UC Santa Barbara

Core Curriculum-Geographic Information Systems (1990)

Title

Unit 69 - GIS Standards

Permalink

https://escholarship.org/uc/item/87g7j63x

Authors

Unit 69, CC in GIS National Center for Geographic Information and Analysis

Publication Date

1990

Peer reviewed

UNIT 69 - GIS STANDARDS

UNIT 69 - GIS STANDARDS

- A. INTRODUCTION
 - Reasons for standards
 - Standards organizations related to GIS
- B. TYPES OF STANDARDS FOR GIS
 - Operating system standards
 - User interface standards
 - Networking standards
 - Database query standards
 - Display and plotting standards
 - Data exchange standards
- C. IMPLEMENTING STANDARDS
 - Start-up costs
 - Management support
 - Technical tradeoffs
 - Potential for security risks
 - <u>Innovation</u>
- D. WHAT TO STANDARDIZE?
- REFERENCES
- EXAM AND DISCUSSION OUESTIONS
- NOTES

UNIT 69 - GIS STANDARDS

A. INTRODUCTION

- this unit is based largely on information from Exler (1990) and Tom (1990)
- standards are needed as GIS users attempt to integrate their operations with other hardware, GISs and data sources
- challenge is to get industry, government and users to implement and promote the use of standards
- many standards are set simply through common use, though major attempts are currently being made to develop broad ranging national and international standards

Reasons for standards

- 1. Portability of applications
 - need the ability to move developed applications to new hardware platforms in order that development efforts are not duplicated and can be shared
- 2. Data networks
 - need ability to access digital data which is distributed through various offices, agencies, states and even countries
- 3. Common environments
 - if applications use similar operating environments, learning curves are reduced and productivity is increased
- 3. Cost of program development
 - standards are important to software developers as they reduce the need to develop interfaces for many different data formats, operating systems, plotters, etc.

Standards organizations related to GIS

overhead - Standards Organizations

• the following is from Exler (1990)

ANSI - American National Standards Institute

• approves standards for US industrial and commercial sectors

DCDSTF - Digital Cartographic Data Standards Task Force

• combines FICCDC-SWG and NCDCDS for digital cartographic standards

FICCDC-SWG - Federal Coordinating Committee on Digital Cartography - Standards Working Group

- formed by the Interagency Coordinating Committee Office of Management and Budget to serve as a focal point for the coordination of digital cartographic activities
- FIPS Federal Information Processing Standards
 - official source of information processing standards for federal departments and agencies
- IEEE Institute of Electrical Electronics Engineers
 - develop standards for a broad range of subjects, including information processing
- ISO International Standards Organization
 - approves standards for the international community through national standards bodies such as ANSI

NCDCDS - National Committee for Digital Cartographic Data Standards

 formed by ACSM (American Congress on Surveying and Mapping) and funded by USGS

NIST - National Institute of Standards and Technology

- formerly the National Bureau of Standards
- oversees standards activities for the government
- recently opened a GIS laboratory

OSF - Open Software Foundation

• a vendor consortium of IBM and Digital Equipment Corporation

UNIX International - a vendor consortium of AT&T and SUN

X/Open - a nonprofit independent consortium of 19 computer manufacturers representing 160 software developers from 17 countries attempting to define standards for a complete computing environment

B. TYPES OF STANDARDS FOR GIS

Operating system standards

- for micro-computers, most GIS use the DOS operating system, though applications are being written for OS/2 and Macintosh
- UNIX appears to be the current popular operating system for the powerful workstations and mainframe computers, though there are several other well accepted and newly developing options

User interface standards

- affect the "look and feel" of GIS programs
- windowing is becoming popular as a standard in GIS and as well as most other applications
- at the micro-computer level:
 - for PC computers, Presentation Manager available under the OS/2 operating system and as Microsoft Windows in DOS is becoming the standard
 - Macintosh operating system has always been a windowing environment
- X-Windows is the de facto windowing standard for UNIX and other mainframe and workstation operating systems
 - this allows different vendor's hardware to support a common interface in a networked environment

Networking standards

are critical to allow communications between remote computers

• networked environments are increasingly popular for GIS as the technology and data becomes widely used within organizations

Database query standards

• SQL (standard query language) is emerging as a standard across the data processing spectrum, though in its current form it is limited in its ability to handle spatial queries

Display and plotting standards

- several standards have emerged in this area simply as a result of the popularity of specific hardware devices
- these include:
 - CalComp and HPGL line plotter formats
 - Postscript raster, page oriented graphics

Data exchange standards

- the largest standardization effort is currently being directed at this area
- US Federal government has recognized the need to exchange data between different agencies (see Unit 68) and has formed committees to examine aspects of this
 - note work done by NCDCDS, FICCDC and DCDSTF
 - current efforts are directed towards the development of the Spatial Data Transfer Specification (SDTS) (see Tom (1990) for more details on SDTS)
 - the Defence Mapping Agency's digital cartographic data standard DIGEST is part of an effort to establish standards within the international defense community, e.g. NATO
- however, there are several common data exchange formats currently in use (see GIS World, 1989)
- these include: overhead Spatial data exchange formats

