates from SaTScan-E
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or global clustering pattern using the two selected meth-
ods. We obtained the lung cancer mortality data during
the years 1950-1969 for white males from the National
Cancer Institute at http://www3.cancer.gov/atlasplus/.
The total number of deaths observed in these data are
570,521 (a large sample size). When Tango_PDM was
used, we obtained a p-value <.001, which indicates the
existence of a global clustering pattern in this male lung
cancer data.

SatScan-E with maximum search window as 5% of total
population at risk detects 15 significant clusters of high
rates with p-values smaller than 0.05 (5A). When 50% of
total population at risk is used, 8 clusters of high rates are
detected with p-values smaller than 0.05 (5B). The relative

risks in those detected clusters are ranging from 1.07 to
1.81. There are many clusters with only one or several
counties (outliers) in both maps and there are more out-
liers detected in Figure 5A. We notice a small cluster
including only two counties (Silver Bow County and Deer
Lodge County) in the state of Montana, which is a typical
type of outlier with high relative risk (1.81). The mortality
rate inside this outlier region is 67.1 per 100,000 people
vs. 37 per 100,000 outside. The observed mortality rates
in Montana are presented in Figure 5C and the smoothed
rates (using Headbang software) is in Figure 5D, which
also shows a possible outlier location in Silver Bow
county and Deer Lodge County. It has been known that
Silver Bow County was the location of the pollution
source caused by a copper plant which explained the high

Example using data with a local cluster patternFigure 5
Example using data with a local cluster pattern. (A) is detected clusters of high rates from SaTScan-E with 5% maximum 
search window and (B) is detected clusters of high rates from SaTScan-E with 50% maximum search window. (C) Raw and (D) 
Smoothed lung mortality rates per 100,000 for the years 1950-69 using county population as weight for smoothing over 30 
nearest neighbors.
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risks of lung cancer mortality in this area. This is also con-
sistent with the results noticed by Lee et al. [3] that an
extreme lung cancer mortality rate in a single county (Sil-
ver Bow County) in Montana was caused by arsenic expo-
sure. Here, we can claim that there exist both global
clustering pattern and outliers in white male lung cancer
mortality during 1950s-60s in this county.

Conclusion and discussion
In this article, we explored the performance of several glo-
bal indices of spatial autocorrelation, local Moran's I and
SaTScan-E to detect global clustering and identify outliers.
Tango_PDM had the highest statistical power for identify-
ing global clustering patterns among all methods consid-
ered. The power for I*pop with proper  are very close to
that for Tango_PDM, but the user has to choose the value
of , which is subjective and it is very hard to find the opti-
mal . However, Tango_PDM evaluates regions with vary-
ing total population and provides a single statistic and p-
value, so it is easier for users without much knowledge of
the geographic features of the study region to identify glo-
bal spatial clustering. SaTScan with a large search window
(50% of total population) may have moderate power to
detect spatial heterogeneity but it may not reveal the cor-
rect global clustering pattern.

SaTScan-E performed well in detecting the outliers in
terms of power, which is much better than local Moran's I
and the methods for global clustering evaluation. From
our simulation study we also found that for a large relative
risk difference (greater than 2), SaTScan-E as well as all the
other methods considered were able to detect spatial het-
erogeneity with a power above .98. For local cluster detec-
tions (outlier), the power is sensitive to the change in
sample size with increased sensitivity. When the sample
size was less than 25,000 we had very low power in detect-
ing outliers. Even though SaTScan and local Moran's I did
obtain a higher chance to locate the true location of out-
liers compared with other locations, the overall chance of
detecting the true outlier is low.

The weight function does affect the power of the methods
for evaluating global clustering pattern. For the methods
using adjacent neighbor weight function, the order of the
power is Tango's Index, I*pop, and Moran's I, which
implies that Tango's index is the best in detecting spatial
heterogeneity among the selected methods for global clus-
tering evaluation even with the same weight function.
When comparing the power for I*pop with the weight func-
tions PD (with  = 50% of total population) and ADJ, we
notice that the power for the data with global clustering is
much higher with the PD weight function compared to
the ADJ weight function.

A limitation of our simulation is that we simulated homo-
geneous county populations across an entire region. This
assumption likely does not hold in real data. Heterogene-
ous population densities complicate comparisons of sta-
tistical power between hypothesis test evaluating spatial
clusters or global clustering [5]. Our intent was to investi-
gate statistical power while controlling for as many varia-
tions and confounding factors as possible, in order to
effectively evaluate and compare each statistics. However,
we do provide an example based on real mortality data
with heterogeneous population across the U.S.

Our example based on heterogeneous population
revealed that Tango_PDM method detected the global
clustering pattern which validates the simulation results
based on a similar global clustering pattern. Although
SaTScan was designed for cluster detection, it can still be
used to access global clustering patterns if larger clusters
exist. However, SaTScan can be misleading in detecting
clusters as shown in Figure 4c. Therefore one should be
careful when applying SaTScan to evaluate global cluster-
ing patterns. SaTScan did find the outlier (Silver County)
in Montana with real heterogeneous population and unu-
sually high lung cancer mortality rate among white males
using a 5% and 50% window. Usually, it is difficult to
detect outliers using a 50% window. In our case a 50%
window was sufficient to detect an outlier. This result is
partially due to the fact that we have a large relative risk of
1.8 and a large sample size which made outlier detection
more feasible.

There are many directions for future research. First there
are several alternative autocorrelation and spatial associa-
tion patterns (not only global clustering and outlier pat-
terns) that could be considered. For example, Song and
Kulldorff [7] simulate various cluster sizes for their power
study. In addition, there is much work to be done in defin-
ing appropriate spatial weight functions. We considered
common spatial weights: adjacent neighbors and popula-
tion density. However alternative weight functions (such
as the weight functions included in Song and Kulldorf
[21]) may influence the performance of each test. Other
outlier detection methods (e.g. Multi-item Gamma Pois-
son Shrinker [24] (MGPS)) may be evaluated and com-
pared with SaTScan-E and Local Moran's I in the future.
Comparison with heterogeneous population data is also
possible if one is interested in the performance of the tests
in the presence of real heterogeneous population from the
US.
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