USGS DEM- Digital Elevation Model

- format used by the USGS since early 1980s for gridded elevation data
- allows a single attribute per cell

USGS DLG - Digital Line Graph

- all features of the USGS quadrangle map series are supported by this format
- is the most widely used format for exchange of digital cartographic data
- used primarily for coordinate information though it does support alphanumeric attributes

GBF/DIME - Geographic Base File/Dual Independent Map Encoding (Census Bureau)

- original Census Bureau digital files developed in early 1970s
- allows both coordinate and attribute data

TIGER - Topologically Integrated Geographic Encoding and Referencing (see Units 8 and 29)

IGES - Initial Graphic Exchange Specifications (National Bureau of Standards)

- used extensively for the exchange of CAD and CAM data
- only one attribute per feature

SDDEF - Standard Digital Data Exchange Format (NOAA)

- primarily used to exchange data between NOAA, Defense Mapping Agency and the Federal Aviation Administration
- only supports point data

SIF - Standard Interchange Format (Intergraph)

- developed to support exchange of data between Intergraph and other systems
- popular data exchange format for many GIS packages

MOSS - Map Overlay and Statistical System (US Fish and Wildlife)

- originally developed as part of the MOSS GIS
- a non-topological format for vector data with translators to several common spatial data formats
- now used by several federal and local government agencies

DXF - Digital eXchange Format (Autodesk)

- developed by Autodesk, Inc. for AutoCAD
- like SIF is a popular data exchange format for many GIS packages

C. IMPLEMENTING STANDARDS

• several issues are related to the implementation of GIS standards

Start-up costs

- implementation of a standard can incur substantial costs in terms of money and time
- will be major short-term costs related to user training and reprogramming of software

Management support

 management needs to recognize the positive impacts of standards on productivity and system costs and be willing to commit short-term resources for retraining and reprogramming

Technical tradeoffs

• adopting of standards require tradeoffs between functionality and performance

- standards provide for broad functionality
 - e.g. adopting software that uses a standard data exchange format allows access to a broad range of data sources
 - e.g. adopting a standard operating system provides access to a large library of existing applications
- however, standards by their very nature, do not allow fine tuning to specific hardware or applications
 - e.g. plotter standards may not make the optimum use of the hardwired capability of your plotter
- some de facto standards are neither efficient nor the best available
 - many exist simply due to the original popularity of the hardware or software, even though they may no longer be the state-of-the-art

Potential for security risks

- wide availability of common operating systems allow for misuse and exploitation
 - e.g. the spread of computer viruses depends on common operating systems

Innovation

• broadly accepted standards make it very difficult to introduce innovations

D. WHAT TO STANDARDIZE?

- the majority of standards effort in GIS to date has concerned data formats
- standards such as DIGEST provide standard record layouts, coding schemes
- although formats are standardized, these efforts deal primarily with the structure of the data, and not with its meaning
- data may be written into a standard format for transfer, and thus be readable by some other system, but it may still be virtually meaningless without extensive documentation
- the SDTS goes well beyond format standards by defining standard meanings for terms
 - e.g. SDTS attempts to remove the confusion over the use of arc, link, edge, chain, segment in GIS by establishing a standard term for every type of object
- the USFS effort to establish a corporate database may similarly yield standards of meaning, e.g. standardized definitions of GIS layers, at least within this organization
- still missing is a standard of data models that would provide standard ways of representing geographic phenomena
 - e.g. for digital elevation data, should the standard include all of contours, DEMs and TINs?
 - should there be standard resolutions for DEMs?

- should there be standards of vertical accuracy?
- also missing are standards of data accuracy for GIS
 - map accuracy standards deal only with cartographic features
 - e.g. a GIS standard for digital elevation data might specify the accuracy of elevation for any point in an area, not the accuracy of positioning of a contour
- such standards would provide the GIS user with expectations about the reliability of the database as a window on the world, rather than a window on source documents, or a window on transferred databases

REFERENCES

GIS World, 1989. "Spatial data exchange formats", The GIS Sourcebook, GIS World, Fort Collins, CO, pp. 122-23.

Exler, R.D., 1990. "Geographic Information Systems Standards: An Industry Perspective", GIS World Vol 3(2):44-47.

FICCDC, 1988. "The proposed standard for digital cartographic data", The American Cartographer, Vol 15(1).

Thorley, G.A., 1987. "Standards - Why bother?," USGS Open File Reports, 87-314. Abstracts of papers presented at the GIS Symposium.

Tom, H., 1990. "Geographic Information Systems Standards: A Federal Perspective", GIS World Vol 3(2):47-52.

EXAM AND DISCUSSION QUESTIONS

- 1. Standards can be imposed from above, or emerge through consensus. Discuss the pros and cons of top-down and bottom-up approaches to GIS standardization.
- 2. How successful do you think DXF can be as a GIS exchange standard? What aspects of information exchange does it standardize?
- 3. Review the approach taken by SDTS to standardizing the use of the term "chain".
- 4. "SDTS is a standard for cartography, not GIS" discuss.

Last Updated: August 30, 1997.